2 * Copyright (c) 2014 Apple Computer, Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <sys/errno.h>
31 #include <mach/mach_types.h>
32 #include <mach/mach_traps.h>
33 #include <mach/host_priv.h>
34 #include <mach/kern_return.h>
35 #include <mach/memory_object_control.h>
36 #include <mach/memory_object_types.h>
37 #include <mach/port.h>
38 #include <mach/policy.h>
40 #include <mach/thread_act.h>
41 #include <mach/mach_vm.h>
43 #include <kern/host.h>
44 #include <kern/kalloc.h>
45 #include <kern/page_decrypt.h>
46 #include <kern/queue.h>
47 #include <kern/thread.h>
48 #include <kern/ipc_kobject.h>
50 #include <ipc/ipc_port.h>
51 #include <ipc/ipc_space.h>
53 #include <vm/vm_fault.h>
54 #include <vm/vm_map.h>
55 #include <vm/vm_pageout.h>
56 #include <vm/memory_object.h>
57 #include <vm/vm_pageout.h>
58 #include <vm/vm_protos.h>
59 #include <vm/vm_kern.h>
65 * This external memory manager (EMM) handles memory mappings that are
66 * 4K-aligned but not page-aligned and can therefore not be mapped directly.
68 * It mostly handles page-in requests (from memory_object_data_request()) by
69 * getting the data needed to fill in each 4K-chunk. That can require
70 * getting data from one or two pages from its backing VM object
71 * (a file or a "apple-protected" pager backed by an encrypted file), and
72 * copies the data to another page so that it is aligned as expected by
75 * Returned pages can never be dirtied and must always be mapped copy-on-write,
76 * so the memory manager does not need to handle page-out requests (from
77 * memory_object_data_return()).
81 /* forward declarations */
82 void fourk_pager_reference(memory_object_t mem_obj
);
83 void fourk_pager_deallocate(memory_object_t mem_obj
);
84 kern_return_t
fourk_pager_init(memory_object_t mem_obj
,
85 memory_object_control_t control
,
86 memory_object_cluster_size_t pg_size
);
87 kern_return_t
fourk_pager_terminate(memory_object_t mem_obj
);
88 kern_return_t
fourk_pager_data_request(memory_object_t mem_obj
,
89 memory_object_offset_t offset
,
90 memory_object_cluster_size_t length
,
91 vm_prot_t protection_required
,
92 memory_object_fault_info_t fault_info
);
93 kern_return_t
fourk_pager_data_return(memory_object_t mem_obj
,
94 memory_object_offset_t offset
,
95 memory_object_cluster_size_t data_cnt
,
96 memory_object_offset_t
*resid_offset
,
99 boolean_t kernel_copy
,
101 kern_return_t
fourk_pager_data_initialize(memory_object_t mem_obj
,
102 memory_object_offset_t offset
,
103 memory_object_cluster_size_t data_cnt
);
104 kern_return_t
fourk_pager_data_unlock(memory_object_t mem_obj
,
105 memory_object_offset_t offset
,
106 memory_object_size_t size
,
107 vm_prot_t desired_access
);
108 kern_return_t
fourk_pager_synchronize(memory_object_t mem_obj
,
109 memory_object_offset_t offset
,
110 memory_object_size_t length
,
111 vm_sync_t sync_flags
);
112 kern_return_t
fourk_pager_map(memory_object_t mem_obj
,
114 kern_return_t
fourk_pager_last_unmap(memory_object_t mem_obj
);
117 * Vector of VM operations for this EMM.
118 * These routines are invoked by VM via the memory_object_*() interfaces.
120 const struct memory_object_pager_ops fourk_pager_ops
= {
121 fourk_pager_reference
,
122 fourk_pager_deallocate
,
124 fourk_pager_terminate
,
125 fourk_pager_data_request
,
126 fourk_pager_data_return
,
127 fourk_pager_data_initialize
,
128 fourk_pager_data_unlock
,
129 fourk_pager_synchronize
,
131 fourk_pager_last_unmap
,
132 NULL
, /* data_reclaim */
137 * The "fourk_pager" describes a memory object backed by
140 #define FOURK_PAGER_SLOTS 4 /* 16K / 4K */
141 typedef struct fourk_pager_backing
{
142 vm_object_t backing_object
;
143 vm_object_offset_t backing_offset
;
144 } *fourk_pager_backing_t
;
145 typedef struct fourk_pager
{
146 /* mandatory generic header */
147 struct memory_object fourk_pgr_hdr
;
149 /* pager-specific data */
150 queue_chain_t pager_queue
; /* next & prev pagers */
151 unsigned int ref_count
; /* reference count */
152 int is_ready
; /* is this pager ready ? */
153 int is_mapped
; /* is this mem_obj mapped ? */
154 struct fourk_pager_backing slots
[FOURK_PAGER_SLOTS
]; /* backing for each
157 #define FOURK_PAGER_NULL ((fourk_pager_t) NULL)
160 * List of memory objects managed by this EMM.
161 * The list is protected by the "fourk_pager_lock" lock.
163 int fourk_pager_count
= 0; /* number of pagers */
164 int fourk_pager_count_mapped
= 0; /* number of unmapped pagers */
165 queue_head_t fourk_pager_queue
;
166 decl_lck_mtx_data(, fourk_pager_lock
)
169 * Maximum number of unmapped pagers we're willing to keep around.
171 int fourk_pager_cache_limit
= 0;
174 * Statistics & counters.
176 int fourk_pager_count_max
= 0;
177 int fourk_pager_count_unmapped_max
= 0;
178 int fourk_pager_num_trim_max
= 0;
179 int fourk_pager_num_trim_total
= 0;
182 lck_grp_t fourk_pager_lck_grp
;
183 lck_grp_attr_t fourk_pager_lck_grp_attr
;
184 lck_attr_t fourk_pager_lck_attr
;
187 /* internal prototypes */
188 fourk_pager_t
fourk_pager_lookup(memory_object_t mem_obj
);
189 void fourk_pager_dequeue(fourk_pager_t pager
);
190 void fourk_pager_deallocate_internal(fourk_pager_t pager
,
192 void fourk_pager_terminate_internal(fourk_pager_t pager
);
193 void fourk_pager_trim(void);
197 int fourk_pagerdebug
= 0;
198 #define PAGER_ALL 0xffffffff
199 #define PAGER_INIT 0x00000001
200 #define PAGER_PAGEIN 0x00000002
202 #define PAGER_DEBUG(LEVEL, A) \
204 if ((fourk_pagerdebug & LEVEL)==LEVEL) { \
209 #define PAGER_DEBUG(LEVEL, A)
214 fourk_pager_bootstrap(void)
216 lck_grp_attr_setdefault(&fourk_pager_lck_grp_attr
);
217 lck_grp_init(&fourk_pager_lck_grp
, "4K-pager", &fourk_pager_lck_grp_attr
);
218 lck_attr_setdefault(&fourk_pager_lck_attr
);
219 lck_mtx_init(&fourk_pager_lock
, &fourk_pager_lck_grp
, &fourk_pager_lck_attr
);
220 queue_init(&fourk_pager_queue
);
226 * Initialize the memory object and makes it ready to be used and mapped.
230 memory_object_t mem_obj
,
231 memory_object_control_t control
,
235 memory_object_cluster_size_t pg_size
)
239 memory_object_attr_info_data_t attributes
;
241 PAGER_DEBUG(PAGER_ALL
,
242 ("fourk_pager_init: %p, %p, %x\n",
243 mem_obj
, control
, pg_size
));
245 if (control
== MEMORY_OBJECT_CONTROL_NULL
) {
246 return KERN_INVALID_ARGUMENT
;
249 pager
= fourk_pager_lookup(mem_obj
);
251 memory_object_control_reference(control
);
253 pager
->fourk_pgr_hdr
.mo_control
= control
;
255 attributes
.copy_strategy
= MEMORY_OBJECT_COPY_DELAY
;
256 /* attributes.cluster_size = (1 << (CLUSTER_SHIFT + PAGE_SHIFT));*/
257 attributes
.cluster_size
= (1 << (PAGE_SHIFT
));
258 attributes
.may_cache_object
= FALSE
;
259 attributes
.temporary
= TRUE
;
261 kr
= memory_object_change_attributes(
263 MEMORY_OBJECT_ATTRIBUTE_INFO
,
264 (memory_object_info_t
) &attributes
,
265 MEMORY_OBJECT_ATTR_INFO_COUNT
);
266 if (kr
!= KERN_SUCCESS
) {
267 panic("fourk_pager_init: "
268 "memory_object_change_attributes() failed");
271 #if CONFIG_SECLUDED_MEMORY
272 if (secluded_for_filecache
) {
273 memory_object_mark_eligible_for_secluded(control
, TRUE
);
275 #endif /* CONFIG_SECLUDED_MEMORY */
281 * fourk_pager_data_return()
283 * Handles page-out requests from VM. This should never happen since
284 * the pages provided by this EMM are not supposed to be dirty or dirtied
285 * and VM should simply discard the contents and reclaim the pages if it
289 fourk_pager_data_return(
290 __unused memory_object_t mem_obj
,
291 __unused memory_object_offset_t offset
,
292 __unused memory_object_cluster_size_t data_cnt
,
293 __unused memory_object_offset_t
*resid_offset
,
294 __unused
int *io_error
,
295 __unused boolean_t dirty
,
296 __unused boolean_t kernel_copy
,
297 __unused
int upl_flags
)
299 panic("fourk_pager_data_return: should never get called");
304 fourk_pager_data_initialize(
305 __unused memory_object_t mem_obj
,
306 __unused memory_object_offset_t offset
,
307 __unused memory_object_cluster_size_t data_cnt
)
309 panic("fourk_pager_data_initialize: should never get called");
314 fourk_pager_data_unlock(
315 __unused memory_object_t mem_obj
,
316 __unused memory_object_offset_t offset
,
317 __unused memory_object_size_t size
,
318 __unused vm_prot_t desired_access
)
324 * fourk_pager_reference()
326 * Get a reference on this memory object.
327 * For external usage only. Assumes that the initial reference count is not 0,
328 * i.e one should not "revive" a dead pager this way.
331 fourk_pager_reference(
332 memory_object_t mem_obj
)
336 pager
= fourk_pager_lookup(mem_obj
);
338 lck_mtx_lock(&fourk_pager_lock
);
339 assert(pager
->ref_count
> 0);
341 lck_mtx_unlock(&fourk_pager_lock
);
346 * fourk_pager_dequeue:
348 * Removes a pager from the list of pagers.
350 * The caller must hold "fourk_pager_lock".
356 assert(!pager
->is_mapped
);
358 queue_remove(&fourk_pager_queue
,
362 pager
->pager_queue
.next
= NULL
;
363 pager
->pager_queue
.prev
= NULL
;
369 * fourk_pager_terminate_internal:
371 * Trigger the asynchronous termination of the memory object associated
373 * When the memory object is terminated, there will be one more call
374 * to memory_object_deallocate() (i.e. fourk_pager_deallocate())
375 * to finish the clean up.
377 * "fourk_pager_lock" should not be held by the caller.
378 * We don't need the lock because the pager has already been removed from
379 * the pagers' list and is now ours exclusively.
382 fourk_pager_terminate_internal(
387 assert(pager
->is_ready
);
388 assert(!pager
->is_mapped
);
390 for (i
= 0; i
< FOURK_PAGER_SLOTS
; i
++) {
391 if (pager
->slots
[i
].backing_object
!= VM_OBJECT_NULL
&&
392 pager
->slots
[i
].backing_object
!= (vm_object_t
) -1) {
393 vm_object_deallocate(pager
->slots
[i
].backing_object
);
394 pager
->slots
[i
].backing_object
= (vm_object_t
) -1;
395 pager
->slots
[i
].backing_offset
= (vm_object_offset_t
) -1;
399 /* trigger the destruction of the memory object */
400 memory_object_destroy(pager
->fourk_pgr_hdr
.mo_control
, 0);
404 * fourk_pager_deallocate_internal()
406 * Release a reference on this pager and free it when the last
407 * reference goes away.
408 * Can be called with fourk_pager_lock held or not but always returns
412 fourk_pager_deallocate_internal(
416 boolean_t needs_trimming
;
420 lck_mtx_lock(&fourk_pager_lock
);
423 count_unmapped
= (fourk_pager_count
-
424 fourk_pager_count_mapped
);
425 if (count_unmapped
> fourk_pager_cache_limit
) {
426 /* we have too many unmapped pagers: trim some */
427 needs_trimming
= TRUE
;
429 needs_trimming
= FALSE
;
432 /* drop a reference on this pager */
435 if (pager
->ref_count
== 1) {
437 * Only the "named" reference is left, which means that
438 * no one is really holding on to this pager anymore.
441 fourk_pager_dequeue(pager
);
442 /* the pager is all ours: no need for the lock now */
443 lck_mtx_unlock(&fourk_pager_lock
);
444 fourk_pager_terminate_internal(pager
);
445 } else if (pager
->ref_count
== 0) {
447 * Dropped the existence reference; the memory object has
448 * been terminated. Do some final cleanup and release the
451 lck_mtx_unlock(&fourk_pager_lock
);
452 if (pager
->fourk_pgr_hdr
.mo_control
!= MEMORY_OBJECT_CONTROL_NULL
) {
453 memory_object_control_deallocate(pager
->fourk_pgr_hdr
.mo_control
);
454 pager
->fourk_pgr_hdr
.mo_control
= MEMORY_OBJECT_CONTROL_NULL
;
456 kfree(pager
, sizeof(*pager
));
457 pager
= FOURK_PAGER_NULL
;
459 /* there are still plenty of references: keep going... */
460 lck_mtx_unlock(&fourk_pager_lock
);
463 if (needs_trimming
) {
466 /* caution: lock is not held on return... */
470 * fourk_pager_deallocate()
472 * Release a reference on this pager and free it when the last
473 * reference goes away.
476 fourk_pager_deallocate(
477 memory_object_t mem_obj
)
481 PAGER_DEBUG(PAGER_ALL
, ("fourk_pager_deallocate: %p\n", mem_obj
));
482 pager
= fourk_pager_lookup(mem_obj
);
483 fourk_pager_deallocate_internal(pager
, FALSE
);
490 fourk_pager_terminate(
494 memory_object_t mem_obj
)
496 PAGER_DEBUG(PAGER_ALL
, ("fourk_pager_terminate: %p\n", mem_obj
));
505 fourk_pager_synchronize(
506 __unused memory_object_t mem_obj
,
507 __unused memory_object_offset_t offset
,
508 __unused memory_object_size_t length
,
509 __unused vm_sync_t sync_flags
)
511 panic("fourk_pager_synchronize: memory_object_synchronize no longer supported\n");
518 * This allows VM to let us, the EMM, know that this memory object
519 * is currently mapped one or more times. This is called by VM each time
520 * the memory object gets mapped and we take one extra reference on the
521 * memory object to account for all its mappings.
525 memory_object_t mem_obj
,
526 __unused vm_prot_t prot
)
530 PAGER_DEBUG(PAGER_ALL
, ("fourk_pager_map: %p\n", mem_obj
));
532 pager
= fourk_pager_lookup(mem_obj
);
534 lck_mtx_lock(&fourk_pager_lock
);
535 assert(pager
->is_ready
);
536 assert(pager
->ref_count
> 0); /* pager is alive */
537 if (pager
->is_mapped
== FALSE
) {
539 * First mapping of this pager: take an extra reference
540 * that will remain until all the mappings of this pager
543 pager
->is_mapped
= TRUE
;
545 fourk_pager_count_mapped
++;
547 lck_mtx_unlock(&fourk_pager_lock
);
553 * fourk_pager_last_unmap()
555 * This is called by VM when this memory object is no longer mapped anywhere.
558 fourk_pager_last_unmap(
559 memory_object_t mem_obj
)
564 PAGER_DEBUG(PAGER_ALL
,
565 ("fourk_pager_last_unmap: %p\n", mem_obj
));
567 pager
= fourk_pager_lookup(mem_obj
);
569 lck_mtx_lock(&fourk_pager_lock
);
570 if (pager
->is_mapped
) {
572 * All the mappings are gone, so let go of the one extra
573 * reference that represents all the mappings of this pager.
575 fourk_pager_count_mapped
--;
576 count_unmapped
= (fourk_pager_count
-
577 fourk_pager_count_mapped
);
578 if (count_unmapped
> fourk_pager_count_unmapped_max
) {
579 fourk_pager_count_unmapped_max
= count_unmapped
;
581 pager
->is_mapped
= FALSE
;
582 fourk_pager_deallocate_internal(pager
, TRUE
);
583 /* caution: deallocate_internal() released the lock ! */
585 lck_mtx_unlock(&fourk_pager_lock
);
597 memory_object_t mem_obj
)
601 assert(mem_obj
->mo_pager_ops
== &fourk_pager_ops
);
602 pager
= (fourk_pager_t
) mem_obj
;
603 assert(pager
->ref_count
> 0);
608 fourk_pager_trim(void)
610 fourk_pager_t pager
, prev_pager
;
611 queue_head_t trim_queue
;
615 lck_mtx_lock(&fourk_pager_lock
);
618 * We have too many pagers, try and trim some unused ones,
619 * starting with the oldest pager at the end of the queue.
621 queue_init(&trim_queue
);
624 for (pager
= (fourk_pager_t
)
625 queue_last(&fourk_pager_queue
);
626 !queue_end(&fourk_pager_queue
,
627 (queue_entry_t
) pager
);
628 pager
= prev_pager
) {
629 /* get prev elt before we dequeue */
630 prev_pager
= (fourk_pager_t
)
631 queue_prev(&pager
->pager_queue
);
633 if (pager
->ref_count
== 2 &&
636 /* this pager can be trimmed */
638 /* remove this pager from the main list ... */
639 fourk_pager_dequeue(pager
);
640 /* ... and add it to our trim queue */
641 queue_enter_first(&trim_queue
,
646 count_unmapped
= (fourk_pager_count
-
647 fourk_pager_count_mapped
);
648 if (count_unmapped
<= fourk_pager_cache_limit
) {
649 /* we have enough pagers to trim */
654 if (num_trim
> fourk_pager_num_trim_max
) {
655 fourk_pager_num_trim_max
= num_trim
;
657 fourk_pager_num_trim_total
+= num_trim
;
659 lck_mtx_unlock(&fourk_pager_lock
);
661 /* terminate the trimmed pagers */
662 while (!queue_empty(&trim_queue
)) {
663 queue_remove_first(&trim_queue
,
667 pager
->pager_queue
.next
= NULL
;
668 pager
->pager_queue
.prev
= NULL
;
669 assert(pager
->ref_count
== 2);
671 * We can't call deallocate_internal() because the pager
672 * has already been dequeued, but we still need to remove
676 fourk_pager_terminate_internal(pager
);
686 fourk_pager_to_vm_object(
687 memory_object_t mem_obj
)
692 pager
= fourk_pager_lookup(mem_obj
);
694 return VM_OBJECT_NULL
;
697 assert(pager
->ref_count
> 0);
698 assert(pager
->fourk_pgr_hdr
.mo_control
!= MEMORY_OBJECT_CONTROL_NULL
);
699 object
= memory_object_control_to_vm_object(pager
->fourk_pgr_hdr
.mo_control
);
700 assert(object
!= VM_OBJECT_NULL
);
705 fourk_pager_create(void)
708 memory_object_control_t control
;
713 if (PAGE_SIZE_64
== FOURK_PAGE_SIZE
) {
714 panic("fourk_pager_create: page size is 4K !?");
718 pager
= (fourk_pager_t
) kalloc(sizeof(*pager
));
719 if (pager
== FOURK_PAGER_NULL
) {
720 return MEMORY_OBJECT_NULL
;
722 bzero(pager
, sizeof(*pager
));
725 * The vm_map call takes both named entry ports and raw memory
726 * objects in the same parameter. We need to make sure that
727 * vm_map does not see this object as a named entry port. So,
728 * we reserve the first word in the object for a fake ip_kotype
729 * setting - that will tell vm_map to use it as a memory object.
731 pager
->fourk_pgr_hdr
.mo_ikot
= IKOT_MEMORY_OBJECT
;
732 pager
->fourk_pgr_hdr
.mo_pager_ops
= &fourk_pager_ops
;
733 pager
->fourk_pgr_hdr
.mo_control
= MEMORY_OBJECT_CONTROL_NULL
;
735 pager
->ref_count
= 2; /* existence + setup reference */
736 pager
->is_ready
= FALSE
;/* not ready until it has a "name" */
737 pager
->is_mapped
= FALSE
;
739 for (i
= 0; i
< FOURK_PAGER_SLOTS
; i
++) {
740 pager
->slots
[i
].backing_object
= (vm_object_t
) -1;
741 pager
->slots
[i
].backing_offset
= (vm_object_offset_t
) -1;
744 lck_mtx_lock(&fourk_pager_lock
);
746 /* enter new pager at the head of our list of pagers */
747 queue_enter_first(&fourk_pager_queue
,
752 if (fourk_pager_count
> fourk_pager_count_max
) {
753 fourk_pager_count_max
= fourk_pager_count
;
755 lck_mtx_unlock(&fourk_pager_lock
);
757 kr
= memory_object_create_named((memory_object_t
) pager
,
760 assert(kr
== KERN_SUCCESS
);
762 lck_mtx_lock(&fourk_pager_lock
);
763 /* the new pager is now ready to be used */
764 pager
->is_ready
= TRUE
;
765 lck_mtx_unlock(&fourk_pager_lock
);
767 /* wakeup anyone waiting for this pager to be ready */
768 thread_wakeup(&pager
->is_ready
);
770 return (memory_object_t
) pager
;
774 * fourk_pager_data_request()
776 * Handles page-in requests from VM.
778 int fourk_pager_data_request_debug
= 0;
780 fourk_pager_data_request(
781 memory_object_t mem_obj
,
782 memory_object_offset_t offset
,
783 memory_object_cluster_size_t length
,
787 vm_prot_t protection_required
,
788 memory_object_fault_info_t mo_fault_info
)
791 memory_object_control_t mo_control
;
795 upl_page_info_t
*upl_pl
;
796 unsigned int pl_count
;
797 vm_object_t dst_object
;
798 kern_return_t kr
, retval
;
799 vm_map_offset_t kernel_mapping
;
800 vm_offset_t src_vaddr
, dst_vaddr
;
801 vm_offset_t cur_offset
;
803 int sub_page_idx
, sub_page_cnt
;
805 pager
= fourk_pager_lookup(mem_obj
);
806 assert(pager
->is_ready
);
807 assert(pager
->ref_count
> 1); /* pager is alive and mapped */
809 PAGER_DEBUG(PAGER_PAGEIN
, ("fourk_pager_data_request: %p, %llx, %x, %x, pager %p\n", mem_obj
, offset
, length
, protection_required
, pager
));
811 retval
= KERN_SUCCESS
;
814 offset
= memory_object_trunc_page(offset
);
817 * Gather in a UPL all the VM pages requested by VM.
819 mo_control
= pager
->fourk_pgr_hdr
.mo_control
;
823 UPL_RET_ONLY_ABSENT
|
826 UPL_CLEAN_IN_PLACE
| /* triggers UPL_CLEAR_DIRTY */
829 kr
= memory_object_upl_request(mo_control
,
831 &upl
, NULL
, NULL
, upl_flags
, VM_KERN_MEMORY_NONE
);
832 if (kr
!= KERN_SUCCESS
) {
836 dst_object
= mo_control
->moc_object
;
837 assert(dst_object
!= VM_OBJECT_NULL
);
839 #if __x86_64__ || __arm__ || __arm64__
840 /* use the 1-to-1 mapping of physical memory */
841 #else /* __x86_64__ || __arm__ || __arm64__ */
843 * Reserve 2 virtual pages in the kernel address space to map the
844 * source and destination physical pages when it's their turn to
847 vm_map_entry_t map_entry
;
849 vm_object_reference(kernel_object
); /* ref. for mapping */
850 kr
= vm_map_find_space(kernel_map
,
855 VM_MAP_KERNEL_FLAGS_NONE
,
857 if (kr
!= KERN_SUCCESS
) {
858 vm_object_deallocate(kernel_object
);
862 map_entry
->object
.vm_object
= kernel_object
;
863 map_entry
->offset
= kernel_mapping
;
864 vm_map_unlock(kernel_map
);
865 src_vaddr
= CAST_DOWN(vm_offset_t
, kernel_mapping
);
866 dst_vaddr
= CAST_DOWN(vm_offset_t
, kernel_mapping
+ PAGE_SIZE_64
);
867 #endif /* __x86_64__ || __arm__ || __arm64__ */
870 * Fill in the contents of the pages requested by VM.
872 upl_pl
= UPL_GET_INTERNAL_PAGE_LIST(upl
);
873 pl_count
= length
/ PAGE_SIZE
;
875 retval
== KERN_SUCCESS
&& cur_offset
< length
;
876 cur_offset
+= PAGE_SIZE
) {
878 int num_subpg_signed
, num_subpg_validated
;
879 int num_subpg_tainted
, num_subpg_nx
;
881 if (!upl_page_present(upl_pl
, (int)(cur_offset
/ PAGE_SIZE
))) {
882 /* this page is not in the UPL: skip it */
887 * Establish an explicit pmap mapping of the destination
889 * We can't do a regular VM mapping because the VM page
893 upl_phys_page(upl_pl
, (int)(cur_offset
/ PAGE_SIZE
));
894 assert(dst_pnum
!= 0);
896 dst_vaddr
= (vm_map_offset_t
)
897 PHYSMAP_PTOV((pmap_paddr_t
)dst_pnum
<< PAGE_SHIFT
);
898 #elif __arm__ || __arm64__
899 dst_vaddr
= (vm_map_offset_t
)
900 phystokv((pmap_paddr_t
)dst_pnum
<< PAGE_SHIFT
);
902 kr
= pmap_enter(kernel_pmap
,
905 VM_PROT_READ
| VM_PROT_WRITE
,
910 assert(kr
== KERN_SUCCESS
);
913 /* retrieve appropriate data for each 4K-page in this page */
914 if (PAGE_SHIFT
== FOURK_PAGE_SHIFT
&&
915 page_shift_user32
== SIXTEENK_PAGE_SHIFT
) {
917 * Find the slot for the requested 4KB page in
920 assert(PAGE_SHIFT
== FOURK_PAGE_SHIFT
);
921 assert(page_shift_user32
== SIXTEENK_PAGE_SHIFT
);
922 sub_page_idx
= ((offset
& SIXTEENK_PAGE_MASK
) /
925 * ... and provide only that one 4KB page.
930 * Iterate over all slots, i.e. retrieve all four 4KB
931 * pages in the requested 16KB page.
933 assert(PAGE_SHIFT
== SIXTEENK_PAGE_SHIFT
);
935 sub_page_cnt
= FOURK_PAGER_SLOTS
;
938 num_subpg_signed
= 0;
939 num_subpg_validated
= 0;
940 num_subpg_tainted
= 0;
943 /* retrieve appropriate data for each 4K-page in this page */
944 for (sub_page
= sub_page_idx
;
945 sub_page
< sub_page_idx
+ sub_page_cnt
;
947 vm_object_t src_object
;
948 memory_object_offset_t src_offset
;
949 vm_offset_t offset_in_src_page
;
950 kern_return_t error_code
;
951 vm_object_t src_page_object
;
956 struct vm_object_fault_info fault_info
;
957 boolean_t subpg_validated
;
958 unsigned subpg_tainted
;
961 if (offset
< SIXTEENK_PAGE_SIZE
) {
963 * The 1st 16K-page can cover multiple
964 * sub-mappings, as described in the
965 * pager->slots[] array.
968 pager
->slots
[sub_page
].backing_object
;
970 pager
->slots
[sub_page
].backing_offset
;
972 fourk_pager_backing_t slot
;
975 * Beyond the 1st 16K-page in the pager is
976 * an extension of the last "sub page" in
977 * the pager->slots[] array.
979 slot
= &pager
->slots
[FOURK_PAGER_SLOTS
- 1];
980 src_object
= slot
->backing_object
;
981 src_offset
= slot
->backing_offset
;
982 src_offset
+= FOURK_PAGE_SIZE
;
984 (vm_map_trunc_page(offset
,
986 - SIXTEENK_PAGE_SIZE
);
987 src_offset
+= sub_page
* FOURK_PAGE_SIZE
;
989 offset_in_src_page
= src_offset
& PAGE_MASK_64
;
990 src_offset
= vm_object_trunc_page(src_offset
);
992 if (src_object
== VM_OBJECT_NULL
||
993 src_object
== (vm_object_t
) -1) {
995 bzero((char *)(dst_vaddr
+
996 ((sub_page
- sub_page_idx
)
999 if (fourk_pager_data_request_debug
) {
1000 printf("fourk_pager_data_request"
1001 "(%p,0x%llx+0x%lx+0x%04x): "
1006 ((sub_page
- sub_page_idx
)
1007 * FOURK_PAGE_SIZE
));
1012 /* fault in the source page from src_object */
1014 src_page
= VM_PAGE_NULL
;
1015 top_page
= VM_PAGE_NULL
;
1016 fault_info
= *((struct vm_object_fault_info
*)
1017 (uintptr_t)mo_fault_info
);
1018 fault_info
.stealth
= TRUE
;
1019 fault_info
.io_sync
= FALSE
;
1020 fault_info
.mark_zf_absent
= FALSE
;
1021 fault_info
.batch_pmap_op
= FALSE
;
1022 interruptible
= fault_info
.interruptible
;
1023 prot
= VM_PROT_READ
;
1026 vm_object_lock(src_object
);
1027 vm_object_paging_begin(src_object
);
1028 kr
= vm_fault_page(src_object
,
1032 FALSE
, /* src_page not looked up */
1042 case VM_FAULT_SUCCESS
:
1044 case VM_FAULT_RETRY
:
1045 goto retry_src_fault
;
1046 case VM_FAULT_MEMORY_SHORTAGE
:
1047 if (vm_page_wait(interruptible
)) {
1048 goto retry_src_fault
;
1051 case VM_FAULT_INTERRUPTED
:
1052 retval
= MACH_SEND_INTERRUPTED
;
1053 goto src_fault_done
;
1054 case VM_FAULT_SUCCESS_NO_VM_PAGE
:
1055 /* success but no VM page: fail */
1056 vm_object_paging_end(src_object
);
1057 vm_object_unlock(src_object
);
1059 case VM_FAULT_MEMORY_ERROR
:
1060 /* the page is not there! */
1062 retval
= error_code
;
1064 retval
= KERN_MEMORY_ERROR
;
1066 goto src_fault_done
;
1068 panic("fourk_pager_data_request: "
1069 "vm_fault_page() unexpected error 0x%x\n",
1072 assert(src_page
!= VM_PAGE_NULL
);
1073 assert(src_page
->vmp_busy
);
1075 src_page_object
= VM_PAGE_OBJECT(src_page
);
1077 if ((!VM_PAGE_PAGEABLE(src_page
)) &&
1078 !VM_PAGE_WIRED(src_page
)) {
1079 vm_page_lockspin_queues();
1080 if ((!VM_PAGE_PAGEABLE(src_page
)) &&
1081 !VM_PAGE_WIRED(src_page
)) {
1082 vm_page_deactivate(src_page
);
1084 vm_page_unlock_queues();
1088 src_vaddr
= (vm_map_offset_t
)
1089 PHYSMAP_PTOV((pmap_paddr_t
)VM_PAGE_GET_PHYS_PAGE(src_page
)
1091 #elif __arm__ || __arm64__
1092 src_vaddr
= (vm_map_offset_t
)
1093 phystokv((pmap_paddr_t
)VM_PAGE_GET_PHYS_PAGE(src_page
)
1097 * Establish an explicit mapping of the source
1100 kr
= pmap_enter(kernel_pmap
,
1102 VM_PAGE_GET_PHYS_PAGE(src_page
),
1108 assert(kr
== KERN_SUCCESS
);
1112 * Validate the 4K page we want from
1113 * this source page...
1115 subpg_validated
= FALSE
;
1117 if (src_page_object
->code_signed
) {
1118 vm_page_validate_cs_mapped_chunk(
1120 (const void *) src_vaddr
,
1126 if (subpg_validated
) {
1127 num_subpg_validated
++;
1129 if (subpg_tainted
& CS_VALIDATE_TAINTED
) {
1130 num_subpg_tainted
++;
1132 if (subpg_tainted
& CS_VALIDATE_NX
) {
1133 /* subpg should not be executable */
1134 if (sub_page_cnt
> 1) {
1136 * The destination page has
1137 * more than 1 subpage and its
1138 * other subpages might need
1139 * EXEC, so we do not propagate
1140 * CS_VALIDATE_NX to the
1141 * destination page...
1150 * Copy the relevant portion of the source page
1151 * into the appropriate part of the destination page.
1153 bcopy((const char *)(src_vaddr
+ offset_in_src_page
),
1154 (char *)(dst_vaddr
+
1155 ((sub_page
- sub_page_idx
) *
1158 if (fourk_pager_data_request_debug
) {
1159 printf("fourk_data_request"
1160 "(%p,0x%llx+0x%lx+0x%04x): "
1161 "backed by [%p:0x%llx]: "
1162 "[0x%016llx 0x%016llx] "
1164 "cs_valid=%d cs_tainted=%d cs_nx=%d\n",
1167 (sub_page
- sub_page_idx
) * FOURK_PAGE_SIZE
,
1169 src_page
->vmp_offset
+ offset_in_src_page
,
1170 *(uint64_t *)(dst_vaddr
+
1171 ((sub_page
- sub_page_idx
) *
1173 *(uint64_t *)(dst_vaddr
+
1174 ((sub_page
- sub_page_idx
) *
1177 src_page_object
->code_signed
,
1179 !!(subpg_tainted
& CS_VALIDATE_TAINTED
),
1180 !!(subpg_tainted
& CS_VALIDATE_NX
));
1183 #if __x86_64__ || __arm__ || __arm64__
1184 /* we used the 1-to-1 mapping of physical memory */
1186 #else /* __x86_64__ || __arm__ || __arm64__ */
1188 * Remove the pmap mapping of the source page
1191 pmap_remove(kernel_pmap
,
1192 (addr64_t
) src_vaddr
,
1193 (addr64_t
) src_vaddr
+ PAGE_SIZE_64
);
1194 #endif /* __x86_64__ || __arm__ || __arm64__ */
1198 * Cleanup the result of vm_fault_page().
1201 assert(VM_PAGE_OBJECT(src_page
) == src_page_object
);
1203 PAGE_WAKEUP_DONE(src_page
);
1204 src_page
= VM_PAGE_NULL
;
1205 vm_object_paging_end(src_page_object
);
1206 vm_object_unlock(src_page_object
);
1208 vm_object_t top_object
;
1210 top_object
= VM_PAGE_OBJECT(top_page
);
1211 vm_object_lock(top_object
);
1212 VM_PAGE_FREE(top_page
);
1213 top_page
= VM_PAGE_NULL
;
1214 vm_object_paging_end(top_object
);
1215 vm_object_unlock(top_object
);
1219 if (num_subpg_signed
> 0) {
1220 /* some code-signing involved with this 16K page */
1221 if (num_subpg_tainted
> 0) {
1222 /* a tainted subpage taints entire 16K page */
1223 UPL_SET_CS_TAINTED(upl_pl
,
1224 cur_offset
/ PAGE_SIZE
,
1226 /* also mark as "validated" for consisteny */
1227 UPL_SET_CS_VALIDATED(upl_pl
,
1228 cur_offset
/ PAGE_SIZE
,
1230 } else if (num_subpg_validated
== num_subpg_signed
) {
1232 * All the code-signed 4K subpages of this
1233 * 16K page are validated: our 16K page is
1234 * considered validated.
1236 UPL_SET_CS_VALIDATED(upl_pl
,
1237 cur_offset
/ PAGE_SIZE
,
1240 if (num_subpg_nx
> 0) {
1241 UPL_SET_CS_NX(upl_pl
,
1242 cur_offset
/ PAGE_SIZE
,
1250 /* clean up the UPL */
1253 * The pages are currently dirty because we've just been
1254 * writing on them, but as far as we're concerned, they're
1255 * clean since they contain their "original" contents as
1256 * provided by us, the pager.
1257 * Tell the UPL to mark them "clean".
1259 upl_clear_dirty(upl
, TRUE
);
1261 /* abort or commit the UPL */
1262 if (retval
!= KERN_SUCCESS
) {
1264 if (retval
== KERN_ABORTED
) {
1265 wait_result_t wait_result
;
1268 * We aborted the fault and did not provide
1269 * any contents for the requested pages but
1270 * the pages themselves are not invalid, so
1271 * let's return success and let the caller
1272 * retry the fault, in case it might succeed
1273 * later (when the decryption code is up and
1274 * running in the kernel, for example).
1276 retval
= KERN_SUCCESS
;
1278 * Wait a little bit first to avoid using
1279 * too much CPU time retrying and failing
1280 * the same fault over and over again.
1282 wait_result
= assert_wait_timeout(
1283 (event_t
) fourk_pager_data_request
,
1287 assert(wait_result
== THREAD_WAITING
);
1288 wait_result
= thread_block(THREAD_CONTINUE_NULL
);
1289 assert(wait_result
== THREAD_TIMED_OUT
);
1293 upl_commit_range(upl
, 0, upl
->size
,
1294 UPL_COMMIT_CS_VALIDATED
| UPL_COMMIT_WRITTEN_BY_KERNEL
,
1295 upl_pl
, pl_count
, &empty
);
1298 /* and deallocate the UPL */
1299 upl_deallocate(upl
);
1302 if (kernel_mapping
!= 0) {
1303 /* clean up the mapping of the source and destination pages */
1304 kr
= vm_map_remove(kernel_map
,
1306 kernel_mapping
+ (2 * PAGE_SIZE_64
),
1307 VM_MAP_REMOVE_NO_FLAGS
);
1308 assert(kr
== KERN_SUCCESS
);
1320 fourk_pager_populate(
1321 memory_object_t mem_obj
,
1322 boolean_t overwrite
,
1324 vm_object_t new_backing_object
,
1325 vm_object_offset_t new_backing_offset
,
1326 vm_object_t
*old_backing_object
,
1327 vm_object_offset_t
*old_backing_offset
)
1329 fourk_pager_t pager
;
1331 pager
= fourk_pager_lookup(mem_obj
);
1332 if (pager
== NULL
) {
1333 return KERN_INVALID_ARGUMENT
;
1336 assert(pager
->ref_count
> 0);
1337 assert(pager
->fourk_pgr_hdr
.mo_control
!= MEMORY_OBJECT_CONTROL_NULL
);
1339 if (index
< 0 || index
> FOURK_PAGER_SLOTS
) {
1340 return KERN_INVALID_ARGUMENT
;
1344 (pager
->slots
[index
].backing_object
!= (vm_object_t
) -1 ||
1345 pager
->slots
[index
].backing_offset
!= (vm_object_offset_t
) -1)) {
1346 return KERN_INVALID_ADDRESS
;
1349 *old_backing_object
= pager
->slots
[index
].backing_object
;
1350 *old_backing_offset
= pager
->slots
[index
].backing_offset
;
1352 pager
->slots
[index
].backing_object
= new_backing_object
;
1353 pager
->slots
[index
].backing_offset
= new_backing_offset
;
1355 return KERN_SUCCESS
;