2 * Copyright (c) 2009 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
31 #include <sys/kdebug.h>
39 #include <sys/sysctl.h>
43 #include <spawn_private.h>
44 #include <sys/spawn_internal.h>
45 #include <mach-o/dyld.h>
47 #include <mach/mach_time.h>
48 #include <mach/mach.h>
49 #include <mach/task.h>
50 #include <mach/semaphore.h>
52 #include <pthread/qos_private.h>
54 #include <sys/resource.h>
56 #include <stdatomic.h>
60 typedef enum wake_type
{ WAKE_BROADCAST_ONESEM
, WAKE_BROADCAST_PERTHREAD
, WAKE_CHAIN
, WAKE_HOP
} wake_type_t
;
61 typedef enum my_policy_type
{ MY_POLICY_REALTIME
, MY_POLICY_TIMESHARE
, MY_POLICY_FIXEDPRI
} my_policy_type_t
;
63 #define mach_assert_zero(error) do { if ((error) != 0) { fprintf(stderr, "[FAIL] error %d (%s) ", (error), mach_error_string(error)); assert(error == 0); } } while (0)
64 #define mach_assert_zero_t(tid, error) do { if ((error) != 0) { fprintf(stderr, "[FAIL] Thread %d error %d (%s) ", (tid), (error), mach_error_string(error)); assert(error == 0); } } while (0)
65 #define assert_zero_t(tid, error) do { if ((error) != 0) { fprintf(stderr, "[FAIL] Thread %d error %d ", (tid), (error)); assert(error == 0); } } while (0)
67 #define CONSTRAINT_NANOS (20000000ll) /* 20 ms */
68 #define COMPUTATION_NANOS (10000000ll) /* 10 ms */
69 #define TRACEWORTHY_NANOS (10000000ll) /* 10 ms */
70 #define TRACEWORTHY_NANOS_TEST ( 2000000ll) /* 2 ms */
73 #define debug_log(args ...) printf(args)
75 #define debug_log(args ...) do { } while(0)
79 static void* worker_thread(void *arg
);
81 static int thread_setup(uint32_t my_id
);
82 static my_policy_type_t
parse_thread_policy(const char *str
);
83 static void selfexec_with_apptype(int argc
, char *argv
[]);
84 static void parse_args(int argc
, char *argv
[]);
86 static __attribute__((aligned(128))) _Atomic
uint32_t g_done_threads
;
87 static __attribute__((aligned(128))) _Atomic boolean_t g_churn_stop
= FALSE
;
88 static __attribute__((aligned(128))) _Atomic
uint64_t g_churn_stopped_at
= 0;
90 /* Global variables (general) */
91 static uint32_t g_numcpus
;
92 static uint32_t g_nphysicalcpu
;
93 static uint32_t g_nlogicalcpu
;
94 static uint32_t g_numthreads
;
95 static wake_type_t g_waketype
;
96 static policy_t g_policy
;
97 static uint32_t g_iterations
;
98 static struct mach_timebase_info g_mti
;
99 static semaphore_t g_main_sem
;
100 static uint64_t *g_thread_endtimes_abs
;
101 static boolean_t g_verbose
= FALSE
;
102 static boolean_t g_do_affinity
= FALSE
;
103 static uint64_t g_starttime_abs
;
104 static uint32_t g_iteration_sleeptime_us
= 0;
105 static uint32_t g_priority
= 0;
106 static uint32_t g_churn_pri
= 0;
107 static uint32_t g_churn_count
= 0;
109 static pthread_t
* g_churn_threads
= NULL
;
111 /* Threshold for dropping a 'bad run' tracepoint */
112 static uint64_t g_traceworthy_latency_ns
= TRACEWORTHY_NANOS
;
114 /* Have we re-execed to set apptype? */
115 static boolean_t g_seen_apptype
= FALSE
;
117 /* usleep in betweeen iterations */
118 static boolean_t g_do_sleep
= TRUE
;
120 /* Every thread spins until all threads have checked in */
121 static boolean_t g_do_all_spin
= FALSE
;
123 /* Every thread backgrounds temporarily before parking */
124 static boolean_t g_drop_priority
= FALSE
;
126 /* Test whether realtime threads are scheduled on the separate CPUs */
127 static boolean_t g_test_rt
= FALSE
;
129 /* On SMT machines, test whether realtime threads are scheduled on the correct CPUs */
130 static boolean_t g_test_rt_smt
= FALSE
;
132 /* Test whether realtime threads are successfully avoiding CPU 0 on Intel */
133 static boolean_t g_test_rt_avoid0
= FALSE
;
135 /* Print a histgram showing how many threads ran on each CPU */
136 static boolean_t g_histogram
= FALSE
;
138 /* One randomly chosen thread holds up the train for a certain duration. */
139 static boolean_t g_do_one_long_spin
= FALSE
;
140 static uint32_t g_one_long_spin_id
= 0;
141 static uint64_t g_one_long_spin_length_abs
= 0;
142 static uint64_t g_one_long_spin_length_ns
= 0;
144 /* Each thread spins for a certain duration after waking up before blocking again. */
145 static boolean_t g_do_each_spin
= FALSE
;
146 static uint64_t g_each_spin_duration_abs
= 0;
147 static uint64_t g_each_spin_duration_ns
= 0;
149 /* Global variables (broadcast) */
150 static semaphore_t g_broadcastsem
;
151 static semaphore_t g_leadersem
;
152 static semaphore_t g_readysem
;
153 static semaphore_t g_donesem
;
155 /* Global variables (chain) */
156 static semaphore_t
*g_semarr
;
159 __attribute__((aligned(128))) uint32_t current
;
163 static histogram_t
*g_cpu_histogram
;
164 static _Atomic
uint64_t *g_cpu_map
;
167 abs_to_nanos(uint64_t abstime
)
169 return (uint64_t)(abstime
* (((double)g_mti
.numer
) / ((double)g_mti
.denom
)));
173 nanos_to_abs(uint64_t ns
)
175 return (uint64_t)(ns
* (((double)g_mti
.denom
) / ((double)g_mti
.numer
)));
181 #if defined(__arm__) || defined(__arm64__)
182 asm volatile ("yield");
183 #elif defined(__x86_64__) || defined(__i386__)
184 asm volatile ("pause");
186 #error Unrecognized architecture
191 churn_thread(__unused
void *arg
)
193 uint64_t spin_count
= 0;
196 * As a safety measure to avoid wedging, we will bail on the spin if
197 * it's been more than 1s after the most recent run start
200 while (g_churn_stop
== FALSE
&&
201 mach_absolute_time() < (g_starttime_abs
+ NSEC_PER_SEC
)) {
206 /* This is totally racy, but only here to detect if anyone stops early */
207 atomic_fetch_add_explicit(&g_churn_stopped_at
, spin_count
, memory_order_relaxed
);
213 create_churn_threads()
215 if (g_churn_count
== 0) {
216 g_churn_count
= g_numcpus
- 1;
221 struct sched_param param
= { .sched_priority
= (int)g_churn_pri
};
224 /* Array for churn threads */
225 g_churn_threads
= (pthread_t
*) valloc(sizeof(pthread_t
) * g_churn_count
);
226 assert(g_churn_threads
);
228 if ((err
= pthread_attr_init(&attr
))) {
229 errc(EX_OSERR
, err
, "pthread_attr_init");
232 if ((err
= pthread_attr_setschedparam(&attr
, ¶m
))) {
233 errc(EX_OSERR
, err
, "pthread_attr_setschedparam");
236 if ((err
= pthread_attr_setschedpolicy(&attr
, SCHED_RR
))) {
237 errc(EX_OSERR
, err
, "pthread_attr_setschedpolicy");
240 for (uint32_t i
= 0; i
< g_churn_count
; i
++) {
241 pthread_t new_thread
;
243 if ((err
= pthread_create(&new_thread
, &attr
, churn_thread
, NULL
))) {
244 errc(EX_OSERR
, err
, "pthread_create");
246 g_churn_threads
[i
] = new_thread
;
249 if ((err
= pthread_attr_destroy(&attr
))) {
250 errc(EX_OSERR
, err
, "pthread_attr_destroy");
255 join_churn_threads(void)
257 if (atomic_load_explicit(&g_churn_stopped_at
, memory_order_seq_cst
) != 0) {
258 printf("Warning: Some of the churn threads may have stopped early: %lld\n",
262 atomic_store_explicit(&g_churn_stop
, TRUE
, memory_order_seq_cst
);
264 /* Rejoin churn threads */
265 for (uint32_t i
= 0; i
< g_churn_count
; i
++) {
266 errno_t err
= pthread_join(g_churn_threads
[i
], NULL
);
268 errc(EX_OSERR
, err
, "pthread_join %d", i
);
274 * Figure out what thread policy to use
276 static my_policy_type_t
277 parse_thread_policy(const char *str
)
279 if (strcmp(str
, "timeshare") == 0) {
280 return MY_POLICY_TIMESHARE
;
281 } else if (strcmp(str
, "realtime") == 0) {
282 return MY_POLICY_REALTIME
;
283 } else if (strcmp(str
, "fixed") == 0) {
284 return MY_POLICY_FIXEDPRI
;
286 errx(EX_USAGE
, "Invalid thread policy \"%s\"", str
);
291 * Figure out what wakeup pattern to use
294 parse_wakeup_pattern(const char *str
)
296 if (strcmp(str
, "chain") == 0) {
298 } else if (strcmp(str
, "hop") == 0) {
300 } else if (strcmp(str
, "broadcast-single-sem") == 0) {
301 return WAKE_BROADCAST_ONESEM
;
302 } else if (strcmp(str
, "broadcast-per-thread") == 0) {
303 return WAKE_BROADCAST_PERTHREAD
;
305 errx(EX_USAGE
, "Invalid wakeup pattern \"%s\"", str
);
313 thread_setup(uint32_t my_id
)
317 thread_time_constraint_policy_data_t pol
;
320 int policy
= SCHED_OTHER
;
321 if (g_policy
== MY_POLICY_FIXEDPRI
) {
325 struct sched_param param
= {.sched_priority
= (int)g_priority
};
326 if ((ret
= pthread_setschedparam(pthread_self(), policy
, ¶m
))) {
327 errc(EX_OSERR
, ret
, "pthread_setschedparam: %d", my_id
);
332 case MY_POLICY_TIMESHARE
:
334 case MY_POLICY_REALTIME
:
335 /* Hard-coded realtime parameters (similar to what Digi uses) */
337 pol
.constraint
= (uint32_t) nanos_to_abs(CONSTRAINT_NANOS
);
338 pol
.computation
= (uint32_t) nanos_to_abs(COMPUTATION_NANOS
);
339 pol
.preemptible
= 0; /* Ignored by OS */
341 kr
= thread_policy_set(mach_thread_self(), THREAD_TIME_CONSTRAINT_POLICY
,
342 (thread_policy_t
) &pol
, THREAD_TIME_CONSTRAINT_POLICY_COUNT
);
343 mach_assert_zero_t(my_id
, kr
);
345 case MY_POLICY_FIXEDPRI
:
346 ret
= pthread_set_fixedpriority_self();
348 errc(EX_OSERR
, ret
, "pthread_set_fixedpriority_self");
352 errx(EX_USAGE
, "invalid policy type %d", g_policy
);
356 thread_affinity_policy_data_t affinity
;
358 affinity
.affinity_tag
= my_id
% 2;
360 kr
= thread_policy_set(mach_thread_self(), THREAD_AFFINITY_POLICY
,
361 (thread_policy_t
)&affinity
, THREAD_AFFINITY_POLICY_COUNT
);
362 mach_assert_zero_t(my_id
, kr
);
369 * Wait for a wakeup, potentially wake up another of the "0-N" threads,
370 * and notify the main thread when done.
373 worker_thread(void *arg
)
375 uint32_t my_id
= (uint32_t)(uintptr_t)arg
;
378 volatile double x
= 0.0;
379 volatile double y
= 0.0;
381 /* Set policy and so forth */
384 for (uint32_t i
= 0; i
< g_iterations
; i
++) {
387 * Leader thread either wakes everyone up or starts the chain going.
390 /* Give the worker threads undisturbed time to finish before waiting on them */
392 usleep(g_iteration_sleeptime_us
);
395 debug_log("%d Leader thread wait for ready\n", i
);
398 * Wait for everyone else to declare ready
399 * Is there a better way to do this that won't interfere with the rest of the chain?
400 * TODO: Invent 'semaphore wait for N signals'
403 for (uint32_t j
= 0; j
< g_numthreads
- 1; j
++) {
404 kr
= semaphore_wait(g_readysem
);
405 mach_assert_zero_t(my_id
, kr
);
408 debug_log("%d Leader thread wait\n", i
);
411 for (int cpuid
= 0; cpuid
< g_numcpus
; cpuid
++) {
412 if (g_cpu_histogram
[cpuid
].current
== 1) {
413 atomic_fetch_or_explicit(&g_cpu_map
[i
- 1], (1UL << cpuid
), memory_order_relaxed
);
414 g_cpu_histogram
[cpuid
].current
= 0;
419 /* Signal main thread and wait for start of iteration */
421 kr
= semaphore_wait_signal(g_leadersem
, g_main_sem
);
422 mach_assert_zero_t(my_id
, kr
);
424 g_thread_endtimes_abs
[my_id
] = mach_absolute_time();
426 debug_log("%d Leader thread go\n", i
);
428 assert_zero_t(my_id
, atomic_load_explicit(&g_done_threads
, memory_order_relaxed
));
430 switch (g_waketype
) {
431 case WAKE_BROADCAST_ONESEM
:
432 kr
= semaphore_signal_all(g_broadcastsem
);
433 mach_assert_zero_t(my_id
, kr
);
435 case WAKE_BROADCAST_PERTHREAD
:
436 for (uint32_t j
= 1; j
< g_numthreads
; j
++) {
437 kr
= semaphore_signal(g_semarr
[j
]);
438 mach_assert_zero_t(my_id
, kr
);
442 kr
= semaphore_signal(g_semarr
[my_id
+ 1]);
443 mach_assert_zero_t(my_id
, kr
);
446 kr
= semaphore_wait_signal(g_donesem
, g_semarr
[my_id
+ 1]);
447 mach_assert_zero_t(my_id
, kr
);
452 * Everyone else waits to be woken up,
453 * records when she wakes up, and possibly
456 switch (g_waketype
) {
457 case WAKE_BROADCAST_ONESEM
:
458 kr
= semaphore_wait_signal(g_broadcastsem
, g_readysem
);
459 mach_assert_zero_t(my_id
, kr
);
461 g_thread_endtimes_abs
[my_id
] = mach_absolute_time();
464 case WAKE_BROADCAST_PERTHREAD
:
465 kr
= semaphore_wait_signal(g_semarr
[my_id
], g_readysem
);
466 mach_assert_zero_t(my_id
, kr
);
468 g_thread_endtimes_abs
[my_id
] = mach_absolute_time();
472 kr
= semaphore_wait_signal(g_semarr
[my_id
], g_readysem
);
473 mach_assert_zero_t(my_id
, kr
);
475 /* Signal the next thread *after* recording wake time */
477 g_thread_endtimes_abs
[my_id
] = mach_absolute_time();
479 if (my_id
< (g_numthreads
- 1)) {
480 kr
= semaphore_signal(g_semarr
[my_id
+ 1]);
481 mach_assert_zero_t(my_id
, kr
);
487 kr
= semaphore_wait_signal(g_semarr
[my_id
], g_readysem
);
488 mach_assert_zero_t(my_id
, kr
);
490 /* Signal the next thread *after* recording wake time */
492 g_thread_endtimes_abs
[my_id
] = mach_absolute_time();
494 if (my_id
< (g_numthreads
- 1)) {
495 kr
= semaphore_wait_signal(g_donesem
, g_semarr
[my_id
+ 1]);
496 mach_assert_zero_t(my_id
, kr
);
498 kr
= semaphore_signal_all(g_donesem
);
499 mach_assert_zero_t(my_id
, kr
);
506 unsigned int cpuid
= _os_cpu_number();
507 assert(cpuid
< g_numcpus
);
508 debug_log("Thread %p woke up on CPU %d for iteration %d.\n", pthread_self(), cpuid
, i
);
509 g_cpu_histogram
[cpuid
].current
= 1;
510 g_cpu_histogram
[cpuid
].accum
++;
512 if (g_do_one_long_spin
&& g_one_long_spin_id
== my_id
) {
513 /* One randomly chosen thread holds up the train for a while. */
515 uint64_t endspin
= g_starttime_abs
+ g_one_long_spin_length_abs
;
516 while (mach_absolute_time() < endspin
) {
522 if (g_do_each_spin
) {
523 /* Each thread spins for a certain duration after waking up before blocking again. */
525 uint64_t endspin
= mach_absolute_time() + g_each_spin_duration_abs
;
526 while (mach_absolute_time() < endspin
) {
532 uint32_t done_threads
;
533 done_threads
= atomic_fetch_add_explicit(&g_done_threads
, 1, memory_order_relaxed
) + 1;
535 debug_log("Thread %p new value is %d, iteration %d\n", pthread_self(), done_threads
, i
);
537 if (g_drop_priority
) {
538 /* Drop priority to BG momentarily */
539 errno_t ret
= setpriority(PRIO_DARWIN_THREAD
, 0, PRIO_DARWIN_BG
);
541 errc(EX_OSERR
, ret
, "setpriority PRIO_DARWIN_BG");
546 /* Everyone spins until the last thread checks in. */
548 while (atomic_load_explicit(&g_done_threads
, memory_order_relaxed
) < g_numthreads
) {
554 if (g_drop_priority
) {
555 /* Restore normal priority */
556 errno_t ret
= setpriority(PRIO_DARWIN_THREAD
, 0, 0);
558 errc(EX_OSERR
, ret
, "setpriority 0");
562 debug_log("Thread %p done spinning, iteration %d\n", pthread_self(), i
);
566 /* Give the worker threads undisturbed time to finish before waiting on them */
568 usleep(g_iteration_sleeptime_us
);
571 /* Wait for the worker threads to finish */
572 for (uint32_t i
= 0; i
< g_numthreads
- 1; i
++) {
573 kr
= semaphore_wait(g_readysem
);
574 mach_assert_zero_t(my_id
, kr
);
577 /* Tell everyone and the main thread that the last iteration is done */
578 debug_log("%d Leader thread done\n", g_iterations
- 1);
580 for (int cpuid
= 0; cpuid
< g_numcpus
; cpuid
++) {
581 if (g_cpu_histogram
[cpuid
].current
== 1) {
582 atomic_fetch_or_explicit(&g_cpu_map
[g_iterations
- 1], (1UL << cpuid
), memory_order_relaxed
);
583 g_cpu_histogram
[cpuid
].current
= 0;
587 kr
= semaphore_signal_all(g_main_sem
);
588 mach_assert_zero_t(my_id
, kr
);
590 /* Hold up thread teardown so it doesn't affect the last iteration */
591 kr
= semaphore_wait_signal(g_main_sem
, g_readysem
);
592 mach_assert_zero_t(my_id
, kr
);
599 * Given an array of uint64_t values, compute average, max, min, and standard deviation
602 compute_stats(uint64_t *values
, uint64_t count
, float *averagep
, uint64_t *maxp
, uint64_t *minp
, float *stddevp
)
607 uint64_t _min
= UINT64_MAX
;
611 for (i
= 0; i
< count
; i
++) {
613 _max
= values
[i
] > _max
? values
[i
] : _max
;
614 _min
= values
[i
] < _min
? values
[i
] : _min
;
617 _avg
= ((float)_sum
) / ((float)count
);
620 for (i
= 0; i
< count
; i
++) {
621 _dev
+= powf((((float)values
[i
]) - _avg
), 2);
634 main(int argc
, char **argv
)
640 uint64_t *worst_latencies_ns
;
641 uint64_t *worst_latencies_from_first_ns
;
645 bool test_fail
= false;
647 for (int i
= 0; i
< argc
; i
++) {
648 if (strcmp(argv
[i
], "--switched_apptype") == 0) {
649 g_seen_apptype
= TRUE
;
653 if (!g_seen_apptype
) {
654 selfexec_with_apptype(argc
, argv
);
657 parse_args(argc
, argv
);
659 srand((unsigned int)time(NULL
));
661 mach_timebase_info(&g_mti
);
663 size_t ncpu_size
= sizeof(g_numcpus
);
664 ret
= sysctlbyname("hw.ncpu", &g_numcpus
, &ncpu_size
, NULL
, 0);
666 err(EX_OSERR
, "Failed sysctlbyname(hw.ncpu)");
668 assert(g_numcpus
<= 64); /* g_cpu_map needs to be extended for > 64 cpus */
670 size_t physicalcpu_size
= sizeof(g_nphysicalcpu
);
671 ret
= sysctlbyname("hw.physicalcpu", &g_nphysicalcpu
, &physicalcpu_size
, NULL
, 0);
673 err(EX_OSERR
, "Failed sysctlbyname(hw.physicalcpu)");
676 size_t logicalcpu_size
= sizeof(g_nlogicalcpu
);
677 ret
= sysctlbyname("hw.logicalcpu", &g_nlogicalcpu
, &logicalcpu_size
, NULL
, 0);
679 err(EX_OSERR
, "Failed sysctlbyname(hw.logicalcpu)");
683 if (g_numthreads
== 0) {
684 g_numthreads
= g_numcpus
;
686 g_policy
= MY_POLICY_REALTIME
;
687 g_do_all_spin
= TRUE
;
689 /* Don't change g_traceworthy_latency_ns if it's explicity been set to something other than the default */
690 if (g_traceworthy_latency_ns
== TRACEWORTHY_NANOS
) {
691 g_traceworthy_latency_ns
= TRACEWORTHY_NANOS_TEST
;
693 } else if (g_test_rt_smt
) {
694 if (g_nlogicalcpu
!= 2 * g_nphysicalcpu
) {
696 printf("Attempt to run --test-rt-smt on a non-SMT device\n");
700 if (g_numthreads
== 0) {
701 g_numthreads
= g_nphysicalcpu
;
703 g_policy
= MY_POLICY_REALTIME
;
704 g_do_all_spin
= TRUE
;
706 } else if (g_test_rt_avoid0
) {
707 #if defined(__x86_64__) || defined(__i386__)
708 if (g_numthreads
== 0) {
709 g_numthreads
= g_nphysicalcpu
- 1;
711 if (g_numthreads
== 0) {
712 printf("Attempt to run --test-rt-avoid0 on a uniprocessor\n");
715 g_policy
= MY_POLICY_REALTIME
;
716 g_do_all_spin
= TRUE
;
719 printf("Attempt to run --test-rt-avoid0 on a non-Intel device\n");
722 } else if (g_numthreads
== 0) {
723 g_numthreads
= g_numcpus
;
726 if (g_do_each_spin
) {
727 g_each_spin_duration_abs
= nanos_to_abs(g_each_spin_duration_ns
);
730 /* Configure the long-spin thread to take up half of its computation */
731 if (g_do_one_long_spin
) {
732 g_one_long_spin_length_ns
= COMPUTATION_NANOS
/ 2;
733 g_one_long_spin_length_abs
= nanos_to_abs(g_one_long_spin_length_ns
);
736 /* Estimate the amount of time the cleanup phase needs to back off */
737 g_iteration_sleeptime_us
= g_numthreads
* 20;
739 uint32_t threads_per_core
= (g_numthreads
/ g_numcpus
) + 1;
740 if (g_do_each_spin
) {
741 g_iteration_sleeptime_us
+= threads_per_core
* (g_each_spin_duration_ns
/ NSEC_PER_USEC
);
743 if (g_do_one_long_spin
) {
744 g_iteration_sleeptime_us
+= g_one_long_spin_length_ns
/ NSEC_PER_USEC
;
747 /* Arrays for threads and their wakeup times */
748 threads
= (pthread_t
*) valloc(sizeof(pthread_t
) * g_numthreads
);
751 size_t endtimes_size
= sizeof(uint64_t) * g_numthreads
;
753 g_thread_endtimes_abs
= (uint64_t*) valloc(endtimes_size
);
754 assert(g_thread_endtimes_abs
);
756 /* Ensure the allocation is pre-faulted */
757 ret
= memset_s(g_thread_endtimes_abs
, endtimes_size
, 0, endtimes_size
);
759 errc(EX_OSERR
, ret
, "memset_s endtimes");
762 size_t latencies_size
= sizeof(uint64_t) * g_iterations
;
764 worst_latencies_ns
= (uint64_t*) valloc(latencies_size
);
765 assert(worst_latencies_ns
);
767 /* Ensure the allocation is pre-faulted */
768 ret
= memset_s(worst_latencies_ns
, latencies_size
, 0, latencies_size
);
770 errc(EX_OSERR
, ret
, "memset_s latencies");
773 worst_latencies_from_first_ns
= (uint64_t*) valloc(latencies_size
);
774 assert(worst_latencies_from_first_ns
);
776 /* Ensure the allocation is pre-faulted */
777 ret
= memset_s(worst_latencies_from_first_ns
, latencies_size
, 0, latencies_size
);
779 errc(EX_OSERR
, ret
, "memset_s latencies_from_first");
782 size_t histogram_size
= sizeof(histogram_t
) * g_numcpus
;
783 g_cpu_histogram
= (histogram_t
*)valloc(histogram_size
);
784 assert(g_cpu_histogram
);
785 /* Ensure the allocation is pre-faulted */
786 ret
= memset_s(g_cpu_histogram
, histogram_size
, 0, histogram_size
);
788 errc(EX_OSERR
, ret
, "memset_s g_cpu_histogram");
791 size_t map_size
= sizeof(uint64_t) * g_iterations
;
792 g_cpu_map
= (_Atomic
uint64_t *)valloc(map_size
);
794 /* Ensure the allocation is pre-faulted */
795 ret
= memset_s(g_cpu_map
, map_size
, 0, map_size
);
797 errc(EX_OSERR
, ret
, "memset_s g_cpu_map");
800 kr
= semaphore_create(mach_task_self(), &g_main_sem
, SYNC_POLICY_FIFO
, 0);
801 mach_assert_zero(kr
);
803 /* Either one big semaphore or one per thread */
804 if (g_waketype
== WAKE_CHAIN
||
805 g_waketype
== WAKE_BROADCAST_PERTHREAD
||
806 g_waketype
== WAKE_HOP
) {
807 g_semarr
= valloc(sizeof(semaphore_t
) * g_numthreads
);
810 for (uint32_t i
= 0; i
< g_numthreads
; i
++) {
811 kr
= semaphore_create(mach_task_self(), &g_semarr
[i
], SYNC_POLICY_FIFO
, 0);
812 mach_assert_zero(kr
);
815 g_leadersem
= g_semarr
[0];
817 kr
= semaphore_create(mach_task_self(), &g_broadcastsem
, SYNC_POLICY_FIFO
, 0);
818 mach_assert_zero(kr
);
819 kr
= semaphore_create(mach_task_self(), &g_leadersem
, SYNC_POLICY_FIFO
, 0);
820 mach_assert_zero(kr
);
823 if (g_waketype
== WAKE_HOP
) {
824 kr
= semaphore_create(mach_task_self(), &g_donesem
, SYNC_POLICY_FIFO
, 0);
825 mach_assert_zero(kr
);
828 kr
= semaphore_create(mach_task_self(), &g_readysem
, SYNC_POLICY_FIFO
, 0);
829 mach_assert_zero(kr
);
831 atomic_store_explicit(&g_done_threads
, 0, memory_order_relaxed
);
833 /* Create the threads */
834 for (uint32_t i
= 0; i
< g_numthreads
; i
++) {
835 ret
= pthread_create(&threads
[i
], NULL
, worker_thread
, (void*)(uintptr_t)i
);
837 errc(EX_OSERR
, ret
, "pthread_create %d", i
);
841 ret
= setpriority(PRIO_DARWIN_ROLE
, 0, PRIO_DARWIN_ROLE_UI_FOCAL
);
843 errc(EX_OSERR
, ret
, "setpriority");
848 g_starttime_abs
= mach_absolute_time();
851 create_churn_threads();
854 /* Let everyone get settled */
855 kr
= semaphore_wait(g_main_sem
);
856 mach_assert_zero(kr
);
858 /* Give the system a bit more time to settle */
860 usleep(g_iteration_sleeptime_us
);
864 for (uint32_t i
= 0; i
< g_iterations
; i
++) {
866 uint64_t worst_abs
= 0, best_abs
= UINT64_MAX
;
868 if (g_do_one_long_spin
) {
869 g_one_long_spin_id
= (uint32_t)rand() % g_numthreads
;
872 debug_log("%d Main thread reset\n", i
);
874 atomic_store_explicit(&g_done_threads
, 0, memory_order_seq_cst
);
876 g_starttime_abs
= mach_absolute_time();
878 /* Fire them off and wait for worker threads to finish */
879 kr
= semaphore_wait_signal(g_main_sem
, g_leadersem
);
880 mach_assert_zero(kr
);
882 debug_log("%d Main thread return\n", i
);
884 assert(atomic_load_explicit(&g_done_threads
, memory_order_relaxed
) == g_numthreads
);
887 * We report the worst latencies relative to start time
888 * and relative to the lead worker thread.
890 for (j
= 0; j
< g_numthreads
; j
++) {
891 uint64_t latency_abs
;
893 latency_abs
= g_thread_endtimes_abs
[j
] - g_starttime_abs
;
894 worst_abs
= worst_abs
< latency_abs
? latency_abs
: worst_abs
;
897 worst_latencies_ns
[i
] = abs_to_nanos(worst_abs
);
900 for (j
= 1; j
< g_numthreads
; j
++) {
901 uint64_t latency_abs
;
903 latency_abs
= g_thread_endtimes_abs
[j
] - g_thread_endtimes_abs
[0];
904 worst_abs
= worst_abs
< latency_abs
? latency_abs
: worst_abs
;
905 best_abs
= best_abs
> latency_abs
? latency_abs
: best_abs
;
908 worst_latencies_from_first_ns
[i
] = abs_to_nanos(worst_abs
);
911 * In the event of a bad run, cut a trace point.
913 if (worst_latencies_from_first_ns
[i
] > g_traceworthy_latency_ns
) {
914 /* Ariadne's ad-hoc test signpost */
915 kdebug_trace(ARIADNEDBG_CODE(0, 0), worst_latencies_from_first_ns
[i
], g_traceworthy_latency_ns
, 0, 0);
918 printf("Worst on this round was %.2f us.\n", ((float)worst_latencies_from_first_ns
[i
]) / 1000.0);
922 /* Give the system a bit more time to settle */
924 usleep(g_iteration_sleeptime_us
);
929 for (uint32_t i
= 0; i
< g_numthreads
; i
++) {
930 ret
= pthread_join(threads
[i
], NULL
);
932 errc(EX_OSERR
, ret
, "pthread_join %d", i
);
937 join_churn_threads();
940 compute_stats(worst_latencies_ns
, g_iterations
, &avg
, &max
, &min
, &stddev
);
941 printf("Results (from a stop):\n");
942 printf("Max:\t\t%.2f us\n", ((float)max
) / 1000.0);
943 printf("Min:\t\t%.2f us\n", ((float)min
) / 1000.0);
944 printf("Avg:\t\t%.2f us\n", avg
/ 1000.0);
945 printf("Stddev:\t\t%.2f us\n", stddev
/ 1000.0);
949 compute_stats(worst_latencies_from_first_ns
, g_iterations
, &avg
, &max
, &min
, &stddev
);
950 printf("Results (relative to first thread):\n");
951 printf("Max:\t\t%.2f us\n", ((float)max
) / 1000.0);
952 printf("Min:\t\t%.2f us\n", ((float)min
) / 1000.0);
953 printf("Avg:\t\t%.2f us\n", avg
/ 1000.0);
954 printf("Stddev:\t\t%.2f us\n", stddev
/ 1000.0);
957 for (uint32_t i
= 0; i
< g_iterations
; i
++) {
958 printf("Iteration %d: %f us\n", i
, worst_latencies_ns
[i
] / 1000.0);
965 for (uint32_t i
= 0; i
< g_numcpus
; i
++) {
966 printf("%d\t%d\n", i
, g_cpu_histogram
[i
].accum
);
970 if (g_test_rt
|| g_test_rt_smt
|| g_test_rt_avoid0
) {
971 #define PRIMARY 0x5555555555555555ULL
972 #define SECONDARY 0xaaaaaaaaaaaaaaaaULL
976 for (uint32_t i
= 0; i
< g_iterations
; i
++) {
977 bool secondary
= false;
979 uint64_t map
= g_cpu_map
[i
];
981 /* Test for one or more threads running on secondary cores unexpectedly (WARNING) */
982 secondary
= (map
& SECONDARY
);
983 /* Test for threads running on both primary and secondary cpus of the same core (FAIL) */
984 fail
= ((map
& PRIMARY
) & ((map
& SECONDARY
) >> 1));
985 } else if (g_test_rt
) {
986 fail
= (__builtin_popcountll(map
) != g_numthreads
) && (worst_latencies_ns
[i
] > g_traceworthy_latency_ns
);
987 } else if (g_test_rt_avoid0
) {
988 fail
= ((map
& 0x1) == 0x1);
990 if (secondary
|| fail
) {
991 printf("Iteration %d: 0x%llx%s%s\n", i
, map
,
992 secondary
? " SECONDARY" : "",
993 fail
? " FAIL" : "");
999 if (test_fail
&& (g_iterations
>= 100) && (fail_count
<= g_iterations
/ 100)) {
1000 printf("99%% or better success rate\n");
1006 free(g_thread_endtimes_abs
);
1007 free(worst_latencies_ns
);
1008 free(worst_latencies_from_first_ns
);
1009 free(g_cpu_histogram
);
1016 * WARNING: This is SPI specifically intended for use by launchd to start UI
1017 * apps. We use it here for a test tool only to opt into QoS using the same
1018 * policies. Do not use this outside xnu or libxpc/launchd.
1021 selfexec_with_apptype(int argc
, char *argv
[])
1024 posix_spawnattr_t attr
;
1025 extern char **environ
;
1026 char *new_argv
[argc
+ 1 + 1 /* NULL */];
1028 char prog
[PATH_MAX
];
1029 uint32_t prog_size
= PATH_MAX
;
1031 ret
= _NSGetExecutablePath(prog
, &prog_size
);
1033 err(EX_OSERR
, "_NSGetExecutablePath");
1036 for (i
= 0; i
< argc
; i
++) {
1037 new_argv
[i
] = argv
[i
];
1040 new_argv
[i
] = "--switched_apptype";
1041 new_argv
[i
+ 1] = NULL
;
1043 ret
= posix_spawnattr_init(&attr
);
1045 errc(EX_OSERR
, ret
, "posix_spawnattr_init");
1048 ret
= posix_spawnattr_setflags(&attr
, POSIX_SPAWN_SETEXEC
);
1050 errc(EX_OSERR
, ret
, "posix_spawnattr_setflags");
1053 ret
= posix_spawnattr_setprocesstype_np(&attr
, POSIX_SPAWN_PROC_TYPE_APP_DEFAULT
);
1055 errc(EX_OSERR
, ret
, "posix_spawnattr_setprocesstype_np");
1058 ret
= posix_spawn(NULL
, prog
, NULL
, &attr
, new_argv
, environ
);
1060 errc(EX_OSERR
, ret
, "posix_spawn");
1065 * Admittedly not very attractive.
1067 static void __attribute__((noreturn
))
1070 errx(EX_USAGE
, "Usage: %s <threads> <chain | hop | broadcast-single-sem | broadcast-per-thread> "
1071 "<realtime | timeshare | fixed> <iterations>\n\t\t"
1072 "[--trace <traceworthy latency in ns>] "
1073 "[--verbose] [--spin-one] [--spin-all] [--spin-time <nanos>] [--affinity]\n\t\t"
1074 "[--no-sleep] [--drop-priority] [--churn-pri <pri>] [--churn-count <n>]",
1078 static struct option
* g_longopts
;
1079 static int option_index
;
1085 /* char* optarg is a magic global */
1087 uint32_t arg_val
= (uint32_t)strtoull(optarg
, &cp
, 10);
1089 if (cp
== optarg
|| *cp
) {
1090 errx(EX_USAGE
, "arg --%s requires a decimal number, found \"%s\"",
1091 g_longopts
[option_index
].name
, optarg
);
1098 parse_args(int argc
, char *argv
[])
1109 static struct option longopts
[] = {
1110 /* BEGIN IGNORE CODESTYLE */
1111 { "spin-time", required_argument
, NULL
, OPT_SPIN_TIME
},
1112 { "trace", required_argument
, NULL
, OPT_TRACE
},
1113 { "priority", required_argument
, NULL
, OPT_PRIORITY
},
1114 { "churn-pri", required_argument
, NULL
, OPT_CHURN_PRI
},
1115 { "churn-count", required_argument
, NULL
, OPT_CHURN_COUNT
},
1116 { "switched_apptype", no_argument
, (int*)&g_seen_apptype
, TRUE
},
1117 { "spin-one", no_argument
, (int*)&g_do_one_long_spin
, TRUE
},
1118 { "spin-all", no_argument
, (int*)&g_do_all_spin
, TRUE
},
1119 { "affinity", no_argument
, (int*)&g_do_affinity
, TRUE
},
1120 { "no-sleep", no_argument
, (int*)&g_do_sleep
, FALSE
},
1121 { "drop-priority", no_argument
, (int*)&g_drop_priority
, TRUE
},
1122 { "test-rt", no_argument
, (int*)&g_test_rt
, TRUE
},
1123 { "test-rt-smt", no_argument
, (int*)&g_test_rt_smt
, TRUE
},
1124 { "test-rt-avoid0", no_argument
, (int*)&g_test_rt_avoid0
, TRUE
},
1125 { "histogram", no_argument
, (int*)&g_histogram
, TRUE
},
1126 { "verbose", no_argument
, (int*)&g_verbose
, TRUE
},
1127 { "help", no_argument
, NULL
, 'h' },
1128 { NULL
, 0, NULL
, 0 }
1129 /* END IGNORE CODESTYLE */
1132 g_longopts
= longopts
;
1135 while ((ch
= getopt_long(argc
, argv
, "h", longopts
, &option_index
)) != -1) {
1138 /* getopt_long set a variable */
1141 g_do_each_spin
= TRUE
;
1142 g_each_spin_duration_ns
= read_dec_arg();
1145 g_traceworthy_latency_ns
= read_dec_arg();
1148 g_priority
= read_dec_arg();
1151 g_churn_pri
= read_dec_arg();
1153 case OPT_CHURN_COUNT
:
1154 g_churn_count
= read_dec_arg();
1165 * getopt_long reorders all the options to the beginning of the argv array.
1166 * Jump past them to the non-option arguments.
1173 warnx("Too many non-option arguments passed");
1178 warnx("Missing required <threads> <waketype> <policy> <iterations> arguments");
1184 /* How many threads? */
1185 g_numthreads
= (uint32_t)strtoull(argv
[0], &cp
, 10);
1187 if (cp
== argv
[0] || *cp
) {
1188 errx(EX_USAGE
, "numthreads requires a decimal number, found \"%s\"", argv
[0]);
1191 /* What wakeup pattern? */
1192 g_waketype
= parse_wakeup_pattern(argv
[1]);
1195 g_policy
= parse_thread_policy(argv
[2]);
1198 g_iterations
= (uint32_t)strtoull(argv
[3], &cp
, 10);
1200 if (cp
== argv
[3] || *cp
) {
1201 errx(EX_USAGE
, "numthreads requires a decimal number, found \"%s\"", argv
[3]);
1204 if (g_iterations
< 1) {
1205 errx(EX_USAGE
, "Must have at least one iteration");
1208 if (g_numthreads
== 1 && g_waketype
== WAKE_CHAIN
) {
1209 errx(EX_USAGE
, "chain mode requires more than one thread");
1212 if (g_numthreads
== 1 && g_waketype
== WAKE_HOP
) {
1213 errx(EX_USAGE
, "hop mode requires more than one thread");