2 * Copyright (c) 2005-2012 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #define MACH__POSIX_C_SOURCE_PRIVATE 1 /* pulls in suitable savearea from mach/ppc/thread_status.h */
30 #include <kern/thread.h>
31 #include <mach/thread_status.h>
33 typedef x86_saved_state_t savearea_t
;
37 #include <sys/malloc.h>
39 #include <sys/systm.h>
41 #include <sys/proc_internal.h>
42 #include <sys/kauth.h>
43 #include <sys/dtrace.h>
44 #include <sys/dtrace_impl.h>
45 #include <libkern/OSAtomic.h>
46 #include <kern/thread_call.h>
47 #include <kern/task.h>
48 #include <kern/sched_prim.h>
49 #include <miscfs/devfs/devfs.h>
50 #include <mach/vm_param.h>
51 #include <machine/pal_routines.h>
55 * APPLE NOTE: The regmap is used to decode which 64bit uregs[] register
56 * is being accessed when passed the 32bit uregs[] constant (based on
57 * the reg.d translator file). The dtrace_getreg() is smart enough to handle
58 * the register mappings. The register set definitions are the same as
59 * those used by the fasttrap_getreg code.
61 #include "fasttrap_regset.h"
62 static const uint8_t regmap
[19] = {
69 REG_RBP
, /* EBP, REG_FP */
72 REG_RDX
, /* EDX, REG_R1 */
74 REG_RAX
, /* EAX, REG_R0 */
75 REG_TRAPNO
, /* TRAPNO */
77 REG_RIP
, /* EIP, REG_PC */
79 REG_RFL
, /* EFL, REG_PS */
80 REG_RSP
, /* UESP, REG_SP */
84 extern dtrace_id_t dtrace_probeid_error
; /* special ERROR probe */
87 dtrace_probe_error(dtrace_state_t
*state
, dtrace_epid_t epid
, int which
,
88 int fltoffs
, int fault
, uint64_t illval
)
91 * For the case of the error probe firing lets
92 * stash away "illval" here, and special-case retrieving it in DIF_VARIABLE_ARG.
94 state
->dts_arg_error_illval
= illval
;
95 dtrace_probe( dtrace_probeid_error
, (uint64_t)(uintptr_t)state
, epid
, which
, fltoffs
, fault
);
99 * Atomicity and synchronization
102 dtrace_membar_producer(void)
104 __asm__
volatile("sfence");
108 dtrace_membar_consumer(void)
110 __asm__
volatile("lfence");
114 * Interrupt manipulation
115 * XXX dtrace_getipl() can be called from probe context.
121 * XXX Drat, get_interrupt_level is MACH_KERNEL_PRIVATE
122 * in osfmk/kern/cpu_data.h
124 /* return get_interrupt_level(); */
125 return (ml_at_interrupt_context() ? 1: 0);
131 typedef struct xcArg
{
138 xcRemote( void *foo
)
140 xcArg_t
*pArg
= (xcArg_t
*)foo
;
142 if ( pArg
->cpu
== CPU
->cpu_id
|| pArg
->cpu
== DTRACE_CPUALL
) {
143 (pArg
->f
)(pArg
->arg
);
149 * dtrace_xcall() is not called from probe context.
152 dtrace_xcall(processorid_t cpu
, dtrace_xcall_t f
, void *arg
)
160 if (cpu
== DTRACE_CPUALL
) {
161 mp_cpus_call (CPUMASK_ALL
, ASYNC
, xcRemote
, (void*)&xcArg
);
164 mp_cpus_call (cpu_to_cpumask((cpu_t
)cpu
), ASYNC
, xcRemote
, (void*)&xcArg
);
172 dtrace_isa_init(void)
181 dtrace_getreg(struct regs
*savearea
, uint_t reg
)
183 boolean_t is64Bit
= proc_is64bit(current_proc());
184 x86_saved_state_t
*regs
= (x86_saved_state_t
*)savearea
;
195 return (uint64_t)(regs
->ss_64
.rdi
);
197 return (uint64_t)(regs
->ss_64
.rsi
);
199 return (uint64_t)(regs
->ss_64
.rdx
);
201 return (uint64_t)(regs
->ss_64
.rcx
);
203 return (uint64_t)(regs
->ss_64
.r8
);
205 return (uint64_t)(regs
->ss_64
.r9
);
207 return (uint64_t)(regs
->ss_64
.rax
);
209 return (uint64_t)(regs
->ss_64
.rbx
);
211 return (uint64_t)(regs
->ss_64
.rbp
);
213 return (uint64_t)(regs
->ss_64
.r10
);
215 return (uint64_t)(regs
->ss_64
.r11
);
217 return (uint64_t)(regs
->ss_64
.r12
);
219 return (uint64_t)(regs
->ss_64
.r13
);
221 return (uint64_t)(regs
->ss_64
.r14
);
223 return (uint64_t)(regs
->ss_64
.r15
);
225 return (uint64_t)(regs
->ss_64
.fs
);
227 return (uint64_t)(regs
->ss_64
.gs
);
229 return (uint64_t)(regs
->ss_64
.isf
.trapno
);
231 return (uint64_t)(regs
->ss_64
.isf
.err
);
233 return (uint64_t)(regs
->ss_64
.isf
.rip
);
235 return (uint64_t)(regs
->ss_64
.isf
.cs
);
237 return (uint64_t)(regs
->ss_64
.isf
.ss
);
239 return (uint64_t)(regs
->ss_64
.isf
.rflags
);
241 return (uint64_t)(regs
->ss_64
.isf
.rsp
);
245 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
249 } else { /* is 32bit user */
250 /* beyond register SS */
251 if (reg
> x86_SAVED_STATE32_COUNT
- 1) {
252 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
255 return (uint64_t)((unsigned int *)(&(regs
->ss_32
.gs
)))[reg
];
259 #define RETURN_OFFSET 4
260 #define RETURN_OFFSET64 8
263 dtrace_getustack_common(uint64_t *pcstack
, int pcstack_limit
, user_addr_t pc
,
267 volatile uint16_t *flags
=
268 (volatile uint16_t *)&cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
270 uintptr_t oldcontext
= lwp
->lwp_oldcontext
; /* XXX signal stack crawl */
274 boolean_t is64Bit
= proc_is64bit(current_proc());
276 ASSERT(pcstack
== NULL
|| pcstack_limit
> 0);
278 #if 0 /* XXX signal stack crawl */
279 if (p
->p_model
== DATAMODEL_NATIVE
) {
280 s1
= sizeof (struct frame
) + 2 * sizeof (long);
281 s2
= s1
+ sizeof (siginfo_t
);
283 s1
= sizeof (struct frame32
) + 3 * sizeof (int);
284 s2
= s1
+ sizeof (siginfo32_t
);
290 if (pcstack
!= NULL
) {
291 *pcstack
++ = (uint64_t)pc
;
293 if (pcstack_limit
<= 0)
300 #if 0 /* XXX signal stack crawl */
301 if (oldcontext
== sp
+ s1
|| oldcontext
== sp
+ s2
) {
302 if (p
->p_model
== DATAMODEL_NATIVE
) {
303 ucontext_t
*ucp
= (ucontext_t
*)oldcontext
;
304 greg_t
*gregs
= ucp
->uc_mcontext
.gregs
;
306 sp
= dtrace_fulword(&gregs
[REG_FP
]);
307 pc
= dtrace_fulword(&gregs
[REG_PC
]);
309 oldcontext
= dtrace_fulword(&ucp
->uc_link
);
311 ucontext32_t
*ucp
= (ucontext32_t
*)oldcontext
;
312 greg32_t
*gregs
= ucp
->uc_mcontext
.gregs
;
314 sp
= dtrace_fuword32(&gregs
[EBP
]);
315 pc
= dtrace_fuword32(&gregs
[EIP
]);
317 oldcontext
= dtrace_fuword32(&ucp
->uc_link
);
324 pc
= dtrace_fuword64((sp
+ RETURN_OFFSET64
));
325 sp
= dtrace_fuword64(sp
);
327 pc
= dtrace_fuword32((sp
+ RETURN_OFFSET
));
328 sp
= dtrace_fuword32(sp
);
334 * This is totally bogus: if we faulted, we're going to clear
335 * the fault and break. This is to deal with the apparently
336 * broken Java stacks on x86.
338 if (*flags
& CPU_DTRACE_FAULT
) {
339 *flags
&= ~CPU_DTRACE_FAULT
;
350 * The return value indicates if we've modified the stack.
353 dtrace_adjust_stack(uint64_t **pcstack
, int *pcstack_limit
, user_addr_t
*pc
,
358 boolean_t is64Bit
= proc_is64bit(current_proc());
362 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY
)) {
364 * If we found ourselves in an entry probe, the frame pointer has not
365 * yet been pushed (that happens in the
366 * function prologue). The best approach is to
367 * add the current pc as a missing top of stack,
368 * and back the pc up to the caller, which is stored at the
369 * current stack pointer address since the call
370 * instruction puts it there right before
377 *pc
= dtrace_fuword64(sp
);
379 *pc
= dtrace_fuword32(sp
);
382 * We might have a top of stack override, in which case we just
383 * add that frame without question to the top. This
384 * happens in return probes where you have a valid
385 * frame pointer, but it's for the callers frame
386 * and you'd like to add the pc of the return site
389 missing_tos
= cpu_core
[CPU
->cpu_id
].cpuc_missing_tos
;
392 if (missing_tos
!= 0) {
393 if (pcstack
!= NULL
&& pcstack_limit
!= NULL
) {
395 * If the missing top of stack has been filled out, then
396 * we add it and adjust the size.
398 *(*pcstack
)++ = missing_tos
;
402 * return 1 because we would have changed the
403 * stack whether or not it was passed in. This
404 * ensures the stack count is correct
412 dtrace_getupcstack(uint64_t *pcstack
, int pcstack_limit
)
414 thread_t thread
= current_thread();
415 x86_saved_state_t
*regs
;
416 user_addr_t pc
, sp
, fp
;
417 volatile uint16_t *flags
=
418 (volatile uint16_t *)&cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
420 boolean_t is64Bit
= proc_is64bit(current_proc());
422 if (*flags
& CPU_DTRACE_FAULT
)
425 if (pcstack_limit
<= 0)
429 * If there's no user context we still need to zero the stack.
434 pal_register_cache_state(thread
, VALID
);
435 regs
= (x86_saved_state_t
*)find_user_regs(thread
);
439 *pcstack
++ = (uint64_t)dtrace_proc_selfpid();
442 if (pcstack_limit
<= 0)
446 pc
= regs
->ss_64
.isf
.rip
;
447 sp
= regs
->ss_64
.isf
.rsp
;
448 fp
= regs
->ss_64
.rbp
;
450 pc
= regs
->ss_32
.eip
;
451 sp
= regs
->ss_32
.uesp
;
452 fp
= regs
->ss_32
.ebp
;
456 * The return value indicates if we've modified the stack.
457 * Since there is nothing else to fix up in either case,
458 * we can safely ignore it here.
460 (void)dtrace_adjust_stack(&pcstack
, &pcstack_limit
, &pc
, sp
);
462 if(pcstack_limit
<= 0)
466 * Note that unlike ppc, the x86 code does not use
467 * CPU_DTRACE_USTACK_FP. This is because x86 always
468 * traces from the fp, even in syscall/profile/fbt
471 n
= dtrace_getustack_common(pcstack
, pcstack_limit
, pc
, fp
);
473 ASSERT(n
<= pcstack_limit
);
479 while (pcstack_limit
-- > 0)
484 dtrace_getustackdepth(void)
486 thread_t thread
= current_thread();
487 x86_saved_state_t
*regs
;
488 user_addr_t pc
, sp
, fp
;
490 boolean_t is64Bit
= proc_is64bit(current_proc());
495 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT
))
498 pal_register_cache_state(thread
, VALID
);
499 regs
= (x86_saved_state_t
*)find_user_regs(thread
);
504 pc
= regs
->ss_64
.isf
.rip
;
505 sp
= regs
->ss_64
.isf
.rsp
;
506 fp
= regs
->ss_64
.rbp
;
508 pc
= regs
->ss_32
.eip
;
509 sp
= regs
->ss_32
.uesp
;
510 fp
= regs
->ss_32
.ebp
;
513 if (dtrace_adjust_stack(NULL
, NULL
, &pc
, sp
) == 1) {
515 * we would have adjusted the stack if we had
516 * supplied one (that is what rc == 1 means).
517 * Also, as a side effect, the pc might have
518 * been fixed up, which is good for calling
519 * in to dtrace_getustack_common.
525 * Note that unlike ppc, the x86 code does not use
526 * CPU_DTRACE_USTACK_FP. This is because x86 always
527 * traces from the fp, even in syscall/profile/fbt
531 n
+= dtrace_getustack_common(NULL
, 0, pc
, fp
);
537 dtrace_getufpstack(uint64_t *pcstack
, uint64_t *fpstack
, int pcstack_limit
)
539 thread_t thread
= current_thread();
542 volatile uint16_t *flags
=
543 (volatile uint16_t *)&cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
545 uintptr_t oldcontext
;
548 boolean_t is64Bit
= proc_is64bit(current_proc());
550 if (*flags
& CPU_DTRACE_FAULT
)
553 if (pcstack_limit
<= 0)
557 * If there's no user context we still need to zero the stack.
562 regs
= (savearea_t
*)find_user_regs(thread
);
566 *pcstack
++ = (uint64_t)dtrace_proc_selfpid();
569 if (pcstack_limit
<= 0)
572 pc
= regs
->ss_32
.eip
;
573 sp
= regs
->ss_32
.ebp
;
575 #if 0 /* XXX signal stack crawl */
576 oldcontext
= lwp
->lwp_oldcontext
;
578 if (p
->p_model
== DATAMODEL_NATIVE
) {
579 s1
= sizeof (struct frame
) + 2 * sizeof (long);
580 s2
= s1
+ sizeof (siginfo_t
);
582 s1
= sizeof (struct frame32
) + 3 * sizeof (int);
583 s2
= s1
+ sizeof (siginfo32_t
);
587 if(dtrace_adjust_stack(&pcstack
, &pcstack_limit
, &pc
, sp
) == 1) {
592 if (pcstack_limit
<= 0)
597 *pcstack
++ = (uint64_t)pc
;
600 if (pcstack_limit
<= 0)
606 #if 0 /* XXX signal stack crawl */
607 if (oldcontext
== sp
+ s1
|| oldcontext
== sp
+ s2
) {
608 if (p
->p_model
== DATAMODEL_NATIVE
) {
609 ucontext_t
*ucp
= (ucontext_t
*)oldcontext
;
610 greg_t
*gregs
= ucp
->uc_mcontext
.gregs
;
612 sp
= dtrace_fulword(&gregs
[REG_FP
]);
613 pc
= dtrace_fulword(&gregs
[REG_PC
]);
615 oldcontext
= dtrace_fulword(&ucp
->uc_link
);
617 ucontext_t
*ucp
= (ucontext_t
*)oldcontext
;
618 greg_t
*gregs
= ucp
->uc_mcontext
.gregs
;
620 sp
= dtrace_fuword32(&gregs
[EBP
]);
621 pc
= dtrace_fuword32(&gregs
[EIP
]);
623 oldcontext
= dtrace_fuword32(&ucp
->uc_link
);
630 pc
= dtrace_fuword64((sp
+ RETURN_OFFSET64
));
631 sp
= dtrace_fuword64(sp
);
633 pc
= dtrace_fuword32((sp
+ RETURN_OFFSET
));
634 sp
= dtrace_fuword32(sp
);
640 * This is totally bogus: if we faulted, we're going to clear
641 * the fault and break. This is to deal with the apparently
642 * broken Java stacks on x86.
644 if (*flags
& CPU_DTRACE_FAULT
) {
645 *flags
&= ~CPU_DTRACE_FAULT
;
652 while (pcstack_limit
-- > 0)
657 dtrace_getpcstack(pc_t
*pcstack
, int pcstack_limit
, int aframes
,
660 struct frame
*fp
= (struct frame
*)__builtin_frame_address(0);
661 struct frame
*nextfp
, *minfp
, *stacktop
;
665 uintptr_t caller
= CPU
->cpu_dtrace_caller
;
668 if ((on_intr
= CPU_ON_INTR(CPU
)) != 0)
669 stacktop
= (struct frame
*)dtrace_get_cpu_int_stack_top();
671 stacktop
= (struct frame
*)(dtrace_get_kernel_stack(current_thread()) + kernel_stack_size
);
677 if (intrpc
!= NULL
&& depth
< pcstack_limit
)
678 pcstack
[depth
++] = (pc_t
)intrpc
;
680 while (depth
< pcstack_limit
) {
681 nextfp
= *(struct frame
**)fp
;
682 pc
= *(uintptr_t *)(((uintptr_t)fp
) + RETURN_OFFSET64
);
684 if (nextfp
<= minfp
|| nextfp
>= stacktop
) {
687 * Hop from interrupt stack to thread stack.
689 vm_offset_t kstack_base
= dtrace_get_kernel_stack(current_thread());
691 minfp
= (struct frame
*)kstack_base
;
692 stacktop
= (struct frame
*)(kstack_base
+ kernel_stack_size
);
698 * This is the last frame we can process; indicate
699 * that we should return after processing this frame.
705 if (--aframes
== 0 && caller
!= 0) {
707 * We've just run out of artificial frames,
708 * and we have a valid caller -- fill it in
711 ASSERT(depth
< pcstack_limit
);
712 pcstack
[depth
++] = (pc_t
)caller
;
716 if (depth
< pcstack_limit
)
717 pcstack
[depth
++] = (pc_t
)pc
;
721 while (depth
< pcstack_limit
)
722 pcstack
[depth
++] = 0;
732 struct frame
*backchain
;
737 dtrace_getarg(int arg
, int aframes
, dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
)
740 struct frame
*fp
= (struct frame
*)__builtin_frame_address(0);
747 * A total of 6 arguments are passed via registers; any argument with
748 * index of 5 or lower is therefore in a register.
752 for (i
= 1; i
<= aframes
; i
++) {
756 if (dtrace_invop_callsite_pre
!= NULL
757 && pc
> (uintptr_t)dtrace_invop_callsite_pre
758 && pc
<= (uintptr_t)dtrace_invop_callsite_post
) {
760 * In the case of x86_64, we will use the pointer to the
761 * save area structure that was pushed when we took the
762 * trap. To get this structure, we must increment
763 * beyond the frame structure. If the
764 * argument that we're seeking is passed on the stack,
765 * we'll pull the true stack pointer out of the saved
766 * registers and decrement our argument by the number
767 * of arguments passed in registers; if the argument
768 * we're seeking is passed in regsiters, we can just
772 /* fp points to frame of dtrace_invop() activation. */
773 fp
= fp
->backchain
; /* to fbt_perfcallback() activation. */
774 fp
= fp
->backchain
; /* to kernel_trap() activation. */
775 fp
= fp
->backchain
; /* to trap_from_kernel() activation. */
777 x86_saved_state_t
*tagged_regs
= (x86_saved_state_t
*)&fp
[1];
778 x86_saved_state64_t
*saved_state
= saved_state64(tagged_regs
);
781 stack
= (uintptr_t *)(void*)&saved_state
->rdi
;
783 fp
= (struct frame
*)(saved_state
->isf
.rsp
);
784 stack
= (uintptr_t *)&fp
[1]; /* Find marshalled
793 * We know that we did not come through a trap to get into
794 * dtrace_probe() -- We arrive here when the provider has
795 * called dtrace_probe() directly.
796 * The probe ID is the first argument to dtrace_probe().
797 * We must advance beyond that to get the argX.
799 arg
++; /* Advance past probeID */
803 * This shouldn't happen. If the argument is passed in a
804 * register then it should have been, well, passed in a
807 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
812 stack
= (uintptr_t *)&fp
[1]; /* Find marshalled arguments */
815 if (dtrace_canload((uint64_t)(stack
+ arg
), sizeof(uint64_t),
817 /* dtrace_probe arguments arg0 ... arg4 are 64bits wide */
818 val
= dtrace_load64((uint64_t)(stack
+ arg
));
828 dtrace_toxic_ranges(void (*func
)(uintptr_t base
, uintptr_t limit
))
831 * "base" is the smallest toxic address in the range, "limit" is the first
832 * VALID address greater than "base".
834 func(0x0, VM_MIN_KERNEL_AND_KEXT_ADDRESS
);
835 if (VM_MAX_KERNEL_ADDRESS
< ~(uintptr_t)0)
836 func(VM_MAX_KERNEL_ADDRESS
+ 1, ~(uintptr_t)0);