]> git.saurik.com Git - apple/xnu.git/blob - osfmk/x86_64/pmap_pcid.c
c8fef93b42c65f3eab3345229436766c28c7991d
[apple/xnu.git] / osfmk / x86_64 / pmap_pcid.c
1 /*
2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <i386/proc_reg.h>
30 #include <i386/cpuid.h>
31 #include <i386/tsc.h>
32 #include <vm/pmap.h>
33 #include <vm/vm_map.h>
34 #include <i386/pmap_internal.h>
35 #include <i386/pmap_pcid.h>
36 #include <mach/branch_predicates.h>
37
38 /*
39 * PCID (Process context identifier) aka tagged TLB support.
40 * On processors with this feature, unless disabled via the -pmap_pcid_disable
41 * boot-arg, the following algorithm is in effect:
42 * Each processor maintains an array of tag refcounts indexed by tag.
43 * Each address space maintains an array of tags indexed by CPU number.
44 * Each address space maintains a coherency vector, indexed by CPU
45 * indicating that the TLB state for that address space has a pending
46 * invalidation.
47 * On a context switch, a refcounted tag is lazily assigned to the newly
48 * dispatched (CPU, address space) tuple.
49 * When an inactive address space is invalidated on a remote CPU, it is marked
50 * for invalidation upon the next dispatch. Some invalidations are
51 * also processed at the user/kernel boundary.
52 * Provisions are made for the case where a CPU is overcommmitted, i.e.
53 * more active address spaces exist than the number of logical tags
54 * provided for by the processor architecture (currently 4096).
55 * The algorithm assumes the processor remaps the logical tags
56 * to physical TLB context IDs in an LRU fashion for efficiency. (DRK '10)
57 */
58
59 uint32_t pmap_pcid_ncpus;
60 boolean_t pmap_pcid_disabled = FALSE;
61
62 void pmap_pcid_configure(void) {
63 int ccpu = cpu_number();
64 uintptr_t cr4 = get_cr4();
65 boolean_t pcid_present = FALSE;
66
67 pmap_pcid_log("PCID configure invoked on CPU %d\n", ccpu);
68 pmap_assert(ml_get_interrupts_enabled() == FALSE || get_preemption_level() !=0);
69 pmap_assert(cpu_mode_is64bit());
70
71 if (PE_parse_boot_argn("-pmap_pcid_disable", &pmap_pcid_disabled, sizeof (pmap_pcid_disabled))) {
72 pmap_pcid_log("PMAP: PCID feature disabled\n");
73 printf("PMAP: PCID feature disabled, %u\n", pmap_pcid_disabled);
74 kprintf("PMAP: PCID feature disabled %u\n", pmap_pcid_disabled);
75 }
76 /* no_shared_cr3+PCID is currently unsupported */
77 #if DEBUG
78 if (pmap_pcid_disabled == FALSE)
79 no_shared_cr3 = FALSE;
80 else
81 no_shared_cr3 = TRUE;
82 #else
83 if (no_shared_cr3)
84 pmap_pcid_disabled = TRUE;
85 #endif
86 if (pmap_pcid_disabled || no_shared_cr3) {
87 unsigned i;
88 /* Reset PCID status, as we may have picked up
89 * strays if discovered prior to platform
90 * expert initialization.
91 */
92 for (i = 0; i < real_ncpus; i++) {
93 if (cpu_datap(i)) {
94 cpu_datap(i)->cpu_pmap_pcid_enabled = FALSE;
95 }
96 pmap_pcid_ncpus = 0;
97 }
98 cpu_datap(ccpu)->cpu_pmap_pcid_enabled = FALSE;
99 return;
100 }
101 /* DRKTODO: assert if features haven't been discovered yet. Redundant
102 * invocation of cpu_mode_init and descendants masks this for now.
103 */
104 if ((cpuid_features() & CPUID_FEATURE_PCID))
105 pcid_present = TRUE;
106 else {
107 cpu_datap(ccpu)->cpu_pmap_pcid_enabled = FALSE;
108 pmap_pcid_log("PMAP: PCID not detected CPU %d\n", ccpu);
109 return;
110 }
111 if ((cr4 & (CR4_PCIDE | CR4_PGE)) == (CR4_PCIDE|CR4_PGE)) {
112 cpu_datap(ccpu)->cpu_pmap_pcid_enabled = TRUE;
113 pmap_pcid_log("PMAP: PCID already enabled %d\n", ccpu);
114 return;
115 }
116 if (pcid_present == TRUE) {
117 pmap_pcid_log("Pre-PCID:CR0: 0x%lx, CR3: 0x%lx, CR4(CPU %d): 0x%lx\n", get_cr0(), get_cr3_raw(), ccpu, cr4);
118
119 if (cpu_number() >= PMAP_PCID_MAX_CPUS) {
120 panic("PMAP_PCID_MAX_CPUS %d\n", cpu_number());
121 }
122 if ((get_cr4() & CR4_PGE) == 0) {
123 set_cr4(get_cr4() | CR4_PGE);
124 pmap_pcid_log("Toggled PGE ON (CPU: %d\n", ccpu);
125 }
126 set_cr4(get_cr4() | CR4_PCIDE);
127 pmap_pcid_log("Post PCID: CR0: 0x%lx, CR3: 0x%lx, CR4(CPU %d): 0x%lx\n", get_cr0(), get_cr3_raw(), ccpu, get_cr4());
128 tlb_flush_global();
129 cpu_datap(ccpu)->cpu_pmap_pcid_enabled = TRUE;
130
131 if (OSIncrementAtomic(&pmap_pcid_ncpus) == machine_info.max_cpus) {
132 pmap_pcid_log("All PCIDs enabled: real_ncpus: %d, pmap_pcid_ncpus: %d\n", real_ncpus, pmap_pcid_ncpus);
133 }
134 cpu_datap(ccpu)->cpu_pmap_pcid_coherentp =
135 cpu_datap(ccpu)->cpu_pmap_pcid_coherentp_kernel =
136 &(kernel_pmap->pmap_pcid_coherency_vector[ccpu]);
137 cpu_datap(ccpu)->cpu_pcid_refcounts[0] = 1;
138 }
139 }
140
141 void pmap_pcid_initialize(pmap_t p) {
142 unsigned i;
143 unsigned nc = sizeof(p->pmap_pcid_cpus)/sizeof(pcid_t);
144
145 pmap_assert(nc >= real_ncpus);
146 for (i = 0; i < nc; i++) {
147 p->pmap_pcid_cpus[i] = PMAP_PCID_INVALID_PCID;
148 /* We assume here that the coherency vector is zeroed by
149 * pmap_create
150 */
151 }
152 }
153
154 void pmap_pcid_initialize_kernel(pmap_t p) {
155 unsigned i;
156 unsigned nc = sizeof(p->pmap_pcid_cpus)/sizeof(pcid_t);
157
158 for (i = 0; i < nc; i++) {
159 p->pmap_pcid_cpus[i] = 0;
160 /* We assume here that the coherency vector is zeroed by
161 * pmap_create
162 */
163 }
164 }
165
166 pcid_t pmap_pcid_allocate_pcid(int ccpu) {
167 int i;
168 pcid_ref_t cur_min = 0xFF;
169 uint32_t cur_min_index = ~1;
170 pcid_ref_t *cpu_pcid_refcounts = &cpu_datap(ccpu)->cpu_pcid_refcounts[0];
171 pcid_ref_t old_count;
172
173 if ((i = cpu_datap(ccpu)->cpu_pcid_free_hint) != 0) {
174 if (cpu_pcid_refcounts[i] == 0) {
175 (void)__sync_fetch_and_add(&cpu_pcid_refcounts[i], 1);
176 cpu_datap(ccpu)->cpu_pcid_free_hint = 0;
177 return i;
178 }
179 }
180 /* Linear scan to discover free slot, with hint. Room for optimization
181 * but with intelligent prefetchers this should be
182 * adequately performant, as it is invoked
183 * only on first dispatch of a new address space onto
184 * a given processor. DRKTODO: use larger loads and
185 * zero byte discovery -- any pattern != ~1 should
186 * signify a free slot.
187 */
188 for (i = PMAP_PCID_MIN_PCID; i < PMAP_PCID_MAX_PCID; i++) {
189 pcid_ref_t cur_refcount = cpu_pcid_refcounts[i];
190
191 pmap_assert(cur_refcount < PMAP_PCID_MAX_REFCOUNT);
192
193 if (cur_refcount == 0) {
194 (void)__sync_fetch_and_add(&cpu_pcid_refcounts[i], 1);
195 return i;
196 }
197 else {
198 if (cur_refcount < cur_min) {
199 cur_min_index = i;
200 cur_min = cur_refcount;
201 }
202 }
203 }
204 pmap_assert(cur_min_index > 0 && cur_min_index < PMAP_PCID_MAX_PCID);
205 /* Consider "rebalancing" tags actively in highly oversubscribed cases
206 * perhaps selecting tags with lower activity.
207 */
208
209 old_count = __sync_fetch_and_add(&cpu_pcid_refcounts[cur_min_index], 1);
210 pmap_assert(old_count < PMAP_PCID_MAX_REFCOUNT);
211 return cur_min_index;
212 }
213
214 void pmap_pcid_deallocate_pcid(int ccpu, pmap_t tpmap) {
215 pcid_t pcid;
216 pmap_t lp;
217 pcid_ref_t prior_count;
218
219 pcid = tpmap->pmap_pcid_cpus[ccpu];
220 pmap_assert(pcid != PMAP_PCID_INVALID_PCID);
221 if (pcid == PMAP_PCID_INVALID_PCID)
222 return;
223
224 lp = cpu_datap(ccpu)->cpu_pcid_last_pmap_dispatched[pcid];
225 pmap_assert(pcid > 0 && pcid < PMAP_PCID_MAX_PCID);
226 pmap_assert(cpu_datap(ccpu)->cpu_pcid_refcounts[pcid] >= 1);
227
228 if (lp == tpmap)
229 (void)__sync_bool_compare_and_swap(&cpu_datap(ccpu)->cpu_pcid_last_pmap_dispatched[pcid], tpmap, PMAP_INVALID);
230
231 if ((prior_count = __sync_fetch_and_sub(&cpu_datap(ccpu)->cpu_pcid_refcounts[pcid], 1)) == 1) {
232 cpu_datap(ccpu)->cpu_pcid_free_hint = pcid;
233 }
234 pmap_assert(prior_count <= PMAP_PCID_MAX_REFCOUNT);
235 }
236
237 void pmap_destroy_pcid_sync(pmap_t p) {
238 int i;
239 pmap_assert(ml_get_interrupts_enabled() == FALSE || get_preemption_level() !=0);
240 for (i = 0; i < PMAP_PCID_MAX_CPUS; i++)
241 if (p->pmap_pcid_cpus[i] != PMAP_PCID_INVALID_PCID)
242 pmap_pcid_deallocate_pcid(i, p);
243 }
244
245 pcid_t pcid_for_pmap_cpu_tuple(pmap_t pmap, int ccpu) {
246 return pmap->pmap_pcid_cpus[ccpu];
247 }
248 #if PMAP_ASSERT
249 #define PCID_RECORD_SIZE 128
250 uint64_t pcid_record_array[PCID_RECORD_SIZE];
251 #endif
252
253 void pmap_pcid_activate(pmap_t tpmap, int ccpu) {
254 pcid_t new_pcid = tpmap->pmap_pcid_cpus[ccpu];
255 pmap_t last_pmap;
256 boolean_t pcid_conflict = FALSE, pending_flush = FALSE;
257
258 pmap_assert(cpu_datap(ccpu)->cpu_pmap_pcid_enabled);
259 if (__improbable(new_pcid == PMAP_PCID_INVALID_PCID)) {
260 new_pcid = tpmap->pmap_pcid_cpus[ccpu] = pmap_pcid_allocate_pcid(ccpu);
261 }
262 pmap_assert(new_pcid != PMAP_PCID_INVALID_PCID);
263 #ifdef PCID_ASSERT
264 cpu_datap(ccpu)->cpu_last_pcid = cpu_datap(ccpu)->cpu_active_pcid;
265 #endif
266 cpu_datap(ccpu)->cpu_active_pcid = new_pcid;
267
268 pending_flush = (tpmap->pmap_pcid_coherency_vector[ccpu] != 0);
269 if (__probable(pending_flush == FALSE)) {
270 last_pmap = cpu_datap(ccpu)->cpu_pcid_last_pmap_dispatched[new_pcid];
271 pcid_conflict = ((last_pmap != NULL) &&(tpmap != last_pmap));
272 }
273 if (__improbable(pending_flush || pcid_conflict)) {
274 pmap_pcid_validate_cpu(tpmap, ccpu);
275 }
276 /* Consider making this a unique id */
277 cpu_datap(ccpu)->cpu_pcid_last_pmap_dispatched[new_pcid] = tpmap;
278
279 pmap_assert(new_pcid < PMAP_PCID_MAX_PCID);
280 pmap_assert(((tpmap == kernel_pmap) && new_pcid == 0) || ((new_pcid != PMAP_PCID_INVALID_PCID) && (new_pcid != 0)));
281 #if PMAP_ASSERT
282 pcid_record_array[ccpu % PCID_RECORD_SIZE] = tpmap->pm_cr3 | new_pcid | (((uint64_t)(!(pending_flush || pcid_conflict))) <<63);
283 pml4_entry_t *pml4 = pmap64_pml4(tpmap, 0ULL);
284 /* Diagnostic to detect pagetable anchor corruption */
285 if (pml4[KERNEL_PML4_INDEX] != kernel_pmap->pm_pml4[KERNEL_PML4_INDEX])
286 __asm__ volatile("int3");
287 #endif /* PMAP_ASSERT */
288 set_cr3_composed(tpmap->pm_cr3, new_pcid, !(pending_flush || pcid_conflict));
289
290 if (!pending_flush) {
291 /* We did not previously observe a pending invalidation for this
292 * ASID. However, the load from the coherency vector
293 * could've been reordered ahead of the store to the
294 * active_cr3 field (in the context switch path, our
295 * caller). Re-consult the pending invalidation vector
296 * after the CR3 write. We rely on MOV CR3's documented
297 * serializing property to avoid insertion of an expensive
298 * barrier. (DRK)
299 */
300 pending_flush = (tpmap->pmap_pcid_coherency_vector[ccpu] != 0);
301 if (__improbable(pending_flush != 0)) {
302 pmap_pcid_validate_cpu(tpmap, ccpu);
303 set_cr3_composed(tpmap->pm_cr3, new_pcid, FALSE);
304 }
305 }
306 cpu_datap(ccpu)->cpu_pmap_pcid_coherentp = &(tpmap->pmap_pcid_coherency_vector[ccpu]);
307 #if DEBUG
308 KERNEL_DEBUG_CONSTANT(0x9c1d0000, tpmap, new_pcid, pending_flush, pcid_conflict, 0);
309 #endif
310 }