]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/mach_loader.c
c590c52d69bc06494792ba87eba176923935575a
[apple/xnu.git] / bsd / kern / mach_loader.c
1 /*
2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (C) 1988, 1989, NeXT, Inc.
30 *
31 * File: kern/mach_loader.c
32 * Author: Avadis Tevanian, Jr.
33 *
34 * Mach object file loader (kernel version, for now).
35 *
36 * 21-Jul-88 Avadis Tevanian, Jr. (avie) at NeXT
37 * Started.
38 */
39
40 #include <sys/param.h>
41 #include <sys/vnode_internal.h>
42 #include <sys/uio.h>
43 #include <sys/namei.h>
44 #include <sys/proc_internal.h>
45 #include <sys/kauth.h>
46 #include <sys/stat.h>
47 #include <sys/malloc.h>
48 #include <sys/mount_internal.h>
49 #include <sys/fcntl.h>
50 #include <sys/ubc_internal.h>
51 #include <sys/imgact.h>
52 #include <sys/codesign.h>
53
54 #include <mach/mach_types.h>
55 #include <mach/vm_map.h> /* vm_allocate() */
56 #include <mach/mach_vm.h> /* mach_vm_allocate() */
57 #include <mach/vm_statistics.h>
58 #include <mach/task.h>
59 #include <mach/thread_act.h>
60
61 #include <machine/vmparam.h>
62 #include <machine/exec.h>
63 #include <machine/pal_routines.h>
64
65 #include <kern/kern_types.h>
66 #include <kern/cpu_number.h>
67 #include <kern/mach_loader.h>
68 #include <kern/mach_fat.h>
69 #include <kern/kalloc.h>
70 #include <kern/task.h>
71 #include <kern/thread.h>
72 #include <kern/page_decrypt.h>
73
74 #include <mach-o/fat.h>
75 #include <mach-o/loader.h>
76
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_kern.h>
80 #include <vm/vm_pager.h>
81 #include <vm/vnode_pager.h>
82 #include <vm/vm_protos.h>
83 #include <IOKit/IOReturn.h> /* for kIOReturnNotPrivileged */
84
85 /*
86 * XXX vm/pmap.h should not treat these prototypes as MACH_KERNEL_PRIVATE
87 * when KERNEL is defined.
88 */
89 extern pmap_t pmap_create(ledger_t ledger, vm_map_size_t size,
90 boolean_t is_64bit);
91
92 /* XXX should have prototypes in a shared header file */
93 extern int get_map_nentries(vm_map_t);
94
95 extern kern_return_t memory_object_signed(memory_object_control_t control,
96 boolean_t is_signed);
97
98 /* An empty load_result_t */
99 static load_result_t load_result_null = {
100 .mach_header = MACH_VM_MIN_ADDRESS,
101 .entry_point = MACH_VM_MIN_ADDRESS,
102 .user_stack = MACH_VM_MIN_ADDRESS,
103 .user_stack_size = 0,
104 .all_image_info_addr = MACH_VM_MIN_ADDRESS,
105 .all_image_info_size = 0,
106 .thread_count = 0,
107 .unixproc = 0,
108 .dynlinker = 0,
109 .needs_dynlinker = 0,
110 .prog_allocated_stack = 0,
111 .prog_stack_size = 0,
112 .validentry = 0,
113 .csflags = 0,
114 .uuid = { 0 },
115 .min_vm_addr = MACH_VM_MAX_ADDRESS,
116 .max_vm_addr = MACH_VM_MIN_ADDRESS
117 };
118
119 /*
120 * Prototypes of static functions.
121 */
122 static load_return_t
123 parse_machfile(
124 struct vnode *vp,
125 vm_map_t map,
126 thread_t thread,
127 struct mach_header *header,
128 off_t file_offset,
129 off_t macho_size,
130 int depth,
131 int64_t slide,
132 int64_t dyld_slide,
133 load_result_t *result
134 );
135
136 static load_return_t
137 load_segment(
138 struct load_command *lcp,
139 uint32_t filetype,
140 void *control,
141 off_t pager_offset,
142 off_t macho_size,
143 struct vnode *vp,
144 vm_map_t map,
145 int64_t slide,
146 load_result_t *result
147 );
148
149 static load_return_t
150 load_uuid(
151 struct uuid_command *uulp,
152 char *command_end,
153 load_result_t *result
154 );
155
156 static load_return_t
157 load_code_signature(
158 struct linkedit_data_command *lcp,
159 struct vnode *vp,
160 off_t macho_offset,
161 off_t macho_size,
162 cpu_type_t cputype,
163 load_result_t *result);
164
165 #if CONFIG_CODE_DECRYPTION
166 static load_return_t
167 set_code_unprotect(
168 struct encryption_info_command *lcp,
169 caddr_t addr,
170 vm_map_t map,
171 int64_t slide,
172 struct vnode *vp,
173 cpu_type_t cputype,
174 cpu_subtype_t cpusubtype);
175 #endif
176
177 static
178 load_return_t
179 load_main(
180 struct entry_point_command *epc,
181 thread_t thread,
182 int64_t slide,
183 load_result_t *result
184 );
185
186 static load_return_t
187 load_unixthread(
188 struct thread_command *tcp,
189 thread_t thread,
190 int64_t slide,
191 load_result_t *result
192 );
193
194 static load_return_t
195 load_threadstate(
196 thread_t thread,
197 uint32_t *ts,
198 uint32_t total_size
199 );
200
201 static load_return_t
202 load_threadstack(
203 thread_t thread,
204 uint32_t *ts,
205 uint32_t total_size,
206 mach_vm_offset_t *user_stack,
207 int *customstack
208 );
209
210 static load_return_t
211 load_threadentry(
212 thread_t thread,
213 uint32_t *ts,
214 uint32_t total_size,
215 mach_vm_offset_t *entry_point
216 );
217
218 static load_return_t
219 load_dylinker(
220 struct dylinker_command *lcp,
221 integer_t archbits,
222 vm_map_t map,
223 thread_t thread,
224 int depth,
225 int64_t slide,
226 load_result_t *result
227 );
228
229 struct macho_data;
230
231 static load_return_t
232 get_macho_vnode(
233 char *path,
234 integer_t archbits,
235 struct mach_header *mach_header,
236 off_t *file_offset,
237 off_t *macho_size,
238 struct macho_data *macho_data,
239 struct vnode **vpp
240 );
241
242 static inline void
243 widen_segment_command(const struct segment_command *scp32,
244 struct segment_command_64 *scp)
245 {
246 scp->cmd = scp32->cmd;
247 scp->cmdsize = scp32->cmdsize;
248 bcopy(scp32->segname, scp->segname, sizeof(scp->segname));
249 scp->vmaddr = scp32->vmaddr;
250 scp->vmsize = scp32->vmsize;
251 scp->fileoff = scp32->fileoff;
252 scp->filesize = scp32->filesize;
253 scp->maxprot = scp32->maxprot;
254 scp->initprot = scp32->initprot;
255 scp->nsects = scp32->nsects;
256 scp->flags = scp32->flags;
257 }
258
259 static void
260 note_all_image_info_section(const struct segment_command_64 *scp,
261 boolean_t is64, size_t section_size, const void *sections,
262 int64_t slide, load_result_t *result)
263 {
264 const union {
265 struct section s32;
266 struct section_64 s64;
267 } *sectionp;
268 unsigned int i;
269
270 if (strncmp(scp->segname, "__DATA", sizeof(scp->segname)) != 0)
271 return;
272 for (i = 0; i < scp->nsects; ++i) {
273 sectionp = (const void *)
274 ((const char *)sections + section_size * i);
275 if (0 == strncmp(sectionp->s64.sectname, "__all_image_info",
276 sizeof(sectionp->s64.sectname))) {
277 result->all_image_info_addr =
278 is64 ? sectionp->s64.addr : sectionp->s32.addr;
279 result->all_image_info_addr += slide;
280 result->all_image_info_size =
281 is64 ? sectionp->s64.size : sectionp->s32.size;
282 return;
283 }
284 }
285 }
286
287 load_return_t
288 load_machfile(
289 struct image_params *imgp,
290 struct mach_header *header,
291 thread_t thread,
292 vm_map_t new_map,
293 load_result_t *result
294 )
295 {
296 struct vnode *vp = imgp->ip_vp;
297 off_t file_offset = imgp->ip_arch_offset;
298 off_t macho_size = imgp->ip_arch_size;
299 off_t file_size = imgp->ip_vattr->va_data_size;
300
301 pmap_t pmap = 0; /* protected by create_map */
302 vm_map_t map;
303 vm_map_t old_map;
304 task_t old_task = TASK_NULL; /* protected by create_map */
305 load_result_t myresult;
306 load_return_t lret;
307 boolean_t create_map = FALSE;
308 boolean_t enforce_hard_pagezero = TRUE;
309 int spawn = (imgp->ip_flags & IMGPF_SPAWN);
310 task_t task = current_task();
311 proc_t p = current_proc();
312 mach_vm_offset_t aslr_offset = 0;
313 mach_vm_offset_t dyld_aslr_offset = 0;
314 kern_return_t kret;
315
316 if (macho_size > file_size) {
317 return(LOAD_BADMACHO);
318 }
319
320 if (new_map == VM_MAP_NULL) {
321 create_map = TRUE;
322 old_task = current_task();
323 }
324
325 /*
326 * If we are spawning, we have created backing objects for the process
327 * already, which include non-lazily creating the task map. So we
328 * are going to switch out the task map with one appropriate for the
329 * bitness of the image being loaded.
330 */
331 if (spawn) {
332 create_map = TRUE;
333 old_task = get_threadtask(thread);
334 }
335
336 if (create_map) {
337 task_t ledger_task;
338 if (imgp->ip_new_thread) {
339 ledger_task = get_threadtask(imgp->ip_new_thread);
340 } else {
341 ledger_task = task;
342 }
343 pmap = pmap_create(get_task_ledger(ledger_task),
344 (vm_map_size_t) 0,
345 (imgp->ip_flags & IMGPF_IS_64BIT));
346 pal_switch_pmap(thread, pmap, imgp->ip_flags & IMGPF_IS_64BIT);
347 map = vm_map_create(pmap,
348 0,
349 vm_compute_max_offset((imgp->ip_flags & IMGPF_IS_64BIT)),
350 TRUE);
351 } else
352 map = new_map;
353
354
355 #ifndef CONFIG_ENFORCE_SIGNED_CODE
356 /* This turns off faulting for executable pages, which allows
357 * to circumvent Code Signing Enforcement. The per process
358 * flag (CS_ENFORCEMENT) is not set yet, but we can use the
359 * global flag.
360 */
361 if ( !cs_enforcement(NULL) && (header->flags & MH_ALLOW_STACK_EXECUTION) )
362 vm_map_disable_NX(map);
363 #endif
364
365 /* Forcibly disallow execution from data pages on even if the arch
366 * normally permits it. */
367 if ((header->flags & MH_NO_HEAP_EXECUTION) && !(imgp->ip_flags & IMGPF_ALLOW_DATA_EXEC))
368 vm_map_disallow_data_exec(map);
369
370 /*
371 * Compute a random offset for ASLR, and an independent random offset for dyld.
372 */
373 if (!(imgp->ip_flags & IMGPF_DISABLE_ASLR)) {
374 uint64_t max_slide_pages;
375
376 max_slide_pages = vm_map_get_max_aslr_slide_pages(map);
377
378 aslr_offset = random();
379 aslr_offset %= max_slide_pages;
380 aslr_offset <<= vm_map_page_shift(map);
381
382 dyld_aslr_offset = random();
383 dyld_aslr_offset %= max_slide_pages;
384 dyld_aslr_offset <<= vm_map_page_shift(map);
385 }
386
387 if (!result)
388 result = &myresult;
389
390 *result = load_result_null;
391
392 lret = parse_machfile(vp, map, thread, header, file_offset, macho_size,
393 0, (int64_t)aslr_offset, (int64_t)dyld_aslr_offset, result);
394
395 if (lret != LOAD_SUCCESS) {
396 if (create_map) {
397 vm_map_deallocate(map); /* will lose pmap reference too */
398 }
399 return(lret);
400 }
401
402 #if __x86_64__
403 /*
404 * On x86, for compatibility, don't enforce the hard page-zero restriction for 32-bit binaries.
405 */
406 if ((imgp->ip_flags & IMGPF_IS_64BIT) == 0) {
407 enforce_hard_pagezero = FALSE;
408 }
409 #endif
410 /*
411 * Check to see if the page zero is enforced by the map->min_offset.
412 */
413 if (enforce_hard_pagezero && (vm_map_has_hard_pagezero(map, 0x1000) == FALSE)) {
414 if (create_map) {
415 vm_map_deallocate(map); /* will lose pmap reference too */
416 }
417 printf("Cannot enforce a hard page-zero for %s\n", imgp->ip_strings);
418 return (LOAD_BADMACHO);
419 }
420
421 /*
422 * Commit to new map.
423 *
424 * Swap the new map for the old, which consumes our new map
425 * reference but each leaves us responsible for the old_map reference.
426 * That lets us get off the pmap associated with it, and
427 * then we can release it.
428 */
429
430 if (create_map) {
431 /*
432 * If this is an exec, then we are going to destroy the old
433 * task, and it's correct to halt it; if it's spawn, the
434 * task is not yet running, and it makes no sense.
435 */
436 if (!spawn) {
437 /*
438 * Mark the task as halting and start the other
439 * threads towards terminating themselves. Then
440 * make sure any threads waiting for a process
441 * transition get informed that we are committed to
442 * this transition, and then finally complete the
443 * task halting (wait for threads and then cleanup
444 * task resources).
445 *
446 * NOTE: task_start_halt() makes sure that no new
447 * threads are created in the task during the transition.
448 * We need to mark the workqueue as exiting before we
449 * wait for threads to terminate (at the end of which
450 * we no longer have a prohibition on thread creation).
451 *
452 * Finally, clean up any lingering workqueue data structures
453 * that may have been left behind by the workqueue threads
454 * as they exited (and then clean up the work queue itself).
455 */
456 kret = task_start_halt(task);
457 if (kret != KERN_SUCCESS) {
458 vm_map_deallocate(map); /* will lose pmap reference too */
459 return (LOAD_FAILURE);
460 }
461 proc_transcommit(p, 0);
462 workqueue_mark_exiting(p);
463 task_complete_halt(task);
464 workqueue_exit(p);
465 }
466 old_map = swap_task_map(old_task, thread, map, !spawn);
467 vm_map_deallocate(old_map);
468 }
469 return(LOAD_SUCCESS);
470 }
471
472 /*
473 * The file size of a mach-o file is limited to 32 bits; this is because
474 * this is the limit on the kalloc() of enough bytes for a mach_header and
475 * the contents of its sizeofcmds, which is currently constrained to 32
476 * bits in the file format itself. We read into the kernel buffer the
477 * commands section, and then parse it in order to parse the mach-o file
478 * format load_command segment(s). We are only interested in a subset of
479 * the total set of possible commands. If "map"==VM_MAP_NULL or
480 * "thread"==THREAD_NULL, do not make permament VM modifications,
481 * just preflight the parse.
482 */
483 static
484 load_return_t
485 parse_machfile(
486 struct vnode *vp,
487 vm_map_t map,
488 thread_t thread,
489 struct mach_header *header,
490 off_t file_offset,
491 off_t macho_size,
492 int depth,
493 int64_t aslr_offset,
494 int64_t dyld_aslr_offset,
495 load_result_t *result
496 )
497 {
498 uint32_t ncmds;
499 struct load_command *lcp;
500 struct dylinker_command *dlp = 0;
501 integer_t dlarchbits = 0;
502 void * control;
503 load_return_t ret = LOAD_SUCCESS;
504 caddr_t addr;
505 void * kl_addr;
506 vm_size_t size,kl_size;
507 size_t offset;
508 size_t oldoffset; /* for overflow check */
509 int pass;
510 proc_t p = current_proc(); /* XXXX */
511 int error;
512 int resid=0;
513 size_t mach_header_sz = sizeof(struct mach_header);
514 boolean_t abi64;
515 boolean_t got_code_signatures = FALSE;
516 int64_t slide = 0;
517
518 if (header->magic == MH_MAGIC_64 ||
519 header->magic == MH_CIGAM_64) {
520 mach_header_sz = sizeof(struct mach_header_64);
521 }
522
523 /*
524 * Break infinite recursion
525 */
526 if (depth > 6) {
527 return(LOAD_FAILURE);
528 }
529
530 depth++;
531
532 /*
533 * Check to see if right machine type.
534 */
535 if (((cpu_type_t)(header->cputype & ~CPU_ARCH_MASK) != (cpu_type() & ~CPU_ARCH_MASK)) ||
536 !grade_binary(header->cputype,
537 header->cpusubtype & ~CPU_SUBTYPE_MASK))
538 return(LOAD_BADARCH);
539
540 abi64 = ((header->cputype & CPU_ARCH_ABI64) == CPU_ARCH_ABI64);
541
542 switch (header->filetype) {
543
544 case MH_OBJECT:
545 case MH_EXECUTE:
546 case MH_PRELOAD:
547 if (depth != 1) {
548 return (LOAD_FAILURE);
549 }
550 break;
551
552 case MH_FVMLIB:
553 case MH_DYLIB:
554 if (depth == 1) {
555 return (LOAD_FAILURE);
556 }
557 break;
558
559 case MH_DYLINKER:
560 if (depth != 2) {
561 return (LOAD_FAILURE);
562 }
563 break;
564
565 default:
566 return (LOAD_FAILURE);
567 }
568
569 /*
570 * Get the pager for the file.
571 */
572 control = ubc_getobject(vp, UBC_FLAGS_NONE);
573
574 /*
575 * Map portion that must be accessible directly into
576 * kernel's map.
577 */
578 if ((off_t)(mach_header_sz + header->sizeofcmds) > macho_size)
579 return(LOAD_BADMACHO);
580
581 /*
582 * Round size of Mach-O commands up to page boundry.
583 */
584 size = round_page(mach_header_sz + header->sizeofcmds);
585 if (size <= 0)
586 return(LOAD_BADMACHO);
587
588 /*
589 * Map the load commands into kernel memory.
590 */
591 addr = 0;
592 kl_size = size;
593 kl_addr = kalloc(size);
594 addr = (caddr_t)kl_addr;
595 if (addr == NULL)
596 return(LOAD_NOSPACE);
597
598 error = vn_rdwr(UIO_READ, vp, addr, size, file_offset,
599 UIO_SYSSPACE, 0, kauth_cred_get(), &resid, p);
600 if (error) {
601 if (kl_addr )
602 kfree(kl_addr, kl_size);
603 return(LOAD_IOERROR);
604 }
605
606 /*
607 * For PIE and dyld, slide everything by the ASLR offset.
608 */
609 if ((header->flags & MH_PIE) || (header->filetype == MH_DYLINKER)) {
610 slide = aslr_offset;
611 }
612
613 /*
614 * Scan through the commands, processing each one as necessary.
615 * We parse in three passes through the headers:
616 * 1: thread state, uuid, code signature
617 * 2: segments
618 * 3: dyld, encryption, check entry point
619 */
620
621 for (pass = 1; pass <= 3; pass++) {
622
623 /*
624 * Check that the entry point is contained in an executable segments
625 */
626 if ((pass == 3) && (result->validentry == 0)) {
627 thread_state_initialize(thread);
628 ret = LOAD_FAILURE;
629 break;
630 }
631
632 /*
633 * Loop through each of the load_commands indicated by the
634 * Mach-O header; if an absurd value is provided, we just
635 * run off the end of the reserved section by incrementing
636 * the offset too far, so we are implicitly fail-safe.
637 */
638 offset = mach_header_sz;
639 ncmds = header->ncmds;
640
641 while (ncmds--) {
642 /*
643 * Get a pointer to the command.
644 */
645 lcp = (struct load_command *)(addr + offset);
646 oldoffset = offset;
647 offset += lcp->cmdsize;
648
649 /*
650 * Perform prevalidation of the struct load_command
651 * before we attempt to use its contents. Invalid
652 * values are ones which result in an overflow, or
653 * which can not possibly be valid commands, or which
654 * straddle or exist past the reserved section at the
655 * start of the image.
656 */
657 if (oldoffset > offset ||
658 lcp->cmdsize < sizeof(struct load_command) ||
659 offset > header->sizeofcmds + mach_header_sz) {
660 ret = LOAD_BADMACHO;
661 break;
662 }
663
664 /*
665 * Act on struct load_command's for which kernel
666 * intervention is required.
667 */
668 switch(lcp->cmd) {
669 case LC_SEGMENT:
670 if (pass != 2)
671 break;
672
673 if (abi64) {
674 /*
675 * Having an LC_SEGMENT command for the
676 * wrong ABI is invalid <rdar://problem/11021230>
677 */
678 ret = LOAD_BADMACHO;
679 break;
680 }
681
682 ret = load_segment(lcp,
683 header->filetype,
684 control,
685 file_offset,
686 macho_size,
687 vp,
688 map,
689 slide,
690 result);
691 break;
692 case LC_SEGMENT_64:
693 if (pass != 2)
694 break;
695
696 if (!abi64) {
697 /*
698 * Having an LC_SEGMENT_64 command for the
699 * wrong ABI is invalid <rdar://problem/11021230>
700 */
701 ret = LOAD_BADMACHO;
702 break;
703 }
704
705 ret = load_segment(lcp,
706 header->filetype,
707 control,
708 file_offset,
709 macho_size,
710 vp,
711 map,
712 slide,
713 result);
714 break;
715 case LC_UNIXTHREAD:
716 if (pass != 1)
717 break;
718 ret = load_unixthread(
719 (struct thread_command *) lcp,
720 thread,
721 slide,
722 result);
723 break;
724 case LC_MAIN:
725 if (pass != 1)
726 break;
727 if (depth != 1)
728 break;
729 ret = load_main(
730 (struct entry_point_command *) lcp,
731 thread,
732 slide,
733 result);
734 break;
735 case LC_LOAD_DYLINKER:
736 if (pass != 3)
737 break;
738 if ((depth == 1) && (dlp == 0)) {
739 dlp = (struct dylinker_command *)lcp;
740 dlarchbits = (header->cputype & CPU_ARCH_MASK);
741 } else {
742 ret = LOAD_FAILURE;
743 }
744 break;
745 case LC_UUID:
746 if (pass == 1 && depth == 1) {
747 ret = load_uuid((struct uuid_command *) lcp,
748 (char *)addr + mach_header_sz + header->sizeofcmds,
749 result);
750 }
751 break;
752 case LC_CODE_SIGNATURE:
753 /* CODE SIGNING */
754 if (pass != 1)
755 break;
756 /* pager -> uip ->
757 load signatures & store in uip
758 set VM object "signed_pages"
759 */
760 ret = load_code_signature(
761 (struct linkedit_data_command *) lcp,
762 vp,
763 file_offset,
764 macho_size,
765 header->cputype,
766 result);
767 if (ret != LOAD_SUCCESS) {
768 printf("proc %d: load code signature error %d "
769 "for file \"%s\"\n",
770 p->p_pid, ret, vp->v_name);
771 ret = LOAD_SUCCESS; /* ignore error */
772 } else {
773 got_code_signatures = TRUE;
774 }
775 break;
776 #if CONFIG_CODE_DECRYPTION
777 case LC_ENCRYPTION_INFO:
778 case LC_ENCRYPTION_INFO_64:
779 if (pass != 3)
780 break;
781 ret = set_code_unprotect(
782 (struct encryption_info_command *) lcp,
783 addr, map, slide, vp,
784 header->cputype, header->cpusubtype);
785 if (ret != LOAD_SUCCESS) {
786 printf("proc %d: set_code_unprotect() error %d "
787 "for file \"%s\"\n",
788 p->p_pid, ret, vp->v_name);
789 /*
790 * Don't let the app run if it's
791 * encrypted but we failed to set up the
792 * decrypter. If the keys are missing it will
793 * return LOAD_DECRYPTFAIL.
794 */
795 if (ret == LOAD_DECRYPTFAIL) {
796 /* failed to load due to missing FP keys */
797 proc_lock(p);
798 p->p_lflag |= P_LTERM_DECRYPTFAIL;
799 proc_unlock(p);
800 }
801 psignal(p, SIGKILL);
802 }
803 break;
804 #endif
805 default:
806 /* Other commands are ignored by the kernel */
807 ret = LOAD_SUCCESS;
808 break;
809 }
810 if (ret != LOAD_SUCCESS)
811 break;
812 }
813 if (ret != LOAD_SUCCESS)
814 break;
815 }
816
817 if (ret == LOAD_SUCCESS) {
818 if (! got_code_signatures) {
819 struct cs_blob *blob;
820 /* no embedded signatures: look for detached ones */
821 blob = ubc_cs_blob_get(vp, -1, file_offset);
822 if (blob != NULL) {
823 unsigned int cs_flag_data = blob->csb_flags;
824 if(0 != ubc_cs_generation_check(vp)) {
825 if (0 != ubc_cs_blob_revalidate(vp, blob)) {
826 /* clear out the flag data if revalidation fails */
827 cs_flag_data = 0;
828 result->csflags &= ~CS_VALID;
829 }
830 }
831 /* get flags to be applied to the process */
832 result->csflags |= cs_flag_data;
833 }
834 }
835
836 /* Make sure if we need dyld, we got it */
837 if (result->needs_dynlinker && !dlp) {
838 ret = LOAD_FAILURE;
839 }
840
841 if ((ret == LOAD_SUCCESS) && (dlp != 0)) {
842 /*
843 * load the dylinker, and slide it by the independent DYLD ASLR
844 * offset regardless of the PIE-ness of the main binary.
845 */
846 ret = load_dylinker(dlp, dlarchbits, map, thread, depth,
847 dyld_aslr_offset, result);
848 }
849
850 if((ret == LOAD_SUCCESS) && (depth == 1)) {
851 if (result->thread_count == 0) {
852 ret = LOAD_FAILURE;
853 }
854 }
855 }
856
857 if (kl_addr )
858 kfree(kl_addr, kl_size);
859
860 return(ret);
861 }
862
863 #if CONFIG_CODE_DECRYPTION
864
865 #define APPLE_UNPROTECTED_HEADER_SIZE (3 * PAGE_SIZE_64)
866
867 static load_return_t
868 unprotect_dsmos_segment(
869 uint64_t file_off,
870 uint64_t file_size,
871 struct vnode *vp,
872 off_t macho_offset,
873 vm_map_t map,
874 vm_map_offset_t map_addr,
875 vm_map_size_t map_size)
876 {
877 kern_return_t kr;
878
879 /*
880 * The first APPLE_UNPROTECTED_HEADER_SIZE bytes (from offset 0 of
881 * this part of a Universal binary) are not protected...
882 * The rest needs to be "transformed".
883 */
884 if (file_off <= APPLE_UNPROTECTED_HEADER_SIZE &&
885 file_off + file_size <= APPLE_UNPROTECTED_HEADER_SIZE) {
886 /* it's all unprotected, nothing to do... */
887 kr = KERN_SUCCESS;
888 } else {
889 if (file_off <= APPLE_UNPROTECTED_HEADER_SIZE) {
890 /*
891 * We start mapping in the unprotected area.
892 * Skip the unprotected part...
893 */
894 vm_map_offset_t delta;
895
896 delta = APPLE_UNPROTECTED_HEADER_SIZE;
897 delta -= file_off;
898 map_addr += delta;
899 map_size -= delta;
900 }
901 /* ... transform the rest of the mapping. */
902 struct pager_crypt_info crypt_info;
903 crypt_info.page_decrypt = dsmos_page_transform;
904 crypt_info.crypt_ops = NULL;
905 crypt_info.crypt_end = NULL;
906 #pragma unused(vp, macho_offset)
907 crypt_info.crypt_ops = (void *)0x2e69cf40;
908 kr = vm_map_apple_protected(map,
909 map_addr,
910 map_addr + map_size,
911 &crypt_info);
912 }
913
914 if (kr != KERN_SUCCESS) {
915 return LOAD_FAILURE;
916 }
917 return LOAD_SUCCESS;
918 }
919 #else /* CONFIG_CODE_DECRYPTION */
920 static load_return_t
921 unprotect_dsmos_segment(
922 __unused uint64_t file_off,
923 __unused uint64_t file_size,
924 __unused struct vnode *vp,
925 __unused off_t macho_offset,
926 __unused vm_map_t map,
927 __unused vm_map_offset_t map_addr,
928 __unused vm_map_size_t map_size)
929 {
930 return LOAD_SUCCESS;
931 }
932 #endif /* CONFIG_CODE_DECRYPTION */
933
934 static
935 load_return_t
936 load_segment(
937 struct load_command *lcp,
938 uint32_t filetype,
939 void * control,
940 off_t pager_offset,
941 off_t macho_size,
942 struct vnode *vp,
943 vm_map_t map,
944 int64_t slide,
945 load_result_t *result
946 )
947 {
948 struct segment_command_64 segment_command, *scp;
949 kern_return_t ret;
950 vm_map_offset_t map_addr, map_offset;
951 vm_map_size_t map_size, seg_size, delta_size;
952 vm_prot_t initprot;
953 vm_prot_t maxprot;
954 size_t segment_command_size, total_section_size,
955 single_section_size;
956
957 if (LC_SEGMENT_64 == lcp->cmd) {
958 segment_command_size = sizeof(struct segment_command_64);
959 single_section_size = sizeof(struct section_64);
960 } else {
961 segment_command_size = sizeof(struct segment_command);
962 single_section_size = sizeof(struct section);
963 }
964 if (lcp->cmdsize < segment_command_size)
965 return (LOAD_BADMACHO);
966 total_section_size = lcp->cmdsize - segment_command_size;
967
968 if (LC_SEGMENT_64 == lcp->cmd)
969 scp = (struct segment_command_64 *)lcp;
970 else {
971 scp = &segment_command;
972 widen_segment_command((struct segment_command *)lcp, scp);
973 }
974
975 /*
976 * Make sure what we get from the file is really ours (as specified
977 * by macho_size).
978 */
979 if (scp->fileoff + scp->filesize < scp->fileoff ||
980 scp->fileoff + scp->filesize > (uint64_t)macho_size)
981 return (LOAD_BADMACHO);
982 /*
983 * Ensure that the number of sections specified would fit
984 * within the load command size.
985 */
986 if (total_section_size / single_section_size < scp->nsects)
987 return (LOAD_BADMACHO);
988 /*
989 * Make sure the segment is page-aligned in the file.
990 */
991 if ((scp->fileoff & PAGE_MASK_64) != 0)
992 return (LOAD_BADMACHO);
993
994 /*
995 * Round sizes to page size.
996 */
997 seg_size = round_page_64(scp->vmsize);
998 map_size = round_page_64(scp->filesize);
999 map_addr = trunc_page_64(scp->vmaddr); /* JVXXX note that in XNU TOT this is round instead of trunc for 64 bits */
1000
1001 seg_size = vm_map_round_page(seg_size, vm_map_page_mask(map));
1002 map_size = vm_map_round_page(map_size, vm_map_page_mask(map));
1003
1004 if (seg_size == 0)
1005 return (KERN_SUCCESS);
1006 if (map_addr == 0 &&
1007 map_size == 0 &&
1008 seg_size != 0 &&
1009 (scp->initprot & VM_PROT_ALL) == VM_PROT_NONE &&
1010 (scp->maxprot & VM_PROT_ALL) == VM_PROT_NONE) {
1011 /*
1012 * For PIE, extend page zero rather than moving it. Extending
1013 * page zero keeps early allocations from falling predictably
1014 * between the end of page zero and the beginning of the first
1015 * slid segment.
1016 */
1017 seg_size += slide;
1018 slide = 0;
1019
1020 /*
1021 * This is a "page zero" segment: it starts at address 0,
1022 * is not mapped from the binary file and is not accessible.
1023 * User-space should never be able to access that memory, so
1024 * make it completely off limits by raising the VM map's
1025 * minimum offset.
1026 */
1027 ret = vm_map_raise_min_offset(map, seg_size);
1028 if (ret != KERN_SUCCESS) {
1029 return (LOAD_FAILURE);
1030 }
1031 return (LOAD_SUCCESS);
1032 }
1033
1034 /* If a non-zero slide was specified by the caller, apply now */
1035 map_addr += slide;
1036
1037 if (map_addr < result->min_vm_addr)
1038 result->min_vm_addr = map_addr;
1039 if (map_addr+seg_size > result->max_vm_addr)
1040 result->max_vm_addr = map_addr+seg_size;
1041
1042 if (map == VM_MAP_NULL)
1043 return (LOAD_SUCCESS);
1044
1045 map_offset = pager_offset + scp->fileoff; /* limited to 32 bits */
1046
1047 if (map_size > 0) {
1048 initprot = (scp->initprot) & VM_PROT_ALL;
1049 maxprot = (scp->maxprot) & VM_PROT_ALL;
1050 /*
1051 * Map a copy of the file into the address space.
1052 */
1053 ret = vm_map_enter_mem_object_control(map,
1054 &map_addr, map_size, (mach_vm_offset_t)0,
1055 VM_FLAGS_FIXED, control, map_offset, TRUE,
1056 initprot, maxprot,
1057 VM_INHERIT_DEFAULT);
1058 if (ret != KERN_SUCCESS) {
1059 return (LOAD_NOSPACE);
1060 }
1061
1062 /*
1063 * If the file didn't end on a page boundary,
1064 * we need to zero the leftover.
1065 */
1066 delta_size = map_size - scp->filesize;
1067 #if FIXME
1068 if (delta_size > 0) {
1069 mach_vm_offset_t tmp;
1070
1071 ret = mach_vm_allocate(kernel_map, &tmp, delta_size, VM_FLAGS_ANYWHERE);
1072 if (ret != KERN_SUCCESS)
1073 return(LOAD_RESOURCE);
1074
1075 if (copyout(tmp, map_addr + scp->filesize,
1076 delta_size)) {
1077 (void) mach_vm_deallocate(
1078 kernel_map, tmp, delta_size);
1079 return (LOAD_FAILURE);
1080 }
1081
1082 (void) mach_vm_deallocate(kernel_map, tmp, delta_size);
1083 }
1084 #endif /* FIXME */
1085 }
1086
1087 /*
1088 * If the virtual size of the segment is greater
1089 * than the size from the file, we need to allocate
1090 * zero fill memory for the rest.
1091 */
1092 delta_size = seg_size - map_size;
1093 if (delta_size > 0) {
1094 mach_vm_offset_t tmp = map_addr + map_size;
1095
1096 ret = mach_vm_map(map, &tmp, delta_size, 0, VM_FLAGS_FIXED,
1097 NULL, 0, FALSE,
1098 scp->initprot, scp->maxprot,
1099 VM_INHERIT_DEFAULT);
1100 if (ret != KERN_SUCCESS)
1101 return(LOAD_NOSPACE);
1102 }
1103
1104 if ( (scp->fileoff == 0) && (scp->filesize != 0) )
1105 result->mach_header = map_addr;
1106
1107 if (scp->flags & SG_PROTECTED_VERSION_1) {
1108 ret = unprotect_dsmos_segment(scp->fileoff,
1109 scp->filesize,
1110 vp,
1111 pager_offset,
1112 map,
1113 map_addr,
1114 map_size);
1115 } else {
1116 ret = LOAD_SUCCESS;
1117 }
1118 if (LOAD_SUCCESS == ret && filetype == MH_DYLINKER &&
1119 result->all_image_info_addr == MACH_VM_MIN_ADDRESS)
1120 note_all_image_info_section(scp,
1121 LC_SEGMENT_64 == lcp->cmd, single_section_size,
1122 (const char *)lcp + segment_command_size, slide, result);
1123
1124 if ((result->entry_point >= map_addr) && (result->entry_point < (map_addr + map_size)))
1125 result->validentry = 1;
1126
1127 return ret;
1128 }
1129
1130 static
1131 load_return_t
1132 load_uuid(
1133 struct uuid_command *uulp,
1134 char *command_end,
1135 load_result_t *result
1136 )
1137 {
1138 /*
1139 * We need to check the following for this command:
1140 * - The command size should be atleast the size of struct uuid_command
1141 * - The UUID part of the command should be completely within the mach-o header
1142 */
1143
1144 if ((uulp->cmdsize < sizeof(struct uuid_command)) ||
1145 (((char *)uulp + sizeof(struct uuid_command)) > command_end)) {
1146 return (LOAD_BADMACHO);
1147 }
1148
1149 memcpy(&result->uuid[0], &uulp->uuid[0], sizeof(result->uuid));
1150 return (LOAD_SUCCESS);
1151 }
1152
1153 static
1154 load_return_t
1155 load_main(
1156 struct entry_point_command *epc,
1157 thread_t thread,
1158 int64_t slide,
1159 load_result_t *result
1160 )
1161 {
1162 mach_vm_offset_t addr;
1163 kern_return_t ret;
1164
1165 if (epc->cmdsize < sizeof(*epc))
1166 return (LOAD_BADMACHO);
1167 if (result->thread_count != 0) {
1168 printf("load_main: already have a thread!");
1169 return (LOAD_FAILURE);
1170 }
1171
1172 if (thread == THREAD_NULL)
1173 return (LOAD_SUCCESS);
1174
1175 /* LC_MAIN specifies stack size but not location */
1176 if (epc->stacksize) {
1177 result->prog_stack_size = 1;
1178 result->user_stack_size = epc->stacksize;
1179 } else {
1180 result->prog_stack_size = 0;
1181 result->user_stack_size = MAXSSIZ;
1182 }
1183 result->prog_allocated_stack = 0;
1184
1185 /* use default location for stack */
1186 ret = thread_userstackdefault(thread, &addr);
1187 if (ret != KERN_SUCCESS)
1188 return(LOAD_FAILURE);
1189
1190 /* The stack slides down from the default location */
1191 result->user_stack = addr;
1192 result->user_stack -= slide;
1193
1194 /* kernel does *not* use entryoff from LC_MAIN. Dyld uses it. */
1195 result->needs_dynlinker = TRUE;
1196 result->validentry = TRUE;
1197
1198 ret = thread_state_initialize( thread );
1199 if (ret != KERN_SUCCESS) {
1200 return(LOAD_FAILURE);
1201 }
1202
1203 result->unixproc = TRUE;
1204 result->thread_count++;
1205
1206 return(LOAD_SUCCESS);
1207 }
1208
1209
1210 static
1211 load_return_t
1212 load_unixthread(
1213 struct thread_command *tcp,
1214 thread_t thread,
1215 int64_t slide,
1216 load_result_t *result
1217 )
1218 {
1219 load_return_t ret;
1220 int customstack =0;
1221 mach_vm_offset_t addr;
1222
1223 if (tcp->cmdsize < sizeof(*tcp))
1224 return (LOAD_BADMACHO);
1225 if (result->thread_count != 0) {
1226 printf("load_unixthread: already have a thread!");
1227 return (LOAD_FAILURE);
1228 }
1229
1230 if (thread == THREAD_NULL)
1231 return (LOAD_SUCCESS);
1232
1233 ret = load_threadstack(thread,
1234 (uint32_t *)(((vm_offset_t)tcp) +
1235 sizeof(struct thread_command)),
1236 tcp->cmdsize - sizeof(struct thread_command),
1237 &addr,
1238 &customstack);
1239 if (ret != LOAD_SUCCESS)
1240 return(ret);
1241
1242 /* LC_UNIXTHREAD optionally specifies stack size and location */
1243
1244 if (customstack) {
1245 result->prog_stack_size = 0; /* unknown */
1246 result->prog_allocated_stack = 1;
1247 } else {
1248 result->prog_allocated_stack = 0;
1249 result->prog_stack_size = 0;
1250 result->user_stack_size = MAXSSIZ;
1251 }
1252
1253 /* The stack slides down from the default location */
1254 result->user_stack = addr;
1255 result->user_stack -= slide;
1256
1257 ret = load_threadentry(thread,
1258 (uint32_t *)(((vm_offset_t)tcp) +
1259 sizeof(struct thread_command)),
1260 tcp->cmdsize - sizeof(struct thread_command),
1261 &addr);
1262 if (ret != LOAD_SUCCESS)
1263 return(ret);
1264
1265 result->entry_point = addr;
1266 result->entry_point += slide;
1267
1268 ret = load_threadstate(thread,
1269 (uint32_t *)(((vm_offset_t)tcp) +
1270 sizeof(struct thread_command)),
1271 tcp->cmdsize - sizeof(struct thread_command));
1272 if (ret != LOAD_SUCCESS)
1273 return (ret);
1274
1275 result->unixproc = TRUE;
1276 result->thread_count++;
1277
1278 return(LOAD_SUCCESS);
1279 }
1280
1281 static
1282 load_return_t
1283 load_threadstate(
1284 thread_t thread,
1285 uint32_t *ts,
1286 uint32_t total_size
1287 )
1288 {
1289 kern_return_t ret;
1290 uint32_t size;
1291 int flavor;
1292 uint32_t thread_size;
1293
1294 ret = thread_state_initialize( thread );
1295 if (ret != KERN_SUCCESS) {
1296 return(LOAD_FAILURE);
1297 }
1298
1299 /*
1300 * Set the new thread state; iterate through the state flavors in
1301 * the mach-o file.
1302 */
1303 while (total_size > 0) {
1304 flavor = *ts++;
1305 size = *ts++;
1306 if (UINT32_MAX-2 < size ||
1307 UINT32_MAX/sizeof(uint32_t) < size+2)
1308 return (LOAD_BADMACHO);
1309 thread_size = (size+2)*sizeof(uint32_t);
1310 if (thread_size > total_size)
1311 return(LOAD_BADMACHO);
1312 total_size -= thread_size;
1313 /*
1314 * Third argument is a kernel space pointer; it gets cast
1315 * to the appropriate type in machine_thread_set_state()
1316 * based on the value of flavor.
1317 */
1318 ret = thread_setstatus(thread, flavor, (thread_state_t)ts, size);
1319 if (ret != KERN_SUCCESS) {
1320 return(LOAD_FAILURE);
1321 }
1322 ts += size; /* ts is a (uint32_t *) */
1323 }
1324 return(LOAD_SUCCESS);
1325 }
1326
1327 static
1328 load_return_t
1329 load_threadstack(
1330 thread_t thread,
1331 uint32_t *ts,
1332 uint32_t total_size,
1333 mach_vm_offset_t *user_stack,
1334 int *customstack
1335 )
1336 {
1337 kern_return_t ret;
1338 uint32_t size;
1339 int flavor;
1340 uint32_t stack_size;
1341
1342 while (total_size > 0) {
1343 flavor = *ts++;
1344 size = *ts++;
1345 if (UINT32_MAX-2 < size ||
1346 UINT32_MAX/sizeof(uint32_t) < size+2)
1347 return (LOAD_BADMACHO);
1348 stack_size = (size+2)*sizeof(uint32_t);
1349 if (stack_size > total_size)
1350 return(LOAD_BADMACHO);
1351 total_size -= stack_size;
1352
1353 /*
1354 * Third argument is a kernel space pointer; it gets cast
1355 * to the appropriate type in thread_userstack() based on
1356 * the value of flavor.
1357 */
1358 ret = thread_userstack(thread, flavor, (thread_state_t)ts, size, user_stack, customstack);
1359 if (ret != KERN_SUCCESS) {
1360 return(LOAD_FAILURE);
1361 }
1362 ts += size; /* ts is a (uint32_t *) */
1363 }
1364 return(LOAD_SUCCESS);
1365 }
1366
1367 static
1368 load_return_t
1369 load_threadentry(
1370 thread_t thread,
1371 uint32_t *ts,
1372 uint32_t total_size,
1373 mach_vm_offset_t *entry_point
1374 )
1375 {
1376 kern_return_t ret;
1377 uint32_t size;
1378 int flavor;
1379 uint32_t entry_size;
1380
1381 /*
1382 * Set the thread state.
1383 */
1384 *entry_point = MACH_VM_MIN_ADDRESS;
1385 while (total_size > 0) {
1386 flavor = *ts++;
1387 size = *ts++;
1388 if (UINT32_MAX-2 < size ||
1389 UINT32_MAX/sizeof(uint32_t) < size+2)
1390 return (LOAD_BADMACHO);
1391 entry_size = (size+2)*sizeof(uint32_t);
1392 if (entry_size > total_size)
1393 return(LOAD_BADMACHO);
1394 total_size -= entry_size;
1395 /*
1396 * Third argument is a kernel space pointer; it gets cast
1397 * to the appropriate type in thread_entrypoint() based on
1398 * the value of flavor.
1399 */
1400 ret = thread_entrypoint(thread, flavor, (thread_state_t)ts, size, entry_point);
1401 if (ret != KERN_SUCCESS) {
1402 return(LOAD_FAILURE);
1403 }
1404 ts += size; /* ts is a (uint32_t *) */
1405 }
1406 return(LOAD_SUCCESS);
1407 }
1408
1409 struct macho_data {
1410 struct nameidata __nid;
1411 union macho_vnode_header {
1412 struct mach_header mach_header;
1413 struct fat_header fat_header;
1414 char __pad[512];
1415 } __header;
1416 };
1417
1418 static load_return_t
1419 load_dylinker(
1420 struct dylinker_command *lcp,
1421 integer_t archbits,
1422 vm_map_t map,
1423 thread_t thread,
1424 int depth,
1425 int64_t slide,
1426 load_result_t *result
1427 )
1428 {
1429 char *name;
1430 char *p;
1431 struct vnode *vp = NULLVP; /* set by get_macho_vnode() */
1432 struct mach_header *header;
1433 off_t file_offset = 0; /* set by get_macho_vnode() */
1434 off_t macho_size = 0; /* set by get_macho_vnode() */
1435 load_result_t *myresult;
1436 kern_return_t ret;
1437 struct macho_data *macho_data;
1438 struct {
1439 struct mach_header __header;
1440 load_result_t __myresult;
1441 struct macho_data __macho_data;
1442 } *dyld_data;
1443
1444 if (lcp->cmdsize < sizeof(*lcp))
1445 return (LOAD_BADMACHO);
1446
1447 name = (char *)lcp + lcp->name.offset;
1448 /*
1449 * Check for a proper null terminated string.
1450 */
1451 p = name;
1452 do {
1453 if (p >= (char *)lcp + lcp->cmdsize)
1454 return(LOAD_BADMACHO);
1455 } while (*p++);
1456
1457 /* Allocate wad-of-data from heap to reduce excessively deep stacks */
1458
1459 MALLOC(dyld_data, void *, sizeof (*dyld_data), M_TEMP, M_WAITOK);
1460 header = &dyld_data->__header;
1461 myresult = &dyld_data->__myresult;
1462 macho_data = &dyld_data->__macho_data;
1463
1464 ret = get_macho_vnode(name, archbits, header,
1465 &file_offset, &macho_size, macho_data, &vp);
1466 if (ret)
1467 goto novp_out;
1468
1469 *myresult = load_result_null;
1470
1471 /*
1472 * First try to map dyld in directly. This should work most of
1473 * the time since there shouldn't normally be something already
1474 * mapped to its address.
1475 */
1476
1477 ret = parse_machfile(vp, map, thread, header, file_offset,
1478 macho_size, depth, slide, 0, myresult);
1479
1480 /*
1481 * If it turned out something was in the way, then we'll take
1482 * take this longer path to preflight dyld's vm ranges, then
1483 * map it at a free location in the address space.
1484 */
1485
1486 if (ret == LOAD_NOSPACE) {
1487 mach_vm_offset_t dyl_start, map_addr;
1488 mach_vm_size_t dyl_length;
1489 int64_t slide_amount;
1490
1491 *myresult = load_result_null;
1492
1493 /*
1494 * Preflight parsing the Mach-O file with a NULL
1495 * map, which will return the ranges needed for a
1496 * subsequent map attempt (with a slide) in "myresult"
1497 */
1498 ret = parse_machfile(vp, VM_MAP_NULL, THREAD_NULL, header,
1499 file_offset, macho_size, depth,
1500 0 /* slide */, 0, myresult);
1501
1502 if (ret != LOAD_SUCCESS) {
1503 goto out;
1504 }
1505
1506 dyl_start = myresult->min_vm_addr;
1507 dyl_length = myresult->max_vm_addr - myresult->min_vm_addr;
1508
1509 dyl_length += slide;
1510
1511 /* To find an appropriate load address, do a quick allocation */
1512 map_addr = dyl_start;
1513 ret = mach_vm_allocate(map, &map_addr, dyl_length, VM_FLAGS_ANYWHERE);
1514 if (ret != KERN_SUCCESS) {
1515 ret = LOAD_NOSPACE;
1516 goto out;
1517 }
1518
1519 ret = mach_vm_deallocate(map, map_addr, dyl_length);
1520 if (ret != KERN_SUCCESS) {
1521 ret = LOAD_NOSPACE;
1522 goto out;
1523 }
1524
1525 if (map_addr < dyl_start)
1526 slide_amount = -(int64_t)(dyl_start - map_addr);
1527 else
1528 slide_amount = (int64_t)(map_addr - dyl_start);
1529
1530 slide_amount += slide;
1531
1532 *myresult = load_result_null;
1533
1534 ret = parse_machfile(vp, map, thread, header,
1535 file_offset, macho_size, depth,
1536 slide_amount, 0, myresult);
1537
1538 if (ret) {
1539 goto out;
1540 }
1541 }
1542
1543 if (ret == LOAD_SUCCESS) {
1544 result->dynlinker = TRUE;
1545 result->entry_point = myresult->entry_point;
1546 result->validentry = myresult->validentry;
1547 result->all_image_info_addr = myresult->all_image_info_addr;
1548 result->all_image_info_size = myresult->all_image_info_size;
1549 if (myresult->platform_binary) {
1550 result->csflags |= CS_DYLD_PLATFORM;
1551 }
1552 }
1553 out:
1554 vnode_put(vp);
1555 novp_out:
1556 FREE(dyld_data, M_TEMP);
1557 return (ret);
1558
1559 }
1560
1561 static load_return_t
1562 load_code_signature(
1563 struct linkedit_data_command *lcp,
1564 struct vnode *vp,
1565 off_t macho_offset,
1566 off_t macho_size,
1567 cpu_type_t cputype,
1568 load_result_t *result)
1569 {
1570 int ret;
1571 kern_return_t kr;
1572 vm_offset_t addr;
1573 int resid;
1574 struct cs_blob *blob;
1575 int error;
1576 vm_size_t blob_size;
1577
1578 addr = 0;
1579 blob = NULL;
1580
1581 if (lcp->cmdsize != sizeof (struct linkedit_data_command) ||
1582 lcp->dataoff + lcp->datasize > macho_size) {
1583 ret = LOAD_BADMACHO;
1584 goto out;
1585 }
1586
1587 blob = ubc_cs_blob_get(vp, cputype, -1);
1588 if (blob != NULL) {
1589 /* we already have a blob for this vnode and cputype */
1590 if (blob->csb_cpu_type == cputype &&
1591 blob->csb_base_offset == macho_offset &&
1592 blob->csb_mem_size == lcp->datasize) {
1593 /* it matches the blob we want here, lets verify the version */
1594 if(0 != ubc_cs_generation_check(vp)) {
1595 if (0 != ubc_cs_blob_revalidate(vp, blob)) {
1596 ret = LOAD_FAILURE; /* set error same as from ubc_cs_blob_add */
1597 goto out;
1598 }
1599 }
1600 ret = LOAD_SUCCESS;
1601 } else {
1602 /* the blob has changed for this vnode: fail ! */
1603 ret = LOAD_BADMACHO;
1604 }
1605 goto out;
1606 }
1607
1608 blob_size = lcp->datasize;
1609 kr = ubc_cs_blob_allocate(&addr, &blob_size);
1610 if (kr != KERN_SUCCESS) {
1611 ret = LOAD_NOSPACE;
1612 goto out;
1613 }
1614
1615 resid = 0;
1616 error = vn_rdwr(UIO_READ,
1617 vp,
1618 (caddr_t) addr,
1619 lcp->datasize,
1620 macho_offset + lcp->dataoff,
1621 UIO_SYSSPACE,
1622 0,
1623 kauth_cred_get(),
1624 &resid,
1625 current_proc());
1626 if (error || resid != 0) {
1627 ret = LOAD_IOERROR;
1628 goto out;
1629 }
1630
1631 if (ubc_cs_blob_add(vp,
1632 cputype,
1633 macho_offset,
1634 addr,
1635 lcp->datasize)) {
1636 ret = LOAD_FAILURE;
1637 goto out;
1638 } else {
1639 /* ubc_cs_blob_add() has consumed "addr" */
1640 addr = 0;
1641 }
1642
1643 #if CHECK_CS_VALIDATION_BITMAP
1644 ubc_cs_validation_bitmap_allocate( vp );
1645 #endif
1646
1647 blob = ubc_cs_blob_get(vp, cputype, -1);
1648
1649 ret = LOAD_SUCCESS;
1650 out:
1651 if (ret == LOAD_SUCCESS) {
1652 result->csflags |= blob->csb_flags;
1653 result->platform_binary = blob->csb_platform_binary;
1654 }
1655 if (addr != 0) {
1656 ubc_cs_blob_deallocate(addr, blob_size);
1657 addr = 0;
1658 }
1659
1660 return ret;
1661 }
1662
1663
1664 #if CONFIG_CODE_DECRYPTION
1665
1666 static load_return_t
1667 set_code_unprotect(
1668 struct encryption_info_command *eip,
1669 caddr_t addr,
1670 vm_map_t map,
1671 int64_t slide,
1672 struct vnode *vp,
1673 cpu_type_t cputype,
1674 cpu_subtype_t cpusubtype)
1675 {
1676 int result, len;
1677 pager_crypt_info_t crypt_info;
1678 const char * cryptname = 0;
1679 char *vpath;
1680
1681 size_t offset;
1682 struct segment_command_64 *seg64;
1683 struct segment_command *seg32;
1684 vm_map_offset_t map_offset, map_size;
1685 kern_return_t kr;
1686
1687 if (eip->cmdsize < sizeof(*eip)) return LOAD_BADMACHO;
1688
1689 switch(eip->cryptid) {
1690 case 0:
1691 /* not encrypted, just an empty load command */
1692 return LOAD_SUCCESS;
1693 case 1:
1694 cryptname="com.apple.unfree";
1695 break;
1696 case 0x10:
1697 /* some random cryptid that you could manually put into
1698 * your binary if you want NULL */
1699 cryptname="com.apple.null";
1700 break;
1701 default:
1702 return LOAD_BADMACHO;
1703 }
1704
1705 if (map == VM_MAP_NULL) return (LOAD_SUCCESS);
1706 if (NULL == text_crypter_create) return LOAD_FAILURE;
1707
1708 MALLOC_ZONE(vpath, char *, MAXPATHLEN, M_NAMEI, M_WAITOK);
1709 if(vpath == NULL) return LOAD_FAILURE;
1710
1711 len = MAXPATHLEN;
1712 result = vn_getpath(vp, vpath, &len);
1713 if(result) {
1714 FREE_ZONE(vpath, MAXPATHLEN, M_NAMEI);
1715 return LOAD_FAILURE;
1716 }
1717
1718 /* set up decrypter first */
1719 crypt_file_data_t crypt_data = {
1720 .filename = vpath,
1721 .cputype = cputype,
1722 .cpusubtype = cpusubtype};
1723 kr=text_crypter_create(&crypt_info, cryptname, (void*)&crypt_data);
1724 FREE_ZONE(vpath, MAXPATHLEN, M_NAMEI);
1725
1726 if(kr) {
1727 printf("set_code_unprotect: unable to create decrypter %s, kr=%d\n",
1728 cryptname, kr);
1729 if (kr == kIOReturnNotPrivileged) {
1730 /* text encryption returned decryption failure */
1731 return(LOAD_DECRYPTFAIL);
1732 }else
1733 return LOAD_RESOURCE;
1734 }
1735
1736 /* this is terrible, but we have to rescan the load commands to find the
1737 * virtual address of this encrypted stuff. This code is gonna look like
1738 * the dyld source one day... */
1739 struct mach_header *header = (struct mach_header *)addr;
1740 size_t mach_header_sz = sizeof(struct mach_header);
1741 if (header->magic == MH_MAGIC_64 ||
1742 header->magic == MH_CIGAM_64) {
1743 mach_header_sz = sizeof(struct mach_header_64);
1744 }
1745 offset = mach_header_sz;
1746 uint32_t ncmds = header->ncmds;
1747 while (ncmds--) {
1748 /*
1749 * Get a pointer to the command.
1750 */
1751 struct load_command *lcp = (struct load_command *)(addr + offset);
1752 offset += lcp->cmdsize;
1753
1754 switch(lcp->cmd) {
1755 case LC_SEGMENT_64:
1756 seg64 = (struct segment_command_64 *)lcp;
1757 if ((seg64->fileoff <= eip->cryptoff) &&
1758 (seg64->fileoff+seg64->filesize >=
1759 eip->cryptoff+eip->cryptsize)) {
1760 map_offset = seg64->vmaddr + eip->cryptoff - seg64->fileoff + slide;
1761 map_size = eip->cryptsize;
1762 goto remap_now;
1763 }
1764 case LC_SEGMENT:
1765 seg32 = (struct segment_command *)lcp;
1766 if ((seg32->fileoff <= eip->cryptoff) &&
1767 (seg32->fileoff+seg32->filesize >=
1768 eip->cryptoff+eip->cryptsize)) {
1769 map_offset = seg32->vmaddr + eip->cryptoff - seg32->fileoff + slide;
1770 map_size = eip->cryptsize;
1771 goto remap_now;
1772 }
1773 }
1774 }
1775
1776 /* if we get here, did not find anything */
1777 return LOAD_BADMACHO;
1778
1779 remap_now:
1780 /* now remap using the decrypter */
1781 kr = vm_map_apple_protected(map, map_offset, map_offset+map_size, &crypt_info);
1782 if(kr) {
1783 printf("set_code_unprotect(): mapping failed with %x\n", kr);
1784 crypt_info.crypt_end(crypt_info.crypt_ops);
1785 return LOAD_PROTECT;
1786 }
1787
1788 return LOAD_SUCCESS;
1789 }
1790
1791 #endif
1792
1793 /*
1794 * This routine exists to support the load_dylinker().
1795 *
1796 * This routine has its own, separate, understanding of the FAT file format,
1797 * which is terrifically unfortunate.
1798 */
1799 static
1800 load_return_t
1801 get_macho_vnode(
1802 char *path,
1803 integer_t archbits,
1804 struct mach_header *mach_header,
1805 off_t *file_offset,
1806 off_t *macho_size,
1807 struct macho_data *data,
1808 struct vnode **vpp
1809 )
1810 {
1811 struct vnode *vp;
1812 vfs_context_t ctx = vfs_context_current();
1813 proc_t p = vfs_context_proc(ctx);
1814 kauth_cred_t kerncred;
1815 struct nameidata *ndp = &data->__nid;
1816 boolean_t is_fat;
1817 struct fat_arch fat_arch;
1818 int error;
1819 int resid;
1820 union macho_vnode_header *header = &data->__header;
1821 off_t fsize = (off_t)0;
1822
1823 /*
1824 * Capture the kernel credential for use in the actual read of the
1825 * file, since the user doing the execution may have execute rights
1826 * but not read rights, but to exec something, we have to either map
1827 * or read it into the new process address space, which requires
1828 * read rights. This is to deal with lack of common credential
1829 * serialization code which would treat NOCRED as "serialize 'root'".
1830 */
1831 kerncred = vfs_context_ucred(vfs_context_kernel());
1832
1833 /* init the namei data to point the file user's program name */
1834 NDINIT(ndp, LOOKUP, OP_OPEN, FOLLOW | LOCKLEAF, UIO_SYSSPACE, CAST_USER_ADDR_T(path), ctx);
1835
1836 if ((error = namei(ndp)) != 0) {
1837 if (error == ENOENT) {
1838 error = LOAD_ENOENT;
1839 } else {
1840 error = LOAD_FAILURE;
1841 }
1842 return(error);
1843 }
1844 nameidone(ndp);
1845 vp = ndp->ni_vp;
1846
1847 /* check for regular file */
1848 if (vp->v_type != VREG) {
1849 error = LOAD_PROTECT;
1850 goto bad1;
1851 }
1852
1853 /* get size */
1854 if ((error = vnode_size(vp, &fsize, ctx)) != 0) {
1855 error = LOAD_FAILURE;
1856 goto bad1;
1857 }
1858
1859 /* Check mount point */
1860 if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
1861 error = LOAD_PROTECT;
1862 goto bad1;
1863 }
1864
1865 /* check access */
1866 if ((error = vnode_authorize(vp, NULL, KAUTH_VNODE_EXECUTE | KAUTH_VNODE_READ_DATA, ctx)) != 0) {
1867 error = LOAD_PROTECT;
1868 goto bad1;
1869 }
1870
1871 /* try to open it */
1872 if ((error = VNOP_OPEN(vp, FREAD, ctx)) != 0) {
1873 error = LOAD_PROTECT;
1874 goto bad1;
1875 }
1876
1877 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)header, sizeof (*header), 0,
1878 UIO_SYSSPACE, IO_NODELOCKED, kerncred, &resid, p)) != 0) {
1879 error = LOAD_IOERROR;
1880 goto bad2;
1881 }
1882
1883 if (header->mach_header.magic == MH_MAGIC ||
1884 header->mach_header.magic == MH_MAGIC_64) {
1885 is_fat = FALSE;
1886 } else if (header->fat_header.magic == FAT_MAGIC ||
1887 header->fat_header.magic == FAT_CIGAM) {
1888 is_fat = TRUE;
1889 } else {
1890 error = LOAD_BADMACHO;
1891 goto bad2;
1892 }
1893
1894 if (is_fat) {
1895 /* Look up our architecture in the fat file. */
1896 error = fatfile_getarch_with_bits(vp, archbits,
1897 (vm_offset_t)(&header->fat_header), &fat_arch);
1898 if (error != LOAD_SUCCESS)
1899 goto bad2;
1900
1901 /* Read the Mach-O header out of it */
1902 error = vn_rdwr(UIO_READ, vp, (caddr_t)&header->mach_header,
1903 sizeof (header->mach_header), fat_arch.offset,
1904 UIO_SYSSPACE, IO_NODELOCKED, kerncred, &resid, p);
1905 if (error) {
1906 error = LOAD_IOERROR;
1907 goto bad2;
1908 }
1909
1910 /* Is this really a Mach-O? */
1911 if (header->mach_header.magic != MH_MAGIC &&
1912 header->mach_header.magic != MH_MAGIC_64) {
1913 error = LOAD_BADMACHO;
1914 goto bad2;
1915 }
1916
1917 *file_offset = fat_arch.offset;
1918 *macho_size = fat_arch.size;
1919 } else {
1920 /*
1921 * Force get_macho_vnode() to fail if the architecture bits
1922 * do not match the expected architecture bits. This in
1923 * turn causes load_dylinker() to fail for the same reason,
1924 * so it ensures the dynamic linker and the binary are in
1925 * lock-step. This is potentially bad, if we ever add to
1926 * the CPU_ARCH_* bits any bits that are desirable but not
1927 * required, since the dynamic linker might work, but we will
1928 * refuse to load it because of this check.
1929 */
1930 if ((cpu_type_t)(header->mach_header.cputype & CPU_ARCH_MASK) != archbits) {
1931 error = LOAD_BADARCH;
1932 goto bad2;
1933 }
1934
1935 *file_offset = 0;
1936 *macho_size = fsize;
1937 }
1938
1939 *mach_header = header->mach_header;
1940 *vpp = vp;
1941
1942 ubc_setsize(vp, fsize);
1943 return (error);
1944
1945 bad2:
1946 (void) VNOP_CLOSE(vp, FREAD, ctx);
1947 bad1:
1948 vnode_put(vp);
1949 return(error);
1950 }