]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/pcb.c
c261f42148f8bd3f6f16ba7a4a901b55a3d967e8
[apple/xnu.git] / osfmk / i386 / pcb.c
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22 /*
23 * @OSF_COPYRIGHT@
24 */
25 /*
26 * Mach Operating System
27 * Copyright (c) 1991,1990 Carnegie Mellon University
28 * All Rights Reserved.
29 *
30 * Permission to use, copy, modify and distribute this software and its
31 * documentation is hereby granted, provided that both the copyright
32 * notice and this permission notice appear in all copies of the
33 * software, derivative works or modified versions, and any portions
34 * thereof, and that both notices appear in supporting documentation.
35 *
36 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
37 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
38 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
39 *
40 * Carnegie Mellon requests users of this software to return to
41 *
42 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
43 * School of Computer Science
44 * Carnegie Mellon University
45 * Pittsburgh PA 15213-3890
46 *
47 * any improvements or extensions that they make and grant Carnegie Mellon
48 * the rights to redistribute these changes.
49 */
50
51 #include <cpus.h>
52 #include <mach_rt.h>
53 #include <mach_debug.h>
54 #include <mach_ldebug.h>
55
56 #include <sys/kdebug.h>
57
58 #include <mach/kern_return.h>
59 #include <mach/thread_status.h>
60 #include <mach/vm_param.h>
61
62 #include <kern/counters.h>
63 #include <kern/mach_param.h>
64 #include <kern/task.h>
65 #include <kern/thread.h>
66 #include <kern/thread_act.h>
67 #include <kern/thread_swap.h>
68 #include <kern/sched_prim.h>
69 #include <kern/misc_protos.h>
70 #include <kern/assert.h>
71 #include <kern/spl.h>
72 #include <ipc/ipc_port.h>
73 #include <vm/vm_kern.h>
74 #include <vm/pmap.h>
75
76 #include <i386/thread.h>
77 #include <i386/eflags.h>
78 #include <i386/proc_reg.h>
79 #include <i386/seg.h>
80 #include <i386/tss.h>
81 #include <i386/user_ldt.h>
82 #include <i386/fpu.h>
83 #include <i386/iopb_entries.h>
84
85 /*
86 * Maps state flavor to number of words in the state:
87 */
88 unsigned int state_count[] = {
89 /* FLAVOR_LIST */ 0,
90 i386_NEW_THREAD_STATE_COUNT,
91 i386_FLOAT_STATE_COUNT,
92 i386_ISA_PORT_MAP_STATE_COUNT,
93 i386_V86_ASSIST_STATE_COUNT,
94 i386_REGS_SEGS_STATE_COUNT,
95 i386_THREAD_SYSCALL_STATE_COUNT,
96 /* THREAD_STATE_NONE */ 0,
97 i386_SAVED_STATE_COUNT,
98 };
99
100 /* Forward */
101
102 void act_machine_throughcall(thread_act_t thr_act);
103 extern thread_t Switch_context(
104 thread_t old,
105 void (*cont)(void),
106 thread_t new);
107 extern void Thread_continue(void);
108 extern void Load_context(
109 thread_t thread);
110
111 /*
112 * consider_machine_collect:
113 *
114 * Try to collect machine-dependent pages
115 */
116 void
117 consider_machine_collect()
118 {
119 }
120
121 void
122 consider_machine_adjust()
123 {
124 }
125
126
127 /*
128 * machine_kernel_stack_init:
129 *
130 * Initialize a kernel stack which has already been
131 * attached to its thread_activation.
132 */
133
134 void
135 machine_kernel_stack_init(
136 thread_t thread,
137 void (*start_pos)(thread_t))
138 {
139 thread_act_t thr_act = thread->top_act;
140 vm_offset_t stack;
141
142 assert(thr_act);
143 stack = thread->kernel_stack;
144 assert(stack);
145
146 #if MACH_ASSERT
147 if (watchacts & WA_PCB) {
148 printf("machine_kernel_stack_init(thr=%x,stk=%x,start_pos=%x)\n",
149 thread,stack,start_pos);
150 printf("\tstack_iks=%x, stack_iel=%x\n",
151 STACK_IKS(stack), STACK_IEL(stack));
152 }
153 #endif /* MACH_ASSERT */
154
155 /*
156 * We want to run at start_pos, giving it as an argument
157 * the return value from Load_context/Switch_context.
158 * Thread_continue takes care of the mismatch between
159 * the argument-passing/return-value conventions.
160 * This function will not return normally,
161 * so we don`t have to worry about a return address.
162 */
163 STACK_IKS(stack)->k_eip = (int) Thread_continue;
164 STACK_IKS(stack)->k_ebx = (int) start_pos;
165 STACK_IKS(stack)->k_esp = (int) STACK_IEL(stack);
166
167 /*
168 * Point top of kernel stack to user`s registers.
169 */
170 STACK_IEL(stack)->saved_state = &thr_act->mact.pcb->iss;
171 }
172
173
174 #if NCPUS > 1
175 #define curr_gdt(mycpu) (mp_gdt[mycpu])
176 #define curr_ktss(mycpu) (mp_ktss[mycpu])
177 #else
178 #define curr_gdt(mycpu) (gdt)
179 #define curr_ktss(mycpu) (&ktss)
180 #endif
181
182 #define gdt_desc_p(mycpu,sel) \
183 ((struct real_descriptor *)&curr_gdt(mycpu)[sel_idx(sel)])
184
185 void
186 act_machine_switch_pcb( thread_act_t new_act )
187 {
188 pcb_t pcb = new_act->mact.pcb;
189 int mycpu;
190 {
191 register iopb_tss_t tss = pcb->ims.io_tss;
192 vm_offset_t pcb_stack_top;
193
194 assert(new_act->thread != NULL);
195 assert(new_act->thread->kernel_stack != 0);
196 STACK_IEL(new_act->thread->kernel_stack)->saved_state =
197 &new_act->mact.pcb->iss;
198
199 /*
200 * Save a pointer to the top of the "kernel" stack -
201 * actually the place in the PCB where a trap into
202 * kernel mode will push the registers.
203 * The location depends on V8086 mode. If we are
204 * not in V8086 mode, then a trap into the kernel
205 * won`t save the v86 segments, so we leave room.
206 */
207
208 pcb_stack_top = (pcb->iss.efl & EFL_VM)
209 ? (int) (&pcb->iss + 1)
210 : (int) (&pcb->iss.v86_segs);
211
212 mp_disable_preemption();
213 mycpu = cpu_number();
214
215 if (tss == 0) {
216 /*
217 * No per-thread IO permissions.
218 * Use standard kernel TSS.
219 */
220 if (!(gdt_desc_p(mycpu,KERNEL_TSS)->access & ACC_TSS_BUSY))
221 set_tr(KERNEL_TSS);
222 curr_ktss(mycpu)->esp0 = pcb_stack_top;
223 }
224 else {
225 /*
226 * Set the IO permissions. Use this thread`s TSS.
227 */
228 *gdt_desc_p(mycpu,USER_TSS)
229 = *(struct real_descriptor *)tss->iopb_desc;
230 tss->tss.esp0 = pcb_stack_top;
231 set_tr(USER_TSS);
232 gdt_desc_p(mycpu,KERNEL_TSS)->access &= ~ ACC_TSS_BUSY;
233 }
234 }
235
236 {
237 register user_ldt_t ldt = pcb->ims.ldt;
238 /*
239 * Set the thread`s LDT.
240 */
241 if (ldt == 0) {
242 /*
243 * Use system LDT.
244 */
245 set_ldt(KERNEL_LDT);
246 }
247 else {
248 /*
249 * Thread has its own LDT.
250 */
251 *gdt_desc_p(mycpu,USER_LDT) = ldt->desc;
252 set_ldt(USER_LDT);
253 }
254 }
255 mp_enable_preemption();
256 /*
257 * Load the floating-point context, if necessary.
258 */
259 fpu_load_context(pcb);
260
261 }
262
263 /*
264 * flush out any lazily evaluated HW state in the
265 * owning thread's context, before termination.
266 */
267 void
268 thread_machine_flush( thread_act_t cur_act )
269 {
270 fpflush(cur_act);
271 }
272
273 /*
274 * Switch to the first thread on a CPU.
275 */
276 void
277 load_context(
278 thread_t new)
279 {
280 act_machine_switch_pcb(new->top_act);
281 Load_context(new);
282 }
283
284 /*
285 * Number of times we needed to swap an activation back in before
286 * switching to it.
287 */
288 int switch_act_swapins = 0;
289
290 /*
291 * machine_switch_act
292 *
293 * Machine-dependent details of activation switching. Called with
294 * RPC locks held and preemption disabled.
295 */
296 void
297 machine_switch_act(
298 thread_t thread,
299 thread_act_t old,
300 thread_act_t new,
301 int cpu)
302 {
303 /*
304 * Switch the vm, ast and pcb context.
305 * Save FP registers if in use and set TS (task switch) bit.
306 */
307 fpu_save_context(thread);
308
309 active_stacks[cpu] = thread->kernel_stack;
310 ast_context(new, cpu);
311
312 PMAP_SWITCH_CONTEXT(old, new, cpu);
313 act_machine_switch_pcb(new);
314 }
315
316 /*
317 * Switch to a new thread.
318 * Save the old thread`s kernel state or continuation,
319 * and return it.
320 */
321 thread_t
322 switch_context(
323 thread_t old,
324 void (*continuation)(void),
325 thread_t new)
326 {
327 register thread_act_t old_act = old->top_act,
328 new_act = new->top_act;
329
330 #if MACH_RT
331 assert(old_act->kernel_loaded ||
332 active_stacks[cpu_number()] == old_act->thread->kernel_stack);
333 assert (get_preemption_level() == 1);
334 #endif
335 check_simple_locks();
336
337 /*
338 * Save FP registers if in use.
339 */
340 fpu_save_context(old);
341
342 #if MACH_ASSERT
343 if (watchacts & WA_SWITCH)
344 printf("\tswitch_context(old=%x con=%x new=%x)\n",
345 old, continuation, new);
346 #endif /* MACH_ASSERT */
347
348 /*
349 * Switch address maps if need be, even if not switching tasks.
350 * (A server activation may be "borrowing" a client map.)
351 */
352 {
353 int mycpu = cpu_number();
354
355 PMAP_SWITCH_CONTEXT(old_act, new_act, mycpu)
356 }
357
358 /*
359 * Load the rest of the user state for the new thread
360 */
361 act_machine_switch_pcb(new_act);
362 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED) | DBG_FUNC_NONE,
363 (int)old, (int)new, old->sched_pri, new->sched_pri, 0);
364 return(Switch_context(old, continuation, new));
365 }
366
367 void
368 pcb_module_init(void)
369 {
370 fpu_module_init();
371 iopb_init();
372 }
373
374 void
375 pcb_init( register thread_act_t thr_act )
376 {
377 register pcb_t pcb;
378
379 assert(thr_act->mact.pcb == (pcb_t)0);
380 pcb = thr_act->mact.pcb = &thr_act->mact.xxx_pcb;
381
382 #if MACH_ASSERT
383 if (watchacts & WA_PCB)
384 printf("pcb_init(%x) pcb=%x\n", thr_act, pcb);
385 #endif /* MACH_ASSERT */
386
387 /*
388 * We can't let random values leak out to the user.
389 * (however, act_create() zeroed the entire thr_act, mact, pcb)
390 * bzero((char *) pcb, sizeof *pcb);
391 */
392 simple_lock_init(&pcb->lock, ETAP_MISC_PCB);
393
394 /*
395 * Guarantee that the bootstrapped thread will be in user
396 * mode.
397 */
398 pcb->iss.cs = USER_CS;
399 pcb->iss.ss = USER_DS;
400 pcb->iss.ds = USER_DS;
401 pcb->iss.es = USER_DS;
402 pcb->iss.fs = USER_DS;
403 pcb->iss.gs = USER_DS;
404 pcb->iss.efl = EFL_USER_SET;
405 }
406
407 /*
408 * Adjust saved register state for thread belonging to task
409 * created with kernel_task_create().
410 */
411 void
412 pcb_user_to_kernel(
413 thread_act_t thr_act)
414 {
415 register pcb_t pcb = thr_act->mact.pcb;
416
417 pcb->iss.cs = KERNEL_CS;
418 pcb->iss.ss = KERNEL_DS;
419 pcb->iss.ds = KERNEL_DS;
420 pcb->iss.es = KERNEL_DS;
421 pcb->iss.fs = KERNEL_DS;
422 pcb->iss.gs = CPU_DATA;
423 }
424
425 void
426 pcb_terminate(
427 register thread_act_t thr_act)
428 {
429 register pcb_t pcb = thr_act->mact.pcb;
430
431 assert(pcb);
432
433 if (pcb->ims.io_tss != 0)
434 iopb_destroy(pcb->ims.io_tss);
435 if (pcb->ims.ifps != 0)
436 fp_free(pcb->ims.ifps);
437 if (pcb->ims.ldt != 0)
438 user_ldt_free(pcb->ims.ldt);
439 thr_act->mact.pcb = (pcb_t)0;
440 }
441
442 /*
443 * pcb_collect:
444 *
445 * Attempt to free excess pcb memory.
446 */
447
448 void
449 pcb_collect(
450 register thread_act_t thr_act)
451 {
452 /* accomplishes very little */
453 }
454
455 /*
456 * act_machine_sv_free
457 * release saveareas associated with an act. if flag is true, release
458 * user level savearea(s) too, else don't
459 */
460 void
461 act_machine_sv_free(thread_act_t act, int flag)
462 {
463
464 }
465
466 /*
467 * act_machine_set_state:
468 *
469 * Set the status of the specified thread. Called with "appropriate"
470 * thread-related locks held (see act_lock_thread()), so
471 * thr_act->thread is guaranteed not to change.
472 */
473
474 kern_return_t
475 act_machine_set_state(
476 thread_act_t thr_act,
477 thread_flavor_t flavor,
478 thread_state_t tstate,
479 mach_msg_type_number_t count)
480 {
481 int kernel_act = thr_act->kernel_loading ||
482 thr_act->kernel_loaded;
483
484 #if MACH_ASSERT
485 if (watchacts & WA_STATE)
486 printf("act_%x act_m_set_state(thr_act=%x,flav=%x,st=%x,cnt=%x)\n",
487 current_act(), thr_act, flavor, tstate, count);
488 #endif /* MACH_ASSERT */
489
490 switch (flavor) {
491 case THREAD_SYSCALL_STATE:
492 {
493 register struct thread_syscall_state *state;
494 register struct i386_saved_state *saved_state = USER_REGS(thr_act);
495
496 state = (struct thread_syscall_state *) tstate;
497 saved_state->eax = state->eax;
498 saved_state->edx = state->edx;
499 if (kernel_act)
500 saved_state->efl = state->efl;
501 else
502 saved_state->efl = (state->efl & ~EFL_USER_CLEAR) | EFL_USER_SET;
503 saved_state->eip = state->eip;
504 saved_state->uesp = state->esp;
505 break;
506 }
507
508 case i386_SAVED_STATE:
509 {
510 register struct i386_saved_state *state;
511 register struct i386_saved_state *saved_state;
512
513 if (count < i386_SAVED_STATE_COUNT) {
514 return(KERN_INVALID_ARGUMENT);
515 }
516
517 state = (struct i386_saved_state *) tstate;
518
519 saved_state = USER_REGS(thr_act);
520
521 /*
522 * General registers
523 */
524 saved_state->edi = state->edi;
525 saved_state->esi = state->esi;
526 saved_state->ebp = state->ebp;
527 saved_state->uesp = state->uesp;
528 saved_state->ebx = state->ebx;
529 saved_state->edx = state->edx;
530 saved_state->ecx = state->ecx;
531 saved_state->eax = state->eax;
532 saved_state->eip = state->eip;
533 if (kernel_act)
534 saved_state->efl = state->efl;
535 else
536 saved_state->efl = (state->efl & ~EFL_USER_CLEAR)
537 | EFL_USER_SET;
538
539 /*
540 * Segment registers. Set differently in V8086 mode.
541 */
542 if (state->efl & EFL_VM) {
543 /*
544 * Set V8086 mode segment registers.
545 */
546 saved_state->cs = state->cs & 0xffff;
547 saved_state->ss = state->ss & 0xffff;
548 saved_state->v86_segs.v86_ds = state->ds & 0xffff;
549 saved_state->v86_segs.v86_es = state->es & 0xffff;
550 saved_state->v86_segs.v86_fs = state->fs & 0xffff;
551 saved_state->v86_segs.v86_gs = state->gs & 0xffff;
552
553 /*
554 * Zero protected mode segment registers.
555 */
556 saved_state->ds = 0;
557 saved_state->es = 0;
558 saved_state->fs = 0;
559 saved_state->gs = 0;
560
561 if (thr_act->mact.pcb->ims.v86s.int_table) {
562 /*
563 * Hardware assist on.
564 */
565 thr_act->mact.pcb->ims.v86s.flags =
566 state->efl & (EFL_TF | EFL_IF);
567 }
568 }
569 else if (!kernel_act) {
570 /*
571 * 386 mode. Set segment registers for flat
572 * 32-bit address space.
573 */
574 saved_state->cs = USER_CS;
575 saved_state->ss = USER_DS;
576 saved_state->ds = USER_DS;
577 saved_state->es = USER_DS;
578 saved_state->fs = USER_DS;
579 saved_state->gs = USER_DS;
580 }
581 else {
582 /*
583 * User setting segment registers.
584 * Code and stack selectors have already been
585 * checked. Others will be reset by 'iret'
586 * if they are not valid.
587 */
588 saved_state->cs = state->cs;
589 saved_state->ss = state->ss;
590 saved_state->ds = state->ds;
591 saved_state->es = state->es;
592 saved_state->fs = state->fs;
593 saved_state->gs = state->gs;
594 }
595 break;
596 }
597
598 case i386_NEW_THREAD_STATE:
599 case i386_REGS_SEGS_STATE:
600 {
601 register struct i386_new_thread_state *state;
602 register struct i386_saved_state *saved_state;
603
604 if (count < i386_NEW_THREAD_STATE_COUNT) {
605 return(KERN_INVALID_ARGUMENT);
606 }
607
608 if (flavor == i386_REGS_SEGS_STATE) {
609 /*
610 * Code and stack selectors must not be null,
611 * and must have user protection levels.
612 * Only the low 16 bits are valid.
613 */
614 state->cs &= 0xffff;
615 state->ss &= 0xffff;
616 state->ds &= 0xffff;
617 state->es &= 0xffff;
618 state->fs &= 0xffff;
619 state->gs &= 0xffff;
620
621 if (!kernel_act &&
622 (state->cs == 0 || (state->cs & SEL_PL) != SEL_PL_U
623 || state->ss == 0 || (state->ss & SEL_PL) != SEL_PL_U))
624 return KERN_INVALID_ARGUMENT;
625 }
626
627 state = (struct i386_new_thread_state *) tstate;
628
629 saved_state = USER_REGS(thr_act);
630
631 /*
632 * General registers
633 */
634 saved_state->edi = state->edi;
635 saved_state->esi = state->esi;
636 saved_state->ebp = state->ebp;
637 saved_state->uesp = state->uesp;
638 saved_state->ebx = state->ebx;
639 saved_state->edx = state->edx;
640 saved_state->ecx = state->ecx;
641 saved_state->eax = state->eax;
642 saved_state->eip = state->eip;
643 if (kernel_act)
644 saved_state->efl = state->efl;
645 else
646 saved_state->efl = (state->efl & ~EFL_USER_CLEAR)
647 | EFL_USER_SET;
648
649 /*
650 * Segment registers. Set differently in V8086 mode.
651 */
652 if (state->efl & EFL_VM) {
653 /*
654 * Set V8086 mode segment registers.
655 */
656 saved_state->cs = state->cs & 0xffff;
657 saved_state->ss = state->ss & 0xffff;
658 saved_state->v86_segs.v86_ds = state->ds & 0xffff;
659 saved_state->v86_segs.v86_es = state->es & 0xffff;
660 saved_state->v86_segs.v86_fs = state->fs & 0xffff;
661 saved_state->v86_segs.v86_gs = state->gs & 0xffff;
662
663 /*
664 * Zero protected mode segment registers.
665 */
666 saved_state->ds = 0;
667 saved_state->es = 0;
668 saved_state->fs = 0;
669 saved_state->gs = 0;
670
671 if (thr_act->mact.pcb->ims.v86s.int_table) {
672 /*
673 * Hardware assist on.
674 */
675 thr_act->mact.pcb->ims.v86s.flags =
676 state->efl & (EFL_TF | EFL_IF);
677 }
678 }
679 else if (flavor == i386_NEW_THREAD_STATE && !kernel_act) {
680 /*
681 * 386 mode. Set segment registers for flat
682 * 32-bit address space.
683 */
684 saved_state->cs = USER_CS;
685 saved_state->ss = USER_DS;
686 saved_state->ds = USER_DS;
687 saved_state->es = USER_DS;
688 saved_state->fs = USER_DS;
689 saved_state->gs = USER_DS;
690 }
691 else {
692 /*
693 * User setting segment registers.
694 * Code and stack selectors have already been
695 * checked. Others will be reset by 'iret'
696 * if they are not valid.
697 */
698 saved_state->cs = state->cs;
699 saved_state->ss = state->ss;
700 saved_state->ds = state->ds;
701 saved_state->es = state->es;
702 saved_state->fs = state->fs;
703 saved_state->gs = state->gs;
704 }
705 break;
706 }
707
708 case i386_FLOAT_STATE: {
709
710 if (count < i386_FLOAT_STATE_COUNT)
711 return(KERN_INVALID_ARGUMENT);
712
713 return fpu_set_state(thr_act,(struct i386_float_state*)tstate);
714 }
715
716 /*
717 * Temporary - replace by i386_io_map
718 */
719 case i386_ISA_PORT_MAP_STATE: {
720 register struct i386_isa_port_map_state *state;
721 register iopb_tss_t tss;
722
723 if (count < i386_ISA_PORT_MAP_STATE_COUNT)
724 return(KERN_INVALID_ARGUMENT);
725
726 break;
727 }
728
729 case i386_V86_ASSIST_STATE:
730 {
731 register struct i386_v86_assist_state *state;
732 vm_offset_t int_table;
733 int int_count;
734
735 if (count < i386_V86_ASSIST_STATE_COUNT)
736 return KERN_INVALID_ARGUMENT;
737
738 state = (struct i386_v86_assist_state *) tstate;
739 int_table = state->int_table;
740 int_count = state->int_count;
741
742 if (int_table >= VM_MAX_ADDRESS ||
743 int_table +
744 int_count * sizeof(struct v86_interrupt_table)
745 > VM_MAX_ADDRESS)
746 return KERN_INVALID_ARGUMENT;
747
748 thr_act->mact.pcb->ims.v86s.int_table = int_table;
749 thr_act->mact.pcb->ims.v86s.int_count = int_count;
750
751 thr_act->mact.pcb->ims.v86s.flags =
752 USER_REGS(thr_act)->efl & (EFL_TF | EFL_IF);
753 break;
754 }
755
756 case i386_THREAD_STATE: {
757 struct i386_saved_state *saved_state;
758 i386_thread_state_t *state25;
759
760 saved_state = USER_REGS(thr_act);
761 state25 = (i386_thread_state_t *)tstate;
762
763 saved_state->eax = state25->eax;
764 saved_state->ebx = state25->ebx;
765 saved_state->ecx = state25->ecx;
766 saved_state->edx = state25->edx;
767 saved_state->edi = state25->edi;
768 saved_state->esi = state25->esi;
769 saved_state->ebp = state25->ebp;
770 saved_state->uesp = state25->esp;
771 saved_state->efl = (state25->eflags & ~EFL_USER_CLEAR)
772 | EFL_USER_SET;
773 saved_state->eip = state25->eip;
774 saved_state->cs = USER_CS; /* FIXME? */
775 saved_state->ss = USER_DS;
776 saved_state->ds = USER_DS;
777 saved_state->es = USER_DS;
778 saved_state->fs = USER_DS;
779 saved_state->gs = USER_DS;
780 }
781 break;
782
783 default:
784 return(KERN_INVALID_ARGUMENT);
785 }
786
787 return(KERN_SUCCESS);
788 }
789
790 /*
791 * thread_getstatus:
792 *
793 * Get the status of the specified thread.
794 */
795
796
797 kern_return_t
798 act_machine_get_state(
799 thread_act_t thr_act,
800 thread_flavor_t flavor,
801 thread_state_t tstate,
802 mach_msg_type_number_t *count)
803 {
804 #if MACH_ASSERT
805 if (watchacts & WA_STATE)
806 printf("act_%x act_m_get_state(thr_act=%x,flav=%x,st=%x,cnt@%x=%x)\n",
807 current_act(), thr_act, flavor, tstate,
808 count, (count ? *count : 0));
809 #endif /* MACH_ASSERT */
810
811 switch (flavor) {
812
813 case i386_SAVED_STATE:
814 {
815 register struct i386_saved_state *state;
816 register struct i386_saved_state *saved_state;
817
818 if (*count < i386_SAVED_STATE_COUNT)
819 return(KERN_INVALID_ARGUMENT);
820
821 state = (struct i386_saved_state *) tstate;
822 saved_state = USER_REGS(thr_act);
823
824 /*
825 * First, copy everything:
826 */
827 *state = *saved_state;
828
829 if (saved_state->efl & EFL_VM) {
830 /*
831 * V8086 mode.
832 */
833 state->ds = saved_state->v86_segs.v86_ds & 0xffff;
834 state->es = saved_state->v86_segs.v86_es & 0xffff;
835 state->fs = saved_state->v86_segs.v86_fs & 0xffff;
836 state->gs = saved_state->v86_segs.v86_gs & 0xffff;
837
838 if (thr_act->mact.pcb->ims.v86s.int_table) {
839 /*
840 * Hardware assist on
841 */
842 if ((thr_act->mact.pcb->ims.v86s.flags &
843 (EFL_IF|V86_IF_PENDING)) == 0)
844 state->efl &= ~EFL_IF;
845 }
846 }
847 else {
848 /*
849 * 386 mode.
850 */
851 state->ds = saved_state->ds & 0xffff;
852 state->es = saved_state->es & 0xffff;
853 state->fs = saved_state->fs & 0xffff;
854 state->gs = saved_state->gs & 0xffff;
855 }
856 *count = i386_SAVED_STATE_COUNT;
857 break;
858 }
859
860 case i386_NEW_THREAD_STATE:
861 case i386_REGS_SEGS_STATE:
862 {
863 register struct i386_new_thread_state *state;
864 register struct i386_saved_state *saved_state;
865
866 if (*count < i386_NEW_THREAD_STATE_COUNT)
867 return(KERN_INVALID_ARGUMENT);
868
869 state = (struct i386_new_thread_state *) tstate;
870 saved_state = USER_REGS(thr_act);
871
872 /*
873 * General registers.
874 */
875 state->edi = saved_state->edi;
876 state->esi = saved_state->esi;
877 state->ebp = saved_state->ebp;
878 state->ebx = saved_state->ebx;
879 state->edx = saved_state->edx;
880 state->ecx = saved_state->ecx;
881 state->eax = saved_state->eax;
882 state->eip = saved_state->eip;
883 state->efl = saved_state->efl;
884 state->uesp = saved_state->uesp;
885
886 state->cs = saved_state->cs;
887 state->ss = saved_state->ss;
888 if (saved_state->efl & EFL_VM) {
889 /*
890 * V8086 mode.
891 */
892 state->ds = saved_state->v86_segs.v86_ds & 0xffff;
893 state->es = saved_state->v86_segs.v86_es & 0xffff;
894 state->fs = saved_state->v86_segs.v86_fs & 0xffff;
895 state->gs = saved_state->v86_segs.v86_gs & 0xffff;
896
897 if (thr_act->mact.pcb->ims.v86s.int_table) {
898 /*
899 * Hardware assist on
900 */
901 if ((thr_act->mact.pcb->ims.v86s.flags &
902 (EFL_IF|V86_IF_PENDING)) == 0)
903 state->efl &= ~EFL_IF;
904 }
905 }
906 else {
907 /*
908 * 386 mode.
909 */
910 state->ds = saved_state->ds & 0xffff;
911 state->es = saved_state->es & 0xffff;
912 state->fs = saved_state->fs & 0xffff;
913 state->gs = saved_state->gs & 0xffff;
914 }
915 *count = i386_NEW_THREAD_STATE_COUNT;
916 break;
917 }
918
919 case THREAD_SYSCALL_STATE:
920 {
921 register struct thread_syscall_state *state;
922 register struct i386_saved_state *saved_state = USER_REGS(thr_act);
923
924 state = (struct thread_syscall_state *) tstate;
925 state->eax = saved_state->eax;
926 state->edx = saved_state->edx;
927 state->efl = saved_state->efl;
928 state->eip = saved_state->eip;
929 state->esp = saved_state->uesp;
930 *count = i386_THREAD_SYSCALL_STATE_COUNT;
931 break;
932 }
933
934 case THREAD_STATE_FLAVOR_LIST:
935 if (*count < 5)
936 return (KERN_INVALID_ARGUMENT);
937 tstate[0] = i386_NEW_THREAD_STATE;
938 tstate[1] = i386_FLOAT_STATE;
939 tstate[2] = i386_ISA_PORT_MAP_STATE;
940 tstate[3] = i386_V86_ASSIST_STATE;
941 tstate[4] = THREAD_SYSCALL_STATE;
942 *count = 5;
943 break;
944
945 case i386_FLOAT_STATE: {
946
947 if (*count < i386_FLOAT_STATE_COUNT)
948 return(KERN_INVALID_ARGUMENT);
949
950 *count = i386_FLOAT_STATE_COUNT;
951 return fpu_get_state(thr_act,(struct i386_float_state *)tstate);
952 }
953
954 /*
955 * Temporary - replace by i386_io_map
956 */
957 case i386_ISA_PORT_MAP_STATE: {
958 register struct i386_isa_port_map_state *state;
959 register iopb_tss_t tss;
960
961 if (*count < i386_ISA_PORT_MAP_STATE_COUNT)
962 return(KERN_INVALID_ARGUMENT);
963
964 state = (struct i386_isa_port_map_state *) tstate;
965 tss = thr_act->mact.pcb->ims.io_tss;
966
967 if (tss == 0) {
968 int i;
969
970 /*
971 * The thread has no ktss, so no IO permissions.
972 */
973
974 for (i = 0; i < sizeof state->pm; i++)
975 state->pm[i] = 0xff;
976 } else {
977 /*
978 * The thread has its own ktss.
979 */
980
981 bcopy((char *) tss->bitmap,
982 (char *) state->pm,
983 sizeof state->pm);
984 }
985
986 *count = i386_ISA_PORT_MAP_STATE_COUNT;
987 break;
988 }
989
990 case i386_V86_ASSIST_STATE:
991 {
992 register struct i386_v86_assist_state *state;
993
994 if (*count < i386_V86_ASSIST_STATE_COUNT)
995 return KERN_INVALID_ARGUMENT;
996
997 state = (struct i386_v86_assist_state *) tstate;
998 state->int_table = thr_act->mact.pcb->ims.v86s.int_table;
999 state->int_count = thr_act->mact.pcb->ims.v86s.int_count;
1000
1001 *count = i386_V86_ASSIST_STATE_COUNT;
1002 break;
1003 }
1004
1005 case i386_THREAD_STATE: {
1006 struct i386_saved_state *saved_state;
1007 i386_thread_state_t *state;
1008
1009 saved_state = USER_REGS(thr_act);
1010 state = (i386_thread_state_t *)tstate;
1011
1012 state->eax = saved_state->eax;
1013 state->ebx = saved_state->ebx;
1014 state->ecx = saved_state->ecx;
1015 state->edx = saved_state->edx;
1016 state->edi = saved_state->edi;
1017 state->esi = saved_state->esi;
1018 state->ebp = saved_state->ebp;
1019 state->esp = saved_state->uesp;
1020 state->eflags = saved_state->efl;
1021 state->eip = saved_state->eip;
1022 state->cs = saved_state->cs;
1023 state->ss = saved_state->ss;
1024 state->ds = saved_state->ds;
1025 state->es = saved_state->es;
1026 state->fs = saved_state->fs;
1027 state->gs = saved_state->gs;
1028 break;
1029 }
1030
1031 default:
1032 return(KERN_INVALID_ARGUMENT);
1033 }
1034
1035 return(KERN_SUCCESS);
1036 }
1037
1038 /*
1039 * Alter the thread`s state so that a following thread_exception_return
1040 * will make the thread return 'retval' from a syscall.
1041 */
1042 void
1043 thread_set_syscall_return(
1044 thread_t thread,
1045 kern_return_t retval)
1046 {
1047 thread->top_act->mact.pcb->iss.eax = retval;
1048 }
1049
1050 /*
1051 * Initialize the machine-dependent state for a new thread.
1052 */
1053 kern_return_t
1054 thread_machine_create(thread_t thread, thread_act_t thr_act, void (*start_pos)(thread_t))
1055 {
1056 MachineThrAct_t mact = &thr_act->mact;
1057
1058 #if MACH_ASSERT
1059 if (watchacts & WA_PCB)
1060 printf("thread_machine_create(thr=%x,thr_act=%x,st=%x)\n",
1061 thread, thr_act, start_pos);
1062 #endif /* MACH_ASSERT */
1063
1064 assert(thread != NULL);
1065 assert(thr_act != NULL);
1066
1067 /*
1068 * Allocate a kernel stack per shuttle
1069 */
1070 thread->kernel_stack = (int)stack_alloc(thread,start_pos);
1071 thread->state &= ~TH_STACK_HANDOFF;
1072 assert(thread->kernel_stack != 0);
1073
1074 /*
1075 * Point top of kernel stack to user`s registers.
1076 */
1077 STACK_IEL(thread->kernel_stack)->saved_state = &mact->pcb->iss;
1078
1079 return(KERN_SUCCESS);
1080 }
1081
1082 /*
1083 * Machine-dependent cleanup prior to destroying a thread
1084 */
1085 void
1086 thread_machine_destroy( thread_t thread )
1087 {
1088 spl_t s;
1089
1090 if (thread->kernel_stack != 0) {
1091 s = splsched();
1092 stack_free(thread);
1093 splx(s);
1094 }
1095 }
1096
1097 /*
1098 * This is used to set the current thr_act/thread
1099 * when starting up a new processor
1100 */
1101 void
1102 thread_machine_set_current( thread_t thread )
1103 {
1104 register int my_cpu;
1105
1106 mp_disable_preemption();
1107 my_cpu = cpu_number();
1108
1109 cpu_data[my_cpu].active_thread = thread;
1110 active_kloaded[my_cpu] =
1111 thread->top_act->kernel_loaded ? thread->top_act : THR_ACT_NULL;
1112
1113 mp_enable_preemption();
1114 }
1115
1116
1117 /*
1118 * Pool of kernel activations.
1119 */
1120
1121 void act_machine_init()
1122 {
1123 int i;
1124 thread_act_t thr_act;
1125
1126 #if MACH_ASSERT
1127 if (watchacts & WA_PCB)
1128 printf("act_machine_init()\n");
1129 #endif /* MACH_ASSERT */
1130
1131 /* Good to verify this once */
1132 assert( THREAD_MACHINE_STATE_MAX <= THREAD_STATE_MAX );
1133 }
1134
1135 kern_return_t
1136 act_machine_create(task_t task, thread_act_t thr_act)
1137 {
1138 MachineThrAct_t mact = &thr_act->mact;
1139 pcb_t pcb;
1140
1141 #if MACH_ASSERT
1142 if (watchacts & WA_PCB)
1143 printf("act_machine_create(task=%x,thr_act=%x) pcb=%x\n",
1144 task,thr_act, &mact->xxx_pcb);
1145 #endif /* MACH_ASSERT */
1146
1147 /*
1148 * Clear & Init the pcb (sets up user-mode s regs)
1149 */
1150 pcb_init(thr_act);
1151
1152 return KERN_SUCCESS;
1153 }
1154
1155 void
1156 act_virtual_machine_destroy(thread_act_t thr_act)
1157 {
1158 return;
1159 }
1160
1161 void
1162 act_machine_destroy(thread_act_t thr_act)
1163 {
1164
1165 #if MACH_ASSERT
1166 if (watchacts & WA_PCB)
1167 printf("act_machine_destroy(0x%x)\n", thr_act);
1168 #endif /* MACH_ASSERT */
1169
1170 pcb_terminate(thr_act);
1171 }
1172
1173 void
1174 act_machine_return(int code)
1175 {
1176 thread_act_t thr_act = current_act();
1177
1178 #if MACH_ASSERT
1179 /*
1180 * We don't go through the locking dance here needed to
1181 * acquire thr_act->thread safely.
1182 */
1183
1184 if (watchacts & WA_EXIT)
1185 printf("act_machine_return(0x%x) cur_act=%x(%d) thr=%x(%d)\n",
1186 code, thr_act, thr_act->ref_count,
1187 thr_act->thread, thr_act->thread->ref_count);
1188 #endif /* MACH_ASSERT */
1189
1190 /*
1191 * This code is called with nothing locked.
1192 * It also returns with nothing locked, if it returns.
1193 *
1194 * This routine terminates the current thread activation.
1195 * If this is the only activation associated with its
1196 * thread shuttle, then the entire thread (shuttle plus
1197 * activation) is terminated.
1198 */
1199 assert( code == KERN_TERMINATED );
1200 assert( thr_act );
1201
1202 /* This is the only activation attached to the shuttle... */
1203 /* terminate the entire thread (shuttle plus activation) */
1204
1205 assert(thr_act->thread->top_act == thr_act);
1206 thread_terminate_self();
1207
1208 /*NOTREACHED*/
1209
1210 panic("act_machine_return: TALKING ZOMBIE! (1)");
1211 }
1212
1213
1214 /*
1215 * Perform machine-dependent per-thread initializations
1216 */
1217 void
1218 thread_machine_init(void)
1219 {
1220 pcb_module_init();
1221 }
1222
1223 /*
1224 * Some routines for debugging activation code
1225 */
1226 static void dump_handlers(thread_act_t);
1227 void dump_regs(thread_act_t);
1228
1229 static void
1230 dump_handlers(thread_act_t thr_act)
1231 {
1232 ReturnHandler *rhp = thr_act->handlers;
1233 int counter = 0;
1234
1235 printf("\t");
1236 while (rhp) {
1237 if (rhp == &thr_act->special_handler){
1238 if (rhp->next)
1239 printf("[NON-Zero next ptr(%x)]", rhp->next);
1240 printf("special_handler()->");
1241 break;
1242 }
1243 printf("hdlr_%d(%x)->",counter,rhp->handler);
1244 rhp = rhp->next;
1245 if (++counter > 32) {
1246 printf("Aborting: HUGE handler chain\n");
1247 break;
1248 }
1249 }
1250 printf("HLDR_NULL\n");
1251 }
1252
1253 void
1254 dump_regs(thread_act_t thr_act)
1255 {
1256 if (thr_act->mact.pcb) {
1257 register struct i386_saved_state *ssp = USER_REGS(thr_act);
1258 /* Print out user register state */
1259 printf("\tRegs:\tedi=%x esi=%x ebp=%x ebx=%x edx=%x\n",
1260 ssp->edi, ssp->esi, ssp->ebp, ssp->ebx, ssp->edx);
1261 printf("\t\tecx=%x eax=%x eip=%x efl=%x uesp=%x\n",
1262 ssp->ecx, ssp->eax, ssp->eip, ssp->efl, ssp->uesp);
1263 printf("\t\tcs=%x ss=%x\n", ssp->cs, ssp->ss);
1264 }
1265 }
1266
1267 int
1268 dump_act(thread_act_t thr_act)
1269 {
1270 if (!thr_act)
1271 return(0);
1272
1273 printf("thr_act(0x%x)(%d): thread=%x(%d) task=%x(%d)\n",
1274 thr_act, thr_act->ref_count,
1275 thr_act->thread, thr_act->thread ? thr_act->thread->ref_count:0,
1276 thr_act->task, thr_act->task ? thr_act->task->ref_count : 0);
1277
1278 printf("\talerts=%x mask=%x susp=%d user_stop=%d active=%x ast=%x\n",
1279 thr_act->alerts, thr_act->alert_mask,
1280 thr_act->suspend_count, thr_act->user_stop_count,
1281 thr_act->active, thr_act->ast);
1282 printf("\thi=%x lo=%x\n", thr_act->higher, thr_act->lower);
1283 printf("\tpcb=%x\n", thr_act->mact.pcb);
1284
1285 if (thr_act->thread && thr_act->thread->kernel_stack) {
1286 vm_offset_t stack = thr_act->thread->kernel_stack;
1287
1288 printf("\tk_stk %x eip %x ebx %x esp %x iss %x\n",
1289 stack, STACK_IKS(stack)->k_eip, STACK_IKS(stack)->k_ebx,
1290 STACK_IKS(stack)->k_esp, STACK_IEL(stack)->saved_state);
1291 }
1292
1293 dump_handlers(thr_act);
1294 dump_regs(thr_act);
1295 return((int)thr_act);
1296 }
1297 unsigned int
1298 get_useraddr()
1299 {
1300
1301 thread_act_t thr_act = current_act();
1302
1303 if (thr_act->mact.pcb)
1304 return(thr_act->mact.pcb->iss.eip);
1305 else
1306 return(0);
1307
1308 }
1309
1310 void
1311 thread_swapin_mach_alloc(thread_t thread)
1312 {
1313
1314 /* 386 does not have saveareas */
1315
1316 }
1317 /*
1318 * detach and return a kernel stack from a thread
1319 */
1320
1321 vm_offset_t
1322 stack_detach(thread_t thread)
1323 {
1324 vm_offset_t stack;
1325
1326 KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_SCHED,MACH_STACK_DETACH),
1327 thread, thread->priority,
1328 thread->sched_pri, 0,
1329 0);
1330
1331 stack = thread->kernel_stack;
1332 thread->kernel_stack = 0;
1333 return(stack);
1334 }
1335
1336 /*
1337 * attach a kernel stack to a thread and initialize it
1338 */
1339
1340 void
1341 stack_attach(struct thread_shuttle *thread,
1342 vm_offset_t stack,
1343 void (*start_pos)(thread_t))
1344 {
1345 struct i386_kernel_state *statep;
1346
1347 KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_SCHED,MACH_STACK_ATTACH),
1348 thread, thread->priority,
1349 thread->sched_pri, continuation,
1350 0);
1351
1352 assert(stack);
1353 statep = STACK_IKS(stack);
1354 thread->kernel_stack = stack;
1355
1356 statep->k_eip = (unsigned long) Thread_continue;
1357 statep->k_ebx = (unsigned long) start_pos;
1358 statep->k_esp = (unsigned long) STACK_IEL(stack);
1359 assert(thread->top_act);
1360 STACK_IEL(stack)->saved_state = &thread->top_act->mact.pcb->iss;
1361
1362 return;
1363 }
1364
1365 /*
1366 * move a stack from old to new thread
1367 */
1368
1369 void
1370 stack_handoff(thread_t old,
1371 thread_t new)
1372 {
1373
1374 vm_offset_t stack;
1375 pmap_t new_pmap;
1376
1377 KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_SCHED,MACH_STACK_HANDOFF),
1378 thread, thread->priority,
1379 thread->sched_pri, continuation,
1380 0);
1381
1382 assert(new->top_act);
1383 assert(old->top_act);
1384
1385 stack = stack_detach(old);
1386 stack_attach(new, stack, 0);
1387
1388 new_pmap = new->top_act->task->map->pmap;
1389 if (old->top_act->task->map->pmap != new_pmap)
1390 PMAP_ACTIVATE_MAP(new->top_act->task->map, cpu_number());
1391
1392 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED,MACH_STACK_HANDOFF) | DBG_FUNC_NONE,
1393 (int)old, (int)new, old->sched_pri, new->sched_pri, 0);
1394
1395 thread_machine_set_current(new);
1396
1397 active_stacks[cpu_number()] = new->kernel_stack;
1398
1399 return;
1400 }
1401
1402 struct i386_act_context {
1403 struct i386_saved_state ss;
1404 struct i386_float_state fs;
1405 };
1406
1407 void *
1408 act_thread_csave(void)
1409 {
1410 struct i386_act_context *ic;
1411 kern_return_t kret;
1412 int val;
1413
1414 ic = (struct i386_act_context *)kalloc(sizeof(struct i386_act_context));
1415
1416 if (ic == (struct i386_act_context *)NULL)
1417 return((void *)0);
1418
1419 val = i386_SAVED_STATE_COUNT;
1420 kret = act_machine_get_state(current_act(), i386_SAVED_STATE, &ic->ss, &val);
1421 if (kret != KERN_SUCCESS) {
1422 kfree((vm_offset_t)ic,sizeof(struct i386_act_context));
1423 return((void *)0);
1424 }
1425 val = i386_FLOAT_STATE_COUNT;
1426 kret = act_machine_get_state(current_act(), i386_FLOAT_STATE, &ic->fs, &val);
1427 if (kret != KERN_SUCCESS) {
1428 kfree((vm_offset_t)ic,sizeof(struct i386_act_context));
1429 return((void *)0);
1430 }
1431 return(ic);
1432 }
1433 void
1434 act_thread_catt(void *ctx)
1435 {
1436 struct i386_act_context *ic;
1437 kern_return_t kret;
1438 int val;
1439
1440 ic = (struct i386_act_context *)ctx;
1441
1442 if (ic == (struct i386_act_context *)NULL)
1443 return;
1444
1445 kret = act_machine_set_state(current_act(), i386_SAVED_STATE, &ic->ss, i386_SAVED_STATE_COUNT);
1446 if (kret != KERN_SUCCESS)
1447 goto out;
1448
1449 kret = act_machine_set_state(current_act(), i386_FLOAT_STATE, &ic->fs, i386_FLOAT_STATE_COUNT);
1450 if (kret != KERN_SUCCESS)
1451 goto out;
1452 out:
1453 kfree((vm_offset_t)ic,sizeof(struct i386_act_context));
1454 }
1455
1456 void act_thread_cfree(void *ctx)
1457 {
1458 kfree((vm_offset_t)ctx,sizeof(struct i386_act_context));
1459 }
1460