]>
git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/etimer.c
c196f8b9f4eaea01af197029fdc269a4af5ec5af
2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * @APPLE_FREE_COPYRIGHT@
36 * Purpose: Routines for handling the machine independent
40 #include <mach/mach_types.h>
42 #include <kern/timer_queue.h>
43 #include <kern/clock.h>
44 #include <kern/thread.h>
45 #include <kern/processor.h>
46 #include <kern/macro_help.h>
48 #include <kern/etimer.h>
51 #include <machine/commpage.h>
52 #include <machine/machine_routines.h>
54 #include <sys/kdebug.h>
55 #include <i386/cpu_data.h>
56 #include <i386/cpu_topology.h>
57 #include <i386/cpu_threads.h>
60 * Event timer interrupt.
62 * XXX a drawback of this implementation is that events serviced earlier must not set deadlines
63 * that occur before the entire chain completes.
65 * XXX a better implementation would use a set of generic callouts and iterate over them
68 etimer_intr(int user_mode
,
72 rtclock_timer_t
*mytimer
;
77 pp
= current_cpu_datap();
79 SCHED_STATS_TIMER_POP(current_processor());
81 abstime
= mach_absolute_time(); /* Get the time now */
83 /* has a pending clock timer expired? */
84 mytimer
= &pp
->rtclock_timer
; /* Point to the event timer */
85 if (mytimer
->deadline
<= abstime
) {
87 * Log interrupt service latency (-ve value expected by tool)
88 * a non-PM event is expected next.
89 * The requested deadline may be earlier than when it was set
90 * - use MAX to avoid reporting bogus latencies.
92 latency
= (int32_t) (abstime
- MAX(mytimer
->deadline
,
94 KERNEL_DEBUG_CONSTANT(
95 DECR_TRAP_LATENCY
| DBG_FUNC_NONE
,
96 -latency
, rip
, user_mode
, 0, 0);
98 mytimer
->has_expired
= TRUE
; /* Remember that we popped */
99 mytimer
->deadline
= timer_queue_expire(&mytimer
->queue
, abstime
);
100 mytimer
->has_expired
= FALSE
;
102 /* Get the time again since we ran a bit */
103 abstime
= mach_absolute_time();
104 mytimer
->when_set
= abstime
;
107 /* is it time for power management state change? */
108 if ((pmdeadline
= pmCPUGetDeadline(pp
)) && (pmdeadline
<= abstime
)) {
109 KERNEL_DEBUG_CONSTANT(
110 DECR_PM_DEADLINE
| DBG_FUNC_START
,
113 KERNEL_DEBUG_CONSTANT(
114 DECR_PM_DEADLINE
| DBG_FUNC_END
,
118 /* schedule our next deadline */
119 etimer_resync_deadlines();
123 * Set the clock deadline.
125 void etimer_set_deadline(uint64_t deadline
)
127 rtclock_timer_t
*mytimer
;
131 s
= splclock(); /* no interruptions */
132 pp
= current_cpu_datap();
134 mytimer
= &pp
->rtclock_timer
; /* Point to the timer itself */
135 mytimer
->deadline
= deadline
; /* Set new expiration time */
136 mytimer
->when_set
= mach_absolute_time();
138 etimer_resync_deadlines();
144 * Re-evaluate the outstanding deadlines and select the most proximate.
146 * Should be called at splclock.
149 etimer_resync_deadlines(void)
153 rtclock_timer_t
*mytimer
;
154 spl_t s
= splclock();
158 pp
= current_cpu_datap();
159 deadline
= EndOfAllTime
;
162 * If we have a clock timer set, pick that.
164 mytimer
= &pp
->rtclock_timer
;
165 if (!mytimer
->has_expired
&&
166 0 < mytimer
->deadline
&& mytimer
->deadline
< EndOfAllTime
)
167 deadline
= mytimer
->deadline
;
170 * If we have a power management deadline, see if that's earlier.
172 pmdeadline
= pmCPUGetDeadline(pp
);
173 if (0 < pmdeadline
&& pmdeadline
< deadline
)
174 deadline
= pmdeadline
;
177 * Go and set the "pop" event.
179 decr
= (uint32_t) setPop(deadline
);
181 /* Record non-PM deadline for latency tool */
182 if (deadline
!= pmdeadline
) {
183 KERNEL_DEBUG_CONSTANT(
184 DECR_SET_DEADLINE
| DBG_FUNC_NONE
,
186 deadline
, (uint32_t)(deadline
>> 32), 0);
191 void etimer_timer_expire(void *arg
);
197 rtclock_timer_t
*mytimer
;
201 pp
= current_cpu_datap();
203 mytimer
= &pp
->rtclock_timer
;
204 abstime
= mach_absolute_time();
206 mytimer
->has_expired
= TRUE
;
207 mytimer
->deadline
= timer_queue_expire(&mytimer
->queue
, abstime
);
208 mytimer
->has_expired
= FALSE
;
209 mytimer
->when_set
= mach_absolute_time();
211 etimer_resync_deadlines();
218 uint64_t now
= mach_absolute_time();
219 if (deadline
> now
) {
220 return MIN((deadline
- now
) >> 3, NSEC_PER_MSEC
); /* Min of 12.5% and 1ms */
230 cpu_data_t
*cdp
= current_cpu_datap();
231 mpqueue_head_t
*queue
;
233 if (cdp
->cpu_running
) {
234 queue
= &cdp
->rtclock_timer
.queue
;
236 if (deadline
< cdp
->rtclock_timer
.deadline
)
237 etimer_set_deadline(deadline
);
240 queue
= &cpu_datap(master_cpu
)->rtclock_timer
.queue
;
247 mpqueue_head_t
*queue
,
249 uint64_t new_deadline
)
251 if (queue
== ¤t_cpu_datap()->rtclock_timer
.queue
) {
252 if (deadline
< new_deadline
)
253 etimer_set_deadline(new_deadline
);
258 * etimer_queue_migrate() is called from the Power-Management kext
259 * when a logical processor goes idle (in a deep C-state) with a distant
260 * deadline so that it's timer queue can be moved to another processor.
261 * This target processor should be the least idle (most busy) --
262 * currently this is the primary processor for the calling thread's package.
263 * Locking restrictions demand that the target cpu must be the boot cpu.
266 etimer_queue_migrate(int target_cpu
)
268 cpu_data_t
*target_cdp
= cpu_datap(target_cpu
);
269 cpu_data_t
*cdp
= current_cpu_datap();
272 assert(!ml_get_interrupts_enabled());
273 assert(target_cpu
!= cdp
->cpu_number
);
274 assert(target_cpu
== master_cpu
);
276 KERNEL_DEBUG_CONSTANT(
277 DECR_TIMER_MIGRATE
| DBG_FUNC_START
,
279 cdp
->rtclock_timer
.deadline
, (cdp
->rtclock_timer
.deadline
>>32),
283 * Move timer requests from the local queue to the target processor's.
284 * The return value is the number of requests moved. If this is 0,
285 * it indicates that the first (i.e. earliest) timer is earlier than
286 * the earliest for the target processor. Since this would force a
287 * resync, the move of this and all later requests is aborted.
289 ntimers_moved
= timer_queue_migrate(&cdp
->rtclock_timer
.queue
,
290 &target_cdp
->rtclock_timer
.queue
);
293 * Assuming we moved stuff, clear local deadline.
295 if (ntimers_moved
> 0) {
296 cdp
->rtclock_timer
.deadline
= EndOfAllTime
;
297 setPop(EndOfAllTime
);
300 KERNEL_DEBUG_CONSTANT(
301 DECR_TIMER_MIGRATE
| DBG_FUNC_END
,
302 target_cpu
, ntimers_moved
, 0, 0, 0);
304 return ntimers_moved
;