]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/sys_generic.c
bd8fd7c2291d3fe0593e30e02c5b85bb0e5b9c0b
[apple/xnu.git] / bsd / kern / sys_generic.c
1 /*
2 * Copyright (c) 2000-2015 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Copyright (c) 1982, 1986, 1989, 1993
31 * The Regents of the University of California. All rights reserved.
32 * (c) UNIX System Laboratories, Inc.
33 * All or some portions of this file are derived from material licensed
34 * to the University of California by American Telephone and Telegraph
35 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
36 * the permission of UNIX System Laboratories, Inc.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)sys_generic.c 8.9 (Berkeley) 2/14/95
67 */
68 /*
69 * NOTICE: This file was modified by SPARTA, Inc. in 2006 to introduce
70 * support for mandatory and extensible security protections. This notice
71 * is included in support of clause 2.2 (b) of the Apple Public License,
72 * Version 2.0.
73 */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/filedesc.h>
78 #include <sys/ioctl.h>
79 #include <sys/file_internal.h>
80 #include <sys/proc_internal.h>
81 #include <sys/socketvar.h>
82 #include <sys/uio_internal.h>
83 #include <sys/kernel.h>
84 #include <sys/guarded.h>
85 #include <sys/stat.h>
86 #include <sys/malloc.h>
87 #include <sys/sysproto.h>
88
89 #include <sys/mount_internal.h>
90 #include <sys/protosw.h>
91 #include <sys/ev.h>
92 #include <sys/user.h>
93 #include <sys/kdebug.h>
94 #include <sys/poll.h>
95 #include <sys/event.h>
96 #include <sys/eventvar.h>
97 #include <sys/proc.h>
98 #include <sys/kauth.h>
99
100 #include <mach/mach_types.h>
101 #include <kern/kern_types.h>
102 #include <kern/assert.h>
103 #include <kern/kalloc.h>
104 #include <kern/thread.h>
105 #include <kern/clock.h>
106 #include <kern/ledger.h>
107 #include <kern/task.h>
108 #include <kern/telemetry.h>
109 #include <kern/waitq.h>
110 #include <kern/sched_prim.h>
111
112 #include <sys/mbuf.h>
113 #include <sys/domain.h>
114 #include <sys/socket.h>
115 #include <sys/socketvar.h>
116 #include <sys/errno.h>
117 #include <sys/syscall.h>
118 #include <sys/pipe.h>
119
120 #include <security/audit/audit.h>
121
122 #include <net/if.h>
123 #include <net/route.h>
124
125 #include <netinet/in.h>
126 #include <netinet/in_systm.h>
127 #include <netinet/ip.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/ip_var.h>
130 #include <netinet/ip6.h>
131 #include <netinet/tcp.h>
132 #include <netinet/tcp_fsm.h>
133 #include <netinet/tcp_seq.h>
134 #include <netinet/tcp_timer.h>
135 #include <netinet/tcp_var.h>
136 #include <netinet/tcpip.h>
137 #include <netinet/tcp_debug.h>
138 /* for wait queue based select */
139 #include <kern/waitq.h>
140 #include <kern/kalloc.h>
141 #include <sys/vnode_internal.h>
142
143 /* XXX should be in a header file somewhere */
144 void evsofree(struct socket *);
145 void evpipefree(struct pipe *);
146 void postpipeevent(struct pipe *, int);
147 void postevent(struct socket *, struct sockbuf *, int);
148 extern kern_return_t IOBSDGetPlatformUUID(__darwin_uuid_t uuid, mach_timespec_t timeoutp);
149
150 int rd_uio(struct proc *p, int fdes, uio_t uio, user_ssize_t *retval);
151 int wr_uio(struct proc *p, struct fileproc *fp, uio_t uio, user_ssize_t *retval);
152
153 __private_extern__ int dofileread(vfs_context_t ctx, struct fileproc *fp,
154 user_addr_t bufp, user_size_t nbyte,
155 off_t offset, int flags, user_ssize_t *retval);
156 __private_extern__ int dofilewrite(vfs_context_t ctx, struct fileproc *fp,
157 user_addr_t bufp, user_size_t nbyte,
158 off_t offset, int flags, user_ssize_t *retval);
159 __private_extern__ int preparefileread(struct proc *p, struct fileproc **fp_ret, int fd, int check_for_vnode);
160 __private_extern__ void donefileread(struct proc *p, struct fileproc *fp_ret, int fd);
161
162
163 /* Conflict wait queue for when selects collide (opaque type) */
164 struct waitq select_conflict_queue;
165
166 /*
167 * Init routine called from bsd_init.c
168 */
169 void select_waitq_init(void);
170 void
171 select_waitq_init(void)
172 {
173 waitq_init(&select_conflict_queue, SYNC_POLICY_FIFO);
174 }
175
176 #define f_flag f_fglob->fg_flag
177 #define f_type f_fglob->fg_ops->fo_type
178 #define f_msgcount f_fglob->fg_msgcount
179 #define f_cred f_fglob->fg_cred
180 #define f_ops f_fglob->fg_ops
181 #define f_offset f_fglob->fg_offset
182 #define f_data f_fglob->fg_data
183
184 /*
185 * Read system call.
186 *
187 * Returns: 0 Success
188 * preparefileread:EBADF
189 * preparefileread:ESPIPE
190 * preparefileread:ENXIO
191 * preparefileread:EBADF
192 * dofileread:???
193 */
194 int
195 read(struct proc *p, struct read_args *uap, user_ssize_t *retval)
196 {
197 __pthread_testcancel(1);
198 return(read_nocancel(p, (struct read_nocancel_args *)uap, retval));
199 }
200
201 int
202 read_nocancel(struct proc *p, struct read_nocancel_args *uap, user_ssize_t *retval)
203 {
204 struct fileproc *fp;
205 int error;
206 int fd = uap->fd;
207 struct vfs_context context;
208
209 if ( (error = preparefileread(p, &fp, fd, 0)) )
210 return (error);
211
212 context = *(vfs_context_current());
213 context.vc_ucred = fp->f_fglob->fg_cred;
214
215 error = dofileread(&context, fp, uap->cbuf, uap->nbyte,
216 (off_t)-1, 0, retval);
217
218 donefileread(p, fp, fd);
219
220 return (error);
221 }
222
223 /*
224 * Pread system call
225 *
226 * Returns: 0 Success
227 * preparefileread:EBADF
228 * preparefileread:ESPIPE
229 * preparefileread:ENXIO
230 * preparefileread:EBADF
231 * dofileread:???
232 */
233 int
234 pread(struct proc *p, struct pread_args *uap, user_ssize_t *retval)
235 {
236 __pthread_testcancel(1);
237 return(pread_nocancel(p, (struct pread_nocancel_args *)uap, retval));
238 }
239
240 int
241 pread_nocancel(struct proc *p, struct pread_nocancel_args *uap, user_ssize_t *retval)
242 {
243 struct fileproc *fp = NULL; /* fp set by preparefileread() */
244 int fd = uap->fd;
245 int error;
246 struct vfs_context context;
247
248 if ( (error = preparefileread(p, &fp, fd, 1)) )
249 goto out;
250
251 context = *(vfs_context_current());
252 context.vc_ucred = fp->f_fglob->fg_cred;
253
254 error = dofileread(&context, fp, uap->buf, uap->nbyte,
255 uap->offset, FOF_OFFSET, retval);
256
257 donefileread(p, fp, fd);
258
259 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_SC_EXTENDED_INFO, SYS_pread) | DBG_FUNC_NONE),
260 uap->fd, uap->nbyte, (unsigned int)((uap->offset >> 32)), (unsigned int)(uap->offset), 0);
261
262 out:
263 return (error);
264 }
265
266 /*
267 * Code common for read and pread
268 */
269
270 void
271 donefileread(struct proc *p, struct fileproc *fp, int fd)
272 {
273 proc_fdlock_spin(p);
274 fp_drop(p, fd, fp, 1);
275 proc_fdunlock(p);
276 }
277
278 /*
279 * Returns: 0 Success
280 * EBADF
281 * ESPIPE
282 * ENXIO
283 * fp_lookup:EBADF
284 * fo_read:???
285 */
286 int
287 preparefileread(struct proc *p, struct fileproc **fp_ret, int fd, int check_for_pread)
288 {
289 vnode_t vp;
290 int error;
291 struct fileproc *fp;
292
293 AUDIT_ARG(fd, fd);
294
295 proc_fdlock_spin(p);
296
297 error = fp_lookup(p, fd, &fp, 1);
298
299 if (error) {
300 proc_fdunlock(p);
301 return (error);
302 }
303 if ((fp->f_flag & FREAD) == 0) {
304 error = EBADF;
305 goto out;
306 }
307 if (check_for_pread && (fp->f_type != DTYPE_VNODE)) {
308 error = ESPIPE;
309 goto out;
310 }
311 if (fp->f_type == DTYPE_VNODE) {
312 vp = (struct vnode *)fp->f_fglob->fg_data;
313
314 if (check_for_pread && (vnode_isfifo(vp))) {
315 error = ESPIPE;
316 goto out;
317 }
318 if (check_for_pread && (vp->v_flag & VISTTY)) {
319 error = ENXIO;
320 goto out;
321 }
322 }
323
324 *fp_ret = fp;
325
326 proc_fdunlock(p);
327 return (0);
328
329 out:
330 fp_drop(p, fd, fp, 1);
331 proc_fdunlock(p);
332 return (error);
333 }
334
335
336 /*
337 * Returns: 0 Success
338 * EINVAL
339 * fo_read:???
340 */
341 __private_extern__ int
342 dofileread(vfs_context_t ctx, struct fileproc *fp,
343 user_addr_t bufp, user_size_t nbyte, off_t offset, int flags,
344 user_ssize_t *retval)
345 {
346 uio_t auio;
347 user_ssize_t bytecnt;
348 long error = 0;
349 char uio_buf[ UIO_SIZEOF(1) ];
350
351 if (nbyte > INT_MAX)
352 return (EINVAL);
353
354 if (IS_64BIT_PROCESS(vfs_context_proc(ctx))) {
355 auio = uio_createwithbuffer(1, offset, UIO_USERSPACE64, UIO_READ,
356 &uio_buf[0], sizeof(uio_buf));
357 } else {
358 auio = uio_createwithbuffer(1, offset, UIO_USERSPACE32, UIO_READ,
359 &uio_buf[0], sizeof(uio_buf));
360 }
361 uio_addiov(auio, bufp, nbyte);
362
363 bytecnt = nbyte;
364
365 if ((error = fo_read(fp, auio, flags, ctx))) {
366 if (uio_resid(auio) != bytecnt && (error == ERESTART ||
367 error == EINTR || error == EWOULDBLOCK))
368 error = 0;
369 }
370 bytecnt -= uio_resid(auio);
371
372 *retval = bytecnt;
373
374 return (error);
375 }
376
377 /*
378 * Scatter read system call.
379 *
380 * Returns: 0 Success
381 * EINVAL
382 * ENOMEM
383 * copyin:EFAULT
384 * rd_uio:???
385 */
386 int
387 readv(struct proc *p, struct readv_args *uap, user_ssize_t *retval)
388 {
389 __pthread_testcancel(1);
390 return(readv_nocancel(p, (struct readv_nocancel_args *)uap, retval));
391 }
392
393 int
394 readv_nocancel(struct proc *p, struct readv_nocancel_args *uap, user_ssize_t *retval)
395 {
396 uio_t auio = NULL;
397 int error;
398 struct user_iovec *iovp;
399
400 /* Verify range bedfore calling uio_create() */
401 if (uap->iovcnt <= 0 || uap->iovcnt > UIO_MAXIOV)
402 return (EINVAL);
403
404 /* allocate a uio large enough to hold the number of iovecs passed */
405 auio = uio_create(uap->iovcnt, 0,
406 (IS_64BIT_PROCESS(p) ? UIO_USERSPACE64 : UIO_USERSPACE32),
407 UIO_READ);
408
409 /* get location of iovecs within the uio. then copyin the iovecs from
410 * user space.
411 */
412 iovp = uio_iovsaddr(auio);
413 if (iovp == NULL) {
414 error = ENOMEM;
415 goto ExitThisRoutine;
416 }
417 error = copyin_user_iovec_array(uap->iovp,
418 IS_64BIT_PROCESS(p) ? UIO_USERSPACE64 : UIO_USERSPACE32,
419 uap->iovcnt, iovp);
420 if (error) {
421 goto ExitThisRoutine;
422 }
423
424 /* finalize uio_t for use and do the IO
425 */
426 error = uio_calculateresid(auio);
427 if (error) {
428 goto ExitThisRoutine;
429 }
430 error = rd_uio(p, uap->fd, auio, retval);
431
432 ExitThisRoutine:
433 if (auio != NULL) {
434 uio_free(auio);
435 }
436 return (error);
437 }
438
439 /*
440 * Write system call
441 *
442 * Returns: 0 Success
443 * EBADF
444 * fp_lookup:EBADF
445 * dofilewrite:???
446 */
447 int
448 write(struct proc *p, struct write_args *uap, user_ssize_t *retval)
449 {
450 __pthread_testcancel(1);
451 return(write_nocancel(p, (struct write_nocancel_args *)uap, retval));
452
453 }
454
455 int
456 write_nocancel(struct proc *p, struct write_nocancel_args *uap, user_ssize_t *retval)
457 {
458 struct fileproc *fp;
459 int error;
460 int fd = uap->fd;
461 bool wrote_some = false;
462
463 AUDIT_ARG(fd, fd);
464
465 error = fp_lookup(p,fd,&fp,0);
466 if (error)
467 return(error);
468 if ((fp->f_flag & FWRITE) == 0) {
469 error = EBADF;
470 } else if (FP_ISGUARDED(fp, GUARD_WRITE)) {
471 proc_fdlock(p);
472 error = fp_guard_exception(p, fd, fp, kGUARD_EXC_WRITE);
473 proc_fdunlock(p);
474 } else {
475 struct vfs_context context = *(vfs_context_current());
476 context.vc_ucred = fp->f_fglob->fg_cred;
477
478 error = dofilewrite(&context, fp, uap->cbuf, uap->nbyte,
479 (off_t)-1, 0, retval);
480
481 wrote_some = *retval > 0;
482 }
483 if (wrote_some)
484 fp_drop_written(p, fd, fp);
485 else
486 fp_drop(p, fd, fp, 0);
487 return(error);
488 }
489
490 /*
491 * pwrite system call
492 *
493 * Returns: 0 Success
494 * EBADF
495 * ESPIPE
496 * ENXIO
497 * EINVAL
498 * fp_lookup:EBADF
499 * dofilewrite:???
500 */
501 int
502 pwrite(struct proc *p, struct pwrite_args *uap, user_ssize_t *retval)
503 {
504 __pthread_testcancel(1);
505 return(pwrite_nocancel(p, (struct pwrite_nocancel_args *)uap, retval));
506 }
507
508 int
509 pwrite_nocancel(struct proc *p, struct pwrite_nocancel_args *uap, user_ssize_t *retval)
510 {
511 struct fileproc *fp;
512 int error;
513 int fd = uap->fd;
514 vnode_t vp = (vnode_t)0;
515 bool wrote_some = false;
516
517 AUDIT_ARG(fd, fd);
518
519 error = fp_lookup(p,fd,&fp,0);
520 if (error)
521 return(error);
522
523 if ((fp->f_flag & FWRITE) == 0) {
524 error = EBADF;
525 } else if (FP_ISGUARDED(fp, GUARD_WRITE)) {
526 proc_fdlock(p);
527 error = fp_guard_exception(p, fd, fp, kGUARD_EXC_WRITE);
528 proc_fdunlock(p);
529 } else {
530 struct vfs_context context = *vfs_context_current();
531 context.vc_ucred = fp->f_fglob->fg_cred;
532
533 if (fp->f_type != DTYPE_VNODE) {
534 error = ESPIPE;
535 goto errout;
536 }
537 vp = (vnode_t)fp->f_fglob->fg_data;
538 if (vnode_isfifo(vp)) {
539 error = ESPIPE;
540 goto errout;
541 }
542 if ((vp->v_flag & VISTTY)) {
543 error = ENXIO;
544 goto errout;
545 }
546 if (uap->offset == (off_t)-1) {
547 error = EINVAL;
548 goto errout;
549 }
550
551 error = dofilewrite(&context, fp, uap->buf, uap->nbyte,
552 uap->offset, FOF_OFFSET, retval);
553 wrote_some = *retval > 0;
554 }
555 errout:
556 if (wrote_some)
557 fp_drop_written(p, fd, fp);
558 else
559 fp_drop(p, fd, fp, 0);
560
561 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_SC_EXTENDED_INFO, SYS_pwrite) | DBG_FUNC_NONE),
562 uap->fd, uap->nbyte, (unsigned int)((uap->offset >> 32)), (unsigned int)(uap->offset), 0);
563
564 return(error);
565 }
566
567 /*
568 * Returns: 0 Success
569 * EINVAL
570 * <fo_write>:EPIPE
571 * <fo_write>:??? [indirect through struct fileops]
572 */
573 __private_extern__ int
574 dofilewrite(vfs_context_t ctx, struct fileproc *fp,
575 user_addr_t bufp, user_size_t nbyte, off_t offset, int flags,
576 user_ssize_t *retval)
577 {
578 uio_t auio;
579 long error = 0;
580 user_ssize_t bytecnt;
581 char uio_buf[ UIO_SIZEOF(1) ];
582
583 if (nbyte > INT_MAX) {
584 *retval = 0;
585 return (EINVAL);
586 }
587
588 if (IS_64BIT_PROCESS(vfs_context_proc(ctx))) {
589 auio = uio_createwithbuffer(1, offset, UIO_USERSPACE64, UIO_WRITE,
590 &uio_buf[0], sizeof(uio_buf));
591 } else {
592 auio = uio_createwithbuffer(1, offset, UIO_USERSPACE32, UIO_WRITE,
593 &uio_buf[0], sizeof(uio_buf));
594 }
595 uio_addiov(auio, bufp, nbyte);
596
597 bytecnt = nbyte;
598 if ((error = fo_write(fp, auio, flags, ctx))) {
599 if (uio_resid(auio) != bytecnt && (error == ERESTART ||
600 error == EINTR || error == EWOULDBLOCK))
601 error = 0;
602 /* The socket layer handles SIGPIPE */
603 if (error == EPIPE && fp->f_type != DTYPE_SOCKET &&
604 (fp->f_fglob->fg_lflags & FG_NOSIGPIPE) == 0) {
605 /* XXX Raise the signal on the thread? */
606 psignal(vfs_context_proc(ctx), SIGPIPE);
607 }
608 }
609 bytecnt -= uio_resid(auio);
610 *retval = bytecnt;
611
612 return (error);
613 }
614
615 /*
616 * Gather write system call
617 */
618 int
619 writev(struct proc *p, struct writev_args *uap, user_ssize_t *retval)
620 {
621 __pthread_testcancel(1);
622 return(writev_nocancel(p, (struct writev_nocancel_args *)uap, retval));
623 }
624
625 int
626 writev_nocancel(struct proc *p, struct writev_nocancel_args *uap, user_ssize_t *retval)
627 {
628 uio_t auio = NULL;
629 int error;
630 struct fileproc *fp;
631 struct user_iovec *iovp;
632 bool wrote_some = false;
633
634 AUDIT_ARG(fd, uap->fd);
635
636 /* Verify range bedfore calling uio_create() */
637 if (uap->iovcnt <= 0 || uap->iovcnt > UIO_MAXIOV)
638 return (EINVAL);
639
640 /* allocate a uio large enough to hold the number of iovecs passed */
641 auio = uio_create(uap->iovcnt, 0,
642 (IS_64BIT_PROCESS(p) ? UIO_USERSPACE64 : UIO_USERSPACE32),
643 UIO_WRITE);
644
645 /* get location of iovecs within the uio. then copyin the iovecs from
646 * user space.
647 */
648 iovp = uio_iovsaddr(auio);
649 if (iovp == NULL) {
650 error = ENOMEM;
651 goto ExitThisRoutine;
652 }
653 error = copyin_user_iovec_array(uap->iovp,
654 IS_64BIT_PROCESS(p) ? UIO_USERSPACE64 : UIO_USERSPACE32,
655 uap->iovcnt, iovp);
656 if (error) {
657 goto ExitThisRoutine;
658 }
659
660 /* finalize uio_t for use and do the IO
661 */
662 error = uio_calculateresid(auio);
663 if (error) {
664 goto ExitThisRoutine;
665 }
666
667 error = fp_lookup(p, uap->fd, &fp, 0);
668 if (error)
669 goto ExitThisRoutine;
670
671 if ((fp->f_flag & FWRITE) == 0) {
672 error = EBADF;
673 } else if (FP_ISGUARDED(fp, GUARD_WRITE)) {
674 proc_fdlock(p);
675 error = fp_guard_exception(p, uap->fd, fp, kGUARD_EXC_WRITE);
676 proc_fdunlock(p);
677 } else {
678 error = wr_uio(p, fp, auio, retval);
679 wrote_some = *retval > 0;
680 }
681
682 if (wrote_some)
683 fp_drop_written(p, uap->fd, fp);
684 else
685 fp_drop(p, uap->fd, fp, 0);
686
687 ExitThisRoutine:
688 if (auio != NULL) {
689 uio_free(auio);
690 }
691 return (error);
692 }
693
694
695 int
696 wr_uio(struct proc *p, struct fileproc *fp, uio_t uio, user_ssize_t *retval)
697 {
698 int error;
699 user_ssize_t count;
700 struct vfs_context context = *vfs_context_current();
701
702 count = uio_resid(uio);
703
704 context.vc_ucred = fp->f_cred;
705 error = fo_write(fp, uio, 0, &context);
706 if (error) {
707 if (uio_resid(uio) != count && (error == ERESTART ||
708 error == EINTR || error == EWOULDBLOCK))
709 error = 0;
710 /* The socket layer handles SIGPIPE */
711 if (error == EPIPE && fp->f_type != DTYPE_SOCKET &&
712 (fp->f_fglob->fg_lflags & FG_NOSIGPIPE) == 0)
713 psignal(p, SIGPIPE);
714 }
715 *retval = count - uio_resid(uio);
716
717 return(error);
718 }
719
720
721 int
722 rd_uio(struct proc *p, int fdes, uio_t uio, user_ssize_t *retval)
723 {
724 struct fileproc *fp;
725 int error;
726 user_ssize_t count;
727 struct vfs_context context = *vfs_context_current();
728
729 if ( (error = preparefileread(p, &fp, fdes, 0)) )
730 return (error);
731
732 count = uio_resid(uio);
733
734 context.vc_ucred = fp->f_cred;
735
736 error = fo_read(fp, uio, 0, &context);
737
738 if (error) {
739 if (uio_resid(uio) != count && (error == ERESTART ||
740 error == EINTR || error == EWOULDBLOCK))
741 error = 0;
742 }
743 *retval = count - uio_resid(uio);
744
745 donefileread(p, fp, fdes);
746
747 return (error);
748 }
749
750 /*
751 * Ioctl system call
752 *
753 * Returns: 0 Success
754 * EBADF
755 * ENOTTY
756 * ENOMEM
757 * ESRCH
758 * copyin:EFAULT
759 * copyoutEFAULT
760 * fp_lookup:EBADF Bad file descriptor
761 * fo_ioctl:???
762 */
763 int
764 ioctl(struct proc *p, struct ioctl_args *uap, __unused int32_t *retval)
765 {
766 struct fileproc *fp = NULL;
767 int error = 0;
768 u_int size = 0;
769 caddr_t datap = NULL, memp = NULL;
770 boolean_t is64bit = FALSE;
771 int tmp = 0;
772 #define STK_PARAMS 128
773 char stkbuf[STK_PARAMS];
774 int fd = uap->fd;
775 u_long com = uap->com;
776 struct vfs_context context = *vfs_context_current();
777
778 AUDIT_ARG(fd, uap->fd);
779 AUDIT_ARG(addr, uap->data);
780
781 is64bit = proc_is64bit(p);
782 #if CONFIG_AUDIT
783 if (is64bit)
784 AUDIT_ARG(value64, com);
785 else
786 AUDIT_ARG(cmd, CAST_DOWN_EXPLICIT(int, com));
787 #endif /* CONFIG_AUDIT */
788
789 /*
790 * Interpret high order word to find amount of data to be
791 * copied to/from the user's address space.
792 */
793 size = IOCPARM_LEN(com);
794 if (size > IOCPARM_MAX)
795 return ENOTTY;
796 if (size > sizeof (stkbuf)) {
797 if ((memp = (caddr_t)kalloc(size)) == 0)
798 return ENOMEM;
799 datap = memp;
800 } else
801 datap = &stkbuf[0];
802 if (com & IOC_IN) {
803 if (size) {
804 error = copyin(uap->data, datap, size);
805 if (error)
806 goto out_nofp;
807 } else {
808 /* XXX - IOC_IN and no size? we should proably return an error here!! */
809 if (is64bit) {
810 *(user_addr_t *)datap = uap->data;
811 }
812 else {
813 *(uint32_t *)datap = (uint32_t)uap->data;
814 }
815 }
816 } else if ((com & IOC_OUT) && size)
817 /*
818 * Zero the buffer so the user always
819 * gets back something deterministic.
820 */
821 bzero(datap, size);
822 else if (com & IOC_VOID) {
823 /* XXX - this is odd since IOC_VOID means no parameters */
824 if (is64bit) {
825 *(user_addr_t *)datap = uap->data;
826 }
827 else {
828 *(uint32_t *)datap = (uint32_t)uap->data;
829 }
830 }
831
832 proc_fdlock(p);
833 error = fp_lookup(p,fd,&fp,1);
834 if (error) {
835 proc_fdunlock(p);
836 goto out_nofp;
837 }
838
839 AUDIT_ARG(file, p, fp);
840
841 if ((fp->f_flag & (FREAD | FWRITE)) == 0) {
842 error = EBADF;
843 goto out;
844 }
845
846 context.vc_ucred = fp->f_fglob->fg_cred;
847
848 #if CONFIG_MACF
849 error = mac_file_check_ioctl(context.vc_ucred, fp->f_fglob, com);
850 if (error)
851 goto out;
852 #endif
853
854 switch (com) {
855 case FIONCLEX:
856 *fdflags(p, fd) &= ~UF_EXCLOSE;
857 break;
858
859 case FIOCLEX:
860 *fdflags(p, fd) |= UF_EXCLOSE;
861 break;
862
863 case FIONBIO:
864 if ( (tmp = *(int *)datap) )
865 fp->f_flag |= FNONBLOCK;
866 else
867 fp->f_flag &= ~FNONBLOCK;
868 error = fo_ioctl(fp, FIONBIO, (caddr_t)&tmp, &context);
869 break;
870
871 case FIOASYNC:
872 if ( (tmp = *(int *)datap) )
873 fp->f_flag |= FASYNC;
874 else
875 fp->f_flag &= ~FASYNC;
876 error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp, &context);
877 break;
878
879 case FIOSETOWN:
880 tmp = *(int *)datap;
881 if (fp->f_type == DTYPE_SOCKET) {
882 ((struct socket *)fp->f_data)->so_pgid = tmp;
883 break;
884 }
885 if (fp->f_type == DTYPE_PIPE) {
886 error = fo_ioctl(fp, (int)TIOCSPGRP, (caddr_t)&tmp, &context);
887 break;
888 }
889 if (tmp <= 0) {
890 tmp = -tmp;
891 } else {
892 struct proc *p1 = proc_find(tmp);
893 if (p1 == 0) {
894 error = ESRCH;
895 break;
896 }
897 tmp = p1->p_pgrpid;
898 proc_rele(p1);
899 }
900 error = fo_ioctl(fp, (int)TIOCSPGRP, (caddr_t)&tmp, &context);
901 break;
902
903 case FIOGETOWN:
904 if (fp->f_type == DTYPE_SOCKET) {
905 *(int *)datap = ((struct socket *)fp->f_data)->so_pgid;
906 break;
907 }
908 error = fo_ioctl(fp, TIOCGPGRP, datap, &context);
909 *(int *)datap = -*(int *)datap;
910 break;
911
912 default:
913 error = fo_ioctl(fp, com, datap, &context);
914 /*
915 * Copy any data to user, size was
916 * already set and checked above.
917 */
918 if (error == 0 && (com & IOC_OUT) && size)
919 error = copyout(datap, uap->data, (u_int)size);
920 break;
921 }
922 out:
923 fp_drop(p, fd, fp, 1);
924 proc_fdunlock(p);
925
926 out_nofp:
927 if (memp)
928 kfree(memp, size);
929 return(error);
930 }
931
932 int selwait, nselcoll;
933 #define SEL_FIRSTPASS 1
934 #define SEL_SECONDPASS 2
935 extern int selcontinue(int error);
936 extern int selprocess(int error, int sel_pass);
937 static int selscan(struct proc *p, struct _select * sel, struct _select_data * seldata,
938 int nfd, int32_t *retval, int sel_pass, struct waitq_set *wqset);
939 static int selcount(struct proc *p, u_int32_t *ibits, int nfd, int *count);
940 static int seldrop_locked(struct proc *p, u_int32_t *ibits, int nfd, int lim, int *need_wakeup, int fromselcount);
941 static int seldrop(struct proc *p, u_int32_t *ibits, int nfd);
942 static int select_internal(struct proc *p, struct select_nocancel_args *uap, uint64_t timeout, int32_t *retval);
943
944 /*
945 * Select system call.
946 *
947 * Returns: 0 Success
948 * EINVAL Invalid argument
949 * EAGAIN Nonconformant error if allocation fails
950 */
951 int
952 select(struct proc *p, struct select_args *uap, int32_t *retval)
953 {
954 __pthread_testcancel(1);
955 return select_nocancel(p, (struct select_nocancel_args *)uap, retval);
956 }
957
958 int
959 select_nocancel(struct proc *p, struct select_nocancel_args *uap, int32_t *retval)
960 {
961 uint64_t timeout = 0;
962
963 if (uap->tv) {
964 int err;
965 struct timeval atv;
966 if (IS_64BIT_PROCESS(p)) {
967 struct user64_timeval atv64;
968 err = copyin(uap->tv, (caddr_t)&atv64, sizeof(atv64));
969 /* Loses resolution - assume timeout < 68 years */
970 atv.tv_sec = atv64.tv_sec;
971 atv.tv_usec = atv64.tv_usec;
972 } else {
973 struct user32_timeval atv32;
974 err = copyin(uap->tv, (caddr_t)&atv32, sizeof(atv32));
975 atv.tv_sec = atv32.tv_sec;
976 atv.tv_usec = atv32.tv_usec;
977 }
978 if (err)
979 return err;
980
981 if (itimerfix(&atv)) {
982 err = EINVAL;
983 return err;
984 }
985
986 clock_absolutetime_interval_to_deadline(tvtoabstime(&atv), &timeout);
987 }
988
989 return select_internal(p, uap, timeout, retval);
990 }
991
992 int
993 pselect(struct proc *p, struct pselect_args *uap, int32_t *retval)
994 {
995 __pthread_testcancel(1);
996 return pselect_nocancel(p, (struct pselect_nocancel_args *)uap, retval);
997 }
998
999 int
1000 pselect_nocancel(struct proc *p, struct pselect_nocancel_args *uap, int32_t *retval)
1001 {
1002 int err;
1003 struct uthread *ut;
1004 uint64_t timeout = 0;
1005
1006 if (uap->ts) {
1007 struct timespec ts;
1008
1009 if (IS_64BIT_PROCESS(p)) {
1010 struct user64_timespec ts64;
1011 err = copyin(uap->ts, (caddr_t)&ts64, sizeof(ts64));
1012 ts.tv_sec = ts64.tv_sec;
1013 ts.tv_nsec = ts64.tv_nsec;
1014 } else {
1015 struct user32_timespec ts32;
1016 err = copyin(uap->ts, (caddr_t)&ts32, sizeof(ts32));
1017 ts.tv_sec = ts32.tv_sec;
1018 ts.tv_nsec = ts32.tv_nsec;
1019 }
1020 if (err) {
1021 return err;
1022 }
1023
1024 if (!timespec_is_valid(&ts)) {
1025 return EINVAL;
1026 }
1027 clock_absolutetime_interval_to_deadline(tstoabstime(&ts), &timeout);
1028 }
1029
1030 ut = get_bsdthread_info(current_thread());
1031
1032 if (uap->mask != USER_ADDR_NULL) {
1033 /* save current mask, then copyin and set new mask */
1034 sigset_t newset;
1035 err = copyin(uap->mask, &newset, sizeof(sigset_t));
1036 if (err) {
1037 return err;
1038 }
1039 ut->uu_oldmask = ut->uu_sigmask;
1040 ut->uu_flag |= UT_SAS_OLDMASK;
1041 ut->uu_sigmask = (newset & ~sigcantmask);
1042 }
1043
1044 err = select_internal(p, (struct select_nocancel_args *)uap, timeout, retval);
1045
1046 if (err != EINTR && ut->uu_flag & UT_SAS_OLDMASK) {
1047 /*
1048 * Restore old mask (direct return case). NOTE: EINTR can also be returned
1049 * if the thread is cancelled. In that case, we don't reset the signal
1050 * mask to its original value (which usually happens in the signal
1051 * delivery path). This behavior is permitted by POSIX.
1052 */
1053 ut->uu_sigmask = ut->uu_oldmask;
1054 ut->uu_oldmask = 0;
1055 ut->uu_flag &= ~UT_SAS_OLDMASK;
1056 }
1057
1058 return err;
1059 }
1060
1061 /*
1062 * Generic implementation of {,p}select. Care: we type-pun uap across the two
1063 * syscalls, which differ slightly. The first 4 arguments (nfds and the fd sets)
1064 * are identical. The 5th (timeout) argument points to different types, so we
1065 * unpack in the syscall-specific code, but the generic code still does a null
1066 * check on this argument to determine if a timeout was specified.
1067 */
1068 static int
1069 select_internal(struct proc *p, struct select_nocancel_args *uap, uint64_t timeout, int32_t *retval)
1070 {
1071 int error = 0;
1072 u_int ni, nw;
1073 thread_t th_act;
1074 struct uthread *uth;
1075 struct _select *sel;
1076 struct _select_data *seldata;
1077 int needzerofill = 1;
1078 int count = 0;
1079 size_t sz = 0;
1080
1081 th_act = current_thread();
1082 uth = get_bsdthread_info(th_act);
1083 sel = &uth->uu_select;
1084 seldata = &uth->uu_kevent.ss_select_data;
1085 *retval = 0;
1086
1087 seldata->args = uap;
1088 seldata->retval = retval;
1089 seldata->wqp = NULL;
1090 seldata->count = 0;
1091
1092 if (uap->nd < 0) {
1093 return (EINVAL);
1094 }
1095
1096 /* select on thread of process that already called proc_exit() */
1097 if (p->p_fd == NULL) {
1098 return (EBADF);
1099 }
1100
1101 if (uap->nd > p->p_fd->fd_nfiles)
1102 uap->nd = p->p_fd->fd_nfiles; /* forgiving; slightly wrong */
1103
1104 nw = howmany(uap->nd, NFDBITS);
1105 ni = nw * sizeof(fd_mask);
1106
1107 /*
1108 * if the previously allocated space for the bits is smaller than
1109 * what is requested or no space has yet been allocated for this
1110 * thread, allocate enough space now.
1111 *
1112 * Note: If this process fails, select() will return EAGAIN; this
1113 * is the same thing pool() returns in a no-memory situation, but
1114 * it is not a POSIX compliant error code for select().
1115 */
1116 if (sel->nbytes < (3 * ni)) {
1117 int nbytes = 3 * ni;
1118
1119 /* Free previous allocation, if any */
1120 if (sel->ibits != NULL)
1121 FREE(sel->ibits, M_TEMP);
1122 if (sel->obits != NULL) {
1123 FREE(sel->obits, M_TEMP);
1124 /* NULL out; subsequent ibits allocation may fail */
1125 sel->obits = NULL;
1126 }
1127
1128 MALLOC(sel->ibits, u_int32_t *, nbytes, M_TEMP, M_WAITOK | M_ZERO);
1129 if (sel->ibits == NULL)
1130 return (EAGAIN);
1131 MALLOC(sel->obits, u_int32_t *, nbytes, M_TEMP, M_WAITOK | M_ZERO);
1132 if (sel->obits == NULL) {
1133 FREE(sel->ibits, M_TEMP);
1134 sel->ibits = NULL;
1135 return (EAGAIN);
1136 }
1137 sel->nbytes = nbytes;
1138 needzerofill = 0;
1139 }
1140
1141 if (needzerofill) {
1142 bzero((caddr_t)sel->ibits, sel->nbytes);
1143 bzero((caddr_t)sel->obits, sel->nbytes);
1144 }
1145
1146 /*
1147 * get the bits from the user address space
1148 */
1149 #define getbits(name, x) \
1150 do { \
1151 if (uap->name && (error = copyin(uap->name, \
1152 (caddr_t)&sel->ibits[(x) * nw], ni))) \
1153 goto continuation; \
1154 } while (0)
1155
1156 getbits(in, 0);
1157 getbits(ou, 1);
1158 getbits(ex, 2);
1159 #undef getbits
1160
1161 seldata->abstime = timeout;
1162
1163 if ( (error = selcount(p, sel->ibits, uap->nd, &count)) ) {
1164 goto continuation;
1165 }
1166
1167 /*
1168 * We need an array of waitq pointers. This is due to the new way
1169 * in which waitqs are linked to sets. When a thread selects on a
1170 * file descriptor, a waitq (embedded in a selinfo structure) is
1171 * added to the thread's local waitq set. There is no longer any
1172 * way to directly iterate over all members of a given waitq set.
1173 * The process of linking a waitq into a set may allocate a link
1174 * table object. Because we can't iterate over all the waitqs to
1175 * which our thread waitq set belongs, we need a way of removing
1176 * this link object!
1177 *
1178 * Thus we need a buffer which will hold one waitq pointer
1179 * per FD being selected. During the tear-down phase we can use
1180 * these pointers to dis-associate the underlying selinfo's waitq
1181 * from our thread's waitq set.
1182 *
1183 * Because we also need to allocate a waitq set for this thread,
1184 * we use a bare buffer pointer to hold all the memory. Note that
1185 * this memory is cached in the thread pointer and not reaped until
1186 * the thread exists. This is generally OK because threads that
1187 * call select tend to keep calling select repeatedly.
1188 */
1189 sz = ALIGN(sizeof(struct waitq_set)) + (count * sizeof(uint64_t));
1190 if (sz > uth->uu_wqstate_sz) {
1191 /* (re)allocate a buffer to hold waitq pointers */
1192 if (uth->uu_wqset) {
1193 if (waitq_set_is_valid(uth->uu_wqset))
1194 waitq_set_deinit(uth->uu_wqset);
1195 FREE(uth->uu_wqset, M_SELECT);
1196 } else if (uth->uu_wqstate_sz && !uth->uu_wqset)
1197 panic("select: thread structure corrupt! "
1198 "uu_wqstate_sz:%ld, wqstate_buf == NULL",
1199 uth->uu_wqstate_sz);
1200 uth->uu_wqstate_sz = sz;
1201 MALLOC(uth->uu_wqset, struct waitq_set *, sz, M_SELECT, M_WAITOK);
1202 if (!uth->uu_wqset)
1203 panic("can't allocate %ld bytes for wqstate buffer",
1204 uth->uu_wqstate_sz);
1205 waitq_set_init(uth->uu_wqset,
1206 SYNC_POLICY_FIFO|SYNC_POLICY_PREPOST, NULL, NULL);
1207 }
1208
1209 if (!waitq_set_is_valid(uth->uu_wqset))
1210 waitq_set_init(uth->uu_wqset,
1211 SYNC_POLICY_FIFO|SYNC_POLICY_PREPOST, NULL, NULL);
1212
1213 /* the last chunk of our buffer is an array of waitq pointers */
1214 seldata->wqp = (uint64_t *)((char *)(uth->uu_wqset) + ALIGN(sizeof(struct waitq_set)));
1215 bzero(seldata->wqp, sz - ALIGN(sizeof(struct waitq_set)));
1216
1217 seldata->count = count;
1218
1219 continuation:
1220
1221 if (error) {
1222 /*
1223 * We have already cleaned up any state we established,
1224 * either locally or as a result of selcount(). We don't
1225 * need to wait_subqueue_unlink_all(), since we haven't set
1226 * anything at this point.
1227 */
1228 return (error);
1229 }
1230
1231 return selprocess(0, SEL_FIRSTPASS);
1232 }
1233
1234 int
1235 selcontinue(int error)
1236 {
1237 return selprocess(error, SEL_SECONDPASS);
1238 }
1239
1240
1241 /*
1242 * selprocess
1243 *
1244 * Parameters: error The error code from our caller
1245 * sel_pass The pass we are on
1246 */
1247 int
1248 selprocess(int error, int sel_pass)
1249 {
1250 int ncoll;
1251 u_int ni, nw;
1252 thread_t th_act;
1253 struct uthread *uth;
1254 struct proc *p;
1255 struct select_nocancel_args *uap;
1256 int *retval;
1257 struct _select *sel;
1258 struct _select_data *seldata;
1259 int unwind = 1;
1260 int prepost = 0;
1261 int somewakeup = 0;
1262 int doretry = 0;
1263 wait_result_t wait_result;
1264
1265 p = current_proc();
1266 th_act = current_thread();
1267 uth = get_bsdthread_info(th_act);
1268 sel = &uth->uu_select;
1269 seldata = &uth->uu_kevent.ss_select_data;
1270 uap = seldata->args;
1271 retval = seldata->retval;
1272
1273 if ((error != 0) && (sel_pass == SEL_FIRSTPASS))
1274 unwind = 0;
1275 if (seldata->count == 0)
1276 unwind = 0;
1277 retry:
1278 if (error != 0)
1279 goto done;
1280
1281 ncoll = nselcoll;
1282 OSBitOrAtomic(P_SELECT, &p->p_flag);
1283
1284 /* skip scans if the select is just for timeouts */
1285 if (seldata->count) {
1286 error = selscan(p, sel, seldata, uap->nd, retval, sel_pass, uth->uu_wqset);
1287 if (error || *retval) {
1288 goto done;
1289 }
1290 if (prepost || somewakeup) {
1291 /*
1292 * if the select of log, then we can wakeup and
1293 * discover some one else already read the data;
1294 * go to select again if time permits
1295 */
1296 prepost = 0;
1297 somewakeup = 0;
1298 doretry = 1;
1299 }
1300 }
1301
1302 if (uap->tv) {
1303 uint64_t now;
1304
1305 clock_get_uptime(&now);
1306 if (now >= seldata->abstime)
1307 goto done;
1308 }
1309
1310 if (doretry) {
1311 /* cleanup obits and try again */
1312 doretry = 0;
1313 sel_pass = SEL_FIRSTPASS;
1314 goto retry;
1315 }
1316
1317 /*
1318 * To effect a poll, the timeout argument should be
1319 * non-nil, pointing to a zero-valued timeval structure.
1320 */
1321 if (uap->tv && seldata->abstime == 0) {
1322 goto done;
1323 }
1324
1325 /* No spurious wakeups due to colls,no need to check for them */
1326 if ((sel_pass == SEL_SECONDPASS) || ((p->p_flag & P_SELECT) == 0)) {
1327 sel_pass = SEL_FIRSTPASS;
1328 goto retry;
1329 }
1330
1331 OSBitAndAtomic(~((uint32_t)P_SELECT), &p->p_flag);
1332
1333 /* if the select is just for timeout skip check */
1334 if (seldata->count && (sel_pass == SEL_SECONDPASS))
1335 panic("selprocess: 2nd pass assertwaiting");
1336
1337 /* waitq_set has waitqueue as first element */
1338 wait_result = waitq_assert_wait64_leeway((struct waitq *)uth->uu_wqset,
1339 NO_EVENT64, THREAD_ABORTSAFE,
1340 TIMEOUT_URGENCY_USER_NORMAL,
1341 seldata->abstime,
1342 TIMEOUT_NO_LEEWAY);
1343 if (wait_result != THREAD_AWAKENED) {
1344 /* there are no preposted events */
1345 error = tsleep1(NULL, PSOCK | PCATCH,
1346 "select", 0, selcontinue);
1347 } else {
1348 prepost = 1;
1349 error = 0;
1350 }
1351
1352 if (error == 0) {
1353 sel_pass = SEL_SECONDPASS;
1354 if (!prepost)
1355 somewakeup = 1;
1356 goto retry;
1357 }
1358 done:
1359 if (unwind) {
1360 seldrop(p, sel->ibits, uap->nd);
1361 waitq_set_deinit(uth->uu_wqset);
1362 /*
1363 * zero out the waitq pointer array to avoid use-after free
1364 * errors in the selcount error path (seldrop_locked) if/when
1365 * the thread re-calls select().
1366 */
1367 bzero((void *)uth->uu_wqset, uth->uu_wqstate_sz);
1368 }
1369 OSBitAndAtomic(~((uint32_t)P_SELECT), &p->p_flag);
1370 /* select is not restarted after signals... */
1371 if (error == ERESTART)
1372 error = EINTR;
1373 if (error == EWOULDBLOCK)
1374 error = 0;
1375 nw = howmany(uap->nd, NFDBITS);
1376 ni = nw * sizeof(fd_mask);
1377
1378 #define putbits(name, x) \
1379 do { \
1380 if (uap->name && (error2 = \
1381 copyout((caddr_t)&sel->obits[(x) * nw], uap->name, ni))) \
1382 error = error2; \
1383 } while (0)
1384
1385 if (error == 0) {
1386 int error2;
1387
1388 putbits(in, 0);
1389 putbits(ou, 1);
1390 putbits(ex, 2);
1391 #undef putbits
1392 }
1393
1394 if (error != EINTR && sel_pass == SEL_SECONDPASS && uth->uu_flag & UT_SAS_OLDMASK) {
1395 /* restore signal mask - continuation case */
1396 uth->uu_sigmask = uth->uu_oldmask;
1397 uth->uu_oldmask = 0;
1398 uth->uu_flag &= ~UT_SAS_OLDMASK;
1399 }
1400
1401 return(error);
1402 }
1403
1404
1405 /**
1406 * remove the fileproc's underlying waitq from the supplied waitq set;
1407 * clear FP_INSELECT when appropriate
1408 *
1409 * Parameters:
1410 * fp File proc that is potentially currently in select
1411 * wqset Waitq set to which the fileproc may belong
1412 * (usually this is the thread's private waitq set)
1413 * Conditions:
1414 * proc_fdlock is held
1415 */
1416 static void selunlinkfp(struct fileproc *fp, uint64_t wqp_id, struct waitq_set *wqset)
1417 {
1418 int valid_set = waitq_set_is_valid(wqset);
1419 int valid_q = !!wqp_id;
1420
1421 /*
1422 * This could be called (from selcount error path) before we setup
1423 * the thread's wqset. Check the wqset passed in, and only unlink if
1424 * the set is valid.
1425 */
1426
1427 /* unlink the underlying waitq from the input set (thread waitq set) */
1428 if (valid_q && valid_set)
1429 waitq_unlink_by_prepost_id(wqp_id, wqset);
1430
1431 /* allow passing a NULL/invalid fp for seldrop unwind */
1432 if (!fp || !(fp->f_flags & (FP_INSELECT|FP_SELCONFLICT)))
1433 return;
1434
1435 /*
1436 * We can always remove the conflict queue from our thread's set: this
1437 * will not affect other threads that potentially need to be awoken on
1438 * the conflict queue during a fileproc_drain - those sets will still
1439 * be linked with the global conflict queue, and the last waiter
1440 * on the fp clears the CONFLICT marker.
1441 */
1442 if (valid_set && (fp->f_flags & FP_SELCONFLICT))
1443 waitq_unlink(&select_conflict_queue, wqset);
1444
1445 /* jca: TODO:
1446 * This isn't quite right - we don't actually know if this
1447 * fileproc is in another select or not! Here we just assume
1448 * that if we were the first thread to select on the FD, then
1449 * we'll be the one to clear this flag...
1450 */
1451 if (valid_set && fp->f_wset == (void *)wqset) {
1452 fp->f_flags &= ~FP_INSELECT;
1453 fp->f_wset = NULL;
1454 }
1455 }
1456
1457 /**
1458 * connect a fileproc to the given wqset, potentially bridging to a waitq
1459 * pointed to indirectly by wq_data
1460 *
1461 * Parameters:
1462 * fp File proc potentially currently in select
1463 * wq_data Pointer to a pointer to a waitq (could be NULL)
1464 * wqset Waitq set to which the fileproc should now belong
1465 * (usually this is the thread's private waitq set)
1466 *
1467 * Conditions:
1468 * proc_fdlock is held
1469 */
1470 static uint64_t sellinkfp(struct fileproc *fp, void **wq_data, struct waitq_set *wqset)
1471 {
1472 struct waitq *f_wq = NULL;
1473
1474 if ((fp->f_flags & FP_INSELECT) != FP_INSELECT) {
1475 if (wq_data)
1476 panic("non-null data:%p on fp:%p not in select?!"
1477 "(wqset:%p)", wq_data, fp, wqset);
1478 return 0;
1479 }
1480
1481 if ((fp->f_flags & FP_SELCONFLICT) == FP_SELCONFLICT) {
1482 /*
1483 * The conflict queue requires disabling interrupts, so we
1484 * need to explicitly reserve a link object to avoid a
1485 * panic/assert in the waitq code. Hopefully this extra step
1486 * can be avoided if we can split the waitq structure into
1487 * blocking and linkage sub-structures.
1488 */
1489 uint64_t reserved_link = waitq_link_reserve(&select_conflict_queue);
1490 waitq_link(&select_conflict_queue, wqset, WAITQ_SHOULD_LOCK, &reserved_link);
1491 waitq_link_release(reserved_link);
1492 }
1493
1494 /*
1495 * The wq_data parameter has potentially been set by selrecord called
1496 * from a subsystems fo_select() function. If the subsystem does not
1497 * call selrecord, then wq_data will be NULL
1498 *
1499 * Use memcpy to get the value into a proper pointer because
1500 * wq_data most likely points to a stack variable that could be
1501 * unaligned on 32-bit systems.
1502 */
1503 if (wq_data) {
1504 memcpy(&f_wq, wq_data, sizeof(f_wq));
1505 if (!waitq_is_valid(f_wq))
1506 f_wq = NULL;
1507 }
1508
1509 /* record the first thread's wqset in the fileproc structure */
1510 if (!fp->f_wset)
1511 fp->f_wset = (void *)wqset;
1512
1513 /* handles NULL f_wq */
1514 return waitq_get_prepost_id(f_wq);
1515 }
1516
1517
1518 /*
1519 * selscan
1520 *
1521 * Parameters: p Process performing the select
1522 * sel The per-thread select context structure
1523 * nfd The number of file descriptors to scan
1524 * retval The per thread system call return area
1525 * sel_pass Which pass this is; allowed values are
1526 * SEL_FIRSTPASS and SEL_SECONDPASS
1527 * wqset The per thread wait queue set
1528 *
1529 * Returns: 0 Success
1530 * EIO Invalid p->p_fd field XXX Obsolete?
1531 * EBADF One of the files in the bit vector is
1532 * invalid.
1533 */
1534 static int
1535 selscan(struct proc *p, struct _select *sel, struct _select_data * seldata,
1536 int nfd, int32_t *retval, int sel_pass, struct waitq_set *wqset)
1537 {
1538 struct filedesc *fdp = p->p_fd;
1539 int msk, i, j, fd;
1540 u_int32_t bits;
1541 struct fileproc *fp;
1542 int n = 0; /* count of bits */
1543 int nc = 0; /* bit vector offset (nc'th bit) */
1544 static int flag[3] = { FREAD, FWRITE, 0 };
1545 u_int32_t *iptr, *optr;
1546 u_int nw;
1547 u_int32_t *ibits, *obits;
1548 uint64_t reserved_link, *rl_ptr = NULL;
1549 int count;
1550 struct vfs_context context = *vfs_context_current();
1551
1552 /*
1553 * Problems when reboot; due to MacOSX signal probs
1554 * in Beaker1C ; verify that the p->p_fd is valid
1555 */
1556 if (fdp == NULL) {
1557 *retval=0;
1558 return(EIO);
1559 }
1560 ibits = sel->ibits;
1561 obits = sel->obits;
1562
1563 nw = howmany(nfd, NFDBITS);
1564
1565 count = seldata->count;
1566
1567 nc = 0;
1568 if (!count) {
1569 *retval = 0;
1570 return 0;
1571 }
1572
1573 proc_fdlock(p);
1574 for (msk = 0; msk < 3; msk++) {
1575 iptr = (u_int32_t *)&ibits[msk * nw];
1576 optr = (u_int32_t *)&obits[msk * nw];
1577
1578 for (i = 0; i < nfd; i += NFDBITS) {
1579 bits = iptr[i/NFDBITS];
1580
1581 while ((j = ffs(bits)) && (fd = i + --j) < nfd) {
1582 bits &= ~(1 << j);
1583
1584 if (fd < fdp->fd_nfiles)
1585 fp = fdp->fd_ofiles[fd];
1586 else
1587 fp = NULL;
1588
1589 if (fp == NULL || (fdp->fd_ofileflags[fd] & UF_RESERVED)) {
1590 /*
1591 * If we abort because of a bad
1592 * fd, let the caller unwind...
1593 */
1594 proc_fdunlock(p);
1595 return(EBADF);
1596 }
1597 if (sel_pass == SEL_SECONDPASS) {
1598 reserved_link = 0;
1599 rl_ptr = NULL;
1600 selunlinkfp(fp, seldata->wqp[nc], wqset);
1601 } else {
1602 reserved_link = waitq_link_reserve((struct waitq *)wqset);
1603 rl_ptr = &reserved_link;
1604 if (fp->f_flags & FP_INSELECT)
1605 /* someone is already in select on this fp */
1606 fp->f_flags |= FP_SELCONFLICT;
1607 else
1608 fp->f_flags |= FP_INSELECT;
1609 }
1610
1611 context.vc_ucred = fp->f_cred;
1612
1613 /*
1614 * stash this value b/c fo_select may replace
1615 * reserved_link with a pointer to a waitq object
1616 */
1617 uint64_t rsvd = reserved_link;
1618
1619 /* The select; set the bit, if true */
1620 if (fp->f_ops && fp->f_type
1621 && fo_select(fp, flag[msk], rl_ptr, &context)) {
1622 optr[fd/NFDBITS] |= (1 << (fd % NFDBITS));
1623 n++;
1624 }
1625 if (sel_pass == SEL_FIRSTPASS) {
1626 waitq_link_release(rsvd);
1627 /*
1628 * If the fp's supporting selinfo structure was linked
1629 * to this thread's waitq set, then 'reserved_link'
1630 * will have been updated by selrecord to be a pointer
1631 * to the selinfo's waitq.
1632 */
1633 if (reserved_link == rsvd)
1634 rl_ptr = NULL; /* fo_select never called selrecord() */
1635 /*
1636 * Hook up the thread's waitq set either to
1637 * the fileproc structure, or to the global
1638 * conflict queue: but only on the first
1639 * select pass.
1640 */
1641 seldata->wqp[nc] = sellinkfp(fp, (void **)rl_ptr, wqset);
1642 }
1643 nc++;
1644 }
1645 }
1646 }
1647 proc_fdunlock(p);
1648
1649 *retval = n;
1650 return (0);
1651 }
1652
1653 int poll_callback(struct kqueue *, struct kevent_internal_s *, void *);
1654
1655 struct poll_continue_args {
1656 user_addr_t pca_fds;
1657 u_int pca_nfds;
1658 u_int pca_rfds;
1659 };
1660
1661 int
1662 poll(struct proc *p, struct poll_args *uap, int32_t *retval)
1663 {
1664 __pthread_testcancel(1);
1665 return(poll_nocancel(p, (struct poll_nocancel_args *)uap, retval));
1666 }
1667
1668
1669 int
1670 poll_nocancel(struct proc *p, struct poll_nocancel_args *uap, int32_t *retval)
1671 {
1672 struct poll_continue_args *cont;
1673 struct pollfd *fds;
1674 struct kqueue *kq;
1675 struct timeval atv;
1676 int ncoll, error = 0;
1677 u_int nfds = uap->nfds;
1678 u_int rfds = 0;
1679 u_int i;
1680 size_t ni;
1681
1682 /*
1683 * This is kinda bogus. We have fd limits, but that is not
1684 * really related to the size of the pollfd array. Make sure
1685 * we let the process use at least FD_SETSIZE entries and at
1686 * least enough for the current limits. We want to be reasonably
1687 * safe, but not overly restrictive.
1688 */
1689 if (nfds > OPEN_MAX ||
1690 (nfds > p->p_rlimit[RLIMIT_NOFILE].rlim_cur && (proc_suser(p) || nfds > FD_SETSIZE)))
1691 return (EINVAL);
1692
1693 kq = kqueue_alloc(p, 0);
1694 if (kq == NULL)
1695 return (EAGAIN);
1696
1697 ni = nfds * sizeof(struct pollfd) + sizeof(struct poll_continue_args);
1698 MALLOC(cont, struct poll_continue_args *, ni, M_TEMP, M_WAITOK);
1699 if (NULL == cont) {
1700 error = EAGAIN;
1701 goto out;
1702 }
1703
1704 fds = (struct pollfd *)&cont[1];
1705 error = copyin(uap->fds, fds, nfds * sizeof(struct pollfd));
1706 if (error)
1707 goto out;
1708
1709 if (uap->timeout != -1) {
1710 struct timeval rtv;
1711
1712 atv.tv_sec = uap->timeout / 1000;
1713 atv.tv_usec = (uap->timeout % 1000) * 1000;
1714 if (itimerfix(&atv)) {
1715 error = EINVAL;
1716 goto out;
1717 }
1718 getmicrouptime(&rtv);
1719 timevaladd(&atv, &rtv);
1720 } else {
1721 atv.tv_sec = 0;
1722 atv.tv_usec = 0;
1723 }
1724
1725 /* JMM - all this P_SELECT stuff is bogus */
1726 ncoll = nselcoll;
1727 OSBitOrAtomic(P_SELECT, &p->p_flag);
1728 for (i = 0; i < nfds; i++) {
1729 short events = fds[i].events;
1730
1731 /* per spec, ignore fd values below zero */
1732 if (fds[i].fd < 0) {
1733 fds[i].revents = 0;
1734 continue;
1735 }
1736
1737 /* convert the poll event into a kqueue kevent */
1738 struct kevent_internal_s kev = {
1739 .ident = fds[i].fd,
1740 .flags = EV_ADD | EV_ONESHOT | EV_POLL,
1741 .udata = CAST_USER_ADDR_T(&fds[i]) };
1742
1743 /* Handle input events */
1744 if (events & ( POLLIN | POLLRDNORM | POLLPRI | POLLRDBAND | POLLHUP )) {
1745 kev.filter = EVFILT_READ;
1746 if (events & ( POLLPRI | POLLRDBAND ))
1747 kev.flags |= EV_OOBAND;
1748 kevent_register(kq, &kev, p);
1749 }
1750
1751 /* Handle output events */
1752 if ((kev.flags & EV_ERROR) == 0 &&
1753 (events & ( POLLOUT | POLLWRNORM | POLLWRBAND ))) {
1754 kev.filter = EVFILT_WRITE;
1755 kevent_register(kq, &kev, p);
1756 }
1757
1758 /* Handle BSD extension vnode events */
1759 if ((kev.flags & EV_ERROR) == 0 &&
1760 (events & ( POLLEXTEND | POLLATTRIB | POLLNLINK | POLLWRITE ))) {
1761 kev.filter = EVFILT_VNODE;
1762 kev.fflags = 0;
1763 if (events & POLLEXTEND)
1764 kev.fflags |= NOTE_EXTEND;
1765 if (events & POLLATTRIB)
1766 kev.fflags |= NOTE_ATTRIB;
1767 if (events & POLLNLINK)
1768 kev.fflags |= NOTE_LINK;
1769 if (events & POLLWRITE)
1770 kev.fflags |= NOTE_WRITE;
1771 kevent_register(kq, &kev, p);
1772 }
1773
1774 if (kev.flags & EV_ERROR) {
1775 fds[i].revents = POLLNVAL;
1776 rfds++;
1777 } else
1778 fds[i].revents = 0;
1779 }
1780
1781 /*
1782 * Did we have any trouble registering?
1783 * If user space passed 0 FDs, then respect any timeout value passed.
1784 * This is an extremely inefficient sleep. If user space passed one or
1785 * more FDs, and we had trouble registering _all_ of them, then bail
1786 * out. If a subset of the provided FDs failed to register, then we
1787 * will still call the kqueue_scan function.
1788 */
1789 if (nfds && (rfds == nfds))
1790 goto done;
1791
1792 /* scan for, and possibly wait for, the kevents to trigger */
1793 cont->pca_fds = uap->fds;
1794 cont->pca_nfds = nfds;
1795 cont->pca_rfds = rfds;
1796 error = kqueue_scan(kq, poll_callback, NULL, cont, NULL, &atv, p);
1797 rfds = cont->pca_rfds;
1798
1799 done:
1800 OSBitAndAtomic(~((uint32_t)P_SELECT), &p->p_flag);
1801 /* poll is not restarted after signals... */
1802 if (error == ERESTART)
1803 error = EINTR;
1804 if (error == EWOULDBLOCK)
1805 error = 0;
1806 if (error == 0) {
1807 error = copyout(fds, uap->fds, nfds * sizeof(struct pollfd));
1808 *retval = rfds;
1809 }
1810
1811 out:
1812 if (NULL != cont)
1813 FREE(cont, M_TEMP);
1814
1815 kqueue_dealloc(kq);
1816 return (error);
1817 }
1818
1819 int
1820 poll_callback(__unused struct kqueue *kq, struct kevent_internal_s *kevp, void *data)
1821 {
1822 struct poll_continue_args *cont = (struct poll_continue_args *)data;
1823 struct pollfd *fds = CAST_DOWN(struct pollfd *, kevp->udata);
1824 short prev_revents = fds->revents;
1825 short mask = 0;
1826
1827 /* convert the results back into revents */
1828 if (kevp->flags & EV_EOF)
1829 fds->revents |= POLLHUP;
1830 if (kevp->flags & EV_ERROR)
1831 fds->revents |= POLLERR;
1832
1833 switch (kevp->filter) {
1834 case EVFILT_READ:
1835 if (fds->revents & POLLHUP)
1836 mask = (POLLIN | POLLRDNORM | POLLPRI | POLLRDBAND );
1837 else {
1838 mask = (POLLIN | POLLRDNORM);
1839 if (kevp->flags & EV_OOBAND)
1840 mask |= (POLLPRI | POLLRDBAND);
1841 }
1842 fds->revents |= (fds->events & mask);
1843 break;
1844
1845 case EVFILT_WRITE:
1846 if (!(fds->revents & POLLHUP))
1847 fds->revents |= (fds->events & ( POLLOUT | POLLWRNORM | POLLWRBAND ));
1848 break;
1849
1850 case EVFILT_VNODE:
1851 if (kevp->fflags & NOTE_EXTEND)
1852 fds->revents |= (fds->events & POLLEXTEND);
1853 if (kevp->fflags & NOTE_ATTRIB)
1854 fds->revents |= (fds->events & POLLATTRIB);
1855 if (kevp->fflags & NOTE_LINK)
1856 fds->revents |= (fds->events & POLLNLINK);
1857 if (kevp->fflags & NOTE_WRITE)
1858 fds->revents |= (fds->events & POLLWRITE);
1859 break;
1860 }
1861
1862 if (fds->revents != 0 && prev_revents == 0)
1863 cont->pca_rfds++;
1864
1865 return 0;
1866 }
1867
1868 int
1869 seltrue(__unused dev_t dev, __unused int flag, __unused struct proc *p)
1870 {
1871
1872 return (1);
1873 }
1874
1875 /*
1876 * selcount
1877 *
1878 * Count the number of bits set in the input bit vector, and establish an
1879 * outstanding fp->f_iocount for each of the descriptors which will be in
1880 * use in the select operation.
1881 *
1882 * Parameters: p The process doing the select
1883 * ibits The input bit vector
1884 * nfd The number of fd's in the vector
1885 * countp Pointer to where to store the bit count
1886 *
1887 * Returns: 0 Success
1888 * EIO Bad per process open file table
1889 * EBADF One of the bits in the input bit vector
1890 * references an invalid fd
1891 *
1892 * Implicit: *countp (modified) Count of fd's
1893 *
1894 * Notes: This function is the first pass under the proc_fdlock() that
1895 * permits us to recognize invalid descriptors in the bit vector;
1896 * the may, however, not remain valid through the drop and
1897 * later reacquisition of the proc_fdlock().
1898 */
1899 static int
1900 selcount(struct proc *p, u_int32_t *ibits, int nfd, int *countp)
1901 {
1902 struct filedesc *fdp = p->p_fd;
1903 int msk, i, j, fd;
1904 u_int32_t bits;
1905 struct fileproc *fp;
1906 int n = 0;
1907 u_int32_t *iptr;
1908 u_int nw;
1909 int error=0;
1910 int dropcount;
1911 int need_wakeup = 0;
1912
1913 /*
1914 * Problems when reboot; due to MacOSX signal probs
1915 * in Beaker1C ; verify that the p->p_fd is valid
1916 */
1917 if (fdp == NULL) {
1918 *countp = 0;
1919 return(EIO);
1920 }
1921 nw = howmany(nfd, NFDBITS);
1922
1923 proc_fdlock(p);
1924 for (msk = 0; msk < 3; msk++) {
1925 iptr = (u_int32_t *)&ibits[msk * nw];
1926 for (i = 0; i < nfd; i += NFDBITS) {
1927 bits = iptr[i/NFDBITS];
1928 while ((j = ffs(bits)) && (fd = i + --j) < nfd) {
1929 bits &= ~(1 << j);
1930
1931 if (fd < fdp->fd_nfiles)
1932 fp = fdp->fd_ofiles[fd];
1933 else
1934 fp = NULL;
1935
1936 if (fp == NULL ||
1937 (fdp->fd_ofileflags[fd] & UF_RESERVED)) {
1938 *countp = 0;
1939 error = EBADF;
1940 goto bad;
1941 }
1942 fp->f_iocount++;
1943 n++;
1944 }
1945 }
1946 }
1947 proc_fdunlock(p);
1948
1949 *countp = n;
1950 return (0);
1951
1952 bad:
1953 dropcount = 0;
1954
1955 if (n == 0)
1956 goto out;
1957 /* Ignore error return; it's already EBADF */
1958 (void)seldrop_locked(p, ibits, nfd, n, &need_wakeup, 1);
1959
1960 out:
1961 proc_fdunlock(p);
1962 if (need_wakeup) {
1963 wakeup(&p->p_fpdrainwait);
1964 }
1965 return(error);
1966 }
1967
1968
1969 /*
1970 * seldrop_locked
1971 *
1972 * Drop outstanding wait queue references set up during selscan(); drop the
1973 * outstanding per fileproc f_iocount() picked up during the selcount().
1974 *
1975 * Parameters: p Process performing the select
1976 * ibits Input bit bector of fd's
1977 * nfd Number of fd's
1978 * lim Limit to number of vector entries to
1979 * consider, or -1 for "all"
1980 * inselect True if
1981 * need_wakeup Pointer to flag to set to do a wakeup
1982 * if f_iocont on any descriptor goes to 0
1983 *
1984 * Returns: 0 Success
1985 * EBADF One or more fds in the bit vector
1986 * were invalid, but the rest
1987 * were successfully dropped
1988 *
1989 * Notes: An fd make become bad while the proc_fdlock() is not held,
1990 * if a multithreaded application closes the fd out from under
1991 * the in progress select. In this case, we still have to
1992 * clean up after the set up on the remaining fds.
1993 */
1994 static int
1995 seldrop_locked(struct proc *p, u_int32_t *ibits, int nfd, int lim, int *need_wakeup, int fromselcount)
1996 {
1997 struct filedesc *fdp = p->p_fd;
1998 int msk, i, j, nc, fd;
1999 u_int32_t bits;
2000 struct fileproc *fp;
2001 u_int32_t *iptr;
2002 u_int nw;
2003 int error = 0;
2004 int dropcount = 0;
2005 uthread_t uth = get_bsdthread_info(current_thread());
2006 struct _select_data *seldata;
2007
2008 *need_wakeup = 0;
2009
2010 /*
2011 * Problems when reboot; due to MacOSX signal probs
2012 * in Beaker1C ; verify that the p->p_fd is valid
2013 */
2014 if (fdp == NULL) {
2015 return(EIO);
2016 }
2017
2018 nw = howmany(nfd, NFDBITS);
2019 seldata = &uth->uu_kevent.ss_select_data;
2020
2021 nc = 0;
2022 for (msk = 0; msk < 3; msk++) {
2023 iptr = (u_int32_t *)&ibits[msk * nw];
2024 for (i = 0; i < nfd; i += NFDBITS) {
2025 bits = iptr[i/NFDBITS];
2026 while ((j = ffs(bits)) && (fd = i + --j) < nfd) {
2027 bits &= ~(1 << j);
2028 fp = fdp->fd_ofiles[fd];
2029 /*
2030 * If we've already dropped as many as were
2031 * counted/scanned, then we are done.
2032 */
2033 if ((fromselcount != 0) && (++dropcount > lim))
2034 goto done;
2035
2036 /*
2037 * unlink even potentially NULL fileprocs.
2038 * If the FD was closed from under us, we
2039 * still need to cleanup the waitq links!
2040 */
2041 selunlinkfp(fp,
2042 seldata->wqp ? seldata->wqp[nc] : 0,
2043 uth->uu_wqset);
2044
2045 nc++;
2046
2047 if (fp == NULL) {
2048 /* skip (now) bad fds */
2049 error = EBADF;
2050 continue;
2051 }
2052
2053 fp->f_iocount--;
2054 if (fp->f_iocount < 0)
2055 panic("f_iocount overdecrement!");
2056
2057 if (fp->f_iocount == 0) {
2058 /*
2059 * The last iocount is responsible for clearing
2060 * selconfict flag - even if we didn't set it -
2061 * and is also responsible for waking up anyone
2062 * waiting on iocounts to drain.
2063 */
2064 if (fp->f_flags & FP_SELCONFLICT)
2065 fp->f_flags &= ~FP_SELCONFLICT;
2066 if (p->p_fpdrainwait) {
2067 p->p_fpdrainwait = 0;
2068 *need_wakeup = 1;
2069 }
2070 }
2071 }
2072 }
2073 }
2074 done:
2075 return (error);
2076 }
2077
2078
2079 static int
2080 seldrop(struct proc *p, u_int32_t *ibits, int nfd)
2081 {
2082 int error;
2083 int need_wakeup = 0;
2084
2085 proc_fdlock(p);
2086 error = seldrop_locked(p, ibits, nfd, nfd, &need_wakeup, 0);
2087 proc_fdunlock(p);
2088 if (need_wakeup) {
2089 wakeup(&p->p_fpdrainwait);
2090 }
2091 return (error);
2092 }
2093
2094 /*
2095 * Record a select request.
2096 */
2097 void
2098 selrecord(__unused struct proc *selector, struct selinfo *sip, void *s_data)
2099 {
2100 thread_t cur_act = current_thread();
2101 struct uthread * ut = get_bsdthread_info(cur_act);
2102 /* on input, s_data points to the 64-bit ID of a reserved link object */
2103 uint64_t *reserved_link = (uint64_t *)s_data;
2104
2105 /* need to look at collisions */
2106
2107 /*do not record if this is second pass of select */
2108 if (!s_data)
2109 return;
2110
2111 if ((sip->si_flags & SI_INITED) == 0) {
2112 waitq_init(&sip->si_waitq, SYNC_POLICY_FIFO);
2113 sip->si_flags |= SI_INITED;
2114 sip->si_flags &= ~SI_CLEAR;
2115 }
2116
2117 if (sip->si_flags & SI_RECORDED)
2118 sip->si_flags |= SI_COLL;
2119 else
2120 sip->si_flags &= ~SI_COLL;
2121
2122 sip->si_flags |= SI_RECORDED;
2123 /* note: this checks for pre-existing linkage */
2124 waitq_link(&sip->si_waitq, ut->uu_wqset,
2125 WAITQ_SHOULD_LOCK, reserved_link);
2126
2127 /*
2128 * Always consume the reserved link.
2129 * We can always call waitq_link_release() safely because if
2130 * waitq_link is successful, it consumes the link and resets the
2131 * value to 0, in which case our call to release becomes a no-op.
2132 * If waitq_link fails, then the following release call will actually
2133 * release the reserved link object.
2134 */
2135 waitq_link_release(*reserved_link);
2136 *reserved_link = 0;
2137
2138 /*
2139 * Use the s_data pointer as an output parameter as well
2140 * This avoids changing the prototype for this function which is
2141 * used by many kexts. We need to surface the waitq object
2142 * associated with the selinfo we just added to the thread's select
2143 * set. New waitq sets do not have back-pointers to set members, so
2144 * the only way to clear out set linkage objects is to go from the
2145 * waitq to the set. We use a memcpy because s_data could be
2146 * pointing to an unaligned value on the stack
2147 * (especially on 32-bit systems)
2148 */
2149 void *wqptr = (void *)&sip->si_waitq;
2150 memcpy((void *)s_data, (void *)&wqptr, sizeof(void *));
2151
2152 return;
2153 }
2154
2155 void
2156 selwakeup(struct selinfo *sip)
2157 {
2158
2159 if ((sip->si_flags & SI_INITED) == 0) {
2160 return;
2161 }
2162
2163 if (sip->si_flags & SI_COLL) {
2164 nselcoll++;
2165 sip->si_flags &= ~SI_COLL;
2166 #if 0
2167 /* will not support */
2168 //wakeup((caddr_t)&selwait);
2169 #endif
2170 }
2171
2172 if (sip->si_flags & SI_RECORDED) {
2173 waitq_wakeup64_all(&sip->si_waitq, NO_EVENT64,
2174 THREAD_AWAKENED, WAITQ_ALL_PRIORITIES);
2175 sip->si_flags &= ~SI_RECORDED;
2176 }
2177
2178 }
2179
2180 void
2181 selthreadclear(struct selinfo *sip)
2182 {
2183 struct waitq *wq;
2184
2185 if ((sip->si_flags & SI_INITED) == 0) {
2186 return;
2187 }
2188 if (sip->si_flags & SI_RECORDED) {
2189 selwakeup(sip);
2190 sip->si_flags &= ~(SI_RECORDED | SI_COLL);
2191 }
2192 sip->si_flags |= SI_CLEAR;
2193 sip->si_flags &= ~SI_INITED;
2194
2195 wq = &sip->si_waitq;
2196
2197 /*
2198 * Higher level logic may have a handle on this waitq's prepost ID,
2199 * but that's OK because the waitq_deinit will remove/invalidate the
2200 * prepost object (as well as mark the waitq invalid). This de-couples
2201 * us from any callers that may have a handle to this waitq via the
2202 * prepost ID.
2203 */
2204 waitq_deinit(wq);
2205 }
2206
2207
2208
2209
2210 #define DBG_POST 0x10
2211 #define DBG_WATCH 0x11
2212 #define DBG_WAIT 0x12
2213 #define DBG_MOD 0x13
2214 #define DBG_EWAKEUP 0x14
2215 #define DBG_ENQUEUE 0x15
2216 #define DBG_DEQUEUE 0x16
2217
2218 #define DBG_MISC_POST MISCDBG_CODE(DBG_EVENT,DBG_POST)
2219 #define DBG_MISC_WATCH MISCDBG_CODE(DBG_EVENT,DBG_WATCH)
2220 #define DBG_MISC_WAIT MISCDBG_CODE(DBG_EVENT,DBG_WAIT)
2221 #define DBG_MISC_MOD MISCDBG_CODE(DBG_EVENT,DBG_MOD)
2222 #define DBG_MISC_EWAKEUP MISCDBG_CODE(DBG_EVENT,DBG_EWAKEUP)
2223 #define DBG_MISC_ENQUEUE MISCDBG_CODE(DBG_EVENT,DBG_ENQUEUE)
2224 #define DBG_MISC_DEQUEUE MISCDBG_CODE(DBG_EVENT,DBG_DEQUEUE)
2225
2226
2227 #define EVPROCDEQUE(p, evq) do { \
2228 proc_lock(p); \
2229 if (evq->ee_flags & EV_QUEUED) { \
2230 TAILQ_REMOVE(&p->p_evlist, evq, ee_plist); \
2231 evq->ee_flags &= ~EV_QUEUED; \
2232 } \
2233 proc_unlock(p); \
2234 } while (0);
2235
2236
2237 /*
2238 * called upon socket close. deque and free all events for
2239 * the socket... socket must be locked by caller.
2240 */
2241 void
2242 evsofree(struct socket *sp)
2243 {
2244 struct eventqelt *evq, *next;
2245 proc_t p;
2246
2247 if (sp == NULL)
2248 return;
2249
2250 for (evq = sp->so_evlist.tqh_first; evq != NULL; evq = next) {
2251 next = evq->ee_slist.tqe_next;
2252 p = evq->ee_proc;
2253
2254 if (evq->ee_flags & EV_QUEUED) {
2255 EVPROCDEQUE(p, evq);
2256 }
2257 TAILQ_REMOVE(&sp->so_evlist, evq, ee_slist); // remove from socket q
2258 FREE(evq, M_TEMP);
2259 }
2260 }
2261
2262
2263 /*
2264 * called upon pipe close. deque and free all events for
2265 * the pipe... pipe must be locked by caller
2266 */
2267 void
2268 evpipefree(struct pipe *cpipe)
2269 {
2270 struct eventqelt *evq, *next;
2271 proc_t p;
2272
2273 for (evq = cpipe->pipe_evlist.tqh_first; evq != NULL; evq = next) {
2274 next = evq->ee_slist.tqe_next;
2275 p = evq->ee_proc;
2276
2277 EVPROCDEQUE(p, evq);
2278
2279 TAILQ_REMOVE(&cpipe->pipe_evlist, evq, ee_slist); // remove from pipe q
2280 FREE(evq, M_TEMP);
2281 }
2282 }
2283
2284
2285 /*
2286 * enqueue this event if it's not already queued. wakeup
2287 * the proc if we do queue this event to it...
2288 * entered with proc lock held... we drop it before
2289 * doing the wakeup and return in that state
2290 */
2291 static void
2292 evprocenque(struct eventqelt *evq)
2293 {
2294 proc_t p;
2295
2296 assert(evq);
2297 p = evq->ee_proc;
2298
2299 KERNEL_DEBUG(DBG_MISC_ENQUEUE|DBG_FUNC_START, (uint32_t)evq, evq->ee_flags, evq->ee_eventmask,0,0);
2300
2301 proc_lock(p);
2302
2303 if (evq->ee_flags & EV_QUEUED) {
2304 proc_unlock(p);
2305
2306 KERNEL_DEBUG(DBG_MISC_ENQUEUE|DBG_FUNC_END, 0,0,0,0,0);
2307 return;
2308 }
2309 evq->ee_flags |= EV_QUEUED;
2310
2311 TAILQ_INSERT_TAIL(&p->p_evlist, evq, ee_plist);
2312
2313 proc_unlock(p);
2314
2315 wakeup(&p->p_evlist);
2316
2317 KERNEL_DEBUG(DBG_MISC_ENQUEUE|DBG_FUNC_END, 0,0,0,0,0);
2318 }
2319
2320
2321 /*
2322 * pipe lock must be taken by the caller
2323 */
2324 void
2325 postpipeevent(struct pipe *pipep, int event)
2326 {
2327 int mask;
2328 struct eventqelt *evq;
2329
2330 if (pipep == NULL)
2331 return;
2332 KERNEL_DEBUG(DBG_MISC_POST|DBG_FUNC_START, event,0,0,1,0);
2333
2334 for (evq = pipep->pipe_evlist.tqh_first;
2335 evq != NULL; evq = evq->ee_slist.tqe_next) {
2336
2337 if (evq->ee_eventmask == 0)
2338 continue;
2339 mask = 0;
2340
2341 switch (event & (EV_RWBYTES | EV_RCLOSED | EV_WCLOSED)) {
2342
2343 case EV_RWBYTES:
2344 if ((evq->ee_eventmask & EV_RE) && pipep->pipe_buffer.cnt) {
2345 mask |= EV_RE;
2346 evq->ee_req.er_rcnt = pipep->pipe_buffer.cnt;
2347 }
2348 if ((evq->ee_eventmask & EV_WR) &&
2349 (MAX(pipep->pipe_buffer.size,PIPE_SIZE) - pipep->pipe_buffer.cnt) >= PIPE_BUF) {
2350
2351 if (pipep->pipe_state & PIPE_EOF) {
2352 mask |= EV_WR|EV_RESET;
2353 break;
2354 }
2355 mask |= EV_WR;
2356 evq->ee_req.er_wcnt = MAX(pipep->pipe_buffer.size, PIPE_SIZE) - pipep->pipe_buffer.cnt;
2357 }
2358 break;
2359
2360 case EV_WCLOSED:
2361 case EV_RCLOSED:
2362 if ((evq->ee_eventmask & EV_RE)) {
2363 mask |= EV_RE|EV_RCLOSED;
2364 }
2365 if ((evq->ee_eventmask & EV_WR)) {
2366 mask |= EV_WR|EV_WCLOSED;
2367 }
2368 break;
2369
2370 default:
2371 return;
2372 }
2373 if (mask) {
2374 /*
2375 * disarm... postevents are nops until this event is 'read' via
2376 * waitevent and then re-armed via modwatch
2377 */
2378 evq->ee_eventmask = 0;
2379
2380 /*
2381 * since events are disarmed until after the waitevent
2382 * the ee_req.er_xxxx fields can't change once we've
2383 * inserted this event into the proc queue...
2384 * therefore, the waitevent will see a 'consistent'
2385 * snapshot of the event, even though it won't hold
2386 * the pipe lock, and we're updating the event outside
2387 * of the proc lock, which it will hold
2388 */
2389 evq->ee_req.er_eventbits |= mask;
2390
2391 KERNEL_DEBUG(DBG_MISC_POST, (uint32_t)evq, evq->ee_req.er_eventbits, mask, 1,0);
2392
2393 evprocenque(evq);
2394 }
2395 }
2396 KERNEL_DEBUG(DBG_MISC_POST|DBG_FUNC_END, 0,0,0,1,0);
2397 }
2398
2399 #if SOCKETS
2400 /*
2401 * given either a sockbuf or a socket run down the
2402 * event list and queue ready events found...
2403 * the socket must be locked by the caller
2404 */
2405 void
2406 postevent(struct socket *sp, struct sockbuf *sb, int event)
2407 {
2408 int mask;
2409 struct eventqelt *evq;
2410 struct tcpcb *tp;
2411
2412 if (sb)
2413 sp = sb->sb_so;
2414 if (sp == NULL)
2415 return;
2416
2417 KERNEL_DEBUG(DBG_MISC_POST|DBG_FUNC_START, (int)sp, event, 0, 0, 0);
2418
2419 for (evq = sp->so_evlist.tqh_first;
2420 evq != NULL; evq = evq->ee_slist.tqe_next) {
2421
2422 if (evq->ee_eventmask == 0)
2423 continue;
2424 mask = 0;
2425
2426 /* ready for reading:
2427 - byte cnt >= receive low water mark
2428 - read-half of conn closed
2429 - conn pending for listening sock
2430 - socket error pending
2431
2432 ready for writing
2433 - byte cnt avail >= send low water mark
2434 - write half of conn closed
2435 - socket error pending
2436 - non-blocking conn completed successfully
2437
2438 exception pending
2439 - out of band data
2440 - sock at out of band mark
2441 */
2442
2443 switch (event & EV_DMASK) {
2444
2445 case EV_OOB:
2446 if ((evq->ee_eventmask & EV_EX)) {
2447 if (sp->so_oobmark || ((sp->so_state & SS_RCVATMARK)))
2448 mask |= EV_EX|EV_OOB;
2449 }
2450 break;
2451
2452 case EV_RWBYTES|EV_OOB:
2453 if ((evq->ee_eventmask & EV_EX)) {
2454 if (sp->so_oobmark || ((sp->so_state & SS_RCVATMARK)))
2455 mask |= EV_EX|EV_OOB;
2456 }
2457 /*
2458 * fall into the next case
2459 */
2460 case EV_RWBYTES:
2461 if ((evq->ee_eventmask & EV_RE) && soreadable(sp)) {
2462 /* for AFP/OT purposes; may go away in future */
2463 if ((SOCK_DOM(sp) == PF_INET ||
2464 SOCK_DOM(sp) == PF_INET6) &&
2465 SOCK_PROTO(sp) == IPPROTO_TCP &&
2466 (sp->so_error == ECONNREFUSED ||
2467 sp->so_error == ECONNRESET)) {
2468 if (sp->so_pcb == NULL ||
2469 sotoinpcb(sp)->inp_state ==
2470 INPCB_STATE_DEAD ||
2471 (tp = sototcpcb(sp)) == NULL ||
2472 tp->t_state == TCPS_CLOSED) {
2473 mask |= EV_RE|EV_RESET;
2474 break;
2475 }
2476 }
2477 mask |= EV_RE;
2478 evq->ee_req.er_rcnt = sp->so_rcv.sb_cc;
2479
2480 if (sp->so_state & SS_CANTRCVMORE) {
2481 mask |= EV_FIN;
2482 break;
2483 }
2484 }
2485 if ((evq->ee_eventmask & EV_WR) && sowriteable(sp)) {
2486 /* for AFP/OT purposes; may go away in future */
2487 if ((SOCK_DOM(sp) == PF_INET ||
2488 SOCK_DOM(sp) == PF_INET6) &&
2489 SOCK_PROTO(sp) == IPPROTO_TCP &&
2490 (sp->so_error == ECONNREFUSED ||
2491 sp->so_error == ECONNRESET)) {
2492 if (sp->so_pcb == NULL ||
2493 sotoinpcb(sp)->inp_state ==
2494 INPCB_STATE_DEAD ||
2495 (tp = sototcpcb(sp)) == NULL ||
2496 tp->t_state == TCPS_CLOSED) {
2497 mask |= EV_WR|EV_RESET;
2498 break;
2499 }
2500 }
2501 mask |= EV_WR;
2502 evq->ee_req.er_wcnt = sbspace(&sp->so_snd);
2503 }
2504 break;
2505
2506 case EV_RCONN:
2507 if ((evq->ee_eventmask & EV_RE)) {
2508 mask |= EV_RE|EV_RCONN;
2509 evq->ee_req.er_rcnt = sp->so_qlen + 1; // incl this one
2510 }
2511 break;
2512
2513 case EV_WCONN:
2514 if ((evq->ee_eventmask & EV_WR)) {
2515 mask |= EV_WR|EV_WCONN;
2516 }
2517 break;
2518
2519 case EV_RCLOSED:
2520 if ((evq->ee_eventmask & EV_RE)) {
2521 mask |= EV_RE|EV_RCLOSED;
2522 }
2523 break;
2524
2525 case EV_WCLOSED:
2526 if ((evq->ee_eventmask & EV_WR)) {
2527 mask |= EV_WR|EV_WCLOSED;
2528 }
2529 break;
2530
2531 case EV_FIN:
2532 if (evq->ee_eventmask & EV_RE) {
2533 mask |= EV_RE|EV_FIN;
2534 }
2535 break;
2536
2537 case EV_RESET:
2538 case EV_TIMEOUT:
2539 if (evq->ee_eventmask & EV_RE) {
2540 mask |= EV_RE | event;
2541 }
2542 if (evq->ee_eventmask & EV_WR) {
2543 mask |= EV_WR | event;
2544 }
2545 break;
2546
2547 default:
2548 KERNEL_DEBUG(DBG_MISC_POST|DBG_FUNC_END, (int)sp, -1, 0, 0, 0);
2549 return;
2550 } /* switch */
2551
2552 KERNEL_DEBUG(DBG_MISC_POST, (int)evq, evq->ee_eventmask, evq->ee_req.er_eventbits, mask, 0);
2553
2554 if (mask) {
2555 /*
2556 * disarm... postevents are nops until this event is 'read' via
2557 * waitevent and then re-armed via modwatch
2558 */
2559 evq->ee_eventmask = 0;
2560
2561 /*
2562 * since events are disarmed until after the waitevent
2563 * the ee_req.er_xxxx fields can't change once we've
2564 * inserted this event into the proc queue...
2565 * since waitevent can't see this event until we
2566 * enqueue it, waitevent will see a 'consistent'
2567 * snapshot of the event, even though it won't hold
2568 * the socket lock, and we're updating the event outside
2569 * of the proc lock, which it will hold
2570 */
2571 evq->ee_req.er_eventbits |= mask;
2572
2573 evprocenque(evq);
2574 }
2575 }
2576 KERNEL_DEBUG(DBG_MISC_POST|DBG_FUNC_END, (int)sp, 0, 0, 0, 0);
2577 }
2578 #endif /* SOCKETS */
2579
2580
2581 /*
2582 * watchevent system call. user passes us an event to watch
2583 * for. we malloc an event object, initialize it, and queue
2584 * it to the open socket. when the event occurs, postevent()
2585 * will enque it back to our proc where we can retrieve it
2586 * via waitevent().
2587 *
2588 * should this prevent duplicate events on same socket?
2589 *
2590 * Returns:
2591 * ENOMEM No memory for operation
2592 * copyin:EFAULT
2593 */
2594 int
2595 watchevent(proc_t p, struct watchevent_args *uap, __unused int *retval)
2596 {
2597 struct eventqelt *evq = (struct eventqelt *)0;
2598 struct eventqelt *np = NULL;
2599 struct eventreq64 *erp;
2600 struct fileproc *fp = NULL;
2601 int error;
2602
2603 KERNEL_DEBUG(DBG_MISC_WATCH|DBG_FUNC_START, 0,0,0,0,0);
2604
2605 // get a qelt and fill with users req
2606 MALLOC(evq, struct eventqelt *, sizeof(struct eventqelt), M_TEMP, M_WAITOK);
2607
2608 if (evq == NULL)
2609 return (ENOMEM);
2610 erp = &evq->ee_req;
2611
2612 // get users request pkt
2613
2614 if (IS_64BIT_PROCESS(p)) {
2615 error = copyin(uap->u_req, (caddr_t)erp, sizeof(struct eventreq64));
2616 } else {
2617 struct eventreq32 er32;
2618
2619 error = copyin(uap->u_req, (caddr_t)&er32, sizeof(struct eventreq32));
2620 if (error == 0) {
2621 /*
2622 * the user only passes in the
2623 * er_type, er_handle and er_data...
2624 * the other fields are initialized
2625 * below, so don't bother to copy
2626 */
2627 erp->er_type = er32.er_type;
2628 erp->er_handle = er32.er_handle;
2629 erp->er_data = (user_addr_t)er32.er_data;
2630 }
2631 }
2632 if (error) {
2633 FREE(evq, M_TEMP);
2634 KERNEL_DEBUG(DBG_MISC_WATCH|DBG_FUNC_END, error,0,0,0,0);
2635
2636 return(error);
2637 }
2638 KERNEL_DEBUG(DBG_MISC_WATCH, erp->er_handle,uap->u_eventmask,(uint32_t)evq,0,0);
2639
2640 // validate, freeing qelt if errors
2641 error = 0;
2642 proc_fdlock(p);
2643
2644 if (erp->er_type != EV_FD) {
2645 error = EINVAL;
2646 } else if ((error = fp_lookup(p, erp->er_handle, &fp, 1)) != 0) {
2647 error = EBADF;
2648 #if SOCKETS
2649 } else if (fp->f_type == DTYPE_SOCKET) {
2650 socket_lock((struct socket *)fp->f_data, 1);
2651 np = ((struct socket *)fp->f_data)->so_evlist.tqh_first;
2652 #endif /* SOCKETS */
2653 } else if (fp->f_type == DTYPE_PIPE) {
2654 PIPE_LOCK((struct pipe *)fp->f_data);
2655 np = ((struct pipe *)fp->f_data)->pipe_evlist.tqh_first;
2656 } else {
2657 fp_drop(p, erp->er_handle, fp, 1);
2658 error = EINVAL;
2659 }
2660 proc_fdunlock(p);
2661
2662 if (error) {
2663 FREE(evq, M_TEMP);
2664
2665 KERNEL_DEBUG(DBG_MISC_WATCH|DBG_FUNC_END, error,0,0,0,0);
2666 return(error);
2667 }
2668
2669 /*
2670 * only allow one watch per file per proc
2671 */
2672 for ( ; np != NULL; np = np->ee_slist.tqe_next) {
2673 if (np->ee_proc == p) {
2674 #if SOCKETS
2675 if (fp->f_type == DTYPE_SOCKET)
2676 socket_unlock((struct socket *)fp->f_data, 1);
2677 else
2678 #endif /* SOCKETS */
2679 PIPE_UNLOCK((struct pipe *)fp->f_data);
2680 fp_drop(p, erp->er_handle, fp, 0);
2681 FREE(evq, M_TEMP);
2682
2683 KERNEL_DEBUG(DBG_MISC_WATCH|DBG_FUNC_END, EINVAL,0,0,0,0);
2684 return(EINVAL);
2685 }
2686 }
2687 erp->er_ecnt = erp->er_rcnt = erp->er_wcnt = erp->er_eventbits = 0;
2688 evq->ee_proc = p;
2689 evq->ee_eventmask = uap->u_eventmask & EV_MASK;
2690 evq->ee_flags = 0;
2691
2692 #if SOCKETS
2693 if (fp->f_type == DTYPE_SOCKET) {
2694 TAILQ_INSERT_TAIL(&((struct socket *)fp->f_data)->so_evlist, evq, ee_slist);
2695 postevent((struct socket *)fp->f_data, 0, EV_RWBYTES); // catch existing events
2696
2697 socket_unlock((struct socket *)fp->f_data, 1);
2698 } else
2699 #endif /* SOCKETS */
2700 {
2701 TAILQ_INSERT_TAIL(&((struct pipe *)fp->f_data)->pipe_evlist, evq, ee_slist);
2702 postpipeevent((struct pipe *)fp->f_data, EV_RWBYTES);
2703
2704 PIPE_UNLOCK((struct pipe *)fp->f_data);
2705 }
2706 fp_drop_event(p, erp->er_handle, fp);
2707
2708 KERNEL_DEBUG(DBG_MISC_WATCH|DBG_FUNC_END, 0,0,0,0,0);
2709 return(0);
2710 }
2711
2712
2713
2714 /*
2715 * waitevent system call.
2716 * grabs the next waiting event for this proc and returns
2717 * it. if no events, user can request to sleep with timeout
2718 * or without or poll mode
2719 * ((tv != NULL && interval == 0) || tv == -1)
2720 */
2721 int
2722 waitevent(proc_t p, struct waitevent_args *uap, int *retval)
2723 {
2724 int error = 0;
2725 struct eventqelt *evq;
2726 struct eventreq64 *erp;
2727 uint64_t abstime, interval;
2728 boolean_t fast_poll = FALSE;
2729 union {
2730 struct eventreq64 er64;
2731 struct eventreq32 er32;
2732 } uer;
2733
2734 interval = 0;
2735
2736 if (uap->tv) {
2737 struct timeval atv;
2738 /*
2739 * check for fast poll method
2740 */
2741 if (IS_64BIT_PROCESS(p)) {
2742 if (uap->tv == (user_addr_t)-1)
2743 fast_poll = TRUE;
2744 } else if (uap->tv == (user_addr_t)((uint32_t)-1))
2745 fast_poll = TRUE;
2746
2747 if (fast_poll == TRUE) {
2748 if (p->p_evlist.tqh_first == NULL) {
2749 KERNEL_DEBUG(DBG_MISC_WAIT|DBG_FUNC_NONE, -1,0,0,0,0);
2750 /*
2751 * poll failed
2752 */
2753 *retval = 1;
2754 return (0);
2755 }
2756 proc_lock(p);
2757 goto retry;
2758 }
2759 if (IS_64BIT_PROCESS(p)) {
2760 struct user64_timeval atv64;
2761 error = copyin(uap->tv, (caddr_t)&atv64, sizeof(atv64));
2762 /* Loses resolution - assume timeout < 68 years */
2763 atv.tv_sec = atv64.tv_sec;
2764 atv.tv_usec = atv64.tv_usec;
2765 } else {
2766 struct user32_timeval atv32;
2767 error = copyin(uap->tv, (caddr_t)&atv32, sizeof(atv32));
2768 atv.tv_sec = atv32.tv_sec;
2769 atv.tv_usec = atv32.tv_usec;
2770 }
2771
2772 if (error)
2773 return(error);
2774 if (itimerfix(&atv)) {
2775 error = EINVAL;
2776 return(error);
2777 }
2778 interval = tvtoabstime(&atv);
2779 }
2780 KERNEL_DEBUG(DBG_MISC_WAIT|DBG_FUNC_START, 0,0,0,0,0);
2781
2782 proc_lock(p);
2783 retry:
2784 if ((evq = p->p_evlist.tqh_first) != NULL) {
2785 /*
2786 * found one... make a local copy while it's still on the queue
2787 * to prevent it from changing while in the midst of copying
2788 * don't want to hold the proc lock across a copyout because
2789 * it might block on a page fault at the target in user space
2790 */
2791 erp = &evq->ee_req;
2792
2793 if (IS_64BIT_PROCESS(p))
2794 bcopy((caddr_t)erp, (caddr_t)&uer.er64, sizeof (struct eventreq64));
2795 else {
2796 uer.er32.er_type = erp->er_type;
2797 uer.er32.er_handle = erp->er_handle;
2798 uer.er32.er_data = (uint32_t)erp->er_data;
2799 uer.er32.er_ecnt = erp->er_ecnt;
2800 uer.er32.er_rcnt = erp->er_rcnt;
2801 uer.er32.er_wcnt = erp->er_wcnt;
2802 uer.er32.er_eventbits = erp->er_eventbits;
2803 }
2804 TAILQ_REMOVE(&p->p_evlist, evq, ee_plist);
2805
2806 evq->ee_flags &= ~EV_QUEUED;
2807
2808 proc_unlock(p);
2809
2810 if (IS_64BIT_PROCESS(p))
2811 error = copyout((caddr_t)&uer.er64, uap->u_req, sizeof(struct eventreq64));
2812 else
2813 error = copyout((caddr_t)&uer.er32, uap->u_req, sizeof(struct eventreq32));
2814
2815 KERNEL_DEBUG(DBG_MISC_WAIT|DBG_FUNC_END, error,
2816 evq->ee_req.er_handle,evq->ee_req.er_eventbits,(uint32_t)evq,0);
2817 return (error);
2818 }
2819 else {
2820 if (uap->tv && interval == 0) {
2821 proc_unlock(p);
2822 *retval = 1; // poll failed
2823
2824 KERNEL_DEBUG(DBG_MISC_WAIT|DBG_FUNC_END, error,0,0,0,0);
2825 return (error);
2826 }
2827 if (interval != 0)
2828 clock_absolutetime_interval_to_deadline(interval, &abstime);
2829 else
2830 abstime = 0;
2831
2832 KERNEL_DEBUG(DBG_MISC_WAIT, 1,(uint32_t)&p->p_evlist,0,0,0);
2833
2834 error = msleep1(&p->p_evlist, &p->p_mlock, (PSOCK | PCATCH), "waitevent", abstime);
2835
2836 KERNEL_DEBUG(DBG_MISC_WAIT, 2,(uint32_t)&p->p_evlist,0,0,0);
2837
2838 if (error == 0)
2839 goto retry;
2840 if (error == ERESTART)
2841 error = EINTR;
2842 if (error == EWOULDBLOCK) {
2843 *retval = 1;
2844 error = 0;
2845 }
2846 }
2847 proc_unlock(p);
2848
2849 KERNEL_DEBUG(DBG_MISC_WAIT|DBG_FUNC_END, 0,0,0,0,0);
2850 return (error);
2851 }
2852
2853
2854 /*
2855 * modwatch system call. user passes in event to modify.
2856 * if we find it we reset the event bits and que/deque event
2857 * it needed.
2858 */
2859 int
2860 modwatch(proc_t p, struct modwatch_args *uap, __unused int *retval)
2861 {
2862 struct eventreq64 er;
2863 struct eventreq64 *erp = &er;
2864 struct eventqelt *evq = NULL; /* protected by error return */
2865 int error;
2866 struct fileproc *fp;
2867 int flag;
2868
2869 KERNEL_DEBUG(DBG_MISC_MOD|DBG_FUNC_START, 0,0,0,0,0);
2870
2871 /*
2872 * get user's request pkt
2873 * just need the er_type and er_handle which sit above the
2874 * problematic er_data (32/64 issue)... so only copy in
2875 * those 2 fields
2876 */
2877 if ((error = copyin(uap->u_req, (caddr_t)erp, sizeof(er.er_type) + sizeof(er.er_handle)))) {
2878 KERNEL_DEBUG(DBG_MISC_MOD|DBG_FUNC_END, error,0,0,0,0);
2879 return(error);
2880 }
2881 proc_fdlock(p);
2882
2883 if (erp->er_type != EV_FD) {
2884 error = EINVAL;
2885 } else if ((error = fp_lookup(p, erp->er_handle, &fp, 1)) != 0) {
2886 error = EBADF;
2887 #if SOCKETS
2888 } else if (fp->f_type == DTYPE_SOCKET) {
2889 socket_lock((struct socket *)fp->f_data, 1);
2890 evq = ((struct socket *)fp->f_data)->so_evlist.tqh_first;
2891 #endif /* SOCKETS */
2892 } else if (fp->f_type == DTYPE_PIPE) {
2893 PIPE_LOCK((struct pipe *)fp->f_data);
2894 evq = ((struct pipe *)fp->f_data)->pipe_evlist.tqh_first;
2895 } else {
2896 fp_drop(p, erp->er_handle, fp, 1);
2897 error = EINVAL;
2898 }
2899
2900 if (error) {
2901 proc_fdunlock(p);
2902 KERNEL_DEBUG(DBG_MISC_MOD|DBG_FUNC_END, error,0,0,0,0);
2903 return(error);
2904 }
2905
2906 if ((uap->u_eventmask == EV_RM) && (fp->f_flags & FP_WAITEVENT)) {
2907 fp->f_flags &= ~FP_WAITEVENT;
2908 }
2909 proc_fdunlock(p);
2910
2911 // locate event if possible
2912 for ( ; evq != NULL; evq = evq->ee_slist.tqe_next) {
2913 if (evq->ee_proc == p)
2914 break;
2915 }
2916 if (evq == NULL) {
2917 #if SOCKETS
2918 if (fp->f_type == DTYPE_SOCKET)
2919 socket_unlock((struct socket *)fp->f_data, 1);
2920 else
2921 #endif /* SOCKETS */
2922 PIPE_UNLOCK((struct pipe *)fp->f_data);
2923 fp_drop(p, erp->er_handle, fp, 0);
2924 KERNEL_DEBUG(DBG_MISC_MOD|DBG_FUNC_END, EINVAL,0,0,0,0);
2925 return(EINVAL);
2926 }
2927 KERNEL_DEBUG(DBG_MISC_MOD, erp->er_handle,uap->u_eventmask,(uint32_t)evq,0,0);
2928
2929 if (uap->u_eventmask == EV_RM) {
2930 EVPROCDEQUE(p, evq);
2931
2932 #if SOCKETS
2933 if (fp->f_type == DTYPE_SOCKET) {
2934 TAILQ_REMOVE(&((struct socket *)fp->f_data)->so_evlist, evq, ee_slist);
2935 socket_unlock((struct socket *)fp->f_data, 1);
2936 } else
2937 #endif /* SOCKETS */
2938 {
2939 TAILQ_REMOVE(&((struct pipe *)fp->f_data)->pipe_evlist, evq, ee_slist);
2940 PIPE_UNLOCK((struct pipe *)fp->f_data);
2941 }
2942 fp_drop(p, erp->er_handle, fp, 0);
2943 FREE(evq, M_TEMP);
2944 KERNEL_DEBUG(DBG_MISC_MOD|DBG_FUNC_END, 0,0,0,0,0);
2945 return(0);
2946 }
2947 switch (uap->u_eventmask & EV_MASK) {
2948
2949 case 0:
2950 flag = 0;
2951 break;
2952
2953 case EV_RE:
2954 case EV_WR:
2955 case EV_RE|EV_WR:
2956 flag = EV_RWBYTES;
2957 break;
2958
2959 case EV_EX:
2960 flag = EV_OOB;
2961 break;
2962
2963 case EV_EX|EV_RE:
2964 case EV_EX|EV_WR:
2965 case EV_EX|EV_RE|EV_WR:
2966 flag = EV_OOB|EV_RWBYTES;
2967 break;
2968
2969 default:
2970 #if SOCKETS
2971 if (fp->f_type == DTYPE_SOCKET)
2972 socket_unlock((struct socket *)fp->f_data, 1);
2973 else
2974 #endif /* SOCKETS */
2975 PIPE_UNLOCK((struct pipe *)fp->f_data);
2976 fp_drop(p, erp->er_handle, fp, 0);
2977 KERNEL_DEBUG(DBG_MISC_WATCH|DBG_FUNC_END, EINVAL,0,0,0,0);
2978 return(EINVAL);
2979 }
2980 /*
2981 * since we're holding the socket/pipe lock, the event
2982 * cannot go from the unqueued state to the queued state
2983 * however, it can go from the queued state to the unqueued state
2984 * since that direction is protected by the proc_lock...
2985 * so do a quick check for EV_QUEUED w/o holding the proc lock
2986 * since by far the common case will be NOT EV_QUEUED, this saves
2987 * us taking the proc_lock the majority of the time
2988 */
2989 if (evq->ee_flags & EV_QUEUED) {
2990 /*
2991 * EVPROCDEQUE will recheck the state after it grabs the proc_lock
2992 */
2993 EVPROCDEQUE(p, evq);
2994 }
2995 /*
2996 * while the event is off the proc queue and
2997 * we're holding the socket/pipe lock
2998 * it's safe to update these fields...
2999 */
3000 evq->ee_req.er_eventbits = 0;
3001 evq->ee_eventmask = uap->u_eventmask & EV_MASK;
3002
3003 #if SOCKETS
3004 if (fp->f_type == DTYPE_SOCKET) {
3005 postevent((struct socket *)fp->f_data, 0, flag);
3006 socket_unlock((struct socket *)fp->f_data, 1);
3007 } else
3008 #endif /* SOCKETS */
3009 {
3010 postpipeevent((struct pipe *)fp->f_data, flag);
3011 PIPE_UNLOCK((struct pipe *)fp->f_data);
3012 }
3013 fp_drop(p, erp->er_handle, fp, 0);
3014 KERNEL_DEBUG(DBG_MISC_MOD|DBG_FUNC_END, evq->ee_req.er_handle,evq->ee_eventmask,(uint32_t)fp->f_data,flag,0);
3015 return(0);
3016 }
3017
3018 /* this routine is called from the close of fd with proc_fdlock held */
3019 int
3020 waitevent_close(struct proc *p, struct fileproc *fp)
3021 {
3022 struct eventqelt *evq;
3023
3024
3025 fp->f_flags &= ~FP_WAITEVENT;
3026
3027 #if SOCKETS
3028 if (fp->f_type == DTYPE_SOCKET) {
3029 socket_lock((struct socket *)fp->f_data, 1);
3030 evq = ((struct socket *)fp->f_data)->so_evlist.tqh_first;
3031 } else
3032 #endif /* SOCKETS */
3033 if (fp->f_type == DTYPE_PIPE) {
3034 PIPE_LOCK((struct pipe *)fp->f_data);
3035 evq = ((struct pipe *)fp->f_data)->pipe_evlist.tqh_first;
3036 }
3037 else {
3038 return(EINVAL);
3039 }
3040 proc_fdunlock(p);
3041
3042
3043 // locate event if possible
3044 for ( ; evq != NULL; evq = evq->ee_slist.tqe_next) {
3045 if (evq->ee_proc == p)
3046 break;
3047 }
3048 if (evq == NULL) {
3049 #if SOCKETS
3050 if (fp->f_type == DTYPE_SOCKET)
3051 socket_unlock((struct socket *)fp->f_data, 1);
3052 else
3053 #endif /* SOCKETS */
3054 PIPE_UNLOCK((struct pipe *)fp->f_data);
3055
3056 proc_fdlock(p);
3057
3058 return(EINVAL);
3059 }
3060 EVPROCDEQUE(p, evq);
3061
3062 #if SOCKETS
3063 if (fp->f_type == DTYPE_SOCKET) {
3064 TAILQ_REMOVE(&((struct socket *)fp->f_data)->so_evlist, evq, ee_slist);
3065 socket_unlock((struct socket *)fp->f_data, 1);
3066 } else
3067 #endif /* SOCKETS */
3068 {
3069 TAILQ_REMOVE(&((struct pipe *)fp->f_data)->pipe_evlist, evq, ee_slist);
3070 PIPE_UNLOCK((struct pipe *)fp->f_data);
3071 }
3072 FREE(evq, M_TEMP);
3073
3074 proc_fdlock(p);
3075
3076 return(0);
3077 }
3078
3079
3080 /*
3081 * gethostuuid
3082 *
3083 * Description: Get the host UUID from IOKit and return it to user space.
3084 *
3085 * Parameters: uuid_buf Pointer to buffer to receive UUID
3086 * timeout Timespec for timout
3087 * spi SPI, skip sandbox check (temporary)
3088 *
3089 * Returns: 0 Success
3090 * EWOULDBLOCK Timeout is too short
3091 * copyout:EFAULT Bad user buffer
3092 * mac_system_check_info:EPERM Client not allowed to perform this operation
3093 *
3094 * Notes: A timeout seems redundant, since if it's tolerable to not
3095 * have a system UUID in hand, then why ask for one?
3096 */
3097 int
3098 gethostuuid(struct proc *p, struct gethostuuid_args *uap, __unused int32_t *retval)
3099 {
3100 kern_return_t kret;
3101 int error;
3102 mach_timespec_t mach_ts; /* for IOKit call */
3103 __darwin_uuid_t uuid_kern; /* for IOKit call */
3104
3105 if (!uap->spi) {
3106 }
3107
3108 /* Convert the 32/64 bit timespec into a mach_timespec_t */
3109 if ( proc_is64bit(p) ) {
3110 struct user64_timespec ts;
3111 error = copyin(uap->timeoutp, &ts, sizeof(ts));
3112 if (error)
3113 return (error);
3114 mach_ts.tv_sec = ts.tv_sec;
3115 mach_ts.tv_nsec = ts.tv_nsec;
3116 } else {
3117 struct user32_timespec ts;
3118 error = copyin(uap->timeoutp, &ts, sizeof(ts) );
3119 if (error)
3120 return (error);
3121 mach_ts.tv_sec = ts.tv_sec;
3122 mach_ts.tv_nsec = ts.tv_nsec;
3123 }
3124
3125 /* Call IOKit with the stack buffer to get the UUID */
3126 kret = IOBSDGetPlatformUUID(uuid_kern, mach_ts);
3127
3128 /*
3129 * If we get it, copy out the data to the user buffer; note that a
3130 * uuid_t is an array of characters, so this is size invariant for
3131 * 32 vs. 64 bit.
3132 */
3133 if (kret == KERN_SUCCESS) {
3134 error = copyout(uuid_kern, uap->uuid_buf, sizeof(uuid_kern));
3135 } else {
3136 error = EWOULDBLOCK;
3137 }
3138
3139 return (error);
3140 }
3141
3142 /*
3143 * ledger
3144 *
3145 * Description: Omnibus system call for ledger operations
3146 */
3147 int
3148 ledger(struct proc *p, struct ledger_args *args, __unused int32_t *retval)
3149 {
3150 #if !CONFIG_MACF
3151 #pragma unused(p)
3152 #endif
3153 int rval, pid, len, error;
3154 #ifdef LEDGER_DEBUG
3155 struct ledger_limit_args lla;
3156 #endif
3157 task_t task;
3158 proc_t proc;
3159
3160 /* Finish copying in the necessary args before taking the proc lock */
3161 error = 0;
3162 len = 0;
3163 if (args->cmd == LEDGER_ENTRY_INFO)
3164 error = copyin(args->arg3, (char *)&len, sizeof (len));
3165 else if (args->cmd == LEDGER_TEMPLATE_INFO)
3166 error = copyin(args->arg2, (char *)&len, sizeof (len));
3167 #ifdef LEDGER_DEBUG
3168 else if (args->cmd == LEDGER_LIMIT)
3169 error = copyin(args->arg2, (char *)&lla, sizeof (lla));
3170 #endif
3171 else if ((args->cmd < 0) || (args->cmd > LEDGER_MAX_CMD))
3172 return (EINVAL);
3173
3174 if (error)
3175 return (error);
3176 if (len < 0)
3177 return (EINVAL);
3178
3179 rval = 0;
3180 if (args->cmd != LEDGER_TEMPLATE_INFO) {
3181 pid = args->arg1;
3182 proc = proc_find(pid);
3183 if (proc == NULL)
3184 return (ESRCH);
3185
3186 #if CONFIG_MACF
3187 error = mac_proc_check_ledger(p, proc, args->cmd);
3188 if (error) {
3189 proc_rele(proc);
3190 return (error);
3191 }
3192 #endif
3193
3194 task = proc->task;
3195 }
3196
3197 switch (args->cmd) {
3198 #ifdef LEDGER_DEBUG
3199 case LEDGER_LIMIT: {
3200 if (!kauth_cred_issuser(kauth_cred_get()))
3201 rval = EPERM;
3202 rval = ledger_limit(task, &lla);
3203 proc_rele(proc);
3204 break;
3205 }
3206 #endif
3207 case LEDGER_INFO: {
3208 struct ledger_info info;
3209
3210 rval = ledger_info(task, &info);
3211 proc_rele(proc);
3212 if (rval == 0)
3213 rval = copyout(&info, args->arg2,
3214 sizeof (info));
3215 break;
3216 }
3217
3218 case LEDGER_ENTRY_INFO: {
3219 void *buf;
3220 int sz;
3221
3222 rval = ledger_get_task_entry_info_multiple(task, &buf, &len);
3223 proc_rele(proc);
3224 if ((rval == 0) && (len >= 0)) {
3225 sz = len * sizeof (struct ledger_entry_info);
3226 rval = copyout(buf, args->arg2, sz);
3227 kfree(buf, sz);
3228 }
3229 if (rval == 0)
3230 rval = copyout(&len, args->arg3, sizeof (len));
3231 break;
3232 }
3233
3234 case LEDGER_TEMPLATE_INFO: {
3235 void *buf;
3236 int sz;
3237
3238 rval = ledger_template_info(&buf, &len);
3239 if ((rval == 0) && (len >= 0)) {
3240 sz = len * sizeof (struct ledger_template_info);
3241 rval = copyout(buf, args->arg1, sz);
3242 kfree(buf, sz);
3243 }
3244 if (rval == 0)
3245 rval = copyout(&len, args->arg2, sizeof (len));
3246 break;
3247 }
3248
3249 default:
3250 panic("ledger syscall logic error -- command type %d", args->cmd);
3251 proc_rele(proc);
3252 rval = EINVAL;
3253 }
3254
3255 return (rval);
3256 }
3257
3258 int
3259 telemetry(__unused struct proc *p, struct telemetry_args *args, __unused int32_t *retval)
3260 {
3261 int error = 0;
3262
3263 switch (args->cmd) {
3264 #if CONFIG_TELEMETRY
3265 case TELEMETRY_CMD_TIMER_EVENT:
3266 error = telemetry_timer_event(args->deadline, args->interval, args->leeway);
3267 break;
3268 #endif /* CONFIG_TELEMETRY */
3269 case TELEMETRY_CMD_VOUCHER_NAME:
3270 if (thread_set_voucher_name((mach_port_name_t)args->deadline))
3271 error = EINVAL;
3272 break;
3273
3274 default:
3275 error = EINVAL;
3276 break;
3277 }
3278
3279 return (error);
3280 }
3281
3282 #if defined(DEVELOPMENT) || defined(DEBUG)
3283 #if CONFIG_WAITQ_DEBUG
3284 static uint64_t g_wqset_num = 0;
3285 struct g_wqset {
3286 queue_chain_t link;
3287 struct waitq_set *wqset;
3288 };
3289
3290 static queue_head_t g_wqset_list;
3291 static struct waitq_set *g_waitq_set = NULL;
3292
3293 static inline struct waitq_set *sysctl_get_wqset(int idx)
3294 {
3295 struct g_wqset *gwqs;
3296
3297 if (!g_wqset_num)
3298 queue_init(&g_wqset_list);
3299
3300 /* don't bother with locks: this is test-only code! */
3301 qe_foreach_element(gwqs, &g_wqset_list, link) {
3302 if ((int)(wqset_id(gwqs->wqset) & 0xffffffff) == idx)
3303 return gwqs->wqset;
3304 }
3305
3306 /* allocate a new one */
3307 ++g_wqset_num;
3308 gwqs = (struct g_wqset *)kalloc(sizeof(*gwqs));
3309 assert(gwqs != NULL);
3310
3311 gwqs->wqset = waitq_set_alloc(SYNC_POLICY_FIFO|SYNC_POLICY_PREPOST, NULL);
3312 enqueue_tail(&g_wqset_list, &gwqs->link);
3313 printf("[WQ]: created new waitq set 0x%llx\n", wqset_id(gwqs->wqset));
3314
3315 return gwqs->wqset;
3316 }
3317
3318 #define MAX_GLOBAL_TEST_QUEUES 64
3319 static int g_wq_init = 0;
3320 static struct waitq g_wq[MAX_GLOBAL_TEST_QUEUES];
3321
3322 static inline struct waitq *global_test_waitq(int idx)
3323 {
3324 if (idx < 0)
3325 return NULL;
3326
3327 if (!g_wq_init) {
3328 g_wq_init = 1;
3329 for (int i = 0; i < MAX_GLOBAL_TEST_QUEUES; i++)
3330 waitq_init(&g_wq[i], SYNC_POLICY_FIFO);
3331 }
3332
3333 return &g_wq[idx % MAX_GLOBAL_TEST_QUEUES];
3334 }
3335
3336 static int sysctl_waitq_wakeup_one SYSCTL_HANDLER_ARGS
3337 {
3338 #pragma unused(oidp, arg1, arg2)
3339 int error;
3340 int index;
3341 struct waitq *waitq;
3342 kern_return_t kr;
3343 int64_t event64 = 0;
3344
3345 error = SYSCTL_IN(req, &event64, sizeof(event64));
3346 if (error)
3347 return error;
3348
3349 if (!req->newptr)
3350 return SYSCTL_OUT(req, &event64, sizeof(event64));
3351
3352 if (event64 < 0) {
3353 index = (int)((-event64) & 0xffffffff);
3354 waitq = wqset_waitq(sysctl_get_wqset(index));
3355 index = -index;
3356 } else {
3357 index = (int)event64;
3358 waitq = global_test_waitq(index);
3359 }
3360
3361 event64 = 0;
3362
3363 printf("[WQ]: Waking one thread on waitq [%d] event:0x%llx\n",
3364 index, event64);
3365 kr = waitq_wakeup64_one(waitq, (event64_t)event64, THREAD_AWAKENED,
3366 WAITQ_ALL_PRIORITIES);
3367 printf("[WQ]: \tkr=%d\n", kr);
3368
3369 return SYSCTL_OUT(req, &kr, sizeof(kr));
3370 }
3371 SYSCTL_PROC(_kern, OID_AUTO, waitq_wakeup_one, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
3372 0, 0, sysctl_waitq_wakeup_one, "Q", "wakeup one thread waiting on given event");
3373
3374
3375 static int sysctl_waitq_wakeup_all SYSCTL_HANDLER_ARGS
3376 {
3377 #pragma unused(oidp, arg1, arg2)
3378 int error;
3379 int index;
3380 struct waitq *waitq;
3381 kern_return_t kr;
3382 int64_t event64 = 0;
3383
3384 error = SYSCTL_IN(req, &event64, sizeof(event64));
3385 if (error)
3386 return error;
3387
3388 if (!req->newptr)
3389 return SYSCTL_OUT(req, &event64, sizeof(event64));
3390
3391 if (event64 < 0) {
3392 index = (int)((-event64) & 0xffffffff);
3393 waitq = wqset_waitq(sysctl_get_wqset(index));
3394 index = -index;
3395 } else {
3396 index = (int)event64;
3397 waitq = global_test_waitq(index);
3398 }
3399
3400 event64 = 0;
3401
3402 printf("[WQ]: Waking all threads on waitq [%d] event:0x%llx\n",
3403 index, event64);
3404 kr = waitq_wakeup64_all(waitq, (event64_t)event64,
3405 THREAD_AWAKENED, WAITQ_ALL_PRIORITIES);
3406 printf("[WQ]: \tkr=%d\n", kr);
3407
3408 return SYSCTL_OUT(req, &kr, sizeof(kr));
3409 }
3410 SYSCTL_PROC(_kern, OID_AUTO, waitq_wakeup_all, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
3411 0, 0, sysctl_waitq_wakeup_all, "Q", "wakeup all threads waiting on given event");
3412
3413
3414 static int sysctl_waitq_wait SYSCTL_HANDLER_ARGS
3415 {
3416 #pragma unused(oidp, arg1, arg2)
3417 int error;
3418 int index;
3419 struct waitq *waitq;
3420 kern_return_t kr;
3421 int64_t event64 = 0;
3422
3423 error = SYSCTL_IN(req, &event64, sizeof(event64));
3424 if (error)
3425 return error;
3426
3427 if (!req->newptr)
3428 return SYSCTL_OUT(req, &event64, sizeof(event64));
3429
3430 if (event64 < 0) {
3431 index = (int)((-event64) & 0xffffffff);
3432 waitq = wqset_waitq(sysctl_get_wqset(index));
3433 index = -index;
3434 } else {
3435 index = (int)event64;
3436 waitq = global_test_waitq(index);
3437 }
3438
3439 event64 = 0;
3440
3441 printf("[WQ]: Current thread waiting on waitq [%d] event:0x%llx\n",
3442 index, event64);
3443 kr = waitq_assert_wait64(waitq, (event64_t)event64, THREAD_INTERRUPTIBLE, 0);
3444 if (kr == THREAD_WAITING)
3445 thread_block(THREAD_CONTINUE_NULL);
3446 printf("[WQ]: \tWoke Up: kr=%d\n", kr);
3447
3448 return SYSCTL_OUT(req, &kr, sizeof(kr));
3449 }
3450 SYSCTL_PROC(_kern, OID_AUTO, waitq_wait, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
3451 0, 0, sysctl_waitq_wait, "Q", "start waiting on given event");
3452
3453
3454 static int sysctl_wqset_select SYSCTL_HANDLER_ARGS
3455 {
3456 #pragma unused(oidp, arg1, arg2)
3457 int error;
3458 struct waitq_set *wqset;
3459 uint64_t event64 = 0;
3460
3461 error = SYSCTL_IN(req, &event64, sizeof(event64));
3462 if (error)
3463 return error;
3464
3465 if (!req->newptr)
3466 goto out;
3467
3468 wqset = sysctl_get_wqset((int)(event64 & 0xffffffff));
3469 g_waitq_set = wqset;
3470
3471 event64 = wqset_id(wqset);
3472 printf("[WQ]: selected wqset 0x%llx\n", event64);
3473
3474 out:
3475 if (g_waitq_set)
3476 event64 = wqset_id(g_waitq_set);
3477 else
3478 event64 = (uint64_t)(-1);
3479
3480 return SYSCTL_OUT(req, &event64, sizeof(event64));
3481 }
3482 SYSCTL_PROC(_kern, OID_AUTO, wqset_select, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
3483 0, 0, sysctl_wqset_select, "Q", "select/create a global waitq set");
3484
3485
3486 static int sysctl_waitq_link SYSCTL_HANDLER_ARGS
3487 {
3488 #pragma unused(oidp, arg1, arg2)
3489 int error;
3490 int index;
3491 struct waitq *waitq;
3492 struct waitq_set *wqset;
3493 kern_return_t kr;
3494 uint64_t reserved_link = 0;
3495 int64_t event64 = 0;
3496
3497 error = SYSCTL_IN(req, &event64, sizeof(event64));
3498 if (error)
3499 return error;
3500
3501 if (!req->newptr)
3502 return SYSCTL_OUT(req, &event64, sizeof(event64));
3503
3504 if (!g_waitq_set)
3505 g_waitq_set = sysctl_get_wqset(1);
3506 wqset = g_waitq_set;
3507
3508 if (event64 < 0) {
3509 struct waitq_set *tmp;
3510 index = (int)((-event64) & 0xffffffff);
3511 tmp = sysctl_get_wqset(index);
3512 if (tmp == wqset)
3513 goto out;
3514 waitq = wqset_waitq(tmp);
3515 index = -index;
3516 } else {
3517 index = (int)event64;
3518 waitq = global_test_waitq(index);
3519 }
3520
3521 printf("[WQ]: linking waitq [%d] to global wqset (0x%llx)\n",
3522 index, wqset_id(wqset));
3523 reserved_link = waitq_link_reserve(waitq);
3524 kr = waitq_link(waitq, wqset, WAITQ_SHOULD_LOCK, &reserved_link);
3525 waitq_link_release(reserved_link);
3526
3527 printf("[WQ]: \tkr=%d\n", kr);
3528
3529 out:
3530 return SYSCTL_OUT(req, &kr, sizeof(kr));
3531 }
3532 SYSCTL_PROC(_kern, OID_AUTO, waitq_link, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
3533 0, 0, sysctl_waitq_link, "Q", "link global waitq to test waitq set");
3534
3535
3536 static int sysctl_waitq_unlink SYSCTL_HANDLER_ARGS
3537 {
3538 #pragma unused(oidp, arg1, arg2)
3539 int error;
3540 int index;
3541 struct waitq *waitq;
3542 struct waitq_set *wqset;
3543 kern_return_t kr;
3544 uint64_t event64 = 0;
3545
3546 error = SYSCTL_IN(req, &event64, sizeof(event64));
3547 if (error)
3548 return error;
3549
3550 if (!req->newptr)
3551 return SYSCTL_OUT(req, &event64, sizeof(event64));
3552
3553 if (!g_waitq_set)
3554 g_waitq_set = sysctl_get_wqset(1);
3555 wqset = g_waitq_set;
3556
3557 index = (int)event64;
3558 waitq = global_test_waitq(index);
3559
3560 printf("[WQ]: unlinking waitq [%d] from global wqset (0x%llx)\n",
3561 index, wqset_id(wqset));
3562
3563 kr = waitq_unlink(waitq, wqset);
3564 printf("[WQ]: \tkr=%d\n", kr);
3565
3566 return SYSCTL_OUT(req, &kr, sizeof(kr));
3567 }
3568 SYSCTL_PROC(_kern, OID_AUTO, waitq_unlink, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
3569 0, 0, sysctl_waitq_unlink, "Q", "unlink global waitq from test waitq set");
3570
3571
3572 static int sysctl_waitq_clear_prepost SYSCTL_HANDLER_ARGS
3573 {
3574 #pragma unused(oidp, arg1, arg2)
3575 struct waitq *waitq;
3576 uint64_t event64 = 0;
3577 int error, index;
3578
3579 error = SYSCTL_IN(req, &event64, sizeof(event64));
3580 if (error)
3581 return error;
3582
3583 if (!req->newptr)
3584 return SYSCTL_OUT(req, &event64, sizeof(event64));
3585
3586 index = (int)event64;
3587 waitq = global_test_waitq(index);
3588
3589 printf("[WQ]: clearing prepost on waitq [%d]\n", index);
3590 waitq_clear_prepost(waitq);
3591
3592 return SYSCTL_OUT(req, &event64, sizeof(event64));
3593 }
3594 SYSCTL_PROC(_kern, OID_AUTO, waitq_clear_prepost, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
3595 0, 0, sysctl_waitq_clear_prepost, "Q", "clear prepost on given waitq");
3596
3597
3598 static int sysctl_wqset_unlink_all SYSCTL_HANDLER_ARGS
3599 {
3600 #pragma unused(oidp, arg1, arg2)
3601 int error;
3602 struct waitq_set *wqset;
3603 kern_return_t kr;
3604 uint64_t event64 = 0;
3605
3606 error = SYSCTL_IN(req, &event64, sizeof(event64));
3607 if (error)
3608 return error;
3609
3610 if (!req->newptr)
3611 return SYSCTL_OUT(req, &event64, sizeof(event64));
3612
3613 if (!g_waitq_set)
3614 g_waitq_set = sysctl_get_wqset(1);
3615 wqset = g_waitq_set;
3616
3617 printf("[WQ]: unlinking all queues from global wqset (0x%llx)\n",
3618 wqset_id(wqset));
3619
3620 kr = waitq_set_unlink_all(wqset);
3621 printf("[WQ]: \tkr=%d\n", kr);
3622
3623 return SYSCTL_OUT(req, &kr, sizeof(kr));
3624 }
3625 SYSCTL_PROC(_kern, OID_AUTO, wqset_unlink_all, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
3626 0, 0, sysctl_wqset_unlink_all, "Q", "unlink all queues from test waitq set");
3627
3628
3629 static int sysctl_wqset_clear_preposts SYSCTL_HANDLER_ARGS
3630 {
3631 #pragma unused(oidp, arg1, arg2)
3632 struct waitq_set *wqset = NULL;
3633 uint64_t event64 = 0;
3634 int error, index;
3635
3636 error = SYSCTL_IN(req, &event64, sizeof(event64));
3637 if (error)
3638 return error;
3639
3640 if (!req->newptr)
3641 goto out;
3642
3643 index = (int)((event64) & 0xffffffff);
3644 wqset = sysctl_get_wqset(index);
3645 assert(wqset != NULL);
3646
3647 printf("[WQ]: clearing preposts on wqset 0x%llx\n", wqset_id(wqset));
3648 waitq_set_clear_preposts(wqset);
3649
3650 out:
3651 if (wqset)
3652 event64 = wqset_id(wqset);
3653 else
3654 event64 = (uint64_t)(-1);
3655
3656 return SYSCTL_OUT(req, &event64, sizeof(event64));
3657 }
3658 SYSCTL_PROC(_kern, OID_AUTO, wqset_clear_preposts, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
3659 0, 0, sysctl_wqset_clear_preposts, "Q", "clear preposts on given waitq set");
3660
3661 #endif /* CONFIG_WAITQ_DEBUG */
3662 #endif /* defined(DEVELOPMENT) || defined(DEBUG) */