2 * Copyright (c) 2000-2016 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * @OSF_FREE_COPYRIGHT@
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
60 * Author: Avadis Tevanian, Jr.
63 * Scheduling primitives
69 #include <mach/mach_types.h>
70 #include <mach/machine.h>
71 #include <mach/policy.h>
72 #include <mach/sync_policy.h>
73 #include <mach/thread_act.h>
75 #include <machine/machine_routines.h>
76 #include <machine/sched_param.h>
77 #include <machine/machine_cpu.h>
78 #include <machine/machlimits.h>
79 #include <machine/atomic.h>
81 #ifdef CONFIG_MACH_APPROXIMATE_TIME
82 #include <machine/commpage.h>
85 #include <kern/kern_types.h>
86 #include <kern/backtrace.h>
87 #include <kern/clock.h>
88 #include <kern/counters.h>
89 #include <kern/cpu_number.h>
90 #include <kern/cpu_data.h>
92 #include <kern/debug.h>
93 #include <kern/macro_help.h>
94 #include <kern/machine.h>
95 #include <kern/misc_protos.h>
97 #include <kern/monotonic.h>
98 #endif /* MONOTONIC */
99 #include <kern/processor.h>
100 #include <kern/queue.h>
101 #include <kern/sched.h>
102 #include <kern/sched_prim.h>
103 #include <kern/sfi.h>
104 #include <kern/syscall_subr.h>
105 #include <kern/task.h>
106 #include <kern/thread.h>
107 #include <kern/ledger.h>
108 #include <kern/timer_queue.h>
109 #include <kern/waitq.h>
110 #include <kern/policy_internal.h>
113 #include <vm/vm_kern.h>
114 #include <vm/vm_map.h>
115 #include <vm/vm_pageout.h>
117 #include <mach/sdt.h>
118 #include <mach/mach_host.h>
119 #include <mach/host_info.h>
121 #include <sys/kdebug.h>
122 #include <kperf/kperf.h>
123 #include <kern/kpc.h>
124 #include <san/kasan.h>
125 #include <kern/pms.h>
126 #include <kern/host.h>
127 #include <stdatomic.h>
129 int rt_runq_count(processor_set_t pset
)
131 return atomic_load_explicit(&SCHED(rt_runq
)(pset
)->count
, memory_order_relaxed
);
134 void rt_runq_count_incr(processor_set_t pset
)
136 atomic_fetch_add_explicit(&SCHED(rt_runq
)(pset
)->count
, 1, memory_order_relaxed
);
139 void rt_runq_count_decr(processor_set_t pset
)
141 atomic_fetch_sub_explicit(&SCHED(rt_runq
)(pset
)->count
, 1, memory_order_relaxed
);
144 #define DEFAULT_PREEMPTION_RATE 100 /* (1/s) */
145 int default_preemption_rate
= DEFAULT_PREEMPTION_RATE
;
147 #define DEFAULT_BG_PREEMPTION_RATE 400 /* (1/s) */
148 int default_bg_preemption_rate
= DEFAULT_BG_PREEMPTION_RATE
;
150 #define MAX_UNSAFE_QUANTA 800
151 int max_unsafe_quanta
= MAX_UNSAFE_QUANTA
;
153 #define MAX_POLL_QUANTA 2
154 int max_poll_quanta
= MAX_POLL_QUANTA
;
156 #define SCHED_POLL_YIELD_SHIFT 4 /* 1/16 */
157 int sched_poll_yield_shift
= SCHED_POLL_YIELD_SHIFT
;
159 uint64_t max_poll_computation
;
161 uint64_t max_unsafe_computation
;
162 uint64_t sched_safe_duration
;
164 #if defined(CONFIG_SCHED_TIMESHARE_CORE)
166 uint32_t std_quantum
;
167 uint32_t min_std_quantum
;
170 uint32_t std_quantum_us
;
171 uint32_t bg_quantum_us
;
173 #endif /* CONFIG_SCHED_TIMESHARE_CORE */
175 uint32_t thread_depress_time
;
176 uint32_t default_timeshare_computation
;
177 uint32_t default_timeshare_constraint
;
179 uint32_t max_rt_quantum
;
180 uint32_t min_rt_quantum
;
182 #if defined(CONFIG_SCHED_TIMESHARE_CORE)
185 uint32_t sched_tick_interval
;
187 uint32_t sched_pri_shifts
[TH_BUCKET_MAX
];
188 uint32_t sched_fixed_shift
;
190 uint32_t sched_decay_usage_age_factor
= 1; /* accelerate 5/8^n usage aging */
192 /* Allow foreground to decay past default to resolve inversions */
193 #define DEFAULT_DECAY_BAND_LIMIT ((BASEPRI_FOREGROUND - BASEPRI_DEFAULT) + 2)
194 int sched_pri_decay_band_limit
= DEFAULT_DECAY_BAND_LIMIT
;
196 /* Defaults for timer deadline profiling */
197 #define TIMER_DEADLINE_TRACKING_BIN_1_DEFAULT 2000000 /* Timers with deadlines <=
199 #define TIMER_DEADLINE_TRACKING_BIN_2_DEFAULT 5000000 /* Timers with deadlines
202 uint64_t timer_deadline_tracking_bin_1
;
203 uint64_t timer_deadline_tracking_bin_2
;
205 #endif /* CONFIG_SCHED_TIMESHARE_CORE */
207 thread_t sched_maintenance_thread
;
209 #if __arm__ || __arm64__
210 /* interrupts disabled lock to guard recommended cores state */
211 decl_simple_lock_data(static,sched_recommended_cores_lock
);
212 static void sched_recommended_cores_maintenance(void);
213 static void sched_update_recommended_cores(uint32_t recommended_cores
);
215 uint64_t perfcontrol_failsafe_starvation_threshold
;
216 extern char *proc_name_address(struct proc
*p
);
218 #endif /* __arm__ || __arm64__ */
220 uint64_t sched_one_second_interval
;
224 #if defined(CONFIG_SCHED_TIMESHARE_CORE)
226 static void load_shift_init(void);
227 static void preempt_pri_init(void);
229 #endif /* CONFIG_SCHED_TIMESHARE_CORE */
231 #if CONFIG_SCHED_IDLE_IN_PLACE
232 static thread_t
thread_select_idle(
234 processor_t processor
);
237 thread_t
processor_idle(
239 processor_t processor
);
242 csw_check_locked( processor_t processor
,
243 processor_set_t pset
,
246 static void processor_setrun(
247 processor_t processor
,
252 sched_realtime_timebase_init(void);
255 sched_timer_deadline_tracking_init(void);
258 extern int debug_task
;
259 #define TLOG(a, fmt, args...) if(debug_task & a) kprintf(fmt, ## args)
261 #define TLOG(a, fmt, args...) do {} while (0)
265 thread_bind_internal(
267 processor_t processor
);
270 sched_vm_group_maintenance(void);
272 #if defined(CONFIG_SCHED_TIMESHARE_CORE)
273 int8_t sched_load_shifts
[NRQS
];
274 bitmap_t sched_preempt_pri
[BITMAP_LEN(NRQS
)];
275 #endif /* CONFIG_SCHED_TIMESHARE_CORE */
277 const struct sched_dispatch_table
*sched_current_dispatch
= NULL
;
280 * Statically allocate a buffer to hold the longest possible
281 * scheduler description string, as currently implemented.
282 * bsd/kern/kern_sysctl.c has a corresponding definition in bsd/
283 * to export to userspace via sysctl(3). If either version
284 * changes, update the other.
286 * Note that in addition to being an upper bound on the strings
287 * in the kernel, it's also an exact parameter to PE_get_default(),
288 * which interrogates the device tree on some platforms. That
289 * API requires the caller know the exact size of the device tree
290 * property, so we need both a legacy size (32) and the current size
291 * (48) to deal with old and new device trees. The device tree property
292 * is similarly padded to a fixed size so that the same kernel image
293 * can run on multiple devices with different schedulers configured
294 * in the device tree.
296 char sched_string
[SCHED_STRING_MAX_LENGTH
];
298 uint32_t sched_debug_flags
= SCHED_DEBUG_FLAG_CHOOSE_PROCESSOR_TRACEPOINTS
;
300 /* Global flag which indicates whether Background Stepper Context is enabled */
301 static int cpu_throttle_enabled
= 1;
305 /* Since using the indirect function dispatch table has a negative impact on
306 * context switch performance, only allow DEBUG kernels to use that mechanism.
309 sched_init_override(void)
311 char sched_arg
[SCHED_STRING_MAX_LENGTH
] = { '\0' };
313 /* Check for runtime selection of the scheduler algorithm */
314 if (!PE_parse_boot_argn("sched", sched_arg
, sizeof (sched_arg
))) {
317 if (strlen(sched_arg
) > 0) {
319 /* Allow pattern below */
320 #if defined(CONFIG_SCHED_TRADITIONAL)
321 } else if (0 == strcmp(sched_arg
, sched_traditional_dispatch
.sched_name
)) {
322 sched_current_dispatch
= &sched_traditional_dispatch
;
323 } else if (0 == strcmp(sched_arg
, sched_traditional_with_pset_runqueue_dispatch
.sched_name
)) {
324 sched_current_dispatch
= &sched_traditional_with_pset_runqueue_dispatch
;
326 #if defined(CONFIG_SCHED_MULTIQ)
327 } else if (0 == strcmp(sched_arg
, sched_multiq_dispatch
.sched_name
)) {
328 sched_current_dispatch
= &sched_multiq_dispatch
;
329 } else if (0 == strcmp(sched_arg
, sched_dualq_dispatch
.sched_name
)) {
330 sched_current_dispatch
= &sched_dualq_dispatch
;
333 #if defined(CONFIG_SCHED_TRADITIONAL)
334 printf("Unrecognized scheduler algorithm: %s\n", sched_arg
);
335 printf("Scheduler: Using instead: %s\n", sched_traditional_with_pset_runqueue_dispatch
.sched_name
);
336 sched_current_dispatch
= &sched_traditional_with_pset_runqueue_dispatch
;
338 panic("Unrecognized scheduler algorithm: %s", sched_arg
);
341 kprintf("Scheduler: Runtime selection of %s\n", SCHED(sched_name
));
343 #if defined(CONFIG_SCHED_MULTIQ)
344 sched_current_dispatch
= &sched_multiq_dispatch
;
345 #elif defined(CONFIG_SCHED_TRADITIONAL)
346 sched_current_dispatch
= &sched_traditional_with_pset_runqueue_dispatch
;
348 #error No default scheduler implementation
350 kprintf("Scheduler: Default of %s\n", SCHED(sched_name
));
360 sched_init_override();
362 kprintf("Scheduler: Default of %s\n", SCHED(sched_name
));
365 if (!PE_parse_boot_argn("sched_pri_decay_limit", &sched_pri_decay_band_limit
, sizeof(sched_pri_decay_band_limit
))) {
366 /* No boot-args, check in device tree */
367 if (!PE_get_default("kern.sched_pri_decay_limit",
368 &sched_pri_decay_band_limit
,
369 sizeof(sched_pri_decay_band_limit
))) {
370 /* Allow decay all the way to normal limits */
371 sched_pri_decay_band_limit
= DEFAULT_DECAY_BAND_LIMIT
;
375 kprintf("Setting scheduler priority decay band limit %d\n", sched_pri_decay_band_limit
);
377 if (PE_parse_boot_argn("sched_debug", &sched_debug_flags
, sizeof(sched_debug_flags
))) {
378 kprintf("Scheduler: Debug flags 0x%08x\n", sched_debug_flags
);
380 strlcpy(sched_string
, SCHED(sched_name
), sizeof(sched_string
));
383 SCHED(rt_init
)(&pset0
);
384 sched_timer_deadline_tracking_init();
386 SCHED(pset_init
)(&pset0
);
387 SCHED(processor_init
)(master_processor
);
391 sched_timebase_init(void)
395 clock_interval_to_absolutetime_interval(1, NSEC_PER_SEC
, &abstime
);
396 sched_one_second_interval
= abstime
;
398 SCHED(timebase_init
)();
399 sched_realtime_timebase_init();
402 #if defined(CONFIG_SCHED_TIMESHARE_CORE)
405 sched_timeshare_init(void)
408 * Calculate the timeslicing quantum
411 if (default_preemption_rate
< 1)
412 default_preemption_rate
= DEFAULT_PREEMPTION_RATE
;
413 std_quantum_us
= (1000 * 1000) / default_preemption_rate
;
415 printf("standard timeslicing quantum is %d us\n", std_quantum_us
);
417 if (default_bg_preemption_rate
< 1)
418 default_bg_preemption_rate
= DEFAULT_BG_PREEMPTION_RATE
;
419 bg_quantum_us
= (1000 * 1000) / default_bg_preemption_rate
;
421 printf("standard background quantum is %d us\n", bg_quantum_us
);
429 sched_timeshare_timebase_init(void)
434 /* standard timeslicing quantum */
435 clock_interval_to_absolutetime_interval(
436 std_quantum_us
, NSEC_PER_USEC
, &abstime
);
437 assert((abstime
>> 32) == 0 && (uint32_t)abstime
!= 0);
438 std_quantum
= (uint32_t)abstime
;
440 /* smallest remaining quantum (250 us) */
441 clock_interval_to_absolutetime_interval(250, NSEC_PER_USEC
, &abstime
);
442 assert((abstime
>> 32) == 0 && (uint32_t)abstime
!= 0);
443 min_std_quantum
= (uint32_t)abstime
;
445 /* quantum for background tasks */
446 clock_interval_to_absolutetime_interval(
447 bg_quantum_us
, NSEC_PER_USEC
, &abstime
);
448 assert((abstime
>> 32) == 0 && (uint32_t)abstime
!= 0);
449 bg_quantum
= (uint32_t)abstime
;
451 /* scheduler tick interval */
452 clock_interval_to_absolutetime_interval(USEC_PER_SEC
>> SCHED_TICK_SHIFT
,
453 NSEC_PER_USEC
, &abstime
);
454 assert((abstime
>> 32) == 0 && (uint32_t)abstime
!= 0);
455 sched_tick_interval
= (uint32_t)abstime
;
458 * Compute conversion factor from usage to
459 * timesharing priorities with 5/8 ** n aging.
461 abstime
= (abstime
* 5) / 3;
462 for (shift
= 0; abstime
> BASEPRI_DEFAULT
; ++shift
)
464 sched_fixed_shift
= shift
;
466 for (uint32_t i
= 0 ; i
< TH_BUCKET_MAX
; i
++)
467 sched_pri_shifts
[i
] = INT8_MAX
;
469 max_unsafe_computation
= ((uint64_t)max_unsafe_quanta
) * std_quantum
;
470 sched_safe_duration
= 2 * ((uint64_t)max_unsafe_quanta
) * std_quantum
;
472 max_poll_computation
= ((uint64_t)max_poll_quanta
) * std_quantum
;
473 thread_depress_time
= 1 * std_quantum
;
474 default_timeshare_computation
= std_quantum
/ 2;
475 default_timeshare_constraint
= std_quantum
;
477 #if __arm__ || __arm64__
478 perfcontrol_failsafe_starvation_threshold
= (2 * sched_tick_interval
);
479 #endif /* __arm__ || __arm64__ */
482 #endif /* CONFIG_SCHED_TIMESHARE_CORE */
485 pset_rt_init(processor_set_t pset
)
489 pset
->rt_runq
.count
= 0;
490 queue_init(&pset
->rt_runq
.queue
);
491 memset(&pset
->rt_runq
.runq_stats
, 0, sizeof pset
->rt_runq
.runq_stats
);
495 sched_rtglobal_runq(processor_set_t pset
)
499 return &pset0
.rt_runq
;
503 sched_rtglobal_init(processor_set_t pset
)
505 if (pset
== &pset0
) {
506 return pset_rt_init(pset
);
509 /* Only pset0 rt_runq is used, so make it easy to detect
510 * buggy accesses to others.
512 memset(&pset
->rt_runq
, 0xfd, sizeof pset
->rt_runq
);
516 sched_rtglobal_queue_shutdown(processor_t processor
)
522 sched_realtime_timebase_init(void)
526 /* smallest rt computaton (50 us) */
527 clock_interval_to_absolutetime_interval(50, NSEC_PER_USEC
, &abstime
);
528 assert((abstime
>> 32) == 0 && (uint32_t)abstime
!= 0);
529 min_rt_quantum
= (uint32_t)abstime
;
531 /* maximum rt computation (50 ms) */
532 clock_interval_to_absolutetime_interval(
533 50, 1000*NSEC_PER_USEC
, &abstime
);
534 assert((abstime
>> 32) == 0 && (uint32_t)abstime
!= 0);
535 max_rt_quantum
= (uint32_t)abstime
;
540 sched_check_spill(processor_set_t pset
, thread_t thread
)
549 sched_thread_should_yield(processor_t processor
, thread_t thread
)
553 return (!SCHED(processor_queue_empty
)(processor
) || rt_runq_count(processor
->processor_set
) > 0);
556 #if defined(CONFIG_SCHED_TIMESHARE_CORE)
559 * Set up values for timeshare
563 load_shift_init(void)
565 int8_t k
, *p
= sched_load_shifts
;
568 uint32_t sched_decay_penalty
= 1;
570 if (PE_parse_boot_argn("sched_decay_penalty", &sched_decay_penalty
, sizeof (sched_decay_penalty
))) {
571 kprintf("Overriding scheduler decay penalty %u\n", sched_decay_penalty
);
574 if (PE_parse_boot_argn("sched_decay_usage_age_factor", &sched_decay_usage_age_factor
, sizeof (sched_decay_usage_age_factor
))) {
575 kprintf("Overriding scheduler decay usage age factor %u\n", sched_decay_usage_age_factor
);
578 if (sched_decay_penalty
== 0) {
580 * There is no penalty for timeshare threads for using too much
581 * CPU, so set all load shifts to INT8_MIN. Even under high load,
582 * sched_pri_shift will be >INT8_MAX, and there will be no
583 * penalty applied to threads (nor will sched_usage be updated per
586 for (i
= 0; i
< NRQS
; i
++) {
587 sched_load_shifts
[i
] = INT8_MIN
;
593 *p
++ = INT8_MIN
; *p
++ = 0;
596 * For a given system load "i", the per-thread priority
597 * penalty per quantum of CPU usage is ~2^k priority
598 * levels. "sched_decay_penalty" can cause more
599 * array entries to be filled with smaller "k" values
601 for (i
= 2, j
= 1 << sched_decay_penalty
, k
= 1; i
< NRQS
; ++k
) {
602 for (j
<<= 1; (i
< j
) && (i
< NRQS
); ++i
)
608 preempt_pri_init(void)
610 bitmap_t
*p
= sched_preempt_pri
;
612 for (int i
= BASEPRI_FOREGROUND
; i
< MINPRI_KERNEL
; ++i
)
615 for (int i
= BASEPRI_PREEMPT
; i
<= MAXPRI
; ++i
)
619 #endif /* CONFIG_SCHED_TIMESHARE_CORE */
622 * Thread wait timer expiration.
629 thread_t thread
= p0
;
632 assert_thread_magic(thread
);
636 if (--thread
->wait_timer_active
== 0) {
637 if (thread
->wait_timer_is_set
) {
638 thread
->wait_timer_is_set
= FALSE
;
639 clear_wait_internal(thread
, THREAD_TIMED_OUT
);
642 thread_unlock(thread
);
649 * Unblock thread on wake up.
651 * Returns TRUE if the thread should now be placed on the runqueue.
653 * Thread must be locked.
655 * Called at splsched().
660 wait_result_t wresult
)
662 boolean_t ready_for_runq
= FALSE
;
663 thread_t cthread
= current_thread();
664 uint32_t new_run_count
;
669 thread
->wait_result
= wresult
;
672 * Cancel pending wait timer.
674 if (thread
->wait_timer_is_set
) {
675 if (timer_call_cancel(&thread
->wait_timer
))
676 thread
->wait_timer_active
--;
677 thread
->wait_timer_is_set
= FALSE
;
681 * Update scheduling state: not waiting,
684 thread
->state
&= ~(TH_WAIT
|TH_UNINT
);
686 if (!(thread
->state
& TH_RUN
)) {
687 thread
->state
|= TH_RUN
;
688 thread
->last_made_runnable_time
= thread
->last_basepri_change_time
= mach_approximate_time();
690 ready_for_runq
= TRUE
;
692 (*thread
->sched_call
)(SCHED_CALL_UNBLOCK
, thread
);
694 /* Update the runnable thread count */
695 new_run_count
= sched_run_incr(thread
);
698 * Either the thread is idling in place on another processor,
699 * or it hasn't finished context switching yet.
701 #if CONFIG_SCHED_IDLE_IN_PLACE
702 if (thread
->state
& TH_IDLE
) {
703 processor_t processor
= thread
->last_processor
;
705 if (processor
!= current_processor())
706 machine_signal_idle(processor
);
709 assert((thread
->state
& TH_IDLE
) == 0);
712 * The run count is only dropped after the context switch completes
713 * and the thread is still waiting, so we should not run_incr here
715 new_run_count
= sched_run_buckets
[TH_BUCKET_RUN
];
720 * Calculate deadline for real-time threads.
722 if (thread
->sched_mode
== TH_MODE_REALTIME
) {
725 ctime
= mach_absolute_time();
726 thread
->realtime
.deadline
= thread
->realtime
.constraint
+ ctime
;
730 * Clear old quantum, fail-safe computation, etc.
732 thread
->quantum_remaining
= 0;
733 thread
->computation_metered
= 0;
734 thread
->reason
= AST_NONE
;
735 thread
->block_hint
= kThreadWaitNone
;
737 /* Obtain power-relevant interrupt and "platform-idle exit" statistics.
738 * We also account for "double hop" thread signaling via
739 * the thread callout infrastructure.
740 * DRK: consider removing the callout wakeup counters in the future
741 * they're present for verification at the moment.
743 boolean_t aticontext
, pidle
;
744 ml_get_power_state(&aticontext
, &pidle
);
746 if (__improbable(aticontext
&& !(thread_get_tag_internal(thread
) & THREAD_TAG_CALLOUT
))) {
747 ledger_credit(thread
->t_ledger
, task_ledgers
.interrupt_wakeups
, 1);
748 DTRACE_SCHED2(iwakeup
, struct thread
*, thread
, struct proc
*, thread
->task
->bsd_info
);
750 uint64_t ttd
= PROCESSOR_DATA(current_processor(), timer_call_ttd
);
753 if (ttd
<= timer_deadline_tracking_bin_1
)
754 thread
->thread_timer_wakeups_bin_1
++;
756 if (ttd
<= timer_deadline_tracking_bin_2
)
757 thread
->thread_timer_wakeups_bin_2
++;
761 ledger_credit(thread
->t_ledger
, task_ledgers
.platform_idle_wakeups
, 1);
764 } else if (thread_get_tag_internal(cthread
) & THREAD_TAG_CALLOUT
) {
765 if (cthread
->callout_woken_from_icontext
) {
766 ledger_credit(thread
->t_ledger
, task_ledgers
.interrupt_wakeups
, 1);
767 thread
->thread_callout_interrupt_wakeups
++;
768 if (cthread
->callout_woken_from_platform_idle
) {
769 ledger_credit(thread
->t_ledger
, task_ledgers
.platform_idle_wakeups
, 1);
770 thread
->thread_callout_platform_idle_wakeups
++;
773 cthread
->callout_woke_thread
= TRUE
;
777 if (thread_get_tag_internal(thread
) & THREAD_TAG_CALLOUT
) {
778 thread
->callout_woken_from_icontext
= aticontext
;
779 thread
->callout_woken_from_platform_idle
= pidle
;
780 thread
->callout_woke_thread
= FALSE
;
783 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
784 MACHDBG_CODE(DBG_MACH_SCHED
,MACH_MAKE_RUNNABLE
) | DBG_FUNC_NONE
,
785 (uintptr_t)thread_tid(thread
), thread
->sched_pri
, thread
->wait_result
,
786 sched_run_buckets
[TH_BUCKET_RUN
], 0);
788 DTRACE_SCHED2(wakeup
, struct thread
*, thread
, struct proc
*, thread
->task
->bsd_info
);
790 return (ready_for_runq
);
796 * Unblock and dispatch thread.
798 * thread lock held, IPC locks may be held.
799 * thread must have been pulled from wait queue under same lock hold.
800 * thread must have been waiting
802 * KERN_SUCCESS - Thread was set running
804 * TODO: This should return void
809 wait_result_t wresult
)
811 assert_thread_magic(thread
);
813 assert(thread
->at_safe_point
== FALSE
);
814 assert(thread
->wait_event
== NO_EVENT64
);
815 assert(thread
->waitq
== NULL
);
817 assert(!(thread
->state
& (TH_TERMINATE
|TH_TERMINATE2
)));
818 assert(thread
->state
& TH_WAIT
);
821 if (thread_unblock(thread
, wresult
)) {
822 #if SCHED_TRACE_THREAD_WAKEUPS
823 backtrace(&thread
->thread_wakeup_bt
[0],
824 (sizeof(thread
->thread_wakeup_bt
)/sizeof(uintptr_t)));
826 thread_setrun(thread
, SCHED_PREEMPT
| SCHED_TAILQ
);
829 return (KERN_SUCCESS
);
833 * Routine: thread_mark_wait_locked
835 * Mark a thread as waiting. If, given the circumstances,
836 * it doesn't want to wait (i.e. already aborted), then
837 * indicate that in the return value.
839 * at splsched() and thread is locked.
843 thread_mark_wait_locked(
845 wait_interrupt_t interruptible
)
847 boolean_t at_safe_point
;
849 assert(!(thread
->state
& (TH_WAIT
|TH_IDLE
|TH_UNINT
|TH_TERMINATE2
)));
852 * The thread may have certain types of interrupts/aborts masked
853 * off. Even if the wait location says these types of interrupts
854 * are OK, we have to honor mask settings (outer-scoped code may
855 * not be able to handle aborts at the moment).
857 if (interruptible
> (thread
->options
& TH_OPT_INTMASK
))
858 interruptible
= thread
->options
& TH_OPT_INTMASK
;
860 at_safe_point
= (interruptible
== THREAD_ABORTSAFE
);
862 if ( interruptible
== THREAD_UNINT
||
863 !(thread
->sched_flags
& TH_SFLAG_ABORT
) ||
865 (thread
->sched_flags
& TH_SFLAG_ABORTSAFELY
))) {
867 if ( !(thread
->state
& TH_TERMINATE
))
870 thread
->state
|= (interruptible
) ? TH_WAIT
: (TH_WAIT
| TH_UNINT
);
871 thread
->at_safe_point
= at_safe_point
;
873 /* TODO: pass this through assert_wait instead, have
874 * assert_wait just take a struct as an argument */
875 assert(!thread
->block_hint
);
876 thread
->block_hint
= thread
->pending_block_hint
;
877 thread
->pending_block_hint
= kThreadWaitNone
;
879 return (thread
->wait_result
= THREAD_WAITING
);
882 if (thread
->sched_flags
& TH_SFLAG_ABORTSAFELY
)
883 thread
->sched_flags
&= ~TH_SFLAG_ABORTED_MASK
;
884 thread
->pending_block_hint
= kThreadWaitNone
;
886 return (thread
->wait_result
= THREAD_INTERRUPTED
);
890 * Routine: thread_interrupt_level
892 * Set the maximum interruptible state for the
893 * current thread. The effective value of any
894 * interruptible flag passed into assert_wait
895 * will never exceed this.
897 * Useful for code that must not be interrupted,
898 * but which calls code that doesn't know that.
900 * The old interrupt level for the thread.
904 thread_interrupt_level(
905 wait_interrupt_t new_level
)
907 thread_t thread
= current_thread();
908 wait_interrupt_t result
= thread
->options
& TH_OPT_INTMASK
;
910 thread
->options
= (thread
->options
& ~TH_OPT_INTMASK
) | (new_level
& TH_OPT_INTMASK
);
918 * Assert that the current thread is about to go to
919 * sleep until the specified event occurs.
924 wait_interrupt_t interruptible
)
926 if (__improbable(event
== NO_EVENT
))
927 panic("%s() called with NO_EVENT", __func__
);
929 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
930 MACHDBG_CODE(DBG_MACH_SCHED
, MACH_WAIT
)|DBG_FUNC_NONE
,
931 VM_KERNEL_UNSLIDE_OR_PERM(event
), 0, 0, 0, 0);
934 waitq
= global_eventq(event
);
935 return waitq_assert_wait64(waitq
, CAST_EVENT64_T(event
), interruptible
, TIMEOUT_WAIT_FOREVER
);
941 * Return the global waitq for the specified event
947 return global_eventq(event
);
953 wait_interrupt_t interruptible
,
955 uint32_t scale_factor
)
957 thread_t thread
= current_thread();
958 wait_result_t wresult
;
962 if (__improbable(event
== NO_EVENT
))
963 panic("%s() called with NO_EVENT", __func__
);
966 waitq
= global_eventq(event
);
971 clock_interval_to_deadline(interval
, scale_factor
, &deadline
);
973 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
974 MACHDBG_CODE(DBG_MACH_SCHED
, MACH_WAIT
)|DBG_FUNC_NONE
,
975 VM_KERNEL_UNSLIDE_OR_PERM(event
), interruptible
, deadline
, 0, 0);
977 wresult
= waitq_assert_wait64_locked(waitq
, CAST_EVENT64_T(event
),
979 TIMEOUT_URGENCY_SYS_NORMAL
,
980 deadline
, TIMEOUT_NO_LEEWAY
,
989 assert_wait_timeout_with_leeway(
991 wait_interrupt_t interruptible
,
992 wait_timeout_urgency_t urgency
,
995 uint32_t scale_factor
)
997 thread_t thread
= current_thread();
998 wait_result_t wresult
;
1005 if (__improbable(event
== NO_EVENT
))
1006 panic("%s() called with NO_EVENT", __func__
);
1008 now
= mach_absolute_time();
1009 clock_interval_to_absolutetime_interval(interval
, scale_factor
, &abstime
);
1010 deadline
= now
+ abstime
;
1012 clock_interval_to_absolutetime_interval(leeway
, scale_factor
, &slop
);
1014 struct waitq
*waitq
;
1015 waitq
= global_eventq(event
);
1020 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1021 MACHDBG_CODE(DBG_MACH_SCHED
, MACH_WAIT
)|DBG_FUNC_NONE
,
1022 VM_KERNEL_UNSLIDE_OR_PERM(event
), interruptible
, deadline
, 0, 0);
1024 wresult
= waitq_assert_wait64_locked(waitq
, CAST_EVENT64_T(event
),
1026 urgency
, deadline
, slop
,
1029 waitq_unlock(waitq
);
1035 assert_wait_deadline(
1037 wait_interrupt_t interruptible
,
1040 thread_t thread
= current_thread();
1041 wait_result_t wresult
;
1044 if (__improbable(event
== NO_EVENT
))
1045 panic("%s() called with NO_EVENT", __func__
);
1047 struct waitq
*waitq
;
1048 waitq
= global_eventq(event
);
1053 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1054 MACHDBG_CODE(DBG_MACH_SCHED
, MACH_WAIT
)|DBG_FUNC_NONE
,
1055 VM_KERNEL_UNSLIDE_OR_PERM(event
), interruptible
, deadline
, 0, 0);
1057 wresult
= waitq_assert_wait64_locked(waitq
, CAST_EVENT64_T(event
),
1059 TIMEOUT_URGENCY_SYS_NORMAL
, deadline
,
1060 TIMEOUT_NO_LEEWAY
, thread
);
1061 waitq_unlock(waitq
);
1067 assert_wait_deadline_with_leeway(
1069 wait_interrupt_t interruptible
,
1070 wait_timeout_urgency_t urgency
,
1074 thread_t thread
= current_thread();
1075 wait_result_t wresult
;
1078 if (__improbable(event
== NO_EVENT
))
1079 panic("%s() called with NO_EVENT", __func__
);
1081 struct waitq
*waitq
;
1082 waitq
= global_eventq(event
);
1087 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1088 MACHDBG_CODE(DBG_MACH_SCHED
, MACH_WAIT
)|DBG_FUNC_NONE
,
1089 VM_KERNEL_UNSLIDE_OR_PERM(event
), interruptible
, deadline
, 0, 0);
1091 wresult
= waitq_assert_wait64_locked(waitq
, CAST_EVENT64_T(event
),
1093 urgency
, deadline
, leeway
,
1095 waitq_unlock(waitq
);
1103 * Return TRUE if a thread is running on a processor such that an AST
1104 * is needed to pull it out of userspace execution, or if executing in
1105 * the kernel, bring to a context switch boundary that would cause
1106 * thread state to be serialized in the thread PCB.
1108 * Thread locked, returns the same way. While locked, fields
1109 * like "state" cannot change. "runq" can change only from set to unset.
1111 static inline boolean_t
1112 thread_isoncpu(thread_t thread
)
1114 /* Not running or runnable */
1115 if (!(thread
->state
& TH_RUN
))
1118 /* Waiting on a runqueue, not currently running */
1119 /* TODO: This is invalid - it can get dequeued without thread lock, but not context switched. */
1120 if (thread
->runq
!= PROCESSOR_NULL
)
1124 * Thread does not have a stack yet
1125 * It could be on the stack alloc queue or preparing to be invoked
1127 if (!thread
->kernel_stack
)
1131 * Thread must be running on a processor, or
1132 * about to run, or just did run. In all these
1133 * cases, an AST to the processor is needed
1134 * to guarantee that the thread is kicked out
1135 * of userspace and the processor has
1136 * context switched (and saved register state).
1144 * Force a preemption point for a thread and wait
1145 * for it to stop running on a CPU. If a stronger
1146 * guarantee is requested, wait until no longer
1147 * runnable. Arbitrates access among
1148 * multiple stop requests. (released by unstop)
1150 * The thread must enter a wait state and stop via a
1153 * Returns FALSE if interrupted.
1158 boolean_t until_not_runnable
)
1160 wait_result_t wresult
;
1161 spl_t s
= splsched();
1165 thread_lock(thread
);
1167 while (thread
->state
& TH_SUSP
) {
1168 thread
->wake_active
= TRUE
;
1169 thread_unlock(thread
);
1171 wresult
= assert_wait(&thread
->wake_active
, THREAD_ABORTSAFE
);
1172 wake_unlock(thread
);
1175 if (wresult
== THREAD_WAITING
)
1176 wresult
= thread_block(THREAD_CONTINUE_NULL
);
1178 if (wresult
!= THREAD_AWAKENED
)
1183 thread_lock(thread
);
1186 thread
->state
|= TH_SUSP
;
1188 while ((oncpu
= thread_isoncpu(thread
)) ||
1189 (until_not_runnable
&& (thread
->state
& TH_RUN
))) {
1190 processor_t processor
;
1193 assert(thread
->state
& TH_RUN
);
1194 processor
= thread
->chosen_processor
;
1195 cause_ast_check(processor
);
1198 thread
->wake_active
= TRUE
;
1199 thread_unlock(thread
);
1201 wresult
= assert_wait(&thread
->wake_active
, THREAD_ABORTSAFE
);
1202 wake_unlock(thread
);
1205 if (wresult
== THREAD_WAITING
)
1206 wresult
= thread_block(THREAD_CONTINUE_NULL
);
1208 if (wresult
!= THREAD_AWAKENED
) {
1209 thread_unstop(thread
);
1215 thread_lock(thread
);
1218 thread_unlock(thread
);
1219 wake_unlock(thread
);
1223 * We return with the thread unlocked. To prevent it from
1224 * transitioning to a runnable state (or from TH_RUN to
1225 * being on the CPU), the caller must ensure the thread
1226 * is stopped via an external means (such as an AST)
1235 * Release a previous stop request and set
1236 * the thread running if appropriate.
1238 * Use only after a successful stop operation.
1244 spl_t s
= splsched();
1247 thread_lock(thread
);
1249 assert((thread
->state
& (TH_RUN
|TH_WAIT
|TH_SUSP
)) != TH_SUSP
);
1251 if (thread
->state
& TH_SUSP
) {
1252 thread
->state
&= ~TH_SUSP
;
1254 if (thread
->wake_active
) {
1255 thread
->wake_active
= FALSE
;
1256 thread_unlock(thread
);
1258 thread_wakeup(&thread
->wake_active
);
1259 wake_unlock(thread
);
1266 thread_unlock(thread
);
1267 wake_unlock(thread
);
1274 * Wait for a thread to stop running. (non-interruptible)
1280 boolean_t until_not_runnable
)
1282 wait_result_t wresult
;
1284 processor_t processor
;
1285 spl_t s
= splsched();
1288 thread_lock(thread
);
1291 * Wait until not running on a CPU. If stronger requirement
1292 * desired, wait until not runnable. Assumption: if thread is
1293 * on CPU, then TH_RUN is set, so we're not waiting in any case
1294 * where the original, pure "TH_RUN" check would have let us
1297 while ((oncpu
= thread_isoncpu(thread
)) ||
1298 (until_not_runnable
&& (thread
->state
& TH_RUN
))) {
1301 assert(thread
->state
& TH_RUN
);
1302 processor
= thread
->chosen_processor
;
1303 cause_ast_check(processor
);
1306 thread
->wake_active
= TRUE
;
1307 thread_unlock(thread
);
1309 wresult
= assert_wait(&thread
->wake_active
, THREAD_UNINT
);
1310 wake_unlock(thread
);
1313 if (wresult
== THREAD_WAITING
)
1314 thread_block(THREAD_CONTINUE_NULL
);
1318 thread_lock(thread
);
1321 thread_unlock(thread
);
1322 wake_unlock(thread
);
1327 * Routine: clear_wait_internal
1329 * Clear the wait condition for the specified thread.
1330 * Start the thread executing if that is appropriate.
1332 * thread thread to awaken
1333 * result Wakeup result the thread should see
1336 * the thread is locked.
1338 * KERN_SUCCESS thread was rousted out a wait
1339 * KERN_FAILURE thread was waiting but could not be rousted
1340 * KERN_NOT_WAITING thread was not waiting
1342 __private_extern__ kern_return_t
1343 clear_wait_internal(
1345 wait_result_t wresult
)
1347 uint32_t i
= LockTimeOutUsec
;
1348 struct waitq
*waitq
= thread
->waitq
;
1351 if (wresult
== THREAD_INTERRUPTED
&& (thread
->state
& TH_UNINT
))
1352 return (KERN_FAILURE
);
1354 if (waitq
!= NULL
) {
1355 if (!waitq_pull_thread_locked(waitq
, thread
)) {
1356 thread_unlock(thread
);
1358 if (i
> 0 && !machine_timeout_suspended())
1360 thread_lock(thread
);
1361 if (waitq
!= thread
->waitq
)
1362 return KERN_NOT_WAITING
;
1367 /* TODO: Can we instead assert TH_TERMINATE is not set? */
1368 if ((thread
->state
& (TH_WAIT
|TH_TERMINATE
)) == TH_WAIT
)
1369 return (thread_go(thread
, wresult
));
1371 return (KERN_NOT_WAITING
);
1374 panic("clear_wait_internal: deadlock: thread=%p, wq=%p, cpu=%d\n",
1375 thread
, waitq
, cpu_number());
1377 return (KERN_FAILURE
);
1384 * Clear the wait condition for the specified thread. Start the thread
1385 * executing if that is appropriate.
1388 * thread thread to awaken
1389 * result Wakeup result the thread should see
1394 wait_result_t result
)
1400 thread_lock(thread
);
1401 ret
= clear_wait_internal(thread
, result
);
1402 thread_unlock(thread
);
1409 * thread_wakeup_prim:
1411 * Common routine for thread_wakeup, thread_wakeup_with_result,
1412 * and thread_wakeup_one.
1418 boolean_t one_thread
,
1419 wait_result_t result
)
1421 if (__improbable(event
== NO_EVENT
))
1422 panic("%s() called with NO_EVENT", __func__
);
1424 struct waitq
*wq
= global_eventq(event
);
1427 return waitq_wakeup64_one(wq
, CAST_EVENT64_T(event
), result
, WAITQ_ALL_PRIORITIES
);
1429 return waitq_wakeup64_all(wq
, CAST_EVENT64_T(event
), result
, WAITQ_ALL_PRIORITIES
);
1433 * Wakeup a specified thread if and only if it's waiting for this event
1436 thread_wakeup_thread(
1440 if (__improbable(event
== NO_EVENT
))
1441 panic("%s() called with NO_EVENT", __func__
);
1443 if (__improbable(thread
== THREAD_NULL
))
1444 panic("%s() called with THREAD_NULL", __func__
);
1446 struct waitq
*wq
= global_eventq(event
);
1448 return waitq_wakeup64_thread(wq
, CAST_EVENT64_T(event
), thread
, THREAD_AWAKENED
);
1452 * Wakeup a thread waiting on an event and promote it to a priority.
1454 * Requires woken thread to un-promote itself when done.
1457 thread_wakeup_one_with_pri(
1461 if (__improbable(event
== NO_EVENT
))
1462 panic("%s() called with NO_EVENT", __func__
);
1464 struct waitq
*wq
= global_eventq(event
);
1466 return waitq_wakeup64_one(wq
, CAST_EVENT64_T(event
), THREAD_AWAKENED
, priority
);
1470 * Wakeup a thread waiting on an event,
1471 * promote it to a priority,
1472 * and return a reference to the woken thread.
1474 * Requires woken thread to un-promote itself when done.
1477 thread_wakeup_identify(event_t event
,
1480 if (__improbable(event
== NO_EVENT
))
1481 panic("%s() called with NO_EVENT", __func__
);
1483 struct waitq
*wq
= global_eventq(event
);
1485 return waitq_wakeup64_identify(wq
, CAST_EVENT64_T(event
), THREAD_AWAKENED
, priority
);
1491 * Force the current thread to execute on the specified processor.
1492 * Takes effect after the next thread_block().
1494 * Returns the previous binding. PROCESSOR_NULL means
1497 * XXX - DO NOT export this to users - XXX
1501 processor_t processor
)
1503 thread_t self
= current_thread();
1510 prev
= thread_bind_internal(self
, processor
);
1512 thread_unlock(self
);
1519 * thread_bind_internal:
1521 * If the specified thread is not the current thread, and it is currently
1522 * running on another CPU, a remote AST must be sent to that CPU to cause
1523 * the thread to migrate to its bound processor. Otherwise, the migration
1524 * will occur at the next quantum expiration or blocking point.
1526 * When the thread is the current thread, and explicit thread_block() should
1527 * be used to force the current processor to context switch away and
1528 * let the thread migrate to the bound processor.
1530 * Thread must be locked, and at splsched.
1534 thread_bind_internal(
1536 processor_t processor
)
1540 /* <rdar://problem/15102234> */
1541 assert(thread
->sched_pri
< BASEPRI_RTQUEUES
);
1542 /* A thread can't be bound if it's sitting on a (potentially incorrect) runqueue */
1543 assert(thread
->runq
== PROCESSOR_NULL
);
1545 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED
, MACH_THREAD_BIND
), thread_tid(thread
), processor
? (uintptr_t)processor
->cpu_id
: (uintptr_t)-1, 0, 0, 0);
1547 prev
= thread
->bound_processor
;
1548 thread
->bound_processor
= processor
;
1554 * thread_vm_bind_group_add:
1556 * The "VM bind group" is a special mechanism to mark a collection
1557 * of threads from the VM subsystem that, in general, should be scheduled
1558 * with only one CPU of parallelism. To accomplish this, we initially
1559 * bind all the threads to the master processor, which has the effect
1560 * that only one of the threads in the group can execute at once, including
1561 * preempting threads in the group that are a lower priority. Future
1562 * mechanisms may use more dynamic mechanisms to prevent the collection
1563 * of VM threads from using more CPU time than desired.
1565 * The current implementation can result in priority inversions where
1566 * compute-bound priority 95 or realtime threads that happen to have
1567 * landed on the master processor prevent the VM threads from running.
1568 * When this situation is detected, we unbind the threads for one
1569 * scheduler tick to allow the scheduler to run the threads an
1570 * additional CPUs, before restoring the binding (assuming high latency
1571 * is no longer a problem).
1575 * The current max is provisioned for:
1576 * vm_compressor_swap_trigger_thread (92)
1577 * 2 x vm_pageout_iothread_internal (92) when vm_restricted_to_single_processor==TRUE
1578 * vm_pageout_continue (92)
1579 * memorystatus_thread (95)
1581 #define MAX_VM_BIND_GROUP_COUNT (5)
1582 decl_simple_lock_data(static,sched_vm_group_list_lock
);
1583 static thread_t sched_vm_group_thread_list
[MAX_VM_BIND_GROUP_COUNT
];
1584 static int sched_vm_group_thread_count
;
1585 static boolean_t sched_vm_group_temporarily_unbound
= FALSE
;
1588 thread_vm_bind_group_add(void)
1590 thread_t self
= current_thread();
1592 thread_reference_internal(self
);
1593 self
->options
|= TH_OPT_SCHED_VM_GROUP
;
1595 simple_lock(&sched_vm_group_list_lock
);
1596 assert(sched_vm_group_thread_count
< MAX_VM_BIND_GROUP_COUNT
);
1597 sched_vm_group_thread_list
[sched_vm_group_thread_count
++] = self
;
1598 simple_unlock(&sched_vm_group_list_lock
);
1600 thread_bind(master_processor
);
1602 /* Switch to bound processor if not already there */
1603 thread_block(THREAD_CONTINUE_NULL
);
1607 sched_vm_group_maintenance(void)
1609 uint64_t ctime
= mach_absolute_time();
1610 uint64_t longtime
= ctime
- sched_tick_interval
;
1613 boolean_t high_latency_observed
= FALSE
;
1614 boolean_t runnable_and_not_on_runq_observed
= FALSE
;
1615 boolean_t bind_target_changed
= FALSE
;
1616 processor_t bind_target
= PROCESSOR_NULL
;
1618 /* Make sure nobody attempts to add new threads while we are enumerating them */
1619 simple_lock(&sched_vm_group_list_lock
);
1623 for (i
=0; i
< sched_vm_group_thread_count
; i
++) {
1624 thread_t thread
= sched_vm_group_thread_list
[i
];
1625 assert(thread
!= THREAD_NULL
);
1626 thread_lock(thread
);
1627 if ((thread
->state
& (TH_RUN
|TH_WAIT
)) == TH_RUN
) {
1628 if (thread
->runq
!= PROCESSOR_NULL
&& thread
->last_made_runnable_time
< longtime
) {
1629 high_latency_observed
= TRUE
;
1630 } else if (thread
->runq
== PROCESSOR_NULL
) {
1631 /* There are some cases where a thread be transitiong that also fall into this case */
1632 runnable_and_not_on_runq_observed
= TRUE
;
1635 thread_unlock(thread
);
1637 if (high_latency_observed
&& runnable_and_not_on_runq_observed
) {
1638 /* All the things we are looking for are true, stop looking */
1645 if (sched_vm_group_temporarily_unbound
) {
1646 /* If we turned off binding, make sure everything is OK before rebinding */
1647 if (!high_latency_observed
) {
1649 bind_target_changed
= TRUE
;
1650 bind_target
= master_processor
;
1651 sched_vm_group_temporarily_unbound
= FALSE
; /* might be reset to TRUE if change cannot be completed */
1655 * Check if we're in a bad state, which is defined by high
1656 * latency with no core currently executing a thread. If a
1657 * single thread is making progress on a CPU, that means the
1658 * binding concept to reduce parallelism is working as
1661 if (high_latency_observed
&& !runnable_and_not_on_runq_observed
) {
1663 bind_target_changed
= TRUE
;
1664 bind_target
= PROCESSOR_NULL
;
1665 sched_vm_group_temporarily_unbound
= TRUE
;
1669 if (bind_target_changed
) {
1671 for (i
=0; i
< sched_vm_group_thread_count
; i
++) {
1672 thread_t thread
= sched_vm_group_thread_list
[i
];
1674 assert(thread
!= THREAD_NULL
);
1676 thread_lock(thread
);
1677 removed
= thread_run_queue_remove(thread
);
1678 if (removed
|| ((thread
->state
& (TH_RUN
| TH_WAIT
)) == TH_WAIT
)) {
1679 thread_bind_internal(thread
, bind_target
);
1682 * Thread was in the middle of being context-switched-to,
1683 * or was in the process of blocking. To avoid switching the bind
1684 * state out mid-flight, defer the change if possible.
1686 if (bind_target
== PROCESSOR_NULL
) {
1687 thread_bind_internal(thread
, bind_target
);
1689 sched_vm_group_temporarily_unbound
= TRUE
; /* next pass will try again */
1694 thread_run_queue_reinsert(thread
, SCHED_PREEMPT
| SCHED_TAILQ
);
1696 thread_unlock(thread
);
1701 simple_unlock(&sched_vm_group_list_lock
);
1704 /* Invoked prior to idle entry to determine if, on SMT capable processors, an SMT
1705 * rebalancing opportunity exists when a core is (instantaneously) idle, but
1706 * other SMT-capable cores may be over-committed. TODO: some possible negatives:
1707 * IPI thrash if this core does not remain idle following the load balancing ASTs
1708 * Idle "thrash", when IPI issue is followed by idle entry/core power down
1709 * followed by a wakeup shortly thereafter.
1712 #if (DEVELOPMENT || DEBUG)
1713 int sched_smt_balance
= 1;
1717 /* Invoked with pset locked, returns with pset unlocked */
1719 sched_SMT_balance(processor_t cprocessor
, processor_set_t cpset
) {
1720 processor_t ast_processor
= NULL
;
1722 #if (DEVELOPMENT || DEBUG)
1723 if (__improbable(sched_smt_balance
== 0))
1724 goto smt_balance_exit
;
1727 assert(cprocessor
== current_processor());
1728 if (cprocessor
->is_SMT
== FALSE
)
1729 goto smt_balance_exit
;
1731 processor_t sib_processor
= cprocessor
->processor_secondary
? cprocessor
->processor_secondary
: cprocessor
->processor_primary
;
1733 /* Determine if both this processor and its sibling are idle,
1734 * indicating an SMT rebalancing opportunity.
1736 if (sib_processor
->state
!= PROCESSOR_IDLE
)
1737 goto smt_balance_exit
;
1739 processor_t sprocessor
;
1741 sched_ipi_type_t ipi_type
= SCHED_IPI_NONE
;
1742 qe_foreach_element(sprocessor
, &cpset
->active_queue
, processor_queue
) {
1743 if ((sprocessor
->state
== PROCESSOR_RUNNING
) &&
1744 (sprocessor
->processor_primary
!= sprocessor
) &&
1745 (sprocessor
->processor_primary
->state
== PROCESSOR_RUNNING
) &&
1746 (sprocessor
->current_pri
< BASEPRI_RTQUEUES
)) {
1748 ipi_type
= sched_ipi_action(sprocessor
, NULL
, false, SCHED_IPI_EVENT_SMT_REBAL
);
1749 if (ipi_type
!= SCHED_IPI_NONE
) {
1750 assert(sprocessor
!= cprocessor
);
1751 ast_processor
= sprocessor
;
1760 if (ast_processor
) {
1761 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED
, MACH_SCHED_SMT_BALANCE
), ast_processor
->cpu_id
, ast_processor
->state
, ast_processor
->processor_primary
->state
, 0, 0);
1762 sched_ipi_perform(ast_processor
, ipi_type
);
1766 /* Invoked with pset locked, returns with pset unlocked */
1768 sched_SMT_balance(__unused processor_t cprocessor
, processor_set_t cpset
)
1772 #endif /* __SMP__ */
1777 * Select a new thread for the current processor to execute.
1779 * May select the current thread, which must be locked.
1782 thread_select(thread_t thread
,
1783 processor_t processor
,
1786 processor_set_t pset
= processor
->processor_set
;
1787 thread_t new_thread
= THREAD_NULL
;
1789 assert(processor
== current_processor());
1790 assert((thread
->state
& (TH_RUN
|TH_TERMINATE2
)) == TH_RUN
);
1794 * Update the priority.
1796 if (SCHED(can_update_priority
)(thread
))
1797 SCHED(update_priority
)(thread
);
1799 processor_state_update_from_thread(processor
, thread
);
1803 assert(processor
->state
!= PROCESSOR_OFF_LINE
);
1805 if (!processor
->is_recommended
) {
1807 * The performance controller has provided a hint to not dispatch more threads,
1808 * unless they are bound to us (and thus we are the only option
1810 if (!SCHED(processor_bound_count
)(processor
)) {
1813 } else if (processor
->processor_primary
!= processor
) {
1815 * Should this secondary SMT processor attempt to find work? For pset runqueue systems,
1816 * we should look for work only under the same conditions that choose_processor()
1817 * would have assigned work, which is when all primary processors have been assigned work.
1819 * An exception is that bound threads are dispatched to a processor without going through
1820 * choose_processor(), so in those cases we should continue trying to dequeue work.
1822 if (!SCHED(processor_bound_count
)(processor
) &&
1823 !queue_empty(&pset
->idle_queue
) && !rt_runq_count(pset
)) {
1829 * Test to see if the current thread should continue
1830 * to run on this processor. Must not be attempting to wait, and not
1831 * bound to a different processor, nor be in the wrong
1832 * processor set, nor be forced to context switch by TH_SUSP.
1834 * Note that there are never any RT threads in the regular runqueue.
1836 * This code is very insanely tricky.
1839 /* i.e. not waiting, not TH_SUSP'ed */
1840 boolean_t still_running
= ((thread
->state
& (TH_TERMINATE
|TH_IDLE
|TH_WAIT
|TH_RUN
|TH_SUSP
)) == TH_RUN
);
1843 * Threads running on SMT processors are forced to context switch. Don't rebalance realtime threads.
1844 * TODO: This should check if it's worth it to rebalance, i.e. 'are there any idle primary processors'
1846 boolean_t needs_smt_rebalance
= (thread
->sched_pri
< BASEPRI_RTQUEUES
&& processor
->processor_primary
!= processor
);
1848 boolean_t affinity_mismatch
= (thread
->affinity_set
!= AFFINITY_SET_NULL
&& thread
->affinity_set
->aset_pset
!= pset
);
1850 boolean_t bound_elsewhere
= (thread
->bound_processor
!= PROCESSOR_NULL
&& thread
->bound_processor
!= processor
);
1852 boolean_t avoid_processor
= (SCHED(avoid_processor_enabled
) && SCHED(thread_avoid_processor
)(processor
, thread
));
1854 if (still_running
&& !needs_smt_rebalance
&& !affinity_mismatch
&& !bound_elsewhere
&& !avoid_processor
) {
1856 * This thread is eligible to keep running on this processor.
1858 * RT threads with un-expired quantum stay on processor,
1859 * unless there's a valid RT thread with an earlier deadline.
1861 if (thread
->sched_pri
>= BASEPRI_RTQUEUES
&& processor
->first_timeslice
) {
1862 if (rt_runq_count(pset
) > 0) {
1866 if (rt_runq_count(pset
) > 0) {
1868 thread_t next_rt
= qe_queue_first(&SCHED(rt_runq
)(pset
)->queue
, struct thread
, runq_links
);
1870 if (next_rt
->realtime
.deadline
< processor
->deadline
&&
1871 (next_rt
->bound_processor
== PROCESSOR_NULL
||
1872 next_rt
->bound_processor
== processor
)) {
1873 /* The next RT thread is better, so pick it off the runqueue. */
1874 goto pick_new_rt_thread
;
1878 rt_lock_unlock(pset
);
1881 /* This is still the best RT thread to run. */
1882 processor
->deadline
= thread
->realtime
.deadline
;
1884 sched_update_pset_load_average(pset
);
1890 if ((rt_runq_count(pset
) == 0) &&
1891 SCHED(processor_queue_has_priority
)(processor
, thread
->sched_pri
, TRUE
) == FALSE
) {
1892 /* This thread is still the highest priority runnable (non-idle) thread */
1893 processor
->deadline
= UINT64_MAX
;
1895 sched_update_pset_load_average(pset
);
1902 * This processor must context switch.
1903 * If it's due to a rebalance, we should aggressively find this thread a new home.
1905 if (needs_smt_rebalance
|| affinity_mismatch
|| bound_elsewhere
|| avoid_processor
)
1906 *reason
|= AST_REBALANCE
;
1909 /* OK, so we're not going to run the current thread. Look at the RT queue. */
1910 if (rt_runq_count(pset
) > 0) {
1914 if (rt_runq_count(pset
) > 0) {
1915 thread_t next_rt
= qe_queue_first(&SCHED(rt_runq
)(pset
)->queue
, struct thread
, runq_links
);
1917 if (__probable((next_rt
->bound_processor
== PROCESSOR_NULL
||
1918 (next_rt
->bound_processor
== processor
)))) {
1920 new_thread
= qe_dequeue_head(&SCHED(rt_runq
)(pset
)->queue
, struct thread
, runq_links
);
1922 new_thread
->runq
= PROCESSOR_NULL
;
1923 SCHED_STATS_RUNQ_CHANGE(&SCHED(rt_runq
)(pset
)->runq_stats
, rt_runq_count(pset
));
1924 rt_runq_count_decr(pset
);
1926 processor
->deadline
= new_thread
->realtime
.deadline
;
1928 rt_lock_unlock(pset
);
1929 sched_update_pset_load_average(pset
);
1932 return (new_thread
);
1936 rt_lock_unlock(pset
);
1939 processor
->deadline
= UINT64_MAX
;
1941 /* No RT threads, so let's look at the regular threads. */
1942 if ((new_thread
= SCHED(choose_thread
)(processor
, MINPRI
, *reason
)) != THREAD_NULL
) {
1943 sched_update_pset_load_average(pset
);
1945 return (new_thread
);
1949 if (SCHED(steal_thread_enabled
)) {
1951 * No runnable threads, attempt to steal
1952 * from other processors. Returns with pset lock dropped.
1955 if ((new_thread
= SCHED(steal_thread
)(pset
)) != THREAD_NULL
) {
1956 return (new_thread
);
1960 * If other threads have appeared, shortcut
1963 if (!SCHED(processor_queue_empty
)(processor
) || rt_runq_count(pset
) > 0)
1972 * Nothing is runnable, so set this processor idle if it
1975 if (processor
->state
== PROCESSOR_RUNNING
) {
1976 processor
->state
= PROCESSOR_IDLE
;
1978 if (!processor
->is_recommended
) {
1979 re_queue_head(&pset
->unused_queue
, &processor
->processor_queue
);
1980 } else if (processor
->processor_primary
== processor
) {
1981 re_queue_head(&pset
->idle_queue
, &processor
->processor_queue
);
1983 re_queue_head(&pset
->idle_secondary_queue
, &processor
->processor_queue
);
1986 pset
->active_processor_count
--;
1987 sched_update_pset_load_average(pset
);
1991 /* Invoked with pset locked, returns with pset unlocked */
1992 SCHED(processor_balance
)(processor
, pset
);
1997 #if CONFIG_SCHED_IDLE_IN_PLACE
1999 * Choose idle thread if fast idle is not possible.
2001 if (processor
->processor_primary
!= processor
)
2002 return (processor
->idle_thread
);
2004 if ((thread
->state
& (TH_IDLE
|TH_TERMINATE
|TH_SUSP
)) || !(thread
->state
& TH_WAIT
) || thread
->wake_active
|| thread
->sched_pri
>= BASEPRI_RTQUEUES
)
2005 return (processor
->idle_thread
);
2008 * Perform idling activities directly without a
2009 * context switch. Return dispatched thread,
2010 * else check again for a runnable thread.
2012 new_thread
= thread_select_idle(thread
, processor
);
2014 #else /* !CONFIG_SCHED_IDLE_IN_PLACE */
2017 * Do a full context switch to idle so that the current
2018 * thread can start running on another processor without
2019 * waiting for the fast-idled processor to wake up.
2021 new_thread
= processor
->idle_thread
;
2023 #endif /* !CONFIG_SCHED_IDLE_IN_PLACE */
2025 } while (new_thread
== THREAD_NULL
);
2027 return (new_thread
);
2030 #if CONFIG_SCHED_IDLE_IN_PLACE
2032 * thread_select_idle:
2034 * Idle the processor using the current thread context.
2036 * Called with thread locked, then dropped and relocked.
2041 processor_t processor
)
2043 thread_t new_thread
;
2044 uint64_t arg1
, arg2
;
2047 sched_run_decr(thread
);
2049 thread
->state
|= TH_IDLE
;
2050 processor_state_update_idle(procssor
);
2052 /* Reload precise timing global policy to thread-local policy */
2053 thread
->precise_user_kernel_time
= use_precise_user_kernel_time(thread
);
2055 thread_unlock(thread
);
2058 * Switch execution timing to processor idle thread.
2060 processor
->last_dispatch
= mach_absolute_time();
2062 #ifdef CONFIG_MACH_APPROXIMATE_TIME
2063 commpage_update_mach_approximate_time(processor
->last_dispatch
);
2066 thread
->last_run_time
= processor
->last_dispatch
;
2067 thread_timer_event(processor
->last_dispatch
, &processor
->idle_thread
->system_timer
);
2068 PROCESSOR_DATA(processor
, kernel_timer
) = &processor
->idle_thread
->system_timer
;
2072 * Cancel the quantum timer while idling.
2074 timer_call_quantum_timer_cancel(&processor
->quantum_timer
);
2075 processor
->first_timeslice
= FALSE
;
2077 (*thread
->sched_call
)(SCHED_CALL_BLOCK
, thread
);
2079 thread_tell_urgency(THREAD_URGENCY_NONE
, 0, 0, 0, NULL
);
2082 * Enable interrupts and perform idling activities. No
2083 * preemption due to TH_IDLE being set.
2085 spllo(); new_thread
= processor_idle(thread
, processor
);
2088 * Return at splsched.
2090 (*thread
->sched_call
)(SCHED_CALL_UNBLOCK
, thread
);
2092 thread_lock(thread
);
2095 * If awakened, switch to thread timer and start a new quantum.
2096 * Otherwise skip; we will context switch to another thread or return here.
2098 if (!(thread
->state
& TH_WAIT
)) {
2099 processor
->last_dispatch
= mach_absolute_time();
2100 thread_timer_event(processor
->last_dispatch
, &thread
->system_timer
);
2101 PROCESSOR_DATA(processor
, kernel_timer
) = &thread
->system_timer
;
2102 thread_quantum_init(thread
);
2103 processor
->quantum_end
= processor
->last_dispatch
+ thread
->quantum_remaining
;
2104 timer_call_quantum_timer_enter(&processor
->quantum_timer
,
2105 thread
, processor
->quantum_end
, processor
->last_dispatch
);
2106 processor
->first_timeslice
= TRUE
;
2108 thread
->computation_epoch
= processor
->last_dispatch
;
2111 thread
->state
&= ~TH_IDLE
;
2113 urgency
= thread_get_urgency(thread
, &arg1
, &arg2
);
2115 thread_tell_urgency(urgency
, arg1
, arg2
, 0, new_thread
);
2117 sched_run_incr(thread
);
2119 return (new_thread
);
2121 #endif /* CONFIG_SCHED_IDLE_IN_PLACE */
2126 * Called at splsched with neither thread locked.
2128 * Perform a context switch and start executing the new thread.
2130 * Returns FALSE when the context switch didn't happen.
2131 * The reference to the new thread is still consumed.
2133 * "self" is what is currently running on the processor,
2134 * "thread" is the new thread to context switch to
2135 * (which may be the same thread in some cases)
2143 if (__improbable(get_preemption_level() != 0)) {
2144 int pl
= get_preemption_level();
2145 panic("thread_invoke: preemption_level %d, possible cause: %s",
2146 pl
, (pl
< 0 ? "unlocking an unlocked mutex or spinlock" :
2147 "blocking while holding a spinlock, or within interrupt context"));
2150 thread_continue_t continuation
= self
->continuation
;
2151 void *parameter
= self
->parameter
;
2152 processor_t processor
;
2154 uint64_t ctime
= mach_absolute_time();
2156 #ifdef CONFIG_MACH_APPROXIMATE_TIME
2157 commpage_update_mach_approximate_time(ctime
);
2160 #if defined(CONFIG_SCHED_TIMESHARE_CORE)
2161 if ((thread
->state
& TH_IDLE
) == 0)
2162 sched_timeshare_consider_maintenance(ctime
);
2166 mt_sched_update(self
);
2167 #endif /* MONOTONIC */
2169 assert_thread_magic(self
);
2170 assert(self
== current_thread());
2171 assert(self
->runq
== PROCESSOR_NULL
);
2172 assert((self
->state
& (TH_RUN
|TH_TERMINATE2
)) == TH_RUN
);
2174 thread_lock(thread
);
2176 assert_thread_magic(thread
);
2177 assert((thread
->state
& (TH_RUN
|TH_WAIT
|TH_UNINT
|TH_TERMINATE
|TH_TERMINATE2
)) == TH_RUN
);
2178 assert(thread
->bound_processor
== PROCESSOR_NULL
|| thread
->bound_processor
== current_processor());
2179 assert(thread
->runq
== PROCESSOR_NULL
);
2181 /* Reload precise timing global policy to thread-local policy */
2182 thread
->precise_user_kernel_time
= use_precise_user_kernel_time(thread
);
2184 /* Update SFI class based on other factors */
2185 thread
->sfi_class
= sfi_thread_classify(thread
);
2187 /* Update the same_pri_latency for the thread (used by perfcontrol callouts) */
2188 thread
->same_pri_latency
= ctime
- thread
->last_basepri_change_time
;
2190 * In case a base_pri update happened between the timestamp and
2191 * taking the thread lock
2193 if (ctime
<= thread
->last_basepri_change_time
)
2194 thread
->same_pri_latency
= ctime
- thread
->last_made_runnable_time
;
2196 /* Allow realtime threads to hang onto a stack. */
2197 if ((self
->sched_mode
== TH_MODE_REALTIME
) && !self
->reserved_stack
)
2198 self
->reserved_stack
= self
->kernel_stack
;
2200 /* Prepare for spin debugging */
2201 #if INTERRUPT_MASKED_DEBUG
2202 ml_spin_debug_clear(thread
);
2205 if (continuation
!= NULL
) {
2206 if (!thread
->kernel_stack
) {
2208 * If we are using a privileged stack,
2209 * check to see whether we can exchange it with
2210 * that of the other thread.
2212 if (self
->kernel_stack
== self
->reserved_stack
&& !thread
->reserved_stack
)
2216 * Context switch by performing a stack handoff.
2218 continuation
= thread
->continuation
;
2219 parameter
= thread
->parameter
;
2221 processor
= current_processor();
2222 processor
->active_thread
= thread
;
2223 processor_state_update_from_thread(processor
, thread
);
2225 if (thread
->last_processor
!= processor
&& thread
->last_processor
!= NULL
) {
2226 if (thread
->last_processor
->processor_set
!= processor
->processor_set
)
2227 thread
->ps_switch
++;
2230 thread
->last_processor
= processor
;
2232 ast_context(thread
);
2234 thread_unlock(thread
);
2236 self
->reason
= reason
;
2238 processor
->last_dispatch
= ctime
;
2239 self
->last_run_time
= ctime
;
2240 thread_timer_event(ctime
, &thread
->system_timer
);
2241 PROCESSOR_DATA(processor
, kernel_timer
) = &thread
->system_timer
;
2244 * Since non-precise user/kernel time doesn't update the state timer
2245 * during privilege transitions, synthesize an event now.
2247 if (!thread
->precise_user_kernel_time
) {
2248 timer_switch(PROCESSOR_DATA(processor
, current_state
),
2250 PROCESSOR_DATA(processor
, current_state
));
2253 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
2254 MACHDBG_CODE(DBG_MACH_SCHED
, MACH_STACK_HANDOFF
)|DBG_FUNC_NONE
,
2255 self
->reason
, (uintptr_t)thread_tid(thread
), self
->sched_pri
, thread
->sched_pri
, 0);
2257 if ((thread
->chosen_processor
!= processor
) && (thread
->chosen_processor
!= PROCESSOR_NULL
)) {
2258 SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED
, MACH_MOVED
)|DBG_FUNC_NONE
,
2259 (uintptr_t)thread_tid(thread
), (uintptr_t)thread
->chosen_processor
->cpu_id
, 0, 0, 0);
2262 DTRACE_SCHED2(off__cpu
, struct thread
*, thread
, struct proc
*, thread
->task
->bsd_info
);
2264 SCHED_STATS_CSW(processor
, self
->reason
, self
->sched_pri
, thread
->sched_pri
);
2266 TLOG(1, "thread_invoke: calling stack_handoff\n");
2267 stack_handoff(self
, thread
);
2269 /* 'self' is now off core */
2270 assert(thread
== current_thread());
2272 DTRACE_SCHED(on__cpu
);
2275 kperf_on_cpu(thread
, continuation
, NULL
);
2279 kasan_unpoison_fakestack(self
);
2280 kasan_unpoison_stack(thread
->kernel_stack
, kernel_stack_size
);
2283 thread_dispatch(self
, thread
);
2285 thread
->continuation
= thread
->parameter
= NULL
;
2287 counter(c_thread_invoke_hits
++);
2291 assert(continuation
);
2292 call_continuation(continuation
, parameter
, thread
->wait_result
);
2295 else if (thread
== self
) {
2296 /* same thread but with continuation */
2298 counter(++c_thread_invoke_same
);
2300 thread_unlock(self
);
2303 kperf_on_cpu(thread
, continuation
, NULL
);
2306 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
2307 MACHDBG_CODE(DBG_MACH_SCHED
,MACH_SCHED
) | DBG_FUNC_NONE
,
2308 self
->reason
, (uintptr_t)thread_tid(thread
), self
->sched_pri
, thread
->sched_pri
, 0);
2311 kasan_unpoison_fakestack(self
);
2312 kasan_unpoison_stack(self
->kernel_stack
, kernel_stack_size
);
2315 self
->continuation
= self
->parameter
= NULL
;
2319 call_continuation(continuation
, parameter
, self
->wait_result
);
2324 * Check that the other thread has a stack
2326 if (!thread
->kernel_stack
) {
2328 if (!stack_alloc_try(thread
)) {
2329 counter(c_thread_invoke_misses
++);
2330 thread_unlock(thread
);
2331 thread_stack_enqueue(thread
);
2334 } else if (thread
== self
) {
2336 counter(++c_thread_invoke_same
);
2337 thread_unlock(self
);
2339 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
2340 MACHDBG_CODE(DBG_MACH_SCHED
,MACH_SCHED
) | DBG_FUNC_NONE
,
2341 self
->reason
, (uintptr_t)thread_tid(thread
), self
->sched_pri
, thread
->sched_pri
, 0);
2348 * Context switch by full context save.
2350 processor
= current_processor();
2351 processor
->active_thread
= thread
;
2352 processor_state_update_from_thread(processor
, thread
);
2354 if (thread
->last_processor
!= processor
&& thread
->last_processor
!= NULL
) {
2355 if (thread
->last_processor
->processor_set
!= processor
->processor_set
)
2356 thread
->ps_switch
++;
2359 thread
->last_processor
= processor
;
2361 ast_context(thread
);
2363 thread_unlock(thread
);
2365 counter(c_thread_invoke_csw
++);
2367 self
->reason
= reason
;
2369 processor
->last_dispatch
= ctime
;
2370 self
->last_run_time
= ctime
;
2371 thread_timer_event(ctime
, &thread
->system_timer
);
2372 PROCESSOR_DATA(processor
, kernel_timer
) = &thread
->system_timer
;
2375 * Since non-precise user/kernel time doesn't update the state timer
2376 * during privilege transitions, synthesize an event now.
2378 if (!thread
->precise_user_kernel_time
) {
2379 timer_switch(PROCESSOR_DATA(processor
, current_state
),
2381 PROCESSOR_DATA(processor
, current_state
));
2384 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
2385 MACHDBG_CODE(DBG_MACH_SCHED
,MACH_SCHED
) | DBG_FUNC_NONE
,
2386 self
->reason
, (uintptr_t)thread_tid(thread
), self
->sched_pri
, thread
->sched_pri
, 0);
2388 if ((thread
->chosen_processor
!= processor
) && (thread
->chosen_processor
!= NULL
)) {
2389 SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED
, MACH_MOVED
)|DBG_FUNC_NONE
,
2390 (uintptr_t)thread_tid(thread
), (uintptr_t)thread
->chosen_processor
->cpu_id
, 0, 0, 0);
2393 DTRACE_SCHED2(off__cpu
, struct thread
*, thread
, struct proc
*, thread
->task
->bsd_info
);
2395 SCHED_STATS_CSW(processor
, self
->reason
, self
->sched_pri
, thread
->sched_pri
);
2398 * This is where we actually switch register context,
2399 * and address space if required. We will next run
2400 * as a result of a subsequent context switch.
2402 * Once registers are switched and the processor is running "thread",
2403 * the stack variables and non-volatile registers will contain whatever
2404 * was there the last time that thread blocked. No local variables should
2405 * be used after this point, except for the special case of "thread", which
2406 * the platform layer returns as the previous thread running on the processor
2407 * via the function call ABI as a return register, and "self", which may have
2408 * been stored on the stack or a non-volatile register, but a stale idea of
2409 * what was on the CPU is newly-accurate because that thread is again
2410 * running on the CPU.
2412 assert(continuation
== self
->continuation
);
2413 thread
= machine_switch_context(self
, continuation
, thread
);
2414 assert(self
== current_thread());
2415 TLOG(1,"thread_invoke: returning machine_switch_context: self %p continuation %p thread %p\n", self
, continuation
, thread
);
2417 DTRACE_SCHED(on__cpu
);
2420 kperf_on_cpu(self
, NULL
, __builtin_frame_address(0));
2424 * We have been resumed and are set to run.
2426 thread_dispatch(thread
, self
);
2429 self
->continuation
= self
->parameter
= NULL
;
2433 call_continuation(continuation
, parameter
, self
->wait_result
);
2440 #if defined(CONFIG_SCHED_DEFERRED_AST)
2442 * pset_cancel_deferred_dispatch:
2444 * Cancels all ASTs that we can cancel for the given processor set
2445 * if the current processor is running the last runnable thread in the
2448 * This function assumes the current thread is runnable. This must
2449 * be called with the pset unlocked.
2452 pset_cancel_deferred_dispatch(
2453 processor_set_t pset
,
2454 processor_t processor
)
2456 processor_t active_processor
= NULL
;
2457 uint32_t sampled_sched_run_count
;
2460 sampled_sched_run_count
= (volatile uint32_t) sched_run_buckets
[TH_BUCKET_RUN
];
2463 * If we have emptied the run queue, and our current thread is runnable, we
2464 * should tell any processors that are still DISPATCHING that they will
2465 * probably not have any work to do. In the event that there are no
2466 * pending signals that we can cancel, this is also uninteresting.
2468 * In the unlikely event that another thread becomes runnable while we are
2469 * doing this (sched_run_count is atomically updated, not guarded), the
2470 * codepath making it runnable SHOULD (a dangerous word) need the pset lock
2471 * in order to dispatch it to a processor in our pset. So, the other
2472 * codepath will wait while we squash all cancelable ASTs, get the pset
2473 * lock, and then dispatch the freshly runnable thread. So this should be
2474 * correct (we won't accidentally have a runnable thread that hasn't been
2475 * dispatched to an idle processor), if not ideal (we may be restarting the
2476 * dispatch process, which could have some overhead).
2479 if ((sampled_sched_run_count
== 1) &&
2480 (pset
->pending_deferred_AST_cpu_mask
)) {
2481 qe_foreach_element_safe(active_processor
, &pset
->active_queue
, processor_queue
) {
2483 * If a processor is DISPATCHING, it could be because of
2484 * a cancelable signal.
2486 * IF the processor is not our
2487 * current processor (the current processor should not
2488 * be DISPATCHING, so this is a bit paranoid), AND there
2489 * is a cancelable signal pending on the processor, AND
2490 * there is no non-cancelable signal pending (as there is
2491 * no point trying to backtrack on bringing the processor
2492 * up if a signal we cannot cancel is outstanding), THEN
2493 * it should make sense to roll back the processor state
2494 * to the IDLE state.
2496 * If the racey nature of this approach (as the signal
2497 * will be arbitrated by hardware, and can fire as we
2498 * roll back state) results in the core responding
2499 * despite being pushed back to the IDLE state, it
2500 * should be no different than if the core took some
2501 * interrupt while IDLE.
2503 if ((active_processor
->state
== PROCESSOR_DISPATCHING
) &&
2504 (bit_test(pset
->pending_deferred_AST_cpu_mask
, active_processor
->cpu_id
)) &&
2505 (!bit_test(pset
->pending_AST_cpu_mask
, active_processor
->cpu_id
)) &&
2506 (active_processor
!= processor
)) {
2508 * Squash all of the processor state back to some
2509 * reasonable facsimile of PROCESSOR_IDLE.
2511 * TODO: What queue policy do we actually want here?
2512 * We want to promote selection of a good processor
2513 * to run on. Do we want to enqueue at the head?
2514 * The tail? At the (relative) old position in the
2515 * queue? Or something else entirely?
2517 if (!active_processor
->is_recommended
) {
2518 re_queue_head(&pset
->unused_queue
, &active_processor
->processor_queue
);
2519 } else if (active_processor
->processor_primary
== active_processor
) {
2520 re_queue_head(&pset
->idle_queue
, &active_processor
->processor_queue
);
2522 re_queue_head(&pset
->idle_secondary_queue
, &active_processor
->processor_queue
);
2525 pset
->active_processor_count
--;
2526 sched_update_pset_load_average(pset
);
2528 assert(active_processor
->next_thread
== THREAD_NULL
);
2529 processor_state_update_idle(active_processor
);
2530 active_processor
->deadline
= UINT64_MAX
;
2531 active_processor
->state
= PROCESSOR_IDLE
;
2532 bit_clear(pset
->pending_deferred_AST_cpu_mask
, active_processor
->cpu_id
);
2533 machine_signal_idle_cancel(active_processor
);
2542 /* We don't support deferred ASTs; everything is candycanes and sunshine. */
2551 perfcontrol_event event
= (new->state
& TH_IDLE
) ? IDLE
: CONTEXT_SWITCH
;
2552 uint64_t same_pri_latency
= (new->state
& TH_IDLE
) ? 0 : new->same_pri_latency
;
2553 machine_switch_perfcontrol_context(event
, timestamp
, 0,
2554 same_pri_latency
, old
, new);
2561 * Handle threads at context switch. Re-dispatch other thread
2562 * if still running, otherwise update run state and perform
2563 * special actions. Update quantum for other thread and begin
2564 * the quantum for ourselves.
2566 * "thread" is the old thread that we have switched away from.
2567 * "self" is the new current thread that we have context switched to
2569 * Called at splsched.
2576 processor_t processor
= self
->last_processor
;
2578 assert(processor
== current_processor());
2579 assert(self
== current_thread());
2580 assert(thread
!= self
);
2582 if (thread
!= THREAD_NULL
) {
2584 * Do the perfcontrol callout for context switch.
2585 * The reason we do this here is:
2586 * - thread_dispatch() is called from various places that are not
2587 * the direct context switch path for eg. processor shutdown etc.
2588 * So adding the callout here covers all those cases.
2589 * - We want this callout as early as possible to be close
2590 * to the timestamp taken in thread_invoke()
2591 * - We want to avoid holding the thread lock while doing the
2593 * - We do not want to callout if "thread" is NULL.
2595 thread_csw_callout(thread
, self
, processor
->last_dispatch
);
2598 * If blocked at a continuation, discard
2601 if (thread
->continuation
!= NULL
&& thread
->kernel_stack
!= 0)
2604 if (thread
->state
& TH_IDLE
) {
2605 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
2606 MACHDBG_CODE(DBG_MACH_SCHED
,MACH_DISPATCH
) | DBG_FUNC_NONE
,
2607 (uintptr_t)thread_tid(thread
), 0, thread
->state
,
2608 sched_run_buckets
[TH_BUCKET_RUN
], 0);
2611 int64_t remainder
= 0;
2613 if (processor
->quantum_end
> processor
->last_dispatch
)
2614 remainder
= processor
->quantum_end
-
2615 processor
->last_dispatch
;
2617 consumed
= thread
->quantum_remaining
- remainder
;
2619 if ((thread
->reason
& AST_LEDGER
) == 0) {
2621 * Bill CPU time to both the task and
2622 * the individual thread.
2624 ledger_credit(thread
->t_ledger
,
2625 task_ledgers
.cpu_time
, consumed
);
2626 ledger_credit(thread
->t_threadledger
,
2627 thread_ledgers
.cpu_time
, consumed
);
2628 if (thread
->t_bankledger
) {
2629 ledger_credit(thread
->t_bankledger
,
2630 bank_ledgers
.cpu_time
,
2631 (consumed
- thread
->t_deduct_bank_ledger_time
));
2634 thread
->t_deduct_bank_ledger_time
=0;
2638 thread_lock(thread
);
2641 * Apply a priority floor if the thread holds a kernel resource
2642 * Do this before checking starting_pri to avoid overpenalizing
2643 * repeated rwlock blockers.
2645 if (__improbable(thread
->rwlock_count
!= 0))
2646 lck_rw_set_promotion_locked(thread
);
2648 boolean_t keep_quantum
= processor
->first_timeslice
;
2651 * Treat a thread which has dropped priority since it got on core
2652 * as having expired its quantum.
2654 if (processor
->starting_pri
> thread
->sched_pri
)
2655 keep_quantum
= FALSE
;
2657 /* Compute remainder of current quantum. */
2659 processor
->quantum_end
> processor
->last_dispatch
)
2660 thread
->quantum_remaining
= (uint32_t)remainder
;
2662 thread
->quantum_remaining
= 0;
2664 if (thread
->sched_mode
== TH_MODE_REALTIME
) {
2666 * Cancel the deadline if the thread has
2667 * consumed the entire quantum.
2669 if (thread
->quantum_remaining
== 0) {
2670 thread
->realtime
.deadline
= UINT64_MAX
;
2673 #if defined(CONFIG_SCHED_TIMESHARE_CORE)
2675 * For non-realtime threads treat a tiny
2676 * remaining quantum as an expired quantum
2677 * but include what's left next time.
2679 if (thread
->quantum_remaining
< min_std_quantum
) {
2680 thread
->reason
|= AST_QUANTUM
;
2681 thread
->quantum_remaining
+= SCHED(initial_quantum_size
)(thread
);
2683 #endif /* CONFIG_SCHED_TIMESHARE_CORE */
2687 * If we are doing a direct handoff then
2688 * take the remainder of the quantum.
2690 if ((thread
->reason
& (AST_HANDOFF
|AST_QUANTUM
)) == AST_HANDOFF
) {
2691 self
->quantum_remaining
= thread
->quantum_remaining
;
2692 thread
->reason
|= AST_QUANTUM
;
2693 thread
->quantum_remaining
= 0;
2695 #if defined(CONFIG_SCHED_MULTIQ)
2696 if (SCHED(sched_groups_enabled
) &&
2697 thread
->sched_group
== self
->sched_group
) {
2698 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
2699 MACHDBG_CODE(DBG_MACH_SCHED
, MACH_QUANTUM_HANDOFF
),
2700 self
->reason
, (uintptr_t)thread_tid(thread
),
2701 self
->quantum_remaining
, thread
->quantum_remaining
, 0);
2703 self
->quantum_remaining
= thread
->quantum_remaining
;
2704 thread
->quantum_remaining
= 0;
2705 /* Don't set AST_QUANTUM here - old thread might still want to preempt someone else */
2707 #endif /* defined(CONFIG_SCHED_MULTIQ) */
2710 thread
->computation_metered
+= (processor
->last_dispatch
- thread
->computation_epoch
);
2712 if (!(thread
->state
& TH_WAIT
)) {
2716 thread
->last_made_runnable_time
= thread
->last_basepri_change_time
= processor
->last_dispatch
;
2718 machine_thread_going_off_core(thread
, FALSE
, processor
->last_dispatch
);
2720 ast_t reason
= thread
->reason
;
2721 sched_options_t options
= SCHED_NONE
;
2723 if (reason
& AST_REBALANCE
) {
2724 options
|= SCHED_REBALANCE
;
2725 if (reason
& AST_QUANTUM
) {
2726 /* Having gone to the trouble of forcing this thread off a less preferred core,
2727 * we should force the preferable core to reschedule immediatey to give this
2728 * thread a chance to run instead of just sitting on the run queue where
2729 * it may just be stolen back by the idle core we just forced it off.
2730 * But only do this at the end of a quantum to prevent cascading effects.
2732 options
|= SCHED_PREEMPT
;
2736 if (reason
& AST_QUANTUM
)
2737 options
|= SCHED_TAILQ
;
2738 else if (reason
& AST_PREEMPT
)
2739 options
|= SCHED_HEADQ
;
2741 options
|= (SCHED_PREEMPT
| SCHED_TAILQ
);
2743 thread_setrun(thread
, options
);
2745 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
2746 MACHDBG_CODE(DBG_MACH_SCHED
,MACH_DISPATCH
) | DBG_FUNC_NONE
,
2747 (uintptr_t)thread_tid(thread
), thread
->reason
, thread
->state
,
2748 sched_run_buckets
[TH_BUCKET_RUN
], 0);
2750 if (thread
->wake_active
) {
2751 thread
->wake_active
= FALSE
;
2752 thread_unlock(thread
);
2754 thread_wakeup(&thread
->wake_active
);
2756 thread_unlock(thread
);
2759 wake_unlock(thread
);
2764 boolean_t should_terminate
= FALSE
;
2765 uint32_t new_run_count
;
2767 /* Only the first call to thread_dispatch
2768 * after explicit termination should add
2769 * the thread to the termination queue
2771 if ((thread
->state
& (TH_TERMINATE
|TH_TERMINATE2
)) == TH_TERMINATE
) {
2772 should_terminate
= TRUE
;
2773 thread
->state
|= TH_TERMINATE2
;
2776 thread
->state
&= ~TH_RUN
;
2777 thread
->last_made_runnable_time
= thread
->last_basepri_change_time
= THREAD_NOT_RUNNABLE
;
2778 thread
->chosen_processor
= PROCESSOR_NULL
;
2780 new_run_count
= sched_run_decr(thread
);
2782 #if CONFIG_SCHED_SFI
2783 if ((thread
->state
& (TH_WAIT
| TH_TERMINATE
)) == TH_WAIT
) {
2784 if (thread
->reason
& AST_SFI
) {
2785 thread
->wait_sfi_begin_time
= processor
->last_dispatch
;
2790 machine_thread_going_off_core(thread
, should_terminate
, processor
->last_dispatch
);
2792 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
2793 MACHDBG_CODE(DBG_MACH_SCHED
,MACH_DISPATCH
) | DBG_FUNC_NONE
,
2794 (uintptr_t)thread_tid(thread
), thread
->reason
, thread
->state
,
2797 (*thread
->sched_call
)(SCHED_CALL_BLOCK
, thread
);
2799 if (thread
->wake_active
) {
2800 thread
->wake_active
= FALSE
;
2801 thread_unlock(thread
);
2803 thread_wakeup(&thread
->wake_active
);
2805 thread_unlock(thread
);
2808 wake_unlock(thread
);
2810 if (should_terminate
)
2811 thread_terminate_enqueue(thread
);
2816 int urgency
= THREAD_URGENCY_NONE
;
2817 uint64_t latency
= 0;
2819 /* Update (new) current thread and reprogram quantum timer */
2822 if (!(self
->state
& TH_IDLE
)) {
2823 uint64_t arg1
, arg2
;
2825 #if CONFIG_SCHED_SFI
2828 new_ast
= sfi_thread_needs_ast(self
, NULL
);
2830 if (new_ast
!= AST_NONE
) {
2835 assertf(processor
->last_dispatch
>= self
->last_made_runnable_time
,
2836 "Non-monotonic time? dispatch at 0x%llx, runnable at 0x%llx",
2837 processor
->last_dispatch
, self
->last_made_runnable_time
);
2839 assert(self
->last_made_runnable_time
<= self
->last_basepri_change_time
);
2841 latency
= processor
->last_dispatch
- self
->last_made_runnable_time
;
2842 assert(latency
>= self
->same_pri_latency
);
2844 urgency
= thread_get_urgency(self
, &arg1
, &arg2
);
2846 thread_tell_urgency(urgency
, arg1
, arg2
, latency
, self
);
2849 * Get a new quantum if none remaining.
2851 if (self
->quantum_remaining
== 0) {
2852 thread_quantum_init(self
);
2856 * Set up quantum timer and timeslice.
2858 processor
->quantum_end
= processor
->last_dispatch
+ self
->quantum_remaining
;
2859 timer_call_quantum_timer_enter(&processor
->quantum_timer
, self
,
2860 processor
->quantum_end
, processor
->last_dispatch
);
2862 processor
->first_timeslice
= TRUE
;
2864 timer_call_quantum_timer_cancel(&processor
->quantum_timer
);
2865 processor
->first_timeslice
= FALSE
;
2867 thread_tell_urgency(THREAD_URGENCY_NONE
, 0, 0, 0, self
);
2870 assert(self
->block_hint
== kThreadWaitNone
);
2871 self
->computation_epoch
= processor
->last_dispatch
;
2872 self
->reason
= AST_NONE
;
2873 processor
->starting_pri
= self
->sched_pri
;
2875 thread_unlock(self
);
2877 machine_thread_going_on_core(self
, urgency
, latency
, self
->same_pri_latency
,
2878 processor
->last_dispatch
);
2880 #if defined(CONFIG_SCHED_DEFERRED_AST)
2882 * TODO: Can we state that redispatching our old thread is also
2885 if ((((volatile uint32_t)sched_run_buckets
[TH_BUCKET_RUN
]) == 1) &&
2886 !(self
->state
& TH_IDLE
)) {
2887 pset_cancel_deferred_dispatch(processor
->processor_set
, processor
);
2894 * thread_block_reason:
2896 * Forces a reschedule, blocking the caller if a wait
2897 * has been asserted.
2899 * If a continuation is specified, then thread_invoke will
2900 * attempt to discard the thread's kernel stack. When the
2901 * thread resumes, it will execute the continuation function
2902 * on a new kernel stack.
2904 counter(mach_counter_t c_thread_block_calls
= 0;)
2907 thread_block_reason(
2908 thread_continue_t continuation
,
2912 thread_t self
= current_thread();
2913 processor_t processor
;
2914 thread_t new_thread
;
2917 counter(++c_thread_block_calls
);
2921 processor
= current_processor();
2923 /* If we're explicitly yielding, force a subsequent quantum */
2924 if (reason
& AST_YIELD
)
2925 processor
->first_timeslice
= FALSE
;
2927 /* We're handling all scheduling AST's */
2928 ast_off(AST_SCHEDULING
);
2931 if ((continuation
!= NULL
) && (self
->task
!= kernel_task
)) {
2932 if (uthread_get_proc_refcount(self
->uthread
) != 0) {
2933 panic("thread_block_reason with continuation uthread %p with uu_proc_refcount != 0", self
->uthread
);
2938 self
->continuation
= continuation
;
2939 self
->parameter
= parameter
;
2941 if (self
->state
& ~(TH_RUN
| TH_IDLE
)) {
2942 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
2943 MACHDBG_CODE(DBG_MACH_SCHED
,MACH_BLOCK
),
2944 reason
, VM_KERNEL_UNSLIDE(continuation
), 0, 0, 0);
2949 new_thread
= thread_select(self
, processor
, &reason
);
2950 thread_unlock(self
);
2951 } while (!thread_invoke(self
, new_thread
, reason
));
2955 return (self
->wait_result
);
2961 * Block the current thread if a wait has been asserted.
2965 thread_continue_t continuation
)
2967 return thread_block_reason(continuation
, NULL
, AST_NONE
);
2971 thread_block_parameter(
2972 thread_continue_t continuation
,
2975 return thread_block_reason(continuation
, parameter
, AST_NONE
);
2981 * Switch directly from the current thread to the
2982 * new thread, handing off our quantum if appropriate.
2984 * New thread must be runnable, and not on a run queue.
2986 * Called at splsched.
2991 thread_continue_t continuation
,
2993 thread_t new_thread
)
2995 ast_t reason
= AST_HANDOFF
;
2997 self
->continuation
= continuation
;
2998 self
->parameter
= parameter
;
3000 while (!thread_invoke(self
, new_thread
, reason
)) {
3001 /* the handoff failed, so we have to fall back to the normal block path */
3002 processor_t processor
= current_processor();
3007 new_thread
= thread_select(self
, processor
, &reason
);
3008 thread_unlock(self
);
3011 return (self
->wait_result
);
3017 * Called at splsched when a thread first receives
3018 * a new stack after a continuation.
3024 thread_t self
= current_thread();
3025 thread_continue_t continuation
;
3028 DTRACE_SCHED(on__cpu
);
3030 continuation
= self
->continuation
;
3031 parameter
= self
->parameter
;
3034 kperf_on_cpu(self
, continuation
, NULL
);
3037 thread_dispatch(thread
, self
);
3039 self
->continuation
= self
->parameter
= NULL
;
3041 #if INTERRUPT_MASKED_DEBUG
3042 /* Reset interrupt-masked spin debugging timeout */
3043 ml_spin_debug_clear(self
);
3046 if (thread
!= THREAD_NULL
)
3049 TLOG(1, "thread_continue: calling call_continuation \n");
3050 call_continuation(continuation
, parameter
, self
->wait_result
);
3055 thread_quantum_init(thread_t thread
)
3057 if (thread
->sched_mode
== TH_MODE_REALTIME
) {
3058 thread
->quantum_remaining
= thread
->realtime
.computation
;
3060 thread
->quantum_remaining
= SCHED(initial_quantum_size
)(thread
);
3065 sched_timeshare_initial_quantum_size(thread_t thread
)
3067 if ((thread
!= THREAD_NULL
) && thread
->th_sched_bucket
== TH_BUCKET_SHARE_BG
)
3076 * Initialize a run queue before first use.
3083 for (u_int i
= 0; i
< BITMAP_LEN(NRQS
); i
++)
3085 rq
->urgency
= rq
->count
= 0;
3086 for (int i
= 0; i
< NRQS
; i
++)
3087 queue_init(&rq
->queues
[i
]);
3091 * run_queue_dequeue:
3093 * Perform a dequeue operation on a run queue,
3094 * and return the resulting thread.
3096 * The run queue must be locked (see thread_run_queue_remove()
3097 * for more info), and not empty.
3105 queue_t queue
= &rq
->queues
[rq
->highq
];
3107 if (options
& SCHED_HEADQ
) {
3108 thread
= qe_dequeue_head(queue
, struct thread
, runq_links
);
3110 thread
= qe_dequeue_tail(queue
, struct thread
, runq_links
);
3113 assert(thread
!= THREAD_NULL
);
3114 assert_thread_magic(thread
);
3116 thread
->runq
= PROCESSOR_NULL
;
3117 SCHED_STATS_RUNQ_CHANGE(&rq
->runq_stats
, rq
->count
);
3119 if (SCHED(priority_is_urgent
)(rq
->highq
)) {
3120 rq
->urgency
--; assert(rq
->urgency
>= 0);
3122 if (queue_empty(queue
)) {
3123 bitmap_clear(rq
->bitmap
, rq
->highq
);
3124 rq
->highq
= bitmap_first(rq
->bitmap
, NRQS
);
3131 * run_queue_enqueue:
3133 * Perform a enqueue operation on a run queue.
3135 * The run queue must be locked (see thread_run_queue_remove()
3144 queue_t queue
= &rq
->queues
[thread
->sched_pri
];
3145 boolean_t result
= FALSE
;
3147 assert_thread_magic(thread
);
3149 if (queue_empty(queue
)) {
3150 enqueue_tail(queue
, &thread
->runq_links
);
3152 rq_bitmap_set(rq
->bitmap
, thread
->sched_pri
);
3153 if (thread
->sched_pri
> rq
->highq
) {
3154 rq
->highq
= thread
->sched_pri
;
3158 if (options
& SCHED_TAILQ
)
3159 enqueue_tail(queue
, &thread
->runq_links
);
3161 enqueue_head(queue
, &thread
->runq_links
);
3163 if (SCHED(priority_is_urgent
)(thread
->sched_pri
))
3165 SCHED_STATS_RUNQ_CHANGE(&rq
->runq_stats
, rq
->count
);
3174 * Remove a specific thread from a runqueue.
3176 * The run queue must be locked.
3183 assert(thread
->runq
!= PROCESSOR_NULL
);
3184 assert_thread_magic(thread
);
3186 remqueue(&thread
->runq_links
);
3187 SCHED_STATS_RUNQ_CHANGE(&rq
->runq_stats
, rq
->count
);
3189 if (SCHED(priority_is_urgent
)(thread
->sched_pri
)) {
3190 rq
->urgency
--; assert(rq
->urgency
>= 0);
3193 if (queue_empty(&rq
->queues
[thread
->sched_pri
])) {
3194 /* update run queue status */
3195 bitmap_clear(rq
->bitmap
, thread
->sched_pri
);
3196 rq
->highq
= bitmap_first(rq
->bitmap
, NRQS
);
3199 thread
->runq
= PROCESSOR_NULL
;
3202 /* Assumes RT lock is not held, and acquires splsched/rt_lock itself */
3204 sched_rtglobal_runq_scan(sched_update_scan_context_t scan_context
)
3209 processor_set_t pset
= &pset0
;
3214 qe_foreach_element_safe(thread
, &pset
->rt_runq
.queue
, runq_links
) {
3215 if (thread
->last_made_runnable_time
< scan_context
->earliest_rt_make_runnable_time
) {
3216 scan_context
->earliest_rt_make_runnable_time
= thread
->last_made_runnable_time
;
3220 rt_lock_unlock(pset
);
3225 sched_rtglobal_runq_count_sum(void)
3227 return pset0
.rt_runq
.runq_stats
.count_sum
;
3231 * realtime_queue_insert:
3233 * Enqueue a thread for realtime execution.
3236 realtime_queue_insert(processor_t processor
, processor_set_t pset
, thread_t thread
)
3238 queue_t queue
= &SCHED(rt_runq
)(pset
)->queue
;
3239 uint64_t deadline
= thread
->realtime
.deadline
;
3240 boolean_t preempt
= FALSE
;
3244 if (queue_empty(queue
)) {
3245 enqueue_tail(queue
, &thread
->runq_links
);
3248 /* Insert into rt_runq in thread deadline order */
3250 qe_foreach(iter
, queue
) {
3251 thread_t iter_thread
= qe_element(iter
, struct thread
, runq_links
);
3252 assert_thread_magic(iter_thread
);
3254 if (deadline
< iter_thread
->realtime
.deadline
) {
3255 if (iter
== queue_first(queue
))
3257 insque(&thread
->runq_links
, queue_prev(iter
));
3259 } else if (iter
== queue_last(queue
)) {
3260 enqueue_tail(queue
, &thread
->runq_links
);
3266 thread
->runq
= processor
;
3267 SCHED_STATS_RUNQ_CHANGE(&SCHED(rt_runq
)(pset
)->runq_stats
, rt_runq_count(pset
));
3268 rt_runq_count_incr(pset
);
3270 rt_lock_unlock(pset
);
3278 * Dispatch a thread for realtime execution.
3280 * Thread must be locked. Associated pset must
3281 * be locked, and is returned unlocked.
3285 processor_t processor
,
3288 processor_set_t pset
= processor
->processor_set
;
3291 sched_ipi_type_t ipi_type
= SCHED_IPI_NONE
;
3293 thread
->chosen_processor
= processor
;
3295 /* <rdar://problem/15102234> */
3296 assert(thread
->bound_processor
== PROCESSOR_NULL
);
3299 * Dispatch directly onto idle processor.
3301 if ( (thread
->bound_processor
== processor
)
3302 && processor
->state
== PROCESSOR_IDLE
) {
3303 re_queue_tail(&pset
->active_queue
, &processor
->processor_queue
);
3305 pset
->active_processor_count
++;
3306 sched_update_pset_load_average(pset
);
3308 processor
->next_thread
= thread
;
3309 processor_state_update_from_thread(processor
, thread
);
3310 processor
->deadline
= thread
->realtime
.deadline
;
3311 processor
->state
= PROCESSOR_DISPATCHING
;
3313 ipi_type
= sched_ipi_action(processor
, thread
, true, SCHED_IPI_EVENT_BOUND_THR
);
3315 sched_ipi_perform(processor
, ipi_type
);
3319 if (processor
->current_pri
< BASEPRI_RTQUEUES
)
3320 preempt
= (AST_PREEMPT
| AST_URGENT
);
3321 else if (thread
->realtime
.deadline
< processor
->deadline
)
3322 preempt
= (AST_PREEMPT
| AST_URGENT
);
3326 realtime_queue_insert(processor
, pset
, thread
);
3328 ipi_type
= SCHED_IPI_NONE
;
3329 if (preempt
!= AST_NONE
) {
3330 if (processor
->state
== PROCESSOR_IDLE
) {
3331 re_queue_tail(&pset
->active_queue
, &processor
->processor_queue
);
3333 pset
->active_processor_count
++;
3334 sched_update_pset_load_average(pset
);
3336 processor
->next_thread
= THREAD_NULL
;
3337 processor_state_update_from_thread(processor
, thread
);
3338 processor
->deadline
= thread
->realtime
.deadline
;
3339 processor
->state
= PROCESSOR_DISPATCHING
;
3340 if (processor
== current_processor()) {
3343 ipi_type
= sched_ipi_action(processor
, thread
, true, SCHED_IPI_EVENT_PREEMPT
);
3345 } else if (processor
->state
== PROCESSOR_DISPATCHING
) {
3346 if ((processor
->next_thread
== THREAD_NULL
) && ((processor
->current_pri
< thread
->sched_pri
) || (processor
->deadline
> thread
->realtime
.deadline
))) {
3347 processor_state_update_from_thread(processor
, thread
);
3348 processor
->deadline
= thread
->realtime
.deadline
;
3351 if (processor
== current_processor()) {
3354 ipi_type
= sched_ipi_action(processor
, thread
, false, SCHED_IPI_EVENT_PREEMPT
);
3358 /* Selected processor was too busy, just keep thread enqueued and let other processors drain it naturally. */
3362 sched_ipi_perform(processor
, ipi_type
);
3366 sched_ipi_type_t
sched_ipi_deferred_policy(processor_set_t pset
, processor_t dst
,
3367 __unused sched_ipi_event_t event
)
3369 #if defined(CONFIG_SCHED_DEFERRED_AST)
3370 if (!bit_test(pset
->pending_deferred_AST_cpu_mask
, dst
->cpu_id
)) {
3371 return SCHED_IPI_DEFERRED
;
3373 #else /* CONFIG_SCHED_DEFERRED_AST */
3374 panic("Request for deferred IPI on an unsupported platform; pset: %p CPU: %d", pset
, dst
->cpu_id
);
3375 #endif /* CONFIG_SCHED_DEFERRED_AST */
3376 return SCHED_IPI_NONE
;
3379 sched_ipi_type_t
sched_ipi_action(processor_t dst
, thread_t thread
, boolean_t dst_idle
, sched_ipi_event_t event
)
3381 sched_ipi_type_t ipi_type
= SCHED_IPI_NONE
;
3382 assert(dst
!= NULL
);
3384 processor_set_t pset
= dst
->processor_set
;
3385 if (current_processor() == dst
) {
3386 return SCHED_IPI_NONE
;
3389 if (bit_test(pset
->pending_AST_cpu_mask
, dst
->cpu_id
)) {
3390 return SCHED_IPI_NONE
;
3393 ipi_type
= SCHED(ipi_policy
)(dst
, thread
, dst_idle
, event
);
3395 case SCHED_IPI_NONE
:
3396 return SCHED_IPI_NONE
;
3397 #if defined(CONFIG_SCHED_DEFERRED_AST)
3398 case SCHED_IPI_DEFERRED
:
3399 bit_set(pset
->pending_deferred_AST_cpu_mask
, dst
->cpu_id
);
3401 #endif /* CONFIG_SCHED_DEFERRED_AST */
3403 bit_set(pset
->pending_AST_cpu_mask
, dst
->cpu_id
);
3409 sched_ipi_type_t
sched_ipi_policy(processor_t dst
, thread_t thread
, boolean_t dst_idle
, sched_ipi_event_t event
)
3411 sched_ipi_type_t ipi_type
= SCHED_IPI_NONE
;
3412 boolean_t deferred_ipi_supported
= false;
3413 processor_set_t pset
= dst
->processor_set
;
3415 #if defined(CONFIG_SCHED_DEFERRED_AST)
3416 deferred_ipi_supported
= true;
3417 #endif /* CONFIG_SCHED_DEFERRED_AST */
3420 case SCHED_IPI_EVENT_SPILL
:
3421 case SCHED_IPI_EVENT_SMT_REBAL
:
3422 case SCHED_IPI_EVENT_REBALANCE
:
3423 case SCHED_IPI_EVENT_BOUND_THR
:
3425 * The spill, SMT rebalance, rebalance and the bound thread
3426 * scenarios use immediate IPIs always.
3428 ipi_type
= dst_idle
? SCHED_IPI_IDLE
: SCHED_IPI_IMMEDIATE
;
3430 case SCHED_IPI_EVENT_PREEMPT
:
3431 /* In the preemption case, use immediate IPIs for RT threads */
3432 if (thread
&& (thread
->sched_pri
>= BASEPRI_RTQUEUES
)) {
3433 ipi_type
= dst_idle
? SCHED_IPI_IDLE
: SCHED_IPI_IMMEDIATE
;
3438 * For Non-RT threads preemption,
3439 * If the core is active, use immediate IPIs.
3440 * If the core is idle, use deferred IPIs if supported; otherwise immediate IPI.
3442 if (deferred_ipi_supported
&& dst_idle
) {
3443 return sched_ipi_deferred_policy(pset
, dst
, event
);
3445 ipi_type
= dst_idle
? SCHED_IPI_IDLE
: SCHED_IPI_IMMEDIATE
;
3448 panic("Unrecognized scheduler IPI event type %d", event
);
3450 assert(ipi_type
!= SCHED_IPI_NONE
);
3454 void sched_ipi_perform(processor_t dst
, sched_ipi_type_t ipi
)
3457 case SCHED_IPI_NONE
:
3459 case SCHED_IPI_IDLE
:
3460 machine_signal_idle(dst
);
3462 case SCHED_IPI_IMMEDIATE
:
3463 cause_ast_check(dst
);
3465 case SCHED_IPI_DEFERRED
:
3466 machine_signal_idle_deferred(dst
);
3469 panic("Unrecognized scheduler IPI type: %d", ipi
);
3473 #if defined(CONFIG_SCHED_TIMESHARE_CORE)
3476 priority_is_urgent(int priority
)
3478 return bitmap_test(sched_preempt_pri
, priority
) ? TRUE
: FALSE
;
3481 #endif /* CONFIG_SCHED_TIMESHARE_CORE */
3486 * Dispatch a thread for execution on a
3489 * Thread must be locked. Associated pset must
3490 * be locked, and is returned unlocked.
3494 processor_t processor
,
3498 processor_set_t pset
= processor
->processor_set
;
3500 enum { eExitIdle
, eInterruptRunning
, eDoNothing
} ipi_action
= eDoNothing
;
3502 sched_ipi_type_t ipi_type
= SCHED_IPI_NONE
;
3504 thread
->chosen_processor
= processor
;
3507 * Dispatch directly onto idle processor.
3509 if ( (SCHED(direct_dispatch_to_idle_processors
) ||
3510 thread
->bound_processor
== processor
)
3511 && processor
->state
== PROCESSOR_IDLE
) {
3513 re_queue_tail(&pset
->active_queue
, &processor
->processor_queue
);
3515 pset
->active_processor_count
++;
3516 sched_update_pset_load_average(pset
);
3518 processor
->next_thread
= thread
;
3519 processor_state_update_from_thread(processor
, thread
);
3520 processor
->deadline
= UINT64_MAX
;
3521 processor
->state
= PROCESSOR_DISPATCHING
;
3523 ipi_type
= sched_ipi_action(processor
, thread
, true, SCHED_IPI_EVENT_BOUND_THR
);
3525 sched_ipi_perform(processor
, ipi_type
);
3530 * Set preemption mode.
3532 #if defined(CONFIG_SCHED_DEFERRED_AST)
3533 /* TODO: Do we need to care about urgency (see rdar://problem/20136239)? */
3535 if (SCHED(priority_is_urgent
)(thread
->sched_pri
) && thread
->sched_pri
> processor
->current_pri
)
3536 preempt
= (AST_PREEMPT
| AST_URGENT
);
3537 else if(processor
->active_thread
&& thread_eager_preemption(processor
->active_thread
))
3538 preempt
= (AST_PREEMPT
| AST_URGENT
);
3539 else if ((thread
->sched_mode
== TH_MODE_TIMESHARE
) && (thread
->sched_pri
< thread
->base_pri
)) {
3540 if(SCHED(priority_is_urgent
)(thread
->base_pri
) && thread
->sched_pri
> processor
->current_pri
) {
3541 preempt
= (options
& SCHED_PREEMPT
)? AST_PREEMPT
: AST_NONE
;
3546 preempt
= (options
& SCHED_PREEMPT
)? AST_PREEMPT
: AST_NONE
;
3548 SCHED(processor_enqueue
)(processor
, thread
, options
);
3549 sched_update_pset_load_average(pset
);
3551 if (preempt
!= AST_NONE
) {
3552 if (processor
->state
== PROCESSOR_IDLE
) {
3553 re_queue_tail(&pset
->active_queue
, &processor
->processor_queue
);
3554 pset
->active_processor_count
++;
3555 processor
->next_thread
= THREAD_NULL
;
3556 processor_state_update_from_thread(processor
, thread
);
3557 processor
->deadline
= UINT64_MAX
;
3558 processor
->state
= PROCESSOR_DISPATCHING
;
3559 ipi_action
= eExitIdle
;
3560 } else if ( processor
->state
== PROCESSOR_DISPATCHING
) {
3561 if ((processor
->next_thread
== THREAD_NULL
) && (processor
->current_pri
< thread
->sched_pri
)) {
3562 processor_state_update_from_thread(processor
, thread
);
3563 processor
->deadline
= UINT64_MAX
;
3565 } else if ( (processor
->state
== PROCESSOR_RUNNING
||
3566 processor
->state
== PROCESSOR_SHUTDOWN
) &&
3567 (thread
->sched_pri
>= processor
->current_pri
)) {
3568 ipi_action
= eInterruptRunning
;
3572 * New thread is not important enough to preempt what is running, but
3573 * special processor states may need special handling
3575 if (processor
->state
== PROCESSOR_SHUTDOWN
&&
3576 thread
->sched_pri
>= processor
->current_pri
) {
3577 ipi_action
= eInterruptRunning
;
3578 } else if (processor
->state
== PROCESSOR_IDLE
) {
3579 re_queue_tail(&pset
->active_queue
, &processor
->processor_queue
);
3581 pset
->active_processor_count
++;
3582 // sched_update_pset_load_average(pset);
3584 processor
->next_thread
= THREAD_NULL
;
3585 processor_state_update_from_thread(processor
, thread
);
3586 processor
->deadline
= UINT64_MAX
;
3587 processor
->state
= PROCESSOR_DISPATCHING
;
3589 ipi_action
= eExitIdle
;
3593 if (ipi_action
!= eDoNothing
) {
3594 if (processor
== current_processor()) {
3595 if (csw_check_locked(processor
, pset
, AST_NONE
) != AST_NONE
)
3598 sched_ipi_event_t event
= (options
& SCHED_REBALANCE
) ? SCHED_IPI_EVENT_REBALANCE
: SCHED_IPI_EVENT_PREEMPT
;
3599 ipi_type
= sched_ipi_action(processor
, thread
, (ipi_action
== eExitIdle
), event
);
3603 sched_ipi_perform(processor
, ipi_type
);
3609 * Return the next sibling pset containing
3610 * available processors.
3612 * Returns the original pset if none other is
3615 static processor_set_t
3617 processor_set_t pset
)
3619 processor_set_t nset
= pset
;
3622 nset
= next_pset(nset
);
3623 } while (nset
->online_processor_count
< 1 && nset
!= pset
);
3631 * Choose a processor for the thread, beginning at
3632 * the pset. Accepts an optional processor hint in
3635 * Returns a processor, possibly from a different pset.
3637 * The thread must be locked. The pset must be locked,
3638 * and the resulting pset is locked on return.
3642 processor_set_t pset
,
3643 processor_t processor
,
3646 processor_set_t nset
, cset
= pset
;
3648 assert(thread
->sched_pri
<= BASEPRI_RTQUEUES
);
3651 * Prefer the hinted processor, when appropriate.
3654 /* Fold last processor hint from secondary processor to its primary */
3655 if (processor
!= PROCESSOR_NULL
) {
3656 processor
= processor
->processor_primary
;
3660 * Only consult platform layer if pset is active, which
3661 * it may not be in some cases when a multi-set system
3662 * is going to sleep.
3664 if (pset
->online_processor_count
) {
3665 if ((processor
== PROCESSOR_NULL
) || (processor
->processor_set
== pset
&& processor
->state
== PROCESSOR_IDLE
)) {
3666 processor_t mc_processor
= machine_choose_processor(pset
, processor
);
3667 if (mc_processor
!= PROCESSOR_NULL
)
3668 processor
= mc_processor
->processor_primary
;
3673 * At this point, we may have a processor hint, and we may have
3674 * an initial starting pset. If the hint is not in the pset, or
3675 * if the hint is for a processor in an invalid state, discard
3678 if (processor
!= PROCESSOR_NULL
) {
3679 if (processor
->processor_set
!= pset
) {
3680 processor
= PROCESSOR_NULL
;
3681 } else if (!processor
->is_recommended
) {
3682 processor
= PROCESSOR_NULL
;
3684 switch (processor
->state
) {
3685 case PROCESSOR_START
:
3686 case PROCESSOR_SHUTDOWN
:
3687 case PROCESSOR_OFF_LINE
:
3689 * Hint is for a processor that cannot support running new threads.
3691 processor
= PROCESSOR_NULL
;
3693 case PROCESSOR_IDLE
:
3695 * Hint is for an idle processor. Assume it is no worse than any other
3696 * idle processor. The platform layer had an opportunity to provide
3697 * the "least cost idle" processor above.
3700 case PROCESSOR_RUNNING
:
3701 case PROCESSOR_DISPATCHING
:
3703 * Hint is for an active CPU. This fast-path allows
3704 * realtime threads to preempt non-realtime threads
3705 * to regain their previous executing processor.
3707 if ((thread
->sched_pri
>= BASEPRI_RTQUEUES
) &&
3708 (processor
->current_pri
< BASEPRI_RTQUEUES
))
3711 /* Otherwise, use hint as part of search below */
3714 processor
= PROCESSOR_NULL
;
3721 * Iterate through the processor sets to locate
3722 * an appropriate processor. Seed results with
3723 * a last-processor hint, if available, so that
3724 * a search must find something strictly better
3727 * A primary/secondary pair of SMT processors are
3728 * "unpaired" if the primary is busy but its
3729 * corresponding secondary is idle (so the physical
3730 * core has full use of its resources).
3733 integer_t lowest_priority
= MAXPRI
+ 1;
3734 integer_t lowest_unpaired_primary_priority
= MAXPRI
+ 1;
3735 integer_t lowest_count
= INT_MAX
;
3736 uint64_t furthest_deadline
= 1;
3737 processor_t lp_processor
= PROCESSOR_NULL
;
3738 processor_t lp_unpaired_primary_processor
= PROCESSOR_NULL
;
3739 processor_t lp_unpaired_secondary_processor
= PROCESSOR_NULL
;
3740 processor_t lc_processor
= PROCESSOR_NULL
;
3741 processor_t fd_processor
= PROCESSOR_NULL
;
3743 if (processor
!= PROCESSOR_NULL
) {
3744 /* All other states should be enumerated above. */
3745 assert(processor
->state
== PROCESSOR_RUNNING
|| processor
->state
== PROCESSOR_DISPATCHING
);
3747 lowest_priority
= processor
->current_pri
;
3748 lp_processor
= processor
;
3750 if (processor
->current_pri
>= BASEPRI_RTQUEUES
) {
3751 furthest_deadline
= processor
->deadline
;
3752 fd_processor
= processor
;
3755 lowest_count
= SCHED(processor_runq_count
)(processor
);
3756 lc_processor
= processor
;
3762 * Choose an idle processor, in pset traversal order
3764 qe_foreach_element(processor
, &cset
->idle_queue
, processor_queue
) {
3765 if (processor
->is_recommended
)
3770 * Otherwise, enumerate active and idle processors to find candidates
3771 * with lower priority/etc.
3774 qe_foreach_element(processor
, &cset
->active_queue
, processor_queue
) {
3776 if (!processor
->is_recommended
) {
3780 integer_t cpri
= processor
->current_pri
;
3781 if (cpri
< lowest_priority
) {
3782 lowest_priority
= cpri
;
3783 lp_processor
= processor
;
3786 if ((cpri
>= BASEPRI_RTQUEUES
) && (processor
->deadline
> furthest_deadline
)) {
3787 furthest_deadline
= processor
->deadline
;
3788 fd_processor
= processor
;
3791 integer_t ccount
= SCHED(processor_runq_count
)(processor
);
3792 if (ccount
< lowest_count
) {
3793 lowest_count
= ccount
;
3794 lc_processor
= processor
;
3799 * For SMT configs, these idle secondary processors must have active primary. Otherwise
3800 * the idle primary would have short-circuited the loop above
3802 qe_foreach_element(processor
, &cset
->idle_secondary_queue
, processor_queue
) {
3804 if (!processor
->is_recommended
) {
3808 processor_t cprimary
= processor
->processor_primary
;
3810 /* If the primary processor is offline or starting up, it's not a candidate for this path */
3811 if (cprimary
->state
== PROCESSOR_RUNNING
|| cprimary
->state
== PROCESSOR_DISPATCHING
) {
3812 integer_t primary_pri
= cprimary
->current_pri
;
3814 if (primary_pri
< lowest_unpaired_primary_priority
) {
3815 lowest_unpaired_primary_priority
= primary_pri
;
3816 lp_unpaired_primary_processor
= cprimary
;
3817 lp_unpaired_secondary_processor
= processor
;
3823 if (thread
->sched_pri
>= BASEPRI_RTQUEUES
) {
3826 * For realtime threads, the most important aspect is
3827 * scheduling latency, so we attempt to assign threads
3828 * to good preemption candidates (assuming an idle primary
3829 * processor was not available above).
3832 if (thread
->sched_pri
> lowest_unpaired_primary_priority
) {
3833 /* Move to end of active queue so that the next thread doesn't also pick it */
3834 re_queue_tail(&cset
->active_queue
, &lp_unpaired_primary_processor
->processor_queue
);
3835 return lp_unpaired_primary_processor
;
3837 if (thread
->sched_pri
> lowest_priority
) {
3838 /* Move to end of active queue so that the next thread doesn't also pick it */
3839 re_queue_tail(&cset
->active_queue
, &lp_processor
->processor_queue
);
3840 return lp_processor
;
3842 if (thread
->realtime
.deadline
< furthest_deadline
)
3843 return fd_processor
;
3846 * If all primary and secondary CPUs are busy with realtime
3847 * threads with deadlines earlier than us, move on to next
3853 if (thread
->sched_pri
> lowest_unpaired_primary_priority
) {
3854 /* Move to end of active queue so that the next thread doesn't also pick it */
3855 re_queue_tail(&cset
->active_queue
, &lp_unpaired_primary_processor
->processor_queue
);
3856 return lp_unpaired_primary_processor
;
3858 if (thread
->sched_pri
> lowest_priority
) {
3859 /* Move to end of active queue so that the next thread doesn't also pick it */
3860 re_queue_tail(&cset
->active_queue
, &lp_processor
->processor_queue
);
3861 return lp_processor
;
3865 * If all primary processor in this pset are running a higher
3866 * priority thread, move on to next pset. Only when we have
3867 * exhausted this search do we fall back to other heuristics.
3872 * Move onto the next processor set.
3874 nset
= next_pset(cset
);
3882 } while (nset
!= pset
);
3885 * Make sure that we pick a running processor,
3886 * and that the correct processor set is locked.
3887 * Since we may have unlock the candidate processor's
3888 * pset, it may have changed state.
3890 * All primary processors are running a higher priority
3891 * thread, so the only options left are enqueuing on
3892 * the secondary processor that would perturb the least priority
3893 * primary, or the least busy primary.
3897 /* lowest_priority is evaluated in the main loops above */
3898 if (lp_unpaired_secondary_processor
!= PROCESSOR_NULL
) {
3899 processor
= lp_unpaired_secondary_processor
;
3900 lp_unpaired_secondary_processor
= PROCESSOR_NULL
;
3901 } else if (lc_processor
!= PROCESSOR_NULL
) {
3902 processor
= lc_processor
;
3903 lc_processor
= PROCESSOR_NULL
;
3906 * All processors are executing higher
3907 * priority threads, and the lowest_count
3908 * candidate was not usable
3910 processor
= master_processor
;
3914 * Check that the correct processor set is
3917 if (cset
!= processor
->processor_set
) {
3919 cset
= processor
->processor_set
;
3924 * We must verify that the chosen processor is still available.
3925 * master_processor is an exception, since we may need to preempt
3926 * a running thread on it during processor shutdown (for sleep),
3927 * and that thread needs to be enqueued on its runqueue to run
3928 * when the processor is restarted.
3930 if (processor
!= master_processor
&& (processor
->state
== PROCESSOR_SHUTDOWN
|| processor
->state
== PROCESSOR_OFF_LINE
))
3931 processor
= PROCESSOR_NULL
;
3933 } while (processor
== PROCESSOR_NULL
);
3935 if (processor
->state
== PROCESSOR_RUNNING
) {
3936 re_queue_tail(&cset
->active_queue
, &processor
->processor_queue
);
3945 * Dispatch thread for execution, onto an idle
3946 * processor or run queue, and signal a preemption
3949 * Thread must be locked.
3956 processor_t processor
;
3957 processor_set_t pset
;
3959 assert((thread
->state
& (TH_RUN
|TH_WAIT
|TH_UNINT
|TH_TERMINATE
|TH_TERMINATE2
)) == TH_RUN
);
3960 assert(thread
->runq
== PROCESSOR_NULL
);
3963 * Update priority if needed.
3965 if (SCHED(can_update_priority
)(thread
))
3966 SCHED(update_priority
)(thread
);
3968 thread
->sfi_class
= sfi_thread_classify(thread
);
3970 assert(thread
->runq
== PROCESSOR_NULL
);
3973 if (thread
->bound_processor
== PROCESSOR_NULL
) {
3977 if (thread
->affinity_set
!= AFFINITY_SET_NULL
) {
3979 * Use affinity set policy hint.
3981 pset
= thread
->affinity_set
->aset_pset
;
3984 processor
= SCHED(choose_processor
)(pset
, PROCESSOR_NULL
, thread
);
3985 pset
= processor
->processor_set
;
3987 SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED
, MACH_SCHED_CHOOSE_PROCESSOR
)|DBG_FUNC_NONE
,
3988 (uintptr_t)thread_tid(thread
), (uintptr_t)-1, processor
->cpu_id
, processor
->state
, 0);
3989 } else if (thread
->last_processor
!= PROCESSOR_NULL
) {
3991 * Simple (last processor) affinity case.
3993 processor
= thread
->last_processor
;
3994 pset
= processor
->processor_set
;
3996 processor
= SCHED(choose_processor
)(pset
, processor
, thread
);
3997 pset
= processor
->processor_set
;
3999 SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED
, MACH_SCHED_CHOOSE_PROCESSOR
)|DBG_FUNC_NONE
,
4000 (uintptr_t)thread_tid(thread
), thread
->last_processor
->cpu_id
, processor
->cpu_id
, processor
->state
, 0);
4005 * Utilitize a per task hint to spread threads
4006 * among the available processor sets.
4008 task_t task
= thread
->task
;
4010 pset
= task
->pset_hint
;
4011 if (pset
== PROCESSOR_SET_NULL
)
4012 pset
= current_processor()->processor_set
;
4014 pset
= choose_next_pset(pset
);
4017 processor
= SCHED(choose_processor
)(pset
, PROCESSOR_NULL
, thread
);
4018 pset
= processor
->processor_set
;
4019 task
->pset_hint
= pset
;
4021 SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED
, MACH_SCHED_CHOOSE_PROCESSOR
)|DBG_FUNC_NONE
,
4022 (uintptr_t)thread_tid(thread
), (uintptr_t)-1, processor
->cpu_id
, processor
->state
, 0);
4028 * Unconditionally dispatch on the processor.
4030 processor
= thread
->bound_processor
;
4031 pset
= processor
->processor_set
;
4034 SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED
, MACH_SCHED_CHOOSE_PROCESSOR
)|DBG_FUNC_NONE
,
4035 (uintptr_t)thread_tid(thread
), (uintptr_t)-2, processor
->cpu_id
, processor
->state
, 0);
4037 #else /* !__SMP__ */
4038 /* Only one processor to choose */
4039 assert(thread
->bound_processor
== PROCESSOR_NULL
|| thread
->bound_processor
== master_processor
);
4040 processor
= master_processor
;
4041 pset
= processor
->processor_set
;
4043 #endif /* !__SMP__ */
4046 * Dispatch the thread on the chosen processor.
4047 * TODO: This should be based on sched_mode, not sched_pri
4049 if (thread
->sched_pri
>= BASEPRI_RTQUEUES
) {
4050 realtime_setrun(processor
, thread
);
4052 processor_setrun(processor
, thread
, options
);
4053 /* pset is now unlocked */
4054 if (thread
->bound_processor
== PROCESSOR_NULL
) {
4055 SCHED(check_spill
)(pset
, thread
);
4064 processor_set_t pset
= task
->pset_hint
;
4066 if (pset
!= PROCESSOR_SET_NULL
)
4067 pset
= choose_next_pset(pset
);
4073 * Check for a preemption point in
4074 * the current context.
4076 * Called at splsched with thread locked.
4080 processor_t processor
,
4083 processor_set_t pset
= processor
->processor_set
;
4088 /* If we were sent a remote AST and interrupted a running processor, acknowledge it here with pset lock held */
4089 bit_clear(pset
->pending_AST_cpu_mask
, processor
->cpu_id
);
4091 result
= csw_check_locked(processor
, pset
, check_reason
);
4099 * Check for preemption at splsched with
4100 * pset and thread locked
4104 processor_t processor
,
4105 processor_set_t pset
,
4109 thread_t thread
= processor
->active_thread
;
4111 if (processor
->first_timeslice
) {
4112 if (rt_runq_count(pset
) > 0)
4113 return (check_reason
| AST_PREEMPT
| AST_URGENT
);
4116 if (rt_runq_count(pset
) > 0) {
4117 if (BASEPRI_RTQUEUES
> processor
->current_pri
)
4118 return (check_reason
| AST_PREEMPT
| AST_URGENT
);
4120 return (check_reason
| AST_PREEMPT
);
4124 result
= SCHED(processor_csw_check
)(processor
);
4125 if (result
!= AST_NONE
)
4126 return (check_reason
| result
| (thread_eager_preemption(thread
) ? AST_URGENT
: AST_NONE
));
4131 * If the current thread is running on a processor that is no longer recommended, gently
4132 * (non-urgently) get to a point and then block, and which point thread_select() should
4133 * try to idle the processor and re-dispatch the thread to a recommended processor.
4135 if (!processor
->is_recommended
) {
4136 return (check_reason
| AST_PREEMPT
);
4140 * Same for avoid-processor
4142 * TODO: Should these set AST_REBALANCE?
4144 if (SCHED(avoid_processor_enabled
) && SCHED(thread_avoid_processor
)(processor
, thread
)) {
4145 return (check_reason
| AST_PREEMPT
);
4149 * Even though we could continue executing on this processor, a
4150 * secondary SMT core should try to shed load to another primary core.
4152 * TODO: Should this do the same check that thread_select does? i.e.
4153 * if no bound threads target this processor, and idle primaries exist, preempt
4154 * The case of RT threads existing is already taken care of above
4155 * Consider Capri in this scenario.
4157 * if (!SCHED(processor_bound_count)(processor) && !queue_empty(&pset->idle_queue))
4159 * TODO: Alternatively - check if only primary is idle, or check if primary's pri is lower than mine.
4162 if (processor
->current_pri
< BASEPRI_RTQUEUES
&&
4163 processor
->processor_primary
!= processor
)
4164 return (check_reason
| AST_PREEMPT
);
4167 if (thread
->state
& TH_SUSP
)
4168 return (check_reason
| AST_PREEMPT
);
4170 #if CONFIG_SCHED_SFI
4172 * Current thread may not need to be preempted, but maybe needs
4175 result
= sfi_thread_needs_ast(thread
, NULL
);
4176 if (result
!= AST_NONE
)
4177 return (check_reason
| result
);
4186 * Set the scheduled priority of the specified thread.
4188 * This may cause the thread to change queues.
4190 * Thread must be locked.
4197 thread_t cthread
= current_thread();
4198 boolean_t is_current_thread
= (thread
== cthread
) ? TRUE
: FALSE
;
4199 int curgency
, nurgency
;
4200 uint64_t urgency_param1
, urgency_param2
;
4201 boolean_t removed_from_runq
= FALSE
;
4203 int old_priority
= thread
->sched_pri
;
4205 /* If we're already at this priority, no need to mess with the runqueue */
4206 if (new_priority
== old_priority
)
4209 if (is_current_thread
) {
4210 assert(thread
->runq
== PROCESSOR_NULL
);
4211 curgency
= thread_get_urgency(thread
, &urgency_param1
, &urgency_param2
);
4213 removed_from_runq
= thread_run_queue_remove(thread
);
4216 thread
->sched_pri
= new_priority
;
4218 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED
, MACH_SCHED_CHANGE_PRIORITY
),
4219 (uintptr_t)thread_tid(thread
),
4222 0, /* eventually, 'reason' */
4225 if (is_current_thread
) {
4226 nurgency
= thread_get_urgency(thread
, &urgency_param1
, &urgency_param2
);
4228 * set_sched_pri doesn't alter RT params. We expect direct base priority/QoS
4229 * class alterations from user space to occur relatively infrequently, hence
4230 * those are lazily handled. QoS classes have distinct priority bands, and QoS
4231 * inheritance is expected to involve priority changes.
4233 uint64_t ctime
= mach_approximate_time();
4234 if (nurgency
!= curgency
) {
4235 thread_tell_urgency(nurgency
, urgency_param1
, urgency_param2
, 0, thread
);
4237 machine_thread_going_on_core(thread
, nurgency
, 0, 0, ctime
);
4240 if (removed_from_runq
)
4241 thread_run_queue_reinsert(thread
, SCHED_PREEMPT
| SCHED_TAILQ
);
4242 else if (thread
->state
& TH_RUN
) {
4243 processor_t processor
= thread
->last_processor
;
4245 if (is_current_thread
) {
4246 processor_state_update_from_thread(processor
, thread
);
4249 * When dropping in priority, check if the thread no longer belongs on core.
4250 * If a thread raises its own priority, don't aggressively rebalance it.
4251 * <rdar://problem/31699165>
4253 if (new_priority
< old_priority
) {
4256 if ((preempt
= csw_check(processor
, AST_NONE
)) != AST_NONE
)
4259 } else if (processor
!= PROCESSOR_NULL
&& processor
->active_thread
== thread
) {
4260 cause_ast_check(processor
);
4266 * thread_run_queue_remove_for_handoff
4268 * Pull a thread or its (recursive) push target out of the runqueue
4269 * so that it is ready for thread_run()
4271 * Called at splsched
4273 * Returns the thread that was pulled or THREAD_NULL if no thread could be pulled.
4274 * This may be different than the thread that was passed in.
4277 thread_run_queue_remove_for_handoff(thread_t thread
) {
4279 thread_t pulled_thread
= THREAD_NULL
;
4281 thread_lock(thread
);
4284 * Check that the thread is not bound
4285 * to a different processor, and that realtime
4288 * Next, pull it off its run queue. If it
4289 * doesn't come, it's not eligible.
4292 processor_t processor
= current_processor();
4293 if (processor
->current_pri
< BASEPRI_RTQUEUES
&& thread
->sched_pri
< BASEPRI_RTQUEUES
&&
4294 (thread
->bound_processor
== PROCESSOR_NULL
|| thread
->bound_processor
== processor
)) {
4296 if (thread_run_queue_remove(thread
))
4297 pulled_thread
= thread
;
4300 thread_unlock(thread
);
4302 return pulled_thread
;
4306 * thread_run_queue_remove:
4308 * Remove a thread from its current run queue and
4309 * return TRUE if successful.
4311 * Thread must be locked.
4313 * If thread->runq is PROCESSOR_NULL, the thread will not re-enter the
4314 * run queues because the caller locked the thread. Otherwise
4315 * the thread is on a run queue, but could be chosen for dispatch
4316 * and removed by another processor under a different lock, which
4317 * will set thread->runq to PROCESSOR_NULL.
4319 * Hence the thread select path must not rely on anything that could
4320 * be changed under the thread lock after calling this function,
4321 * most importantly thread->sched_pri.
4324 thread_run_queue_remove(
4327 boolean_t removed
= FALSE
;
4328 processor_t processor
= thread
->runq
;
4330 if ((thread
->state
& (TH_RUN
|TH_WAIT
)) == TH_WAIT
) {
4331 /* Thread isn't runnable */
4332 assert(thread
->runq
== PROCESSOR_NULL
);
4336 if (processor
== PROCESSOR_NULL
) {
4338 * The thread is either not on the runq,
4339 * or is in the midst of being removed from the runq.
4341 * runq is set to NULL under the pset lock, not the thread
4342 * lock, so the thread may still be in the process of being dequeued
4343 * from the runq. It will wait in invoke for the thread lock to be
4350 if (thread
->sched_pri
< BASEPRI_RTQUEUES
) {
4351 return SCHED(processor_queue_remove
)(processor
, thread
);
4354 processor_set_t pset
= processor
->processor_set
;
4358 if (thread
->runq
!= PROCESSOR_NULL
) {
4360 * Thread is on the RT run queue and we have a lock on
4364 remqueue(&thread
->runq_links
);
4365 SCHED_STATS_RUNQ_CHANGE(&SCHED(rt_runq
)(pset
)->runq_stats
, rt_runq_count(pset
));
4366 rt_runq_count_decr(pset
);
4368 thread
->runq
= PROCESSOR_NULL
;
4373 rt_lock_unlock(pset
);
4379 * Put the thread back where it goes after a thread_run_queue_remove
4381 * Thread must have been removed under the same thread lock hold
4383 * thread locked, at splsched
4386 thread_run_queue_reinsert(thread_t thread
, integer_t options
)
4388 assert(thread
->runq
== PROCESSOR_NULL
);
4389 assert(thread
->state
& (TH_RUN
));
4391 thread_setrun(thread
, options
);
4395 sys_override_cpu_throttle(int flag
)
4397 if (flag
== CPU_THROTTLE_ENABLE
)
4398 cpu_throttle_enabled
= 1;
4399 if (flag
== CPU_THROTTLE_DISABLE
)
4400 cpu_throttle_enabled
= 0;
4404 thread_get_urgency(thread_t thread
, uint64_t *arg1
, uint64_t *arg2
)
4406 if (thread
== NULL
|| (thread
->state
& TH_IDLE
)) {
4410 return (THREAD_URGENCY_NONE
);
4411 } else if (thread
->sched_mode
== TH_MODE_REALTIME
) {
4412 *arg1
= thread
->realtime
.period
;
4413 *arg2
= thread
->realtime
.deadline
;
4415 return (THREAD_URGENCY_REAL_TIME
);
4416 } else if (cpu_throttle_enabled
&&
4417 ((thread
->sched_pri
<= MAXPRI_THROTTLE
) && (thread
->base_pri
<= MAXPRI_THROTTLE
))) {
4419 * Background urgency applied when thread priority is MAXPRI_THROTTLE or lower and thread is not promoted
4421 *arg1
= thread
->sched_pri
;
4422 *arg2
= thread
->base_pri
;
4424 return (THREAD_URGENCY_BACKGROUND
);
4426 /* For otherwise unclassified threads, report throughput QoS
4429 *arg1
= proc_get_effective_thread_policy(thread
, TASK_POLICY_THROUGH_QOS
);
4430 *arg2
= proc_get_effective_task_policy(thread
->task
, TASK_POLICY_THROUGH_QOS
);
4432 return (THREAD_URGENCY_NORMAL
);
4437 thread_get_perfcontrol_class(thread_t thread
)
4439 /* Special case handling */
4440 if (thread
->state
& TH_IDLE
)
4441 return PERFCONTROL_CLASS_IDLE
;
4442 if (thread
->task
== kernel_task
)
4443 return PERFCONTROL_CLASS_KERNEL
;
4444 if (thread
->sched_mode
== TH_MODE_REALTIME
)
4445 return PERFCONTROL_CLASS_REALTIME
;
4447 /* perfcontrol_class based on base_pri */
4448 if (thread
->base_pri
<= MAXPRI_THROTTLE
)
4449 return PERFCONTROL_CLASS_BACKGROUND
;
4450 else if (thread
->base_pri
<= BASEPRI_UTILITY
)
4451 return PERFCONTROL_CLASS_UTILITY
;
4452 else if (thread
->base_pri
<= BASEPRI_DEFAULT
)
4453 return PERFCONTROL_CLASS_NONUI
;
4454 else if (thread
->base_pri
<= BASEPRI_FOREGROUND
)
4455 return PERFCONTROL_CLASS_UI
;
4457 return PERFCONTROL_CLASS_ABOVEUI
;
4461 * This is the processor idle loop, which just looks for other threads
4462 * to execute. Processor idle threads invoke this without supplying a
4463 * current thread to idle without an asserted wait state.
4465 * Returns a the next thread to execute if dispatched directly.
4469 #define IDLE_KERNEL_DEBUG_CONSTANT(...) KERNEL_DEBUG_CONSTANT(__VA_ARGS__)
4471 #define IDLE_KERNEL_DEBUG_CONSTANT(...) do { } while(0)
4477 processor_t processor
)
4479 processor_set_t pset
= processor
->processor_set
;
4480 thread_t new_thread
;
4484 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
4485 MACHDBG_CODE(DBG_MACH_SCHED
,MACH_IDLE
) | DBG_FUNC_START
,
4486 (uintptr_t)thread_tid(thread
), 0, 0, 0, 0);
4488 SCHED_STATS_CPU_IDLE_START(processor
);
4490 timer_switch(&PROCESSOR_DATA(processor
, system_state
),
4491 mach_absolute_time(), &PROCESSOR_DATA(processor
, idle_state
));
4492 PROCESSOR_DATA(processor
, current_state
) = &PROCESSOR_DATA(processor
, idle_state
);
4496 * Ensure that updates to my processor and pset state,
4497 * made by the IPI source processor before sending the IPI,
4498 * are visible on this processor now (even though we don't
4499 * take the pset lock yet).
4501 atomic_thread_fence(memory_order_acquire
);
4503 if (processor
->state
!= PROCESSOR_IDLE
)
4505 if (bit_test(pset
->pending_AST_cpu_mask
, processor
->cpu_id
))
4507 #if defined(CONFIG_SCHED_DEFERRED_AST)
4508 if (bit_test(pset
->pending_deferred_AST_cpu_mask
, processor
->cpu_id
))
4511 if (processor
->is_recommended
) {
4512 if (rt_runq_count(pset
))
4515 if (SCHED(processor_bound_count
)(processor
))
4519 #if CONFIG_SCHED_IDLE_IN_PLACE
4520 if (thread
!= THREAD_NULL
) {
4521 /* Did idle-in-place thread wake up */
4522 if ((thread
->state
& (TH_WAIT
|TH_SUSP
)) != TH_WAIT
|| thread
->wake_active
)
4527 IDLE_KERNEL_DEBUG_CONSTANT(
4528 MACHDBG_CODE(DBG_MACH_SCHED
,MACH_IDLE
) | DBG_FUNC_NONE
, (uintptr_t)thread_tid(thread
), rt_runq_count(pset
), SCHED(processor_runq_count
)(processor
), -1, 0);
4530 machine_track_platform_idle(TRUE
);
4534 machine_track_platform_idle(FALSE
);
4538 IDLE_KERNEL_DEBUG_CONSTANT(
4539 MACHDBG_CODE(DBG_MACH_SCHED
,MACH_IDLE
) | DBG_FUNC_NONE
, (uintptr_t)thread_tid(thread
), rt_runq_count(pset
), SCHED(processor_runq_count
)(processor
), -2, 0);
4541 if (!SCHED(processor_queue_empty
)(processor
)) {
4542 /* Secondary SMT processors respond to directed wakeups
4543 * exclusively. Some platforms induce 'spurious' SMT wakeups.
4545 if (processor
->processor_primary
== processor
)
4550 timer_switch(&PROCESSOR_DATA(processor
, idle_state
),
4551 mach_absolute_time(), &PROCESSOR_DATA(processor
, system_state
));
4552 PROCESSOR_DATA(processor
, current_state
) = &PROCESSOR_DATA(processor
, system_state
);
4556 /* If we were sent a remote AST and came out of idle, acknowledge it here with pset lock held */
4557 bit_clear(pset
->pending_AST_cpu_mask
, processor
->cpu_id
);
4558 #if defined(CONFIG_SCHED_DEFERRED_AST)
4559 bit_clear(pset
->pending_deferred_AST_cpu_mask
, processor
->cpu_id
);
4562 state
= processor
->state
;
4563 if (state
== PROCESSOR_DISPATCHING
) {
4565 * Commmon case -- cpu dispatched.
4567 new_thread
= processor
->next_thread
;
4568 processor
->next_thread
= THREAD_NULL
;
4569 processor
->state
= PROCESSOR_RUNNING
;
4571 if ((new_thread
!= THREAD_NULL
) && (SCHED(processor_queue_has_priority
)(processor
, new_thread
->sched_pri
, FALSE
) ||
4572 (rt_runq_count(pset
) > 0)) ) {
4573 /* Something higher priority has popped up on the runqueue - redispatch this thread elsewhere */
4574 processor_state_update_idle(processor
);
4575 processor
->deadline
= UINT64_MAX
;
4579 thread_lock(new_thread
);
4580 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED
, MACH_REDISPATCH
), (uintptr_t)thread_tid(new_thread
), new_thread
->sched_pri
, rt_runq_count(pset
), 0, 0);
4581 thread_setrun(new_thread
, SCHED_HEADQ
);
4582 thread_unlock(new_thread
);
4584 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
4585 MACHDBG_CODE(DBG_MACH_SCHED
,MACH_IDLE
) | DBG_FUNC_END
,
4586 (uintptr_t)thread_tid(thread
), state
, 0, 0, 0);
4588 return (THREAD_NULL
);
4591 sched_update_pset_load_average(pset
);
4595 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
4596 MACHDBG_CODE(DBG_MACH_SCHED
,MACH_IDLE
) | DBG_FUNC_END
,
4597 (uintptr_t)thread_tid(thread
), state
, (uintptr_t)thread_tid(new_thread
), 0, 0);
4599 return (new_thread
);
4601 } else if (state
== PROCESSOR_IDLE
) {
4602 re_queue_tail(&pset
->active_queue
, &processor
->processor_queue
);
4604 pset
->active_processor_count
++;
4605 sched_update_pset_load_average(pset
);
4607 processor
->state
= PROCESSOR_RUNNING
;
4608 processor_state_update_idle(processor
);
4609 processor
->deadline
= UINT64_MAX
;
4611 } else if (state
== PROCESSOR_SHUTDOWN
) {
4613 * Going off-line. Force a
4616 if ((new_thread
= processor
->next_thread
) != THREAD_NULL
) {
4617 processor
->next_thread
= THREAD_NULL
;
4618 processor_state_update_idle(processor
);
4619 processor
->deadline
= UINT64_MAX
;
4623 thread_lock(new_thread
);
4624 thread_setrun(new_thread
, SCHED_HEADQ
);
4625 thread_unlock(new_thread
);
4627 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
4628 MACHDBG_CODE(DBG_MACH_SCHED
,MACH_IDLE
) | DBG_FUNC_END
,
4629 (uintptr_t)thread_tid(thread
), state
, 0, 0, 0);
4631 return (THREAD_NULL
);
4637 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
4638 MACHDBG_CODE(DBG_MACH_SCHED
,MACH_IDLE
) | DBG_FUNC_END
,
4639 (uintptr_t)thread_tid(thread
), state
, 0, 0, 0);
4641 return (THREAD_NULL
);
4645 * Each processor has a dedicated thread which
4646 * executes the idle loop when there is no suitable
4652 processor_t processor
= current_processor();
4653 thread_t new_thread
;
4655 new_thread
= processor_idle(THREAD_NULL
, processor
);
4656 if (new_thread
!= THREAD_NULL
) {
4657 thread_run(processor
->idle_thread
, (thread_continue_t
)idle_thread
, NULL
, new_thread
);
4661 thread_block((thread_continue_t
)idle_thread
);
4667 processor_t processor
)
4669 kern_return_t result
;
4672 char name
[MAXTHREADNAMESIZE
];
4674 result
= kernel_thread_create((thread_continue_t
)idle_thread
, NULL
, MAXPRI_KERNEL
, &thread
);
4675 if (result
!= KERN_SUCCESS
)
4678 snprintf(name
, sizeof(name
), "idle #%d", processor
->cpu_id
);
4679 thread_set_thread_name(thread
, name
);
4682 thread_lock(thread
);
4683 thread
->bound_processor
= processor
;
4684 processor
->idle_thread
= thread
;
4685 thread
->sched_pri
= thread
->base_pri
= IDLEPRI
;
4686 thread
->state
= (TH_RUN
| TH_IDLE
);
4687 thread
->options
|= TH_OPT_IDLE_THREAD
;
4688 thread_unlock(thread
);
4691 thread_deallocate(thread
);
4693 return (KERN_SUCCESS
);
4699 * Kicks off scheduler services.
4701 * Called at splsched.
4706 kern_return_t result
;
4709 simple_lock_init(&sched_vm_group_list_lock
, 0);
4711 #if __arm__ || __arm64__
4712 simple_lock_init(&sched_recommended_cores_lock
, 0);
4713 #endif /* __arm__ || __arm64__ */
4715 result
= kernel_thread_start_priority((thread_continue_t
)sched_init_thread
,
4716 (void *)SCHED(maintenance_continuation
), MAXPRI_KERNEL
, &thread
);
4717 if (result
!= KERN_SUCCESS
)
4718 panic("sched_startup");
4720 thread_deallocate(thread
);
4722 assert_thread_magic(thread
);
4725 * Yield to the sched_init_thread once, to
4726 * initialize our own thread after being switched
4729 * The current thread is the only other thread
4730 * active at this point.
4732 thread_block(THREAD_CONTINUE_NULL
);
4736 static _Atomic
uint64_t sched_perfcontrol_callback_deadline
;
4737 #endif /* __arm64__ */
4740 #if defined(CONFIG_SCHED_TIMESHARE_CORE)
4742 static volatile uint64_t sched_maintenance_deadline
;
4743 static uint64_t sched_tick_last_abstime
;
4744 static uint64_t sched_tick_delta
;
4745 uint64_t sched_tick_max_delta
;
4749 * sched_init_thread:
4751 * Perform periodic bookkeeping functions about ten
4755 sched_timeshare_maintenance_continue(void)
4757 uint64_t sched_tick_ctime
, late_time
;
4759 struct sched_update_scan_context scan_context
= {
4760 .earliest_bg_make_runnable_time
= UINT64_MAX
,
4761 .earliest_normal_make_runnable_time
= UINT64_MAX
,
4762 .earliest_rt_make_runnable_time
= UINT64_MAX
4765 sched_tick_ctime
= mach_absolute_time();
4767 if (__improbable(sched_tick_last_abstime
== 0)) {
4768 sched_tick_last_abstime
= sched_tick_ctime
;
4770 sched_tick_delta
= 1;
4772 late_time
= sched_tick_ctime
- sched_tick_last_abstime
;
4773 sched_tick_delta
= late_time
/ sched_tick_interval
;
4774 /* Ensure a delta of 1, since the interval could be slightly
4775 * smaller than the sched_tick_interval due to dispatch
4778 sched_tick_delta
= MAX(sched_tick_delta
, 1);
4780 /* In the event interrupt latencies or platform
4781 * idle events that advanced the timebase resulted
4782 * in periods where no threads were dispatched,
4783 * cap the maximum "tick delta" at SCHED_TICK_MAX_DELTA
4786 sched_tick_delta
= MIN(sched_tick_delta
, SCHED_TICK_MAX_DELTA
);
4788 sched_tick_last_abstime
= sched_tick_ctime
;
4789 sched_tick_max_delta
= MAX(sched_tick_delta
, sched_tick_max_delta
);
4792 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED
, MACH_SCHED_MAINTENANCE
)|DBG_FUNC_START
,
4793 sched_tick_delta
, late_time
, 0, 0, 0);
4795 /* Add a number of pseudo-ticks corresponding to the elapsed interval
4796 * This could be greater than 1 if substantial intervals where
4797 * all processors are idle occur, which rarely occurs in practice.
4800 sched_tick
+= sched_tick_delta
;
4805 * Compute various averages.
4807 compute_averages(sched_tick_delta
);
4810 * Scan the run queues for threads which
4811 * may need to be updated, and find the earliest runnable thread on the runqueue
4812 * to report its latency.
4814 SCHED(thread_update_scan
)(&scan_context
);
4816 SCHED(rt_runq_scan
)(&scan_context
);
4818 uint64_t ctime
= mach_absolute_time();
4820 uint64_t bg_max_latency
= (ctime
> scan_context
.earliest_bg_make_runnable_time
) ?
4821 ctime
- scan_context
.earliest_bg_make_runnable_time
: 0;
4823 uint64_t default_max_latency
= (ctime
> scan_context
.earliest_normal_make_runnable_time
) ?
4824 ctime
- scan_context
.earliest_normal_make_runnable_time
: 0;
4826 uint64_t realtime_max_latency
= (ctime
> scan_context
.earliest_rt_make_runnable_time
) ?
4827 ctime
- scan_context
.earliest_rt_make_runnable_time
: 0;
4829 machine_max_runnable_latency(bg_max_latency
, default_max_latency
, realtime_max_latency
);
4832 * Check to see if the special sched VM group needs attention.
4834 sched_vm_group_maintenance();
4836 #if __arm__ || __arm64__
4837 /* Check to see if the recommended cores failsafe is active */
4838 sched_recommended_cores_maintenance();
4839 #endif /* __arm__ || __arm64__ */
4842 #if DEBUG || DEVELOPMENT
4844 #include <i386/misc_protos.h>
4845 /* Check for long-duration interrupts */
4846 mp_interrupt_watchdog();
4847 #endif /* __x86_64__ */
4848 #endif /* DEBUG || DEVELOPMENT */
4850 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED
, MACH_SCHED_MAINTENANCE
) | DBG_FUNC_END
,
4851 sched_pri_shifts
[TH_BUCKET_SHARE_FG
], sched_pri_shifts
[TH_BUCKET_SHARE_BG
],
4852 sched_pri_shifts
[TH_BUCKET_SHARE_UT
], 0, 0);
4854 assert_wait((event_t
)sched_timeshare_maintenance_continue
, THREAD_UNINT
);
4855 thread_block((thread_continue_t
)sched_timeshare_maintenance_continue
);
4859 static uint64_t sched_maintenance_wakeups
;
4862 * Determine if the set of routines formerly driven by a maintenance timer
4863 * must be invoked, based on a deadline comparison. Signals the scheduler
4864 * maintenance thread on deadline expiration. Must be invoked at an interval
4865 * lower than the "sched_tick_interval", currently accomplished by
4866 * invocation via the quantum expiration timer and at context switch time.
4867 * Performance matters: this routine reuses a timestamp approximating the
4868 * current absolute time received from the caller, and should perform
4869 * no more than a comparison against the deadline in the common case.
4872 sched_timeshare_consider_maintenance(uint64_t ctime
) {
4873 uint64_t ndeadline
, deadline
= sched_maintenance_deadline
;
4875 if (__improbable(ctime
>= deadline
)) {
4876 if (__improbable(current_thread() == sched_maintenance_thread
))
4880 ndeadline
= ctime
+ sched_tick_interval
;
4882 if (__probable(__sync_bool_compare_and_swap(&sched_maintenance_deadline
, deadline
, ndeadline
))) {
4883 thread_wakeup((event_t
)sched_timeshare_maintenance_continue
);
4884 sched_maintenance_wakeups
++;
4889 uint64_t perf_deadline
= __c11_atomic_load(&sched_perfcontrol_callback_deadline
, memory_order_relaxed
);
4891 if (__improbable(perf_deadline
&& ctime
>= perf_deadline
)) {
4892 /* CAS in 0, if success, make callback. Otherwise let the next context switch check again. */
4893 if (__c11_atomic_compare_exchange_strong(&sched_perfcontrol_callback_deadline
, &perf_deadline
, 0,
4894 memory_order_relaxed
, memory_order_relaxed
)) {
4895 machine_perfcontrol_deadline_passed(perf_deadline
);
4898 #endif /* __arm64__ */
4902 #endif /* CONFIG_SCHED_TIMESHARE_CORE */
4905 sched_init_thread(void (*continuation
)(void))
4907 thread_block(THREAD_CONTINUE_NULL
);
4909 thread_t thread
= current_thread();
4911 thread_set_thread_name(thread
, "sched_maintenance_thread");
4913 sched_maintenance_thread
= thread
;
4920 #if defined(CONFIG_SCHED_TIMESHARE_CORE)
4923 * thread_update_scan / runq_scan:
4925 * Scan the run queues to account for timesharing threads
4926 * which need to be updated.
4928 * Scanner runs in two passes. Pass one squirrels likely
4929 * threads away in an array, pass two does the update.
4931 * This is necessary because the run queue is locked for
4932 * the candidate scan, but the thread is locked for the update.
4934 * Array should be sized to make forward progress, without
4935 * disabling preemption for long periods.
4938 #define THREAD_UPDATE_SIZE 128
4940 static thread_t thread_update_array
[THREAD_UPDATE_SIZE
];
4941 static uint32_t thread_update_count
= 0;
4943 /* Returns TRUE if thread was added, FALSE if thread_update_array is full */
4945 thread_update_add_thread(thread_t thread
)
4947 if (thread_update_count
== THREAD_UPDATE_SIZE
)
4950 thread_update_array
[thread_update_count
++] = thread
;
4951 thread_reference_internal(thread
);
4956 thread_update_process_threads(void)
4958 assert(thread_update_count
<= THREAD_UPDATE_SIZE
);
4960 for (uint32_t i
= 0 ; i
< thread_update_count
; i
++) {
4961 thread_t thread
= thread_update_array
[i
];
4962 assert_thread_magic(thread
);
4963 thread_update_array
[i
] = THREAD_NULL
;
4965 spl_t s
= splsched();
4966 thread_lock(thread
);
4967 if (!(thread
->state
& (TH_WAIT
)) && thread
->sched_stamp
!= sched_tick
) {
4968 SCHED(update_priority
)(thread
);
4970 thread_unlock(thread
);
4973 thread_deallocate(thread
);
4976 thread_update_count
= 0;
4980 * Scan a runq for candidate threads.
4982 * Returns TRUE if retry is needed.
4987 sched_update_scan_context_t scan_context
)
4989 int count
= runq
->count
;
4997 for (queue_index
= bitmap_first(runq
->bitmap
, NRQS
);
4999 queue_index
= bitmap_next(runq
->bitmap
, queue_index
)) {
5002 queue_t queue
= &runq
->queues
[queue_index
];
5004 qe_foreach_element(thread
, queue
, runq_links
) {
5006 assert_thread_magic(thread
);
5008 if (thread
->sched_stamp
!= sched_tick
&&
5009 thread
->sched_mode
== TH_MODE_TIMESHARE
) {
5010 if (thread_update_add_thread(thread
) == FALSE
)
5014 if (cpu_throttle_enabled
&& ((thread
->sched_pri
<= MAXPRI_THROTTLE
) && (thread
->base_pri
<= MAXPRI_THROTTLE
))) {
5015 if (thread
->last_made_runnable_time
< scan_context
->earliest_bg_make_runnable_time
) {
5016 scan_context
->earliest_bg_make_runnable_time
= thread
->last_made_runnable_time
;
5019 if (thread
->last_made_runnable_time
< scan_context
->earliest_normal_make_runnable_time
) {
5020 scan_context
->earliest_normal_make_runnable_time
= thread
->last_made_runnable_time
;
5030 #endif /* CONFIG_SCHED_TIMESHARE_CORE */
5033 thread_eager_preemption(thread_t thread
)
5035 return ((thread
->sched_flags
& TH_SFLAG_EAGERPREEMPT
) != 0);
5039 thread_set_eager_preempt(thread_t thread
)
5043 ast_t ast
= AST_NONE
;
5046 p
= current_processor();
5048 thread_lock(thread
);
5049 thread
->sched_flags
|= TH_SFLAG_EAGERPREEMPT
;
5051 if (thread
== current_thread()) {
5053 ast
= csw_check(p
, AST_NONE
);
5054 thread_unlock(thread
);
5055 if (ast
!= AST_NONE
) {
5056 (void) thread_block_reason(THREAD_CONTINUE_NULL
, NULL
, ast
);
5059 p
= thread
->last_processor
;
5061 if (p
!= PROCESSOR_NULL
&& p
->state
== PROCESSOR_RUNNING
&&
5062 p
->active_thread
== thread
) {
5066 thread_unlock(thread
);
5073 thread_clear_eager_preempt(thread_t thread
)
5078 thread_lock(thread
);
5080 thread
->sched_flags
&= ~TH_SFLAG_EAGERPREEMPT
;
5082 thread_unlock(thread
);
5087 * Scheduling statistics
5090 sched_stats_handle_csw(processor_t processor
, int reasons
, int selfpri
, int otherpri
)
5092 struct processor_sched_statistics
*stats
;
5093 boolean_t to_realtime
= FALSE
;
5095 stats
= &processor
->processor_data
.sched_stats
;
5098 if (otherpri
>= BASEPRI_REALTIME
) {
5099 stats
->rt_sched_count
++;
5103 if ((reasons
& AST_PREEMPT
) != 0) {
5104 stats
->preempt_count
++;
5106 if (selfpri
>= BASEPRI_REALTIME
) {
5107 stats
->preempted_rt_count
++;
5111 stats
->preempted_by_rt_count
++;
5118 sched_stats_handle_runq_change(struct runq_stats
*stats
, int old_count
)
5120 uint64_t timestamp
= mach_absolute_time();
5122 stats
->count_sum
+= (timestamp
- stats
->last_change_timestamp
) * old_count
;
5123 stats
->last_change_timestamp
= timestamp
;
5127 * For calls from assembly code
5129 #undef thread_wakeup
5138 thread_wakeup_with_result(x
, THREAD_AWAKENED
);
5142 preemption_enabled(void)
5144 return (get_preemption_level() == 0 && ml_get_interrupts_enabled());
5148 sched_timer_deadline_tracking_init(void) {
5149 nanoseconds_to_absolutetime(TIMER_DEADLINE_TRACKING_BIN_1_DEFAULT
, &timer_deadline_tracking_bin_1
);
5150 nanoseconds_to_absolutetime(TIMER_DEADLINE_TRACKING_BIN_2_DEFAULT
, &timer_deadline_tracking_bin_2
);
5153 #if __arm__ || __arm64__
5155 uint32_t perfcontrol_requested_recommended_cores
= ALL_CORES_RECOMMENDED
;
5156 uint32_t perfcontrol_requested_recommended_core_count
= MAX_CPUS
;
5157 boolean_t perfcontrol_failsafe_active
= FALSE
;
5159 uint64_t perfcontrol_failsafe_maintenance_runnable_time
;
5160 uint64_t perfcontrol_failsafe_activation_time
;
5161 uint64_t perfcontrol_failsafe_deactivation_time
;
5163 /* data covering who likely caused it and how long they ran */
5164 #define FAILSAFE_NAME_LEN 33 /* (2*MAXCOMLEN)+1 from size of p_name */
5165 char perfcontrol_failsafe_name
[FAILSAFE_NAME_LEN
];
5166 int perfcontrol_failsafe_pid
;
5167 uint64_t perfcontrol_failsafe_tid
;
5168 uint64_t perfcontrol_failsafe_thread_timer_at_start
;
5169 uint64_t perfcontrol_failsafe_thread_timer_last_seen
;
5170 uint32_t perfcontrol_failsafe_recommended_at_trigger
;
5173 * Perf controller calls here to update the recommended core bitmask.
5174 * If the failsafe is active, we don't immediately apply the new value.
5175 * Instead, we store the new request and use it after the failsafe deactivates.
5177 * If the failsafe is not active, immediately apply the update.
5179 * No scheduler locks are held, no other locks are held that scheduler might depend on,
5180 * interrupts are enabled
5182 * currently prototype is in osfmk/arm/machine_routines.h
5185 sched_perfcontrol_update_recommended_cores(uint32_t recommended_cores
)
5187 assert(preemption_enabled());
5189 spl_t s
= splsched();
5190 simple_lock(&sched_recommended_cores_lock
);
5192 perfcontrol_requested_recommended_cores
= recommended_cores
;
5193 perfcontrol_requested_recommended_core_count
= __builtin_popcountll(recommended_cores
);
5195 if (perfcontrol_failsafe_active
== FALSE
)
5196 sched_update_recommended_cores(perfcontrol_requested_recommended_cores
);
5198 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
5199 MACHDBG_CODE(DBG_MACH_SCHED
,MACH_REC_CORES_FAILSAFE
) | DBG_FUNC_NONE
,
5200 perfcontrol_requested_recommended_cores
,
5201 sched_maintenance_thread
->last_made_runnable_time
, 0, 0, 0);
5203 simple_unlock(&sched_recommended_cores_lock
);
5208 * Consider whether we need to activate the recommended cores failsafe
5210 * Called from quantum timer interrupt context of a realtime thread
5211 * No scheduler locks are held, interrupts are disabled
5214 sched_consider_recommended_cores(uint64_t ctime
, thread_t cur_thread
)
5217 * Check if a realtime thread is starving the system
5218 * and bringing up non-recommended cores would help
5220 * TODO: Is this the correct check for recommended == possible cores?
5221 * TODO: Validate the checks without the relevant lock are OK.
5224 if (__improbable(perfcontrol_failsafe_active
== TRUE
)) {
5225 /* keep track of how long the responsible thread runs */
5227 simple_lock(&sched_recommended_cores_lock
);
5229 if (perfcontrol_failsafe_active
== TRUE
&&
5230 cur_thread
->thread_id
== perfcontrol_failsafe_tid
) {
5231 perfcontrol_failsafe_thread_timer_last_seen
= timer_grab(&cur_thread
->user_timer
) +
5232 timer_grab(&cur_thread
->system_timer
);
5235 simple_unlock(&sched_recommended_cores_lock
);
5237 /* we're already trying to solve the problem, so bail */
5241 /* The failsafe won't help if there are no more processors to enable */
5242 if (__probable(perfcontrol_requested_recommended_core_count
>= processor_count
))
5245 uint64_t too_long_ago
= ctime
- perfcontrol_failsafe_starvation_threshold
;
5247 /* Use the maintenance thread as our canary in the coal mine */
5248 thread_t m_thread
= sched_maintenance_thread
;
5250 /* If it doesn't look bad, nothing to see here */
5251 if (__probable(m_thread
->last_made_runnable_time
>= too_long_ago
))
5254 /* It looks bad, take the lock to be sure */
5255 thread_lock(m_thread
);
5257 if (m_thread
->runq
== PROCESSOR_NULL
||
5258 (m_thread
->state
& (TH_RUN
|TH_WAIT
)) != TH_RUN
||
5259 m_thread
->last_made_runnable_time
>= too_long_ago
) {
5261 * Maintenance thread is either on cpu or blocked, and
5262 * therefore wouldn't benefit from more cores
5264 thread_unlock(m_thread
);
5268 uint64_t maintenance_runnable_time
= m_thread
->last_made_runnable_time
;
5270 thread_unlock(m_thread
);
5273 * There are cores disabled at perfcontrol's recommendation, but the
5274 * system is so overloaded that the maintenance thread can't run.
5275 * That likely means that perfcontrol can't run either, so it can't fix
5276 * the recommendation. We have to kick in a failsafe to keep from starving.
5278 * When the maintenance thread has been starved for too long,
5279 * ignore the recommendation from perfcontrol and light up all the cores.
5281 * TODO: Consider weird states like boot, sleep, or debugger
5284 simple_lock(&sched_recommended_cores_lock
);
5286 if (perfcontrol_failsafe_active
== TRUE
) {
5287 simple_unlock(&sched_recommended_cores_lock
);
5291 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
5292 MACHDBG_CODE(DBG_MACH_SCHED
,MACH_REC_CORES_FAILSAFE
) | DBG_FUNC_START
,
5293 perfcontrol_requested_recommended_cores
, maintenance_runnable_time
, 0, 0, 0);
5295 perfcontrol_failsafe_active
= TRUE
;
5296 perfcontrol_failsafe_activation_time
= mach_absolute_time();
5297 perfcontrol_failsafe_maintenance_runnable_time
= maintenance_runnable_time
;
5298 perfcontrol_failsafe_recommended_at_trigger
= perfcontrol_requested_recommended_cores
;
5300 /* Capture some data about who screwed up (assuming that the thread on core is at fault) */
5301 task_t task
= cur_thread
->task
;
5302 perfcontrol_failsafe_pid
= task_pid(task
);
5303 strlcpy(perfcontrol_failsafe_name
, proc_name_address(task
->bsd_info
), sizeof(perfcontrol_failsafe_name
));
5305 perfcontrol_failsafe_tid
= cur_thread
->thread_id
;
5307 /* Blame the thread for time it has run recently */
5308 uint64_t recent_computation
= (ctime
- cur_thread
->computation_epoch
) + cur_thread
->computation_metered
;
5310 uint64_t last_seen
= timer_grab(&cur_thread
->user_timer
) + timer_grab(&cur_thread
->system_timer
);
5312 /* Compute the start time of the bad behavior in terms of the thread's on core time */
5313 perfcontrol_failsafe_thread_timer_at_start
= last_seen
- recent_computation
;
5314 perfcontrol_failsafe_thread_timer_last_seen
= last_seen
;
5316 /* Ignore the previously recommended core configuration */
5317 sched_update_recommended_cores(ALL_CORES_RECOMMENDED
);
5319 simple_unlock(&sched_recommended_cores_lock
);
5323 * Now that our bacon has been saved by the failsafe, consider whether to turn it off
5325 * Runs in the context of the maintenance thread, no locks held
5328 sched_recommended_cores_maintenance(void)
5330 /* Common case - no failsafe, nothing to be done here */
5331 if (__probable(perfcontrol_failsafe_active
== FALSE
))
5334 uint64_t ctime
= mach_absolute_time();
5336 boolean_t print_diagnostic
= FALSE
;
5337 char p_name
[FAILSAFE_NAME_LEN
] = "";
5339 spl_t s
= splsched();
5340 simple_lock(&sched_recommended_cores_lock
);
5342 /* Check again, under the lock, to avoid races */
5343 if (perfcontrol_failsafe_active
== FALSE
)
5347 * Ensure that the other cores get another few ticks to run some threads
5348 * If we don't have this hysteresis, the maintenance thread is the first
5349 * to run, and then it immediately kills the other cores
5351 if ((ctime
- perfcontrol_failsafe_activation_time
) < perfcontrol_failsafe_starvation_threshold
)
5354 /* Capture some diagnostic state under the lock so we can print it out later */
5356 int pid
= perfcontrol_failsafe_pid
;
5357 uint64_t tid
= perfcontrol_failsafe_tid
;
5359 uint64_t thread_usage
= perfcontrol_failsafe_thread_timer_last_seen
-
5360 perfcontrol_failsafe_thread_timer_at_start
;
5361 uint32_t rec_cores_before
= perfcontrol_failsafe_recommended_at_trigger
;
5362 uint32_t rec_cores_after
= perfcontrol_requested_recommended_cores
;
5363 uint64_t failsafe_duration
= ctime
- perfcontrol_failsafe_activation_time
;
5364 strlcpy(p_name
, perfcontrol_failsafe_name
, sizeof(p_name
));
5366 print_diagnostic
= TRUE
;
5368 /* Deactivate the failsafe and reinstate the requested recommendation settings */
5370 perfcontrol_failsafe_deactivation_time
= ctime
;
5371 perfcontrol_failsafe_active
= FALSE
;
5373 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
5374 MACHDBG_CODE(DBG_MACH_SCHED
,MACH_REC_CORES_FAILSAFE
) | DBG_FUNC_END
,
5375 perfcontrol_requested_recommended_cores
, failsafe_duration
, 0, 0, 0);
5377 sched_update_recommended_cores(perfcontrol_requested_recommended_cores
);
5380 simple_unlock(&sched_recommended_cores_lock
);
5383 if (print_diagnostic
) {
5384 uint64_t failsafe_duration_ms
= 0, thread_usage_ms
= 0;
5386 absolutetime_to_nanoseconds(failsafe_duration
, &failsafe_duration_ms
);
5387 failsafe_duration_ms
= failsafe_duration_ms
/ NSEC_PER_MSEC
;
5389 absolutetime_to_nanoseconds(thread_usage
, &thread_usage_ms
);
5390 thread_usage_ms
= thread_usage_ms
/ NSEC_PER_MSEC
;
5392 printf("recommended core failsafe kicked in for %lld ms "
5393 "likely due to %s[%d] thread 0x%llx spending "
5394 "%lld ms on cpu at realtime priority - "
5395 "new recommendation: 0x%x -> 0x%x\n",
5396 failsafe_duration_ms
, p_name
, pid
, tid
, thread_usage_ms
,
5397 rec_cores_before
, rec_cores_after
);
5402 * Apply a new recommended cores mask to the processors it affects
5403 * Runs after considering failsafes and such
5405 * Iterate over processors and update their ->is_recommended field.
5406 * If a processor is running, we let it drain out at its next
5407 * quantum expiration or blocking point. If a processor is idle, there
5408 * may be more work for it to do, so IPI it.
5410 * interrupts disabled, sched_recommended_cores_lock is held
5413 sched_update_recommended_cores(uint32_t recommended_cores
)
5415 processor_set_t pset
, nset
;
5416 processor_t processor
;
5417 uint64_t needs_exit_idle_mask
= 0x0;
5419 processor
= processor_list
;
5420 pset
= processor
->processor_set
;
5422 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
5423 MACHDBG_CODE(DBG_MACH_SCHED
,MACH_SCHED_UPDATE_REC_CORES
) | DBG_FUNC_START
,
5424 recommended_cores
, perfcontrol_failsafe_active
, 0, 0, 0);
5426 if (__builtin_popcount(recommended_cores
) == 0) {
5427 recommended_cores
|= 0x1U
; /* add boot processor or we hang */
5430 /* First set recommended cores */
5434 nset
= processor
->processor_set
;
5441 pset
->recommended_bitmask
= recommended_cores
;
5443 if (recommended_cores
& (1ULL << processor
->cpu_id
)) {
5444 processor
->is_recommended
= TRUE
;
5446 if (processor
->state
== PROCESSOR_IDLE
) {
5447 if (processor
->processor_primary
== processor
) {
5448 re_queue_head(&pset
->idle_queue
, &processor
->processor_queue
);
5450 re_queue_head(&pset
->idle_secondary_queue
, &processor
->processor_queue
);
5452 if (processor
!= current_processor()) {
5453 needs_exit_idle_mask
|= (1ULL << processor
->cpu_id
);
5457 } while ((processor
= processor
->processor_list
) != NULL
);
5460 /* Now shutdown not recommended cores */
5461 processor
= processor_list
;
5462 pset
= processor
->processor_set
;
5467 nset
= processor
->processor_set
;
5474 if (!(recommended_cores
& (1ULL << processor
->cpu_id
))) {
5475 processor
->is_recommended
= FALSE
;
5476 if (processor
->state
== PROCESSOR_IDLE
) {
5477 re_queue_head(&pset
->unused_queue
, &processor
->processor_queue
);
5479 SCHED(processor_queue_shutdown
)(processor
);
5482 SCHED(rt_queue_shutdown
)(processor
);
5486 } while ((processor
= processor
->processor_list
) != NULL
);
5489 /* Issue all pending IPIs now that the pset lock has been dropped */
5490 for (int cpuid
= lsb_first(needs_exit_idle_mask
); cpuid
>= 0; cpuid
= lsb_next(needs_exit_idle_mask
, cpuid
)) {
5491 processor
= processor_array
[cpuid
];
5492 machine_signal_idle(processor
);
5495 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
5496 MACHDBG_CODE(DBG_MACH_SCHED
,MACH_SCHED_UPDATE_REC_CORES
) | DBG_FUNC_END
,
5497 needs_exit_idle_mask
, 0, 0, 0, 0);
5499 #endif /* __arm__ || __arm64__ */
5501 void thread_set_options(uint32_t thopt
) {
5503 thread_t t
= current_thread();
5508 t
->options
|= thopt
;
5514 void thread_set_pending_block_hint(thread_t thread
, block_hint_t block_hint
) {
5515 thread
->pending_block_hint
= block_hint
;
5518 uint32_t qos_max_parallelism(int qos
, uint64_t options
)
5520 return SCHED(qos_max_parallelism
)(qos
, options
);
5523 uint32_t sched_qos_max_parallelism(__unused
int qos
, uint64_t options
)
5525 host_basic_info_data_t hinfo
;
5526 mach_msg_type_number_t count
= HOST_BASIC_INFO_COUNT
;
5527 /* Query the machine layer for core information */
5528 __assert_only kern_return_t kret
= host_info(host_self(), HOST_BASIC_INFO
,
5529 (host_info_t
)&hinfo
, &count
);
5530 assert(kret
== KERN_SUCCESS
);
5532 /* We would not want multiple realtime threads running on the
5533 * same physical core; even for SMT capable machines.
5535 if (options
& QOS_PARALLELISM_REALTIME
) {
5536 return hinfo
.physical_cpu
;
5539 if (options
& QOS_PARALLELISM_COUNT_LOGICAL
) {
5540 return hinfo
.logical_cpu
;
5542 return hinfo
.physical_cpu
;
5549 * Set up or replace old timer with new timer
5551 * Returns true if canceled old timer, false if it did not
5554 sched_perfcontrol_update_callback_deadline(uint64_t new_deadline
)
5557 * Exchange deadline for new deadline, if old deadline was nonzero,
5558 * then I cancelled the callback, otherwise I didn't
5561 uint64_t old_deadline
= __c11_atomic_load(&sched_perfcontrol_callback_deadline
,
5562 memory_order_relaxed
);
5565 while (!__c11_atomic_compare_exchange_weak(&sched_perfcontrol_callback_deadline
,
5566 &old_deadline
, new_deadline
,
5567 memory_order_relaxed
, memory_order_relaxed
));
5570 /* now old_deadline contains previous value, which might not be the same if it raced */
5572 return (old_deadline
!= 0) ? TRUE
: FALSE
;
5575 #endif /* __arm64__ */
5578 sched_get_pset_load_average(processor_set_t pset
)
5580 return pset
->load_average
>> (PSET_LOAD_NUMERATOR_SHIFT
- PSET_LOAD_FRACTIONAL_SHIFT
);
5584 sched_update_pset_load_average(processor_set_t pset
)
5589 qe_foreach(iter
, &pset
->active_queue
) {
5592 assertf(count
== pset
->active_processor_count
, "count %d pset->active_processor_count %d\n", count
, pset
->active_processor_count
);
5595 int load
= ((pset
->active_processor_count
+ pset
->pset_runq
.count
+ rt_runq_count(pset
)) << PSET_LOAD_NUMERATOR_SHIFT
);
5596 int new_load_average
= (pset
->load_average
+ load
) >> 1;
5598 pset
->load_average
= new_load_average
;
5600 #if (DEVELOPMENT || DEBUG)