2 * Copyright (c) 2004-2010 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
41 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * $FreeBSD: src/sys/netinet/ip_fw2.c,v 1.6.2.18 2003/10/17 11:01:03 scottl Exp $
60 * Implement IP packet firewall (new version)
64 #error IPFIREWALL requires INET.
68 #include <machine/spl.h>
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
74 #include <sys/kernel.h>
76 #include <sys/socket.h>
77 #include <sys/socketvar.h>
78 #include <sys/sysctl.h>
79 #include <sys/syslog.h>
80 #include <sys/ucred.h>
81 #include <sys/kern_event.h>
84 #include <net/route.h>
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/in_var.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/ip.h>
90 #include <netinet/ip_var.h>
91 #include <netinet/ip_icmp.h>
92 #include <netinet/ip_fw.h>
93 #include <netinet/ip_divert.h>
96 #include <netinet/ip_dummynet.h>
99 #include <netinet/tcp.h>
100 #include <netinet/tcp_timer.h>
101 #include <netinet/tcp_var.h>
102 #include <netinet/tcpip.h>
103 #include <netinet/udp.h>
104 #include <netinet/udp_var.h>
107 #include <netinet6/ipsec.h>
110 #include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
112 #include "ip_fw2_compat.h"
114 #include <sys/kern_event.h>
118 #include <machine/in_cksum.h>
119 */ /* XXX for in_cksum */
122 * XXX This one should go in sys/mbuf.h. It is used to avoid that
123 * a firewall-generated packet loops forever through the firewall.
125 #ifndef M_SKIP_FIREWALL
126 #define M_SKIP_FIREWALL 0x4000
130 * set_disable contains one bit per set value (0..31).
131 * If the bit is set, all rules with the corresponding set
132 * are disabled. Set RESVD_SET(31) is reserved for the default rule
133 * and rules that are not deleted by the flush command,
134 * and CANNOT be disabled.
135 * Rules in set RESVD_SET can only be deleted explicitly.
137 static u_int32_t set_disable
;
140 static int verbose_limit
;
141 extern int fw_bypass
;
143 #define IPFW_DEFAULT_RULE 65535
145 #define IPFW_RULE_INACTIVE 1
148 * list of rules for layer 3
150 static struct ip_fw
*layer3_chain
;
152 MALLOC_DEFINE(M_IPFW
, "IpFw/IpAcct", "IpFw/IpAcct chain's");
154 static int fw_debug
= 0;
155 static int autoinc_step
= 100; /* bounded to 1..1000 in add_rule() */
157 static void ipfw_kev_post_msg(u_int32_t
);
159 static int Get32static_len(void);
160 static int Get64static_len(void);
164 static int ipfw_sysctl SYSCTL_HANDLER_ARGS
;
166 SYSCTL_NODE(_net_inet_ip
, OID_AUTO
, fw
, CTLFLAG_RW
|CTLFLAG_LOCKED
, 0, "Firewall");
167 SYSCTL_PROC(_net_inet_ip_fw
, OID_AUTO
, enable
,
168 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
169 &fw_enable
, 0, ipfw_sysctl
, "I", "Enable ipfw");
170 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, autoinc_step
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
171 &autoinc_step
, 0, "Rule number autincrement step");
172 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, one_pass
,
173 CTLFLAG_RW
| CTLFLAG_LOCKED
,
175 "Only do a single pass through ipfw when using dummynet(4)");
176 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, debug
,
177 CTLFLAG_RW
| CTLFLAG_LOCKED
,
178 &fw_debug
, 0, "Enable printing of debug ip_fw statements");
179 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, verbose
,
180 CTLFLAG_RW
| CTLFLAG_LOCKED
,
181 &fw_verbose
, 0, "Log matches to ipfw rules");
182 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, verbose_limit
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
183 &verbose_limit
, 0, "Set upper limit of matches of ipfw rules logged");
186 * Description of dynamic rules.
188 * Dynamic rules are stored in lists accessed through a hash table
189 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
190 * be modified through the sysctl variable dyn_buckets which is
191 * updated when the table becomes empty.
193 * XXX currently there is only one list, ipfw_dyn.
195 * When a packet is received, its address fields are first masked
196 * with the mask defined for the rule, then hashed, then matched
197 * against the entries in the corresponding list.
198 * Dynamic rules can be used for different purposes:
200 * + enforcing limits on the number of sessions;
201 * + in-kernel NAT (not implemented yet)
203 * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
204 * measured in seconds and depending on the flags.
206 * The total number of dynamic rules is stored in dyn_count.
207 * The max number of dynamic rules is dyn_max. When we reach
208 * the maximum number of rules we do not create anymore. This is
209 * done to avoid consuming too much memory, but also too much
210 * time when searching on each packet (ideally, we should try instead
211 * to put a limit on the length of the list on each bucket...).
213 * Each dynamic rule holds a pointer to the parent ipfw rule so
214 * we know what action to perform. Dynamic rules are removed when
215 * the parent rule is deleted. XXX we should make them survive.
217 * There are some limitations with dynamic rules -- we do not
218 * obey the 'randomized match', and we do not do multiple
219 * passes through the firewall. XXX check the latter!!!
221 static ipfw_dyn_rule
**ipfw_dyn_v
= NULL
;
222 static u_int32_t dyn_buckets
= 256; /* must be power of 2 */
223 static u_int32_t curr_dyn_buckets
= 256; /* must be power of 2 */
226 * Timeouts for various events in handing dynamic rules.
228 static u_int32_t dyn_ack_lifetime
= 300;
229 static u_int32_t dyn_syn_lifetime
= 20;
230 static u_int32_t dyn_fin_lifetime
= 1;
231 static u_int32_t dyn_rst_lifetime
= 1;
232 static u_int32_t dyn_udp_lifetime
= 10;
233 static u_int32_t dyn_short_lifetime
= 5;
236 * Keepalives are sent if dyn_keepalive is set. They are sent every
237 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
238 * seconds of lifetime of a rule.
239 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
240 * than dyn_keepalive_period.
243 static u_int32_t dyn_keepalive_interval
= 20;
244 static u_int32_t dyn_keepalive_period
= 5;
245 static u_int32_t dyn_keepalive
= 1; /* do send keepalives */
247 static u_int32_t static_count
; /* # of static rules */
248 static u_int32_t static_len
; /* size in bytes of static rules */
249 static u_int32_t static_len_32
; /* size in bytes of static rules for 32 bit client */
250 static u_int32_t static_len_64
; /* size in bytes of static rules for 64 bit client */
251 static u_int32_t dyn_count
; /* # of dynamic rules */
252 static u_int32_t dyn_max
= 4096; /* max # of dynamic rules */
254 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_buckets
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
255 &dyn_buckets
, 0, "Number of dyn. buckets");
256 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, curr_dyn_buckets
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
257 &curr_dyn_buckets
, 0, "Current Number of dyn. buckets");
258 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_count
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
259 &dyn_count
, 0, "Number of dyn. rules");
260 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_max
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
261 &dyn_max
, 0, "Max number of dyn. rules");
262 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, static_count
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
263 &static_count
, 0, "Number of static rules");
264 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_ack_lifetime
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
265 &dyn_ack_lifetime
, 0, "Lifetime of dyn. rules for acks");
266 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_syn_lifetime
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
267 &dyn_syn_lifetime
, 0, "Lifetime of dyn. rules for syn");
268 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_fin_lifetime
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
269 &dyn_fin_lifetime
, 0, "Lifetime of dyn. rules for fin");
270 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_rst_lifetime
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
271 &dyn_rst_lifetime
, 0, "Lifetime of dyn. rules for rst");
272 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_udp_lifetime
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
273 &dyn_udp_lifetime
, 0, "Lifetime of dyn. rules for UDP");
274 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_short_lifetime
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
275 &dyn_short_lifetime
, 0, "Lifetime of dyn. rules for other situations");
276 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_keepalive
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
277 &dyn_keepalive
, 0, "Enable keepalives for dyn. rules");
281 ipfw_sysctl SYSCTL_HANDLER_ARGS
283 #pragma unused(arg1, arg2)
286 error
= sysctl_handle_int(oidp
, oidp
->oid_arg1
, oidp
->oid_arg2
, req
);
287 if (error
|| !req
->newptr
)
290 ipfw_kev_post_msg(KEV_IPFW_ENABLE
);
295 #endif /* SYSCTL_NODE */
298 static ip_fw_chk_t ipfw_chk
;
301 lck_grp_t
*ipfw_mutex_grp
;
302 lck_grp_attr_t
*ipfw_mutex_grp_attr
;
303 lck_attr_t
*ipfw_mutex_attr
;
304 lck_mtx_t
*ipfw_mutex
;
306 extern void ipfwsyslog( int level
, const char *format
,...);
309 ip_dn_ruledel_t
*ip_dn_ruledel_ptr
= NULL
; /* hook into dummynet */
310 #endif /* DUMMYNET */
312 #define KEV_LOG_SUBCLASS 10
313 #define IPFWLOGEVENT 0
315 #define ipfwstring "ipfw:"
316 static size_t ipfwstringlen
;
318 #define dolog( a ) { \
319 if ( fw_verbose == 2 ) /* Apple logging, log to ipfw.log */ \
324 #define RULESIZE64(rule) (sizeof(struct ip_fw_64) + \
325 ((struct ip_fw *)(rule))->cmd_len * 4 - 4)
327 #define RULESIZE32(rule) (sizeof(struct ip_fw_32) + \
328 ((struct ip_fw *)(rule))->cmd_len * 4 - 4)
330 void ipfwsyslog( int level
, const char *format
,...)
334 struct kev_msg ev_msg
;
336 char msgBuf
[msgsize
];
341 bzero(msgBuf
, msgsize
);
342 bzero(&ev_msg
, sizeof(struct kev_msg
));
343 va_start( ap
, format
);
344 loglen
= vsnprintf(msgBuf
, msgsize
, format
, ap
);
347 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
348 ev_msg
.kev_class
= KEV_NETWORK_CLASS
;
349 ev_msg
.kev_subclass
= KEV_LOG_SUBCLASS
;
350 ev_msg
.event_code
= IPFWLOGEVENT
;
352 /* get rid of the trailing \n */
355 pri
= LOG_PRI(level
);
357 /* remove "ipfw:" prefix if logging to ipfw log */
358 if ( !(strncmp( ipfwstring
, msgBuf
, ipfwstringlen
))){
359 dptr
= msgBuf
+ipfwstringlen
;
362 ev_msg
.dv
[0].data_ptr
= &pri
;
363 ev_msg
.dv
[0].data_length
= 1;
364 ev_msg
.dv
[1].data_ptr
= dptr
;
365 ev_msg
.dv
[1].data_length
= 100; /* bug in kern_post_msg, it can't handle size > 256-msghdr */
366 ev_msg
.dv
[2].data_length
= 0;
368 kev_post_msg(&ev_msg
);
372 * This macro maps an ip pointer into a layer3 header pointer of type T
374 #define L3HDR(T, ip) ((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
377 icmptype_match(struct ip
*ip
, ipfw_insn_u32
*cmd
)
379 int type
= L3HDR(struct icmp
,ip
)->icmp_type
;
381 return (type
<= ICMP_MAXTYPE
&& (cmd
->d
[0] & (1<<type
)) );
384 #define TT ( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
385 (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
388 is_icmp_query(struct ip
*ip
)
390 int type
= L3HDR(struct icmp
, ip
)->icmp_type
;
391 return (type
<= ICMP_MAXTYPE
&& (TT
& (1<<type
)) );
399 int len
= static_len_32
;
403 for (rule
= layer3_chain
; rule
; rule
= rule
->next
) {
404 if (rule
->reserved_1
== IPFW_RULE_INACTIVE
) {
407 if ( rule
->act_ofs
){
408 useraction
= (char*)ACTION_PTR( rule
);
409 if ( ((ipfw_insn
*)useraction
)->opcode
== O_QUEUE
|| ((ipfw_insn
*)useraction
)->opcode
== O_PIPE
){
410 diff
= sizeof(ipfw_insn_pipe
) - sizeof(ipfw_insn_pipe_32
);
423 int len
= static_len_64
;
427 for (rule
= layer3_chain
; rule
; rule
= rule
->next
) {
428 if (rule
->reserved_1
== IPFW_RULE_INACTIVE
) {
431 if ( rule
->act_ofs
){
432 useraction
= (char *)ACTION_PTR( rule
);
433 if ( ((ipfw_insn
*)useraction
)->opcode
== O_QUEUE
|| ((ipfw_insn
*)useraction
)->opcode
== O_PIPE
){
434 diff
= sizeof(ipfw_insn_pipe_64
) - sizeof(ipfw_insn_pipe
);
444 copyto32fw_insn( struct ip_fw_32
*fw32
, struct ip_fw
*user_ip_fw
, int cmdsize
)
453 end
= ((char*)user_ip_fw
->cmd
) + cmdsize
;
454 useraction
= (char*)ACTION_PTR( user_ip_fw
);
455 fw32action
= (char*)fw32
->cmd
+ (user_ip_fw
->act_ofs
* sizeof(uint32_t));
456 if ( ( justcmdsize
= ( fw32action
- (char*)fw32
->cmd
)))
457 bcopy( user_ip_fw
->cmd
, fw32
->cmd
, justcmdsize
);
458 while ( useraction
< end
){
459 if ( ((ipfw_insn
*)useraction
)->opcode
== O_QUEUE
|| ((ipfw_insn
*)useraction
)->opcode
== O_PIPE
){
460 actioncopysize
= sizeof(ipfw_insn_pipe_32
);
461 ((ipfw_insn
*)fw32action
)->opcode
= ((ipfw_insn
*)useraction
)->opcode
;
462 ((ipfw_insn
*)fw32action
)->arg1
= ((ipfw_insn
*)useraction
)->arg1
;
463 ((ipfw_insn
*)fw32action
)->len
= F_INSN_SIZE(ipfw_insn_pipe_32
);
464 diff
= ((ipfw_insn
*)useraction
)->len
- ((ipfw_insn
*)fw32action
)->len
;
466 fw32
->cmd_len
-= diff
;
469 actioncopysize
= (F_LEN((ipfw_insn
*)useraction
) ? (F_LEN((ipfw_insn
*)useraction
)) : 1 ) * sizeof(uint32_t);
470 bcopy( useraction
, fw32action
, actioncopysize
);
472 useraction
+= (F_LEN((ipfw_insn
*)useraction
) ? (F_LEN((ipfw_insn
*)useraction
)) : 1 ) * sizeof(uint32_t);
473 fw32action
+= actioncopysize
;
478 copyto64fw_insn( struct ip_fw_64
*fw64
, struct ip_fw
*user_ip_fw
, int cmdsize
)
487 end
= ((char *)user_ip_fw
->cmd
) + cmdsize
;
488 useraction
= (char*)ACTION_PTR( user_ip_fw
);
489 if ( (justcmdsize
= (useraction
- (char*)user_ip_fw
->cmd
)))
490 bcopy( user_ip_fw
->cmd
, fw64
->cmd
, justcmdsize
);
491 fw64action
= (char*)fw64
->cmd
+ justcmdsize
;
492 while ( useraction
< end
){
493 if ( ((ipfw_insn
*)user_ip_fw
)->opcode
== O_QUEUE
|| ((ipfw_insn
*)user_ip_fw
)->opcode
== O_PIPE
){
494 actioncopysize
= sizeof(ipfw_insn_pipe_64
);
495 ((ipfw_insn
*)fw64action
)->opcode
= ((ipfw_insn
*)useraction
)->opcode
;
496 ((ipfw_insn
*)fw64action
)->arg1
= ((ipfw_insn
*)useraction
)->arg1
;
497 ((ipfw_insn
*)fw64action
)->len
= F_INSN_SIZE(ipfw_insn_pipe_64
);
498 diff
= ((ipfw_insn
*)fw64action
)->len
- ((ipfw_insn
*)useraction
)->len
;
500 fw64
->cmd_len
+= diff
;
503 actioncopysize
= (F_LEN((ipfw_insn
*)useraction
) ? (F_LEN((ipfw_insn
*)useraction
)) : 1 ) * sizeof(uint32_t);
504 bcopy( useraction
, fw64action
, actioncopysize
);
506 useraction
+= (F_LEN((ipfw_insn
*)useraction
) ? (F_LEN((ipfw_insn
*)useraction
)) : 1 ) * sizeof(uint32_t);
507 fw64action
+= actioncopysize
;
512 copyto32fw( struct ip_fw
*user_ip_fw
, struct ip_fw_32
*fw32
, __unused
size_t copysize
)
514 size_t rulesize
, cmdsize
;
516 fw32
->version
= user_ip_fw
->version
;
517 fw32
->context
= CAST_DOWN_EXPLICIT( user32_addr_t
, user_ip_fw
->context
);
518 fw32
->next
= CAST_DOWN_EXPLICIT(user32_addr_t
, user_ip_fw
->next
);
519 fw32
->next_rule
= CAST_DOWN_EXPLICIT(user32_addr_t
, user_ip_fw
->next_rule
);
520 fw32
->act_ofs
= user_ip_fw
->act_ofs
;
521 fw32
->cmd_len
= user_ip_fw
->cmd_len
;
522 fw32
->rulenum
= user_ip_fw
->rulenum
;
523 fw32
->set
= user_ip_fw
->set
;
524 fw32
->set_masks
[0] = user_ip_fw
->set_masks
[0];
525 fw32
->set_masks
[1] = user_ip_fw
->set_masks
[1];
526 fw32
->pcnt
= user_ip_fw
->pcnt
;
527 fw32
->bcnt
= user_ip_fw
->bcnt
;
528 fw32
->timestamp
= user_ip_fw
->timestamp
;
529 fw32
->reserved_1
= user_ip_fw
->reserved_1
;
530 fw32
->reserved_2
= user_ip_fw
->reserved_2
;
531 rulesize
= sizeof(struct ip_fw_32
) + (user_ip_fw
->cmd_len
* sizeof(ipfw_insn
) - 4);
532 cmdsize
= user_ip_fw
->cmd_len
* sizeof(u_int32_t
);
533 copyto32fw_insn( fw32
, user_ip_fw
, cmdsize
);
537 copyto64fw( struct ip_fw
*user_ip_fw
, struct ip_fw_64
*fw64
, size_t copysize
)
539 size_t rulesize
, cmdsize
;
541 fw64
->version
= user_ip_fw
->version
;
542 fw64
->context
= CAST_DOWN_EXPLICIT(__uint64_t
, user_ip_fw
->context
);
543 fw64
->next
= CAST_DOWN_EXPLICIT(user64_addr_t
, user_ip_fw
->next
);
544 fw64
->next_rule
= CAST_DOWN_EXPLICIT(user64_addr_t
, user_ip_fw
->next_rule
);
545 fw64
->act_ofs
= user_ip_fw
->act_ofs
;
546 fw64
->cmd_len
= user_ip_fw
->cmd_len
;
547 fw64
->rulenum
= user_ip_fw
->rulenum
;
548 fw64
->set
= user_ip_fw
->set
;
549 fw64
->set_masks
[0] = user_ip_fw
->set_masks
[0];
550 fw64
->set_masks
[1] = user_ip_fw
->set_masks
[1];
551 fw64
->pcnt
= user_ip_fw
->pcnt
;
552 fw64
->bcnt
= user_ip_fw
->bcnt
;
553 fw64
->timestamp
= user_ip_fw
->timestamp
;
554 fw64
->reserved_1
= user_ip_fw
->reserved_1
;
555 fw64
->reserved_2
= user_ip_fw
->reserved_2
;
556 rulesize
= sizeof(struct ip_fw_64
) + (user_ip_fw
->cmd_len
* sizeof(ipfw_insn
) - 4);
557 if (rulesize
> copysize
)
558 cmdsize
= copysize
- sizeof(struct ip_fw_64
) + 4;
560 cmdsize
= user_ip_fw
->cmd_len
* sizeof(u_int32_t
);
561 copyto64fw_insn( fw64
, user_ip_fw
, cmdsize
);
565 copyfrom32fw_insn( struct ip_fw_32
*fw32
, struct ip_fw
*user_ip_fw
, int cmdsize
)
574 end
= ((char*)fw32
->cmd
) + cmdsize
;
575 fw32action
= (char*)ACTION_PTR( fw32
);
576 if ((justcmdsize
= (fw32action
- (char*)fw32
->cmd
)))
577 bcopy( fw32
->cmd
, user_ip_fw
->cmd
, justcmdsize
);
578 useraction
= (char*)user_ip_fw
->cmd
+ justcmdsize
;
579 while ( fw32action
< end
){
580 if ( ((ipfw_insn
*)fw32action
)->opcode
== O_QUEUE
|| ((ipfw_insn
*)fw32action
)->opcode
== O_PIPE
){
581 actioncopysize
= sizeof(ipfw_insn_pipe
);
582 ((ipfw_insn
*)useraction
)->opcode
= ((ipfw_insn
*)fw32action
)->opcode
;
583 ((ipfw_insn
*)useraction
)->arg1
= ((ipfw_insn
*)fw32action
)->arg1
;
584 ((ipfw_insn
*)useraction
)->len
= F_INSN_SIZE(ipfw_insn_pipe
);
585 diff
= ((ipfw_insn
*)useraction
)->len
- ((ipfw_insn
*)fw32action
)->len
;
587 /* readjust the cmd_len */
588 user_ip_fw
->cmd_len
+= diff
;
591 actioncopysize
= (F_LEN((ipfw_insn
*)fw32action
) ? (F_LEN((ipfw_insn
*)fw32action
)) : 1 ) * sizeof(uint32_t);
592 bcopy( fw32action
, useraction
, actioncopysize
);
594 fw32action
+= (F_LEN((ipfw_insn
*)fw32action
) ? (F_LEN((ipfw_insn
*)fw32action
)) : 1 ) * sizeof(uint32_t);
595 useraction
+= actioncopysize
;
598 return( useraction
- (char*)user_ip_fw
->cmd
);
602 copyfrom64fw_insn( struct ip_fw_64
*fw64
, struct ip_fw
*user_ip_fw
, int cmdsize
)
611 end
= ((char *)fw64
->cmd
) + cmdsize
;
612 fw64action
= (char*)ACTION_PTR( fw64
);
613 if ( (justcmdsize
= (fw64action
- (char*)fw64
->cmd
)))
614 bcopy( fw64
->cmd
, user_ip_fw
->cmd
, justcmdsize
);
615 useraction
= (char*)user_ip_fw
->cmd
+ justcmdsize
;
616 while ( fw64action
< end
){
617 if ( ((ipfw_insn
*)fw64action
)->opcode
== O_QUEUE
|| ((ipfw_insn
*)fw64action
)->opcode
== O_PIPE
){
618 actioncopysize
= sizeof(ipfw_insn_pipe
);
619 ((ipfw_insn
*)useraction
)->opcode
= ((ipfw_insn
*)fw64action
)->opcode
;
620 ((ipfw_insn
*)useraction
)->arg1
= ((ipfw_insn
*)fw64action
)->arg1
;
621 ((ipfw_insn
*)useraction
)->len
= F_INSN_SIZE(ipfw_insn_pipe
);
622 diff
= ((ipfw_insn
*)fw64action
)->len
- ((ipfw_insn
*)useraction
)->len
;
624 /* readjust the cmd_len */
625 user_ip_fw
->cmd_len
-= diff
;
628 actioncopysize
= (F_LEN((ipfw_insn
*)fw64action
) ? (F_LEN((ipfw_insn
*)fw64action
)) : 1 ) * sizeof(uint32_t);
629 bcopy( fw64action
, useraction
, actioncopysize
);
631 fw64action
+= (F_LEN((ipfw_insn
*)fw64action
) ? (F_LEN((ipfw_insn
*)fw64action
)) : 1 ) * sizeof(uint32_t);
632 useraction
+= actioncopysize
;
634 return( useraction
- (char*)user_ip_fw
->cmd
);
638 copyfrom32fw( struct ip_fw_32
*fw32
, struct ip_fw
*user_ip_fw
, size_t copysize
)
640 size_t rulesize
, cmdsize
;
642 user_ip_fw
->version
= fw32
->version
;
643 user_ip_fw
->context
= CAST_DOWN(void *, fw32
->context
);
644 user_ip_fw
->next
= CAST_DOWN(struct ip_fw
*, fw32
->next
);
645 user_ip_fw
->next_rule
= CAST_DOWN_EXPLICIT(struct ip_fw
*, fw32
->next_rule
);
646 user_ip_fw
->act_ofs
= fw32
->act_ofs
;
647 user_ip_fw
->cmd_len
= fw32
->cmd_len
;
648 user_ip_fw
->rulenum
= fw32
->rulenum
;
649 user_ip_fw
->set
= fw32
->set
;
650 user_ip_fw
->set_masks
[0] = fw32
->set_masks
[0];
651 user_ip_fw
->set_masks
[1] = fw32
->set_masks
[1];
652 user_ip_fw
->pcnt
= fw32
->pcnt
;
653 user_ip_fw
->bcnt
= fw32
->bcnt
;
654 user_ip_fw
->timestamp
= fw32
->timestamp
;
655 user_ip_fw
->reserved_1
= fw32
->reserved_1
;
656 user_ip_fw
->reserved_2
= fw32
->reserved_2
;
657 rulesize
= sizeof(struct ip_fw_32
) + (fw32
->cmd_len
* sizeof(ipfw_insn
) - 4);
658 if ( rulesize
> copysize
)
659 cmdsize
= copysize
- sizeof(struct ip_fw_32
)-4;
661 cmdsize
= fw32
->cmd_len
* sizeof(ipfw_insn
);
662 cmdsize
= copyfrom32fw_insn( fw32
, user_ip_fw
, cmdsize
);
663 return( sizeof(struct ip_fw
) + cmdsize
- 4);
667 copyfrom64fw( struct ip_fw_64
*fw64
, struct ip_fw
*user_ip_fw
, size_t copysize
)
669 size_t rulesize
, cmdsize
;
671 user_ip_fw
->version
= fw64
->version
;
672 user_ip_fw
->context
= CAST_DOWN_EXPLICIT( void *, fw64
->context
);
673 user_ip_fw
->next
= CAST_DOWN_EXPLICIT(struct ip_fw
*, fw64
->next
);
674 user_ip_fw
->next_rule
= CAST_DOWN_EXPLICIT(struct ip_fw
*, fw64
->next_rule
);
675 user_ip_fw
->act_ofs
= fw64
->act_ofs
;
676 user_ip_fw
->cmd_len
= fw64
->cmd_len
;
677 user_ip_fw
->rulenum
= fw64
->rulenum
;
678 user_ip_fw
->set
= fw64
->set
;
679 user_ip_fw
->set_masks
[0] = fw64
->set_masks
[0];
680 user_ip_fw
->set_masks
[1] = fw64
->set_masks
[1];
681 user_ip_fw
->pcnt
= fw64
->pcnt
;
682 user_ip_fw
->bcnt
= fw64
->bcnt
;
683 user_ip_fw
->timestamp
= fw64
->timestamp
;
684 user_ip_fw
->reserved_1
= fw64
->reserved_1
;
685 user_ip_fw
->reserved_2
= fw64
->reserved_2
;
686 //bcopy( fw64->cmd, user_ip_fw->cmd, fw64->cmd_len * sizeof(ipfw_insn));
687 rulesize
= sizeof(struct ip_fw_64
) + (fw64
->cmd_len
* sizeof(ipfw_insn
) - 4);
688 if ( rulesize
> copysize
)
689 cmdsize
= copysize
- sizeof(struct ip_fw_64
)-4;
691 cmdsize
= fw64
->cmd_len
* sizeof(ipfw_insn
);
692 cmdsize
= copyfrom64fw_insn( fw64
, user_ip_fw
, cmdsize
);
693 return( sizeof(struct ip_fw
) + cmdsize
- 4);
697 void cp_dyn_to_comp_32( struct ipfw_dyn_rule_compat_32
*dyn_rule_vers1
, int *len
)
699 struct ipfw_dyn_rule_compat_32
*dyn_last
=NULL
;
704 for (i
= 0; i
< curr_dyn_buckets
; i
++) {
705 for ( p
= ipfw_dyn_v
[i
] ; p
!= NULL
; p
= p
->next
) {
706 dyn_rule_vers1
->chain
= (user32_addr_t
)(p
->rule
->rulenum
);
707 dyn_rule_vers1
->id
= p
->id
;
708 dyn_rule_vers1
->mask
= p
->id
;
709 dyn_rule_vers1
->type
= p
->dyn_type
;
710 dyn_rule_vers1
->expire
= p
->expire
;
711 dyn_rule_vers1
->pcnt
= p
->pcnt
;
712 dyn_rule_vers1
->bcnt
= p
->bcnt
;
713 dyn_rule_vers1
->bucket
= p
->bucket
;
714 dyn_rule_vers1
->state
= p
->state
;
716 dyn_rule_vers1
->next
= CAST_DOWN_EXPLICIT( user32_addr_t
, p
->next
);
717 dyn_last
= dyn_rule_vers1
;
719 *len
+= sizeof(*dyn_rule_vers1
);
724 if (dyn_last
!= NULL
) {
725 dyn_last
->next
= ((user32_addr_t
)0);
732 void cp_dyn_to_comp_64( struct ipfw_dyn_rule_compat_64
*dyn_rule_vers1
, int *len
)
734 struct ipfw_dyn_rule_compat_64
*dyn_last
=NULL
;
739 for (i
= 0; i
< curr_dyn_buckets
; i
++) {
740 for ( p
= ipfw_dyn_v
[i
] ; p
!= NULL
; p
= p
->next
) {
741 dyn_rule_vers1
->chain
= (user64_addr_t
) p
->rule
->rulenum
;
742 dyn_rule_vers1
->id
= p
->id
;
743 dyn_rule_vers1
->mask
= p
->id
;
744 dyn_rule_vers1
->type
= p
->dyn_type
;
745 dyn_rule_vers1
->expire
= p
->expire
;
746 dyn_rule_vers1
->pcnt
= p
->pcnt
;
747 dyn_rule_vers1
->bcnt
= p
->bcnt
;
748 dyn_rule_vers1
->bucket
= p
->bucket
;
749 dyn_rule_vers1
->state
= p
->state
;
751 dyn_rule_vers1
->next
= CAST_DOWN(user64_addr_t
, p
->next
);
752 dyn_last
= dyn_rule_vers1
;
754 *len
+= sizeof(*dyn_rule_vers1
);
759 if (dyn_last
!= NULL
) {
760 dyn_last
->next
= CAST_DOWN(user64_addr_t
, NULL
);
766 sooptcopyin_fw( struct sockopt
*sopt
, struct ip_fw
*user_ip_fw
, size_t *size
)
768 size_t valsize
, copyinsize
= 0;
771 valsize
= sopt
->sopt_valsize
;
774 if (proc_is64bit(sopt
->sopt_p
)) {
775 struct ip_fw_64
*fw64
=NULL
;
777 if ( valsize
< sizeof(struct ip_fw_64
) ) {
781 copyinsize
= sizeof(struct ip_fw_64
);
782 if ( valsize
> copyinsize
)
783 sopt
->sopt_valsize
= valsize
= copyinsize
;
785 if ( sopt
->sopt_p
!= 0) {
786 fw64
= _MALLOC(copyinsize
, M_TEMP
, M_WAITOK
);
789 if ((error
= copyin(sopt
->sopt_val
, fw64
, valsize
)) != 0){
795 bcopy(CAST_DOWN(caddr_t
, sopt
->sopt_val
), fw64
, valsize
);
797 valsize
= copyfrom64fw( fw64
, user_ip_fw
, valsize
);
798 _FREE( fw64
, M_TEMP
);
800 struct ip_fw_32
*fw32
=NULL
;
802 if ( valsize
< sizeof(struct ip_fw_32
) ) {
806 copyinsize
= sizeof(struct ip_fw_32
);
807 if ( valsize
> copyinsize
)
808 sopt
->sopt_valsize
= valsize
= copyinsize
;
810 if ( sopt
->sopt_p
!= 0) {
811 fw32
= _MALLOC(copyinsize
, M_TEMP
, M_WAITOK
);
814 if ( (error
= copyin(sopt
->sopt_val
, fw32
, valsize
)) != 0){
815 _FREE( fw32
, M_TEMP
);
820 bcopy(CAST_DOWN(caddr_t
, sopt
->sopt_val
), fw32
, valsize
);
822 valsize
= copyfrom32fw( fw32
, user_ip_fw
, valsize
);
823 _FREE( fw32
, M_TEMP
);
831 * The following checks use two arrays of 8 or 16 bits to store the
832 * bits that we want set or clear, respectively. They are in the
833 * low and high half of cmd->arg1 or cmd->d[0].
835 * We scan options and store the bits we find set. We succeed if
837 * (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
839 * The code is sometimes optimized not to store additional variables.
843 flags_match(ipfw_insn
*cmd
, u_int8_t bits
)
848 if ( ((cmd
->arg1
& 0xff) & bits
) != 0)
849 return 0; /* some bits we want set were clear */
850 want_clear
= (cmd
->arg1
>> 8) & 0xff;
851 if ( (want_clear
& bits
) != want_clear
)
852 return 0; /* some bits we want clear were set */
857 ipopts_match(struct ip
*ip
, ipfw_insn
*cmd
)
859 int optlen
, bits
= 0;
860 u_char
*cp
= (u_char
*)(ip
+ 1);
861 int x
= (ip
->ip_hl
<< 2) - sizeof (struct ip
);
863 for (; x
> 0; x
-= optlen
, cp
+= optlen
) {
864 int opt
= cp
[IPOPT_OPTVAL
];
866 if (opt
== IPOPT_EOL
)
868 if (opt
== IPOPT_NOP
)
871 optlen
= cp
[IPOPT_OLEN
];
872 if (optlen
<= 0 || optlen
> x
)
873 return 0; /* invalid or truncated */
881 bits
|= IP_FW_IPOPT_LSRR
;
885 bits
|= IP_FW_IPOPT_SSRR
;
889 bits
|= IP_FW_IPOPT_RR
;
893 bits
|= IP_FW_IPOPT_TS
;
897 return (flags_match(cmd
, bits
));
901 tcpopts_match(struct ip
*ip
, ipfw_insn
*cmd
)
903 int optlen
, bits
= 0;
904 struct tcphdr
*tcp
= L3HDR(struct tcphdr
,ip
);
905 u_char
*cp
= (u_char
*)(tcp
+ 1);
906 int x
= (tcp
->th_off
<< 2) - sizeof(struct tcphdr
);
908 for (; x
> 0; x
-= optlen
, cp
+= optlen
) {
910 if (opt
== TCPOPT_EOL
)
912 if (opt
== TCPOPT_NOP
)
926 bits
|= IP_FW_TCPOPT_MSS
;
930 bits
|= IP_FW_TCPOPT_WINDOW
;
933 case TCPOPT_SACK_PERMITTED
:
935 bits
|= IP_FW_TCPOPT_SACK
;
938 case TCPOPT_TIMESTAMP
:
939 bits
|= IP_FW_TCPOPT_TS
;
945 bits
|= IP_FW_TCPOPT_CC
;
949 return (flags_match(cmd
, bits
));
953 iface_match(struct ifnet
*ifp
, ipfw_insn_if
*cmd
)
955 if (ifp
== NULL
) /* no iface with this packet, match fails */
957 /* Check by name or by IP address */
958 if (cmd
->name
[0] != '\0') { /* match by name */
959 /* Check unit number (-1 is wildcard) */
960 if (cmd
->p
.unit
!= -1 && cmd
->p
.unit
!= ifp
->if_unit
)
963 if (!strncmp(ifp
->if_name
, cmd
->name
, IFNAMSIZ
))
968 ifnet_lock_shared(ifp
);
969 TAILQ_FOREACH(ia
, &ifp
->if_addrhead
, ifa_link
) {
971 if (ia
->ifa_addr
->sa_family
!= AF_INET
) {
975 if (cmd
->p
.ip
.s_addr
== ((struct sockaddr_in
*)
976 (ia
->ifa_addr
))->sin_addr
.s_addr
) {
978 ifnet_lock_done(ifp
);
979 return(1); /* match */
983 ifnet_lock_done(ifp
);
985 return(0); /* no match, fail ... */
989 * The 'verrevpath' option checks that the interface that an IP packet
990 * arrives on is the same interface that traffic destined for the
991 * packet's source address would be routed out of. This is a measure
992 * to block forged packets. This is also commonly known as "anti-spoofing"
993 * or Unicast Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The
994 * name of the knob is purposely reminisent of the Cisco IOS command,
996 * ip verify unicast reverse-path
998 * which implements the same functionality. But note that syntax is
999 * misleading. The check may be performed on all IP packets whether unicast,
1000 * multicast, or broadcast.
1003 verify_rev_path(struct in_addr src
, struct ifnet
*ifp
)
1005 static struct route ro
;
1006 struct sockaddr_in
*dst
;
1008 dst
= (struct sockaddr_in
*)&(ro
.ro_dst
);
1010 /* Check if we've cached the route from the previous call. */
1011 if (src
.s_addr
!= dst
->sin_addr
.s_addr
) {
1014 bzero(dst
, sizeof(*dst
));
1015 dst
->sin_family
= AF_INET
;
1016 dst
->sin_len
= sizeof(*dst
);
1017 dst
->sin_addr
= src
;
1019 rtalloc_ign(&ro
, RTF_CLONING
|RTF_PRCLONING
);
1021 if (ro
.ro_rt
!= NULL
)
1022 RT_LOCK_SPIN(ro
.ro_rt
);
1024 return 0; /* No route */
1025 if ((ifp
== NULL
) ||
1026 (ro
.ro_rt
->rt_ifp
->if_index
!= ifp
->if_index
)) {
1027 RT_UNLOCK(ro
.ro_rt
);
1030 RT_UNLOCK(ro
.ro_rt
);
1035 static u_int64_t norule_counter
; /* counter for ipfw_log(NULL...) */
1037 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
1038 #define SNP(buf) buf, sizeof(buf)
1041 * We enter here when we have a rule with O_LOG.
1042 * XXX this function alone takes about 2Kbytes of code!
1045 ipfw_log(struct ip_fw
*f
, u_int hlen
, struct ether_header
*eh
,
1046 struct mbuf
*m
, struct ifnet
*oif
)
1049 int limit_reached
= 0;
1050 char ipv4str
[MAX_IPv4_STR_LEN
];
1051 char action2
[40], proto
[48], fragment
[28];
1056 if (f
== NULL
) { /* bogus pkt */
1057 if (verbose_limit
!= 0 && norule_counter
>= verbose_limit
)
1060 if (norule_counter
== verbose_limit
)
1061 limit_reached
= verbose_limit
;
1063 } else { /* O_LOG is the first action, find the real one */
1064 ipfw_insn
*cmd
= ACTION_PTR(f
);
1065 ipfw_insn_log
*l
= (ipfw_insn_log
*)cmd
;
1067 if (l
->max_log
!= 0 && l
->log_left
== 0)
1070 if (l
->log_left
== 0)
1071 limit_reached
= l
->max_log
;
1072 cmd
+= F_LEN(cmd
); /* point to first action */
1073 if (cmd
->opcode
== O_PROB
)
1077 switch (cmd
->opcode
) {
1083 if (cmd
->arg1
==ICMP_REJECT_RST
)
1085 else if (cmd
->arg1
==ICMP_UNREACH_HOST
)
1088 snprintf(SNPARGS(action2
, 0), "Unreach %d",
1099 snprintf(SNPARGS(action2
, 0), "Divert %d",
1103 snprintf(SNPARGS(action2
, 0), "Tee %d",
1107 snprintf(SNPARGS(action2
, 0), "SkipTo %d",
1111 snprintf(SNPARGS(action2
, 0), "Pipe %d",
1115 snprintf(SNPARGS(action2
, 0), "Queue %d",
1118 case O_FORWARD_IP
: {
1119 ipfw_insn_sa
*sa
= (ipfw_insn_sa
*)cmd
;
1122 if (f
->reserved_1
== IPFW_RULE_INACTIVE
) {
1125 len
= snprintf(SNPARGS(action2
, 0), "Forward to %s",
1126 inet_ntop(AF_INET
, &sa
->sa
.sin_addr
, ipv4str
, sizeof(ipv4str
)));
1127 if (sa
->sa
.sin_port
)
1128 snprintf(SNPARGS(action2
, len
), ":%d",
1138 if (hlen
== 0) { /* non-ip */
1139 snprintf(SNPARGS(proto
, 0), "MAC");
1141 struct ip
*ip
= mtod(m
, struct ip
*);
1142 /* these three are all aliases to the same thing */
1143 struct icmp
*const icmp
= L3HDR(struct icmp
, ip
);
1144 struct tcphdr
*const tcp
= (struct tcphdr
*)icmp
;
1145 struct udphdr
*const udp
= (struct udphdr
*)icmp
;
1147 int ip_off
, offset
, ip_len
;
1151 if (eh
!= NULL
) { /* layer 2 packets are as on the wire */
1152 ip_off
= ntohs(ip
->ip_off
);
1153 ip_len
= ntohs(ip
->ip_len
);
1155 ip_off
= ip
->ip_off
;
1156 ip_len
= ip
->ip_len
;
1158 offset
= ip_off
& IP_OFFMASK
;
1161 len
= snprintf(SNPARGS(proto
, 0), "TCP %s",
1162 inet_ntop(AF_INET
, &ip
->ip_src
, ipv4str
, sizeof(ipv4str
)));
1164 snprintf(SNPARGS(proto
, len
), ":%d %s:%d",
1165 ntohs(tcp
->th_sport
),
1166 inet_ntop(AF_INET
, &ip
->ip_dst
, ipv4str
, sizeof(ipv4str
)),
1167 ntohs(tcp
->th_dport
));
1169 snprintf(SNPARGS(proto
, len
), " %s",
1170 inet_ntop(AF_INET
, &ip
->ip_dst
, ipv4str
, sizeof(ipv4str
)));
1174 len
= snprintf(SNPARGS(proto
, 0), "UDP %s",
1175 inet_ntop(AF_INET
, &ip
->ip_src
, ipv4str
, sizeof(ipv4str
)));
1177 snprintf(SNPARGS(proto
, len
), ":%d %s:%d",
1178 ntohs(udp
->uh_sport
),
1179 inet_ntop(AF_INET
, &ip
->ip_dst
, ipv4str
, sizeof(ipv4str
)),
1180 ntohs(udp
->uh_dport
));
1182 snprintf(SNPARGS(proto
, len
), " %s",
1183 inet_ntop(AF_INET
, &ip
->ip_dst
, ipv4str
, sizeof(ipv4str
)));
1188 len
= snprintf(SNPARGS(proto
, 0),
1190 icmp
->icmp_type
, icmp
->icmp_code
);
1192 len
= snprintf(SNPARGS(proto
, 0), "ICMP ");
1193 len
+= snprintf(SNPARGS(proto
, len
), "%s",
1194 inet_ntop(AF_INET
, &ip
->ip_src
, ipv4str
, sizeof(ipv4str
)));
1195 snprintf(SNPARGS(proto
, len
), " %s",
1196 inet_ntop(AF_INET
, &ip
->ip_dst
, ipv4str
, sizeof(ipv4str
)));
1200 len
= snprintf(SNPARGS(proto
, 0), "P:%d %s", ip
->ip_p
,
1201 inet_ntop(AF_INET
, &ip
->ip_src
, ipv4str
, sizeof(ipv4str
)));
1202 snprintf(SNPARGS(proto
, len
), " %s",
1203 inet_ntop(AF_INET
, &ip
->ip_dst
, ipv4str
, sizeof(ipv4str
)));
1207 if (ip_off
& (IP_MF
| IP_OFFMASK
))
1208 snprintf(SNPARGS(fragment
, 0), " (frag %d:%d@%d%s)",
1209 ntohs(ip
->ip_id
), ip_len
- (ip
->ip_hl
<< 2),
1211 (ip_off
& IP_MF
) ? "+" : "");
1213 if (oif
|| m
->m_pkthdr
.rcvif
)
1215 dolog((LOG_AUTHPRIV
| LOG_INFO
,
1216 "ipfw: %d %s %s %s via %s%d%s\n",
1217 f
? f
->rulenum
: -1,
1218 action
, proto
, oif
? "out" : "in",
1219 oif
? oif
->if_name
: m
->m_pkthdr
.rcvif
->if_name
,
1220 oif
? oif
->if_unit
: m
->m_pkthdr
.rcvif
->if_unit
,
1224 dolog((LOG_AUTHPRIV
| LOG_INFO
,
1225 "ipfw: %d %s %s [no if info]%s\n",
1226 f
? f
->rulenum
: -1,
1227 action
, proto
, fragment
));
1230 dolog((LOG_AUTHPRIV
| LOG_NOTICE
,
1231 "ipfw: limit %d reached on entry %d\n",
1232 limit_reached
, f
? f
->rulenum
: -1));
1237 * IMPORTANT: the hash function for dynamic rules must be commutative
1238 * in source and destination (ip,port), because rules are bidirectional
1239 * and we want to find both in the same bucket.
1242 hash_packet(struct ipfw_flow_id
*id
)
1246 i
= (id
->dst_ip
) ^ (id
->src_ip
) ^ (id
->dst_port
) ^ (id
->src_port
);
1247 i
&= (curr_dyn_buckets
- 1);
1252 * unlink a dynamic rule from a chain. prev is a pointer to
1253 * the previous one, q is a pointer to the rule to delete,
1254 * head is a pointer to the head of the queue.
1255 * Modifies q and potentially also head.
1257 #define UNLINK_DYN_RULE(prev, head, q) { \
1258 ipfw_dyn_rule *old_q = q; \
1260 /* remove a refcount to the parent */ \
1261 if (q->dyn_type == O_LIMIT) \
1262 q->parent->count--; \
1263 DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
1264 (q->id.src_ip), (q->id.src_port), \
1265 (q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); ) \
1267 prev->next = q = q->next; \
1269 head = q = q->next; \
1271 _FREE(old_q, M_IPFW); }
1273 #define TIME_LEQ(a,b) ((int)((a)-(b)) <= 0)
1276 * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
1278 * If keep_me == NULL, rules are deleted even if not expired,
1279 * otherwise only expired rules are removed.
1281 * The value of the second parameter is also used to point to identify
1282 * a rule we absolutely do not want to remove (e.g. because we are
1283 * holding a reference to it -- this is the case with O_LIMIT_PARENT
1284 * rules). The pointer is only used for comparison, so any non-null
1288 remove_dyn_rule(struct ip_fw
*rule
, ipfw_dyn_rule
*keep_me
)
1290 static u_int32_t last_remove
= 0;
1292 #define FORCE (keep_me == NULL)
1294 ipfw_dyn_rule
*prev
, *q
;
1295 int i
, pass
= 0, max_pass
= 0;
1296 struct timeval timenow
;
1298 getmicrotime(&timenow
);
1300 if (ipfw_dyn_v
== NULL
|| dyn_count
== 0)
1302 /* do not expire more than once per second, it is useless */
1303 if (!FORCE
&& last_remove
== timenow
.tv_sec
)
1305 last_remove
= timenow
.tv_sec
;
1308 * because O_LIMIT refer to parent rules, during the first pass only
1309 * remove child and mark any pending LIMIT_PARENT, and remove
1310 * them in a second pass.
1313 for (i
= 0 ; i
< curr_dyn_buckets
; i
++) {
1314 for (prev
=NULL
, q
= ipfw_dyn_v
[i
] ; q
; ) {
1316 * Logic can become complex here, so we split tests.
1320 if (rule
!= NULL
&& rule
!= q
->rule
)
1321 goto next
; /* not the one we are looking for */
1322 if (q
->dyn_type
== O_LIMIT_PARENT
) {
1324 * handle parent in the second pass,
1325 * record we need one.
1330 if (FORCE
&& q
->count
!= 0 ) {
1331 /* XXX should not happen! */
1332 printf("ipfw: OUCH! cannot remove rule,"
1333 " count %d\n", q
->count
);
1337 !TIME_LEQ( q
->expire
, timenow
.tv_sec
))
1340 if (q
->dyn_type
!= O_LIMIT_PARENT
|| !q
->count
) {
1341 UNLINK_DYN_RULE(prev
, ipfw_dyn_v
[i
], q
);
1349 if (pass
++ < max_pass
)
1355 * lookup a dynamic rule.
1357 static ipfw_dyn_rule
*
1358 lookup_dyn_rule(struct ipfw_flow_id
*pkt
, int *match_direction
,
1362 * stateful ipfw extensions.
1363 * Lookup into dynamic session queue
1365 #define MATCH_REVERSE 0
1366 #define MATCH_FORWARD 1
1367 #define MATCH_NONE 2
1368 #define MATCH_UNKNOWN 3
1369 #define BOTH_SYN (TH_SYN | (TH_SYN << 8))
1370 #define BOTH_FIN (TH_FIN | (TH_FIN << 8))
1372 int i
, dir
= MATCH_NONE
;
1373 ipfw_dyn_rule
*prev
, *q
=NULL
;
1374 struct timeval timenow
;
1376 getmicrotime(&timenow
);
1378 if (ipfw_dyn_v
== NULL
)
1379 goto done
; /* not found */
1380 i
= hash_packet( pkt
);
1381 for (prev
=NULL
, q
= ipfw_dyn_v
[i
] ; q
!= NULL
; ) {
1382 if (q
->dyn_type
== O_LIMIT_PARENT
&& q
->count
)
1384 if (TIME_LEQ( q
->expire
, timenow
.tv_sec
)) { /* expire entry */
1387 /* check if entry is TCP */
1388 if ( q
->id
.proto
== IPPROTO_TCP
)
1390 /* do not delete an established TCP connection which hasn't been closed by both sides */
1391 if ( (q
->state
& (BOTH_SYN
| BOTH_FIN
)) != (BOTH_SYN
| BOTH_FIN
) )
1395 UNLINK_DYN_RULE(prev
, ipfw_dyn_v
[i
], q
);
1399 if (pkt
->proto
== q
->id
.proto
&&
1400 q
->dyn_type
!= O_LIMIT_PARENT
) {
1401 if (pkt
->src_ip
== q
->id
.src_ip
&&
1402 pkt
->dst_ip
== q
->id
.dst_ip
&&
1403 pkt
->src_port
== q
->id
.src_port
&&
1404 pkt
->dst_port
== q
->id
.dst_port
) {
1405 dir
= MATCH_FORWARD
;
1408 if (pkt
->src_ip
== q
->id
.dst_ip
&&
1409 pkt
->dst_ip
== q
->id
.src_ip
&&
1410 pkt
->src_port
== q
->id
.dst_port
&&
1411 pkt
->dst_port
== q
->id
.src_port
) {
1412 dir
= MATCH_REVERSE
;
1421 goto done
; /* q = NULL, not found */
1423 if ( prev
!= NULL
) { /* found and not in front */
1424 prev
->next
= q
->next
;
1425 q
->next
= ipfw_dyn_v
[i
];
1428 if (pkt
->proto
== IPPROTO_TCP
) { /* update state according to flags */
1429 u_char flags
= pkt
->flags
& (TH_FIN
|TH_SYN
|TH_RST
);
1431 q
->state
|= (dir
== MATCH_FORWARD
) ? flags
: (flags
<< 8);
1433 case TH_SYN
: /* opening */
1434 q
->expire
= timenow
.tv_sec
+ dyn_syn_lifetime
;
1437 case BOTH_SYN
: /* move to established */
1438 case BOTH_SYN
| TH_FIN
: /* one side tries to close */
1439 case BOTH_SYN
| (TH_FIN
<< 8) :
1441 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1442 u_int32_t ack
= ntohl(tcp
->th_ack
);
1443 if (dir
== MATCH_FORWARD
) {
1444 if (q
->ack_fwd
== 0 || _SEQ_GE(ack
, q
->ack_fwd
))
1446 else { /* ignore out-of-sequence */
1450 if (q
->ack_rev
== 0 || _SEQ_GE(ack
, q
->ack_rev
))
1452 else { /* ignore out-of-sequence */
1457 q
->expire
= timenow
.tv_sec
+ dyn_ack_lifetime
;
1460 case BOTH_SYN
| BOTH_FIN
: /* both sides closed */
1461 if (dyn_fin_lifetime
>= dyn_keepalive_period
)
1462 dyn_fin_lifetime
= dyn_keepalive_period
- 1;
1463 q
->expire
= timenow
.tv_sec
+ dyn_fin_lifetime
;
1469 * reset or some invalid combination, but can also
1470 * occur if we use keep-state the wrong way.
1472 if ( (q
->state
& ((TH_RST
<< 8)|TH_RST
)) == 0)
1473 printf("invalid state: 0x%x\n", q
->state
);
1475 if (dyn_rst_lifetime
>= dyn_keepalive_period
)
1476 dyn_rst_lifetime
= dyn_keepalive_period
- 1;
1477 q
->expire
= timenow
.tv_sec
+ dyn_rst_lifetime
;
1480 } else if (pkt
->proto
== IPPROTO_UDP
) {
1481 q
->expire
= timenow
.tv_sec
+ dyn_udp_lifetime
;
1483 /* other protocols */
1484 q
->expire
= timenow
.tv_sec
+ dyn_short_lifetime
;
1487 if (match_direction
)
1488 *match_direction
= dir
;
1493 realloc_dynamic_table(void)
1496 * Try reallocation, make sure we have a power of 2 and do
1497 * not allow more than 64k entries. In case of overflow,
1501 if (dyn_buckets
> 65536)
1503 if ((dyn_buckets
& (dyn_buckets
-1)) != 0) { /* not a power of 2 */
1504 dyn_buckets
= curr_dyn_buckets
; /* reset */
1507 curr_dyn_buckets
= dyn_buckets
;
1508 if (ipfw_dyn_v
!= NULL
)
1509 _FREE(ipfw_dyn_v
, M_IPFW
);
1511 ipfw_dyn_v
= _MALLOC(curr_dyn_buckets
* sizeof(ipfw_dyn_rule
*),
1512 M_IPFW
, M_NOWAIT
| M_ZERO
);
1513 if (ipfw_dyn_v
!= NULL
|| curr_dyn_buckets
<= 2)
1515 curr_dyn_buckets
/= 2;
1520 * Install state of type 'type' for a dynamic session.
1521 * The hash table contains two type of rules:
1522 * - regular rules (O_KEEP_STATE)
1523 * - rules for sessions with limited number of sess per user
1524 * (O_LIMIT). When they are created, the parent is
1525 * increased by 1, and decreased on delete. In this case,
1526 * the third parameter is the parent rule and not the chain.
1527 * - "parent" rules for the above (O_LIMIT_PARENT).
1529 static ipfw_dyn_rule
*
1530 add_dyn_rule(struct ipfw_flow_id
*id
, u_int8_t dyn_type
, struct ip_fw
*rule
)
1534 struct timeval timenow
;
1536 getmicrotime(&timenow
);
1538 if (ipfw_dyn_v
== NULL
||
1539 (dyn_count
== 0 && dyn_buckets
!= curr_dyn_buckets
)) {
1540 realloc_dynamic_table();
1541 if (ipfw_dyn_v
== NULL
)
1542 return NULL
; /* failed ! */
1544 i
= hash_packet(id
);
1546 r
= _MALLOC(sizeof *r
, M_IPFW
, M_NOWAIT
| M_ZERO
);
1549 printf ("ipfw: sorry cannot allocate state\n");
1554 /* increase refcount on parent, and set pointer */
1555 if (dyn_type
== O_LIMIT
) {
1556 ipfw_dyn_rule
*parent
= (ipfw_dyn_rule
*)rule
;
1557 if ( parent
->dyn_type
!= O_LIMIT_PARENT
)
1558 panic("invalid parent");
1561 rule
= parent
->rule
;
1565 r
->expire
= timenow
.tv_sec
+ dyn_syn_lifetime
;
1567 r
->dyn_type
= dyn_type
;
1568 r
->pcnt
= r
->bcnt
= 0;
1572 r
->next
= ipfw_dyn_v
[i
];
1575 DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1577 (r
->id
.src_ip
), (r
->id
.src_port
),
1578 (r
->id
.dst_ip
), (r
->id
.dst_port
),
1584 * lookup dynamic parent rule using pkt and rule as search keys.
1585 * If the lookup fails, then install one.
1587 static ipfw_dyn_rule
*
1588 lookup_dyn_parent(struct ipfw_flow_id
*pkt
, struct ip_fw
*rule
)
1592 struct timeval timenow
;
1594 getmicrotime(&timenow
);
1597 i
= hash_packet( pkt
);
1598 for (q
= ipfw_dyn_v
[i
] ; q
!= NULL
; q
=q
->next
)
1599 if (q
->dyn_type
== O_LIMIT_PARENT
&&
1601 pkt
->proto
== q
->id
.proto
&&
1602 pkt
->src_ip
== q
->id
.src_ip
&&
1603 pkt
->dst_ip
== q
->id
.dst_ip
&&
1604 pkt
->src_port
== q
->id
.src_port
&&
1605 pkt
->dst_port
== q
->id
.dst_port
) {
1606 q
->expire
= timenow
.tv_sec
+ dyn_short_lifetime
;
1607 DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q
);)
1611 return add_dyn_rule(pkt
, O_LIMIT_PARENT
, rule
);
1615 * Install dynamic state for rule type cmd->o.opcode
1617 * Returns 1 (failure) if state is not installed because of errors or because
1618 * session limitations are enforced.
1621 install_state(struct ip_fw
*rule
, ipfw_insn_limit
*cmd
,
1622 struct ip_fw_args
*args
)
1624 static int last_log
;
1625 struct timeval timenow
;
1628 getmicrotime(&timenow
);
1630 DEB(printf("ipfw: install state type %d 0x%08x %u -> 0x%08x %u\n",
1632 (args
->f_id
.src_ip
), (args
->f_id
.src_port
),
1633 (args
->f_id
.dst_ip
), (args
->f_id
.dst_port
) );)
1635 q
= lookup_dyn_rule(&args
->f_id
, NULL
, NULL
);
1637 if (q
!= NULL
) { /* should never occur */
1638 if (last_log
!= timenow
.tv_sec
) {
1639 last_log
= timenow
.tv_sec
;
1640 printf("ipfw: install_state: entry already present, done\n");
1645 if (dyn_count
>= dyn_max
)
1647 * Run out of slots, try to remove any expired rule.
1649 remove_dyn_rule(NULL
, (ipfw_dyn_rule
*)1);
1651 if (dyn_count
>= dyn_max
) {
1652 if (last_log
!= timenow
.tv_sec
) {
1653 last_log
= timenow
.tv_sec
;
1654 printf("ipfw: install_state: Too many dynamic rules\n");
1656 return 1; /* cannot install, notify caller */
1659 switch (cmd
->o
.opcode
) {
1660 case O_KEEP_STATE
: /* bidir rule */
1661 add_dyn_rule(&args
->f_id
, O_KEEP_STATE
, rule
);
1664 case O_LIMIT
: /* limit number of sessions */
1666 u_int16_t limit_mask
= cmd
->limit_mask
;
1667 struct ipfw_flow_id id
;
1668 ipfw_dyn_rule
*parent
;
1670 DEB(printf("ipfw: installing dyn-limit rule %d\n",
1673 id
.dst_ip
= id
.src_ip
= 0;
1674 id
.dst_port
= id
.src_port
= 0;
1675 id
.proto
= args
->f_id
.proto
;
1677 if (limit_mask
& DYN_SRC_ADDR
)
1678 id
.src_ip
= args
->f_id
.src_ip
;
1679 if (limit_mask
& DYN_DST_ADDR
)
1680 id
.dst_ip
= args
->f_id
.dst_ip
;
1681 if (limit_mask
& DYN_SRC_PORT
)
1682 id
.src_port
= args
->f_id
.src_port
;
1683 if (limit_mask
& DYN_DST_PORT
)
1684 id
.dst_port
= args
->f_id
.dst_port
;
1685 parent
= lookup_dyn_parent(&id
, rule
);
1686 if (parent
== NULL
) {
1687 printf("ipfw: add parent failed\n");
1690 if (parent
->count
>= cmd
->conn_limit
) {
1692 * See if we can remove some expired rule.
1694 remove_dyn_rule(rule
, parent
);
1695 if (parent
->count
>= cmd
->conn_limit
) {
1696 if (fw_verbose
&& last_log
!= timenow
.tv_sec
) {
1697 last_log
= timenow
.tv_sec
;
1698 dolog((LOG_AUTHPRIV
| LOG_DEBUG
,
1699 "drop session, too many entries\n"));
1704 add_dyn_rule(&args
->f_id
, O_LIMIT
, (struct ip_fw
*)parent
);
1708 printf("ipfw: unknown dynamic rule type %u\n", cmd
->o
.opcode
);
1711 lookup_dyn_rule(&args
->f_id
, NULL
, NULL
); /* XXX just set lifetime */
1716 * Generate a TCP packet, containing either a RST or a keepalive.
1717 * When flags & TH_RST, we are sending a RST packet, because of a
1718 * "reset" action matched the packet.
1719 * Otherwise we are sending a keepalive, and flags & TH_
1721 static struct mbuf
*
1722 send_pkt(struct ipfw_flow_id
*id
, u_int32_t seq
, u_int32_t ack
, int flags
)
1728 MGETHDR(m
, M_DONTWAIT
, MT_HEADER
); /* MAC-OK */
1731 m
->m_pkthdr
.rcvif
= (struct ifnet
*)0;
1732 m
->m_pkthdr
.len
= m
->m_len
= sizeof(struct ip
) + sizeof(struct tcphdr
);
1733 m
->m_data
+= max_linkhdr
;
1735 ip
= mtod(m
, struct ip
*);
1736 bzero(ip
, m
->m_len
);
1737 tcp
= (struct tcphdr
*)(ip
+ 1); /* no IP options */
1738 ip
->ip_p
= IPPROTO_TCP
;
1741 * Assume we are sending a RST (or a keepalive in the reverse
1742 * direction), swap src and destination addresses and ports.
1744 ip
->ip_src
.s_addr
= htonl(id
->dst_ip
);
1745 ip
->ip_dst
.s_addr
= htonl(id
->src_ip
);
1746 tcp
->th_sport
= htons(id
->dst_port
);
1747 tcp
->th_dport
= htons(id
->src_port
);
1748 if (flags
& TH_RST
) { /* we are sending a RST */
1749 if (flags
& TH_ACK
) {
1750 tcp
->th_seq
= htonl(ack
);
1751 tcp
->th_ack
= htonl(0);
1752 tcp
->th_flags
= TH_RST
;
1756 tcp
->th_seq
= htonl(0);
1757 tcp
->th_ack
= htonl(seq
);
1758 tcp
->th_flags
= TH_RST
| TH_ACK
;
1762 * We are sending a keepalive. flags & TH_SYN determines
1763 * the direction, forward if set, reverse if clear.
1764 * NOTE: seq and ack are always assumed to be correct
1765 * as set by the caller. This may be confusing...
1767 if (flags
& TH_SYN
) {
1769 * we have to rewrite the correct addresses!
1771 ip
->ip_dst
.s_addr
= htonl(id
->dst_ip
);
1772 ip
->ip_src
.s_addr
= htonl(id
->src_ip
);
1773 tcp
->th_dport
= htons(id
->dst_port
);
1774 tcp
->th_sport
= htons(id
->src_port
);
1776 tcp
->th_seq
= htonl(seq
);
1777 tcp
->th_ack
= htonl(ack
);
1778 tcp
->th_flags
= TH_ACK
;
1781 * set ip_len to the payload size so we can compute
1782 * the tcp checksum on the pseudoheader
1783 * XXX check this, could save a couple of words ?
1785 ip
->ip_len
= htons(sizeof(struct tcphdr
));
1786 tcp
->th_sum
= in_cksum(m
, m
->m_pkthdr
.len
);
1788 * now fill fields left out earlier
1790 ip
->ip_ttl
= ip_defttl
;
1791 ip
->ip_len
= m
->m_pkthdr
.len
;
1792 m
->m_flags
|= M_SKIP_FIREWALL
;
1798 * sends a reject message, consuming the mbuf passed as an argument.
1801 send_reject(struct ip_fw_args
*args
, int code
, int offset
, __unused
int ip_len
)
1804 if (code
!= ICMP_REJECT_RST
) { /* Send an ICMP unreach */
1805 /* We need the IP header in host order for icmp_error(). */
1806 if (args
->eh
!= NULL
) {
1807 struct ip
*ip
= mtod(args
->m
, struct ip
*);
1808 ip
->ip_len
= ntohs(ip
->ip_len
);
1809 ip
->ip_off
= ntohs(ip
->ip_off
);
1811 args
->m
->m_flags
|= M_SKIP_FIREWALL
;
1812 icmp_error(args
->m
, ICMP_UNREACH
, code
, 0L, 0);
1813 } else if (offset
== 0 && args
->f_id
.proto
== IPPROTO_TCP
) {
1814 struct tcphdr
*const tcp
=
1815 L3HDR(struct tcphdr
, mtod(args
->m
, struct ip
*));
1816 if ( (tcp
->th_flags
& TH_RST
) == 0) {
1819 m
= send_pkt(&(args
->f_id
), ntohl(tcp
->th_seq
),
1821 tcp
->th_flags
| TH_RST
);
1823 struct route sro
; /* fake route */
1825 bzero (&sro
, sizeof (sro
));
1826 ip_output_list(m
, 0, NULL
, &sro
, 0, NULL
, NULL
);
1839 * Given an ip_fw *, lookup_next_rule will return a pointer
1840 * to the next rule, which can be either the jump
1841 * target (for skipto instructions) or the next one in the list (in
1842 * all other cases including a missing jump target).
1843 * The result is also written in the "next_rule" field of the rule.
1844 * Backward jumps are not allowed, so start looking from the next
1847 * This never returns NULL -- in case we do not have an exact match,
1848 * the next rule is returned. When the ruleset is changed,
1849 * pointers are flushed so we are always correct.
1852 static struct ip_fw
*
1853 lookup_next_rule(struct ip_fw
*me
)
1855 struct ip_fw
*rule
= NULL
;
1858 /* look for action, in case it is a skipto */
1859 cmd
= ACTION_PTR(me
);
1860 if (cmd
->opcode
== O_LOG
)
1862 if ( cmd
->opcode
== O_SKIPTO
)
1863 for (rule
= me
->next
; rule
; rule
= rule
->next
)
1864 if (rule
->rulenum
>= cmd
->arg1
)
1866 if (rule
== NULL
) /* failure or not a skipto */
1868 me
->next_rule
= rule
;
1873 * The main check routine for the firewall.
1875 * All arguments are in args so we can modify them and return them
1876 * back to the caller.
1880 * args->m (in/out) The packet; we set to NULL when/if we nuke it.
1881 * Starts with the IP header.
1882 * args->eh (in) Mac header if present, or NULL for layer3 packet.
1883 * args->oif Outgoing interface, or NULL if packet is incoming.
1884 * The incoming interface is in the mbuf. (in)
1885 * args->divert_rule (in/out)
1886 * Skip up to the first rule past this rule number;
1887 * upon return, non-zero port number for divert or tee.
1889 * args->rule Pointer to the last matching rule (in/out)
1890 * args->next_hop Socket we are forwarding to (out).
1891 * args->f_id Addresses grabbed from the packet (out)
1895 * IP_FW_PORT_DENY_FLAG the packet must be dropped.
1896 * 0 The packet is to be accepted and routed normally OR
1897 * the packet was denied/rejected and has been dropped;
1898 * in the latter case, *m is equal to NULL upon return.
1899 * port Divert the packet to port, with these caveats:
1901 * - If IP_FW_PORT_TEE_FLAG is set, tee the packet instead
1902 * of diverting it (ie, 'ipfw tee').
1904 * - If IP_FW_PORT_DYNT_FLAG is set, interpret the lower
1905 * 16 bits as a dummynet pipe number instead of diverting
1909 ipfw_chk(struct ip_fw_args
*args
)
1912 * Local variables hold state during the processing of a packet.
1914 * IMPORTANT NOTE: to speed up the processing of rules, there
1915 * are some assumption on the values of the variables, which
1916 * are documented here. Should you change them, please check
1917 * the implementation of the various instructions to make sure
1918 * that they still work.
1920 * args->eh The MAC header. It is non-null for a layer2
1921 * packet, it is NULL for a layer-3 packet.
1923 * m | args->m Pointer to the mbuf, as received from the caller.
1924 * It may change if ipfw_chk() does an m_pullup, or if it
1925 * consumes the packet because it calls send_reject().
1926 * XXX This has to change, so that ipfw_chk() never modifies
1927 * or consumes the buffer.
1928 * ip is simply an alias of the value of m, and it is kept
1929 * in sync with it (the packet is supposed to start with
1932 struct mbuf
*m
= args
->m
;
1933 struct ip
*ip
= mtod(m
, struct ip
*);
1936 * oif | args->oif If NULL, ipfw_chk has been called on the
1937 * inbound path (ether_input, bdg_forward, ip_input).
1938 * If non-NULL, ipfw_chk has been called on the outbound path
1939 * (ether_output, ip_output).
1941 struct ifnet
*oif
= args
->oif
;
1943 struct ip_fw
*f
= NULL
; /* matching rule */
1947 * hlen The length of the IPv4 header.
1948 * hlen >0 means we have an IPv4 packet.
1950 u_int hlen
= 0; /* hlen >0 means we have an IP pkt */
1953 * offset The offset of a fragment. offset != 0 means that
1954 * we have a fragment at this offset of an IPv4 packet.
1955 * offset == 0 means that (if this is an IPv4 packet)
1956 * this is the first or only fragment.
1961 * Local copies of addresses. They are only valid if we have
1964 * proto The protocol. Set to 0 for non-ip packets,
1965 * or to the protocol read from the packet otherwise.
1966 * proto != 0 means that we have an IPv4 packet.
1968 * src_port, dst_port port numbers, in HOST format. Only
1969 * valid for TCP and UDP packets.
1971 * src_ip, dst_ip ip addresses, in NETWORK format.
1972 * Only valid for IPv4 packets.
1975 u_int16_t src_port
= 0, dst_port
= 0; /* NOTE: host format */
1976 struct in_addr src_ip
= { 0 } , dst_ip
= { 0 }; /* NOTE: network format */
1979 int dyn_dir
= MATCH_UNKNOWN
;
1980 ipfw_dyn_rule
*q
= NULL
;
1981 struct timeval timenow
;
1983 if (m
->m_flags
& M_SKIP_FIREWALL
|| fw_bypass
) {
1984 return 0; /* accept */
1988 * Clear packet chain if we find one here.
1991 if (m
->m_nextpkt
!= NULL
) {
1992 m_freem_list(m
->m_nextpkt
);
1993 m
->m_nextpkt
= NULL
;
1996 lck_mtx_lock(ipfw_mutex
);
1998 getmicrotime(&timenow
);
2000 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
2001 * MATCH_NONE when checked and not matched (q = NULL),
2002 * MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
2005 pktlen
= m
->m_pkthdr
.len
;
2006 if (args
->eh
== NULL
|| /* layer 3 packet */
2007 ( m
->m_pkthdr
.len
>= sizeof(struct ip
) &&
2008 ntohs(args
->eh
->ether_type
) == ETHERTYPE_IP
))
2009 hlen
= ip
->ip_hl
<< 2;
2012 * Collect parameters into local variables for faster matching.
2014 if (hlen
== 0) { /* do not grab addresses for non-ip pkts */
2015 proto
= args
->f_id
.proto
= 0; /* mark f_id invalid */
2016 goto after_ip_checks
;
2019 proto
= args
->f_id
.proto
= ip
->ip_p
;
2020 src_ip
= ip
->ip_src
;
2021 dst_ip
= ip
->ip_dst
;
2022 if (args
->eh
!= NULL
) { /* layer 2 packets are as on the wire */
2023 offset
= ntohs(ip
->ip_off
) & IP_OFFMASK
;
2024 ip_len
= ntohs(ip
->ip_len
);
2026 offset
= ip
->ip_off
& IP_OFFMASK
;
2027 ip_len
= ip
->ip_len
;
2029 pktlen
= ip_len
< pktlen
? ip_len
: pktlen
;
2031 #define PULLUP_TO(len) \
2033 if ((m)->m_len < (len)) { \
2034 args->m = m = m_pullup(m, (len)); \
2036 goto pullup_failed; \
2037 ip = mtod(m, struct ip *); \
2047 PULLUP_TO(hlen
+ sizeof(struct tcphdr
));
2048 tcp
= L3HDR(struct tcphdr
, ip
);
2049 dst_port
= tcp
->th_dport
;
2050 src_port
= tcp
->th_sport
;
2051 args
->f_id
.flags
= tcp
->th_flags
;
2059 PULLUP_TO(hlen
+ sizeof(struct udphdr
));
2060 udp
= L3HDR(struct udphdr
, ip
);
2061 dst_port
= udp
->uh_dport
;
2062 src_port
= udp
->uh_sport
;
2067 PULLUP_TO(hlen
+ 4); /* type, code and checksum. */
2068 args
->f_id
.flags
= L3HDR(struct icmp
, ip
)->icmp_type
;
2077 args
->f_id
.src_ip
= ntohl(src_ip
.s_addr
);
2078 args
->f_id
.dst_ip
= ntohl(dst_ip
.s_addr
);
2079 args
->f_id
.src_port
= src_port
= ntohs(src_port
);
2080 args
->f_id
.dst_port
= dst_port
= ntohs(dst_port
);
2085 * Packet has already been tagged. Look for the next rule
2086 * to restart processing.
2088 * If fw_one_pass != 0 then just accept it.
2089 * XXX should not happen here, but optimized out in
2093 lck_mtx_unlock(ipfw_mutex
);
2097 f
= args
->rule
->next_rule
;
2099 f
= lookup_next_rule(args
->rule
);
2102 * Find the starting rule. It can be either the first
2103 * one, or the one after divert_rule if asked so.
2105 int skipto
= args
->divert_rule
;
2108 if (args
->eh
== NULL
&& skipto
!= 0) {
2109 if (skipto
>= IPFW_DEFAULT_RULE
) {
2110 lck_mtx_unlock(ipfw_mutex
);
2111 return(IP_FW_PORT_DENY_FLAG
); /* invalid */
2113 while (f
&& f
->rulenum
<= skipto
)
2115 if (f
== NULL
) { /* drop packet */
2116 lck_mtx_unlock(ipfw_mutex
);
2117 return(IP_FW_PORT_DENY_FLAG
);
2121 args
->divert_rule
= 0; /* reset to avoid confusion later */
2124 * Now scan the rules, and parse microinstructions for each rule.
2126 for (; f
; f
= f
->next
) {
2129 int skip_or
; /* skip rest of OR block */
2132 if (f
->reserved_1
== IPFW_RULE_INACTIVE
) {
2136 if (set_disable
& (1 << f
->set
) )
2140 for (l
= f
->cmd_len
, cmd
= f
->cmd
; l
> 0 ;
2141 l
-= cmdlen
, cmd
+= cmdlen
) {
2145 * check_body is a jump target used when we find a
2146 * CHECK_STATE, and need to jump to the body of
2151 cmdlen
= F_LEN(cmd
);
2153 * An OR block (insn_1 || .. || insn_n) has the
2154 * F_OR bit set in all but the last instruction.
2155 * The first match will set "skip_or", and cause
2156 * the following instructions to be skipped until
2157 * past the one with the F_OR bit clear.
2159 if (skip_or
) { /* skip this instruction */
2160 if ((cmd
->len
& F_OR
) == 0)
2161 skip_or
= 0; /* next one is good */
2164 match
= 0; /* set to 1 if we succeed */
2166 switch (cmd
->opcode
) {
2168 * The first set of opcodes compares the packet's
2169 * fields with some pattern, setting 'match' if a
2170 * match is found. At the end of the loop there is
2171 * logic to deal with F_NOT and F_OR flags associated
2179 printf("ipfw: opcode %d unimplemented\n",
2188 * We only check offset == 0 && proto != 0,
2189 * as this ensures that we have an IPv4
2190 * packet with the ports info.
2196 struct inpcbinfo
*pi
;
2200 if (proto
== IPPROTO_TCP
) {
2203 } else if (proto
== IPPROTO_UDP
) {
2210 in_pcblookup_hash(pi
,
2211 dst_ip
, htons(dst_port
),
2212 src_ip
, htons(src_port
),
2214 in_pcblookup_hash(pi
,
2215 src_ip
, htons(src_port
),
2216 dst_ip
, htons(dst_port
),
2219 if (pcb
== NULL
|| pcb
->inp_socket
== NULL
)
2221 #if __FreeBSD_version < 500034
2222 #define socheckuid(a,b) (kauth_cred_getuid((a)->so_cred) != (b))
2224 if (cmd
->opcode
== O_UID
) {
2227 (pcb
->inp_socket
->so_uid
== (uid_t
)((ipfw_insn_u32
*)cmd
)->d
[0]);
2229 !socheckuid(pcb
->inp_socket
,
2230 (uid_t
)((ipfw_insn_u32
*)cmd
)->d
[0]);
2236 kauth_cred_ismember_gid(pcb
->inp_socket
->so_cred
,
2237 (gid_t
)((ipfw_insn_u32
*)cmd
)->d
[0], &match
);
2240 /* release reference on pcb */
2241 in_pcb_checkstate(pcb
, WNT_RELEASE
, 0);
2247 match
= iface_match(m
->m_pkthdr
.rcvif
,
2248 (ipfw_insn_if
*)cmd
);
2252 match
= iface_match(oif
, (ipfw_insn_if
*)cmd
);
2256 match
= iface_match(oif
? oif
:
2257 m
->m_pkthdr
.rcvif
, (ipfw_insn_if
*)cmd
);
2261 if (args
->eh
!= NULL
) { /* have MAC header */
2262 u_int32_t
*want
= (u_int32_t
*)
2263 ((ipfw_insn_mac
*)cmd
)->addr
;
2264 u_int32_t
*mask
= (u_int32_t
*)
2265 ((ipfw_insn_mac
*)cmd
)->mask
;
2266 u_int32_t
*hdr
= (u_int32_t
*)args
->eh
;
2269 ( want
[0] == (hdr
[0] & mask
[0]) &&
2270 want
[1] == (hdr
[1] & mask
[1]) &&
2271 want
[2] == (hdr
[2] & mask
[2]) );
2276 if (args
->eh
!= NULL
) {
2278 ntohs(args
->eh
->ether_type
);
2280 ((ipfw_insn_u16
*)cmd
)->ports
;
2283 for (i
= cmdlen
- 1; !match
&& i
>0;
2285 match
= (t
>=p
[0] && t
<=p
[1]);
2290 match
= (hlen
> 0 && offset
!= 0);
2293 case O_IN
: /* "out" is "not in" */
2294 match
= (oif
== NULL
);
2298 match
= (args
->eh
!= NULL
);
2303 * We do not allow an arg of 0 so the
2304 * check of "proto" only suffices.
2306 match
= (proto
== cmd
->arg1
);
2310 match
= (hlen
> 0 &&
2311 ((ipfw_insn_ip
*)cmd
)->addr
.s_addr
==
2319 (cmd
->opcode
== O_IP_DST_MASK
) ?
2320 dst_ip
.s_addr
: src_ip
.s_addr
;
2321 uint32_t *p
= ((ipfw_insn_u32
*)cmd
)->d
;
2324 for (; !match
&& i
>0; i
-= 2, p
+= 2)
2325 match
= (p
[0] == (a
& p
[1]));
2333 INADDR_TO_IFP(src_ip
, tif
);
2334 match
= (tif
!= NULL
);
2341 u_int32_t
*d
= (u_int32_t
*)(cmd
+1);
2343 cmd
->opcode
== O_IP_DST_SET
?
2349 addr
-= d
[0]; /* subtract base */
2350 match
= (addr
< cmd
->arg1
) &&
2351 ( d
[ 1 + (addr
>>5)] &
2352 (1<<(addr
& 0x1f)) );
2357 match
= (hlen
> 0 &&
2358 ((ipfw_insn_ip
*)cmd
)->addr
.s_addr
==
2366 INADDR_TO_IFP(dst_ip
, tif
);
2367 match
= (tif
!= NULL
);
2374 * offset == 0 && proto != 0 is enough
2375 * to guarantee that we have an IPv4
2376 * packet with port info.
2378 if ((proto
==IPPROTO_UDP
|| proto
==IPPROTO_TCP
)
2381 (cmd
->opcode
== O_IP_SRCPORT
) ?
2382 src_port
: dst_port
;
2384 ((ipfw_insn_u16
*)cmd
)->ports
;
2387 for (i
= cmdlen
- 1; !match
&& i
>0;
2389 match
= (x
>=p
[0] && x
<=p
[1]);
2394 match
= (offset
== 0 && proto
==IPPROTO_ICMP
&&
2395 icmptype_match(ip
, (ipfw_insn_u32
*)cmd
) );
2399 match
= (hlen
> 0 && ipopts_match(ip
, cmd
) );
2403 match
= (hlen
> 0 && cmd
->arg1
== ip
->ip_v
);
2409 if (hlen
> 0) { /* only for IP packets */
2414 if (cmd
->opcode
== O_IPLEN
)
2416 else if (cmd
->opcode
== O_IPTTL
)
2418 else /* must be IPID */
2419 x
= ntohs(ip
->ip_id
);
2421 match
= (cmd
->arg1
== x
);
2424 /* otherwise we have ranges */
2425 p
= ((ipfw_insn_u16
*)cmd
)->ports
;
2427 for (; !match
&& i
>0; i
--, p
+= 2)
2428 match
= (x
>= p
[0] && x
<= p
[1]);
2432 case O_IPPRECEDENCE
:
2433 match
= (hlen
> 0 &&
2434 (cmd
->arg1
== (ip
->ip_tos
& 0xe0)) );
2438 match
= (hlen
> 0 &&
2439 flags_match(cmd
, ip
->ip_tos
));
2443 match
= (proto
== IPPROTO_TCP
&& offset
== 0 &&
2445 L3HDR(struct tcphdr
,ip
)->th_flags
));
2449 match
= (proto
== IPPROTO_TCP
&& offset
== 0 &&
2450 tcpopts_match(ip
, cmd
));
2454 match
= (proto
== IPPROTO_TCP
&& offset
== 0 &&
2455 ((ipfw_insn_u32
*)cmd
)->d
[0] ==
2456 L3HDR(struct tcphdr
,ip
)->th_seq
);
2460 match
= (proto
== IPPROTO_TCP
&& offset
== 0 &&
2461 ((ipfw_insn_u32
*)cmd
)->d
[0] ==
2462 L3HDR(struct tcphdr
,ip
)->th_ack
);
2466 match
= (proto
== IPPROTO_TCP
&& offset
== 0 &&
2468 L3HDR(struct tcphdr
,ip
)->th_win
);
2472 /* reject packets which have SYN only */
2473 /* XXX should i also check for TH_ACK ? */
2474 match
= (proto
== IPPROTO_TCP
&& offset
== 0 &&
2475 (L3HDR(struct tcphdr
,ip
)->th_flags
&
2476 (TH_RST
| TH_ACK
| TH_SYN
)) != TH_SYN
);
2481 ipfw_log(f
, hlen
, args
->eh
, m
, oif
);
2486 match
= (random()<((ipfw_insn_u32
*)cmd
)->d
[0]);
2490 /* Outgoing packets automatically pass/match */
2491 match
= ((oif
!= NULL
) ||
2492 (m
->m_pkthdr
.rcvif
== NULL
) ||
2493 verify_rev_path(src_ip
, m
->m_pkthdr
.rcvif
));
2498 match
= (m_tag_find(m
,
2499 PACKET_TAG_IPSEC_IN_DONE
, NULL
) != NULL
);
2502 match
= (ipsec_gethist(m
, NULL
) != NULL
);
2504 /* otherwise no match */
2508 * The second set of opcodes represents 'actions',
2509 * i.e. the terminal part of a rule once the packet
2510 * matches all previous patterns.
2511 * Typically there is only one action for each rule,
2512 * and the opcode is stored at the end of the rule
2513 * (but there are exceptions -- see below).
2515 * In general, here we set retval and terminate the
2516 * outer loop (would be a 'break 3' in some language,
2517 * but we need to do a 'goto done').
2520 * O_COUNT and O_SKIPTO actions:
2521 * instead of terminating, we jump to the next rule
2522 * ('goto next_rule', equivalent to a 'break 2'),
2523 * or to the SKIPTO target ('goto again' after
2524 * having set f, cmd and l), respectively.
2526 * O_LIMIT and O_KEEP_STATE: these opcodes are
2527 * not real 'actions', and are stored right
2528 * before the 'action' part of the rule.
2529 * These opcodes try to install an entry in the
2530 * state tables; if successful, we continue with
2531 * the next opcode (match=1; break;), otherwise
2532 * the packet * must be dropped
2533 * ('goto done' after setting retval);
2535 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2536 * cause a lookup of the state table, and a jump
2537 * to the 'action' part of the parent rule
2538 * ('goto check_body') if an entry is found, or
2539 * (CHECK_STATE only) a jump to the next rule if
2540 * the entry is not found ('goto next_rule').
2541 * The result of the lookup is cached to make
2542 * further instances of these opcodes are
2547 if (install_state(f
,
2548 (ipfw_insn_limit
*)cmd
, args
)) {
2549 retval
= IP_FW_PORT_DENY_FLAG
;
2550 goto done
; /* error/limit violation */
2558 * dynamic rules are checked at the first
2559 * keep-state or check-state occurrence,
2560 * with the result being stored in dyn_dir.
2561 * The compiler introduces a PROBE_STATE
2562 * instruction for us when we have a
2563 * KEEP_STATE (because PROBE_STATE needs
2566 if (dyn_dir
== MATCH_UNKNOWN
&&
2567 (q
= lookup_dyn_rule(&args
->f_id
,
2568 &dyn_dir
, proto
== IPPROTO_TCP
?
2569 L3HDR(struct tcphdr
, ip
) : NULL
))
2572 * Found dynamic entry, update stats
2573 * and jump to the 'action' part of
2579 cmd
= ACTION_PTR(f
);
2580 l
= f
->cmd_len
- f
->act_ofs
;
2584 * Dynamic entry not found. If CHECK_STATE,
2585 * skip to next rule, if PROBE_STATE just
2586 * ignore and continue with next opcode.
2588 if (cmd
->opcode
== O_CHECK_STATE
)
2594 retval
= 0; /* accept */
2599 args
->rule
= f
; /* report matching rule */
2600 retval
= cmd
->arg1
| IP_FW_PORT_DYNT_FLAG
;
2605 if (args
->eh
) /* not on layer 2 */
2607 args
->divert_rule
= f
->rulenum
;
2608 retval
= (cmd
->opcode
== O_DIVERT
) ?
2610 cmd
->arg1
| IP_FW_PORT_TEE_FLAG
;
2615 f
->pcnt
++; /* update stats */
2617 f
->timestamp
= timenow
.tv_sec
;
2618 if (cmd
->opcode
== O_COUNT
)
2621 if (f
->next_rule
== NULL
)
2622 lookup_next_rule(f
);
2628 * Drop the packet and send a reject notice
2629 * if the packet is not ICMP (or is an ICMP
2630 * query), and it is not multicast/broadcast.
2632 if (hlen
> 0 && offset
== 0 &&
2633 (proto
!= IPPROTO_ICMP
||
2634 is_icmp_query(ip
)) &&
2635 !(m
->m_flags
& (M_BCAST
|M_MCAST
)) &&
2636 !IN_MULTICAST(dst_ip
.s_addr
)) {
2637 send_reject(args
, cmd
->arg1
,
2643 retval
= IP_FW_PORT_DENY_FLAG
;
2647 if (args
->eh
) /* not valid on layer2 pkts */
2649 if (!q
|| dyn_dir
== MATCH_FORWARD
)
2651 &((ipfw_insn_sa
*)cmd
)->sa
;
2656 panic("-- unknown opcode %d\n", cmd
->opcode
);
2657 } /* end of switch() on opcodes */
2659 if (cmd
->len
& F_NOT
)
2663 if (cmd
->len
& F_OR
)
2666 if (!(cmd
->len
& F_OR
)) /* not an OR block, */
2667 break; /* try next rule */
2670 } /* end of inner for, scan opcodes */
2672 next_rule
:; /* try next rule */
2674 } /* end of outer for, scan rules */
2675 printf("ipfw: ouch!, skip past end of rules, denying packet\n");
2676 lck_mtx_unlock(ipfw_mutex
);
2677 return(IP_FW_PORT_DENY_FLAG
);
2680 /* Update statistics */
2683 f
->timestamp
= timenow
.tv_sec
;
2684 lck_mtx_unlock(ipfw_mutex
);
2689 printf("ipfw: pullup failed\n");
2690 lck_mtx_unlock(ipfw_mutex
);
2691 return(IP_FW_PORT_DENY_FLAG
);
2695 * When a rule is added/deleted, clear the next_rule pointers in all rules.
2696 * These will be reconstructed on the fly as packets are matched.
2697 * Must be called at splimp().
2700 flush_rule_ptrs(void)
2704 for (rule
= layer3_chain
; rule
; rule
= rule
->next
)
2705 rule
->next_rule
= NULL
;
2709 * When pipes/queues are deleted, clear the "pipe_ptr" pointer to a given
2710 * pipe/queue, or to all of them (match == NULL).
2711 * Must be called at splimp().
2714 flush_pipe_ptrs(struct dn_flow_set
*match
)
2718 for (rule
= layer3_chain
; rule
; rule
= rule
->next
) {
2719 ipfw_insn_pipe
*cmd
= (ipfw_insn_pipe
*)ACTION_PTR(rule
);
2721 if (cmd
->o
.opcode
!= O_PIPE
&& cmd
->o
.opcode
!= O_QUEUE
)
2724 * XXX Use bcmp/bzero to handle pipe_ptr to overcome
2725 * possible alignment problems on 64-bit architectures.
2726 * This code is seldom used so we do not worry too
2727 * much about efficiency.
2729 if (match
== NULL
||
2730 !bcmp(&cmd
->pipe_ptr
, &match
, sizeof(match
)) )
2731 bzero(&cmd
->pipe_ptr
, sizeof(cmd
->pipe_ptr
));
2736 * Add a new rule to the list. Copy the rule into a malloc'ed area, then
2737 * possibly create a rule number and add the rule to the list.
2738 * Update the rule_number in the input struct so the caller knows it as well.
2741 add_rule(struct ip_fw
**head
, struct ip_fw
*input_rule
)
2743 struct ip_fw
*rule
, *f
, *prev
;
2744 int l
= RULESIZE(input_rule
);
2746 if (*head
== NULL
&& input_rule
->rulenum
!= IPFW_DEFAULT_RULE
)
2749 rule
= _MALLOC(l
, M_IPFW
, M_WAIT
);
2751 printf("ipfw2: add_rule MALLOC failed\n");
2756 bcopy(input_rule
, rule
, l
);
2759 rule
->next_rule
= NULL
;
2763 rule
->timestamp
= 0;
2765 if (*head
== NULL
) { /* default rule */
2771 * If rulenum is 0, find highest numbered rule before the
2772 * default rule, and add autoinc_step
2774 if (autoinc_step
< 1)
2776 else if (autoinc_step
> 1000)
2777 autoinc_step
= 1000;
2778 if (rule
->rulenum
== 0) {
2780 * locate the highest numbered rule before default
2782 for (f
= *head
; f
; f
= f
->next
) {
2783 if (f
->rulenum
== IPFW_DEFAULT_RULE
)
2785 rule
->rulenum
= f
->rulenum
;
2787 if (rule
->rulenum
< IPFW_DEFAULT_RULE
- autoinc_step
)
2788 rule
->rulenum
+= autoinc_step
;
2789 input_rule
->rulenum
= rule
->rulenum
;
2793 * Now insert the new rule in the right place in the sorted list.
2795 for (prev
= NULL
, f
= *head
; f
; prev
= f
, f
= f
->next
) {
2796 if (f
->rulenum
> rule
->rulenum
) { /* found the location */
2800 } else { /* head insert */
2811 static_len_32
+= RULESIZE32(input_rule
);
2812 static_len_64
+= RULESIZE64(input_rule
);
2813 DEB(printf("ipfw: installed rule %d, static count now %d\n",
2814 rule
->rulenum
, static_count
);)
2819 * Free storage associated with a static rule (including derived
2821 * The caller is in charge of clearing rule pointers to avoid
2822 * dangling pointers.
2823 * @return a pointer to the next entry.
2824 * Arguments are not checked, so they better be correct.
2825 * Must be called at splimp().
2827 static struct ip_fw
*
2828 delete_rule(struct ip_fw
**head
, struct ip_fw
*prev
, struct ip_fw
*rule
)
2831 int l
= RULESIZE(rule
);
2834 remove_dyn_rule(rule
, NULL
/* force removal */);
2841 static_len_32
-= RULESIZE32(rule
);
2842 static_len_64
-= RULESIZE64(rule
);
2845 if (DUMMYNET_LOADED
)
2846 ip_dn_ruledel_ptr(rule
);
2847 #endif /* DUMMYNET */
2848 _FREE(rule
, M_IPFW
);
2852 #if DEBUG_INACTIVE_RULES
2854 print_chain(struct ip_fw
**chain
)
2856 struct ip_fw
*rule
= *chain
;
2858 for (; rule
; rule
= rule
->next
) {
2859 ipfw_insn
*cmd
= ACTION_PTR(rule
);
2861 printf("ipfw: rule->rulenum = %d\n", rule
->rulenum
);
2863 if (rule
->reserved_1
== IPFW_RULE_INACTIVE
) {
2864 printf("ipfw: rule->reserved = IPFW_RULE_INACTIVE\n");
2867 switch (cmd
->opcode
) {
2869 printf("ipfw: ACTION: Deny\n");
2873 if (cmd
->arg1
==ICMP_REJECT_RST
)
2874 printf("ipfw: ACTION: Reset\n");
2875 else if (cmd
->arg1
==ICMP_UNREACH_HOST
)
2876 printf("ipfw: ACTION: Reject\n");
2880 printf("ipfw: ACTION: Accept\n");
2883 printf("ipfw: ACTION: Count\n");
2886 printf("ipfw: ACTION: Divert\n");
2889 printf("ipfw: ACTION: Tee\n");
2892 printf("ipfw: ACTION: SkipTo\n");
2895 printf("ipfw: ACTION: Pipe\n");
2898 printf("ipfw: ACTION: Queue\n");
2901 printf("ipfw: ACTION: Forward\n");
2904 printf("ipfw: invalid action! %d\n", cmd
->opcode
);
2908 #endif /* DEBUG_INACTIVE_RULES */
2911 flush_inactive(void *param
)
2913 struct ip_fw
*inactive_rule
= (struct ip_fw
*)param
;
2914 struct ip_fw
*rule
, *prev
;
2916 lck_mtx_lock(ipfw_mutex
);
2918 for (rule
= layer3_chain
, prev
= NULL
; rule
; ) {
2919 if (rule
== inactive_rule
&& rule
->reserved_1
== IPFW_RULE_INACTIVE
) {
2920 struct ip_fw
*n
= rule
;
2923 layer3_chain
= rule
->next
;
2926 prev
->next
= rule
->next
;
2937 #if DEBUG_INACTIVE_RULES
2938 print_chain(&layer3_chain
);
2940 lck_mtx_unlock(ipfw_mutex
);
2944 mark_inactive(struct ip_fw
**prev
, struct ip_fw
**rule
)
2946 int l
= RULESIZE(*rule
);
2948 if ((*rule
)->reserved_1
!= IPFW_RULE_INACTIVE
) {
2949 (*rule
)->reserved_1
= IPFW_RULE_INACTIVE
;
2952 static_len_32
-= RULESIZE32(*rule
);
2953 static_len_64
-= RULESIZE64(*rule
);
2955 timeout(flush_inactive
, *rule
, 30*hz
); /* 30 sec. */
2959 *rule
= (*rule
)->next
;
2963 * Deletes all rules from a chain (except rules in set RESVD_SET
2964 * unless kill_default = 1).
2965 * Must be called at splimp().
2968 free_chain(struct ip_fw
**chain
, int kill_default
)
2970 struct ip_fw
*prev
, *rule
;
2972 flush_rule_ptrs(); /* more efficient to do outside the loop */
2973 for (prev
= NULL
, rule
= *chain
; rule
; )
2974 if (kill_default
|| rule
->set
!= RESVD_SET
) {
2975 ipfw_insn
*cmd
= ACTION_PTR(rule
);
2977 /* skip over forwarding rules so struct isn't
2978 * deleted while pointer is still in use elsewhere
2980 if (cmd
->opcode
== O_FORWARD_IP
) {
2981 mark_inactive(&prev
, &rule
);
2984 rule
= delete_rule(chain
, prev
, rule
);
2994 * Remove all rules with given number, and also do set manipulation.
2995 * Assumes chain != NULL && *chain != NULL.
2997 * The argument is an u_int32_t. The low 16 bit are the rule or set number,
2998 * the next 8 bits are the new set, the top 8 bits are the command:
3000 * 0 delete rules with given number
3001 * 1 delete rules with given set number
3002 * 2 move rules with given number to new set
3003 * 3 move rules with given set number to new set
3004 * 4 swap sets with given numbers
3007 del_entry(struct ip_fw
**chain
, u_int32_t arg
)
3009 struct ip_fw
*prev
= NULL
, *rule
= *chain
;
3010 u_int16_t rulenum
; /* rule or old_set */
3011 u_int8_t cmd
, new_set
;
3013 rulenum
= arg
& 0xffff;
3014 cmd
= (arg
>> 24) & 0xff;
3015 new_set
= (arg
>> 16) & 0xff;
3019 if (new_set
> RESVD_SET
)
3021 if (cmd
== 0 || cmd
== 2) {
3022 if (rulenum
>= IPFW_DEFAULT_RULE
)
3025 if (rulenum
> RESVD_SET
) /* old_set */
3030 case 0: /* delete rules with given number */
3032 * locate first rule to delete
3034 for (; rule
->rulenum
< rulenum
; prev
= rule
, rule
= rule
->next
)
3036 if (rule
->rulenum
!= rulenum
)
3040 * flush pointers outside the loop, then delete all matching
3041 * rules. prev remains the same throughout the cycle.
3044 while (rule
->rulenum
== rulenum
) {
3045 ipfw_insn
*insn
= ACTION_PTR(rule
);
3047 /* keep forwarding rules around so struct isn't
3048 * deleted while pointer is still in use elsewhere
3050 if (insn
->opcode
== O_FORWARD_IP
) {
3051 mark_inactive(&prev
, &rule
);
3054 rule
= delete_rule(chain
, prev
, rule
);
3059 case 1: /* delete all rules with given set number */
3061 while (rule
->rulenum
< IPFW_DEFAULT_RULE
) {
3062 if (rule
->set
== rulenum
) {
3063 ipfw_insn
*insn
= ACTION_PTR(rule
);
3065 /* keep forwarding rules around so struct isn't
3066 * deleted while pointer is still in use elsewhere
3068 if (insn
->opcode
== O_FORWARD_IP
) {
3069 mark_inactive(&prev
, &rule
);
3072 rule
= delete_rule(chain
, prev
, rule
);
3082 case 2: /* move rules with given number to new set */
3083 for (; rule
->rulenum
< IPFW_DEFAULT_RULE
; rule
= rule
->next
)
3084 if (rule
->rulenum
== rulenum
)
3085 rule
->set
= new_set
;
3088 case 3: /* move rules with given set number to new set */
3089 for (; rule
->rulenum
< IPFW_DEFAULT_RULE
; rule
= rule
->next
)
3090 if (rule
->set
== rulenum
)
3091 rule
->set
= new_set
;
3094 case 4: /* swap two sets */
3095 for (; rule
->rulenum
< IPFW_DEFAULT_RULE
; rule
= rule
->next
)
3096 if (rule
->set
== rulenum
)
3097 rule
->set
= new_set
;
3098 else if (rule
->set
== new_set
)
3099 rule
->set
= rulenum
;
3106 * Clear counters for a specific rule.
3109 clear_counters(struct ip_fw
*rule
, int log_only
)
3111 ipfw_insn_log
*l
= (ipfw_insn_log
*)ACTION_PTR(rule
);
3113 if (log_only
== 0) {
3114 rule
->bcnt
= rule
->pcnt
= 0;
3115 rule
->timestamp
= 0;
3117 if (l
->o
.opcode
== O_LOG
)
3118 l
->log_left
= l
->max_log
;
3122 * Reset some or all counters on firewall rules.
3123 * @arg frwl is null to clear all entries, or contains a specific
3125 * @arg log_only is 1 if we only want to reset logs, zero otherwise.
3128 zero_entry(int rulenum
, int log_only
)
3135 for (rule
= layer3_chain
; rule
; rule
= rule
->next
)
3136 clear_counters(rule
, log_only
);
3137 msg
= log_only
? "ipfw: All logging counts reset.\n" :
3138 "ipfw: Accounting cleared.\n";
3142 * We can have multiple rules with the same number, so we
3143 * need to clear them all.
3145 for (rule
= layer3_chain
; rule
; rule
= rule
->next
)
3146 if (rule
->rulenum
== rulenum
) {
3147 while (rule
&& rule
->rulenum
== rulenum
) {
3148 clear_counters(rule
, log_only
);
3154 if (!cleared
) /* we did not find any matching rules */
3156 msg
= log_only
? "ipfw: Entry %d logging count reset.\n" :
3157 "ipfw: Entry %d cleared.\n";
3161 dolog((LOG_AUTHPRIV
| LOG_NOTICE
, msg
, rulenum
));
3167 * Check validity of the structure before insert.
3168 * Fortunately rules are simple, so this mostly need to check rule sizes.
3171 check_ipfw_struct(struct ip_fw
*rule
, int size
)
3177 if (size
< sizeof(*rule
)) {
3178 printf("ipfw: rule too short\n");
3181 /* first, check for valid size */
3184 printf("ipfw: size mismatch (have %d want %d)\n", size
, l
);
3188 * Now go for the individual checks. Very simple ones, basically only
3189 * instruction sizes.
3191 for (l
= rule
->cmd_len
, cmd
= rule
->cmd
;
3192 l
> 0 ; l
-= cmdlen
, cmd
+= cmdlen
) {
3193 cmdlen
= F_LEN(cmd
);
3195 printf("ipfw: opcode %d size truncated\n",
3199 DEB(printf("ipfw: opcode %d\n", cmd
->opcode
);)
3200 switch (cmd
->opcode
) {
3211 case O_IPPRECEDENCE
:
3219 if (cmdlen
!= F_INSN_SIZE(ipfw_insn
))
3225 #endif /* __APPLE__ */
3232 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_u32
))
3237 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_limit
))
3242 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_log
))
3245 /* enforce logging limit */
3247 ((ipfw_insn_log
*)cmd
)->max_log
== 0 && verbose_limit
!= 0) {
3248 ((ipfw_insn_log
*)cmd
)->max_log
= verbose_limit
;
3251 ((ipfw_insn_log
*)cmd
)->log_left
=
3252 ((ipfw_insn_log
*)cmd
)->max_log
;
3258 /* only odd command lengths */
3259 if ( !(cmdlen
& 1) || cmdlen
> 31)
3265 if (cmd
->arg1
== 0 || cmd
->arg1
> 256) {
3266 printf("ipfw: invalid set size %d\n",
3270 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_u32
) +
3276 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_mac
))
3284 if (cmdlen
< 1 || cmdlen
> 31)
3290 case O_IP_DSTPORT
: /* XXX artificial limit, 30 port pairs */
3291 if (cmdlen
< 2 || cmdlen
> 31)
3298 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_if
))
3304 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_pipe
))
3309 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_sa
))
3313 case O_FORWARD_MAC
: /* XXX not implemented yet */
3322 if (cmdlen
!= F_INSN_SIZE(ipfw_insn
))
3326 printf("ipfw: opcode %d, multiple actions"
3333 printf("ipfw: opcode %d, action must be"
3340 printf("ipfw: opcode %d, unknown opcode\n",
3345 if (have_action
== 0) {
3346 printf("ipfw: missing action\n");
3352 printf("ipfw: opcode %d size %d wrong\n",
3353 cmd
->opcode
, cmdlen
);
3359 ipfw_kev_post_msg(u_int32_t event_code
)
3361 struct kev_msg ev_msg
;
3363 bzero(&ev_msg
, sizeof(struct kev_msg
));
3365 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
3366 ev_msg
.kev_class
= KEV_FIREWALL_CLASS
;
3367 ev_msg
.kev_subclass
= KEV_IPFW_SUBCLASS
;
3368 ev_msg
.event_code
= event_code
;
3370 kev_post_msg(&ev_msg
);
3375 * {set|get}sockopt parser.
3378 ipfw_ctl(struct sockopt
*sopt
)
3380 #define RULE_MAXSIZE (256*sizeof(u_int32_t))
3381 u_int32_t api_version
;
3385 size_t rulesize
= RULE_MAXSIZE
;
3386 struct ip_fw
*bp
, *buf
, *rule
;
3389 /* copy of orig sopt to send to ipfw_get_command_and_version() */
3390 struct sockopt tmp_sopt
= *sopt
;
3391 struct timeval timenow
;
3393 getmicrotime(&timenow
);
3396 * Disallow modifications in really-really secure mode, but still allow
3397 * the logging counters to be reset.
3399 if (sopt
->sopt_name
== IP_FW_ADD
||
3400 (sopt
->sopt_dir
== SOPT_SET
&& sopt
->sopt_name
!= IP_FW_RESETLOG
)) {
3401 #if __FreeBSD_version >= 500034
3402 error
= securelevel_ge(sopt
->sopt_td
->td_ucred
, 3);
3405 #else /* FreeBSD 4.x */
3406 if (securelevel
>= 3)
3411 /* first get the command and version, then do conversion as necessary */
3412 error
= ipfw_get_command_and_version(&tmp_sopt
, &command
, &api_version
);
3414 /* error getting the version */
3418 if (proc_is64bit(sopt
->sopt_p
))
3426 * pass up a copy of the current rules. Static rules
3427 * come first (the last of which has number IPFW_DEFAULT_RULE),
3428 * followed by a possibly empty list of dynamic rule.
3429 * The last dynamic rule has NULL in the "next" field.
3431 lck_mtx_lock(ipfw_mutex
);
3434 size
= Get64static_len();
3435 dynrulesize
= sizeof(ipfw_dyn_rule_64
);
3437 size
+= (dyn_count
* dynrulesize
);
3439 size
= Get32static_len();
3440 dynrulesize
= sizeof(ipfw_dyn_rule_32
);
3442 size
+= (dyn_count
* dynrulesize
);
3446 * XXX todo: if the user passes a short length just to know
3447 * how much room is needed, do not bother filling up the
3448 * buffer, just jump to the sooptcopyout.
3450 buf
= _MALLOC(size
, M_TEMP
, M_WAITOK
);
3452 lck_mtx_unlock(ipfw_mutex
);
3460 for (rule
= layer3_chain
; rule
; rule
= rule
->next
) {
3462 if (rule
->reserved_1
== IPFW_RULE_INACTIVE
) {
3469 copyto64fw( rule
, (struct ip_fw_64
*)bp
, size
);
3470 bcopy(&set_disable
, &(( (struct ip_fw_64
*)bp
)->next_rule
), sizeof(set_disable
));
3471 /* do not use macro RULESIZE64 since we want RULESIZE for ip_fw_64 */
3472 rulesize_64
= sizeof(struct ip_fw_64
) + ((struct ip_fw_64
*)(bp
))->cmd_len
* 4 - 4;
3473 bp
= (struct ip_fw
*)((char *)bp
+ rulesize_64
);
3477 copyto32fw( rule
, (struct ip_fw_32
*)bp
, size
);
3478 bcopy(&set_disable
, &(( (struct ip_fw_32
*)bp
)->next_rule
), sizeof(set_disable
));
3479 /* do not use macro RULESIZE32 since we want RULESIZE for ip_fw_32 */
3480 rulesize_32
= sizeof(struct ip_fw_32
) + ((struct ip_fw_32
*)(bp
))->cmd_len
* 4 - 4;
3481 bp
= (struct ip_fw
*)((char *)bp
+ rulesize_32
);
3487 char *dst
, *last
= NULL
;
3490 for (i
= 0 ; i
< curr_dyn_buckets
; i
++ )
3491 for ( p
= ipfw_dyn_v
[i
] ; p
!= NULL
;
3492 p
= p
->next
, dst
+= dynrulesize
) {
3494 ipfw_dyn_rule_64
*ipfw_dyn_dst
;
3496 ipfw_dyn_dst
= (ipfw_dyn_rule_64
*)dst
;
3498 * store a non-null value in "next".
3499 * The userland code will interpret a
3500 * NULL here as a marker
3501 * for the last dynamic rule.
3503 ipfw_dyn_dst
->next
= CAST_DOWN_EXPLICIT(user64_addr_t
, dst
);
3504 ipfw_dyn_dst
->rule
= p
->rule
->rulenum
;
3505 ipfw_dyn_dst
->parent
= CAST_DOWN(user64_addr_t
, p
->parent
);
3506 ipfw_dyn_dst
->pcnt
= p
->pcnt
;
3507 ipfw_dyn_dst
->bcnt
= p
->bcnt
;
3508 ipfw_dyn_dst
->id
= p
->id
;
3509 ipfw_dyn_dst
->expire
=
3510 TIME_LEQ(p
->expire
, timenow
.tv_sec
) ?
3511 0 : p
->expire
- timenow
.tv_sec
;
3512 ipfw_dyn_dst
->bucket
= p
->bucket
;
3513 ipfw_dyn_dst
->state
= p
->state
;
3514 ipfw_dyn_dst
->ack_fwd
= p
->ack_fwd
;
3515 ipfw_dyn_dst
->ack_rev
= p
->ack_rev
;
3516 ipfw_dyn_dst
->dyn_type
= p
->dyn_type
;
3517 ipfw_dyn_dst
->count
= p
->count
;
3518 last
= (char*)&ipfw_dyn_dst
->next
;
3520 ipfw_dyn_rule_32
*ipfw_dyn_dst
;
3522 ipfw_dyn_dst
= (ipfw_dyn_rule_32
*)dst
;
3524 * store a non-null value in "next".
3525 * The userland code will interpret a
3526 * NULL here as a marker
3527 * for the last dynamic rule.
3529 ipfw_dyn_dst
->next
= CAST_DOWN_EXPLICIT(user32_addr_t
, dst
);
3530 ipfw_dyn_dst
->rule
= p
->rule
->rulenum
;
3531 ipfw_dyn_dst
->parent
= CAST_DOWN_EXPLICIT(user32_addr_t
, p
->parent
);
3532 ipfw_dyn_dst
->pcnt
= p
->pcnt
;
3533 ipfw_dyn_dst
->bcnt
= p
->bcnt
;
3534 ipfw_dyn_dst
->id
= p
->id
;
3535 ipfw_dyn_dst
->expire
=
3536 TIME_LEQ(p
->expire
, timenow
.tv_sec
) ?
3537 0 : p
->expire
- timenow
.tv_sec
;
3538 ipfw_dyn_dst
->bucket
= p
->bucket
;
3539 ipfw_dyn_dst
->state
= p
->state
;
3540 ipfw_dyn_dst
->ack_fwd
= p
->ack_fwd
;
3541 ipfw_dyn_dst
->ack_rev
= p
->ack_rev
;
3542 ipfw_dyn_dst
->dyn_type
= p
->dyn_type
;
3543 ipfw_dyn_dst
->count
= p
->count
;
3544 last
= (char*)&ipfw_dyn_dst
->next
;
3547 if (last
!= NULL
) /* mark last dynamic rule */
3548 bzero(last
, sizeof(last
));
3550 lck_mtx_unlock(ipfw_mutex
);
3552 /* convert back if necessary and copyout */
3553 if (api_version
== IP_FW_VERSION_0
) {
3555 struct ip_old_fw
*buf2
, *rule_vers0
;
3557 lck_mtx_lock(ipfw_mutex
);
3558 buf2
= _MALLOC(static_count
* sizeof(struct ip_old_fw
), M_TEMP
, M_WAITOK
);
3560 lck_mtx_unlock(ipfw_mutex
);
3568 for (i
= 0; i
< static_count
; i
++) {
3569 /* static rules have different sizes */
3570 int j
= RULESIZE(bp
);
3571 ipfw_convert_from_latest(bp
, rule_vers0
, api_version
, is64user
);
3572 bp
= (struct ip_fw
*)((char *)bp
+ j
);
3573 len
+= sizeof(*rule_vers0
);
3576 lck_mtx_unlock(ipfw_mutex
);
3577 error
= sooptcopyout(sopt
, buf2
, len
);
3578 _FREE(buf2
, M_TEMP
);
3580 } else if (api_version
== IP_FW_VERSION_1
) {
3581 int i
, len
= 0, buf_size
;
3582 struct ip_fw_compat
*buf2
;
3583 size_t ipfwcompsize
;
3584 size_t ipfwdyncompsize
;
3587 lck_mtx_lock(ipfw_mutex
);
3589 ipfwcompsize
= sizeof(struct ip_fw_compat_64
);
3590 ipfwdyncompsize
= sizeof(struct ipfw_dyn_rule_compat_64
);
3592 ipfwcompsize
= sizeof(struct ip_fw_compat_32
);
3593 ipfwdyncompsize
= sizeof(struct ipfw_dyn_rule_compat_32
);
3596 buf_size
= static_count
* ipfwcompsize
+
3597 dyn_count
* ipfwdyncompsize
;
3599 buf2
= _MALLOC(buf_size
, M_TEMP
, M_WAITOK
);
3601 lck_mtx_unlock(ipfw_mutex
);
3606 rule_vers1
= (char*)buf2
;
3608 /* first do static rules */
3609 for (i
= 0; i
< static_count
; i
++) {
3610 /* static rules have different sizes */
3613 ipfw_convert_from_latest(bp
, (void *)rule_vers1
, api_version
, is64user
);
3614 rulesize_64
= sizeof(struct ip_fw_64
) + ((struct ip_fw_64
*)(bp
))->cmd_len
* 4 - 4;
3615 bp
= (struct ip_fw
*)((char *)bp
+ rulesize_64
);
3618 ipfw_convert_from_latest(bp
, (void *)rule_vers1
, api_version
, is64user
);
3619 rulesize_32
= sizeof(struct ip_fw_32
) + ((struct ip_fw_32
*)(bp
))->cmd_len
* 4 - 4;
3620 bp
= (struct ip_fw
*)((char *)bp
+ rulesize_32
);
3622 len
+= ipfwcompsize
;
3623 rule_vers1
+= ipfwcompsize
;
3625 /* now do dynamic rules */
3627 cp_dyn_to_comp_64( (struct ipfw_dyn_rule_compat_64
*)rule_vers1
, &len
);
3629 cp_dyn_to_comp_32( (struct ipfw_dyn_rule_compat_32
*)rule_vers1
, &len
);
3631 lck_mtx_unlock(ipfw_mutex
);
3632 error
= sooptcopyout(sopt
, buf2
, len
);
3633 _FREE(buf2
, M_TEMP
);
3636 error
= sooptcopyout(sopt
, buf
, size
);
3645 * Normally we cannot release the lock on each iteration.
3646 * We could do it here only because we start from the head all
3647 * the times so there is no risk of missing some entries.
3648 * On the other hand, the risk is that we end up with
3649 * a very inconsistent ruleset, so better keep the lock
3650 * around the whole cycle.
3652 * XXX this code can be improved by resetting the head of
3653 * the list to point to the default rule, and then freeing
3654 * the old list without the need for a lock.
3657 lck_mtx_lock(ipfw_mutex
);
3658 free_chain(&layer3_chain
, 0 /* keep default rule */);
3660 #if DEBUG_INACTIVE_RULES
3661 print_chain(&layer3_chain
);
3663 lck_mtx_unlock(ipfw_mutex
);
3668 size_t savedsopt_valsize
=0;
3669 rule
= _MALLOC(RULE_MAXSIZE
, M_TEMP
, M_WAITOK
);
3675 bzero(rule
, RULE_MAXSIZE
);
3677 if (api_version
!= IP_FW_CURRENT_API_VERSION
) {
3678 error
= ipfw_convert_to_latest(sopt
, rule
, api_version
, is64user
);
3681 savedsopt_valsize
= sopt
->sopt_valsize
; /* it might get modified in sooptcopyin_fw */
3682 error
= sooptcopyin_fw( sopt
, rule
, &rulesize
);
3687 if ((api_version
== IP_FW_VERSION_0
) || (api_version
== IP_FW_VERSION_1
)) {
3688 /* the rule has already been checked so just
3689 * adjust sopt_valsize to match what would be expected.
3691 sopt
->sopt_valsize
= RULESIZE(rule
);
3692 rulesize
= RULESIZE(rule
);
3694 error
= check_ipfw_struct(rule
, rulesize
);
3696 lck_mtx_lock(ipfw_mutex
);
3697 error
= add_rule(&layer3_chain
, rule
);
3698 if (!error
&& fw_bypass
)
3700 lck_mtx_unlock(ipfw_mutex
);
3702 size
= RULESIZE(rule
);
3703 if (!error
&& sopt
->sopt_dir
== SOPT_GET
) {
3704 /* convert back if necessary and copyout */
3705 if (api_version
== IP_FW_VERSION_0
) {
3706 struct ip_old_fw rule_vers0
;
3708 ipfw_convert_from_latest(rule
, &rule_vers0
, api_version
, is64user
);
3709 sopt
->sopt_valsize
= sizeof(struct ip_old_fw
);
3711 error
= sooptcopyout(sopt
, &rule_vers0
, sizeof(struct ip_old_fw
));
3712 } else if (api_version
== IP_FW_VERSION_1
) {
3713 struct ip_fw_compat rule_vers1
;
3714 ipfw_convert_from_latest(rule
, &rule_vers1
, api_version
, is64user
);
3715 sopt
->sopt_valsize
= sizeof(struct ip_fw_compat
);
3717 error
= sooptcopyout(sopt
, &rule_vers1
, sizeof(struct ip_fw_compat
));
3720 userrule
= _MALLOC(savedsopt_valsize
, M_TEMP
, M_WAITOK
);
3721 if ( userrule
== NULL
)
3722 userrule
= (char*)rule
;
3723 if (proc_is64bit(sopt
->sopt_p
)){
3724 copyto64fw( rule
, (struct ip_fw_64
*)userrule
, savedsopt_valsize
);
3727 copyto32fw( rule
, (struct ip_fw_32
*)userrule
, savedsopt_valsize
);
3729 error
= sooptcopyout(sopt
, userrule
, savedsopt_valsize
);
3731 _FREE(userrule
, M_TEMP
);
3737 _FREE(rule
, M_TEMP
);
3743 * IP_FW_DEL is used for deleting single rules or sets,
3744 * and (ab)used to atomically manipulate sets.
3745 * rule->rulenum != 0 indicates single rule delete
3746 * rule->set_masks used to manipulate sets
3747 * rule->set_masks[0] contains info on sets to be
3748 * disabled, swapped, or moved
3749 * rule->set_masks[1] contains sets to be enabled.
3752 /* there is only a simple rule passed in
3753 * (no cmds), so use a temp struct to copy
3755 struct ip_fw temp_rule
;
3759 bzero(&temp_rule
, sizeof(struct ip_fw
));
3760 if (api_version
!= IP_FW_CURRENT_API_VERSION
) {
3761 error
= ipfw_convert_to_latest(sopt
, &temp_rule
, api_version
, is64user
);
3764 error
= sooptcopyin_fw(sopt
, &temp_rule
, 0 );
3768 /* set_masks is used to distinguish between deleting
3769 * single rules or atomically manipulating sets
3771 lck_mtx_lock(ipfw_mutex
);
3773 arg
= temp_rule
.set_masks
[0];
3774 cmd
= (arg
>> 24) & 0xff;
3776 if (temp_rule
.rulenum
) {
3778 error
= del_entry(&layer3_chain
, temp_rule
.rulenum
);
3779 #if DEBUG_INACTIVE_RULES
3780 print_chain(&layer3_chain
);
3784 /* set reassignment - see comment above del_entry() for details */
3785 error
= del_entry(&layer3_chain
, temp_rule
.set_masks
[0]);
3786 #if DEBUG_INACTIVE_RULES
3787 print_chain(&layer3_chain
);
3790 else if (temp_rule
.set_masks
[0] != 0 ||
3791 temp_rule
.set_masks
[1] != 0) {
3792 /* set enable/disable */
3794 (set_disable
| temp_rule
.set_masks
[0]) & ~temp_rule
.set_masks
[1] &
3795 ~(1<<RESVD_SET
); /* set RESVD_SET always enabled */
3798 if (!layer3_chain
->next
)
3800 lck_mtx_unlock(ipfw_mutex
);
3805 case IP_FW_RESETLOG
: /* using rule->rulenum */
3807 /* there is only a simple rule passed in
3808 * (no cmds), so use a temp struct to copy
3810 struct ip_fw temp_rule
;
3812 bzero(&temp_rule
, sizeof(struct ip_fw
));
3814 if (api_version
!= IP_FW_CURRENT_API_VERSION
) {
3815 error
= ipfw_convert_to_latest(sopt
, &temp_rule
, api_version
, is64user
);
3818 if (sopt
->sopt_val
!= 0) {
3819 error
= sooptcopyin_fw( sopt
, &temp_rule
, 0);
3824 lck_mtx_lock(ipfw_mutex
);
3825 error
= zero_entry(temp_rule
.rulenum
, sopt
->sopt_name
== IP_FW_RESETLOG
);
3826 lck_mtx_unlock(ipfw_mutex
);
3831 printf("ipfw: ipfw_ctl invalid option %d\n", sopt
->sopt_name
);
3835 if (error
!= EINVAL
) {
3839 ipfw_kev_post_msg(KEV_IPFW_ADD
);
3843 ipfw_kev_post_msg(KEV_IPFW_DEL
);
3846 case IP_OLD_FW_FLUSH
:
3847 ipfw_kev_post_msg(KEV_IPFW_FLUSH
);
3859 * dummynet needs a reference to the default rule, because rules can be
3860 * deleted while packets hold a reference to them. When this happens,
3861 * dummynet changes the reference to the default rule (it could well be a
3862 * NULL pointer, but this way we do not need to check for the special
3863 * case, plus here he have info on the default behaviour).
3865 struct ip_fw
*ip_fw_default_rule
;
3868 * This procedure is only used to handle keepalives. It is invoked
3869 * every dyn_keepalive_period
3872 ipfw_tick(__unused
void * unused
)
3874 struct mbuf
*m0
, *m
, *mnext
, **mtailp
;
3877 struct timeval timenow
;
3879 if (dyn_keepalive
== 0 || ipfw_dyn_v
== NULL
|| dyn_count
== 0)
3882 getmicrotime(&timenow
);
3885 * We make a chain of packets to go out here -- not deferring
3886 * until after we drop the ipfw lock would result
3887 * in a lock order reversal with the normal packet input -> ipfw
3893 lck_mtx_lock(ipfw_mutex
);
3894 for (i
= 0 ; i
< curr_dyn_buckets
; i
++) {
3895 for (q
= ipfw_dyn_v
[i
] ; q
; q
= q
->next
) {
3896 if (q
->dyn_type
== O_LIMIT_PARENT
)
3898 if (q
->id
.proto
!= IPPROTO_TCP
)
3900 if ( (q
->state
& BOTH_SYN
) != BOTH_SYN
)
3902 if (TIME_LEQ( timenow
.tv_sec
+dyn_keepalive_interval
,
3904 continue; /* too early */
3905 if (TIME_LEQ(q
->expire
, timenow
.tv_sec
))
3906 continue; /* too late, rule expired */
3908 *mtailp
= send_pkt(&(q
->id
), q
->ack_rev
- 1, q
->ack_fwd
, TH_SYN
);
3909 if (*mtailp
!= NULL
)
3910 mtailp
= &(*mtailp
)->m_nextpkt
;
3912 *mtailp
= send_pkt(&(q
->id
), q
->ack_fwd
- 1, q
->ack_rev
, 0);
3913 if (*mtailp
!= NULL
)
3914 mtailp
= &(*mtailp
)->m_nextpkt
;
3917 lck_mtx_unlock(ipfw_mutex
);
3919 for (m
= mnext
= m0
; m
!= NULL
; m
= mnext
) {
3920 struct route sro
; /* fake route */
3922 mnext
= m
->m_nextpkt
;
3923 m
->m_nextpkt
= NULL
;
3924 bzero (&sro
, sizeof (sro
));
3925 ip_output_list(m
, 0, NULL
, &sro
, 0, NULL
, NULL
);
3930 timeout(ipfw_tick
, NULL
, dyn_keepalive_period
*hz
);
3936 struct ip_fw default_rule
;
3939 ipfw_mutex_grp_attr
= lck_grp_attr_alloc_init();
3940 ipfw_mutex_grp
= lck_grp_alloc_init("ipfw", ipfw_mutex_grp_attr
);
3941 ipfw_mutex_attr
= lck_attr_alloc_init();
3943 if ((ipfw_mutex
= lck_mtx_alloc_init(ipfw_mutex_grp
, ipfw_mutex_attr
)) == NULL
) {
3944 printf("ipfw_init: can't alloc ipfw_mutex\n");
3948 layer3_chain
= NULL
;
3950 bzero(&default_rule
, sizeof default_rule
);
3952 default_rule
.act_ofs
= 0;
3953 default_rule
.rulenum
= IPFW_DEFAULT_RULE
;
3954 default_rule
.cmd_len
= 1;
3955 default_rule
.set
= RESVD_SET
;
3957 default_rule
.cmd
[0].len
= 1;
3958 default_rule
.cmd
[0].opcode
=
3959 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
3964 if (add_rule(&layer3_chain
, &default_rule
)) {
3965 printf("ipfw2: add_rule failed adding default rule\n");
3966 printf("ipfw2 failed initialization!!\n");
3970 ip_fw_default_rule
= layer3_chain
;
3972 #ifdef IPFIREWALL_VERBOSE
3975 #ifdef IPFIREWALL_VERBOSE_LIMIT
3976 verbose_limit
= IPFIREWALL_VERBOSE_LIMIT
;
3980 printf("ipfw2 verbose logging enabled: unlimited logging by default\n");
3982 printf("ipfw2 verbose logging enabled: limited to %d packets/entry by default\n",
3987 ip_fw_chk_ptr
= ipfw_chk
;
3988 ip_fw_ctl_ptr
= ipfw_ctl
;
3990 ipfwstringlen
= strlen( ipfwstring
);
3992 timeout(ipfw_tick
, NULL
, hz
);