2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
33 * File: i386/rtclock.c
34 * Purpose: Routines for handling the machine dependent
35 * real-time clock. Historically, this clock is
36 * generated by the Intel 8254 Programmable Interval
37 * Timer, but local apic timers are now used for
38 * this purpose with the master time reference being
39 * the cpu clock counted by the timestamp MSR.
42 #include <platforms.h>
45 #include <mach/mach_types.h>
47 #include <kern/cpu_data.h>
48 #include <kern/cpu_number.h>
49 #include <kern/clock.h>
50 #include <kern/host_notify.h>
51 #include <kern/macro_help.h>
52 #include <kern/misc_protos.h>
54 #include <kern/assert.h>
55 #include <mach/vm_prot.h>
57 #include <vm/vm_kern.h> /* for kernel_map */
59 #include <architecture/i386/pio.h>
60 #include <i386/misc_protos.h>
61 #include <i386/proc_reg.h>
62 #include <i386/machine_cpu.h>
64 #include <i386/cpuid.h>
65 #include <i386/cpu_data.h>
66 #include <i386/cpu_threads.h>
67 #include <i386/perfmon.h>
68 #include <i386/machine_routines.h>
69 #include <pexpert/pexpert.h>
70 #include <machine/limits.h>
71 #include <machine/commpage.h>
72 #include <sys/kdebug.h>
74 #include <i386/hpet.h>
75 #include <i386/rtclock.h>
77 #define NSEC_PER_HZ (NSEC_PER_SEC / 100) /* nsec per tick */
79 #define UI_CPUFREQ_ROUNDING_FACTOR 10000000
81 int rtclock_config(void);
83 int rtclock_init(void);
85 uint64_t rtc_decrementer_min
;
87 void rtclock_intr(x86_saved_state_t
*regs
);
88 static uint64_t maxDec
; /* longest interval our hardware timer can handle (nsec) */
90 /* XXX this should really be in a header somewhere */
91 extern clock_timer_func_t rtclock_timer_expire
;
93 static void rtc_set_timescale(uint64_t cycles
);
94 static uint64_t rtc_export_speed(uint64_t cycles
);
96 extern void _rtc_nanotime_store(
101 rtc_nanotime_t
*dst
);
103 extern uint64_t _rtc_nanotime_read(
104 rtc_nanotime_t
*rntp
,
107 rtc_nanotime_t rtc_nanotime_info
= {0,0,0,0,1,0};
111 deadline_to_decrementer(
118 return rtc_decrementer_min
;
120 delta
= deadline
- now
;
121 return MIN(MAX(rtc_decrementer_min
,delta
),maxDec
);
126 rtc_lapic_start_ticking(void)
128 x86_lcpu_t
*lcpu
= x86_lcpu();
131 * Force a complete re-evaluation of timer deadlines.
133 lcpu
->rtcPop
= EndOfAllTime
;
134 etimer_resync_deadlines();
138 * Configure the real-time clock device. Return success (1)
151 * Nanotime/mach_absolutime_time
152 * -----------------------------
153 * The timestamp counter (TSC) - which counts cpu clock cycles and can be read
154 * efficiently by the kernel and in userspace - is the reference for all timing.
155 * The cpu clock rate is platform-dependent and may stop or be reset when the
156 * processor is napped/slept. As a result, nanotime is the software abstraction
157 * used to maintain a monotonic clock, adjusted from an outside reference as needed.
159 * The kernel maintains nanotime information recording:
160 * - the ratio of tsc to nanoseconds
161 * with this ratio expressed as a 32-bit scale and shift
162 * (power of 2 divider);
163 * - { tsc_base, ns_base } pair of corresponding timestamps.
165 * The tuple {tsc_base, ns_base, scale, shift} is exported in the commpage
166 * for the userspace nanotime routine to read.
168 * All of the routines which update the nanotime data are non-reentrant. This must
169 * be guaranteed by the caller.
172 rtc_nanotime_set_commpage(rtc_nanotime_t
*rntp
)
174 commpage_set_nanotime(rntp
->tsc_base
, rntp
->ns_base
, rntp
->scale
, rntp
->shift
);
180 * Intialize the nanotime info from the base time.
183 _rtc_nanotime_init(rtc_nanotime_t
*rntp
, uint64_t base
)
185 uint64_t tsc
= rdtsc64();
187 _rtc_nanotime_store(tsc
, base
, rntp
->scale
, rntp
->shift
, rntp
);
191 rtc_nanotime_init(uint64_t base
)
193 rtc_nanotime_t
*rntp
= &rtc_nanotime_info
;
195 _rtc_nanotime_init(rntp
, base
);
196 rtc_nanotime_set_commpage(rntp
);
200 * rtc_nanotime_init_commpage:
202 * Call back from the commpage initialization to
203 * cause the commpage data to be filled in once the
204 * commpages have been created.
207 rtc_nanotime_init_commpage(void)
209 spl_t s
= splclock();
211 rtc_nanotime_set_commpage(&rtc_nanotime_info
);
219 * Returns the current nanotime value, accessable from any
222 static inline uint64_t
223 rtc_nanotime_read(void)
227 if (gPEClockFrequencyInfo
.timebase_frequency_hz
> SLOW_TSC_THRESHOLD
)
228 return _rtc_nanotime_read( &rtc_nanotime_info
, 1 ); /* slow processor */
231 return _rtc_nanotime_read( &rtc_nanotime_info
, 0 ); /* assume fast processor */
237 * Invoked from power manangement when we have awoken from a nap (C3/C4)
238 * during which the TSC lost counts. The nanotime data is updated according
239 * to the provided value which indicates the number of nanoseconds that the
240 * TSC was not counting.
242 * The caller must guarantee non-reentrancy.
248 rtc_nanotime_t
*rntp
= &rtc_nanotime_info
;
251 assert(!ml_get_interrupts_enabled());
252 generation
= rntp
->generation
;
253 rntp
->generation
= 0;
254 rntp
->ns_base
+= delta
;
255 rntp
->generation
= ((generation
+ 1) != 0) ? (generation
+ 1) : 1;
256 rtc_nanotime_set_commpage(rntp
);
260 rtc_clock_stepping(__unused
uint32_t new_frequency
,
261 __unused
uint32_t old_frequency
)
263 panic("rtc_clock_stepping unsupported");
267 rtc_clock_stepped(__unused
uint32_t new_frequency
,
268 __unused
uint32_t old_frequency
)
270 panic("rtc_clock_stepped unsupported");
276 * Invoked from power manageent when we have awoken from a sleep (S3)
277 * and the TSC has been reset. The nanotime data is updated based on
278 * the passed in value.
280 * The caller must guarantee non-reentrancy.
288 * The timestamp counter will have been reset
289 * but nanotime (uptime) marches onward.
291 rtc_nanotime_init(base
);
295 * Initialize the real-time clock device.
296 * In addition, various variables used to support the clock are initialized.
303 assert(!ml_get_interrupts_enabled());
305 if (cpu_number() == master_cpu
) {
308 rtc_set_timescale(tscFreq
);
311 * Adjust and set the exported cpu speed.
313 cycles
= rtc_export_speed(tscFreq
);
316 * Set min/max to actual.
317 * ACPI may update these later if speed-stepping is detected.
319 gPEClockFrequencyInfo
.cpu_frequency_min_hz
= cycles
;
320 gPEClockFrequencyInfo
.cpu_frequency_max_hz
= cycles
;
323 * Compute the longest interval we can represent.
325 maxDec
= tmrCvt(0x7fffffffULL
, busFCvtt2n
);
326 kprintf("maxDec: %lld\n", maxDec
);
328 /* Minimum interval is 1usec */
329 rtc_decrementer_min
= deadline_to_decrementer(NSEC_PER_USEC
, 0ULL);
330 /* Point LAPIC interrupts to hardclock() */
331 lapic_set_timer_func((i386_intr_func_t
) rtclock_intr
);
333 clock_timebase_init();
334 ml_init_lock_timeout();
337 rtc_lapic_start_ticking();
343 // Code to calculate how many processor cycles are in a second...
346 rtc_set_timescale(uint64_t cycles
)
348 rtc_nanotime_info
.scale
= ((uint64_t)NSEC_PER_SEC
<< 32) / cycles
;
350 if (cycles
<= SLOW_TSC_THRESHOLD
)
351 rtc_nanotime_info
.shift
= cycles
;
353 rtc_nanotime_info
.shift
= 32;
355 rtc_nanotime_init(0);
359 rtc_export_speed(uint64_t cyc_per_sec
)
364 cycles
= ((cyc_per_sec
+ (UI_CPUFREQ_ROUNDING_FACTOR
/2))
365 / UI_CPUFREQ_ROUNDING_FACTOR
)
366 * UI_CPUFREQ_ROUNDING_FACTOR
;
369 * Set current measured speed.
371 if (cycles
>= 0x100000000ULL
) {
372 gPEClockFrequencyInfo
.cpu_clock_rate_hz
= 0xFFFFFFFFUL
;
374 gPEClockFrequencyInfo
.cpu_clock_rate_hz
= (unsigned long)cycles
;
376 gPEClockFrequencyInfo
.cpu_frequency_hz
= cycles
;
378 kprintf("[RTCLOCK] frequency %llu (%llu)\n", cycles
, cyc_per_sec
);
383 clock_get_system_microtime(
387 uint64_t now
= rtc_nanotime_read();
392 : "=a" (*secs
), "=d" (remain
)
393 : "A" (now
), "r" (NSEC_PER_SEC
));
397 : "0" (remain
), "d" (0), "r" (NSEC_PER_USEC
));
401 clock_get_system_nanotime(
405 uint64_t now
= rtc_nanotime_read();
409 : "=a" (*secs
), "=d" (*nanosecs
)
410 : "A" (now
), "r" (NSEC_PER_SEC
));
414 clock_gettimeofday_set_commpage(
421 uint64_t now
= abstime
;
428 : "=a" (*secs
), "=d" (remain
)
429 : "A" (now
), "r" (NSEC_PER_SEC
));
433 : "0" (remain
), "d" (0), "r" (NSEC_PER_USEC
));
437 commpage_set_timestamp(abstime
- remain
, *secs
);
442 mach_timebase_info_t info
)
444 info
->numer
= info
->denom
= 1;
448 clock_set_timer_func(
449 clock_timer_func_t func
)
451 if (rtclock_timer_expire
== NULL
)
452 rtclock_timer_expire
= func
;
456 * Real-time clock device interrupt.
460 x86_saved_state_t
*tregs
)
463 boolean_t user_mode
= FALSE
;
466 x86_lcpu_t
*lcpu
= x86_lcpu();
468 assert(get_preemption_level() > 0);
469 assert(!ml_get_interrupts_enabled());
471 abstime
= rtc_nanotime_read();
472 latency
= (uint32_t)(abstime
- lcpu
->rtcDeadline
);
473 if (abstime
< lcpu
->rtcDeadline
)
476 if (is_saved_state64(tregs
) == TRUE
) {
477 x86_saved_state64_t
*regs
;
479 regs
= saved_state64(tregs
);
484 x86_saved_state32_t
*regs
;
486 regs
= saved_state32(tregs
);
493 /* Log the interrupt service latency (-ve value expected by tool) */
494 KERNEL_DEBUG_CONSTANT(
495 MACHDBG_CODE(DBG_MACH_EXCP_DECI
, 0) | DBG_FUNC_NONE
,
496 -latency
, (uint32_t)rip
, user_mode
, 0, 0);
498 /* call the generic etimer */
499 etimer_intr(user_mode
, rip
);
503 * Request timer pop from the hardware
514 now
= rtc_nanotime_read(); /* The time in nanoseconds */
515 decr
= deadline_to_decrementer(time
, now
);
517 count
= tmrCvt(decr
, busFCvtn2t
);
518 lapic_set_timer(TRUE
, one_shot
, divide_by_1
, (uint32_t) count
);
520 return decr
; /* Pass back what we set */
525 mach_absolute_time(void)
527 return rtc_nanotime_read();
531 clock_interval_to_absolutetime_interval(
533 uint32_t scale_factor
,
536 *result
= (uint64_t)interval
* scale_factor
;
540 absolutetime_to_microtime(
549 : "=a" (*secs
), "=d" (remain
)
550 : "A" (abstime
), "r" (NSEC_PER_SEC
));
554 : "0" (remain
), "d" (0), "r" (NSEC_PER_USEC
));
558 absolutetime_to_nanotime(
565 : "=a" (*secs
), "=d" (*nanosecs
)
566 : "A" (abstime
), "r" (NSEC_PER_SEC
));
570 nanotime_to_absolutetime(
575 *result
= ((uint64_t)secs
* NSEC_PER_SEC
) + nanosecs
;
579 absolutetime_to_nanoseconds(
587 nanoseconds_to_absolutetime(
588 uint64_t nanoseconds
,
591 *result
= nanoseconds
;
602 now
= mach_absolute_time();
603 } while (now
< deadline
);