]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/sys_generic.c
bacd02b79d8b19d6820b89d742e764cbb871ca7b
[apple/xnu.git] / bsd / kern / sys_generic.c
1 /*
2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Copyright (c) 1982, 1986, 1989, 1993
31 * The Regents of the University of California. All rights reserved.
32 * (c) UNIX System Laboratories, Inc.
33 * All or some portions of this file are derived from material licensed
34 * to the University of California by American Telephone and Telegraph
35 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
36 * the permission of UNIX System Laboratories, Inc.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)sys_generic.c 8.9 (Berkeley) 2/14/95
67 */
68 /*
69 * NOTICE: This file was modified by SPARTA, Inc. in 2006 to introduce
70 * support for mandatory and extensible security protections. This notice
71 * is included in support of clause 2.2 (b) of the Apple Public License,
72 * Version 2.0.
73 */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/filedesc.h>
78 #include <sys/ioctl.h>
79 #include <sys/file_internal.h>
80 #include <sys/proc_internal.h>
81 #include <sys/socketvar.h>
82 #include <sys/uio_internal.h>
83 #include <sys/kernel.h>
84 #include <sys/stat.h>
85 #include <sys/malloc.h>
86 #include <sys/sysproto.h>
87
88 #include <sys/mount_internal.h>
89 #include <sys/protosw.h>
90 #include <sys/ev.h>
91 #include <sys/user.h>
92 #include <sys/kdebug.h>
93 #include <sys/poll.h>
94 #include <sys/event.h>
95 #include <sys/eventvar.h>
96
97 #include <mach/mach_types.h>
98 #include <kern/kern_types.h>
99 #include <kern/assert.h>
100 #include <kern/kalloc.h>
101 #include <kern/thread.h>
102 #include <kern/clock.h>
103
104 #include <sys/mbuf.h>
105 #include <sys/socket.h>
106 #include <sys/socketvar.h>
107 #include <sys/errno.h>
108 #include <sys/syscall.h>
109 #include <sys/pipe.h>
110
111 #include <security/audit/audit.h>
112
113 #include <net/if.h>
114 #include <net/route.h>
115
116 #include <netinet/in.h>
117 #include <netinet/in_systm.h>
118 #include <netinet/ip.h>
119 #include <netinet/in_pcb.h>
120 #include <netinet/ip_var.h>
121 #include <netinet/ip6.h>
122 #include <netinet/tcp.h>
123 #include <netinet/tcp_fsm.h>
124 #include <netinet/tcp_seq.h>
125 #include <netinet/tcp_timer.h>
126 #include <netinet/tcp_var.h>
127 #include <netinet/tcpip.h>
128 #include <netinet/tcp_debug.h>
129 /* for wait queue based select */
130 #include <kern/wait_queue.h>
131 #include <kern/kalloc.h>
132 #include <sys/vnode_internal.h>
133
134 /* XXX should be in a header file somewhere */
135 void evsofree(struct socket *);
136 void evpipefree(struct pipe *);
137 void postpipeevent(struct pipe *, int);
138 void postevent(struct socket *, struct sockbuf *, int);
139 extern kern_return_t IOBSDGetPlatformUUID(__darwin_uuid_t uuid, mach_timespec_t timeoutp);
140
141 int rd_uio(struct proc *p, int fdes, uio_t uio, user_ssize_t *retval);
142 int wr_uio(struct proc *p, int fdes, uio_t uio, user_ssize_t *retval);
143 extern void *get_bsduthreadarg(thread_t);
144 extern int *get_bsduthreadrval(thread_t);
145
146 __private_extern__ int dofileread(vfs_context_t ctx, struct fileproc *fp,
147 user_addr_t bufp, user_size_t nbyte,
148 off_t offset, int flags, user_ssize_t *retval);
149 __private_extern__ int dofilewrite(vfs_context_t ctx, struct fileproc *fp,
150 user_addr_t bufp, user_size_t nbyte,
151 off_t offset, int flags, user_ssize_t *retval);
152 __private_extern__ int preparefileread(struct proc *p, struct fileproc **fp_ret, int fd, int check_for_vnode);
153 __private_extern__ void donefileread(struct proc *p, struct fileproc *fp_ret, int fd);
154
155
156 /* Conflict wait queue for when selects collide (opaque type) */
157 struct wait_queue select_conflict_queue;
158
159 /*
160 * Init routine called from bsd_init.c
161 */
162 void select_wait_queue_init(void);
163 void
164 select_wait_queue_init(void)
165 {
166 wait_queue_init(&select_conflict_queue, SYNC_POLICY_FIFO);
167 }
168
169
170 #if NETAT
171 extern int appletalk_inited;
172 #endif /* NETAT */
173
174 #define f_flag f_fglob->fg_flag
175 #define f_type f_fglob->fg_type
176 #define f_msgcount f_fglob->fg_msgcount
177 #define f_cred f_fglob->fg_cred
178 #define f_ops f_fglob->fg_ops
179 #define f_offset f_fglob->fg_offset
180 #define f_data f_fglob->fg_data
181
182 /*
183 * Read system call.
184 *
185 * Returns: 0 Success
186 * preparefileread:EBADF
187 * preparefileread:ESPIPE
188 * preparefileread:ENXIO
189 * preparefileread:EBADF
190 * dofileread:???
191 */
192 int
193 read(struct proc *p, struct read_args *uap, user_ssize_t *retval)
194 {
195 __pthread_testcancel(1);
196 return(read_nocancel(p, (struct read_nocancel_args *)uap, retval));
197 }
198
199 int
200 read_nocancel(struct proc *p, struct read_nocancel_args *uap, user_ssize_t *retval)
201 {
202 struct fileproc *fp;
203 int error;
204 int fd = uap->fd;
205 struct vfs_context context;
206
207 if ( (error = preparefileread(p, &fp, fd, 0)) )
208 return (error);
209
210 context = *(vfs_context_current());
211 context.vc_ucred = fp->f_fglob->fg_cred;
212
213 error = dofileread(&context, fp, uap->cbuf, uap->nbyte,
214 (off_t)-1, 0, retval);
215
216 donefileread(p, fp, fd);
217
218 return (error);
219 }
220
221 /*
222 * Pread system call
223 *
224 * Returns: 0 Success
225 * preparefileread:EBADF
226 * preparefileread:ESPIPE
227 * preparefileread:ENXIO
228 * preparefileread:EBADF
229 * dofileread:???
230 */
231 int
232 pread(struct proc *p, struct pread_args *uap, user_ssize_t *retval)
233 {
234 __pthread_testcancel(1);
235 return(pread_nocancel(p, (struct pread_nocancel_args *)uap, retval));
236 }
237
238 int
239 pread_nocancel(struct proc *p, struct pread_nocancel_args *uap, user_ssize_t *retval)
240 {
241 struct fileproc *fp = NULL; /* fp set by preparefileread() */
242 int fd = uap->fd;
243 int error;
244 struct vfs_context context;
245
246 if ( (error = preparefileread(p, &fp, fd, 1)) )
247 goto out;
248
249 context = *(vfs_context_current());
250 context.vc_ucred = fp->f_fglob->fg_cred;
251
252 error = dofileread(&context, fp, uap->buf, uap->nbyte,
253 uap->offset, FOF_OFFSET, retval);
254
255 donefileread(p, fp, fd);
256
257 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_SC_EXTENDED_INFO, SYS_pread) | DBG_FUNC_NONE),
258 uap->fd, uap->nbyte, (unsigned int)((uap->offset >> 32)), (unsigned int)(uap->offset), 0);
259
260 out:
261 return (error);
262 }
263
264 /*
265 * Code common for read and pread
266 */
267
268 void
269 donefileread(struct proc *p, struct fileproc *fp, int fd)
270 {
271 proc_fdlock_spin(p);
272
273 fp->f_flags &= ~FP_INCHRREAD;
274
275 fp_drop(p, fd, fp, 1);
276 proc_fdunlock(p);
277 }
278
279 /*
280 * Returns: 0 Success
281 * EBADF
282 * ESPIPE
283 * ENXIO
284 * fp_lookup:EBADF
285 * fo_read:???
286 */
287 int
288 preparefileread(struct proc *p, struct fileproc **fp_ret, int fd, int check_for_pread)
289 {
290 vnode_t vp;
291 int error;
292 struct fileproc *fp;
293
294 AUDIT_ARG(fd, fd);
295
296 proc_fdlock_spin(p);
297
298 error = fp_lookup(p, fd, &fp, 1);
299
300 if (error) {
301 proc_fdunlock(p);
302 return (error);
303 }
304 if ((fp->f_flag & FREAD) == 0) {
305 error = EBADF;
306 goto out;
307 }
308 if (check_for_pread && (fp->f_type != DTYPE_VNODE)) {
309 error = ESPIPE;
310 goto out;
311 }
312 if (fp->f_type == DTYPE_VNODE) {
313 vp = (struct vnode *)fp->f_fglob->fg_data;
314
315 if (check_for_pread && (vnode_isfifo(vp))) {
316 error = ESPIPE;
317 goto out;
318 }
319 if (check_for_pread && (vp->v_flag & VISTTY)) {
320 error = ENXIO;
321 goto out;
322 }
323 if (vp->v_type == VCHR)
324 fp->f_flags |= FP_INCHRREAD;
325 }
326
327 *fp_ret = fp;
328
329 proc_fdunlock(p);
330 return (0);
331
332 out:
333 fp_drop(p, fd, fp, 1);
334 proc_fdunlock(p);
335 return (error);
336 }
337
338
339 /*
340 * Returns: 0 Success
341 * EINVAL
342 * fo_read:???
343 */
344 __private_extern__ int
345 dofileread(vfs_context_t ctx, struct fileproc *fp,
346 user_addr_t bufp, user_size_t nbyte, off_t offset, int flags,
347 user_ssize_t *retval)
348 {
349 uio_t auio;
350 user_ssize_t bytecnt;
351 long error = 0;
352 char uio_buf[ UIO_SIZEOF(1) ];
353
354 if (nbyte > INT_MAX)
355 return (EINVAL);
356
357 if (IS_64BIT_PROCESS(vfs_context_proc(ctx))) {
358 auio = uio_createwithbuffer(1, offset, UIO_USERSPACE64, UIO_READ,
359 &uio_buf[0], sizeof(uio_buf));
360 } else {
361 auio = uio_createwithbuffer(1, offset, UIO_USERSPACE32, UIO_READ,
362 &uio_buf[0], sizeof(uio_buf));
363 }
364 uio_addiov(auio, bufp, nbyte);
365
366 bytecnt = nbyte;
367
368 if ((error = fo_read(fp, auio, flags, ctx))) {
369 if (uio_resid(auio) != bytecnt && (error == ERESTART ||
370 error == EINTR || error == EWOULDBLOCK))
371 error = 0;
372 }
373 bytecnt -= uio_resid(auio);
374
375 *retval = bytecnt;
376
377 return (error);
378 }
379
380 /*
381 * Scatter read system call.
382 *
383 * Returns: 0 Success
384 * EINVAL
385 * ENOMEM
386 * copyin:EFAULT
387 * rd_uio:???
388 */
389 int
390 readv(struct proc *p, struct readv_args *uap, user_ssize_t *retval)
391 {
392 __pthread_testcancel(1);
393 return(readv_nocancel(p, (struct readv_nocancel_args *)uap, retval));
394 }
395
396 int
397 readv_nocancel(struct proc *p, struct readv_nocancel_args *uap, user_ssize_t *retval)
398 {
399 uio_t auio = NULL;
400 int error;
401 struct user_iovec *iovp;
402
403 /* Verify range bedfore calling uio_create() */
404 if (uap->iovcnt <= 0 || uap->iovcnt > UIO_MAXIOV)
405 return (EINVAL);
406
407 /* allocate a uio large enough to hold the number of iovecs passed */
408 auio = uio_create(uap->iovcnt, 0,
409 (IS_64BIT_PROCESS(p) ? UIO_USERSPACE64 : UIO_USERSPACE32),
410 UIO_READ);
411
412 /* get location of iovecs within the uio. then copyin the iovecs from
413 * user space.
414 */
415 iovp = uio_iovsaddr(auio);
416 if (iovp == NULL) {
417 error = ENOMEM;
418 goto ExitThisRoutine;
419 }
420 error = copyin_user_iovec_array(uap->iovp,
421 IS_64BIT_PROCESS(p) ? UIO_USERSPACE64 : UIO_USERSPACE32,
422 uap->iovcnt, iovp);
423 if (error) {
424 goto ExitThisRoutine;
425 }
426
427 /* finalize uio_t for use and do the IO
428 */
429 uio_calculateresid(auio);
430 error = rd_uio(p, uap->fd, auio, retval);
431
432 ExitThisRoutine:
433 if (auio != NULL) {
434 uio_free(auio);
435 }
436 return (error);
437 }
438
439 /*
440 * Write system call
441 *
442 * Returns: 0 Success
443 * EBADF
444 * fp_lookup:EBADF
445 * dofilewrite:???
446 */
447 int
448 write(struct proc *p, struct write_args *uap, user_ssize_t *retval)
449 {
450 __pthread_testcancel(1);
451 return(write_nocancel(p, (struct write_nocancel_args *)uap, retval));
452
453 }
454
455 int
456 write_nocancel(struct proc *p, struct write_nocancel_args *uap, user_ssize_t *retval)
457 {
458 struct fileproc *fp;
459 int error;
460 int fd = uap->fd;
461
462 AUDIT_ARG(fd, fd);
463
464 error = fp_lookup(p,fd,&fp,0);
465 if (error)
466 return(error);
467 if ((fp->f_flag & FWRITE) == 0) {
468 error = EBADF;
469 } else {
470 struct vfs_context context = *(vfs_context_current());
471 context.vc_ucred = fp->f_fglob->fg_cred;
472
473 error = dofilewrite(&context, fp, uap->cbuf, uap->nbyte,
474 (off_t)-1, 0, retval);
475 }
476 if (error == 0)
477 fp_drop_written(p, fd, fp);
478 else
479 fp_drop(p, fd, fp, 0);
480 return(error);
481 }
482
483 /*
484 * pwrite system call
485 *
486 * Returns: 0 Success
487 * EBADF
488 * ESPIPE
489 * ENXIO
490 * EINVAL
491 * fp_lookup:EBADF
492 * dofilewrite:???
493 */
494 int
495 pwrite(struct proc *p, struct pwrite_args *uap, user_ssize_t *retval)
496 {
497 __pthread_testcancel(1);
498 return(pwrite_nocancel(p, (struct pwrite_nocancel_args *)uap, retval));
499 }
500
501 int
502 pwrite_nocancel(struct proc *p, struct pwrite_nocancel_args *uap, user_ssize_t *retval)
503 {
504 struct fileproc *fp;
505 int error;
506 int fd = uap->fd;
507 vnode_t vp = (vnode_t)0;
508
509 AUDIT_ARG(fd, fd);
510
511 error = fp_lookup(p,fd,&fp,0);
512 if (error)
513 return(error);
514
515 if ((fp->f_flag & FWRITE) == 0) {
516 error = EBADF;
517 } else {
518 struct vfs_context context = *vfs_context_current();
519 context.vc_ucred = fp->f_fglob->fg_cred;
520
521 if (fp->f_type != DTYPE_VNODE) {
522 error = ESPIPE;
523 goto errout;
524 }
525 vp = (vnode_t)fp->f_fglob->fg_data;
526 if (vnode_isfifo(vp)) {
527 error = ESPIPE;
528 goto errout;
529 }
530 if ((vp->v_flag & VISTTY)) {
531 error = ENXIO;
532 goto errout;
533 }
534 if (uap->offset == (off_t)-1) {
535 error = EINVAL;
536 goto errout;
537 }
538
539 error = dofilewrite(&context, fp, uap->buf, uap->nbyte,
540 uap->offset, FOF_OFFSET, retval);
541 }
542 errout:
543 if (error == 0)
544 fp_drop_written(p, fd, fp);
545 else
546 fp_drop(p, fd, fp, 0);
547
548 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_SC_EXTENDED_INFO, SYS_pwrite) | DBG_FUNC_NONE),
549 uap->fd, uap->nbyte, (unsigned int)((uap->offset >> 32)), (unsigned int)(uap->offset), 0);
550
551 return(error);
552 }
553
554 /*
555 * Returns: 0 Success
556 * EINVAL
557 * <fo_write>:EPIPE
558 * <fo_write>:??? [indirect through struct fileops]
559 */
560 __private_extern__ int
561 dofilewrite(vfs_context_t ctx, struct fileproc *fp,
562 user_addr_t bufp, user_size_t nbyte, off_t offset, int flags,
563 user_ssize_t *retval)
564 {
565 uio_t auio;
566 long error = 0;
567 user_ssize_t bytecnt;
568 char uio_buf[ UIO_SIZEOF(1) ];
569
570 if (nbyte > INT_MAX)
571 return (EINVAL);
572
573 if (IS_64BIT_PROCESS(vfs_context_proc(ctx))) {
574 auio = uio_createwithbuffer(1, offset, UIO_USERSPACE64, UIO_WRITE,
575 &uio_buf[0], sizeof(uio_buf));
576 } else {
577 auio = uio_createwithbuffer(1, offset, UIO_USERSPACE32, UIO_WRITE,
578 &uio_buf[0], sizeof(uio_buf));
579 }
580 uio_addiov(auio, bufp, nbyte);
581
582 bytecnt = nbyte;
583 if ((error = fo_write(fp, auio, flags, ctx))) {
584 if (uio_resid(auio) != bytecnt && (error == ERESTART ||
585 error == EINTR || error == EWOULDBLOCK))
586 error = 0;
587 /* The socket layer handles SIGPIPE */
588 if (error == EPIPE && fp->f_type != DTYPE_SOCKET &&
589 (fp->f_fglob->fg_lflags & FG_NOSIGPIPE) == 0) {
590 /* XXX Raise the signal on the thread? */
591 psignal(vfs_context_proc(ctx), SIGPIPE);
592 }
593 }
594 bytecnt -= uio_resid(auio);
595 *retval = bytecnt;
596
597 return (error);
598 }
599
600 /*
601 * Gather write system call
602 */
603 int
604 writev(struct proc *p, struct writev_args *uap, user_ssize_t *retval)
605 {
606 __pthread_testcancel(1);
607 return(writev_nocancel(p, (struct writev_nocancel_args *)uap, retval));
608 }
609
610 int
611 writev_nocancel(struct proc *p, struct writev_nocancel_args *uap, user_ssize_t *retval)
612 {
613 uio_t auio = NULL;
614 int error;
615 struct user_iovec *iovp;
616
617 AUDIT_ARG(fd, uap->fd);
618
619 /* Verify range bedfore calling uio_create() */
620 if (uap->iovcnt <= 0 || uap->iovcnt > UIO_MAXIOV)
621 return (EINVAL);
622
623 /* allocate a uio large enough to hold the number of iovecs passed */
624 auio = uio_create(uap->iovcnt, 0,
625 (IS_64BIT_PROCESS(p) ? UIO_USERSPACE64 : UIO_USERSPACE32),
626 UIO_WRITE);
627
628 /* get location of iovecs within the uio. then copyin the iovecs from
629 * user space.
630 */
631 iovp = uio_iovsaddr(auio);
632 if (iovp == NULL) {
633 error = ENOMEM;
634 goto ExitThisRoutine;
635 }
636 error = copyin_user_iovec_array(uap->iovp,
637 IS_64BIT_PROCESS(p) ? UIO_USERSPACE64 : UIO_USERSPACE32,
638 uap->iovcnt, iovp);
639 if (error) {
640 goto ExitThisRoutine;
641 }
642
643 /* finalize uio_t for use and do the IO
644 */
645 uio_calculateresid(auio);
646 error = wr_uio(p, uap->fd, auio, retval);
647
648 ExitThisRoutine:
649 if (auio != NULL) {
650 uio_free(auio);
651 }
652 return (error);
653 }
654
655
656 int
657 wr_uio(struct proc *p, int fdes, uio_t uio, user_ssize_t *retval)
658 {
659 struct fileproc *fp;
660 int error;
661 user_ssize_t count;
662 struct vfs_context context = *vfs_context_current();
663
664 error = fp_lookup(p,fdes,&fp,0);
665 if (error)
666 return(error);
667
668 if ((fp->f_flag & FWRITE) == 0) {
669 error = EBADF;
670 goto out;
671 }
672 count = uio_resid(uio);
673
674 context.vc_ucred = fp->f_cred;
675 error = fo_write(fp, uio, 0, &context);
676 if (error) {
677 if (uio_resid(uio) != count && (error == ERESTART ||
678 error == EINTR || error == EWOULDBLOCK))
679 error = 0;
680 /* The socket layer handles SIGPIPE */
681 if (error == EPIPE && fp->f_type != DTYPE_SOCKET &&
682 (fp->f_fglob->fg_lflags & FG_NOSIGPIPE) == 0)
683 psignal(p, SIGPIPE);
684 }
685 *retval = count - uio_resid(uio);
686
687 out:
688 if (error == 0)
689 fp_drop_written(p, fdes, fp);
690 else
691 fp_drop(p, fdes, fp, 0);
692 return(error);
693 }
694
695
696 int
697 rd_uio(struct proc *p, int fdes, uio_t uio, user_ssize_t *retval)
698 {
699 struct fileproc *fp;
700 int error;
701 user_ssize_t count;
702 struct vfs_context context = *vfs_context_current();
703
704 if ( (error = preparefileread(p, &fp, fdes, 0)) )
705 return (error);
706
707 count = uio_resid(uio);
708
709 context.vc_ucred = fp->f_cred;
710
711 error = fo_read(fp, uio, 0, &context);
712
713 if (error) {
714 if (uio_resid(uio) != count && (error == ERESTART ||
715 error == EINTR || error == EWOULDBLOCK))
716 error = 0;
717 }
718 *retval = count - uio_resid(uio);
719
720 donefileread(p, fp, fdes);
721
722 return (error);
723 }
724
725 /*
726 * Ioctl system call
727 *
728 * Returns: 0 Success
729 * EBADF
730 * ENOTTY
731 * ENOMEM
732 * ESRCH
733 * copyin:EFAULT
734 * copyoutEFAULT
735 * fp_lookup:EBADF Bad file descriptor
736 * fo_ioctl:???
737 */
738 int
739 ioctl(struct proc *p, struct ioctl_args *uap, __unused int32_t *retval)
740 {
741 struct fileproc *fp;
742 u_long com;
743 int error = 0;
744 u_int size;
745 caddr_t datap, memp;
746 boolean_t is64bit;
747 int tmp;
748 #define STK_PARAMS 128
749 char stkbuf[STK_PARAMS];
750 int fd = uap->fd;
751 struct vfs_context context = *vfs_context_current();
752
753 AUDIT_ARG(fd, uap->fd);
754 AUDIT_ARG(addr, uap->data);
755
756 is64bit = proc_is64bit(p);
757 #if CONFIG_AUDIT
758 if (is64bit)
759 AUDIT_ARG(value64, uap->com);
760 else
761 AUDIT_ARG(cmd, CAST_DOWN_EXPLICIT(int, uap->com));
762 #endif /* CONFIG_AUDIT */
763
764 proc_fdlock(p);
765 error = fp_lookup(p,fd,&fp,1);
766 if (error) {
767 proc_fdunlock(p);
768 return(error);
769 }
770
771 AUDIT_ARG(file, p, fp);
772
773 if ((fp->f_flag & (FREAD | FWRITE)) == 0) {
774 error = EBADF;
775 goto out;
776 }
777
778 context.vc_ucred = fp->f_fglob->fg_cred;
779
780 #if CONFIG_MACF
781 error = mac_file_check_ioctl(context.vc_ucred, fp->f_fglob, uap->com);
782 if (error)
783 goto out;
784 #endif
785
786 #if NETAT
787 /*
788 * ### LD 6/11/97 Hack Alert: this is to get AppleTalk to work
789 * while implementing an ATioctl system call
790 */
791 {
792 if (appletalk_inited && ((uap->com & 0x0000FFFF) == 0xff99)) {
793 u_long fixed_command;
794
795 #ifdef APPLETALK_DEBUG
796 kprintf("ioctl: special AppleTalk \n");
797 #endif
798 datap = &stkbuf[0];
799 *(user_addr_t *)datap = uap->data;
800 fixed_command = _IOW(0, 0xff99, uap->data);
801 error = fo_ioctl(fp, fixed_command, datap, &context);
802 goto out;
803 }
804 }
805
806 #endif /* NETAT */
807
808
809 switch (com = uap->com) {
810 case FIONCLEX:
811 *fdflags(p, uap->fd) &= ~UF_EXCLOSE;
812 error =0;
813 goto out;
814 case FIOCLEX:
815 *fdflags(p, uap->fd) |= UF_EXCLOSE;
816 error =0;
817 goto out;
818 }
819
820 /*
821 * Interpret high order word to find amount of data to be
822 * copied to/from the user's address space.
823 */
824 size = IOCPARM_LEN(com);
825 if (size > IOCPARM_MAX) {
826 error = ENOTTY;
827 goto out;
828 }
829 memp = NULL;
830 if (size > sizeof (stkbuf)) {
831 proc_fdunlock(p);
832 if ((memp = (caddr_t)kalloc(size)) == 0) {
833 proc_fdlock(p);
834 error = ENOMEM;
835 goto out;
836 }
837 proc_fdlock(p);
838 datap = memp;
839 } else
840 datap = &stkbuf[0];
841 if (com&IOC_IN) {
842 if (size) {
843 proc_fdunlock(p);
844 error = copyin(uap->data, datap, size);
845 if (error) {
846 if (memp)
847 kfree(memp, size);
848 proc_fdlock(p);
849 goto out;
850 }
851 proc_fdlock(p);
852 } else {
853 /* XXX - IOC_IN and no size? we should proably return an error here!! */
854 if (is64bit) {
855 *(user_addr_t *)datap = uap->data;
856 }
857 else {
858 *(uint32_t *)datap = (uint32_t)uap->data;
859 }
860 }
861 } else if ((com&IOC_OUT) && size)
862 /*
863 * Zero the buffer so the user always
864 * gets back something deterministic.
865 */
866 bzero(datap, size);
867 else if (com&IOC_VOID) {
868 /* XXX - this is odd since IOC_VOID means no parameters */
869 if (is64bit) {
870 *(user_addr_t *)datap = uap->data;
871 }
872 else {
873 *(uint32_t *)datap = (uint32_t)uap->data;
874 }
875 }
876
877 switch (com) {
878
879 case FIONBIO:
880 if ( (tmp = *(int *)datap) )
881 fp->f_flag |= FNONBLOCK;
882 else
883 fp->f_flag &= ~FNONBLOCK;
884 error = fo_ioctl(fp, FIONBIO, (caddr_t)&tmp, &context);
885 break;
886
887 case FIOASYNC:
888 if ( (tmp = *(int *)datap) )
889 fp->f_flag |= FASYNC;
890 else
891 fp->f_flag &= ~FASYNC;
892 error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp, &context);
893 break;
894
895 case FIOSETOWN:
896 tmp = *(int *)datap;
897 if (fp->f_type == DTYPE_SOCKET) {
898 ((struct socket *)fp->f_data)->so_pgid = tmp;
899 error = 0;
900 break;
901 }
902 if (fp->f_type == DTYPE_PIPE) {
903 error = fo_ioctl(fp, (int)TIOCSPGRP, (caddr_t)&tmp, &context);
904 break;
905 }
906 if (tmp <= 0) {
907 tmp = -tmp;
908 } else {
909 struct proc *p1 = proc_find(tmp);
910 if (p1 == 0) {
911 error = ESRCH;
912 break;
913 }
914 tmp = p1->p_pgrpid;
915 proc_rele(p1);
916 }
917 error = fo_ioctl(fp, (int)TIOCSPGRP, (caddr_t)&tmp, &context);
918 break;
919
920 case FIOGETOWN:
921 if (fp->f_type == DTYPE_SOCKET) {
922 error = 0;
923 *(int *)datap = ((struct socket *)fp->f_data)->so_pgid;
924 break;
925 }
926 error = fo_ioctl(fp, TIOCGPGRP, datap, &context);
927 *(int *)datap = -*(int *)datap;
928 break;
929
930 default:
931 error = fo_ioctl(fp, com, datap, &context);
932 /*
933 * Copy any data to user, size was
934 * already set and checked above.
935 */
936 if (error == 0 && (com&IOC_OUT) && size)
937 error = copyout(datap, uap->data, (u_int)size);
938 break;
939 }
940 proc_fdunlock(p);
941 if (memp)
942 kfree(memp, size);
943 proc_fdlock(p);
944 out:
945 fp_drop(p, fd, fp, 1);
946 proc_fdunlock(p);
947 return(error);
948 }
949
950 int selwait, nselcoll;
951 #define SEL_FIRSTPASS 1
952 #define SEL_SECONDPASS 2
953 extern int selcontinue(int error);
954 extern int selprocess(int error, int sel_pass);
955 static int selscan(struct proc *p, struct _select * sel,
956 int nfd, int32_t *retval, int sel_pass, wait_queue_sub_t wqsub);
957 static int selcount(struct proc *p, u_int32_t *ibits, int nfd, int *count);
958 static int seldrop_locked(struct proc *p, u_int32_t *ibits, int nfd, int lim, int *need_wakeup, int fromselcount);
959 static int seldrop(struct proc *p, u_int32_t *ibits, int nfd);
960
961 /*
962 * Select system call.
963 *
964 * Returns: 0 Success
965 * EINVAL Invalid argument
966 * EAGAIN Nonconformant error if allocation fails
967 * selprocess:???
968 */
969 int
970 select(struct proc *p, struct select_args *uap, int32_t *retval)
971 {
972 __pthread_testcancel(1);
973 return(select_nocancel(p, (struct select_nocancel_args *)uap, retval));
974 }
975
976 int
977 select_nocancel(struct proc *p, struct select_nocancel_args *uap, int32_t *retval)
978 {
979 int error = 0;
980 u_int ni, nw, size;
981 thread_t th_act;
982 struct uthread *uth;
983 struct _select *sel;
984 int needzerofill = 1;
985 int count = 0;
986
987 th_act = current_thread();
988 uth = get_bsdthread_info(th_act);
989 sel = &uth->uu_select;
990 retval = (int *)get_bsduthreadrval(th_act);
991 *retval = 0;
992
993 if (uap->nd < 0) {
994 return (EINVAL);
995 }
996
997 /* select on thread of process that already called proc_exit() */
998 if (p->p_fd == NULL) {
999 return (EBADF);
1000 }
1001
1002 if (uap->nd > p->p_fd->fd_nfiles)
1003 uap->nd = p->p_fd->fd_nfiles; /* forgiving; slightly wrong */
1004
1005 nw = howmany(uap->nd, NFDBITS);
1006 ni = nw * sizeof(fd_mask);
1007
1008 /*
1009 * if the previously allocated space for the bits is smaller than
1010 * what is requested or no space has yet been allocated for this
1011 * thread, allocate enough space now.
1012 *
1013 * Note: If this process fails, select() will return EAGAIN; this
1014 * is the same thing pool() returns in a no-memory situation, but
1015 * it is not a POSIX compliant error code for select().
1016 */
1017 if (sel->nbytes < (3 * ni)) {
1018 int nbytes = 3 * ni;
1019
1020 /* Free previous allocation, if any */
1021 if (sel->ibits != NULL)
1022 FREE(sel->ibits, M_TEMP);
1023 if (sel->obits != NULL) {
1024 FREE(sel->obits, M_TEMP);
1025 /* NULL out; subsequent ibits allocation may fail */
1026 sel->obits = NULL;
1027 }
1028
1029 MALLOC(sel->ibits, u_int32_t *, nbytes, M_TEMP, M_WAITOK | M_ZERO);
1030 if (sel->ibits == NULL)
1031 return (EAGAIN);
1032 MALLOC(sel->obits, u_int32_t *, nbytes, M_TEMP, M_WAITOK | M_ZERO);
1033 if (sel->obits == NULL) {
1034 FREE(sel->ibits, M_TEMP);
1035 sel->ibits = NULL;
1036 return (EAGAIN);
1037 }
1038 sel->nbytes = nbytes;
1039 needzerofill = 0;
1040 }
1041
1042 if (needzerofill) {
1043 bzero((caddr_t)sel->ibits, sel->nbytes);
1044 bzero((caddr_t)sel->obits, sel->nbytes);
1045 }
1046
1047 /*
1048 * get the bits from the user address space
1049 */
1050 #define getbits(name, x) \
1051 do { \
1052 if (uap->name && (error = copyin(uap->name, \
1053 (caddr_t)&sel->ibits[(x) * nw], ni))) \
1054 goto continuation; \
1055 } while (0)
1056
1057 getbits(in, 0);
1058 getbits(ou, 1);
1059 getbits(ex, 2);
1060 #undef getbits
1061
1062 if (uap->tv) {
1063 struct timeval atv;
1064 if (IS_64BIT_PROCESS(p)) {
1065 struct user64_timeval atv64;
1066 error = copyin(uap->tv, (caddr_t)&atv64, sizeof(atv64));
1067 /* Loses resolution - assume timeout < 68 years */
1068 atv.tv_sec = atv64.tv_sec;
1069 atv.tv_usec = atv64.tv_usec;
1070 } else {
1071 struct user32_timeval atv32;
1072 error = copyin(uap->tv, (caddr_t)&atv32, sizeof(atv32));
1073 atv.tv_sec = atv32.tv_sec;
1074 atv.tv_usec = atv32.tv_usec;
1075 }
1076 if (error)
1077 goto continuation;
1078 if (itimerfix(&atv)) {
1079 error = EINVAL;
1080 goto continuation;
1081 }
1082
1083 clock_absolutetime_interval_to_deadline(
1084 tvtoabstime(&atv), &sel->abstime);
1085 }
1086 else
1087 sel->abstime = 0;
1088
1089 if ( (error = selcount(p, sel->ibits, uap->nd, &count)) ) {
1090 goto continuation;
1091 }
1092
1093 sel->count = count;
1094 size = SIZEOF_WAITQUEUE_SET + (count * SIZEOF_WAITQUEUE_LINK);
1095 if (uth->uu_allocsize) {
1096 if (uth->uu_wqset == 0)
1097 panic("select: wql memory smashed");
1098 /* needed for the select now */
1099 if (size > uth->uu_allocsize) {
1100 kfree(uth->uu_wqset, uth->uu_allocsize);
1101 uth->uu_allocsize = size;
1102 uth->uu_wqset = (wait_queue_set_t)kalloc(size);
1103 if (uth->uu_wqset == (wait_queue_set_t)NULL)
1104 panic("failed to allocate memory for waitqueue\n");
1105 }
1106 } else {
1107 uth->uu_allocsize = size;
1108 uth->uu_wqset = (wait_queue_set_t)kalloc(uth->uu_allocsize);
1109 if (uth->uu_wqset == (wait_queue_set_t)NULL)
1110 panic("failed to allocate memory for waitqueue\n");
1111 }
1112 bzero(uth->uu_wqset, size);
1113 sel->wql = (char *)uth->uu_wqset + SIZEOF_WAITQUEUE_SET;
1114 wait_queue_set_init(uth->uu_wqset, (SYNC_POLICY_FIFO | SYNC_POLICY_PREPOST));
1115
1116 continuation:
1117
1118 if (error) {
1119 /*
1120 * We have already cleaned up any state we established,
1121 * either locally or as a result of selcount(). We don't
1122 * need to wait_subqueue_unlink_all(), since we haven't set
1123 * anything at this point.
1124 */
1125 return (error);
1126 }
1127
1128 return selprocess(0, SEL_FIRSTPASS);
1129 }
1130
1131 int
1132 selcontinue(int error)
1133 {
1134 return selprocess(error, SEL_SECONDPASS);
1135 }
1136
1137
1138 /*
1139 * selprocess
1140 *
1141 * Parameters: error The error code from our caller
1142 * sel_pass The pass we are on
1143 */
1144 int
1145 selprocess(int error, int sel_pass)
1146 {
1147 int ncoll;
1148 u_int ni, nw;
1149 thread_t th_act;
1150 struct uthread *uth;
1151 struct proc *p;
1152 struct select_args *uap;
1153 int *retval;
1154 struct _select *sel;
1155 int unwind = 1;
1156 int prepost = 0;
1157 int somewakeup = 0;
1158 int doretry = 0;
1159 wait_result_t wait_result;
1160
1161 p = current_proc();
1162 th_act = current_thread();
1163 uap = (struct select_args *)get_bsduthreadarg(th_act);
1164 retval = (int *)get_bsduthreadrval(th_act);
1165 uth = get_bsdthread_info(th_act);
1166 sel = &uth->uu_select;
1167
1168 if ((error != 0) && (sel_pass == SEL_FIRSTPASS))
1169 unwind = 0;
1170 if (sel->count == 0)
1171 unwind = 0;
1172 retry:
1173 if (error != 0) {
1174 sel_pass = SEL_FIRSTPASS; /* Reset for seldrop */
1175 goto done;
1176 }
1177
1178 ncoll = nselcoll;
1179 OSBitOrAtomic(P_SELECT, &p->p_flag);
1180 /* skip scans if the select is just for timeouts */
1181 if (sel->count) {
1182 /*
1183 * Clear out any dangling refs from prior calls; technically
1184 * there should not be any.
1185 */
1186 if (sel_pass == SEL_FIRSTPASS)
1187 wait_queue_sub_clearrefs(uth->uu_wqset);
1188
1189 error = selscan(p, sel, uap->nd, retval, sel_pass, (wait_queue_sub_t)uth->uu_wqset);
1190 if (error || *retval) {
1191 goto done;
1192 }
1193 if (prepost) {
1194 /* if the select of log, then we canwakeup and discover some one
1195 * else already read the data; go toselct again if time permits
1196 */
1197 prepost = 0;
1198 doretry = 1;
1199 }
1200 if (somewakeup) {
1201 somewakeup = 0;
1202 doretry = 1;
1203 }
1204 }
1205
1206 if (uap->tv) {
1207 uint64_t now;
1208
1209 clock_get_uptime(&now);
1210 if (now >= sel->abstime)
1211 goto done;
1212 }
1213
1214 if (doretry) {
1215 /* cleanup obits and try again */
1216 doretry = 0;
1217 sel_pass = SEL_FIRSTPASS;
1218 goto retry;
1219 }
1220
1221 /*
1222 * To effect a poll, the timeout argument should be
1223 * non-nil, pointing to a zero-valued timeval structure.
1224 */
1225 if (uap->tv && sel->abstime == 0) {
1226 goto done;
1227 }
1228
1229 /* No spurious wakeups due to colls,no need to check for them */
1230 if ((sel_pass == SEL_SECONDPASS) || ((p->p_flag & P_SELECT) == 0)) {
1231 sel_pass = SEL_FIRSTPASS;
1232 goto retry;
1233 }
1234
1235 OSBitAndAtomic(~((uint32_t)P_SELECT), &p->p_flag);
1236
1237 /* if the select is just for timeout skip check */
1238 if (sel->count &&(sel_pass == SEL_SECONDPASS))
1239 panic("selprocess: 2nd pass assertwaiting");
1240
1241 /* Wait Queue Subordinate has waitqueue as first element */
1242 wait_result = wait_queue_assert_wait((wait_queue_t)uth->uu_wqset,
1243 NULL, THREAD_ABORTSAFE, sel->abstime);
1244 if (wait_result != THREAD_AWAKENED) {
1245 /* there are no preposted events */
1246 error = tsleep1(NULL, PSOCK | PCATCH,
1247 "select", 0, selcontinue);
1248 } else {
1249 prepost = 1;
1250 error = 0;
1251 }
1252
1253 if (error == 0) {
1254 sel_pass = SEL_SECONDPASS;
1255 if (!prepost)
1256 somewakeup = 1;
1257 goto retry;
1258 }
1259 done:
1260 if (unwind) {
1261 wait_subqueue_unlink_all(uth->uu_wqset);
1262 seldrop(p, sel->ibits, uap->nd);
1263 }
1264 OSBitAndAtomic(~((uint32_t)P_SELECT), &p->p_flag);
1265 /* select is not restarted after signals... */
1266 if (error == ERESTART)
1267 error = EINTR;
1268 if (error == EWOULDBLOCK)
1269 error = 0;
1270 nw = howmany(uap->nd, NFDBITS);
1271 ni = nw * sizeof(fd_mask);
1272
1273 #define putbits(name, x) \
1274 do { \
1275 if (uap->name && (error2 = \
1276 copyout((caddr_t)&sel->obits[(x) * nw], uap->name, ni))) \
1277 error = error2; \
1278 } while (0)
1279
1280 if (error == 0) {
1281 int error2;
1282
1283 putbits(in, 0);
1284 putbits(ou, 1);
1285 putbits(ex, 2);
1286 #undef putbits
1287 }
1288 return(error);
1289 }
1290
1291
1292 /*
1293 * selscan
1294 *
1295 * Parameters: p Process performing the select
1296 * sel The per-thread select context structure
1297 * nfd The number of file descriptors to scan
1298 * retval The per thread system call return area
1299 * sel_pass Which pass this is; allowed values are
1300 * SEL_FIRSTPASS and SEL_SECONDPASS
1301 * wqsub The per thread wait queue set
1302 *
1303 * Returns: 0 Success
1304 * EIO Invalid p->p_fd field XXX Obsolete?
1305 * EBADF One of the files in the bit vector is
1306 * invalid.
1307 */
1308 static int
1309 selscan(struct proc *p, struct _select *sel, int nfd, int32_t *retval,
1310 int sel_pass, wait_queue_sub_t wqsub)
1311 {
1312 struct filedesc *fdp = p->p_fd;
1313 int msk, i, j, fd;
1314 u_int32_t bits;
1315 struct fileproc *fp;
1316 int n = 0; /* count of bits */
1317 int nc = 0; /* bit vector offset (nc'th bit) */
1318 static int flag[3] = { FREAD, FWRITE, 0 };
1319 u_int32_t *iptr, *optr;
1320 u_int nw;
1321 u_int32_t *ibits, *obits;
1322 char * wql;
1323 char * wql_ptr;
1324 int count;
1325 struct vfs_context context = *vfs_context_current();
1326
1327 /*
1328 * Problems when reboot; due to MacOSX signal probs
1329 * in Beaker1C ; verify that the p->p_fd is valid
1330 */
1331 if (fdp == NULL) {
1332 *retval=0;
1333 return(EIO);
1334 }
1335 ibits = sel->ibits;
1336 obits = sel->obits;
1337 wql = sel->wql;
1338
1339 nw = howmany(nfd, NFDBITS);
1340
1341 count = sel->count;
1342
1343 nc = 0;
1344 if (count) {
1345 proc_fdlock(p);
1346 for (msk = 0; msk < 3; msk++) {
1347 iptr = (u_int32_t *)&ibits[msk * nw];
1348 optr = (u_int32_t *)&obits[msk * nw];
1349
1350 for (i = 0; i < nfd; i += NFDBITS) {
1351 bits = iptr[i/NFDBITS];
1352
1353 while ((j = ffs(bits)) && (fd = i + --j) < nfd) {
1354 bits &= ~(1 << j);
1355 fp = fdp->fd_ofiles[fd];
1356
1357 if (fp == NULL || (fdp->fd_ofileflags[fd] & UF_RESERVED)) {
1358 /*
1359 * If we abort because of a bad
1360 * fd, let the caller unwind...
1361 */
1362 proc_fdunlock(p);
1363 return(EBADF);
1364 }
1365 if (sel_pass == SEL_SECONDPASS) {
1366 wql_ptr = (char *)0;
1367 if ((fp->f_flags & FP_INSELECT) && (fp->f_waddr == (void *)wqsub)) {
1368 fp->f_flags &= ~FP_INSELECT;
1369 fp->f_waddr = (void *)0;
1370 }
1371 } else {
1372 wql_ptr = (wql + nc * SIZEOF_WAITQUEUE_LINK);
1373 if (fp->f_flags & FP_INSELECT) {
1374 /* someone is already in select on this fp */
1375 fp->f_flags |= FP_SELCONFLICT;
1376 wait_queue_link(&select_conflict_queue, (wait_queue_set_t)wqsub);
1377 } else {
1378 fp->f_flags |= FP_INSELECT;
1379 fp->f_waddr = (void *)wqsub;
1380 }
1381 }
1382
1383 context.vc_ucred = fp->f_cred;
1384
1385 /* The select; set the bit, if true */
1386 if (fp->f_ops
1387 && fo_select(fp, flag[msk], wql_ptr, &context)) {
1388 optr[fd/NFDBITS] |= (1 << (fd % NFDBITS));
1389 n++;
1390 }
1391 nc++;
1392 }
1393 }
1394 }
1395 proc_fdunlock(p);
1396 }
1397 *retval = n;
1398 return (0);
1399 }
1400
1401 int poll_callback(struct kqueue *, struct kevent64_s *, void *);
1402
1403 struct poll_continue_args {
1404 user_addr_t pca_fds;
1405 u_int pca_nfds;
1406 u_int pca_rfds;
1407 };
1408
1409 int
1410 poll(struct proc *p, struct poll_args *uap, int32_t *retval)
1411 {
1412 __pthread_testcancel(1);
1413 return(poll_nocancel(p, (struct poll_nocancel_args *)uap, retval));
1414 }
1415
1416
1417 int
1418 poll_nocancel(struct proc *p, struct poll_nocancel_args *uap, int32_t *retval)
1419 {
1420 struct poll_continue_args *cont;
1421 struct pollfd *fds;
1422 struct kqueue *kq;
1423 struct timeval atv;
1424 int ncoll, error = 0;
1425 u_int nfds = uap->nfds;
1426 u_int rfds = 0;
1427 u_int i;
1428 size_t ni;
1429
1430 /*
1431 * This is kinda bogus. We have fd limits, but that is not
1432 * really related to the size of the pollfd array. Make sure
1433 * we let the process use at least FD_SETSIZE entries and at
1434 * least enough for the current limits. We want to be reasonably
1435 * safe, but not overly restrictive.
1436 */
1437 if (nfds > OPEN_MAX ||
1438 (nfds > p->p_rlimit[RLIMIT_NOFILE].rlim_cur && (proc_suser(p) || nfds > FD_SETSIZE)))
1439 return (EINVAL);
1440
1441 kq = kqueue_alloc(p);
1442 if (kq == NULL)
1443 return (EAGAIN);
1444
1445 ni = nfds * sizeof(struct pollfd) + sizeof(struct poll_continue_args);
1446 MALLOC(cont, struct poll_continue_args *, ni, M_TEMP, M_WAITOK);
1447 if (NULL == cont) {
1448 error = EAGAIN;
1449 goto out;
1450 }
1451
1452 fds = (struct pollfd *)&cont[1];
1453 error = copyin(uap->fds, fds, nfds * sizeof(struct pollfd));
1454 if (error)
1455 goto out;
1456
1457 if (uap->timeout != -1) {
1458 struct timeval rtv;
1459
1460 atv.tv_sec = uap->timeout / 1000;
1461 atv.tv_usec = (uap->timeout % 1000) * 1000;
1462 if (itimerfix(&atv)) {
1463 error = EINVAL;
1464 goto out;
1465 }
1466 getmicrouptime(&rtv);
1467 timevaladd(&atv, &rtv);
1468 } else {
1469 atv.tv_sec = 0;
1470 atv.tv_usec = 0;
1471 }
1472
1473 /* JMM - all this P_SELECT stuff is bogus */
1474 ncoll = nselcoll;
1475 OSBitOrAtomic(P_SELECT, &p->p_flag);
1476 for (i = 0; i < nfds; i++) {
1477 short events = fds[i].events;
1478 struct kevent64_s kev;
1479 int kerror = 0;
1480
1481 /* per spec, ignore fd values below zero */
1482 if (fds[i].fd < 0) {
1483 fds[i].revents = 0;
1484 continue;
1485 }
1486
1487 /* convert the poll event into a kqueue kevent */
1488 kev.ident = fds[i].fd;
1489 kev.flags = EV_ADD | EV_ONESHOT | EV_POLL;
1490 kev.udata = CAST_USER_ADDR_T(&fds[i]);
1491 kev.fflags = 0;
1492 kev.data = 0;
1493 kev.ext[0] = 0;
1494 kev.ext[1] = 0;
1495
1496 /* Handle input events */
1497 if (events & ( POLLIN | POLLRDNORM | POLLPRI | POLLRDBAND | POLLHUP )) {
1498 kev.filter = EVFILT_READ;
1499 if (!(events & ( POLLIN | POLLRDNORM )))
1500 kev.flags |= EV_OOBAND;
1501 kerror = kevent_register(kq, &kev, p);
1502 }
1503
1504 /* Handle output events */
1505 if (kerror == 0 &&
1506 events & ( POLLOUT | POLLWRNORM | POLLWRBAND )) {
1507 kev.filter = EVFILT_WRITE;
1508 kerror = kevent_register(kq, &kev, p);
1509 }
1510
1511 /* Handle BSD extension vnode events */
1512 if (kerror == 0 &&
1513 events & ( POLLEXTEND | POLLATTRIB | POLLNLINK | POLLWRITE )) {
1514 kev.filter = EVFILT_VNODE;
1515 kev.fflags = 0;
1516 if (events & POLLEXTEND)
1517 kev.fflags |= NOTE_EXTEND;
1518 if (events & POLLATTRIB)
1519 kev.fflags |= NOTE_ATTRIB;
1520 if (events & POLLNLINK)
1521 kev.fflags |= NOTE_LINK;
1522 if (events & POLLWRITE)
1523 kev.fflags |= NOTE_WRITE;
1524 kerror = kevent_register(kq, &kev, p);
1525 }
1526
1527 if (kerror != 0) {
1528 fds[i].revents = POLLNVAL;
1529 rfds++;
1530 } else
1531 fds[i].revents = 0;
1532 }
1533
1534 /* Did we have any trouble registering? */
1535 if (rfds > 0)
1536 goto done;
1537
1538 /* scan for, and possibly wait for, the kevents to trigger */
1539 cont->pca_fds = uap->fds;
1540 cont->pca_nfds = nfds;
1541 cont->pca_rfds = rfds;
1542 error = kqueue_scan(kq, poll_callback, NULL, cont, &atv, p);
1543 rfds = cont->pca_rfds;
1544
1545 done:
1546 OSBitAndAtomic(~((uint32_t)P_SELECT), &p->p_flag);
1547 /* poll is not restarted after signals... */
1548 if (error == ERESTART)
1549 error = EINTR;
1550 if (error == EWOULDBLOCK)
1551 error = 0;
1552 if (error == 0) {
1553 error = copyout(fds, uap->fds, nfds * sizeof(struct pollfd));
1554 *retval = rfds;
1555 }
1556
1557 out:
1558 if (NULL != cont)
1559 FREE(cont, M_TEMP);
1560
1561 kqueue_dealloc(kq);
1562 return (error);
1563 }
1564
1565 int
1566 poll_callback(__unused struct kqueue *kq, struct kevent64_s *kevp, void *data)
1567 {
1568 struct poll_continue_args *cont = (struct poll_continue_args *)data;
1569 struct pollfd *fds = CAST_DOWN(struct pollfd *, kevp->udata);
1570 short mask;
1571
1572 /* convert the results back into revents */
1573 if (kevp->flags & EV_EOF)
1574 fds->revents |= POLLHUP;
1575 if (kevp->flags & EV_ERROR)
1576 fds->revents |= POLLERR;
1577
1578 switch (kevp->filter) {
1579 case EVFILT_READ:
1580 if (fds->revents & POLLHUP)
1581 mask = (POLLIN | POLLRDNORM | POLLPRI | POLLRDBAND );
1582 else {
1583 mask = 0;
1584 if (kevp->data != 0)
1585 mask |= (POLLIN | POLLRDNORM );
1586 if (kevp->flags & EV_OOBAND)
1587 mask |= ( POLLPRI | POLLRDBAND );
1588 }
1589 fds->revents |= (fds->events & mask);
1590 break;
1591
1592 case EVFILT_WRITE:
1593 if (!(fds->revents & POLLHUP))
1594 fds->revents |= (fds->events & ( POLLOUT | POLLWRNORM | POLLWRBAND ));
1595 break;
1596
1597 case EVFILT_VNODE:
1598 if (kevp->fflags & NOTE_EXTEND)
1599 fds->revents |= (fds->events & POLLEXTEND);
1600 if (kevp->fflags & NOTE_ATTRIB)
1601 fds->revents |= (fds->events & POLLATTRIB);
1602 if (kevp->fflags & NOTE_LINK)
1603 fds->revents |= (fds->events & POLLNLINK);
1604 if (kevp->fflags & NOTE_WRITE)
1605 fds->revents |= (fds->events & POLLWRITE);
1606 break;
1607 }
1608
1609 if (fds->revents)
1610 cont->pca_rfds++;
1611
1612 return 0;
1613 }
1614
1615 int
1616 seltrue(__unused dev_t dev, __unused int flag, __unused struct proc *p)
1617 {
1618
1619 return (1);
1620 }
1621
1622 /*
1623 * selcount
1624 *
1625 * Count the number of bits set in the input bit vector, and establish an
1626 * outstanding fp->f_iocount for each of the descriptors which will be in
1627 * use in the select operation.
1628 *
1629 * Parameters: p The process doing the select
1630 * ibits The input bit vector
1631 * nfd The number of fd's in the vector
1632 * countp Pointer to where to store the bit count
1633 *
1634 * Returns: 0 Success
1635 * EIO Bad per process open file table
1636 * EBADF One of the bits in the input bit vector
1637 * references an invalid fd
1638 *
1639 * Implicit: *countp (modified) Count of fd's
1640 *
1641 * Notes: This function is the first pass under the proc_fdlock() that
1642 * permits us to recognize invalid descriptors in the bit vector;
1643 * the may, however, not remain valid through the drop and
1644 * later reacquisition of the proc_fdlock().
1645 */
1646 static int
1647 selcount(struct proc *p, u_int32_t *ibits, int nfd, int *countp)
1648 {
1649 struct filedesc *fdp = p->p_fd;
1650 int msk, i, j, fd;
1651 u_int32_t bits;
1652 struct fileproc *fp;
1653 int n = 0;
1654 u_int32_t *iptr;
1655 u_int nw;
1656 int error=0;
1657 int dropcount;
1658 int need_wakeup = 0;
1659
1660 /*
1661 * Problems when reboot; due to MacOSX signal probs
1662 * in Beaker1C ; verify that the p->p_fd is valid
1663 */
1664 if (fdp == NULL) {
1665 *countp = 0;
1666 return(EIO);
1667 }
1668 nw = howmany(nfd, NFDBITS);
1669
1670 proc_fdlock(p);
1671 for (msk = 0; msk < 3; msk++) {
1672 iptr = (u_int32_t *)&ibits[msk * nw];
1673 for (i = 0; i < nfd; i += NFDBITS) {
1674 bits = iptr[i/NFDBITS];
1675 while ((j = ffs(bits)) && (fd = i + --j) < nfd) {
1676 bits &= ~(1 << j);
1677 fp = fdp->fd_ofiles[fd];
1678 if (fp == NULL ||
1679 (fdp->fd_ofileflags[fd] & UF_RESERVED)) {
1680 *countp = 0;
1681 error = EBADF;
1682 goto bad;
1683 }
1684 fp->f_iocount++;
1685 n++;
1686 }
1687 }
1688 }
1689 proc_fdunlock(p);
1690
1691 *countp = n;
1692 return (0);
1693
1694 bad:
1695 dropcount = 0;
1696
1697 if (n== 0)
1698 goto out;
1699 /* Ignore error return; it's already EBADF */
1700 (void)seldrop_locked(p, ibits, nfd, n, &need_wakeup, 1);
1701
1702 out:
1703 proc_fdunlock(p);
1704 if (need_wakeup) {
1705 wakeup(&p->p_fpdrainwait);
1706 }
1707 return(error);
1708 }
1709
1710
1711 /*
1712 * seldrop_locked
1713 *
1714 * Drop outstanding wait queue references set up during selscan(); drop the
1715 * outstanding per fileproc f_iocount() picked up during the selcount().
1716 *
1717 * Parameters: p Process performing the select
1718 * ibits Input pit bector of fd's
1719 * nfd Number of fd's
1720 * lim Limit to number of vector entries to
1721 * consider, or -1 for "all"
1722 * inselect True if
1723 * need_wakeup Pointer to flag to set to do a wakeup
1724 * if f_iocont on any descriptor goes to 0
1725 *
1726 * Returns: 0 Success
1727 * EBADF One or more fds in the bit vector
1728 * were invalid, but the rest
1729 * were successfully dropped
1730 *
1731 * Notes: An fd make become bad while the proc_fdlock() is not held,
1732 * if a multithreaded application closes the fd out from under
1733 * the in progress select. In this case, we still have to
1734 * clean up after the set up on the remaining fds.
1735 */
1736 static int
1737 seldrop_locked(struct proc *p, u_int32_t *ibits, int nfd, int lim, int *need_wakeup, int fromselcount)
1738 {
1739 struct filedesc *fdp = p->p_fd;
1740 int msk, i, j, fd;
1741 u_int32_t bits;
1742 struct fileproc *fp;
1743 u_int32_t *iptr;
1744 u_int nw;
1745 int error = 0;
1746 int dropcount = 0;
1747 uthread_t uth = get_bsdthread_info(current_thread());
1748
1749 *need_wakeup = 0;
1750
1751 /*
1752 * Problems when reboot; due to MacOSX signal probs
1753 * in Beaker1C ; verify that the p->p_fd is valid
1754 */
1755 if (fdp == NULL) {
1756 return(EIO);
1757 }
1758
1759 nw = howmany(nfd, NFDBITS);
1760
1761 for (msk = 0; msk < 3; msk++) {
1762 iptr = (u_int32_t *)&ibits[msk * nw];
1763 for (i = 0; i < nfd; i += NFDBITS) {
1764 bits = iptr[i/NFDBITS];
1765 while ((j = ffs(bits)) && (fd = i + --j) < nfd) {
1766 bits &= ~(1 << j);
1767 fp = fdp->fd_ofiles[fd];
1768 /*
1769 * If we've already dropped as many as were
1770 * counted/scanned, then we are done.
1771 */
1772 if ((fromselcount != 0) && (++dropcount > lim))
1773 goto done;
1774
1775 if (fp == NULL) {
1776 /* skip (now) bad fds */
1777 error = EBADF;
1778 continue;
1779 }
1780 /*
1781 * Only clear the flag if we set it. We'll
1782 * only find that we set it if we had made
1783 * at least one [partial] pass through selscan().
1784 */
1785 if ((fp->f_flags & FP_INSELECT) && (fp->f_waddr == (void *)uth->uu_wqset)) {
1786 fp->f_flags &= ~FP_INSELECT;
1787 fp->f_waddr = (void *)0;
1788 }
1789
1790 fp->f_iocount--;
1791 if (fp->f_iocount < 0)
1792 panic("f_iocount overdecrement!");
1793
1794 if (fp->f_iocount == 0) {
1795 /*
1796 * The last iocount is responsible for clearing
1797 * selconfict flag - even if we didn't set it -
1798 * and is also responsible for waking up anyone
1799 * waiting on iocounts to drain.
1800 */
1801 if (fp->f_flags & FP_SELCONFLICT)
1802 fp->f_flags &= ~FP_SELCONFLICT;
1803 if (p->p_fpdrainwait) {
1804 p->p_fpdrainwait = 0;
1805 *need_wakeup = 1;
1806 }
1807 }
1808 }
1809 }
1810 }
1811 done:
1812 return (error);
1813 }
1814
1815
1816 static int
1817 seldrop(struct proc *p, u_int32_t *ibits, int nfd)
1818 {
1819 int error;
1820 int need_wakeup = 0;
1821
1822 proc_fdlock(p);
1823 error = seldrop_locked(p, ibits, nfd, nfd, &need_wakeup, 0);
1824 proc_fdunlock(p);
1825 if (need_wakeup) {
1826 wakeup(&p->p_fpdrainwait);
1827 }
1828 return (error);
1829 }
1830
1831 /*
1832 * Record a select request.
1833 */
1834 void
1835 selrecord(__unused struct proc *selector, struct selinfo *sip, void * p_wql)
1836 {
1837 thread_t cur_act = current_thread();
1838 struct uthread * ut = get_bsdthread_info(cur_act);
1839
1840 /* need to look at collisions */
1841
1842 /*do not record if this is second pass of select */
1843 if(p_wql == (void *)0) {
1844 return;
1845 }
1846
1847 if ((sip->si_flags & SI_INITED) == 0) {
1848 wait_queue_init(&sip->si_wait_queue, SYNC_POLICY_FIFO);
1849 sip->si_flags |= SI_INITED;
1850 sip->si_flags &= ~SI_CLEAR;
1851 }
1852
1853 if (sip->si_flags & SI_RECORDED) {
1854 sip->si_flags |= SI_COLL;
1855 } else
1856 sip->si_flags &= ~SI_COLL;
1857
1858 sip->si_flags |= SI_RECORDED;
1859 if (!wait_queue_member(&sip->si_wait_queue, ut->uu_wqset))
1860 wait_queue_link_noalloc(&sip->si_wait_queue, ut->uu_wqset,
1861 (wait_queue_link_t)p_wql);
1862
1863 return;
1864 }
1865
1866 void
1867 selwakeup(struct selinfo *sip)
1868 {
1869
1870 if ((sip->si_flags & SI_INITED) == 0) {
1871 return;
1872 }
1873
1874 if (sip->si_flags & SI_COLL) {
1875 nselcoll++;
1876 sip->si_flags &= ~SI_COLL;
1877 #if 0
1878 /* will not support */
1879 //wakeup((caddr_t)&selwait);
1880 #endif
1881 }
1882
1883 if (sip->si_flags & SI_RECORDED) {
1884 wait_queue_wakeup_all(&sip->si_wait_queue, NULL, THREAD_AWAKENED);
1885 sip->si_flags &= ~SI_RECORDED;
1886 }
1887
1888 }
1889
1890 void
1891 selthreadclear(struct selinfo *sip)
1892 {
1893
1894 if ((sip->si_flags & SI_INITED) == 0) {
1895 return;
1896 }
1897 if (sip->si_flags & SI_RECORDED) {
1898 selwakeup(sip);
1899 sip->si_flags &= ~(SI_RECORDED | SI_COLL);
1900 }
1901 sip->si_flags |= SI_CLEAR;
1902 wait_queue_unlink_all(&sip->si_wait_queue);
1903 }
1904
1905
1906
1907
1908 #define DBG_POST 0x10
1909 #define DBG_WATCH 0x11
1910 #define DBG_WAIT 0x12
1911 #define DBG_MOD 0x13
1912 #define DBG_EWAKEUP 0x14
1913 #define DBG_ENQUEUE 0x15
1914 #define DBG_DEQUEUE 0x16
1915
1916 #define DBG_MISC_POST MISCDBG_CODE(DBG_EVENT,DBG_POST)
1917 #define DBG_MISC_WATCH MISCDBG_CODE(DBG_EVENT,DBG_WATCH)
1918 #define DBG_MISC_WAIT MISCDBG_CODE(DBG_EVENT,DBG_WAIT)
1919 #define DBG_MISC_MOD MISCDBG_CODE(DBG_EVENT,DBG_MOD)
1920 #define DBG_MISC_EWAKEUP MISCDBG_CODE(DBG_EVENT,DBG_EWAKEUP)
1921 #define DBG_MISC_ENQUEUE MISCDBG_CODE(DBG_EVENT,DBG_ENQUEUE)
1922 #define DBG_MISC_DEQUEUE MISCDBG_CODE(DBG_EVENT,DBG_DEQUEUE)
1923
1924
1925 #define EVPROCDEQUE(p, evq) do { \
1926 proc_lock(p); \
1927 if (evq->ee_flags & EV_QUEUED) { \
1928 TAILQ_REMOVE(&p->p_evlist, evq, ee_plist); \
1929 evq->ee_flags &= ~EV_QUEUED; \
1930 } \
1931 proc_unlock(p); \
1932 } while (0);
1933
1934
1935 /*
1936 * called upon socket close. deque and free all events for
1937 * the socket... socket must be locked by caller.
1938 */
1939 void
1940 evsofree(struct socket *sp)
1941 {
1942 struct eventqelt *evq, *next;
1943 proc_t p;
1944
1945 if (sp == NULL)
1946 return;
1947
1948 for (evq = sp->so_evlist.tqh_first; evq != NULL; evq = next) {
1949 next = evq->ee_slist.tqe_next;
1950 p = evq->ee_proc;
1951
1952 if (evq->ee_flags & EV_QUEUED) {
1953 EVPROCDEQUE(p, evq);
1954 }
1955 TAILQ_REMOVE(&sp->so_evlist, evq, ee_slist); // remove from socket q
1956 FREE(evq, M_TEMP);
1957 }
1958 }
1959
1960
1961 /*
1962 * called upon pipe close. deque and free all events for
1963 * the pipe... pipe must be locked by caller
1964 */
1965 void
1966 evpipefree(struct pipe *cpipe)
1967 {
1968 struct eventqelt *evq, *next;
1969 proc_t p;
1970
1971 for (evq = cpipe->pipe_evlist.tqh_first; evq != NULL; evq = next) {
1972 next = evq->ee_slist.tqe_next;
1973 p = evq->ee_proc;
1974
1975 EVPROCDEQUE(p, evq);
1976
1977 TAILQ_REMOVE(&cpipe->pipe_evlist, evq, ee_slist); // remove from pipe q
1978 FREE(evq, M_TEMP);
1979 }
1980 }
1981
1982
1983 /*
1984 * enqueue this event if it's not already queued. wakeup
1985 * the proc if we do queue this event to it...
1986 * entered with proc lock held... we drop it before
1987 * doing the wakeup and return in that state
1988 */
1989 static void
1990 evprocenque(struct eventqelt *evq)
1991 {
1992 proc_t p;
1993
1994 assert(evq);
1995 p = evq->ee_proc;
1996
1997 KERNEL_DEBUG(DBG_MISC_ENQUEUE|DBG_FUNC_START, (uint32_t)evq, evq->ee_flags, evq->ee_eventmask,0,0);
1998
1999 proc_lock(p);
2000
2001 if (evq->ee_flags & EV_QUEUED) {
2002 proc_unlock(p);
2003
2004 KERNEL_DEBUG(DBG_MISC_ENQUEUE|DBG_FUNC_END, 0,0,0,0,0);
2005 return;
2006 }
2007 evq->ee_flags |= EV_QUEUED;
2008
2009 TAILQ_INSERT_TAIL(&p->p_evlist, evq, ee_plist);
2010
2011 proc_unlock(p);
2012
2013 wakeup(&p->p_evlist);
2014
2015 KERNEL_DEBUG(DBG_MISC_ENQUEUE|DBG_FUNC_END, 0,0,0,0,0);
2016 }
2017
2018
2019 /*
2020 * pipe lock must be taken by the caller
2021 */
2022 void
2023 postpipeevent(struct pipe *pipep, int event)
2024 {
2025 int mask;
2026 struct eventqelt *evq;
2027
2028 if (pipep == NULL)
2029 return;
2030 KERNEL_DEBUG(DBG_MISC_POST|DBG_FUNC_START, event,0,0,1,0);
2031
2032 for (evq = pipep->pipe_evlist.tqh_first;
2033 evq != NULL; evq = evq->ee_slist.tqe_next) {
2034
2035 if (evq->ee_eventmask == 0)
2036 continue;
2037 mask = 0;
2038
2039 switch (event & (EV_RWBYTES | EV_RCLOSED | EV_WCLOSED)) {
2040
2041 case EV_RWBYTES:
2042 if ((evq->ee_eventmask & EV_RE) && pipep->pipe_buffer.cnt) {
2043 mask |= EV_RE;
2044 evq->ee_req.er_rcnt = pipep->pipe_buffer.cnt;
2045 }
2046 if ((evq->ee_eventmask & EV_WR) &&
2047 (pipep->pipe_buffer.size - pipep->pipe_buffer.cnt) >= PIPE_BUF) {
2048
2049 if (pipep->pipe_state & PIPE_EOF) {
2050 mask |= EV_WR|EV_RESET;
2051 break;
2052 }
2053 mask |= EV_WR;
2054 evq->ee_req.er_wcnt = pipep->pipe_buffer.size - pipep->pipe_buffer.cnt;
2055 }
2056 break;
2057
2058 case EV_WCLOSED:
2059 case EV_RCLOSED:
2060 if ((evq->ee_eventmask & EV_RE)) {
2061 mask |= EV_RE|EV_RCLOSED;
2062 }
2063 if ((evq->ee_eventmask & EV_WR)) {
2064 mask |= EV_WR|EV_WCLOSED;
2065 }
2066 break;
2067
2068 default:
2069 return;
2070 }
2071 if (mask) {
2072 /*
2073 * disarm... postevents are nops until this event is 'read' via
2074 * waitevent and then re-armed via modwatch
2075 */
2076 evq->ee_eventmask = 0;
2077
2078 /*
2079 * since events are disarmed until after the waitevent
2080 * the ee_req.er_xxxx fields can't change once we've
2081 * inserted this event into the proc queue...
2082 * therefore, the waitevent will see a 'consistent'
2083 * snapshot of the event, even though it won't hold
2084 * the pipe lock, and we're updating the event outside
2085 * of the proc lock, which it will hold
2086 */
2087 evq->ee_req.er_eventbits |= mask;
2088
2089 KERNEL_DEBUG(DBG_MISC_POST, (uint32_t)evq, evq->ee_req.er_eventbits, mask, 1,0);
2090
2091 evprocenque(evq);
2092 }
2093 }
2094 KERNEL_DEBUG(DBG_MISC_POST|DBG_FUNC_END, 0,0,0,1,0);
2095 }
2096
2097 #if SOCKETS
2098 /*
2099 * given either a sockbuf or a socket run down the
2100 * event list and queue ready events found...
2101 * the socket must be locked by the caller
2102 */
2103 void
2104 postevent(struct socket *sp, struct sockbuf *sb, int event)
2105 {
2106 int mask;
2107 struct eventqelt *evq;
2108 struct tcpcb *tp;
2109
2110 if (sb)
2111 sp = sb->sb_so;
2112 if (sp == NULL)
2113 return;
2114
2115 KERNEL_DEBUG(DBG_MISC_POST|DBG_FUNC_START, (int)sp, event, 0, 0, 0);
2116
2117 for (evq = sp->so_evlist.tqh_first;
2118 evq != NULL; evq = evq->ee_slist.tqe_next) {
2119
2120 if (evq->ee_eventmask == 0)
2121 continue;
2122 mask = 0;
2123
2124 /* ready for reading:
2125 - byte cnt >= receive low water mark
2126 - read-half of conn closed
2127 - conn pending for listening sock
2128 - socket error pending
2129
2130 ready for writing
2131 - byte cnt avail >= send low water mark
2132 - write half of conn closed
2133 - socket error pending
2134 - non-blocking conn completed successfully
2135
2136 exception pending
2137 - out of band data
2138 - sock at out of band mark
2139 */
2140
2141 switch (event & EV_DMASK) {
2142
2143 case EV_OOB:
2144 if ((evq->ee_eventmask & EV_EX)) {
2145 if (sp->so_oobmark || ((sp->so_state & SS_RCVATMARK)))
2146 mask |= EV_EX|EV_OOB;
2147 }
2148 break;
2149
2150 case EV_RWBYTES|EV_OOB:
2151 if ((evq->ee_eventmask & EV_EX)) {
2152 if (sp->so_oobmark || ((sp->so_state & SS_RCVATMARK)))
2153 mask |= EV_EX|EV_OOB;
2154 }
2155 /*
2156 * fall into the next case
2157 */
2158 case EV_RWBYTES:
2159 if ((evq->ee_eventmask & EV_RE) && soreadable(sp)) {
2160 if (sp->so_error) {
2161 if ((sp->so_type == SOCK_STREAM) && ((sp->so_error == ECONNREFUSED) || (sp->so_error == ECONNRESET))) {
2162 if ((sp->so_pcb == 0) || (((struct inpcb *)sp->so_pcb)->inp_state == INPCB_STATE_DEAD) || !(tp = sototcpcb(sp)) ||
2163 (tp->t_state == TCPS_CLOSED)) {
2164 mask |= EV_RE|EV_RESET;
2165 break;
2166 }
2167 }
2168 }
2169 mask |= EV_RE;
2170 evq->ee_req.er_rcnt = sp->so_rcv.sb_cc;
2171
2172 if (sp->so_state & SS_CANTRCVMORE) {
2173 mask |= EV_FIN;
2174 break;
2175 }
2176 }
2177 if ((evq->ee_eventmask & EV_WR) && sowriteable(sp)) {
2178 if (sp->so_error) {
2179 if ((sp->so_type == SOCK_STREAM) && ((sp->so_error == ECONNREFUSED) || (sp->so_error == ECONNRESET))) {
2180 if ((sp->so_pcb == 0) || (((struct inpcb *)sp->so_pcb)->inp_state == INPCB_STATE_DEAD) || !(tp = sototcpcb(sp)) ||
2181 (tp->t_state == TCPS_CLOSED)) {
2182 mask |= EV_WR|EV_RESET;
2183 break;
2184 }
2185 }
2186 }
2187 mask |= EV_WR;
2188 evq->ee_req.er_wcnt = sbspace(&sp->so_snd);
2189 }
2190 break;
2191
2192 case EV_RCONN:
2193 if ((evq->ee_eventmask & EV_RE)) {
2194 mask |= EV_RE|EV_RCONN;
2195 evq->ee_req.er_rcnt = sp->so_qlen + 1; // incl this one
2196 }
2197 break;
2198
2199 case EV_WCONN:
2200 if ((evq->ee_eventmask & EV_WR)) {
2201 mask |= EV_WR|EV_WCONN;
2202 }
2203 break;
2204
2205 case EV_RCLOSED:
2206 if ((evq->ee_eventmask & EV_RE)) {
2207 mask |= EV_RE|EV_RCLOSED;
2208 }
2209 break;
2210
2211 case EV_WCLOSED:
2212 if ((evq->ee_eventmask & EV_WR)) {
2213 mask |= EV_WR|EV_WCLOSED;
2214 }
2215 break;
2216
2217 case EV_FIN:
2218 if (evq->ee_eventmask & EV_RE) {
2219 mask |= EV_RE|EV_FIN;
2220 }
2221 break;
2222
2223 case EV_RESET:
2224 case EV_TIMEOUT:
2225 if (evq->ee_eventmask & EV_RE) {
2226 mask |= EV_RE | event;
2227 }
2228 if (evq->ee_eventmask & EV_WR) {
2229 mask |= EV_WR | event;
2230 }
2231 break;
2232
2233 default:
2234 KERNEL_DEBUG(DBG_MISC_POST|DBG_FUNC_END, (int)sp, -1, 0, 0, 0);
2235 return;
2236 } /* switch */
2237
2238 KERNEL_DEBUG(DBG_MISC_POST, (int)evq, evq->ee_eventmask, evq->ee_req.er_eventbits, mask, 0);
2239
2240 if (mask) {
2241 /*
2242 * disarm... postevents are nops until this event is 'read' via
2243 * waitevent and then re-armed via modwatch
2244 */
2245 evq->ee_eventmask = 0;
2246
2247 /*
2248 * since events are disarmed until after the waitevent
2249 * the ee_req.er_xxxx fields can't change once we've
2250 * inserted this event into the proc queue...
2251 * since waitevent can't see this event until we
2252 * enqueue it, waitevent will see a 'consistent'
2253 * snapshot of the event, even though it won't hold
2254 * the socket lock, and we're updating the event outside
2255 * of the proc lock, which it will hold
2256 */
2257 evq->ee_req.er_eventbits |= mask;
2258
2259 evprocenque(evq);
2260 }
2261 }
2262 KERNEL_DEBUG(DBG_MISC_POST|DBG_FUNC_END, (int)sp, 0, 0, 0, 0);
2263 }
2264 #endif /* SOCKETS */
2265
2266
2267 /*
2268 * watchevent system call. user passes us an event to watch
2269 * for. we malloc an event object, initialize it, and queue
2270 * it to the open socket. when the event occurs, postevent()
2271 * will enque it back to our proc where we can retrieve it
2272 * via waitevent().
2273 *
2274 * should this prevent duplicate events on same socket?
2275 *
2276 * Returns:
2277 * ENOMEM No memory for operation
2278 * copyin:EFAULT
2279 */
2280 int
2281 watchevent(proc_t p, struct watchevent_args *uap, __unused int *retval)
2282 {
2283 struct eventqelt *evq = (struct eventqelt *)0;
2284 struct eventqelt *np = NULL;
2285 struct eventreq64 *erp;
2286 struct fileproc *fp = NULL;
2287 int error;
2288
2289 KERNEL_DEBUG(DBG_MISC_WATCH|DBG_FUNC_START, 0,0,0,0,0);
2290
2291 // get a qelt and fill with users req
2292 MALLOC(evq, struct eventqelt *, sizeof(struct eventqelt), M_TEMP, M_WAITOK);
2293
2294 if (evq == NULL)
2295 return (ENOMEM);
2296 erp = &evq->ee_req;
2297
2298 // get users request pkt
2299
2300 if (IS_64BIT_PROCESS(p)) {
2301 error = copyin(uap->u_req, (caddr_t)erp, sizeof(struct eventreq64));
2302 } else {
2303 struct eventreq32 er32;
2304
2305 error = copyin(uap->u_req, (caddr_t)&er32, sizeof(struct eventreq32));
2306 if (error == 0) {
2307 /*
2308 * the user only passes in the
2309 * er_type, er_handle and er_data...
2310 * the other fields are initialized
2311 * below, so don't bother to copy
2312 */
2313 erp->er_type = er32.er_type;
2314 erp->er_handle = er32.er_handle;
2315 erp->er_data = (user_addr_t)er32.er_data;
2316 }
2317 }
2318 if (error) {
2319 FREE(evq, M_TEMP);
2320 KERNEL_DEBUG(DBG_MISC_WATCH|DBG_FUNC_END, error,0,0,0,0);
2321
2322 return(error);
2323 }
2324 KERNEL_DEBUG(DBG_MISC_WATCH, erp->er_handle,uap->u_eventmask,(uint32_t)evq,0,0);
2325
2326 // validate, freeing qelt if errors
2327 error = 0;
2328 proc_fdlock(p);
2329
2330 if (erp->er_type != EV_FD) {
2331 error = EINVAL;
2332 } else if ((error = fp_lookup(p, erp->er_handle, &fp, 1)) != 0) {
2333 error = EBADF;
2334 #if SOCKETS
2335 } else if (fp->f_type == DTYPE_SOCKET) {
2336 socket_lock((struct socket *)fp->f_data, 1);
2337 np = ((struct socket *)fp->f_data)->so_evlist.tqh_first;
2338 #endif /* SOCKETS */
2339 } else if (fp->f_type == DTYPE_PIPE) {
2340 PIPE_LOCK((struct pipe *)fp->f_data);
2341 np = ((struct pipe *)fp->f_data)->pipe_evlist.tqh_first;
2342 } else {
2343 fp_drop(p, erp->er_handle, fp, 1);
2344 error = EINVAL;
2345 }
2346 proc_fdunlock(p);
2347
2348 if (error) {
2349 FREE(evq, M_TEMP);
2350
2351 KERNEL_DEBUG(DBG_MISC_WATCH|DBG_FUNC_END, error,0,0,0,0);
2352 return(error);
2353 }
2354
2355 /*
2356 * only allow one watch per file per proc
2357 */
2358 for ( ; np != NULL; np = np->ee_slist.tqe_next) {
2359 if (np->ee_proc == p) {
2360 #if SOCKETS
2361 if (fp->f_type == DTYPE_SOCKET)
2362 socket_unlock((struct socket *)fp->f_data, 1);
2363 else
2364 #endif /* SOCKETS */
2365 PIPE_UNLOCK((struct pipe *)fp->f_data);
2366 fp_drop(p, erp->er_handle, fp, 0);
2367 FREE(evq, M_TEMP);
2368
2369 KERNEL_DEBUG(DBG_MISC_WATCH|DBG_FUNC_END, EINVAL,0,0,0,0);
2370 return(EINVAL);
2371 }
2372 }
2373 erp->er_ecnt = erp->er_rcnt = erp->er_wcnt = erp->er_eventbits = 0;
2374 evq->ee_proc = p;
2375 evq->ee_eventmask = uap->u_eventmask & EV_MASK;
2376 evq->ee_flags = 0;
2377
2378 #if SOCKETS
2379 if (fp->f_type == DTYPE_SOCKET) {
2380 TAILQ_INSERT_TAIL(&((struct socket *)fp->f_data)->so_evlist, evq, ee_slist);
2381 postevent((struct socket *)fp->f_data, 0, EV_RWBYTES); // catch existing events
2382
2383 socket_unlock((struct socket *)fp->f_data, 1);
2384 } else
2385 #endif /* SOCKETS */
2386 {
2387 TAILQ_INSERT_TAIL(&((struct pipe *)fp->f_data)->pipe_evlist, evq, ee_slist);
2388 postpipeevent((struct pipe *)fp->f_data, EV_RWBYTES);
2389
2390 PIPE_UNLOCK((struct pipe *)fp->f_data);
2391 }
2392 fp_drop_event(p, erp->er_handle, fp);
2393
2394 KERNEL_DEBUG(DBG_MISC_WATCH|DBG_FUNC_END, 0,0,0,0,0);
2395 return(0);
2396 }
2397
2398
2399
2400 /*
2401 * waitevent system call.
2402 * grabs the next waiting event for this proc and returns
2403 * it. if no events, user can request to sleep with timeout
2404 * or without or poll mode
2405 * ((tv != NULL && interval == 0) || tv == -1)
2406 */
2407 int
2408 waitevent(proc_t p, struct waitevent_args *uap, int *retval)
2409 {
2410 int error = 0;
2411 struct eventqelt *evq;
2412 struct eventreq64 *erp;
2413 uint64_t abstime, interval;
2414 boolean_t fast_poll = FALSE;
2415 union {
2416 struct eventreq64 er64;
2417 struct eventreq32 er32;
2418 } uer;
2419
2420 interval = 0;
2421
2422 if (uap->tv) {
2423 struct timeval atv;
2424 /*
2425 * check for fast poll method
2426 */
2427 if (IS_64BIT_PROCESS(p)) {
2428 if (uap->tv == (user_addr_t)-1)
2429 fast_poll = TRUE;
2430 } else if (uap->tv == (user_addr_t)((uint32_t)-1))
2431 fast_poll = TRUE;
2432
2433 if (fast_poll == TRUE) {
2434 if (p->p_evlist.tqh_first == NULL) {
2435 KERNEL_DEBUG(DBG_MISC_WAIT|DBG_FUNC_NONE, -1,0,0,0,0);
2436 /*
2437 * poll failed
2438 */
2439 *retval = 1;
2440 return (0);
2441 }
2442 proc_lock(p);
2443 goto retry;
2444 }
2445 if (IS_64BIT_PROCESS(p)) {
2446 struct user64_timeval atv64;
2447 error = copyin(uap->tv, (caddr_t)&atv64, sizeof(atv64));
2448 /* Loses resolution - assume timeout < 68 years */
2449 atv.tv_sec = atv64.tv_sec;
2450 atv.tv_usec = atv64.tv_usec;
2451 } else {
2452 struct user32_timeval atv32;
2453 error = copyin(uap->tv, (caddr_t)&atv32, sizeof(atv32));
2454 atv.tv_sec = atv32.tv_sec;
2455 atv.tv_usec = atv32.tv_usec;
2456 }
2457
2458 if (error)
2459 return(error);
2460 if (itimerfix(&atv)) {
2461 error = EINVAL;
2462 return(error);
2463 }
2464 interval = tvtoabstime(&atv);
2465 }
2466 KERNEL_DEBUG(DBG_MISC_WAIT|DBG_FUNC_START, 0,0,0,0,0);
2467
2468 proc_lock(p);
2469 retry:
2470 if ((evq = p->p_evlist.tqh_first) != NULL) {
2471 /*
2472 * found one... make a local copy while it's still on the queue
2473 * to prevent it from changing while in the midst of copying
2474 * don't want to hold the proc lock across a copyout because
2475 * it might block on a page fault at the target in user space
2476 */
2477 erp = &evq->ee_req;
2478
2479 if (IS_64BIT_PROCESS(p))
2480 bcopy((caddr_t)erp, (caddr_t)&uer.er64, sizeof (struct eventreq64));
2481 else {
2482 uer.er32.er_type = erp->er_type;
2483 uer.er32.er_handle = erp->er_handle;
2484 uer.er32.er_data = (uint32_t)erp->er_data;
2485 uer.er32.er_ecnt = erp->er_ecnt;
2486 uer.er32.er_rcnt = erp->er_rcnt;
2487 uer.er32.er_wcnt = erp->er_wcnt;
2488 uer.er32.er_eventbits = erp->er_eventbits;
2489 }
2490 TAILQ_REMOVE(&p->p_evlist, evq, ee_plist);
2491
2492 evq->ee_flags &= ~EV_QUEUED;
2493
2494 proc_unlock(p);
2495
2496 if (IS_64BIT_PROCESS(p))
2497 error = copyout((caddr_t)&uer.er64, uap->u_req, sizeof(struct eventreq64));
2498 else
2499 error = copyout((caddr_t)&uer.er32, uap->u_req, sizeof(struct eventreq32));
2500
2501 KERNEL_DEBUG(DBG_MISC_WAIT|DBG_FUNC_END, error,
2502 evq->ee_req.er_handle,evq->ee_req.er_eventbits,(uint32_t)evq,0);
2503 return (error);
2504 }
2505 else {
2506 if (uap->tv && interval == 0) {
2507 proc_unlock(p);
2508 *retval = 1; // poll failed
2509
2510 KERNEL_DEBUG(DBG_MISC_WAIT|DBG_FUNC_END, error,0,0,0,0);
2511 return (error);
2512 }
2513 if (interval != 0)
2514 clock_absolutetime_interval_to_deadline(interval, &abstime);
2515 else
2516 abstime = 0;
2517
2518 KERNEL_DEBUG(DBG_MISC_WAIT, 1,(uint32_t)&p->p_evlist,0,0,0);
2519
2520 error = msleep1(&p->p_evlist, &p->p_mlock, (PSOCK | PCATCH), "waitevent", abstime);
2521
2522 KERNEL_DEBUG(DBG_MISC_WAIT, 2,(uint32_t)&p->p_evlist,0,0,0);
2523
2524 if (error == 0)
2525 goto retry;
2526 if (error == ERESTART)
2527 error = EINTR;
2528 if (error == EWOULDBLOCK) {
2529 *retval = 1;
2530 error = 0;
2531 }
2532 }
2533 proc_unlock(p);
2534
2535 KERNEL_DEBUG(DBG_MISC_WAIT|DBG_FUNC_END, 0,0,0,0,0);
2536 return (error);
2537 }
2538
2539
2540 /*
2541 * modwatch system call. user passes in event to modify.
2542 * if we find it we reset the event bits and que/deque event
2543 * it needed.
2544 */
2545 int
2546 modwatch(proc_t p, struct modwatch_args *uap, __unused int *retval)
2547 {
2548 struct eventreq64 er;
2549 struct eventreq64 *erp = &er;
2550 struct eventqelt *evq = NULL; /* protected by error return */
2551 int error;
2552 struct fileproc *fp;
2553 int flag;
2554
2555 KERNEL_DEBUG(DBG_MISC_MOD|DBG_FUNC_START, 0,0,0,0,0);
2556
2557 /*
2558 * get user's request pkt
2559 * just need the er_type and er_handle which sit above the
2560 * problematic er_data (32/64 issue)... so only copy in
2561 * those 2 fields
2562 */
2563 if ((error = copyin(uap->u_req, (caddr_t)erp, sizeof(er.er_type) + sizeof(er.er_handle)))) {
2564 KERNEL_DEBUG(DBG_MISC_MOD|DBG_FUNC_END, error,0,0,0,0);
2565 return(error);
2566 }
2567 proc_fdlock(p);
2568
2569 if (erp->er_type != EV_FD) {
2570 error = EINVAL;
2571 } else if ((error = fp_lookup(p, erp->er_handle, &fp, 1)) != 0) {
2572 error = EBADF;
2573 #if SOCKETS
2574 } else if (fp->f_type == DTYPE_SOCKET) {
2575 socket_lock((struct socket *)fp->f_data, 1);
2576 evq = ((struct socket *)fp->f_data)->so_evlist.tqh_first;
2577 #endif /* SOCKETS */
2578 } else if (fp->f_type == DTYPE_PIPE) {
2579 PIPE_LOCK((struct pipe *)fp->f_data);
2580 evq = ((struct pipe *)fp->f_data)->pipe_evlist.tqh_first;
2581 } else {
2582 fp_drop(p, erp->er_handle, fp, 1);
2583 error = EINVAL;
2584 }
2585
2586 if (error) {
2587 proc_fdunlock(p);
2588 KERNEL_DEBUG(DBG_MISC_MOD|DBG_FUNC_END, error,0,0,0,0);
2589 return(error);
2590 }
2591
2592 if ((uap->u_eventmask == EV_RM) && (fp->f_flags & FP_WAITEVENT)) {
2593 fp->f_flags &= ~FP_WAITEVENT;
2594 }
2595 proc_fdunlock(p);
2596
2597 // locate event if possible
2598 for ( ; evq != NULL; evq = evq->ee_slist.tqe_next) {
2599 if (evq->ee_proc == p)
2600 break;
2601 }
2602 if (evq == NULL) {
2603 #if SOCKETS
2604 if (fp->f_type == DTYPE_SOCKET)
2605 socket_unlock((struct socket *)fp->f_data, 1);
2606 else
2607 #endif /* SOCKETS */
2608 PIPE_UNLOCK((struct pipe *)fp->f_data);
2609 fp_drop(p, erp->er_handle, fp, 0);
2610 KERNEL_DEBUG(DBG_MISC_MOD|DBG_FUNC_END, EINVAL,0,0,0,0);
2611 return(EINVAL);
2612 }
2613 KERNEL_DEBUG(DBG_MISC_MOD, erp->er_handle,uap->u_eventmask,(uint32_t)evq,0,0);
2614
2615 if (uap->u_eventmask == EV_RM) {
2616 EVPROCDEQUE(p, evq);
2617
2618 #if SOCKETS
2619 if (fp->f_type == DTYPE_SOCKET) {
2620 TAILQ_REMOVE(&((struct socket *)fp->f_data)->so_evlist, evq, ee_slist);
2621 socket_unlock((struct socket *)fp->f_data, 1);
2622 } else
2623 #endif /* SOCKETS */
2624 {
2625 TAILQ_REMOVE(&((struct pipe *)fp->f_data)->pipe_evlist, evq, ee_slist);
2626 PIPE_UNLOCK((struct pipe *)fp->f_data);
2627 }
2628 fp_drop(p, erp->er_handle, fp, 0);
2629 FREE(evq, M_TEMP);
2630 KERNEL_DEBUG(DBG_MISC_MOD|DBG_FUNC_END, 0,0,0,0,0);
2631 return(0);
2632 }
2633 switch (uap->u_eventmask & EV_MASK) {
2634
2635 case 0:
2636 flag = 0;
2637 break;
2638
2639 case EV_RE:
2640 case EV_WR:
2641 case EV_RE|EV_WR:
2642 flag = EV_RWBYTES;
2643 break;
2644
2645 case EV_EX:
2646 flag = EV_OOB;
2647 break;
2648
2649 case EV_EX|EV_RE:
2650 case EV_EX|EV_WR:
2651 case EV_EX|EV_RE|EV_WR:
2652 flag = EV_OOB|EV_RWBYTES;
2653 break;
2654
2655 default:
2656 #if SOCKETS
2657 if (fp->f_type == DTYPE_SOCKET)
2658 socket_unlock((struct socket *)fp->f_data, 1);
2659 else
2660 #endif /* SOCKETS */
2661 PIPE_UNLOCK((struct pipe *)fp->f_data);
2662 fp_drop(p, erp->er_handle, fp, 0);
2663 KERNEL_DEBUG(DBG_MISC_WATCH|DBG_FUNC_END, EINVAL,0,0,0,0);
2664 return(EINVAL);
2665 }
2666 /*
2667 * since we're holding the socket/pipe lock, the event
2668 * cannot go from the unqueued state to the queued state
2669 * however, it can go from the queued state to the unqueued state
2670 * since that direction is protected by the proc_lock...
2671 * so do a quick check for EV_QUEUED w/o holding the proc lock
2672 * since by far the common case will be NOT EV_QUEUED, this saves
2673 * us taking the proc_lock the majority of the time
2674 */
2675 if (evq->ee_flags & EV_QUEUED) {
2676 /*
2677 * EVPROCDEQUE will recheck the state after it grabs the proc_lock
2678 */
2679 EVPROCDEQUE(p, evq);
2680 }
2681 /*
2682 * while the event is off the proc queue and
2683 * we're holding the socket/pipe lock
2684 * it's safe to update these fields...
2685 */
2686 evq->ee_req.er_eventbits = 0;
2687 evq->ee_eventmask = uap->u_eventmask & EV_MASK;
2688
2689 #if SOCKETS
2690 if (fp->f_type == DTYPE_SOCKET) {
2691 postevent((struct socket *)fp->f_data, 0, flag);
2692 socket_unlock((struct socket *)fp->f_data, 1);
2693 } else
2694 #endif /* SOCKETS */
2695 {
2696 postpipeevent((struct pipe *)fp->f_data, flag);
2697 PIPE_UNLOCK((struct pipe *)fp->f_data);
2698 }
2699 fp_drop(p, erp->er_handle, fp, 0);
2700 KERNEL_DEBUG(DBG_MISC_MOD|DBG_FUNC_END, evq->ee_req.er_handle,evq->ee_eventmask,(uint32_t)fp->f_data,flag,0);
2701 return(0);
2702 }
2703
2704 /* this routine is called from the close of fd with proc_fdlock held */
2705 int
2706 waitevent_close(struct proc *p, struct fileproc *fp)
2707 {
2708 struct eventqelt *evq;
2709
2710
2711 fp->f_flags &= ~FP_WAITEVENT;
2712
2713 #if SOCKETS
2714 if (fp->f_type == DTYPE_SOCKET) {
2715 socket_lock((struct socket *)fp->f_data, 1);
2716 evq = ((struct socket *)fp->f_data)->so_evlist.tqh_first;
2717 } else
2718 #endif /* SOCKETS */
2719 if (fp->f_type == DTYPE_PIPE) {
2720 PIPE_LOCK((struct pipe *)fp->f_data);
2721 evq = ((struct pipe *)fp->f_data)->pipe_evlist.tqh_first;
2722 }
2723 else {
2724 return(EINVAL);
2725 }
2726 proc_fdunlock(p);
2727
2728
2729 // locate event if possible
2730 for ( ; evq != NULL; evq = evq->ee_slist.tqe_next) {
2731 if (evq->ee_proc == p)
2732 break;
2733 }
2734 if (evq == NULL) {
2735 #if SOCKETS
2736 if (fp->f_type == DTYPE_SOCKET)
2737 socket_unlock((struct socket *)fp->f_data, 1);
2738 else
2739 #endif /* SOCKETS */
2740 PIPE_UNLOCK((struct pipe *)fp->f_data);
2741
2742 proc_fdlock(p);
2743
2744 return(EINVAL);
2745 }
2746 EVPROCDEQUE(p, evq);
2747
2748 #if SOCKETS
2749 if (fp->f_type == DTYPE_SOCKET) {
2750 TAILQ_REMOVE(&((struct socket *)fp->f_data)->so_evlist, evq, ee_slist);
2751 socket_unlock((struct socket *)fp->f_data, 1);
2752 } else
2753 #endif /* SOCKETS */
2754 {
2755 TAILQ_REMOVE(&((struct pipe *)fp->f_data)->pipe_evlist, evq, ee_slist);
2756 PIPE_UNLOCK((struct pipe *)fp->f_data);
2757 }
2758 FREE(evq, M_TEMP);
2759
2760 proc_fdlock(p);
2761
2762 return(0);
2763 }
2764
2765
2766 /*
2767 * gethostuuid
2768 *
2769 * Description: Get the host UUID from IOKit and return it to user space.
2770 *
2771 * Parameters: uuid_buf Pointer to buffer to receive UUID
2772 * timeout Timespec for timout
2773 *
2774 * Returns: 0 Success
2775 * EWOULDBLOCK Timeout is too short
2776 * copyout:EFAULT Bad user buffer
2777 *
2778 * Notes: A timeout seems redundant, since if it's tolerable to not
2779 * have a system UUID in hand, then why ask for one?
2780 */
2781 int
2782 gethostuuid(struct proc *p, struct gethostuuid_args *uap, __unused int32_t *retval)
2783 {
2784 kern_return_t kret;
2785 int error;
2786 mach_timespec_t mach_ts; /* for IOKit call */
2787 __darwin_uuid_t uuid_kern; /* for IOKit call */
2788
2789 /* Convert the 32/64 bit timespec into a mach_timespec_t */
2790 if ( proc_is64bit(p) ) {
2791 struct user64_timespec ts;
2792 error = copyin(uap->timeoutp, &ts, sizeof(ts));
2793 if (error)
2794 return (error);
2795 mach_ts.tv_sec = ts.tv_sec;
2796 mach_ts.tv_nsec = ts.tv_nsec;
2797 } else {
2798 struct user32_timespec ts;
2799 error = copyin(uap->timeoutp, &ts, sizeof(ts) );
2800 if (error)
2801 return (error);
2802 mach_ts.tv_sec = ts.tv_sec;
2803 mach_ts.tv_nsec = ts.tv_nsec;
2804 }
2805
2806 /* Call IOKit with the stack buffer to get the UUID */
2807 kret = IOBSDGetPlatformUUID(uuid_kern, mach_ts);
2808
2809 /*
2810 * If we get it, copy out the data to the user buffer; note that a
2811 * uuid_t is an array of characters, so this is size invariant for
2812 * 32 vs. 64 bit.
2813 */
2814 if (kret == KERN_SUCCESS) {
2815 error = copyout(uuid_kern, uap->uuid_buf, sizeof(uuid_kern));
2816 } else {
2817 error = EWOULDBLOCK;
2818 }
2819
2820 return (error);
2821 }