2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
60 * Author: Avadis Tevanian, Jr., Michael Wayne Young
63 * Virtual memory mapping module.
66 #include <task_swapper.h>
67 #include <mach_assert.h>
69 #include <vm/vm_options.h>
71 #include <libkern/OSAtomic.h>
73 #include <mach/kern_return.h>
74 #include <mach/port.h>
75 #include <mach/vm_attributes.h>
76 #include <mach/vm_param.h>
77 #include <mach/vm_behavior.h>
78 #include <mach/vm_statistics.h>
79 #include <mach/memory_object.h>
80 #include <mach/mach_vm.h>
81 #include <machine/cpu_capabilities.h>
84 #include <kern/assert.h>
85 #include <kern/backtrace.h>
86 #include <kern/counters.h>
87 #include <kern/kalloc.h>
88 #include <kern/zalloc.h>
91 #include <vm/vm_compressor_pager.h>
92 #include <vm/vm_init.h>
93 #include <vm/vm_fault.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_pageout.h>
98 #include <vm/vm_kern.h>
99 #include <ipc/ipc_port.h>
100 #include <kern/sched_prim.h>
101 #include <kern/misc_protos.h>
102 #include <kern/xpr.h>
104 #include <mach/vm_map_server.h>
105 #include <mach/mach_host_server.h>
106 #include <vm/vm_protos.h>
107 #include <vm/vm_purgeable_internal.h>
109 #include <vm/vm_protos.h>
110 #include <vm/vm_shared_region.h>
111 #include <vm/vm_map_store.h>
113 extern int proc_selfpid(void);
114 extern char *proc_name_address(void *p
);
116 #if VM_MAP_DEBUG_APPLE_PROTECT
117 int vm_map_debug_apple_protect
= 0;
118 #endif /* VM_MAP_DEBUG_APPLE_PROTECT */
119 #if VM_MAP_DEBUG_FOURK
120 int vm_map_debug_fourk
= 0;
121 #endif /* VM_MAP_DEBUG_FOURK */
123 extern u_int32_t
random(void); /* from <libkern/libkern.h> */
124 /* Internal prototypes
127 static void vm_map_simplify_range(
129 vm_map_offset_t start
,
130 vm_map_offset_t end
); /* forward */
132 static boolean_t
vm_map_range_check(
134 vm_map_offset_t start
,
136 vm_map_entry_t
*entry
);
138 static vm_map_entry_t
_vm_map_entry_create(
139 struct vm_map_header
*map_header
, boolean_t map_locked
);
141 static void _vm_map_entry_dispose(
142 struct vm_map_header
*map_header
,
143 vm_map_entry_t entry
);
145 static void vm_map_pmap_enter(
147 vm_map_offset_t addr
,
148 vm_map_offset_t end_addr
,
150 vm_object_offset_t offset
,
151 vm_prot_t protection
);
153 static void _vm_map_clip_end(
154 struct vm_map_header
*map_header
,
155 vm_map_entry_t entry
,
156 vm_map_offset_t end
);
158 static void _vm_map_clip_start(
159 struct vm_map_header
*map_header
,
160 vm_map_entry_t entry
,
161 vm_map_offset_t start
);
163 static void vm_map_entry_delete(
165 vm_map_entry_t entry
);
167 static kern_return_t
vm_map_delete(
169 vm_map_offset_t start
,
174 static kern_return_t
vm_map_copy_overwrite_unaligned(
176 vm_map_entry_t entry
,
178 vm_map_address_t start
,
179 boolean_t discard_on_success
);
181 static kern_return_t
vm_map_copy_overwrite_aligned(
183 vm_map_entry_t tmp_entry
,
185 vm_map_offset_t start
,
188 static kern_return_t
vm_map_copyin_kernel_buffer(
190 vm_map_address_t src_addr
,
192 boolean_t src_destroy
,
193 vm_map_copy_t
*copy_result
); /* OUT */
195 static kern_return_t
vm_map_copyout_kernel_buffer(
197 vm_map_address_t
*addr
, /* IN/OUT */
199 vm_map_size_t copy_size
,
201 boolean_t consume_on_success
);
203 static void vm_map_fork_share(
205 vm_map_entry_t old_entry
,
208 static boolean_t
vm_map_fork_copy(
210 vm_map_entry_t
*old_entry_p
,
212 int vm_map_copyin_flags
);
214 void vm_map_region_top_walk(
215 vm_map_entry_t entry
,
216 vm_region_top_info_t top
);
218 void vm_map_region_walk(
221 vm_map_entry_t entry
,
222 vm_object_offset_t offset
,
223 vm_object_size_t range
,
224 vm_region_extended_info_t extended
,
225 boolean_t look_for_pages
,
226 mach_msg_type_number_t count
);
228 static kern_return_t
vm_map_wire_nested(
230 vm_map_offset_t start
,
232 vm_prot_t caller_prot
,
235 vm_map_offset_t pmap_addr
,
236 ppnum_t
*physpage_p
);
238 static kern_return_t
vm_map_unwire_nested(
240 vm_map_offset_t start
,
244 vm_map_offset_t pmap_addr
);
246 static kern_return_t
vm_map_overwrite_submap_recurse(
248 vm_map_offset_t dst_addr
,
249 vm_map_size_t dst_size
);
251 static kern_return_t
vm_map_copy_overwrite_nested(
253 vm_map_offset_t dst_addr
,
255 boolean_t interruptible
,
257 boolean_t discard_on_success
);
259 static kern_return_t
vm_map_remap_extract(
261 vm_map_offset_t addr
,
264 struct vm_map_header
*map_header
,
265 vm_prot_t
*cur_protection
,
266 vm_prot_t
*max_protection
,
267 vm_inherit_t inheritance
,
271 static kern_return_t
vm_map_remap_range_allocate(
273 vm_map_address_t
*address
,
275 vm_map_offset_t mask
,
277 vm_map_entry_t
*map_entry
);
279 static void vm_map_region_look_for_page(
283 vm_object_offset_t offset
,
286 vm_region_extended_info_t extended
,
287 mach_msg_type_number_t count
);
289 static int vm_map_region_count_obj_refs(
290 vm_map_entry_t entry
,
294 static kern_return_t
vm_map_willneed(
296 vm_map_offset_t start
,
297 vm_map_offset_t end
);
299 static kern_return_t
vm_map_reuse_pages(
301 vm_map_offset_t start
,
302 vm_map_offset_t end
);
304 static kern_return_t
vm_map_reusable_pages(
306 vm_map_offset_t start
,
307 vm_map_offset_t end
);
309 static kern_return_t
vm_map_can_reuse(
311 vm_map_offset_t start
,
312 vm_map_offset_t end
);
315 static kern_return_t
vm_map_pageout(
317 vm_map_offset_t start
,
318 vm_map_offset_t end
);
319 #endif /* MACH_ASSERT */
322 * Macros to copy a vm_map_entry. We must be careful to correctly
323 * manage the wired page count. vm_map_entry_copy() creates a new
324 * map entry to the same memory - the wired count in the new entry
325 * must be set to zero. vm_map_entry_copy_full() creates a new
326 * entry that is identical to the old entry. This preserves the
327 * wire count; it's used for map splitting and zone changing in
331 #define vm_map_entry_copy(NEW,OLD) \
333 boolean_t _vmec_reserved = (NEW)->from_reserved_zone; \
335 (NEW)->is_shared = FALSE; \
336 (NEW)->needs_wakeup = FALSE; \
337 (NEW)->in_transition = FALSE; \
338 (NEW)->wired_count = 0; \
339 (NEW)->user_wired_count = 0; \
340 (NEW)->permanent = FALSE; \
341 (NEW)->used_for_jit = FALSE; \
342 (NEW)->from_reserved_zone = _vmec_reserved; \
343 (NEW)->iokit_acct = FALSE; \
344 (NEW)->vme_resilient_codesign = FALSE; \
345 (NEW)->vme_resilient_media = FALSE; \
346 (NEW)->vme_atomic = FALSE; \
349 #define vm_map_entry_copy_full(NEW,OLD) \
351 boolean_t _vmecf_reserved = (NEW)->from_reserved_zone; \
353 (NEW)->from_reserved_zone = _vmecf_reserved; \
357 * Decide if we want to allow processes to execute from their data or stack areas.
358 * override_nx() returns true if we do. Data/stack execution can be enabled independently
359 * for 32 and 64 bit processes. Set the VM_ABI_32 or VM_ABI_64 flags in allow_data_exec
360 * or allow_stack_exec to enable data execution for that type of data area for that particular
361 * ABI (or both by or'ing the flags together). These are initialized in the architecture
362 * specific pmap files since the default behavior varies according to architecture. The
363 * main reason it varies is because of the need to provide binary compatibility with old
364 * applications that were written before these restrictions came into being. In the old
365 * days, an app could execute anything it could read, but this has slowly been tightened
366 * up over time. The default behavior is:
368 * 32-bit PPC apps may execute from both stack and data areas
369 * 32-bit Intel apps may exeucte from data areas but not stack
370 * 64-bit PPC/Intel apps may not execute from either data or stack
372 * An application on any architecture may override these defaults by explicitly
373 * adding PROT_EXEC permission to the page in question with the mprotect(2)
374 * system call. This code here just determines what happens when an app tries to
375 * execute from a page that lacks execute permission.
377 * Note that allow_data_exec or allow_stack_exec may also be modified by sysctl to change the
378 * default behavior for both 32 and 64 bit apps on a system-wide basis. Furthermore,
379 * a Mach-O header flag bit (MH_NO_HEAP_EXECUTION) can be used to forcibly disallow
380 * execution from data areas for a particular binary even if the arch normally permits it. As
381 * a final wrinkle, a posix_spawn attribute flag can be used to negate this opt-in header bit
382 * to support some complicated use cases, notably browsers with out-of-process plugins that
383 * are not all NX-safe.
386 extern int allow_data_exec
, allow_stack_exec
;
389 override_nx(vm_map_t map
, uint32_t user_tag
) /* map unused on arm */
393 if (map
->pmap
== kernel_pmap
) return FALSE
;
396 * Determine if the app is running in 32 or 64 bit mode.
399 if (vm_map_is_64bit(map
))
400 current_abi
= VM_ABI_64
;
402 current_abi
= VM_ABI_32
;
405 * Determine if we should allow the execution based on whether it's a
406 * stack or data area and the current architecture.
409 if (user_tag
== VM_MEMORY_STACK
)
410 return allow_stack_exec
& current_abi
;
412 return (allow_data_exec
& current_abi
) && (map
->map_disallow_data_exec
== FALSE
);
417 * Virtual memory maps provide for the mapping, protection,
418 * and sharing of virtual memory objects. In addition,
419 * this module provides for an efficient virtual copy of
420 * memory from one map to another.
422 * Synchronization is required prior to most operations.
424 * Maps consist of an ordered doubly-linked list of simple
425 * entries; a single hint is used to speed up lookups.
427 * Sharing maps have been deleted from this version of Mach.
428 * All shared objects are now mapped directly into the respective
429 * maps. This requires a change in the copy on write strategy;
430 * the asymmetric (delayed) strategy is used for shared temporary
431 * objects instead of the symmetric (shadow) strategy. All maps
432 * are now "top level" maps (either task map, kernel map or submap
433 * of the kernel map).
435 * Since portions of maps are specified by start/end addreses,
436 * which may not align with existing map entries, all
437 * routines merely "clip" entries to these start/end values.
438 * [That is, an entry is split into two, bordering at a
439 * start or end value.] Note that these clippings may not
440 * always be necessary (as the two resulting entries are then
441 * not changed); however, the clipping is done for convenience.
442 * No attempt is currently made to "glue back together" two
445 * The symmetric (shadow) copy strategy implements virtual copy
446 * by copying VM object references from one map to
447 * another, and then marking both regions as copy-on-write.
448 * It is important to note that only one writeable reference
449 * to a VM object region exists in any map when this strategy
450 * is used -- this means that shadow object creation can be
451 * delayed until a write operation occurs. The symmetric (delayed)
452 * strategy allows multiple maps to have writeable references to
453 * the same region of a vm object, and hence cannot delay creating
454 * its copy objects. See vm_object_copy_quickly() in vm_object.c.
455 * Copying of permanent objects is completely different; see
456 * vm_object_copy_strategically() in vm_object.c.
459 static zone_t vm_map_zone
; /* zone for vm_map structures */
460 static zone_t vm_map_entry_zone
; /* zone for vm_map_entry structures */
461 zone_t vm_map_entry_reserved_zone
; /* zone with reserve for non-blocking
463 static zone_t vm_map_copy_zone
; /* zone for vm_map_copy structures */
464 zone_t vm_map_holes_zone
; /* zone for vm map holes (vm_map_links) structures */
468 * Placeholder object for submap operations. This object is dropped
469 * into the range by a call to vm_map_find, and removed when
470 * vm_map_submap creates the submap.
473 vm_object_t vm_submap_object
;
475 static void *map_data
;
476 static vm_size_t map_data_size
;
477 static void *kentry_data
;
478 static vm_size_t kentry_data_size
;
479 static void *map_holes_data
;
480 static vm_size_t map_holes_data_size
;
482 #define NO_COALESCE_LIMIT ((1024 * 128) - 1)
484 /* Skip acquiring locks if we're in the midst of a kernel core dump */
485 unsigned int not_in_kdp
= 1;
487 unsigned int vm_map_set_cache_attr_count
= 0;
490 vm_map_set_cache_attr(
494 vm_map_entry_t map_entry
;
496 kern_return_t kr
= KERN_SUCCESS
;
498 vm_map_lock_read(map
);
500 if (!vm_map_lookup_entry(map
, va
, &map_entry
) ||
501 map_entry
->is_sub_map
) {
503 * that memory is not properly mapped
505 kr
= KERN_INVALID_ARGUMENT
;
508 object
= VME_OBJECT(map_entry
);
510 if (object
== VM_OBJECT_NULL
) {
512 * there should be a VM object here at this point
514 kr
= KERN_INVALID_ARGUMENT
;
517 vm_object_lock(object
);
518 object
->set_cache_attr
= TRUE
;
519 vm_object_unlock(object
);
521 vm_map_set_cache_attr_count
++;
523 vm_map_unlock_read(map
);
529 #if CONFIG_CODE_DECRYPTION
531 * vm_map_apple_protected:
532 * This remaps the requested part of the object with an object backed by
533 * the decrypting pager.
534 * crypt_info contains entry points and session data for the crypt module.
535 * The crypt_info block will be copied by vm_map_apple_protected. The data structures
536 * referenced in crypt_info must remain valid until crypt_info->crypt_end() is called.
539 vm_map_apple_protected(
541 vm_map_offset_t start
,
543 vm_object_offset_t crypto_backing_offset
,
544 struct pager_crypt_info
*crypt_info
)
546 boolean_t map_locked
;
548 vm_map_entry_t map_entry
;
549 struct vm_map_entry tmp_entry
;
550 memory_object_t unprotected_mem_obj
;
551 vm_object_t protected_object
;
552 vm_map_offset_t map_addr
;
553 vm_map_offset_t start_aligned
, end_aligned
;
554 vm_object_offset_t crypto_start
, crypto_end
;
558 unprotected_mem_obj
= MEMORY_OBJECT_NULL
;
560 start_aligned
= vm_map_trunc_page(start
, PAGE_MASK_64
);
561 end_aligned
= vm_map_round_page(end
, PAGE_MASK_64
);
562 start_aligned
= vm_map_trunc_page(start_aligned
, VM_MAP_PAGE_MASK(map
));
563 end_aligned
= vm_map_round_page(end_aligned
, VM_MAP_PAGE_MASK(map
));
565 assert(start_aligned
== start
);
566 assert(end_aligned
== end
);
568 map_addr
= start_aligned
;
569 for (map_addr
= start_aligned
;
571 map_addr
= tmp_entry
.vme_end
) {
575 /* lookup the protected VM object */
576 if (!vm_map_lookup_entry(map
,
579 map_entry
->is_sub_map
||
580 VME_OBJECT(map_entry
) == VM_OBJECT_NULL
||
581 !(map_entry
->protection
& VM_PROT_EXECUTE
)) {
582 /* that memory is not properly mapped */
583 kr
= KERN_INVALID_ARGUMENT
;
587 /* get the protected object to be decrypted */
588 protected_object
= VME_OBJECT(map_entry
);
589 if (protected_object
== VM_OBJECT_NULL
) {
590 /* there should be a VM object here at this point */
591 kr
= KERN_INVALID_ARGUMENT
;
594 /* ensure protected object stays alive while map is unlocked */
595 vm_object_reference(protected_object
);
597 /* limit the map entry to the area we want to cover */
598 vm_map_clip_start(map
, map_entry
, start_aligned
);
599 vm_map_clip_end(map
, map_entry
, end_aligned
);
601 tmp_entry
= *map_entry
;
602 map_entry
= VM_MAP_ENTRY_NULL
; /* not valid after unlocking map */
607 * This map entry might be only partially encrypted
608 * (if not fully "page-aligned").
611 crypto_end
= tmp_entry
.vme_end
- tmp_entry
.vme_start
;
612 if (tmp_entry
.vme_start
< start
) {
613 if (tmp_entry
.vme_start
!= start_aligned
) {
614 kr
= KERN_INVALID_ADDRESS
;
616 crypto_start
+= (start
- tmp_entry
.vme_start
);
618 if (tmp_entry
.vme_end
> end
) {
619 if (tmp_entry
.vme_end
!= end_aligned
) {
620 kr
= KERN_INVALID_ADDRESS
;
622 crypto_end
-= (tmp_entry
.vme_end
- end
);
626 * This "extra backing offset" is needed to get the decryption
627 * routine to use the right key. It adjusts for the possibly
628 * relative offset of an interposed "4K" pager...
630 if (crypto_backing_offset
== (vm_object_offset_t
) -1) {
631 crypto_backing_offset
= VME_OFFSET(&tmp_entry
);
635 * Lookup (and create if necessary) the protected memory object
636 * matching that VM object.
637 * If successful, this also grabs a reference on the memory object,
638 * to guarantee that it doesn't go away before we get a chance to map
641 unprotected_mem_obj
= apple_protect_pager_setup(
643 VME_OFFSET(&tmp_entry
),
644 crypto_backing_offset
,
649 /* release extra ref on protected object */
650 vm_object_deallocate(protected_object
);
652 if (unprotected_mem_obj
== NULL
) {
657 vm_flags
= VM_FLAGS_FIXED
| VM_FLAGS_OVERWRITE
;
659 /* map this memory object in place of the current one */
660 map_addr
= tmp_entry
.vme_start
;
661 kr
= vm_map_enter_mem_object(map
,
664 tmp_entry
.vme_start
),
665 (mach_vm_offset_t
) 0,
667 (ipc_port_t
) unprotected_mem_obj
,
670 tmp_entry
.protection
,
671 tmp_entry
.max_protection
,
672 tmp_entry
.inheritance
);
673 assert(kr
== KERN_SUCCESS
);
674 assert(map_addr
== tmp_entry
.vme_start
);
676 #if VM_MAP_DEBUG_APPLE_PROTECT
677 if (vm_map_debug_apple_protect
) {
678 printf("APPLE_PROTECT: map %p [0x%llx:0x%llx] pager %p:"
679 " backing:[object:%p,offset:0x%llx,"
680 "crypto_backing_offset:0x%llx,"
681 "crypto_start:0x%llx,crypto_end:0x%llx]\n",
684 (uint64_t) (map_addr
+ (tmp_entry
.vme_end
-
685 tmp_entry
.vme_start
)),
688 VME_OFFSET(&tmp_entry
),
689 crypto_backing_offset
,
693 #endif /* VM_MAP_DEBUG_APPLE_PROTECT */
696 * Release the reference obtained by
697 * apple_protect_pager_setup().
698 * The mapping (if it succeeded) is now holding a reference on
701 memory_object_deallocate(unprotected_mem_obj
);
702 unprotected_mem_obj
= MEMORY_OBJECT_NULL
;
704 /* continue with next map entry */
705 crypto_backing_offset
+= (tmp_entry
.vme_end
-
706 tmp_entry
.vme_start
);
707 crypto_backing_offset
-= crypto_start
;
717 #endif /* CONFIG_CODE_DECRYPTION */
720 lck_grp_t vm_map_lck_grp
;
721 lck_grp_attr_t vm_map_lck_grp_attr
;
722 lck_attr_t vm_map_lck_attr
;
723 lck_attr_t vm_map_lck_rw_attr
;
729 * Initialize the vm_map module. Must be called before
730 * any other vm_map routines.
732 * Map and entry structures are allocated from zones -- we must
733 * initialize those zones.
735 * There are three zones of interest:
737 * vm_map_zone: used to allocate maps.
738 * vm_map_entry_zone: used to allocate map entries.
739 * vm_map_entry_reserved_zone: fallback zone for kernel map entries
741 * The kernel allocates map entries from a special zone that is initially
742 * "crammed" with memory. It would be difficult (perhaps impossible) for
743 * the kernel to allocate more memory to a entry zone when it became
744 * empty since the very act of allocating memory implies the creation
751 vm_size_t entry_zone_alloc_size
;
752 const char *mez_name
= "VM map entries";
754 vm_map_zone
= zinit((vm_map_size_t
) sizeof(struct _vm_map
), 40*1024,
756 zone_change(vm_map_zone
, Z_NOENCRYPT
, TRUE
);
757 #if defined(__LP64__)
758 entry_zone_alloc_size
= PAGE_SIZE
* 5;
760 entry_zone_alloc_size
= PAGE_SIZE
* 6;
762 vm_map_entry_zone
= zinit((vm_map_size_t
) sizeof(struct vm_map_entry
),
763 1024*1024, entry_zone_alloc_size
,
765 zone_change(vm_map_entry_zone
, Z_NOENCRYPT
, TRUE
);
766 zone_change(vm_map_entry_zone
, Z_NOCALLOUT
, TRUE
);
767 zone_change(vm_map_entry_zone
, Z_GZALLOC_EXEMPT
, TRUE
);
769 vm_map_entry_reserved_zone
= zinit((vm_map_size_t
) sizeof(struct vm_map_entry
),
770 kentry_data_size
* 64, kentry_data_size
,
771 "Reserved VM map entries");
772 zone_change(vm_map_entry_reserved_zone
, Z_NOENCRYPT
, TRUE
);
774 vm_map_copy_zone
= zinit((vm_map_size_t
) sizeof(struct vm_map_copy
),
775 16*1024, PAGE_SIZE
, "VM map copies");
776 zone_change(vm_map_copy_zone
, Z_NOENCRYPT
, TRUE
);
778 vm_map_holes_zone
= zinit((vm_map_size_t
) sizeof(struct vm_map_links
),
779 16*1024, PAGE_SIZE
, "VM map holes");
780 zone_change(vm_map_holes_zone
, Z_NOENCRYPT
, TRUE
);
783 * Cram the map and kentry zones with initial data.
784 * Set reserved_zone non-collectible to aid zone_gc().
786 zone_change(vm_map_zone
, Z_COLLECT
, FALSE
);
787 zone_change(vm_map_zone
, Z_FOREIGN
, TRUE
);
789 zone_change(vm_map_entry_reserved_zone
, Z_COLLECT
, FALSE
);
790 zone_change(vm_map_entry_reserved_zone
, Z_EXPAND
, FALSE
);
791 zone_change(vm_map_entry_reserved_zone
, Z_FOREIGN
, TRUE
);
792 zone_change(vm_map_entry_reserved_zone
, Z_NOCALLOUT
, TRUE
);
793 zone_change(vm_map_entry_reserved_zone
, Z_CALLERACCT
, FALSE
); /* don't charge caller */
794 zone_change(vm_map_copy_zone
, Z_CALLERACCT
, FALSE
); /* don't charge caller */
795 zone_change(vm_map_entry_reserved_zone
, Z_GZALLOC_EXEMPT
, TRUE
);
797 zone_change(vm_map_holes_zone
, Z_COLLECT
, TRUE
);
798 zone_change(vm_map_holes_zone
, Z_EXPAND
, TRUE
);
799 zone_change(vm_map_holes_zone
, Z_FOREIGN
, TRUE
);
800 zone_change(vm_map_holes_zone
, Z_NOCALLOUT
, TRUE
);
801 zone_change(vm_map_holes_zone
, Z_CALLERACCT
, TRUE
);
802 zone_change(vm_map_holes_zone
, Z_GZALLOC_EXEMPT
, TRUE
);
805 * Add the stolen memory to zones, adjust zone size and stolen counts.
807 zcram(vm_map_zone
, (vm_offset_t
)map_data
, map_data_size
);
808 zcram(vm_map_entry_reserved_zone
, (vm_offset_t
)kentry_data
, kentry_data_size
);
809 zcram(vm_map_holes_zone
, (vm_offset_t
)map_holes_data
, map_holes_data_size
);
810 VM_PAGE_MOVE_STOLEN(atop_64(map_data_size
) + atop_64(kentry_data_size
) + atop_64(map_holes_data_size
));
812 lck_grp_attr_setdefault(&vm_map_lck_grp_attr
);
813 lck_grp_init(&vm_map_lck_grp
, "vm_map", &vm_map_lck_grp_attr
);
814 lck_attr_setdefault(&vm_map_lck_attr
);
816 lck_attr_setdefault(&vm_map_lck_rw_attr
);
817 lck_attr_cleardebug(&vm_map_lck_rw_attr
);
819 #if VM_MAP_DEBUG_APPLE_PROTECT
820 PE_parse_boot_argn("vm_map_debug_apple_protect",
821 &vm_map_debug_apple_protect
,
822 sizeof(vm_map_debug_apple_protect
));
823 #endif /* VM_MAP_DEBUG_APPLE_PROTECT */
824 #if VM_MAP_DEBUG_APPLE_FOURK
825 PE_parse_boot_argn("vm_map_debug_fourk",
827 sizeof(vm_map_debug_fourk
));
828 #endif /* VM_MAP_DEBUG_FOURK */
835 uint32_t kentry_initial_pages
;
837 map_data_size
= round_page(10 * sizeof(struct _vm_map
));
838 map_data
= pmap_steal_memory(map_data_size
);
841 * kentry_initial_pages corresponds to the number of kernel map entries
842 * required during bootstrap until the asynchronous replenishment
843 * scheme is activated and/or entries are available from the general
846 #if defined(__LP64__)
847 kentry_initial_pages
= 10;
849 kentry_initial_pages
= 6;
853 /* If using the guard allocator, reserve more memory for the kernel
854 * reserved map entry pool.
856 if (gzalloc_enabled())
857 kentry_initial_pages
*= 1024;
860 kentry_data_size
= kentry_initial_pages
* PAGE_SIZE
;
861 kentry_data
= pmap_steal_memory(kentry_data_size
);
863 map_holes_data_size
= kentry_data_size
;
864 map_holes_data
= pmap_steal_memory(map_holes_data_size
);
868 vm_kernel_reserved_entry_init(void) {
869 zone_prio_refill_configure(vm_map_entry_reserved_zone
, (6*PAGE_SIZE
)/sizeof(struct vm_map_entry
));
870 zone_prio_refill_configure(vm_map_holes_zone
, (6*PAGE_SIZE
)/sizeof(struct vm_map_links
));
874 vm_map_disable_hole_optimization(vm_map_t map
)
876 vm_map_entry_t head_entry
, hole_entry
, next_hole_entry
;
878 if (map
->holelistenabled
) {
880 head_entry
= hole_entry
= (vm_map_entry_t
) map
->holes_list
;
882 while (hole_entry
!= NULL
) {
884 next_hole_entry
= hole_entry
->vme_next
;
886 hole_entry
->vme_next
= NULL
;
887 hole_entry
->vme_prev
= NULL
;
888 zfree(vm_map_holes_zone
, hole_entry
);
890 if (next_hole_entry
== head_entry
) {
893 hole_entry
= next_hole_entry
;
897 map
->holes_list
= NULL
;
898 map
->holelistenabled
= FALSE
;
900 map
->first_free
= vm_map_first_entry(map
);
901 SAVE_HINT_HOLE_WRITE(map
, NULL
);
906 vm_kernel_map_is_kernel(vm_map_t map
) {
907 return (map
->pmap
== kernel_pmap
);
913 * Creates and returns a new empty VM map with
914 * the given physical map structure, and having
915 * the given lower and upper address bounds.
918 boolean_t vm_map_supports_hole_optimization
= TRUE
;
927 static int color_seed
= 0;
929 struct vm_map_links
*hole_entry
= NULL
;
931 result
= (vm_map_t
) zalloc(vm_map_zone
);
932 if (result
== VM_MAP_NULL
)
933 panic("vm_map_create");
935 vm_map_first_entry(result
) = vm_map_to_entry(result
);
936 vm_map_last_entry(result
) = vm_map_to_entry(result
);
937 result
->hdr
.nentries
= 0;
938 result
->hdr
.entries_pageable
= pageable
;
940 vm_map_store_init( &(result
->hdr
) );
942 result
->hdr
.page_shift
= PAGE_SHIFT
;
945 result
->user_wire_limit
= MACH_VM_MAX_ADDRESS
; /* default limit is unlimited */
946 result
->user_wire_size
= 0;
947 result
->ref_count
= 1;
949 result
->res_count
= 1;
950 result
->sw_state
= MAP_SW_IN
;
951 #endif /* TASK_SWAPPER */
953 result
->min_offset
= min
;
954 result
->max_offset
= max
;
955 result
->wiring_required
= FALSE
;
956 result
->no_zero_fill
= FALSE
;
957 result
->mapped_in_other_pmaps
= FALSE
;
958 result
->wait_for_space
= FALSE
;
959 result
->switch_protect
= FALSE
;
960 result
->disable_vmentry_reuse
= FALSE
;
961 result
->map_disallow_data_exec
= FALSE
;
962 result
->is_nested_map
= FALSE
;
963 result
->highest_entry_end
= 0;
964 result
->first_free
= vm_map_to_entry(result
);
965 result
->hint
= vm_map_to_entry(result
);
966 result
->color_rr
= (color_seed
++) & vm_color_mask
;
967 result
->jit_entry_exists
= FALSE
;
969 if (vm_map_supports_hole_optimization
&& pmap
!= kernel_pmap
) {
970 hole_entry
= zalloc(vm_map_holes_zone
);
972 hole_entry
->start
= min
;
973 hole_entry
->end
= (max
> (vm_map_offset_t
)MACH_VM_MAX_ADDRESS
) ? max
: (vm_map_offset_t
)MACH_VM_MAX_ADDRESS
;
974 result
->holes_list
= result
->hole_hint
= hole_entry
;
975 hole_entry
->prev
= hole_entry
->next
= (vm_map_entry_t
) hole_entry
;
976 result
->holelistenabled
= TRUE
;
980 result
->holelistenabled
= FALSE
;
983 vm_map_lock_init(result
);
984 lck_mtx_init_ext(&result
->s_lock
, &result
->s_lock_ext
, &vm_map_lck_grp
, &vm_map_lck_attr
);
990 * vm_map_entry_create: [ internal use only ]
992 * Allocates a VM map entry for insertion in the
993 * given map (or map copy). No fields are filled.
995 #define vm_map_entry_create(map, map_locked) _vm_map_entry_create(&(map)->hdr, map_locked)
997 #define vm_map_copy_entry_create(copy, map_locked) \
998 _vm_map_entry_create(&(copy)->cpy_hdr, map_locked)
999 unsigned reserved_zalloc_count
, nonreserved_zalloc_count
;
1001 static vm_map_entry_t
1002 _vm_map_entry_create(
1003 struct vm_map_header
*map_header
, boolean_t __unused map_locked
)
1006 vm_map_entry_t entry
;
1008 zone
= vm_map_entry_zone
;
1010 assert(map_header
->entries_pageable
? !map_locked
: TRUE
);
1012 if (map_header
->entries_pageable
) {
1013 entry
= (vm_map_entry_t
) zalloc(zone
);
1016 entry
= (vm_map_entry_t
) zalloc_canblock(zone
, FALSE
);
1018 if (entry
== VM_MAP_ENTRY_NULL
) {
1019 zone
= vm_map_entry_reserved_zone
;
1020 entry
= (vm_map_entry_t
) zalloc(zone
);
1021 OSAddAtomic(1, &reserved_zalloc_count
);
1023 OSAddAtomic(1, &nonreserved_zalloc_count
);
1026 if (entry
== VM_MAP_ENTRY_NULL
)
1027 panic("vm_map_entry_create");
1028 entry
->from_reserved_zone
= (zone
== vm_map_entry_reserved_zone
);
1030 vm_map_store_update( (vm_map_t
) NULL
, entry
, VM_MAP_ENTRY_CREATE
);
1031 #if MAP_ENTRY_CREATION_DEBUG
1032 entry
->vme_creation_maphdr
= map_header
;
1033 backtrace(&entry
->vme_creation_bt
[0],
1034 (sizeof(entry
->vme_creation_bt
)/sizeof(uintptr_t)));
1040 * vm_map_entry_dispose: [ internal use only ]
1042 * Inverse of vm_map_entry_create.
1044 * write map lock held so no need to
1045 * do anything special to insure correctness
1048 #define vm_map_entry_dispose(map, entry) \
1049 _vm_map_entry_dispose(&(map)->hdr, (entry))
1051 #define vm_map_copy_entry_dispose(map, entry) \
1052 _vm_map_entry_dispose(&(copy)->cpy_hdr, (entry))
1055 _vm_map_entry_dispose(
1056 struct vm_map_header
*map_header
,
1057 vm_map_entry_t entry
)
1061 if (map_header
->entries_pageable
|| !(entry
->from_reserved_zone
))
1062 zone
= vm_map_entry_zone
;
1064 zone
= vm_map_entry_reserved_zone
;
1066 if (!map_header
->entries_pageable
) {
1067 if (zone
== vm_map_entry_zone
)
1068 OSAddAtomic(-1, &nonreserved_zalloc_count
);
1070 OSAddAtomic(-1, &reserved_zalloc_count
);
1077 static boolean_t first_free_check
= FALSE
;
1079 first_free_is_valid(
1082 if (!first_free_check
)
1085 return( first_free_is_valid_store( map
));
1087 #endif /* MACH_ASSERT */
1090 #define vm_map_copy_entry_link(copy, after_where, entry) \
1091 _vm_map_store_entry_link(&(copy)->cpy_hdr, after_where, (entry))
1093 #define vm_map_copy_entry_unlink(copy, entry) \
1094 _vm_map_store_entry_unlink(&(copy)->cpy_hdr, (entry))
1096 #if MACH_ASSERT && TASK_SWAPPER
1098 * vm_map_res_reference:
1100 * Adds another valid residence count to the given map.
1102 * Map is locked so this function can be called from
1106 void vm_map_res_reference(vm_map_t map
)
1108 /* assert map is locked */
1109 assert(map
->res_count
>= 0);
1110 assert(map
->ref_count
>= map
->res_count
);
1111 if (map
->res_count
== 0) {
1112 lck_mtx_unlock(&map
->s_lock
);
1115 lck_mtx_lock(&map
->s_lock
);
1123 * vm_map_reference_swap:
1125 * Adds valid reference and residence counts to the given map.
1127 * The map may not be in memory (i.e. zero residence count).
1130 void vm_map_reference_swap(vm_map_t map
)
1132 assert(map
!= VM_MAP_NULL
);
1133 lck_mtx_lock(&map
->s_lock
);
1134 assert(map
->res_count
>= 0);
1135 assert(map
->ref_count
>= map
->res_count
);
1137 vm_map_res_reference(map
);
1138 lck_mtx_unlock(&map
->s_lock
);
1142 * vm_map_res_deallocate:
1144 * Decrement residence count on a map; possibly causing swapout.
1146 * The map must be in memory (i.e. non-zero residence count).
1148 * The map is locked, so this function is callable from vm_map_deallocate.
1151 void vm_map_res_deallocate(vm_map_t map
)
1153 assert(map
->res_count
> 0);
1154 if (--map
->res_count
== 0) {
1155 lck_mtx_unlock(&map
->s_lock
);
1157 vm_map_swapout(map
);
1159 lck_mtx_lock(&map
->s_lock
);
1161 assert(map
->ref_count
>= map
->res_count
);
1163 #endif /* MACH_ASSERT && TASK_SWAPPER */
1168 * Actually destroy a map.
1177 /* final cleanup: no need to unnest shared region */
1178 flags
|= VM_MAP_REMOVE_NO_UNNESTING
;
1180 /* clean up regular map entries */
1181 (void) vm_map_delete(map
, map
->min_offset
, map
->max_offset
,
1182 flags
, VM_MAP_NULL
);
1183 /* clean up leftover special mappings (commpage, etc...) */
1184 (void) vm_map_delete(map
, 0x0, 0xFFFFFFFFFFFFF000ULL
,
1185 flags
, VM_MAP_NULL
);
1187 vm_map_disable_hole_optimization(map
);
1190 assert(map
->hdr
.nentries
== 0);
1193 pmap_destroy(map
->pmap
);
1195 if (vm_map_lck_attr
.lck_attr_val
& LCK_ATTR_DEBUG
) {
1197 * If lock debugging is enabled the mutexes get tagged as LCK_MTX_TAG_INDIRECT.
1198 * And this is regardless of whether the lck_mtx_ext_t is embedded in the
1199 * structure or kalloc'ed via lck_mtx_init.
1200 * An example is s_lock_ext within struct _vm_map.
1202 * A lck_mtx_destroy on such a mutex will attempt a kfree and panic. We
1203 * can add another tag to detect embedded vs alloc'ed indirect external
1204 * mutexes but that'll be additional checks in the lock path and require
1205 * updating dependencies for the old vs new tag.
1207 * Since the kfree() is for LCK_MTX_TAG_INDIRECT mutexes and that tag is applied
1208 * just when lock debugging is ON, we choose to forego explicitly destroying
1209 * the vm_map mutex and rw lock and, as a consequence, will overflow the reference
1210 * count on vm_map_lck_grp, which has no serious side-effect.
1213 lck_rw_destroy(&(map
)->lock
, &vm_map_lck_grp
);
1214 lck_mtx_destroy(&(map
)->s_lock
, &vm_map_lck_grp
);
1217 zfree(vm_map_zone
, map
);
1222 * vm_map_swapin/vm_map_swapout
1224 * Swap a map in and out, either referencing or releasing its resources.
1225 * These functions are internal use only; however, they must be exported
1226 * because they may be called from macros, which are exported.
1228 * In the case of swapout, there could be races on the residence count,
1229 * so if the residence count is up, we return, assuming that a
1230 * vm_map_deallocate() call in the near future will bring us back.
1233 * -- We use the map write lock for synchronization among races.
1234 * -- The map write lock, and not the simple s_lock, protects the
1235 * swap state of the map.
1236 * -- If a map entry is a share map, then we hold both locks, in
1237 * hierarchical order.
1239 * Synchronization Notes:
1240 * 1) If a vm_map_swapin() call happens while swapout in progress, it
1241 * will block on the map lock and proceed when swapout is through.
1242 * 2) A vm_map_reference() call at this time is illegal, and will
1243 * cause a panic. vm_map_reference() is only allowed on resident
1244 * maps, since it refuses to block.
1245 * 3) A vm_map_swapin() call during a swapin will block, and
1246 * proceeed when the first swapin is done, turning into a nop.
1247 * This is the reason the res_count is not incremented until
1248 * after the swapin is complete.
1249 * 4) There is a timing hole after the checks of the res_count, before
1250 * the map lock is taken, during which a swapin may get the lock
1251 * before a swapout about to happen. If this happens, the swapin
1252 * will detect the state and increment the reference count, causing
1253 * the swapout to be a nop, thereby delaying it until a later
1254 * vm_map_deallocate. If the swapout gets the lock first, then
1255 * the swapin will simply block until the swapout is done, and
1258 * Because vm_map_swapin() is potentially an expensive operation, it
1259 * should be used with caution.
1262 * 1) A map with a residence count of zero is either swapped, or
1264 * 2) A map with a non-zero residence count is either resident,
1265 * or being swapped in.
1268 int vm_map_swap_enable
= 1;
1270 void vm_map_swapin (vm_map_t map
)
1272 vm_map_entry_t entry
;
1274 if (!vm_map_swap_enable
) /* debug */
1279 * First deal with various races.
1281 if (map
->sw_state
== MAP_SW_IN
)
1283 * we raced with swapout and won. Returning will incr.
1284 * the res_count, turning the swapout into a nop.
1289 * The residence count must be zero. If we raced with another
1290 * swapin, the state would have been IN; if we raced with a
1291 * swapout (after another competing swapin), we must have lost
1292 * the race to get here (see above comment), in which case
1293 * res_count is still 0.
1295 assert(map
->res_count
== 0);
1298 * There are no intermediate states of a map going out or
1299 * coming in, since the map is locked during the transition.
1301 assert(map
->sw_state
== MAP_SW_OUT
);
1304 * We now operate upon each map entry. If the entry is a sub-
1305 * or share-map, we call vm_map_res_reference upon it.
1306 * If the entry is an object, we call vm_object_res_reference
1307 * (this may iterate through the shadow chain).
1308 * Note that we hold the map locked the entire time,
1309 * even if we get back here via a recursive call in
1310 * vm_map_res_reference.
1312 entry
= vm_map_first_entry(map
);
1314 while (entry
!= vm_map_to_entry(map
)) {
1315 if (VME_OBJECT(entry
) != VM_OBJECT_NULL
) {
1316 if (entry
->is_sub_map
) {
1317 vm_map_t lmap
= VME_SUBMAP(entry
);
1318 lck_mtx_lock(&lmap
->s_lock
);
1319 vm_map_res_reference(lmap
);
1320 lck_mtx_unlock(&lmap
->s_lock
);
1322 vm_object_t object
= VME_OBEJCT(entry
);
1323 vm_object_lock(object
);
1325 * This call may iterate through the
1328 vm_object_res_reference(object
);
1329 vm_object_unlock(object
);
1332 entry
= entry
->vme_next
;
1334 assert(map
->sw_state
== MAP_SW_OUT
);
1335 map
->sw_state
= MAP_SW_IN
;
1338 void vm_map_swapout(vm_map_t map
)
1340 vm_map_entry_t entry
;
1344 * First deal with various races.
1345 * If we raced with a swapin and lost, the residence count
1346 * will have been incremented to 1, and we simply return.
1348 lck_mtx_lock(&map
->s_lock
);
1349 if (map
->res_count
!= 0) {
1350 lck_mtx_unlock(&map
->s_lock
);
1353 lck_mtx_unlock(&map
->s_lock
);
1356 * There are no intermediate states of a map going out or
1357 * coming in, since the map is locked during the transition.
1359 assert(map
->sw_state
== MAP_SW_IN
);
1361 if (!vm_map_swap_enable
)
1365 * We now operate upon each map entry. If the entry is a sub-
1366 * or share-map, we call vm_map_res_deallocate upon it.
1367 * If the entry is an object, we call vm_object_res_deallocate
1368 * (this may iterate through the shadow chain).
1369 * Note that we hold the map locked the entire time,
1370 * even if we get back here via a recursive call in
1371 * vm_map_res_deallocate.
1373 entry
= vm_map_first_entry(map
);
1375 while (entry
!= vm_map_to_entry(map
)) {
1376 if (VME_OBJECT(entry
) != VM_OBJECT_NULL
) {
1377 if (entry
->is_sub_map
) {
1378 vm_map_t lmap
= VME_SUBMAP(entry
);
1379 lck_mtx_lock(&lmap
->s_lock
);
1380 vm_map_res_deallocate(lmap
);
1381 lck_mtx_unlock(&lmap
->s_lock
);
1383 vm_object_t object
= VME_OBJECT(entry
);
1384 vm_object_lock(object
);
1386 * This call may take a long time,
1387 * since it could actively push
1388 * out pages (if we implement it
1391 vm_object_res_deallocate(object
);
1392 vm_object_unlock(object
);
1395 entry
= entry
->vme_next
;
1397 assert(map
->sw_state
== MAP_SW_IN
);
1398 map
->sw_state
= MAP_SW_OUT
;
1401 #endif /* TASK_SWAPPER */
1404 * vm_map_lookup_entry: [ internal use only ]
1406 * Calls into the vm map store layer to find the map
1407 * entry containing (or immediately preceding) the
1408 * specified address in the given map; the entry is returned
1409 * in the "entry" parameter. The boolean
1410 * result indicates whether the address is
1411 * actually contained in the map.
1414 vm_map_lookup_entry(
1416 vm_map_offset_t address
,
1417 vm_map_entry_t
*entry
) /* OUT */
1419 return ( vm_map_store_lookup_entry( map
, address
, entry
));
1423 * Routine: vm_map_find_space
1425 * Allocate a range in the specified virtual address map,
1426 * returning the entry allocated for that range.
1427 * Used by kmem_alloc, etc.
1429 * The map must be NOT be locked. It will be returned locked
1430 * on KERN_SUCCESS, unlocked on failure.
1432 * If an entry is allocated, the object/offset fields
1433 * are initialized to zero.
1438 vm_map_offset_t
*address
, /* OUT */
1440 vm_map_offset_t mask
,
1442 vm_map_entry_t
*o_entry
) /* OUT */
1444 vm_map_entry_t entry
, new_entry
;
1445 vm_map_offset_t start
;
1446 vm_map_offset_t end
;
1447 vm_map_entry_t hole_entry
;
1451 return KERN_INVALID_ARGUMENT
;
1454 if (flags
& VM_FLAGS_GUARD_AFTER
) {
1455 /* account for the back guard page in the size */
1456 size
+= VM_MAP_PAGE_SIZE(map
);
1459 new_entry
= vm_map_entry_create(map
, FALSE
);
1462 * Look for the first possible address; if there's already
1463 * something at this address, we have to start after it.
1468 if( map
->disable_vmentry_reuse
== TRUE
) {
1469 VM_MAP_HIGHEST_ENTRY(map
, entry
, start
);
1471 if (map
->holelistenabled
) {
1472 hole_entry
= (vm_map_entry_t
)map
->holes_list
;
1474 if (hole_entry
== NULL
) {
1476 * No more space in the map?
1478 vm_map_entry_dispose(map
, new_entry
);
1480 return(KERN_NO_SPACE
);
1484 start
= entry
->vme_start
;
1486 assert(first_free_is_valid(map
));
1487 if ((entry
= map
->first_free
) == vm_map_to_entry(map
))
1488 start
= map
->min_offset
;
1490 start
= entry
->vme_end
;
1495 * In any case, the "entry" always precedes
1496 * the proposed new region throughout the loop:
1500 vm_map_entry_t next
;
1503 * Find the end of the proposed new region.
1504 * Be sure we didn't go beyond the end, or
1505 * wrap around the address.
1508 if (flags
& VM_FLAGS_GUARD_BEFORE
) {
1509 /* reserve space for the front guard page */
1510 start
+= VM_MAP_PAGE_SIZE(map
);
1512 end
= ((start
+ mask
) & ~mask
);
1515 vm_map_entry_dispose(map
, new_entry
);
1517 return(KERN_NO_SPACE
);
1522 if ((end
> map
->max_offset
) || (end
< start
)) {
1523 vm_map_entry_dispose(map
, new_entry
);
1525 return(KERN_NO_SPACE
);
1528 next
= entry
->vme_next
;
1530 if (map
->holelistenabled
) {
1531 if (entry
->vme_end
>= end
)
1535 * If there are no more entries, we must win.
1539 * If there is another entry, it must be
1540 * after the end of the potential new region.
1543 if (next
== vm_map_to_entry(map
))
1546 if (next
->vme_start
>= end
)
1551 * Didn't fit -- move to the next entry.
1556 if (map
->holelistenabled
) {
1557 if (entry
== (vm_map_entry_t
) map
->holes_list
) {
1561 vm_map_entry_dispose(map
, new_entry
);
1563 return(KERN_NO_SPACE
);
1565 start
= entry
->vme_start
;
1567 start
= entry
->vme_end
;
1571 if (map
->holelistenabled
) {
1572 if (vm_map_lookup_entry(map
, entry
->vme_start
, &entry
)) {
1573 panic("Found an existing entry (%p) instead of potential hole at address: 0x%llx.\n", entry
, (unsigned long long)entry
->vme_start
);
1579 * "start" and "end" should define the endpoints of the
1580 * available new range, and
1581 * "entry" should refer to the region before the new
1584 * the map should be locked.
1587 if (flags
& VM_FLAGS_GUARD_BEFORE
) {
1588 /* go back for the front guard page */
1589 start
-= VM_MAP_PAGE_SIZE(map
);
1593 assert(start
< end
);
1594 new_entry
->vme_start
= start
;
1595 new_entry
->vme_end
= end
;
1596 assert(page_aligned(new_entry
->vme_start
));
1597 assert(page_aligned(new_entry
->vme_end
));
1598 assert(VM_MAP_PAGE_ALIGNED(new_entry
->vme_start
,
1599 VM_MAP_PAGE_MASK(map
)));
1600 assert(VM_MAP_PAGE_ALIGNED(new_entry
->vme_end
,
1601 VM_MAP_PAGE_MASK(map
)));
1603 new_entry
->is_shared
= FALSE
;
1604 new_entry
->is_sub_map
= FALSE
;
1605 new_entry
->use_pmap
= TRUE
;
1606 VME_OBJECT_SET(new_entry
, VM_OBJECT_NULL
);
1607 VME_OFFSET_SET(new_entry
, (vm_object_offset_t
) 0);
1609 new_entry
->needs_copy
= FALSE
;
1611 new_entry
->inheritance
= VM_INHERIT_DEFAULT
;
1612 new_entry
->protection
= VM_PROT_DEFAULT
;
1613 new_entry
->max_protection
= VM_PROT_ALL
;
1614 new_entry
->behavior
= VM_BEHAVIOR_DEFAULT
;
1615 new_entry
->wired_count
= 0;
1616 new_entry
->user_wired_count
= 0;
1618 new_entry
->in_transition
= FALSE
;
1619 new_entry
->needs_wakeup
= FALSE
;
1620 new_entry
->no_cache
= FALSE
;
1621 new_entry
->permanent
= FALSE
;
1622 new_entry
->superpage_size
= FALSE
;
1623 if (VM_MAP_PAGE_SHIFT(map
) != PAGE_SHIFT
) {
1624 new_entry
->map_aligned
= TRUE
;
1626 new_entry
->map_aligned
= FALSE
;
1629 new_entry
->used_for_jit
= FALSE
;
1630 new_entry
->zero_wired_pages
= FALSE
;
1631 new_entry
->iokit_acct
= FALSE
;
1632 new_entry
->vme_resilient_codesign
= FALSE
;
1633 new_entry
->vme_resilient_media
= FALSE
;
1634 if (flags
& VM_FLAGS_ATOMIC_ENTRY
)
1635 new_entry
->vme_atomic
= TRUE
;
1637 new_entry
->vme_atomic
= FALSE
;
1640 VM_GET_FLAGS_ALIAS(flags
, alias
);
1641 VME_ALIAS_SET(new_entry
, alias
);
1644 * Insert the new entry into the list
1647 vm_map_store_entry_link(map
, entry
, new_entry
);
1652 * Update the lookup hint
1654 SAVE_HINT_MAP_WRITE(map
, new_entry
);
1656 *o_entry
= new_entry
;
1657 return(KERN_SUCCESS
);
1660 int vm_map_pmap_enter_print
= FALSE
;
1661 int vm_map_pmap_enter_enable
= FALSE
;
1664 * Routine: vm_map_pmap_enter [internal only]
1667 * Force pages from the specified object to be entered into
1668 * the pmap at the specified address if they are present.
1669 * As soon as a page not found in the object the scan ends.
1674 * In/out conditions:
1675 * The source map should not be locked on entry.
1677 __unused
static void
1680 vm_map_offset_t addr
,
1681 vm_map_offset_t end_addr
,
1683 vm_object_offset_t offset
,
1684 vm_prot_t protection
)
1692 while (addr
< end_addr
) {
1698 * From vm_map_enter(), we come into this function without the map
1699 * lock held or the object lock held.
1700 * We haven't taken a reference on the object either.
1701 * We should do a proper lookup on the map to make sure
1702 * that things are sane before we go locking objects that
1703 * could have been deallocated from under us.
1706 vm_object_lock(object
);
1708 m
= vm_page_lookup(object
, offset
);
1711 * The user should never see encrypted data, so do not
1712 * enter an encrypted page in the page table.
1714 if (m
== VM_PAGE_NULL
|| m
->busy
|| m
->encrypted
||
1716 (m
->unusual
&& ( m
->error
|| m
->restart
|| m
->absent
))) {
1717 vm_object_unlock(object
);
1721 if (vm_map_pmap_enter_print
) {
1722 printf("vm_map_pmap_enter:");
1723 printf("map: %p, addr: %llx, object: %p, offset: %llx\n",
1724 map
, (unsigned long long)addr
, object
, (unsigned long long)offset
);
1726 type_of_fault
= DBG_CACHE_HIT_FAULT
;
1727 kr
= vm_fault_enter(m
, map
->pmap
, addr
, protection
, protection
,
1728 VM_PAGE_WIRED(m
), FALSE
, FALSE
, FALSE
,
1729 0, /* XXX need user tag / alias? */
1730 0, /* alternate accounting? */
1734 vm_object_unlock(object
);
1736 offset
+= PAGE_SIZE_64
;
1741 boolean_t
vm_map_pmap_is_empty(
1743 vm_map_offset_t start
,
1744 vm_map_offset_t end
);
1745 boolean_t
vm_map_pmap_is_empty(
1747 vm_map_offset_t start
,
1748 vm_map_offset_t end
)
1750 #ifdef MACHINE_PMAP_IS_EMPTY
1751 return pmap_is_empty(map
->pmap
, start
, end
);
1752 #else /* MACHINE_PMAP_IS_EMPTY */
1753 vm_map_offset_t offset
;
1756 if (map
->pmap
== NULL
) {
1760 for (offset
= start
;
1762 offset
+= PAGE_SIZE
) {
1763 phys_page
= pmap_find_phys(map
->pmap
, offset
);
1765 kprintf("vm_map_pmap_is_empty(%p,0x%llx,0x%llx): "
1766 "page %d at 0x%llx\n",
1767 map
, (long long)start
, (long long)end
,
1768 phys_page
, (long long)offset
);
1773 #endif /* MACHINE_PMAP_IS_EMPTY */
1776 #define MAX_TRIES_TO_GET_RANDOM_ADDRESS 1000
1778 vm_map_random_address_for_size(
1780 vm_map_offset_t
*address
,
1783 kern_return_t kr
= KERN_SUCCESS
;
1785 vm_map_offset_t random_addr
= 0;
1786 vm_map_offset_t hole_end
;
1788 vm_map_entry_t next_entry
= VM_MAP_ENTRY_NULL
;
1789 vm_map_entry_t prev_entry
= VM_MAP_ENTRY_NULL
;
1790 vm_map_size_t vm_hole_size
= 0;
1791 vm_map_size_t addr_space_size
;
1793 addr_space_size
= vm_map_max(map
) - vm_map_min(map
);
1795 assert(page_aligned(size
));
1797 while (tries
< MAX_TRIES_TO_GET_RANDOM_ADDRESS
) {
1798 random_addr
= ((vm_map_offset_t
)random()) << PAGE_SHIFT
;
1799 random_addr
= vm_map_trunc_page(
1800 vm_map_min(map
) +(random_addr
% addr_space_size
),
1801 VM_MAP_PAGE_MASK(map
));
1803 if (vm_map_lookup_entry(map
, random_addr
, &prev_entry
) == FALSE
) {
1804 if (prev_entry
== vm_map_to_entry(map
)) {
1805 next_entry
= vm_map_first_entry(map
);
1807 next_entry
= prev_entry
->vme_next
;
1809 if (next_entry
== vm_map_to_entry(map
)) {
1810 hole_end
= vm_map_max(map
);
1812 hole_end
= next_entry
->vme_start
;
1814 vm_hole_size
= hole_end
- random_addr
;
1815 if (vm_hole_size
>= size
) {
1816 *address
= random_addr
;
1823 if (tries
== MAX_TRIES_TO_GET_RANDOM_ADDRESS
) {
1830 * Routine: vm_map_enter
1833 * Allocate a range in the specified virtual address map.
1834 * The resulting range will refer to memory defined by
1835 * the given memory object and offset into that object.
1837 * Arguments are as defined in the vm_map call.
1839 int _map_enter_debug
= 0;
1840 static unsigned int vm_map_enter_restore_successes
= 0;
1841 static unsigned int vm_map_enter_restore_failures
= 0;
1845 vm_map_offset_t
*address
, /* IN/OUT */
1847 vm_map_offset_t mask
,
1850 vm_object_offset_t offset
,
1851 boolean_t needs_copy
,
1852 vm_prot_t cur_protection
,
1853 vm_prot_t max_protection
,
1854 vm_inherit_t inheritance
)
1856 vm_map_entry_t entry
, new_entry
;
1857 vm_map_offset_t start
, tmp_start
, tmp_offset
;
1858 vm_map_offset_t end
, tmp_end
;
1859 vm_map_offset_t tmp2_start
, tmp2_end
;
1860 vm_map_offset_t step
;
1861 kern_return_t result
= KERN_SUCCESS
;
1862 vm_map_t zap_old_map
= VM_MAP_NULL
;
1863 vm_map_t zap_new_map
= VM_MAP_NULL
;
1864 boolean_t map_locked
= FALSE
;
1865 boolean_t pmap_empty
= TRUE
;
1866 boolean_t new_mapping_established
= FALSE
;
1867 boolean_t keep_map_locked
= ((flags
& VM_FLAGS_KEEP_MAP_LOCKED
) != 0);
1868 boolean_t anywhere
= ((flags
& VM_FLAGS_ANYWHERE
) != 0);
1869 boolean_t purgable
= ((flags
& VM_FLAGS_PURGABLE
) != 0);
1870 boolean_t overwrite
= ((flags
& VM_FLAGS_OVERWRITE
) != 0);
1871 boolean_t no_cache
= ((flags
& VM_FLAGS_NO_CACHE
) != 0);
1872 boolean_t is_submap
= ((flags
& VM_FLAGS_SUBMAP
) != 0);
1873 boolean_t permanent
= ((flags
& VM_FLAGS_PERMANENT
) != 0);
1874 boolean_t entry_for_jit
= ((flags
& VM_FLAGS_MAP_JIT
) != 0);
1875 boolean_t iokit_acct
= ((flags
& VM_FLAGS_IOKIT_ACCT
) != 0);
1876 boolean_t resilient_codesign
= ((flags
& VM_FLAGS_RESILIENT_CODESIGN
) != 0);
1877 boolean_t resilient_media
= ((flags
& VM_FLAGS_RESILIENT_MEDIA
) != 0);
1878 boolean_t random_address
= ((flags
& VM_FLAGS_RANDOM_ADDR
) != 0);
1879 unsigned int superpage_size
= ((flags
& VM_FLAGS_SUPERPAGE_MASK
) >> VM_FLAGS_SUPERPAGE_SHIFT
);
1880 vm_tag_t alias
, user_alias
;
1881 vm_map_offset_t effective_min_offset
, effective_max_offset
;
1883 boolean_t clear_map_aligned
= FALSE
;
1884 vm_map_entry_t hole_entry
;
1886 if (superpage_size
) {
1887 switch (superpage_size
) {
1889 * Note that the current implementation only supports
1890 * a single size for superpages, SUPERPAGE_SIZE, per
1891 * architecture. As soon as more sizes are supposed
1892 * to be supported, SUPERPAGE_SIZE has to be replaced
1893 * with a lookup of the size depending on superpage_size.
1896 case SUPERPAGE_SIZE_ANY
:
1897 /* handle it like 2 MB and round up to page size */
1898 size
= (size
+ 2*1024*1024 - 1) & ~(2*1024*1024 - 1);
1899 case SUPERPAGE_SIZE_2MB
:
1903 return KERN_INVALID_ARGUMENT
;
1905 mask
= SUPERPAGE_SIZE
-1;
1906 if (size
& (SUPERPAGE_SIZE
-1))
1907 return KERN_INVALID_ARGUMENT
;
1908 inheritance
= VM_INHERIT_NONE
; /* fork() children won't inherit superpages */
1913 if (resilient_codesign
|| resilient_media
) {
1914 if ((cur_protection
& (VM_PROT_WRITE
| VM_PROT_EXECUTE
)) ||
1915 (max_protection
& (VM_PROT_WRITE
| VM_PROT_EXECUTE
))) {
1916 return KERN_PROTECTION_FAILURE
;
1922 /* submaps can not be purgeable */
1923 return KERN_INVALID_ARGUMENT
;
1925 if (object
== VM_OBJECT_NULL
) {
1926 /* submaps can not be created lazily */
1927 return KERN_INVALID_ARGUMENT
;
1930 if (flags
& VM_FLAGS_ALREADY
) {
1932 * VM_FLAGS_ALREADY says that it's OK if the same mapping
1933 * is already present. For it to be meaningul, the requested
1934 * mapping has to be at a fixed address (!VM_FLAGS_ANYWHERE) and
1935 * we shouldn't try and remove what was mapped there first
1936 * (!VM_FLAGS_OVERWRITE).
1938 if ((flags
& VM_FLAGS_ANYWHERE
) ||
1939 (flags
& VM_FLAGS_OVERWRITE
)) {
1940 return KERN_INVALID_ARGUMENT
;
1944 effective_min_offset
= map
->min_offset
;
1946 if (flags
& VM_FLAGS_BEYOND_MAX
) {
1948 * Allow an insertion beyond the map's max offset.
1950 if (vm_map_is_64bit(map
))
1951 effective_max_offset
= 0xFFFFFFFFFFFFF000ULL
;
1953 effective_max_offset
= 0x00000000FFFFF000ULL
;
1955 effective_max_offset
= map
->max_offset
;
1959 (offset
& PAGE_MASK_64
) != 0) {
1961 return KERN_INVALID_ARGUMENT
;
1964 VM_GET_FLAGS_ALIAS(flags
, alias
);
1965 if (map
->pmap
== kernel_pmap
) {
1966 user_alias
= VM_KERN_MEMORY_NONE
;
1971 #define RETURN(value) { result = value; goto BailOut; }
1973 assert(page_aligned(*address
));
1974 assert(page_aligned(size
));
1976 if (!VM_MAP_PAGE_ALIGNED(size
, VM_MAP_PAGE_MASK(map
))) {
1978 * In most cases, the caller rounds the size up to the
1980 * If we get a size that is explicitly not map-aligned here,
1981 * we'll have to respect the caller's wish and mark the
1982 * mapping as "not map-aligned" to avoid tripping the
1983 * map alignment checks later.
1985 clear_map_aligned
= TRUE
;
1988 !VM_MAP_PAGE_ALIGNED(*address
, VM_MAP_PAGE_MASK(map
))) {
1990 * We've been asked to map at a fixed address and that
1991 * address is not aligned to the map's specific alignment.
1992 * The caller should know what it's doing (i.e. most likely
1993 * mapping some fragmented copy map, transferring memory from
1994 * a VM map with a different alignment), so clear map_aligned
1995 * for this new VM map entry and proceed.
1997 clear_map_aligned
= TRUE
;
2001 * Only zero-fill objects are allowed to be purgable.
2002 * LP64todo - limit purgable objects to 32-bits for now
2006 (object
!= VM_OBJECT_NULL
&&
2007 (object
->vo_size
!= size
||
2008 object
->purgable
== VM_PURGABLE_DENY
))
2009 || size
> ANON_MAX_SIZE
)) /* LP64todo: remove when dp capable */
2010 return KERN_INVALID_ARGUMENT
;
2012 if (!anywhere
&& overwrite
) {
2014 * Create a temporary VM map to hold the old mappings in the
2015 * affected area while we create the new one.
2016 * This avoids releasing the VM map lock in
2017 * vm_map_entry_delete() and allows atomicity
2018 * when we want to replace some mappings with a new one.
2019 * It also allows us to restore the old VM mappings if the
2020 * new mapping fails.
2022 zap_old_map
= vm_map_create(PMAP_NULL
,
2025 map
->hdr
.entries_pageable
);
2026 vm_map_set_page_shift(zap_old_map
, VM_MAP_PAGE_SHIFT(map
));
2027 vm_map_disable_hole_optimization(zap_old_map
);
2038 if (entry_for_jit
) {
2039 if (map
->jit_entry_exists
) {
2040 result
= KERN_INVALID_ARGUMENT
;
2043 random_address
= TRUE
;
2046 if (random_address
) {
2048 * Get a random start address.
2050 result
= vm_map_random_address_for_size(map
, address
, size
);
2051 if (result
!= KERN_SUCCESS
) {
2059 * Calculate the first possible address.
2062 if (start
< effective_min_offset
)
2063 start
= effective_min_offset
;
2064 if (start
> effective_max_offset
)
2065 RETURN(KERN_NO_SPACE
);
2068 * Look for the first possible address;
2069 * if there's already something at this
2070 * address, we have to start after it.
2073 if( map
->disable_vmentry_reuse
== TRUE
) {
2074 VM_MAP_HIGHEST_ENTRY(map
, entry
, start
);
2077 if (map
->holelistenabled
) {
2078 hole_entry
= (vm_map_entry_t
)map
->holes_list
;
2080 if (hole_entry
== NULL
) {
2082 * No more space in the map?
2084 result
= KERN_NO_SPACE
;
2088 boolean_t found_hole
= FALSE
;
2091 if (hole_entry
->vme_start
>= start
) {
2092 start
= hole_entry
->vme_start
;
2097 if (hole_entry
->vme_end
> start
) {
2101 hole_entry
= hole_entry
->vme_next
;
2103 } while (hole_entry
!= (vm_map_entry_t
) map
->holes_list
);
2105 if (found_hole
== FALSE
) {
2106 result
= KERN_NO_SPACE
;
2113 start
+= PAGE_SIZE_64
;
2116 assert(first_free_is_valid(map
));
2118 entry
= map
->first_free
;
2120 if (entry
== vm_map_to_entry(map
)) {
2123 if (entry
->vme_next
== vm_map_to_entry(map
)){
2125 * Hole at the end of the map.
2129 if (start
< (entry
->vme_next
)->vme_start
) {
2130 start
= entry
->vme_end
;
2131 start
= vm_map_round_page(start
,
2132 VM_MAP_PAGE_MASK(map
));
2135 * Need to do a lookup.
2142 if (entry
== NULL
) {
2143 vm_map_entry_t tmp_entry
;
2144 if (vm_map_lookup_entry(map
, start
, &tmp_entry
)) {
2145 assert(!entry_for_jit
);
2146 start
= tmp_entry
->vme_end
;
2147 start
= vm_map_round_page(start
,
2148 VM_MAP_PAGE_MASK(map
));
2156 * In any case, the "entry" always precedes
2157 * the proposed new region throughout the
2162 vm_map_entry_t next
;
2165 * Find the end of the proposed new region.
2166 * Be sure we didn't go beyond the end, or
2167 * wrap around the address.
2170 end
= ((start
+ mask
) & ~mask
);
2171 end
= vm_map_round_page(end
,
2172 VM_MAP_PAGE_MASK(map
));
2174 RETURN(KERN_NO_SPACE
);
2176 assert(VM_MAP_PAGE_ALIGNED(start
,
2177 VM_MAP_PAGE_MASK(map
)));
2180 if ((end
> effective_max_offset
) || (end
< start
)) {
2181 if (map
->wait_for_space
) {
2182 assert(!keep_map_locked
);
2183 if (size
<= (effective_max_offset
-
2184 effective_min_offset
)) {
2185 assert_wait((event_t
)map
,
2189 thread_block(THREAD_CONTINUE_NULL
);
2193 RETURN(KERN_NO_SPACE
);
2196 next
= entry
->vme_next
;
2198 if (map
->holelistenabled
) {
2199 if (entry
->vme_end
>= end
)
2203 * If there are no more entries, we must win.
2207 * If there is another entry, it must be
2208 * after the end of the potential new region.
2211 if (next
== vm_map_to_entry(map
))
2214 if (next
->vme_start
>= end
)
2219 * Didn't fit -- move to the next entry.
2224 if (map
->holelistenabled
) {
2225 if (entry
== (vm_map_entry_t
) map
->holes_list
) {
2229 result
= KERN_NO_SPACE
;
2232 start
= entry
->vme_start
;
2234 start
= entry
->vme_end
;
2237 start
= vm_map_round_page(start
,
2238 VM_MAP_PAGE_MASK(map
));
2241 if (map
->holelistenabled
) {
2242 if (vm_map_lookup_entry(map
, entry
->vme_start
, &entry
)) {
2243 panic("Found an existing entry (%p) instead of potential hole at address: 0x%llx.\n", entry
, (unsigned long long)entry
->vme_start
);
2248 assert(VM_MAP_PAGE_ALIGNED(*address
,
2249 VM_MAP_PAGE_MASK(map
)));
2253 * the address doesn't itself violate
2254 * the mask requirement.
2259 if ((start
& mask
) != 0)
2260 RETURN(KERN_NO_SPACE
);
2263 * ... the address is within bounds
2268 if ((start
< effective_min_offset
) ||
2269 (end
> effective_max_offset
) ||
2271 RETURN(KERN_INVALID_ADDRESS
);
2274 if (overwrite
&& zap_old_map
!= VM_MAP_NULL
) {
2276 * Fixed mapping and "overwrite" flag: attempt to
2277 * remove all existing mappings in the specified
2278 * address range, saving them in our "zap_old_map".
2280 (void) vm_map_delete(map
, start
, end
,
2281 (VM_MAP_REMOVE_SAVE_ENTRIES
|
2282 VM_MAP_REMOVE_NO_MAP_ALIGN
),
2287 * ... the starting address isn't allocated
2290 if (vm_map_lookup_entry(map
, start
, &entry
)) {
2291 if (! (flags
& VM_FLAGS_ALREADY
)) {
2292 RETURN(KERN_NO_SPACE
);
2295 * Check if what's already there is what we want.
2298 tmp_offset
= offset
;
2299 if (entry
->vme_start
< start
) {
2300 tmp_start
-= start
- entry
->vme_start
;
2301 tmp_offset
-= start
- entry
->vme_start
;
2304 for (; entry
->vme_start
< end
;
2305 entry
= entry
->vme_next
) {
2307 * Check if the mapping's attributes
2308 * match the existing map entry.
2310 if (entry
== vm_map_to_entry(map
) ||
2311 entry
->vme_start
!= tmp_start
||
2312 entry
->is_sub_map
!= is_submap
||
2313 VME_OFFSET(entry
) != tmp_offset
||
2314 entry
->needs_copy
!= needs_copy
||
2315 entry
->protection
!= cur_protection
||
2316 entry
->max_protection
!= max_protection
||
2317 entry
->inheritance
!= inheritance
||
2318 entry
->iokit_acct
!= iokit_acct
||
2319 VME_ALIAS(entry
) != alias
) {
2320 /* not the same mapping ! */
2321 RETURN(KERN_NO_SPACE
);
2324 * Check if the same object is being mapped.
2327 if (VME_SUBMAP(entry
) !=
2328 (vm_map_t
) object
) {
2329 /* not the same submap */
2330 RETURN(KERN_NO_SPACE
);
2333 if (VME_OBJECT(entry
) != object
) {
2334 /* not the same VM object... */
2337 obj2
= VME_OBJECT(entry
);
2338 if ((obj2
== VM_OBJECT_NULL
||
2340 (object
== VM_OBJECT_NULL
||
2341 object
->internal
)) {
2348 RETURN(KERN_NO_SPACE
);
2353 tmp_offset
+= entry
->vme_end
- entry
->vme_start
;
2354 tmp_start
+= entry
->vme_end
- entry
->vme_start
;
2355 if (entry
->vme_end
>= end
) {
2356 /* reached the end of our mapping */
2360 /* it all matches: let's use what's already there ! */
2361 RETURN(KERN_MEMORY_PRESENT
);
2365 * ... the next region doesn't overlap the
2369 if ((entry
->vme_next
!= vm_map_to_entry(map
)) &&
2370 (entry
->vme_next
->vme_start
< end
))
2371 RETURN(KERN_NO_SPACE
);
2376 * "start" and "end" should define the endpoints of the
2377 * available new range, and
2378 * "entry" should refer to the region before the new
2381 * the map should be locked.
2385 * See whether we can avoid creating a new entry (and object) by
2386 * extending one of our neighbors. [So far, we only attempt to
2387 * extend from below.] Note that we can never extend/join
2388 * purgable objects because they need to remain distinct
2389 * entities in order to implement their "volatile object"
2393 if (purgable
|| entry_for_jit
) {
2394 if (object
== VM_OBJECT_NULL
) {
2396 object
= vm_object_allocate(size
);
2397 object
->copy_strategy
= MEMORY_OBJECT_COPY_NONE
;
2398 object
->true_share
= TRUE
;
2401 object
->purgable
= VM_PURGABLE_NONVOLATILE
;
2402 if (map
->pmap
== kernel_pmap
) {
2404 * Purgeable mappings made in a kernel
2405 * map are "owned" by the kernel itself
2406 * rather than the current user task
2407 * because they're likely to be used by
2408 * more than this user task (see
2409 * execargs_purgeable_allocate(), for
2412 owner
= kernel_task
;
2414 owner
= current_task();
2416 assert(object
->vo_purgeable_owner
== NULL
);
2417 assert(object
->resident_page_count
== 0);
2418 assert(object
->wired_page_count
== 0);
2419 vm_object_lock(object
);
2420 vm_purgeable_nonvolatile_enqueue(object
, owner
);
2421 vm_object_unlock(object
);
2423 offset
= (vm_object_offset_t
)0;
2425 } else if ((is_submap
== FALSE
) &&
2426 (object
== VM_OBJECT_NULL
) &&
2427 (entry
!= vm_map_to_entry(map
)) &&
2428 (entry
->vme_end
== start
) &&
2429 (!entry
->is_shared
) &&
2430 (!entry
->is_sub_map
) &&
2431 (!entry
->in_transition
) &&
2432 (!entry
->needs_wakeup
) &&
2433 (entry
->behavior
== VM_BEHAVIOR_DEFAULT
) &&
2434 (entry
->protection
== cur_protection
) &&
2435 (entry
->max_protection
== max_protection
) &&
2436 (entry
->inheritance
== inheritance
) &&
2437 ((user_alias
== VM_MEMORY_REALLOC
) ||
2438 (VME_ALIAS(entry
) == alias
)) &&
2439 (entry
->no_cache
== no_cache
) &&
2440 (entry
->permanent
== permanent
) &&
2441 (!entry
->superpage_size
&& !superpage_size
) &&
2443 * No coalescing if not map-aligned, to avoid propagating
2444 * that condition any further than needed:
2446 (!entry
->map_aligned
|| !clear_map_aligned
) &&
2447 (!entry
->zero_wired_pages
) &&
2448 (!entry
->used_for_jit
&& !entry_for_jit
) &&
2449 (entry
->iokit_acct
== iokit_acct
) &&
2450 (!entry
->vme_resilient_codesign
) &&
2451 (!entry
->vme_resilient_media
) &&
2452 (!entry
->vme_atomic
) &&
2454 ((entry
->vme_end
- entry
->vme_start
) + size
<=
2455 (user_alias
== VM_MEMORY_REALLOC
?
2457 NO_COALESCE_LIMIT
)) &&
2459 (entry
->wired_count
== 0)) { /* implies user_wired_count == 0 */
2460 if (vm_object_coalesce(VME_OBJECT(entry
),
2463 (vm_object_offset_t
) 0,
2464 (vm_map_size_t
)(entry
->vme_end
- entry
->vme_start
),
2465 (vm_map_size_t
)(end
- entry
->vme_end
))) {
2468 * Coalesced the two objects - can extend
2469 * the previous map entry to include the
2472 map
->size
+= (end
- entry
->vme_end
);
2473 assert(entry
->vme_start
< end
);
2474 assert(VM_MAP_PAGE_ALIGNED(end
,
2475 VM_MAP_PAGE_MASK(map
)));
2476 if (__improbable(vm_debug_events
))
2477 DTRACE_VM5(map_entry_extend
, vm_map_t
, map
, vm_map_entry_t
, entry
, vm_address_t
, entry
->vme_start
, vm_address_t
, entry
->vme_end
, vm_address_t
, end
);
2478 entry
->vme_end
= end
;
2479 if (map
->holelistenabled
) {
2480 vm_map_store_update_first_free(map
, entry
, TRUE
);
2482 vm_map_store_update_first_free(map
, map
->first_free
, TRUE
);
2484 new_mapping_established
= TRUE
;
2485 RETURN(KERN_SUCCESS
);
2489 step
= superpage_size
? SUPERPAGE_SIZE
: (end
- start
);
2492 for (tmp2_start
= start
; tmp2_start
<end
; tmp2_start
+= step
) {
2493 tmp2_end
= tmp2_start
+ step
;
2495 * Create a new entry
2496 * LP64todo - for now, we can only allocate 4GB internal objects
2497 * because the default pager can't page bigger ones. Remove this
2501 * The reserved "page zero" in each process's address space can
2502 * be arbitrarily large. Splitting it into separate 4GB objects and
2503 * therefore different VM map entries serves no purpose and just
2504 * slows down operations on the VM map, so let's not split the
2505 * allocation into 4GB chunks if the max protection is NONE. That
2506 * memory should never be accessible, so it will never get to the
2509 tmp_start
= tmp2_start
;
2510 if (object
== VM_OBJECT_NULL
&&
2511 size
> (vm_map_size_t
)ANON_CHUNK_SIZE
&&
2512 max_protection
!= VM_PROT_NONE
&&
2513 superpage_size
== 0)
2514 tmp_end
= tmp_start
+ (vm_map_size_t
)ANON_CHUNK_SIZE
;
2518 new_entry
= vm_map_entry_insert(map
, entry
, tmp_start
, tmp_end
,
2519 object
, offset
, needs_copy
,
2521 cur_protection
, max_protection
,
2522 VM_BEHAVIOR_DEFAULT
,
2523 (entry_for_jit
)? VM_INHERIT_NONE
: inheritance
,
2530 assert((object
!= kernel_object
) || (VM_KERN_MEMORY_NONE
!= alias
));
2531 VME_ALIAS_SET(new_entry
, alias
);
2534 if (!(map
->jit_entry_exists
)){
2535 new_entry
->used_for_jit
= TRUE
;
2536 map
->jit_entry_exists
= TRUE
;
2540 if (resilient_codesign
&&
2541 ! ((cur_protection
| max_protection
) &
2542 (VM_PROT_WRITE
| VM_PROT_EXECUTE
))) {
2543 new_entry
->vme_resilient_codesign
= TRUE
;
2546 if (resilient_media
&&
2547 ! ((cur_protection
| max_protection
) &
2548 (VM_PROT_WRITE
| VM_PROT_EXECUTE
))) {
2549 new_entry
->vme_resilient_media
= TRUE
;
2552 assert(!new_entry
->iokit_acct
);
2554 object
!= VM_OBJECT_NULL
&&
2555 object
->purgable
!= VM_PURGABLE_DENY
) {
2556 assert(new_entry
->use_pmap
);
2557 assert(!new_entry
->iokit_acct
);
2559 * Turn off pmap accounting since
2560 * purgeable objects have their
2563 new_entry
->use_pmap
= FALSE
;
2564 } else if (!is_submap
&&
2566 object
!= VM_OBJECT_NULL
&&
2568 /* alternate accounting */
2569 assert(!new_entry
->iokit_acct
);
2570 assert(new_entry
->use_pmap
);
2571 new_entry
->iokit_acct
= TRUE
;
2572 new_entry
->use_pmap
= FALSE
;
2574 vm_map_iokit_mapped_region
,
2576 vm_map_offset_t
, new_entry
->vme_start
,
2577 vm_map_offset_t
, new_entry
->vme_end
,
2578 int, VME_ALIAS(new_entry
));
2579 vm_map_iokit_mapped_region(
2581 (new_entry
->vme_end
-
2582 new_entry
->vme_start
));
2583 } else if (!is_submap
) {
2584 assert(!new_entry
->iokit_acct
);
2585 assert(new_entry
->use_pmap
);
2590 boolean_t submap_is_64bit
;
2593 assert(new_entry
->is_sub_map
);
2594 assert(!new_entry
->use_pmap
);
2595 assert(!new_entry
->iokit_acct
);
2596 submap
= (vm_map_t
) object
;
2597 submap_is_64bit
= vm_map_is_64bit(submap
);
2598 use_pmap
= (user_alias
== VM_MEMORY_SHARED_PMAP
);
2599 #ifndef NO_NESTED_PMAP
2600 if (use_pmap
&& submap
->pmap
== NULL
) {
2601 ledger_t ledger
= map
->pmap
->ledger
;
2602 /* we need a sub pmap to nest... */
2603 submap
->pmap
= pmap_create(ledger
, 0,
2605 if (submap
->pmap
== NULL
) {
2606 /* let's proceed without nesting... */
2609 if (use_pmap
&& submap
->pmap
!= NULL
) {
2610 kr
= pmap_nest(map
->pmap
,
2614 tmp_end
- tmp_start
);
2615 if (kr
!= KERN_SUCCESS
) {
2616 printf("vm_map_enter: "
2617 "pmap_nest(0x%llx,0x%llx) "
2619 (long long)tmp_start
,
2623 /* we're now nested ! */
2624 new_entry
->use_pmap
= TRUE
;
2628 #endif /* NO_NESTED_PMAP */
2632 if (superpage_size
) {
2634 vm_object_t sp_object
;
2636 VME_OFFSET_SET(entry
, 0);
2638 /* allocate one superpage */
2639 kr
= cpm_allocate(SUPERPAGE_SIZE
, &pages
, 0, SUPERPAGE_NBASEPAGES
-1, TRUE
, 0);
2640 if (kr
!= KERN_SUCCESS
) {
2641 /* deallocate whole range... */
2642 new_mapping_established
= TRUE
;
2643 /* ... but only up to "tmp_end" */
2644 size
-= end
- tmp_end
;
2648 /* create one vm_object per superpage */
2649 sp_object
= vm_object_allocate((vm_map_size_t
)(entry
->vme_end
- entry
->vme_start
));
2650 sp_object
->phys_contiguous
= TRUE
;
2651 sp_object
->vo_shadow_offset
= (vm_object_offset_t
)VM_PAGE_GET_PHYS_PAGE(pages
)*PAGE_SIZE
;
2652 VME_OBJECT_SET(entry
, sp_object
);
2653 assert(entry
->use_pmap
);
2655 /* enter the base pages into the object */
2656 vm_object_lock(sp_object
);
2657 for (offset
= 0; offset
< SUPERPAGE_SIZE
; offset
+= PAGE_SIZE
) {
2659 pmap_zero_page(VM_PAGE_GET_PHYS_PAGE(m
));
2660 pages
= NEXT_PAGE(m
);
2661 *(NEXT_PAGE_PTR(m
)) = VM_PAGE_NULL
;
2662 vm_page_insert_wired(m
, sp_object
, offset
, VM_KERN_MEMORY_OSFMK
);
2664 vm_object_unlock(sp_object
);
2666 } while (tmp_end
!= tmp2_end
&&
2667 (tmp_start
= tmp_end
) &&
2668 (tmp_end
= (tmp2_end
- tmp_end
> (vm_map_size_t
)ANON_CHUNK_SIZE
) ?
2669 tmp_end
+ (vm_map_size_t
)ANON_CHUNK_SIZE
: tmp2_end
));
2672 new_mapping_established
= TRUE
;
2675 assert(map_locked
== TRUE
);
2677 if (result
== KERN_SUCCESS
) {
2678 vm_prot_t pager_prot
;
2679 memory_object_t pager
;
2683 !(flags
& VM_FLAGS_NO_PMAP_CHECK
)) {
2684 assert(vm_map_pmap_is_empty(map
,
2691 * For "named" VM objects, let the pager know that the
2692 * memory object is being mapped. Some pagers need to keep
2693 * track of this, to know when they can reclaim the memory
2694 * object, for example.
2695 * VM calls memory_object_map() for each mapping (specifying
2696 * the protection of each mapping) and calls
2697 * memory_object_last_unmap() when all the mappings are gone.
2699 pager_prot
= max_protection
;
2702 * Copy-On-Write mapping: won't modify
2703 * the memory object.
2705 pager_prot
&= ~VM_PROT_WRITE
;
2708 object
!= VM_OBJECT_NULL
&&
2710 object
->pager
!= MEMORY_OBJECT_NULL
) {
2711 vm_object_lock(object
);
2712 pager
= object
->pager
;
2713 if (object
->named
&&
2714 pager
!= MEMORY_OBJECT_NULL
) {
2715 assert(object
->pager_ready
);
2716 vm_object_mapping_wait(object
, THREAD_UNINT
);
2717 vm_object_mapping_begin(object
);
2718 vm_object_unlock(object
);
2720 kr
= memory_object_map(pager
, pager_prot
);
2721 assert(kr
== KERN_SUCCESS
);
2723 vm_object_lock(object
);
2724 vm_object_mapping_end(object
);
2726 vm_object_unlock(object
);
2730 assert(map_locked
== TRUE
);
2732 if (!keep_map_locked
) {
2738 * We can't hold the map lock if we enter this block.
2741 if (result
== KERN_SUCCESS
) {
2743 /* Wire down the new entry if the user
2744 * requested all new map entries be wired.
2746 if ((map
->wiring_required
)||(superpage_size
)) {
2747 assert(!keep_map_locked
);
2748 pmap_empty
= FALSE
; /* pmap won't be empty */
2749 kr
= vm_map_wire(map
, start
, end
,
2750 new_entry
->protection
| VM_PROT_MEMORY_TAG_MAKE(VM_KERN_MEMORY_MLOCK
),
2757 if (result
!= KERN_SUCCESS
) {
2758 if (new_mapping_established
) {
2760 * We have to get rid of the new mappings since we
2761 * won't make them available to the user.
2762 * Try and do that atomically, to minimize the risk
2763 * that someone else create new mappings that range.
2765 zap_new_map
= vm_map_create(PMAP_NULL
,
2768 map
->hdr
.entries_pageable
);
2769 vm_map_set_page_shift(zap_new_map
,
2770 VM_MAP_PAGE_SHIFT(map
));
2771 vm_map_disable_hole_optimization(zap_new_map
);
2777 (void) vm_map_delete(map
, *address
, *address
+size
,
2778 (VM_MAP_REMOVE_SAVE_ENTRIES
|
2779 VM_MAP_REMOVE_NO_MAP_ALIGN
),
2782 if (zap_old_map
!= VM_MAP_NULL
&&
2783 zap_old_map
->hdr
.nentries
!= 0) {
2784 vm_map_entry_t entry1
, entry2
;
2787 * The new mapping failed. Attempt to restore
2788 * the old mappings, saved in the "zap_old_map".
2795 /* first check if the coast is still clear */
2796 start
= vm_map_first_entry(zap_old_map
)->vme_start
;
2797 end
= vm_map_last_entry(zap_old_map
)->vme_end
;
2798 if (vm_map_lookup_entry(map
, start
, &entry1
) ||
2799 vm_map_lookup_entry(map
, end
, &entry2
) ||
2802 * Part of that range has already been
2803 * re-mapped: we can't restore the old
2806 vm_map_enter_restore_failures
++;
2809 * Transfer the saved map entries from
2810 * "zap_old_map" to the original "map",
2811 * inserting them all after "entry1".
2813 for (entry2
= vm_map_first_entry(zap_old_map
);
2814 entry2
!= vm_map_to_entry(zap_old_map
);
2815 entry2
= vm_map_first_entry(zap_old_map
)) {
2816 vm_map_size_t entry_size
;
2818 entry_size
= (entry2
->vme_end
-
2820 vm_map_store_entry_unlink(zap_old_map
,
2822 zap_old_map
->size
-= entry_size
;
2823 vm_map_store_entry_link(map
, entry1
, entry2
);
2824 map
->size
+= entry_size
;
2827 if (map
->wiring_required
) {
2829 * XXX TODO: we should rewire the
2833 vm_map_enter_restore_successes
++;
2839 * The caller is responsible for releasing the lock if it requested to
2840 * keep the map locked.
2842 if (map_locked
&& !keep_map_locked
) {
2847 * Get rid of the "zap_maps" and all the map entries that
2848 * they may still contain.
2850 if (zap_old_map
!= VM_MAP_NULL
) {
2851 vm_map_destroy(zap_old_map
, VM_MAP_REMOVE_NO_PMAP_CLEANUP
);
2852 zap_old_map
= VM_MAP_NULL
;
2854 if (zap_new_map
!= VM_MAP_NULL
) {
2855 vm_map_destroy(zap_new_map
, VM_MAP_REMOVE_NO_PMAP_CLEANUP
);
2856 zap_new_map
= VM_MAP_NULL
;
2866 * Counters for the prefault optimization.
2868 int64_t vm_prefault_nb_pages
= 0;
2869 int64_t vm_prefault_nb_bailout
= 0;
2871 static kern_return_t
2872 vm_map_enter_mem_object_helper(
2873 vm_map_t target_map
,
2874 vm_map_offset_t
*address
,
2875 vm_map_size_t initial_size
,
2876 vm_map_offset_t mask
,
2879 vm_object_offset_t offset
,
2881 vm_prot_t cur_protection
,
2882 vm_prot_t max_protection
,
2883 vm_inherit_t inheritance
,
2884 upl_page_list_ptr_t page_list
,
2885 unsigned int page_list_count
)
2887 vm_map_address_t map_addr
;
2888 vm_map_size_t map_size
;
2890 vm_object_size_t size
;
2891 kern_return_t result
;
2892 boolean_t mask_cur_protection
, mask_max_protection
;
2893 boolean_t try_prefault
= (page_list_count
!= 0);
2894 vm_map_offset_t offset_in_mapping
= 0;
2896 mask_cur_protection
= cur_protection
& VM_PROT_IS_MASK
;
2897 mask_max_protection
= max_protection
& VM_PROT_IS_MASK
;
2898 cur_protection
&= ~VM_PROT_IS_MASK
;
2899 max_protection
&= ~VM_PROT_IS_MASK
;
2902 * Check arguments for validity
2904 if ((target_map
== VM_MAP_NULL
) ||
2905 (cur_protection
& ~VM_PROT_ALL
) ||
2906 (max_protection
& ~VM_PROT_ALL
) ||
2907 (inheritance
> VM_INHERIT_LAST_VALID
) ||
2908 (try_prefault
&& (copy
|| !page_list
)) ||
2909 initial_size
== 0) {
2910 return KERN_INVALID_ARGUMENT
;
2914 map_addr
= vm_map_trunc_page(*address
,
2915 VM_MAP_PAGE_MASK(target_map
));
2916 map_size
= vm_map_round_page(initial_size
,
2917 VM_MAP_PAGE_MASK(target_map
));
2919 size
= vm_object_round_page(initial_size
);
2922 * Find the vm object (if any) corresponding to this port.
2924 if (!IP_VALID(port
)) {
2925 object
= VM_OBJECT_NULL
;
2928 } else if (ip_kotype(port
) == IKOT_NAMED_ENTRY
) {
2929 vm_named_entry_t named_entry
;
2931 named_entry
= (vm_named_entry_t
) port
->ip_kobject
;
2933 if (flags
& (VM_FLAGS_RETURN_DATA_ADDR
|
2934 VM_FLAGS_RETURN_4K_DATA_ADDR
)) {
2935 offset
+= named_entry
->data_offset
;
2938 /* a few checks to make sure user is obeying rules */
2940 if (offset
>= named_entry
->size
)
2941 return KERN_INVALID_RIGHT
;
2942 size
= named_entry
->size
- offset
;
2944 if (mask_max_protection
) {
2945 max_protection
&= named_entry
->protection
;
2947 if (mask_cur_protection
) {
2948 cur_protection
&= named_entry
->protection
;
2950 if ((named_entry
->protection
& max_protection
) !=
2952 return KERN_INVALID_RIGHT
;
2953 if ((named_entry
->protection
& cur_protection
) !=
2955 return KERN_INVALID_RIGHT
;
2956 if (offset
+ size
< offset
) {
2958 return KERN_INVALID_ARGUMENT
;
2960 if (named_entry
->size
< (offset
+ initial_size
)) {
2961 return KERN_INVALID_ARGUMENT
;
2964 if (named_entry
->is_copy
) {
2965 /* for a vm_map_copy, we can only map it whole */
2966 if ((size
!= named_entry
->size
) &&
2967 (vm_map_round_page(size
,
2968 VM_MAP_PAGE_MASK(target_map
)) ==
2969 named_entry
->size
)) {
2970 /* XXX FBDP use the rounded size... */
2971 size
= vm_map_round_page(
2973 VM_MAP_PAGE_MASK(target_map
));
2976 if (!(flags
& VM_FLAGS_ANYWHERE
) &&
2978 size
!= named_entry
->size
)) {
2980 * XXX for a mapping at a "fixed" address,
2981 * we can't trim after mapping the whole
2982 * memory entry, so reject a request for a
2985 return KERN_INVALID_ARGUMENT
;
2989 /* the callers parameter offset is defined to be the */
2990 /* offset from beginning of named entry offset in object */
2991 offset
= offset
+ named_entry
->offset
;
2993 if (! VM_MAP_PAGE_ALIGNED(size
,
2994 VM_MAP_PAGE_MASK(target_map
))) {
2996 * Let's not map more than requested;
2997 * vm_map_enter() will handle this "not map-aligned"
3003 named_entry_lock(named_entry
);
3004 if (named_entry
->is_sub_map
) {
3007 if (flags
& (VM_FLAGS_RETURN_DATA_ADDR
|
3008 VM_FLAGS_RETURN_4K_DATA_ADDR
)) {
3009 panic("VM_FLAGS_RETURN_DATA_ADDR not expected for submap.");
3012 submap
= named_entry
->backing
.map
;
3013 vm_map_lock(submap
);
3014 vm_map_reference(submap
);
3015 vm_map_unlock(submap
);
3016 named_entry_unlock(named_entry
);
3018 result
= vm_map_enter(target_map
,
3022 flags
| VM_FLAGS_SUBMAP
,
3023 (vm_object_t
) submap
,
3029 if (result
!= KERN_SUCCESS
) {
3030 vm_map_deallocate(submap
);
3033 * No need to lock "submap" just to check its
3034 * "mapped" flag: that flag is never reset
3035 * once it's been set and if we race, we'll
3036 * just end up setting it twice, which is OK.
3038 if (submap
->mapped_in_other_pmaps
== FALSE
&&
3039 vm_map_pmap(submap
) != PMAP_NULL
&&
3040 vm_map_pmap(submap
) !=
3041 vm_map_pmap(target_map
)) {
3043 * This submap is being mapped in a map
3044 * that uses a different pmap.
3045 * Set its "mapped_in_other_pmaps" flag
3046 * to indicate that we now need to
3047 * remove mappings from all pmaps rather
3048 * than just the submap's pmap.
3050 vm_map_lock(submap
);
3051 submap
->mapped_in_other_pmaps
= TRUE
;
3052 vm_map_unlock(submap
);
3054 *address
= map_addr
;
3058 } else if (named_entry
->is_pager
) {
3059 unsigned int access
;
3060 vm_prot_t protections
;
3061 unsigned int wimg_mode
;
3063 protections
= named_entry
->protection
& VM_PROT_ALL
;
3064 access
= GET_MAP_MEM(named_entry
->protection
);
3066 if (flags
& (VM_FLAGS_RETURN_DATA_ADDR
|
3067 VM_FLAGS_RETURN_4K_DATA_ADDR
)) {
3068 panic("VM_FLAGS_RETURN_DATA_ADDR not expected for submap.");
3071 object
= vm_object_enter(named_entry
->backing
.pager
,
3073 named_entry
->internal
,
3076 if (object
== VM_OBJECT_NULL
) {
3077 named_entry_unlock(named_entry
);
3078 return KERN_INVALID_OBJECT
;
3081 /* JMM - drop reference on pager here */
3083 /* create an extra ref for the named entry */
3084 vm_object_lock(object
);
3085 vm_object_reference_locked(object
);
3086 named_entry
->backing
.object
= object
;
3087 named_entry
->is_pager
= FALSE
;
3088 named_entry_unlock(named_entry
);
3090 wimg_mode
= object
->wimg_bits
;
3092 if (access
== MAP_MEM_IO
) {
3093 wimg_mode
= VM_WIMG_IO
;
3094 } else if (access
== MAP_MEM_COPYBACK
) {
3095 wimg_mode
= VM_WIMG_USE_DEFAULT
;
3096 } else if (access
== MAP_MEM_INNERWBACK
) {
3097 wimg_mode
= VM_WIMG_INNERWBACK
;
3098 } else if (access
== MAP_MEM_WTHRU
) {
3099 wimg_mode
= VM_WIMG_WTHRU
;
3100 } else if (access
== MAP_MEM_WCOMB
) {
3101 wimg_mode
= VM_WIMG_WCOMB
;
3104 /* wait for object (if any) to be ready */
3105 if (!named_entry
->internal
) {
3106 while (!object
->pager_ready
) {
3109 VM_OBJECT_EVENT_PAGER_READY
,
3111 vm_object_lock(object
);
3115 if (object
->wimg_bits
!= wimg_mode
)
3116 vm_object_change_wimg_mode(object
, wimg_mode
);
3118 #if VM_OBJECT_TRACKING_OP_TRUESHARE
3119 if (!object
->true_share
&&
3120 vm_object_tracking_inited
) {
3121 void *bt
[VM_OBJECT_TRACKING_BTDEPTH
];
3124 num
= OSBacktrace(bt
,
3125 VM_OBJECT_TRACKING_BTDEPTH
);
3126 btlog_add_entry(vm_object_tracking_btlog
,
3128 VM_OBJECT_TRACKING_OP_TRUESHARE
,
3132 #endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */
3134 object
->true_share
= TRUE
;
3136 if (object
->copy_strategy
== MEMORY_OBJECT_COPY_SYMMETRIC
)
3137 object
->copy_strategy
= MEMORY_OBJECT_COPY_DELAY
;
3138 vm_object_unlock(object
);
3140 } else if (named_entry
->is_copy
) {
3142 vm_map_copy_t copy_map
;
3143 vm_map_entry_t copy_entry
;
3144 vm_map_offset_t copy_addr
;
3146 if (flags
& ~(VM_FLAGS_FIXED
|
3148 VM_FLAGS_OVERWRITE
|
3149 VM_FLAGS_RETURN_4K_DATA_ADDR
|
3150 VM_FLAGS_RETURN_DATA_ADDR
|
3151 VM_FLAGS_ALIAS_MASK
)) {
3152 named_entry_unlock(named_entry
);
3153 return KERN_INVALID_ARGUMENT
;
3156 if (flags
& (VM_FLAGS_RETURN_DATA_ADDR
|
3157 VM_FLAGS_RETURN_4K_DATA_ADDR
)) {
3158 offset_in_mapping
= offset
- vm_object_trunc_page(offset
);
3159 if (flags
& VM_FLAGS_RETURN_4K_DATA_ADDR
)
3160 offset_in_mapping
&= ~((signed)(0xFFF));
3161 offset
= vm_object_trunc_page(offset
);
3162 map_size
= vm_object_round_page(offset
+ offset_in_mapping
+ initial_size
) - offset
;
3165 copy_map
= named_entry
->backing
.copy
;
3166 assert(copy_map
->type
== VM_MAP_COPY_ENTRY_LIST
);
3167 if (copy_map
->type
!= VM_MAP_COPY_ENTRY_LIST
) {
3168 /* unsupported type; should not happen */
3169 printf("vm_map_enter_mem_object: "
3170 "memory_entry->backing.copy "
3171 "unsupported type 0x%x\n",
3173 named_entry_unlock(named_entry
);
3174 return KERN_INVALID_ARGUMENT
;
3177 /* reserve a contiguous range */
3178 kr
= vm_map_enter(target_map
,
3180 /* map whole mem entry, trim later: */
3183 flags
& (VM_FLAGS_ANYWHERE
|
3184 VM_FLAGS_OVERWRITE
|
3185 VM_FLAGS_RETURN_4K_DATA_ADDR
|
3186 VM_FLAGS_RETURN_DATA_ADDR
|
3187 VM_FLAGS_ALIAS_MASK
),
3194 if (kr
!= KERN_SUCCESS
) {
3195 named_entry_unlock(named_entry
);
3199 copy_addr
= map_addr
;
3201 for (copy_entry
= vm_map_copy_first_entry(copy_map
);
3202 copy_entry
!= vm_map_copy_to_entry(copy_map
);
3203 copy_entry
= copy_entry
->vme_next
) {
3204 int remap_flags
= 0;
3205 vm_map_t copy_submap
;
3206 vm_object_t copy_object
;
3207 vm_map_size_t copy_size
;
3208 vm_object_offset_t copy_offset
;
3211 copy_offset
= VME_OFFSET(copy_entry
);
3212 copy_size
= (copy_entry
->vme_end
-
3213 copy_entry
->vme_start
);
3214 VM_GET_FLAGS_ALIAS(flags
, copy_vm_alias
);
3215 if (copy_vm_alias
== 0) {
3217 * Caller does not want a specific
3218 * alias for this new mapping: use
3219 * the alias of the original mapping.
3221 copy_vm_alias
= VME_ALIAS(copy_entry
);
3225 if ((copy_addr
+ copy_size
) >
3227 named_entry
->size
/* XXX full size */ )) {
3228 /* over-mapping too much !? */
3229 kr
= KERN_INVALID_ARGUMENT
;
3234 /* take a reference on the object */
3235 if (copy_entry
->is_sub_map
) {
3236 remap_flags
|= VM_FLAGS_SUBMAP
;
3237 copy_submap
= VME_SUBMAP(copy_entry
);
3238 vm_map_lock(copy_submap
);
3239 vm_map_reference(copy_submap
);
3240 vm_map_unlock(copy_submap
);
3241 copy_object
= (vm_object_t
) copy_submap
;
3243 copy_object
= VME_OBJECT(copy_entry
);
3244 vm_object_reference(copy_object
);
3247 /* over-map the object into destination */
3248 remap_flags
|= flags
;
3249 remap_flags
|= VM_FLAGS_FIXED
;
3250 remap_flags
|= VM_FLAGS_OVERWRITE
;
3251 remap_flags
&= ~VM_FLAGS_ANYWHERE
;
3252 remap_flags
|= VM_MAKE_TAG(copy_vm_alias
);
3253 kr
= vm_map_enter(target_map
,
3256 (vm_map_offset_t
) 0,
3264 if (kr
!= KERN_SUCCESS
) {
3265 if (copy_entry
->is_sub_map
) {
3266 vm_map_deallocate(copy_submap
);
3268 vm_object_deallocate(copy_object
);
3275 copy_addr
+= copy_size
;
3278 if (kr
== KERN_SUCCESS
) {
3279 if (flags
& (VM_FLAGS_RETURN_DATA_ADDR
|
3280 VM_FLAGS_RETURN_4K_DATA_ADDR
)) {
3281 *address
= map_addr
+ offset_in_mapping
;
3283 *address
= map_addr
;
3288 * Trim in front, from 0 to "offset".
3290 vm_map_remove(target_map
,
3296 if (offset
+ map_size
< named_entry
->size
) {
3298 * Trim in back, from
3299 * "offset + map_size" to
3300 * "named_entry->size".
3302 vm_map_remove(target_map
,
3310 named_entry_unlock(named_entry
);
3312 if (kr
!= KERN_SUCCESS
) {
3313 if (! (flags
& VM_FLAGS_OVERWRITE
)) {
3314 /* deallocate the contiguous range */
3315 (void) vm_deallocate(target_map
,
3324 /* This is the case where we are going to map */
3325 /* an already mapped object. If the object is */
3326 /* not ready it is internal. An external */
3327 /* object cannot be mapped until it is ready */
3328 /* we can therefore avoid the ready check */
3330 if (flags
& (VM_FLAGS_RETURN_DATA_ADDR
|
3331 VM_FLAGS_RETURN_4K_DATA_ADDR
)) {
3332 offset_in_mapping
= offset
- vm_object_trunc_page(offset
);
3333 if (flags
& VM_FLAGS_RETURN_4K_DATA_ADDR
)
3334 offset_in_mapping
&= ~((signed)(0xFFF));
3335 offset
= vm_object_trunc_page(offset
);
3336 map_size
= vm_object_round_page(offset
+ offset_in_mapping
+ initial_size
) - offset
;
3339 object
= named_entry
->backing
.object
;
3340 assert(object
!= VM_OBJECT_NULL
);
3341 named_entry_unlock(named_entry
);
3342 vm_object_reference(object
);
3344 } else if (ip_kotype(port
) == IKOT_MEMORY_OBJECT
) {
3346 * JMM - This is temporary until we unify named entries
3347 * and raw memory objects.
3349 * Detected fake ip_kotype for a memory object. In
3350 * this case, the port isn't really a port at all, but
3351 * instead is just a raw memory object.
3353 if (flags
& (VM_FLAGS_RETURN_DATA_ADDR
|
3354 VM_FLAGS_RETURN_4K_DATA_ADDR
)) {
3355 panic("VM_FLAGS_RETURN_DATA_ADDR not expected for raw memory object.");
3358 object
= vm_object_enter((memory_object_t
)port
,
3359 size
, FALSE
, FALSE
, FALSE
);
3360 if (object
== VM_OBJECT_NULL
)
3361 return KERN_INVALID_OBJECT
;
3363 /* wait for object (if any) to be ready */
3364 if (object
!= VM_OBJECT_NULL
) {
3365 if (object
== kernel_object
) {
3366 printf("Warning: Attempt to map kernel object"
3367 " by a non-private kernel entity\n");
3368 return KERN_INVALID_OBJECT
;
3370 if (!object
->pager_ready
) {
3371 vm_object_lock(object
);
3373 while (!object
->pager_ready
) {
3374 vm_object_wait(object
,
3375 VM_OBJECT_EVENT_PAGER_READY
,
3377 vm_object_lock(object
);
3379 vm_object_unlock(object
);
3383 return KERN_INVALID_OBJECT
;
3386 if (object
!= VM_OBJECT_NULL
&&
3388 object
->pager
!= MEMORY_OBJECT_NULL
&&
3389 object
->copy_strategy
!= MEMORY_OBJECT_COPY_NONE
) {
3390 memory_object_t pager
;
3391 vm_prot_t pager_prot
;
3395 * For "named" VM objects, let the pager know that the
3396 * memory object is being mapped. Some pagers need to keep
3397 * track of this, to know when they can reclaim the memory
3398 * object, for example.
3399 * VM calls memory_object_map() for each mapping (specifying
3400 * the protection of each mapping) and calls
3401 * memory_object_last_unmap() when all the mappings are gone.
3403 pager_prot
= max_protection
;
3406 * Copy-On-Write mapping: won't modify the
3409 pager_prot
&= ~VM_PROT_WRITE
;
3411 vm_object_lock(object
);
3412 pager
= object
->pager
;
3413 if (object
->named
&&
3414 pager
!= MEMORY_OBJECT_NULL
&&
3415 object
->copy_strategy
!= MEMORY_OBJECT_COPY_NONE
) {
3416 assert(object
->pager_ready
);
3417 vm_object_mapping_wait(object
, THREAD_UNINT
);
3418 vm_object_mapping_begin(object
);
3419 vm_object_unlock(object
);
3421 kr
= memory_object_map(pager
, pager_prot
);
3422 assert(kr
== KERN_SUCCESS
);
3424 vm_object_lock(object
);
3425 vm_object_mapping_end(object
);
3427 vm_object_unlock(object
);
3431 * Perform the copy if requested
3435 vm_object_t new_object
;
3436 vm_object_offset_t new_offset
;
3438 result
= vm_object_copy_strategically(object
, offset
,
3440 &new_object
, &new_offset
,
3444 if (result
== KERN_MEMORY_RESTART_COPY
) {
3446 boolean_t src_needs_copy
;
3450 * We currently ignore src_needs_copy.
3451 * This really is the issue of how to make
3452 * MEMORY_OBJECT_COPY_SYMMETRIC safe for
3453 * non-kernel users to use. Solution forthcoming.
3454 * In the meantime, since we don't allow non-kernel
3455 * memory managers to specify symmetric copy,
3456 * we won't run into problems here.
3458 new_object
= object
;
3459 new_offset
= offset
;
3460 success
= vm_object_copy_quickly(&new_object
,
3466 result
= KERN_SUCCESS
;
3469 * Throw away the reference to the
3470 * original object, as it won't be mapped.
3473 vm_object_deallocate(object
);
3475 if (result
!= KERN_SUCCESS
) {
3479 object
= new_object
;
3480 offset
= new_offset
;
3484 * If users want to try to prefault pages, the mapping and prefault
3485 * needs to be atomic.
3488 flags
|= VM_FLAGS_KEEP_MAP_LOCKED
;
3491 result
= vm_map_enter(target_map
,
3492 &map_addr
, map_size
,
3493 (vm_map_offset_t
)mask
,
3497 cur_protection
, max_protection
,
3500 if (result
!= KERN_SUCCESS
)
3501 vm_object_deallocate(object
);
3504 * Try to prefault, and do not forget to release the vm map lock.
3506 if (result
== KERN_SUCCESS
&& try_prefault
) {
3507 mach_vm_address_t va
= map_addr
;
3508 kern_return_t kr
= KERN_SUCCESS
;
3512 pmap_options
= PMAP_OPTIONS_NOWAIT
;
3513 if (object
->internal
) {
3514 pmap_options
|= PMAP_OPTIONS_INTERNAL
;
3517 for (i
= 0; i
< page_list_count
; ++i
) {
3518 if (UPL_VALID_PAGE(page_list
, i
)) {
3520 * If this function call failed, we should stop
3521 * trying to optimize, other calls are likely
3522 * going to fail too.
3524 * We are not gonna report an error for such
3525 * failure though. That's an optimization, not
3526 * something critical.
3528 kr
= pmap_enter_options(target_map
->pmap
,
3529 va
, UPL_PHYS_PAGE(page_list
, i
),
3530 cur_protection
, VM_PROT_NONE
,
3531 0, TRUE
, pmap_options
, NULL
);
3532 if (kr
!= KERN_SUCCESS
) {
3533 OSIncrementAtomic64(&vm_prefault_nb_bailout
);
3536 OSIncrementAtomic64(&vm_prefault_nb_pages
);
3539 /* Next virtual address */
3542 vm_map_unlock(target_map
);
3545 if (flags
& (VM_FLAGS_RETURN_DATA_ADDR
|
3546 VM_FLAGS_RETURN_4K_DATA_ADDR
)) {
3547 *address
= map_addr
+ offset_in_mapping
;
3549 *address
= map_addr
;
3555 vm_map_enter_mem_object(
3556 vm_map_t target_map
,
3557 vm_map_offset_t
*address
,
3558 vm_map_size_t initial_size
,
3559 vm_map_offset_t mask
,
3562 vm_object_offset_t offset
,
3564 vm_prot_t cur_protection
,
3565 vm_prot_t max_protection
,
3566 vm_inherit_t inheritance
)
3568 return vm_map_enter_mem_object_helper(target_map
, address
, initial_size
, mask
, flags
,
3569 port
, offset
, copy
, cur_protection
, max_protection
,
3570 inheritance
, NULL
, 0);
3574 vm_map_enter_mem_object_prefault(
3575 vm_map_t target_map
,
3576 vm_map_offset_t
*address
,
3577 vm_map_size_t initial_size
,
3578 vm_map_offset_t mask
,
3581 vm_object_offset_t offset
,
3582 vm_prot_t cur_protection
,
3583 vm_prot_t max_protection
,
3584 upl_page_list_ptr_t page_list
,
3585 unsigned int page_list_count
)
3587 return vm_map_enter_mem_object_helper(target_map
, address
, initial_size
, mask
, flags
,
3588 port
, offset
, FALSE
, cur_protection
, max_protection
,
3589 VM_INHERIT_DEFAULT
, page_list
, page_list_count
);
3594 vm_map_enter_mem_object_control(
3595 vm_map_t target_map
,
3596 vm_map_offset_t
*address
,
3597 vm_map_size_t initial_size
,
3598 vm_map_offset_t mask
,
3600 memory_object_control_t control
,
3601 vm_object_offset_t offset
,
3603 vm_prot_t cur_protection
,
3604 vm_prot_t max_protection
,
3605 vm_inherit_t inheritance
)
3607 vm_map_address_t map_addr
;
3608 vm_map_size_t map_size
;
3610 vm_object_size_t size
;
3611 kern_return_t result
;
3612 memory_object_t pager
;
3613 vm_prot_t pager_prot
;
3617 * Check arguments for validity
3619 if ((target_map
== VM_MAP_NULL
) ||
3620 (cur_protection
& ~VM_PROT_ALL
) ||
3621 (max_protection
& ~VM_PROT_ALL
) ||
3622 (inheritance
> VM_INHERIT_LAST_VALID
) ||
3623 initial_size
== 0) {
3624 return KERN_INVALID_ARGUMENT
;
3628 map_addr
= vm_map_trunc_page(*address
,
3629 VM_MAP_PAGE_MASK(target_map
));
3630 map_size
= vm_map_round_page(initial_size
,
3631 VM_MAP_PAGE_MASK(target_map
));
3633 size
= vm_object_round_page(initial_size
);
3635 object
= memory_object_control_to_vm_object(control
);
3637 if (object
== VM_OBJECT_NULL
)
3638 return KERN_INVALID_OBJECT
;
3640 if (object
== kernel_object
) {
3641 printf("Warning: Attempt to map kernel object"
3642 " by a non-private kernel entity\n");
3643 return KERN_INVALID_OBJECT
;
3646 vm_object_lock(object
);
3647 object
->ref_count
++;
3648 vm_object_res_reference(object
);
3651 * For "named" VM objects, let the pager know that the
3652 * memory object is being mapped. Some pagers need to keep
3653 * track of this, to know when they can reclaim the memory
3654 * object, for example.
3655 * VM calls memory_object_map() for each mapping (specifying
3656 * the protection of each mapping) and calls
3657 * memory_object_last_unmap() when all the mappings are gone.
3659 pager_prot
= max_protection
;
3661 pager_prot
&= ~VM_PROT_WRITE
;
3663 pager
= object
->pager
;
3664 if (object
->named
&&
3665 pager
!= MEMORY_OBJECT_NULL
&&
3666 object
->copy_strategy
!= MEMORY_OBJECT_COPY_NONE
) {
3667 assert(object
->pager_ready
);
3668 vm_object_mapping_wait(object
, THREAD_UNINT
);
3669 vm_object_mapping_begin(object
);
3670 vm_object_unlock(object
);
3672 kr
= memory_object_map(pager
, pager_prot
);
3673 assert(kr
== KERN_SUCCESS
);
3675 vm_object_lock(object
);
3676 vm_object_mapping_end(object
);
3678 vm_object_unlock(object
);
3681 * Perform the copy if requested
3685 vm_object_t new_object
;
3686 vm_object_offset_t new_offset
;
3688 result
= vm_object_copy_strategically(object
, offset
, size
,
3689 &new_object
, &new_offset
,
3693 if (result
== KERN_MEMORY_RESTART_COPY
) {
3695 boolean_t src_needs_copy
;
3699 * We currently ignore src_needs_copy.
3700 * This really is the issue of how to make
3701 * MEMORY_OBJECT_COPY_SYMMETRIC safe for
3702 * non-kernel users to use. Solution forthcoming.
3703 * In the meantime, since we don't allow non-kernel
3704 * memory managers to specify symmetric copy,
3705 * we won't run into problems here.
3707 new_object
= object
;
3708 new_offset
= offset
;
3709 success
= vm_object_copy_quickly(&new_object
,
3714 result
= KERN_SUCCESS
;
3717 * Throw away the reference to the
3718 * original object, as it won't be mapped.
3721 vm_object_deallocate(object
);
3723 if (result
!= KERN_SUCCESS
) {
3727 object
= new_object
;
3728 offset
= new_offset
;
3732 result
= vm_map_enter(target_map
,
3733 &map_addr
, map_size
,
3734 (vm_map_offset_t
)mask
,
3738 cur_protection
, max_protection
,
3741 if (result
!= KERN_SUCCESS
)
3742 vm_object_deallocate(object
);
3743 *address
= map_addr
;
3752 extern pmap_paddr_t avail_start
, avail_end
;
3756 * Allocate memory in the specified map, with the caveat that
3757 * the memory is physically contiguous. This call may fail
3758 * if the system can't find sufficient contiguous memory.
3759 * This call may cause or lead to heart-stopping amounts of
3762 * Memory obtained from this call should be freed in the
3763 * normal way, viz., via vm_deallocate.
3768 vm_map_offset_t
*addr
,
3772 vm_object_t cpm_obj
;
3776 vm_map_offset_t va
, start
, end
, offset
;
3778 vm_map_offset_t prev_addr
= 0;
3779 #endif /* MACH_ASSERT */
3781 boolean_t anywhere
= ((VM_FLAGS_ANYWHERE
& flags
) != 0);
3784 VM_GET_FLAGS_ALIAS(flags
, tag
);
3788 return KERN_SUCCESS
;
3791 *addr
= vm_map_min(map
);
3793 *addr
= vm_map_trunc_page(*addr
,
3794 VM_MAP_PAGE_MASK(map
));
3795 size
= vm_map_round_page(size
,
3796 VM_MAP_PAGE_MASK(map
));
3799 * LP64todo - cpm_allocate should probably allow
3800 * allocations of >4GB, but not with the current
3801 * algorithm, so just cast down the size for now.
3803 if (size
> VM_MAX_ADDRESS
)
3804 return KERN_RESOURCE_SHORTAGE
;
3805 if ((kr
= cpm_allocate(CAST_DOWN(vm_size_t
, size
),
3806 &pages
, 0, 0, TRUE
, flags
)) != KERN_SUCCESS
)
3809 cpm_obj
= vm_object_allocate((vm_object_size_t
)size
);
3810 assert(cpm_obj
!= VM_OBJECT_NULL
);
3811 assert(cpm_obj
->internal
);
3812 assert(cpm_obj
->vo_size
== (vm_object_size_t
)size
);
3813 assert(cpm_obj
->can_persist
== FALSE
);
3814 assert(cpm_obj
->pager_created
== FALSE
);
3815 assert(cpm_obj
->pageout
== FALSE
);
3816 assert(cpm_obj
->shadow
== VM_OBJECT_NULL
);
3819 * Insert pages into object.
3822 vm_object_lock(cpm_obj
);
3823 for (offset
= 0; offset
< size
; offset
+= PAGE_SIZE
) {
3825 pages
= NEXT_PAGE(m
);
3826 *(NEXT_PAGE_PTR(m
)) = VM_PAGE_NULL
;
3828 assert(!m
->gobbled
);
3830 assert(!m
->pageout
);
3832 assert(VM_PAGE_WIRED(m
));
3835 * "m" is not supposed to be pageable, so it
3836 * should not be encrypted. It wouldn't be safe
3837 * to enter it in a new VM object while encrypted.
3839 ASSERT_PAGE_DECRYPTED(m
);
3841 assert(VM_PAGE_GET_PHYS_PAGE(m
)>=(avail_start
>>PAGE_SHIFT
) && VM_PAGE_GET_PHYS_PAGE(m
)<=(avail_end
>>PAGE_SHIFT
));
3844 vm_page_insert(m
, cpm_obj
, offset
);
3846 assert(cpm_obj
->resident_page_count
== size
/ PAGE_SIZE
);
3847 vm_object_unlock(cpm_obj
);
3850 * Hang onto a reference on the object in case a
3851 * multi-threaded application for some reason decides
3852 * to deallocate the portion of the address space into
3853 * which we will insert this object.
3855 * Unfortunately, we must insert the object now before
3856 * we can talk to the pmap module about which addresses
3857 * must be wired down. Hence, the race with a multi-
3860 vm_object_reference(cpm_obj
);
3863 * Insert object into map.
3873 (vm_object_offset_t
)0,
3877 VM_INHERIT_DEFAULT
);
3879 if (kr
!= KERN_SUCCESS
) {
3881 * A CPM object doesn't have can_persist set,
3882 * so all we have to do is deallocate it to
3883 * free up these pages.
3885 assert(cpm_obj
->pager_created
== FALSE
);
3886 assert(cpm_obj
->can_persist
== FALSE
);
3887 assert(cpm_obj
->pageout
== FALSE
);
3888 assert(cpm_obj
->shadow
== VM_OBJECT_NULL
);
3889 vm_object_deallocate(cpm_obj
); /* kill acquired ref */
3890 vm_object_deallocate(cpm_obj
); /* kill creation ref */
3894 * Inform the physical mapping system that the
3895 * range of addresses may not fault, so that
3896 * page tables and such can be locked down as well.
3900 pmap
= vm_map_pmap(map
);
3901 pmap_pageable(pmap
, start
, end
, FALSE
);
3904 * Enter each page into the pmap, to avoid faults.
3905 * Note that this loop could be coded more efficiently,
3906 * if the need arose, rather than looking up each page
3909 for (offset
= 0, va
= start
; offset
< size
;
3910 va
+= PAGE_SIZE
, offset
+= PAGE_SIZE
) {
3913 vm_object_lock(cpm_obj
);
3914 m
= vm_page_lookup(cpm_obj
, (vm_object_offset_t
)offset
);
3915 assert(m
!= VM_PAGE_NULL
);
3917 vm_page_zero_fill(m
);
3919 type_of_fault
= DBG_ZERO_FILL_FAULT
;
3921 vm_fault_enter(m
, pmap
, va
, VM_PROT_ALL
, VM_PROT_WRITE
,
3922 VM_PAGE_WIRED(m
), FALSE
, FALSE
, FALSE
, 0, NULL
,
3925 vm_object_unlock(cpm_obj
);
3930 * Verify ordering in address space.
3932 for (offset
= 0; offset
< size
; offset
+= PAGE_SIZE
) {
3933 vm_object_lock(cpm_obj
);
3934 m
= vm_page_lookup(cpm_obj
, (vm_object_offset_t
)offset
);
3935 vm_object_unlock(cpm_obj
);
3936 if (m
== VM_PAGE_NULL
)
3937 panic("vm_allocate_cpm: obj %p off 0x%llx no page",
3938 cpm_obj
, (uint64_t)offset
);
3942 assert(!m
->fictitious
);
3943 assert(!m
->private);
3946 assert(!m
->cleaning
);
3947 assert(!m
->laundry
);
3948 assert(!m
->precious
);
3949 assert(!m
->clustered
);
3951 if (VM_PAGE_GET_PHYS_PAGE(m
) != prev_addr
+ 1) {
3952 printf("start 0x%llx end 0x%llx va 0x%llx\n",
3953 (uint64_t)start
, (uint64_t)end
, (uint64_t)va
);
3954 printf("obj %p off 0x%llx\n", cpm_obj
, (uint64_t)offset
);
3955 printf("m %p prev_address 0x%llx\n", m
, (uint64_t)prev_addr
);
3956 panic("vm_allocate_cpm: pages not contig!");
3959 prev_addr
= VM_PAGE_GET_PHYS_PAGE(m
);
3961 #endif /* MACH_ASSERT */
3963 vm_object_deallocate(cpm_obj
); /* kill extra ref */
3972 * Interface is defined in all cases, but unless the kernel
3973 * is built explicitly for this option, the interface does
3979 __unused vm_map_t map
,
3980 __unused vm_map_offset_t
*addr
,
3981 __unused vm_map_size_t size
,
3984 return KERN_FAILURE
;
3988 /* Not used without nested pmaps */
3989 #ifndef NO_NESTED_PMAP
3991 * Clip and unnest a portion of a nested submap mapping.
3998 vm_map_entry_t entry
,
3999 vm_map_offset_t start_unnest
,
4000 vm_map_offset_t end_unnest
)
4002 vm_map_offset_t old_start_unnest
= start_unnest
;
4003 vm_map_offset_t old_end_unnest
= end_unnest
;
4005 assert(entry
->is_sub_map
);
4006 assert(VME_SUBMAP(entry
) != NULL
);
4007 assert(entry
->use_pmap
);
4010 * Query the platform for the optimal unnest range.
4011 * DRK: There's some duplication of effort here, since
4012 * callers may have adjusted the range to some extent. This
4013 * routine was introduced to support 1GiB subtree nesting
4014 * for x86 platforms, which can also nest on 2MiB boundaries
4015 * depending on size/alignment.
4017 if (pmap_adjust_unnest_parameters(map
->pmap
, &start_unnest
, &end_unnest
)) {
4018 assert(VME_SUBMAP(entry
)->is_nested_map
);
4019 assert(!VME_SUBMAP(entry
)->disable_vmentry_reuse
);
4020 log_unnest_badness(map
,
4023 VME_SUBMAP(entry
)->is_nested_map
,
4025 VME_SUBMAP(entry
)->lowest_unnestable_start
-
4026 VME_OFFSET(entry
)));
4029 if (entry
->vme_start
> start_unnest
||
4030 entry
->vme_end
< end_unnest
) {
4031 panic("vm_map_clip_unnest(0x%llx,0x%llx): "
4032 "bad nested entry: start=0x%llx end=0x%llx\n",
4033 (long long)start_unnest
, (long long)end_unnest
,
4034 (long long)entry
->vme_start
, (long long)entry
->vme_end
);
4037 if (start_unnest
> entry
->vme_start
) {
4038 _vm_map_clip_start(&map
->hdr
,
4041 if (map
->holelistenabled
) {
4042 vm_map_store_update_first_free(map
, NULL
, FALSE
);
4044 vm_map_store_update_first_free(map
, map
->first_free
, FALSE
);
4047 if (entry
->vme_end
> end_unnest
) {
4048 _vm_map_clip_end(&map
->hdr
,
4051 if (map
->holelistenabled
) {
4052 vm_map_store_update_first_free(map
, NULL
, FALSE
);
4054 vm_map_store_update_first_free(map
, map
->first_free
, FALSE
);
4058 pmap_unnest(map
->pmap
,
4060 entry
->vme_end
- entry
->vme_start
);
4061 if ((map
->mapped_in_other_pmaps
) && (map
->ref_count
)) {
4062 /* clean up parent map/maps */
4063 vm_map_submap_pmap_clean(
4064 map
, entry
->vme_start
,
4069 entry
->use_pmap
= FALSE
;
4070 if ((map
->pmap
!= kernel_pmap
) &&
4071 (VME_ALIAS(entry
) == VM_MEMORY_SHARED_PMAP
)) {
4072 VME_ALIAS_SET(entry
, VM_MEMORY_UNSHARED_PMAP
);
4075 #endif /* NO_NESTED_PMAP */
4078 * vm_map_clip_start: [ internal use only ]
4080 * Asserts that the given entry begins at or after
4081 * the specified address; if necessary,
4082 * it splits the entry into two.
4087 vm_map_entry_t entry
,
4088 vm_map_offset_t startaddr
)
4090 #ifndef NO_NESTED_PMAP
4091 if (entry
->is_sub_map
&&
4093 startaddr
>= entry
->vme_start
) {
4094 vm_map_offset_t start_unnest
, end_unnest
;
4097 * Make sure "startaddr" is no longer in a nested range
4098 * before we clip. Unnest only the minimum range the platform
4100 * vm_map_clip_unnest may perform additional adjustments to
4103 start_unnest
= startaddr
& ~(pmap_nesting_size_min
- 1);
4104 end_unnest
= start_unnest
+ pmap_nesting_size_min
;
4105 vm_map_clip_unnest(map
, entry
, start_unnest
, end_unnest
);
4107 #endif /* NO_NESTED_PMAP */
4108 if (startaddr
> entry
->vme_start
) {
4109 if (VME_OBJECT(entry
) &&
4110 !entry
->is_sub_map
&&
4111 VME_OBJECT(entry
)->phys_contiguous
) {
4112 pmap_remove(map
->pmap
,
4113 (addr64_t
)(entry
->vme_start
),
4114 (addr64_t
)(entry
->vme_end
));
4116 if (entry
->vme_atomic
) {
4117 panic("Attempting to clip an atomic VM entry! (map: %p, entry: %p)\n", map
, entry
);
4119 _vm_map_clip_start(&map
->hdr
, entry
, startaddr
);
4120 if (map
->holelistenabled
) {
4121 vm_map_store_update_first_free(map
, NULL
, FALSE
);
4123 vm_map_store_update_first_free(map
, map
->first_free
, FALSE
);
4129 #define vm_map_copy_clip_start(copy, entry, startaddr) \
4131 if ((startaddr) > (entry)->vme_start) \
4132 _vm_map_clip_start(&(copy)->cpy_hdr,(entry),(startaddr)); \
4136 * This routine is called only when it is known that
4137 * the entry must be split.
4141 struct vm_map_header
*map_header
,
4142 vm_map_entry_t entry
,
4143 vm_map_offset_t start
)
4145 vm_map_entry_t new_entry
;
4148 * Split off the front portion --
4149 * note that we must insert the new
4150 * entry BEFORE this one, so that
4151 * this entry has the specified starting
4155 if (entry
->map_aligned
) {
4156 assert(VM_MAP_PAGE_ALIGNED(start
,
4157 VM_MAP_HDR_PAGE_MASK(map_header
)));
4160 new_entry
= _vm_map_entry_create(map_header
, !map_header
->entries_pageable
);
4161 vm_map_entry_copy_full(new_entry
, entry
);
4163 new_entry
->vme_end
= start
;
4164 assert(new_entry
->vme_start
< new_entry
->vme_end
);
4165 VME_OFFSET_SET(entry
, VME_OFFSET(entry
) + (start
- entry
->vme_start
));
4166 assert(start
< entry
->vme_end
);
4167 entry
->vme_start
= start
;
4169 _vm_map_store_entry_link(map_header
, entry
->vme_prev
, new_entry
);
4171 if (entry
->is_sub_map
)
4172 vm_map_reference(VME_SUBMAP(new_entry
));
4174 vm_object_reference(VME_OBJECT(new_entry
));
4179 * vm_map_clip_end: [ internal use only ]
4181 * Asserts that the given entry ends at or before
4182 * the specified address; if necessary,
4183 * it splits the entry into two.
4188 vm_map_entry_t entry
,
4189 vm_map_offset_t endaddr
)
4191 if (endaddr
> entry
->vme_end
) {
4193 * Within the scope of this clipping, limit "endaddr" to
4194 * the end of this map entry...
4196 endaddr
= entry
->vme_end
;
4198 #ifndef NO_NESTED_PMAP
4199 if (entry
->is_sub_map
&& entry
->use_pmap
) {
4200 vm_map_offset_t start_unnest
, end_unnest
;
4203 * Make sure the range between the start of this entry and
4204 * the new "endaddr" is no longer nested before we clip.
4205 * Unnest only the minimum range the platform can handle.
4206 * vm_map_clip_unnest may perform additional adjustments to
4209 start_unnest
= entry
->vme_start
;
4211 (endaddr
+ pmap_nesting_size_min
- 1) &
4212 ~(pmap_nesting_size_min
- 1);
4213 vm_map_clip_unnest(map
, entry
, start_unnest
, end_unnest
);
4215 #endif /* NO_NESTED_PMAP */
4216 if (endaddr
< entry
->vme_end
) {
4217 if (VME_OBJECT(entry
) &&
4218 !entry
->is_sub_map
&&
4219 VME_OBJECT(entry
)->phys_contiguous
) {
4220 pmap_remove(map
->pmap
,
4221 (addr64_t
)(entry
->vme_start
),
4222 (addr64_t
)(entry
->vme_end
));
4224 if (entry
->vme_atomic
) {
4225 panic("Attempting to clip an atomic VM entry! (map: %p, entry: %p)\n", map
, entry
);
4227 _vm_map_clip_end(&map
->hdr
, entry
, endaddr
);
4228 if (map
->holelistenabled
) {
4229 vm_map_store_update_first_free(map
, NULL
, FALSE
);
4231 vm_map_store_update_first_free(map
, map
->first_free
, FALSE
);
4237 #define vm_map_copy_clip_end(copy, entry, endaddr) \
4239 if ((endaddr) < (entry)->vme_end) \
4240 _vm_map_clip_end(&(copy)->cpy_hdr,(entry),(endaddr)); \
4244 * This routine is called only when it is known that
4245 * the entry must be split.
4249 struct vm_map_header
*map_header
,
4250 vm_map_entry_t entry
,
4251 vm_map_offset_t end
)
4253 vm_map_entry_t new_entry
;
4256 * Create a new entry and insert it
4257 * AFTER the specified entry
4260 if (entry
->map_aligned
) {
4261 assert(VM_MAP_PAGE_ALIGNED(end
,
4262 VM_MAP_HDR_PAGE_MASK(map_header
)));
4265 new_entry
= _vm_map_entry_create(map_header
, !map_header
->entries_pageable
);
4266 vm_map_entry_copy_full(new_entry
, entry
);
4268 assert(entry
->vme_start
< end
);
4269 new_entry
->vme_start
= entry
->vme_end
= end
;
4270 VME_OFFSET_SET(new_entry
,
4271 VME_OFFSET(new_entry
) + (end
- entry
->vme_start
));
4272 assert(new_entry
->vme_start
< new_entry
->vme_end
);
4274 _vm_map_store_entry_link(map_header
, entry
, new_entry
);
4276 if (entry
->is_sub_map
)
4277 vm_map_reference(VME_SUBMAP(new_entry
));
4279 vm_object_reference(VME_OBJECT(new_entry
));
4284 * VM_MAP_RANGE_CHECK: [ internal use only ]
4286 * Asserts that the starting and ending region
4287 * addresses fall within the valid range of the map.
4289 #define VM_MAP_RANGE_CHECK(map, start, end) \
4291 if (start < vm_map_min(map)) \
4292 start = vm_map_min(map); \
4293 if (end > vm_map_max(map)) \
4294 end = vm_map_max(map); \
4300 * vm_map_range_check: [ internal use only ]
4302 * Check that the region defined by the specified start and
4303 * end addresses are wholly contained within a single map
4304 * entry or set of adjacent map entries of the spacified map,
4305 * i.e. the specified region contains no unmapped space.
4306 * If any or all of the region is unmapped, FALSE is returned.
4307 * Otherwise, TRUE is returned and if the output argument 'entry'
4308 * is not NULL it points to the map entry containing the start
4311 * The map is locked for reading on entry and is left locked.
4316 vm_map_offset_t start
,
4317 vm_map_offset_t end
,
4318 vm_map_entry_t
*entry
)
4321 vm_map_offset_t prev
;
4324 * Basic sanity checks first
4326 if (start
< vm_map_min(map
) || end
> vm_map_max(map
) || start
> end
)
4330 * Check first if the region starts within a valid
4331 * mapping for the map.
4333 if (!vm_map_lookup_entry(map
, start
, &cur
))
4337 * Optimize for the case that the region is contained
4338 * in a single map entry.
4340 if (entry
!= (vm_map_entry_t
*) NULL
)
4342 if (end
<= cur
->vme_end
)
4346 * If the region is not wholly contained within a
4347 * single entry, walk the entries looking for holes.
4349 prev
= cur
->vme_end
;
4350 cur
= cur
->vme_next
;
4351 while ((cur
!= vm_map_to_entry(map
)) && (prev
== cur
->vme_start
)) {
4352 if (end
<= cur
->vme_end
)
4354 prev
= cur
->vme_end
;
4355 cur
= cur
->vme_next
;
4361 * vm_map_submap: [ kernel use only ]
4363 * Mark the given range as handled by a subordinate map.
4365 * This range must have been created with vm_map_find using
4366 * the vm_submap_object, and no other operations may have been
4367 * performed on this range prior to calling vm_map_submap.
4369 * Only a limited number of operations can be performed
4370 * within this rage after calling vm_map_submap:
4372 * [Don't try vm_map_copyin!]
4374 * To remove a submapping, one must first remove the
4375 * range from the superior map, and then destroy the
4376 * submap (if desired). [Better yet, don't try it.]
4381 vm_map_offset_t start
,
4382 vm_map_offset_t end
,
4384 vm_map_offset_t offset
,
4385 #ifdef NO_NESTED_PMAP
4387 #endif /* NO_NESTED_PMAP */
4390 vm_map_entry_t entry
;
4391 kern_return_t result
= KERN_INVALID_ARGUMENT
;
4396 if (! vm_map_lookup_entry(map
, start
, &entry
)) {
4397 entry
= entry
->vme_next
;
4400 if (entry
== vm_map_to_entry(map
) ||
4401 entry
->is_sub_map
) {
4403 return KERN_INVALID_ARGUMENT
;
4406 vm_map_clip_start(map
, entry
, start
);
4407 vm_map_clip_end(map
, entry
, end
);
4409 if ((entry
->vme_start
== start
) && (entry
->vme_end
== end
) &&
4410 (!entry
->is_sub_map
) &&
4411 ((object
= VME_OBJECT(entry
)) == vm_submap_object
) &&
4412 (object
->resident_page_count
== 0) &&
4413 (object
->copy
== VM_OBJECT_NULL
) &&
4414 (object
->shadow
== VM_OBJECT_NULL
) &&
4415 (!object
->pager_created
)) {
4416 VME_OFFSET_SET(entry
, (vm_object_offset_t
)offset
);
4417 VME_OBJECT_SET(entry
, VM_OBJECT_NULL
);
4418 vm_object_deallocate(object
);
4419 entry
->is_sub_map
= TRUE
;
4420 entry
->use_pmap
= FALSE
;
4421 VME_SUBMAP_SET(entry
, submap
);
4422 vm_map_reference(submap
);
4423 if (submap
->mapped_in_other_pmaps
== FALSE
&&
4424 vm_map_pmap(submap
) != PMAP_NULL
&&
4425 vm_map_pmap(submap
) != vm_map_pmap(map
)) {
4427 * This submap is being mapped in a map
4428 * that uses a different pmap.
4429 * Set its "mapped_in_other_pmaps" flag
4430 * to indicate that we now need to
4431 * remove mappings from all pmaps rather
4432 * than just the submap's pmap.
4434 submap
->mapped_in_other_pmaps
= TRUE
;
4437 #ifndef NO_NESTED_PMAP
4439 /* nest if platform code will allow */
4440 if(submap
->pmap
== NULL
) {
4441 ledger_t ledger
= map
->pmap
->ledger
;
4442 submap
->pmap
= pmap_create(ledger
,
4443 (vm_map_size_t
) 0, FALSE
);
4444 if(submap
->pmap
== PMAP_NULL
) {
4446 return(KERN_NO_SPACE
);
4449 result
= pmap_nest(map
->pmap
,
4450 (VME_SUBMAP(entry
))->pmap
,
4453 (uint64_t)(end
- start
));
4455 panic("vm_map_submap: pmap_nest failed, rc = %08X\n", result
);
4456 entry
->use_pmap
= TRUE
;
4458 #else /* NO_NESTED_PMAP */
4459 pmap_remove(map
->pmap
, (addr64_t
)start
, (addr64_t
)end
);
4460 #endif /* NO_NESTED_PMAP */
4461 result
= KERN_SUCCESS
;
4472 * Sets the protection of the specified address
4473 * region in the target map. If "set_max" is
4474 * specified, the maximum protection is to be set;
4475 * otherwise, only the current protection is affected.
4480 vm_map_offset_t start
,
4481 vm_map_offset_t end
,
4485 vm_map_entry_t current
;
4486 vm_map_offset_t prev
;
4487 vm_map_entry_t entry
;
4491 "vm_map_protect, 0x%X start 0x%X end 0x%X, new 0x%X %d",
4492 map
, start
, end
, new_prot
, set_max
);
4496 /* LP64todo - remove this check when vm_map_commpage64()
4497 * no longer has to stuff in a map_entry for the commpage
4498 * above the map's max_offset.
4500 if (start
>= map
->max_offset
) {
4502 return(KERN_INVALID_ADDRESS
);
4507 * Lookup the entry. If it doesn't start in a valid
4508 * entry, return an error.
4510 if (! vm_map_lookup_entry(map
, start
, &entry
)) {
4512 return(KERN_INVALID_ADDRESS
);
4515 if (entry
->superpage_size
&& (start
& (SUPERPAGE_SIZE
-1))) { /* extend request to whole entry */
4516 start
= SUPERPAGE_ROUND_DOWN(start
);
4521 if (entry
->superpage_size
)
4522 end
= SUPERPAGE_ROUND_UP(end
);
4525 * Make a first pass to check for protection and address
4530 prev
= current
->vme_start
;
4531 while ((current
!= vm_map_to_entry(map
)) &&
4532 (current
->vme_start
< end
)) {
4535 * If there is a hole, return an error.
4537 if (current
->vme_start
!= prev
) {
4539 return(KERN_INVALID_ADDRESS
);
4542 new_max
= current
->max_protection
;
4543 if(new_prot
& VM_PROT_COPY
) {
4544 new_max
|= VM_PROT_WRITE
;
4545 if ((new_prot
& (new_max
| VM_PROT_COPY
)) != new_prot
) {
4547 return(KERN_PROTECTION_FAILURE
);
4550 if ((new_prot
& new_max
) != new_prot
) {
4552 return(KERN_PROTECTION_FAILURE
);
4557 prev
= current
->vme_end
;
4558 current
= current
->vme_next
;
4564 return(KERN_INVALID_ADDRESS
);
4568 * Go back and fix up protections.
4569 * Clip to start here if the range starts within
4574 if (current
!= vm_map_to_entry(map
)) {
4575 /* clip and unnest if necessary */
4576 vm_map_clip_start(map
, current
, start
);
4579 while ((current
!= vm_map_to_entry(map
)) &&
4580 (current
->vme_start
< end
)) {
4584 vm_map_clip_end(map
, current
, end
);
4586 if (current
->is_sub_map
) {
4587 /* clipping did unnest if needed */
4588 assert(!current
->use_pmap
);
4591 old_prot
= current
->protection
;
4593 if(new_prot
& VM_PROT_COPY
) {
4594 /* caller is asking specifically to copy the */
4595 /* mapped data, this implies that max protection */
4596 /* will include write. Caller must be prepared */
4597 /* for loss of shared memory communication in the */
4598 /* target area after taking this step */
4600 if (current
->is_sub_map
== FALSE
&&
4601 VME_OBJECT(current
) == VM_OBJECT_NULL
) {
4602 VME_OBJECT_SET(current
,
4606 current
->vme_start
)));
4607 VME_OFFSET_SET(current
, 0);
4608 assert(current
->use_pmap
);
4610 assert(current
->wired_count
== 0);
4611 current
->needs_copy
= TRUE
;
4612 current
->max_protection
|= VM_PROT_WRITE
;
4616 current
->protection
=
4617 (current
->max_protection
=
4618 new_prot
& ~VM_PROT_COPY
) &
4621 current
->protection
= new_prot
& ~VM_PROT_COPY
;
4624 * Update physical map if necessary.
4625 * If the request is to turn off write protection,
4626 * we won't do it for real (in pmap). This is because
4627 * it would cause copy-on-write to fail. We've already
4628 * set, the new protection in the map, so if a
4629 * write-protect fault occurred, it will be fixed up
4630 * properly, COW or not.
4632 if (current
->protection
!= old_prot
) {
4633 /* Look one level in we support nested pmaps */
4634 /* from mapped submaps which are direct entries */
4639 prot
= current
->protection
;
4640 if (current
->is_sub_map
|| (VME_OBJECT(current
) == NULL
) || (VME_OBJECT(current
) != compressor_object
)) {
4641 prot
&= ~VM_PROT_WRITE
;
4643 assert(!VME_OBJECT(current
)->code_signed
);
4644 assert(VME_OBJECT(current
)->copy_strategy
== MEMORY_OBJECT_COPY_NONE
);
4647 if (override_nx(map
, VME_ALIAS(current
)) && prot
)
4648 prot
|= VM_PROT_EXECUTE
;
4651 if (current
->is_sub_map
&& current
->use_pmap
) {
4652 pmap_protect(VME_SUBMAP(current
)->pmap
,
4657 pmap_protect(map
->pmap
,
4663 current
= current
->vme_next
;
4667 while ((current
!= vm_map_to_entry(map
)) &&
4668 (current
->vme_start
<= end
)) {
4669 vm_map_simplify_entry(map
, current
);
4670 current
= current
->vme_next
;
4674 return(KERN_SUCCESS
);
4680 * Sets the inheritance of the specified address
4681 * range in the target map. Inheritance
4682 * affects how the map will be shared with
4683 * child maps at the time of vm_map_fork.
4688 vm_map_offset_t start
,
4689 vm_map_offset_t end
,
4690 vm_inherit_t new_inheritance
)
4692 vm_map_entry_t entry
;
4693 vm_map_entry_t temp_entry
;
4697 VM_MAP_RANGE_CHECK(map
, start
, end
);
4699 if (vm_map_lookup_entry(map
, start
, &temp_entry
)) {
4703 temp_entry
= temp_entry
->vme_next
;
4707 /* first check entire range for submaps which can't support the */
4708 /* given inheritance. */
4709 while ((entry
!= vm_map_to_entry(map
)) && (entry
->vme_start
< end
)) {
4710 if(entry
->is_sub_map
) {
4711 if(new_inheritance
== VM_INHERIT_COPY
) {
4713 return(KERN_INVALID_ARGUMENT
);
4717 entry
= entry
->vme_next
;
4721 if (entry
!= vm_map_to_entry(map
)) {
4722 /* clip and unnest if necessary */
4723 vm_map_clip_start(map
, entry
, start
);
4726 while ((entry
!= vm_map_to_entry(map
)) && (entry
->vme_start
< end
)) {
4727 vm_map_clip_end(map
, entry
, end
);
4728 if (entry
->is_sub_map
) {
4729 /* clip did unnest if needed */
4730 assert(!entry
->use_pmap
);
4733 entry
->inheritance
= new_inheritance
;
4735 entry
= entry
->vme_next
;
4739 return(KERN_SUCCESS
);
4743 * Update the accounting for the amount of wired memory in this map. If the user has
4744 * exceeded the defined limits, then we fail. Wiring on behalf of the kernel never fails.
4747 static kern_return_t
4750 vm_map_entry_t entry
,
4751 boolean_t user_wire
)
4756 unsigned int total_wire_count
= vm_page_wire_count
+ vm_lopage_free_count
;
4759 * We're wiring memory at the request of the user. Check if this is the first time the user is wiring
4763 if (entry
->user_wired_count
== 0) {
4764 size
= entry
->vme_end
- entry
->vme_start
;
4767 * Since this is the first time the user is wiring this map entry, check to see if we're
4768 * exceeding the user wire limits. There is a per map limit which is the smaller of either
4769 * the process's rlimit or the global vm_user_wire_limit which caps this value. There is also
4770 * a system-wide limit on the amount of memory all users can wire. If the user is over either
4771 * limit, then we fail.
4774 if(size
+ map
->user_wire_size
> MIN(map
->user_wire_limit
, vm_user_wire_limit
) ||
4775 size
+ ptoa_64(total_wire_count
) > vm_global_user_wire_limit
||
4776 size
+ ptoa_64(total_wire_count
) > max_mem
- vm_global_no_user_wire_amount
)
4777 return KERN_RESOURCE_SHORTAGE
;
4780 * The first time the user wires an entry, we also increment the wired_count and add this to
4781 * the total that has been wired in the map.
4784 if (entry
->wired_count
>= MAX_WIRE_COUNT
)
4785 return KERN_FAILURE
;
4787 entry
->wired_count
++;
4788 map
->user_wire_size
+= size
;
4791 if (entry
->user_wired_count
>= MAX_WIRE_COUNT
)
4792 return KERN_FAILURE
;
4794 entry
->user_wired_count
++;
4799 * The kernel's wiring the memory. Just bump the count and continue.
4802 if (entry
->wired_count
>= MAX_WIRE_COUNT
)
4803 panic("vm_map_wire: too many wirings");
4805 entry
->wired_count
++;
4808 return KERN_SUCCESS
;
4812 * Update the memory wiring accounting now that the given map entry is being unwired.
4816 subtract_wire_counts(
4818 vm_map_entry_t entry
,
4819 boolean_t user_wire
)
4825 * We're unwiring memory at the request of the user. See if we're removing the last user wire reference.
4828 if (entry
->user_wired_count
== 1) {
4831 * We're removing the last user wire reference. Decrement the wired_count and the total
4832 * user wired memory for this map.
4835 assert(entry
->wired_count
>= 1);
4836 entry
->wired_count
--;
4837 map
->user_wire_size
-= entry
->vme_end
- entry
->vme_start
;
4840 assert(entry
->user_wired_count
>= 1);
4841 entry
->user_wired_count
--;
4846 * The kernel is unwiring the memory. Just update the count.
4849 assert(entry
->wired_count
>= 1);
4850 entry
->wired_count
--;
4858 * Sets the pageability of the specified address range in the
4859 * target map as wired. Regions specified as not pageable require
4860 * locked-down physical memory and physical page maps. The
4861 * access_type variable indicates types of accesses that must not
4862 * generate page faults. This is checked against protection of
4863 * memory being locked-down.
4865 * The map must not be locked, but a reference must remain to the
4866 * map throughout the call.
4868 static kern_return_t
4871 vm_map_offset_t start
,
4872 vm_map_offset_t end
,
4873 vm_prot_t caller_prot
,
4874 boolean_t user_wire
,
4876 vm_map_offset_t pmap_addr
,
4877 ppnum_t
*physpage_p
)
4879 vm_map_entry_t entry
;
4880 vm_prot_t access_type
;
4881 struct vm_map_entry
*first_entry
, tmp_entry
;
4883 vm_map_offset_t s
,e
;
4885 boolean_t need_wakeup
;
4886 boolean_t main_map
= FALSE
;
4887 wait_interrupt_t interruptible_state
;
4888 thread_t cur_thread
;
4889 unsigned int last_timestamp
;
4891 boolean_t wire_and_extract
;
4893 access_type
= (caller_prot
& VM_PROT_ALL
);
4895 wire_and_extract
= FALSE
;
4896 if (physpage_p
!= NULL
) {
4898 * The caller wants the physical page number of the
4899 * wired page. We return only one physical page number
4900 * so this works for only one page at a time.
4902 if ((end
- start
) != PAGE_SIZE
) {
4903 return KERN_INVALID_ARGUMENT
;
4905 wire_and_extract
= TRUE
;
4910 if(map_pmap
== NULL
)
4912 last_timestamp
= map
->timestamp
;
4914 VM_MAP_RANGE_CHECK(map
, start
, end
);
4915 assert(page_aligned(start
));
4916 assert(page_aligned(end
));
4917 assert(VM_MAP_PAGE_ALIGNED(start
, VM_MAP_PAGE_MASK(map
)));
4918 assert(VM_MAP_PAGE_ALIGNED(end
, VM_MAP_PAGE_MASK(map
)));
4920 /* We wired what the caller asked for, zero pages */
4922 return KERN_SUCCESS
;
4925 need_wakeup
= FALSE
;
4926 cur_thread
= current_thread();
4931 if (vm_map_lookup_entry(map
, s
, &first_entry
)) {
4932 entry
= first_entry
;
4934 * vm_map_clip_start will be done later.
4935 * We don't want to unnest any nested submaps here !
4938 /* Start address is not in map */
4939 rc
= KERN_INVALID_ADDRESS
;
4943 while ((entry
!= vm_map_to_entry(map
)) && (s
< end
)) {
4945 * At this point, we have wired from "start" to "s".
4946 * We still need to wire from "s" to "end".
4948 * "entry" hasn't been clipped, so it could start before "s"
4949 * and/or end after "end".
4952 /* "e" is how far we want to wire in this entry */
4958 * If another thread is wiring/unwiring this entry then
4959 * block after informing other thread to wake us up.
4961 if (entry
->in_transition
) {
4962 wait_result_t wait_result
;
4965 * We have not clipped the entry. Make sure that
4966 * the start address is in range so that the lookup
4967 * below will succeed.
4968 * "s" is the current starting point: we've already
4969 * wired from "start" to "s" and we still have
4970 * to wire from "s" to "end".
4973 entry
->needs_wakeup
= TRUE
;
4976 * wake up anybody waiting on entries that we have
4980 vm_map_entry_wakeup(map
);
4981 need_wakeup
= FALSE
;
4984 * User wiring is interruptible
4986 wait_result
= vm_map_entry_wait(map
,
4987 (user_wire
) ? THREAD_ABORTSAFE
:
4989 if (user_wire
&& wait_result
== THREAD_INTERRUPTED
) {
4991 * undo the wirings we have done so far
4992 * We do not clear the needs_wakeup flag,
4993 * because we cannot tell if we were the
5001 * Cannot avoid a lookup here. reset timestamp.
5003 last_timestamp
= map
->timestamp
;
5006 * The entry could have been clipped, look it up again.
5007 * Worse that can happen is, it may not exist anymore.
5009 if (!vm_map_lookup_entry(map
, s
, &first_entry
)) {
5011 * User: undo everything upto the previous
5012 * entry. let vm_map_unwire worry about
5013 * checking the validity of the range.
5018 entry
= first_entry
;
5022 if (entry
->is_sub_map
) {
5023 vm_map_offset_t sub_start
;
5024 vm_map_offset_t sub_end
;
5025 vm_map_offset_t local_start
;
5026 vm_map_offset_t local_end
;
5029 if (wire_and_extract
) {
5031 * Wiring would result in copy-on-write
5032 * which would not be compatible with
5033 * the sharing we have with the original
5034 * provider of this memory.
5036 rc
= KERN_INVALID_ARGUMENT
;
5040 vm_map_clip_start(map
, entry
, s
);
5041 vm_map_clip_end(map
, entry
, end
);
5043 sub_start
= VME_OFFSET(entry
);
5044 sub_end
= entry
->vme_end
;
5045 sub_end
+= VME_OFFSET(entry
) - entry
->vme_start
;
5047 local_end
= entry
->vme_end
;
5048 if(map_pmap
== NULL
) {
5050 vm_object_offset_t offset
;
5053 vm_map_entry_t local_entry
;
5054 vm_map_version_t version
;
5055 vm_map_t lookup_map
;
5057 if(entry
->use_pmap
) {
5058 pmap
= VME_SUBMAP(entry
)->pmap
;
5059 /* ppc implementation requires that */
5060 /* submaps pmap address ranges line */
5061 /* up with parent map */
5063 pmap_addr
= sub_start
;
5071 if (entry
->wired_count
) {
5072 if ((rc
= add_wire_counts(map
, entry
, user_wire
)) != KERN_SUCCESS
)
5076 * The map was not unlocked:
5077 * no need to goto re-lookup.
5078 * Just go directly to next entry.
5080 entry
= entry
->vme_next
;
5081 s
= entry
->vme_start
;
5086 /* call vm_map_lookup_locked to */
5087 /* cause any needs copy to be */
5089 local_start
= entry
->vme_start
;
5091 vm_map_lock_write_to_read(map
);
5092 if(vm_map_lookup_locked(
5093 &lookup_map
, local_start
,
5094 access_type
| VM_PROT_COPY
,
5095 OBJECT_LOCK_EXCLUSIVE
,
5097 &offset
, &prot
, &wired
,
5101 vm_map_unlock_read(lookup_map
);
5102 assert(map_pmap
== NULL
);
5103 vm_map_unwire(map
, start
,
5105 return(KERN_FAILURE
);
5107 vm_object_unlock(object
);
5108 if(real_map
!= lookup_map
)
5109 vm_map_unlock(real_map
);
5110 vm_map_unlock_read(lookup_map
);
5113 /* we unlocked, so must re-lookup */
5114 if (!vm_map_lookup_entry(map
,
5122 * entry could have been "simplified",
5125 entry
= local_entry
;
5126 assert(s
== local_start
);
5127 vm_map_clip_start(map
, entry
, s
);
5128 vm_map_clip_end(map
, entry
, end
);
5129 /* re-compute "e" */
5134 /* did we have a change of type? */
5135 if (!entry
->is_sub_map
) {
5136 last_timestamp
= map
->timestamp
;
5140 local_start
= entry
->vme_start
;
5144 if ((rc
= add_wire_counts(map
, entry
, user_wire
)) != KERN_SUCCESS
)
5147 entry
->in_transition
= TRUE
;
5150 rc
= vm_map_wire_nested(VME_SUBMAP(entry
),
5153 user_wire
, pmap
, pmap_addr
,
5158 * Find the entry again. It could have been clipped
5159 * after we unlocked the map.
5161 if (!vm_map_lookup_entry(map
, local_start
,
5163 panic("vm_map_wire: re-lookup failed");
5164 entry
= first_entry
;
5166 assert(local_start
== s
);
5167 /* re-compute "e" */
5172 last_timestamp
= map
->timestamp
;
5173 while ((entry
!= vm_map_to_entry(map
)) &&
5174 (entry
->vme_start
< e
)) {
5175 assert(entry
->in_transition
);
5176 entry
->in_transition
= FALSE
;
5177 if (entry
->needs_wakeup
) {
5178 entry
->needs_wakeup
= FALSE
;
5181 if (rc
!= KERN_SUCCESS
) {/* from vm_*_wire */
5182 subtract_wire_counts(map
, entry
, user_wire
);
5184 entry
= entry
->vme_next
;
5186 if (rc
!= KERN_SUCCESS
) { /* from vm_*_wire */
5190 /* no need to relookup again */
5191 s
= entry
->vme_start
;
5196 * If this entry is already wired then increment
5197 * the appropriate wire reference count.
5199 if (entry
->wired_count
) {
5201 if ((entry
->protection
& access_type
) != access_type
) {
5202 /* found a protection problem */
5206 * We should always return an error
5207 * in this case but since we didn't
5208 * enforce it before, let's do
5209 * it only for the new "wire_and_extract"
5210 * code path for now...
5212 if (wire_and_extract
) {
5213 rc
= KERN_PROTECTION_FAILURE
;
5219 * entry is already wired down, get our reference
5220 * after clipping to our range.
5222 vm_map_clip_start(map
, entry
, s
);
5223 vm_map_clip_end(map
, entry
, end
);
5225 if ((rc
= add_wire_counts(map
, entry
, user_wire
)) != KERN_SUCCESS
)
5228 if (wire_and_extract
) {
5230 vm_object_offset_t offset
;
5234 * We don't have to "wire" the page again
5235 * bit we still have to "extract" its
5236 * physical page number, after some sanity
5239 assert((entry
->vme_end
- entry
->vme_start
)
5241 assert(!entry
->needs_copy
);
5242 assert(!entry
->is_sub_map
);
5243 assert(VME_OBJECT(entry
));
5244 if (((entry
->vme_end
- entry
->vme_start
)
5246 entry
->needs_copy
||
5247 entry
->is_sub_map
||
5248 VME_OBJECT(entry
) == VM_OBJECT_NULL
) {
5249 rc
= KERN_INVALID_ARGUMENT
;
5253 object
= VME_OBJECT(entry
);
5254 offset
= VME_OFFSET(entry
);
5255 /* need exclusive lock to update m->dirty */
5256 if (entry
->protection
& VM_PROT_WRITE
) {
5257 vm_object_lock(object
);
5259 vm_object_lock_shared(object
);
5261 m
= vm_page_lookup(object
, offset
);
5262 assert(m
!= VM_PAGE_NULL
);
5263 assert(VM_PAGE_WIRED(m
));
5264 if (m
!= VM_PAGE_NULL
&& VM_PAGE_WIRED(m
)) {
5265 *physpage_p
= VM_PAGE_GET_PHYS_PAGE(m
);
5266 if (entry
->protection
& VM_PROT_WRITE
) {
5267 vm_object_lock_assert_exclusive(
5272 /* not already wired !? */
5275 vm_object_unlock(object
);
5278 /* map was not unlocked: no need to relookup */
5279 entry
= entry
->vme_next
;
5280 s
= entry
->vme_start
;
5285 * Unwired entry or wire request transmitted via submap
5291 * Perform actions of vm_map_lookup that need the write
5292 * lock on the map: create a shadow object for a
5293 * copy-on-write region, or an object for a zero-fill
5296 size
= entry
->vme_end
- entry
->vme_start
;
5298 * If wiring a copy-on-write page, we need to copy it now
5299 * even if we're only (currently) requesting read access.
5300 * This is aggressive, but once it's wired we can't move it.
5302 if (entry
->needs_copy
) {
5303 if (wire_and_extract
) {
5305 * We're supposed to share with the original
5306 * provider so should not be "needs_copy"
5308 rc
= KERN_INVALID_ARGUMENT
;
5312 VME_OBJECT_SHADOW(entry
, size
);
5313 entry
->needs_copy
= FALSE
;
5314 } else if (VME_OBJECT(entry
) == VM_OBJECT_NULL
) {
5315 if (wire_and_extract
) {
5317 * We're supposed to share with the original
5318 * provider so should already have an object.
5320 rc
= KERN_INVALID_ARGUMENT
;
5323 VME_OBJECT_SET(entry
, vm_object_allocate(size
));
5324 VME_OFFSET_SET(entry
, (vm_object_offset_t
)0);
5325 assert(entry
->use_pmap
);
5328 vm_map_clip_start(map
, entry
, s
);
5329 vm_map_clip_end(map
, entry
, end
);
5331 /* re-compute "e" */
5337 * Check for holes and protection mismatch.
5338 * Holes: Next entry should be contiguous unless this
5339 * is the end of the region.
5340 * Protection: Access requested must be allowed, unless
5341 * wiring is by protection class
5343 if ((entry
->vme_end
< end
) &&
5344 ((entry
->vme_next
== vm_map_to_entry(map
)) ||
5345 (entry
->vme_next
->vme_start
> entry
->vme_end
))) {
5347 rc
= KERN_INVALID_ADDRESS
;
5350 if ((entry
->protection
& access_type
) != access_type
) {
5351 /* found a protection problem */
5352 rc
= KERN_PROTECTION_FAILURE
;
5356 assert(entry
->wired_count
== 0 && entry
->user_wired_count
== 0);
5358 if ((rc
= add_wire_counts(map
, entry
, user_wire
)) != KERN_SUCCESS
)
5361 entry
->in_transition
= TRUE
;
5364 * This entry might get split once we unlock the map.
5365 * In vm_fault_wire(), we need the current range as
5366 * defined by this entry. In order for this to work
5367 * along with a simultaneous clip operation, we make a
5368 * temporary copy of this entry and use that for the
5369 * wiring. Note that the underlying objects do not
5370 * change during a clip.
5375 * The in_transition state guarentees that the entry
5376 * (or entries for this range, if split occured) will be
5377 * there when the map lock is acquired for the second time.
5381 if (!user_wire
&& cur_thread
!= THREAD_NULL
)
5382 interruptible_state
= thread_interrupt_level(THREAD_UNINT
);
5384 interruptible_state
= THREAD_UNINT
;
5387 rc
= vm_fault_wire(map
,
5388 &tmp_entry
, caller_prot
, map_pmap
, pmap_addr
,
5391 rc
= vm_fault_wire(map
,
5392 &tmp_entry
, caller_prot
, map
->pmap
,
5393 tmp_entry
.vme_start
,
5396 if (!user_wire
&& cur_thread
!= THREAD_NULL
)
5397 thread_interrupt_level(interruptible_state
);
5401 if (last_timestamp
+1 != map
->timestamp
) {
5403 * Find the entry again. It could have been clipped
5404 * after we unlocked the map.
5406 if (!vm_map_lookup_entry(map
, tmp_entry
.vme_start
,
5408 panic("vm_map_wire: re-lookup failed");
5410 entry
= first_entry
;
5413 last_timestamp
= map
->timestamp
;
5415 while ((entry
!= vm_map_to_entry(map
)) &&
5416 (entry
->vme_start
< tmp_entry
.vme_end
)) {
5417 assert(entry
->in_transition
);
5418 entry
->in_transition
= FALSE
;
5419 if (entry
->needs_wakeup
) {
5420 entry
->needs_wakeup
= FALSE
;
5423 if (rc
!= KERN_SUCCESS
) { /* from vm_*_wire */
5424 subtract_wire_counts(map
, entry
, user_wire
);
5426 entry
= entry
->vme_next
;
5429 if (rc
!= KERN_SUCCESS
) { /* from vm_*_wire */
5433 s
= entry
->vme_start
;
5434 } /* end while loop through map entries */
5437 if (rc
== KERN_SUCCESS
) {
5438 /* repair any damage we may have made to the VM map */
5439 vm_map_simplify_range(map
, start
, end
);
5445 * wake up anybody waiting on entries we wired.
5448 vm_map_entry_wakeup(map
);
5450 if (rc
!= KERN_SUCCESS
) {
5451 /* undo what has been wired so far */
5452 vm_map_unwire_nested(map
, start
, s
, user_wire
,
5453 map_pmap
, pmap_addr
);
5464 vm_map_wire_external(
5466 vm_map_offset_t start
,
5467 vm_map_offset_t end
,
5468 vm_prot_t caller_prot
,
5469 boolean_t user_wire
)
5473 caller_prot
&= ~VM_PROT_MEMORY_TAG_MASK
;
5474 caller_prot
|= VM_PROT_MEMORY_TAG_MAKE(vm_tag_bt());
5475 kret
= vm_map_wire_nested(map
, start
, end
, caller_prot
,
5476 user_wire
, (pmap_t
)NULL
, 0, NULL
);
5483 vm_map_offset_t start
,
5484 vm_map_offset_t end
,
5485 vm_prot_t caller_prot
,
5486 boolean_t user_wire
)
5490 kret
= vm_map_wire_nested(map
, start
, end
, caller_prot
,
5491 user_wire
, (pmap_t
)NULL
, 0, NULL
);
5496 vm_map_wire_and_extract_external(
5498 vm_map_offset_t start
,
5499 vm_prot_t caller_prot
,
5500 boolean_t user_wire
,
5501 ppnum_t
*physpage_p
)
5505 caller_prot
&= ~VM_PROT_MEMORY_TAG_MASK
;
5506 caller_prot
|= VM_PROT_MEMORY_TAG_MAKE(vm_tag_bt());
5507 kret
= vm_map_wire_nested(map
,
5509 start
+VM_MAP_PAGE_SIZE(map
),
5515 if (kret
!= KERN_SUCCESS
&&
5516 physpage_p
!= NULL
) {
5523 vm_map_wire_and_extract(
5525 vm_map_offset_t start
,
5526 vm_prot_t caller_prot
,
5527 boolean_t user_wire
,
5528 ppnum_t
*physpage_p
)
5532 kret
= vm_map_wire_nested(map
,
5534 start
+VM_MAP_PAGE_SIZE(map
),
5540 if (kret
!= KERN_SUCCESS
&&
5541 physpage_p
!= NULL
) {
5550 * Sets the pageability of the specified address range in the target
5551 * as pageable. Regions specified must have been wired previously.
5553 * The map must not be locked, but a reference must remain to the map
5554 * throughout the call.
5556 * Kernel will panic on failures. User unwire ignores holes and
5557 * unwired and intransition entries to avoid losing memory by leaving
5560 static kern_return_t
5561 vm_map_unwire_nested(
5563 vm_map_offset_t start
,
5564 vm_map_offset_t end
,
5565 boolean_t user_wire
,
5567 vm_map_offset_t pmap_addr
)
5569 vm_map_entry_t entry
;
5570 struct vm_map_entry
*first_entry
, tmp_entry
;
5571 boolean_t need_wakeup
;
5572 boolean_t main_map
= FALSE
;
5573 unsigned int last_timestamp
;
5576 if(map_pmap
== NULL
)
5578 last_timestamp
= map
->timestamp
;
5580 VM_MAP_RANGE_CHECK(map
, start
, end
);
5581 assert(page_aligned(start
));
5582 assert(page_aligned(end
));
5583 assert(VM_MAP_PAGE_ALIGNED(start
, VM_MAP_PAGE_MASK(map
)));
5584 assert(VM_MAP_PAGE_ALIGNED(end
, VM_MAP_PAGE_MASK(map
)));
5587 /* We unwired what the caller asked for: zero pages */
5589 return KERN_SUCCESS
;
5592 if (vm_map_lookup_entry(map
, start
, &first_entry
)) {
5593 entry
= first_entry
;
5595 * vm_map_clip_start will be done later.
5596 * We don't want to unnest any nested sub maps here !
5601 panic("vm_map_unwire: start not found");
5603 /* Start address is not in map. */
5605 return(KERN_INVALID_ADDRESS
);
5608 if (entry
->superpage_size
) {
5609 /* superpages are always wired */
5611 return KERN_INVALID_ADDRESS
;
5614 need_wakeup
= FALSE
;
5615 while ((entry
!= vm_map_to_entry(map
)) && (entry
->vme_start
< end
)) {
5616 if (entry
->in_transition
) {
5619 * Another thread is wiring down this entry. Note
5620 * that if it is not for the other thread we would
5621 * be unwiring an unwired entry. This is not
5622 * permitted. If we wait, we will be unwiring memory
5626 * Another thread is unwiring this entry. We did not
5627 * have a reference to it, because if we did, this
5628 * entry will not be getting unwired now.
5633 * This could happen: there could be some
5634 * overlapping vslock/vsunlock operations
5636 * We should probably just wait and retry,
5637 * but then we have to be careful that this
5638 * entry could get "simplified" after
5639 * "in_transition" gets unset and before
5640 * we re-lookup the entry, so we would
5641 * have to re-clip the entry to avoid
5642 * re-unwiring what we have already unwired...
5643 * See vm_map_wire_nested().
5645 * Or we could just ignore "in_transition"
5646 * here and proceed to decement the wired
5647 * count(s) on this entry. That should be fine
5648 * as long as "wired_count" doesn't drop all
5649 * the way to 0 (and we should panic if THAT
5652 panic("vm_map_unwire: in_transition entry");
5655 entry
= entry
->vme_next
;
5659 if (entry
->is_sub_map
) {
5660 vm_map_offset_t sub_start
;
5661 vm_map_offset_t sub_end
;
5662 vm_map_offset_t local_end
;
5665 vm_map_clip_start(map
, entry
, start
);
5666 vm_map_clip_end(map
, entry
, end
);
5668 sub_start
= VME_OFFSET(entry
);
5669 sub_end
= entry
->vme_end
- entry
->vme_start
;
5670 sub_end
+= VME_OFFSET(entry
);
5671 local_end
= entry
->vme_end
;
5672 if(map_pmap
== NULL
) {
5673 if(entry
->use_pmap
) {
5674 pmap
= VME_SUBMAP(entry
)->pmap
;
5675 pmap_addr
= sub_start
;
5680 if (entry
->wired_count
== 0 ||
5681 (user_wire
&& entry
->user_wired_count
== 0)) {
5683 panic("vm_map_unwire: entry is unwired");
5684 entry
= entry
->vme_next
;
5690 * Holes: Next entry should be contiguous unless
5691 * this is the end of the region.
5693 if (((entry
->vme_end
< end
) &&
5694 ((entry
->vme_next
== vm_map_to_entry(map
)) ||
5695 (entry
->vme_next
->vme_start
5696 > entry
->vme_end
)))) {
5698 panic("vm_map_unwire: non-contiguous region");
5700 entry = entry->vme_next;
5705 subtract_wire_counts(map
, entry
, user_wire
);
5707 if (entry
->wired_count
!= 0) {
5708 entry
= entry
->vme_next
;
5712 entry
->in_transition
= TRUE
;
5713 tmp_entry
= *entry
;/* see comment in vm_map_wire() */
5716 * We can unlock the map now. The in_transition state
5717 * guarantees existance of the entry.
5720 vm_map_unwire_nested(VME_SUBMAP(entry
),
5721 sub_start
, sub_end
, user_wire
, pmap
, pmap_addr
);
5724 if (last_timestamp
+1 != map
->timestamp
) {
5726 * Find the entry again. It could have been
5727 * clipped or deleted after we unlocked the map.
5729 if (!vm_map_lookup_entry(map
,
5730 tmp_entry
.vme_start
,
5733 panic("vm_map_unwire: re-lookup failed");
5734 entry
= first_entry
->vme_next
;
5736 entry
= first_entry
;
5738 last_timestamp
= map
->timestamp
;
5741 * clear transition bit for all constituent entries
5742 * that were in the original entry (saved in
5743 * tmp_entry). Also check for waiters.
5745 while ((entry
!= vm_map_to_entry(map
)) &&
5746 (entry
->vme_start
< tmp_entry
.vme_end
)) {
5747 assert(entry
->in_transition
);
5748 entry
->in_transition
= FALSE
;
5749 if (entry
->needs_wakeup
) {
5750 entry
->needs_wakeup
= FALSE
;
5753 entry
= entry
->vme_next
;
5758 vm_map_unwire_nested(VME_SUBMAP(entry
),
5759 sub_start
, sub_end
, user_wire
, map_pmap
,
5763 if (last_timestamp
+1 != map
->timestamp
) {
5765 * Find the entry again. It could have been
5766 * clipped or deleted after we unlocked the map.
5768 if (!vm_map_lookup_entry(map
,
5769 tmp_entry
.vme_start
,
5772 panic("vm_map_unwire: re-lookup failed");
5773 entry
= first_entry
->vme_next
;
5775 entry
= first_entry
;
5777 last_timestamp
= map
->timestamp
;
5782 if ((entry
->wired_count
== 0) ||
5783 (user_wire
&& entry
->user_wired_count
== 0)) {
5785 panic("vm_map_unwire: entry is unwired");
5787 entry
= entry
->vme_next
;
5791 assert(entry
->wired_count
> 0 &&
5792 (!user_wire
|| entry
->user_wired_count
> 0));
5794 vm_map_clip_start(map
, entry
, start
);
5795 vm_map_clip_end(map
, entry
, end
);
5799 * Holes: Next entry should be contiguous unless
5800 * this is the end of the region.
5802 if (((entry
->vme_end
< end
) &&
5803 ((entry
->vme_next
== vm_map_to_entry(map
)) ||
5804 (entry
->vme_next
->vme_start
> entry
->vme_end
)))) {
5807 panic("vm_map_unwire: non-contiguous region");
5808 entry
= entry
->vme_next
;
5812 subtract_wire_counts(map
, entry
, user_wire
);
5814 if (entry
->wired_count
!= 0) {
5815 entry
= entry
->vme_next
;
5819 if(entry
->zero_wired_pages
) {
5820 entry
->zero_wired_pages
= FALSE
;
5823 entry
->in_transition
= TRUE
;
5824 tmp_entry
= *entry
; /* see comment in vm_map_wire() */
5827 * We can unlock the map now. The in_transition state
5828 * guarantees existance of the entry.
5832 vm_fault_unwire(map
,
5833 &tmp_entry
, FALSE
, map_pmap
, pmap_addr
);
5835 vm_fault_unwire(map
,
5836 &tmp_entry
, FALSE
, map
->pmap
,
5837 tmp_entry
.vme_start
);
5841 if (last_timestamp
+1 != map
->timestamp
) {
5843 * Find the entry again. It could have been clipped
5844 * or deleted after we unlocked the map.
5846 if (!vm_map_lookup_entry(map
, tmp_entry
.vme_start
,
5849 panic("vm_map_unwire: re-lookup failed");
5850 entry
= first_entry
->vme_next
;
5852 entry
= first_entry
;
5854 last_timestamp
= map
->timestamp
;
5857 * clear transition bit for all constituent entries that
5858 * were in the original entry (saved in tmp_entry). Also
5859 * check for waiters.
5861 while ((entry
!= vm_map_to_entry(map
)) &&
5862 (entry
->vme_start
< tmp_entry
.vme_end
)) {
5863 assert(entry
->in_transition
);
5864 entry
->in_transition
= FALSE
;
5865 if (entry
->needs_wakeup
) {
5866 entry
->needs_wakeup
= FALSE
;
5869 entry
= entry
->vme_next
;
5874 * We might have fragmented the address space when we wired this
5875 * range of addresses. Attempt to re-coalesce these VM map entries
5876 * with their neighbors now that they're no longer wired.
5877 * Under some circumstances, address space fragmentation can
5878 * prevent VM object shadow chain collapsing, which can cause
5881 vm_map_simplify_range(map
, start
, end
);
5885 * wake up anybody waiting on entries that we have unwired.
5888 vm_map_entry_wakeup(map
);
5889 return(KERN_SUCCESS
);
5896 vm_map_offset_t start
,
5897 vm_map_offset_t end
,
5898 boolean_t user_wire
)
5900 return vm_map_unwire_nested(map
, start
, end
,
5901 user_wire
, (pmap_t
)NULL
, 0);
5906 * vm_map_entry_delete: [ internal use only ]
5908 * Deallocate the given entry from the target map.
5911 vm_map_entry_delete(
5913 vm_map_entry_t entry
)
5915 vm_map_offset_t s
, e
;
5919 s
= entry
->vme_start
;
5921 assert(page_aligned(s
));
5922 assert(page_aligned(e
));
5923 if (entry
->map_aligned
== TRUE
) {
5924 assert(VM_MAP_PAGE_ALIGNED(s
, VM_MAP_PAGE_MASK(map
)));
5925 assert(VM_MAP_PAGE_ALIGNED(e
, VM_MAP_PAGE_MASK(map
)));
5927 assert(entry
->wired_count
== 0);
5928 assert(entry
->user_wired_count
== 0);
5929 assert(!entry
->permanent
);
5931 if (entry
->is_sub_map
) {
5933 submap
= VME_SUBMAP(entry
);
5936 object
= VME_OBJECT(entry
);
5939 vm_map_store_entry_unlink(map
, entry
);
5942 vm_map_entry_dispose(map
, entry
);
5946 * Deallocate the object only after removing all
5947 * pmap entries pointing to its pages.
5950 vm_map_deallocate(submap
);
5952 vm_object_deallocate(object
);
5957 vm_map_submap_pmap_clean(
5959 vm_map_offset_t start
,
5960 vm_map_offset_t end
,
5962 vm_map_offset_t offset
)
5964 vm_map_offset_t submap_start
;
5965 vm_map_offset_t submap_end
;
5966 vm_map_size_t remove_size
;
5967 vm_map_entry_t entry
;
5969 submap_end
= offset
+ (end
- start
);
5970 submap_start
= offset
;
5972 vm_map_lock_read(sub_map
);
5973 if(vm_map_lookup_entry(sub_map
, offset
, &entry
)) {
5975 remove_size
= (entry
->vme_end
- entry
->vme_start
);
5976 if(offset
> entry
->vme_start
)
5977 remove_size
-= offset
- entry
->vme_start
;
5980 if(submap_end
< entry
->vme_end
) {
5982 entry
->vme_end
- submap_end
;
5984 if(entry
->is_sub_map
) {
5985 vm_map_submap_pmap_clean(
5988 start
+ remove_size
,
5993 if((map
->mapped_in_other_pmaps
) && (map
->ref_count
)
5994 && (VME_OBJECT(entry
) != NULL
)) {
5995 vm_object_pmap_protect_options(
5997 (VME_OFFSET(entry
) +
6004 PMAP_OPTIONS_REMOVE
);
6006 pmap_remove(map
->pmap
,
6008 (addr64_t
)(start
+ remove_size
));
6013 entry
= entry
->vme_next
;
6015 while((entry
!= vm_map_to_entry(sub_map
))
6016 && (entry
->vme_start
< submap_end
)) {
6017 remove_size
= (entry
->vme_end
- entry
->vme_start
);
6018 if(submap_end
< entry
->vme_end
) {
6019 remove_size
-= entry
->vme_end
- submap_end
;
6021 if(entry
->is_sub_map
) {
6022 vm_map_submap_pmap_clean(
6024 (start
+ entry
->vme_start
) - offset
,
6025 ((start
+ entry
->vme_start
) - offset
) + remove_size
,
6029 if((map
->mapped_in_other_pmaps
) && (map
->ref_count
)
6030 && (VME_OBJECT(entry
) != NULL
)) {
6031 vm_object_pmap_protect_options(
6038 PMAP_OPTIONS_REMOVE
);
6040 pmap_remove(map
->pmap
,
6041 (addr64_t
)((start
+ entry
->vme_start
)
6043 (addr64_t
)(((start
+ entry
->vme_start
)
6044 - offset
) + remove_size
));
6047 entry
= entry
->vme_next
;
6049 vm_map_unlock_read(sub_map
);
6054 * vm_map_delete: [ internal use only ]
6056 * Deallocates the given address range from the target map.
6057 * Removes all user wirings. Unwires one kernel wiring if
6058 * VM_MAP_REMOVE_KUNWIRE is set. Waits for kernel wirings to go
6059 * away if VM_MAP_REMOVE_WAIT_FOR_KWIRE is set. Sleeps
6060 * interruptibly if VM_MAP_REMOVE_INTERRUPTIBLE is set.
6062 * This routine is called with map locked and leaves map locked.
6064 static kern_return_t
6067 vm_map_offset_t start
,
6068 vm_map_offset_t end
,
6072 vm_map_entry_t entry
, next
;
6073 struct vm_map_entry
*first_entry
, tmp_entry
;
6076 boolean_t need_wakeup
;
6077 unsigned int last_timestamp
= ~0; /* unlikely value */
6080 interruptible
= (flags
& VM_MAP_REMOVE_INTERRUPTIBLE
) ?
6081 THREAD_ABORTSAFE
: THREAD_UNINT
;
6084 * All our DMA I/O operations in IOKit are currently done by
6085 * wiring through the map entries of the task requesting the I/O.
6086 * Because of this, we must always wait for kernel wirings
6087 * to go away on the entries before deleting them.
6089 * Any caller who wants to actually remove a kernel wiring
6090 * should explicitly set the VM_MAP_REMOVE_KUNWIRE flag to
6091 * properly remove one wiring instead of blasting through
6094 flags
|= VM_MAP_REMOVE_WAIT_FOR_KWIRE
;
6098 * Find the start of the region, and clip it
6100 if (vm_map_lookup_entry(map
, start
, &first_entry
)) {
6101 entry
= first_entry
;
6102 if (map
== kalloc_map
&&
6103 (entry
->vme_start
!= start
||
6104 entry
->vme_end
!= end
)) {
6105 panic("vm_map_delete(%p,0x%llx,0x%llx): "
6106 "mismatched entry %p [0x%llx:0x%llx]\n",
6111 (uint64_t)entry
->vme_start
,
6112 (uint64_t)entry
->vme_end
);
6114 if (entry
->superpage_size
&& (start
& ~SUPERPAGE_MASK
)) { /* extend request to whole entry */ start
= SUPERPAGE_ROUND_DOWN(start
);
6115 start
= SUPERPAGE_ROUND_DOWN(start
);
6118 if (start
== entry
->vme_start
) {
6120 * No need to clip. We don't want to cause
6121 * any unnecessary unnesting in this case...
6124 if ((flags
& VM_MAP_REMOVE_NO_MAP_ALIGN
) &&
6125 entry
->map_aligned
&&
6126 !VM_MAP_PAGE_ALIGNED(
6128 VM_MAP_PAGE_MASK(map
))) {
6130 * The entry will no longer be
6131 * map-aligned after clipping
6132 * and the caller said it's OK.
6134 entry
->map_aligned
= FALSE
;
6136 if (map
== kalloc_map
) {
6137 panic("vm_map_delete(%p,0x%llx,0x%llx):"
6138 " clipping %p at 0x%llx\n",
6145 vm_map_clip_start(map
, entry
, start
);
6149 * Fix the lookup hint now, rather than each
6150 * time through the loop.
6152 SAVE_HINT_MAP_WRITE(map
, entry
->vme_prev
);
6154 if (map
->pmap
== kernel_pmap
&&
6155 map
->ref_count
!= 0) {
6156 panic("vm_map_delete(%p,0x%llx,0x%llx): "
6157 "no map entry at 0x%llx\n",
6163 entry
= first_entry
->vme_next
;
6167 if (entry
->superpage_size
)
6168 end
= SUPERPAGE_ROUND_UP(end
);
6170 need_wakeup
= FALSE
;
6172 * Step through all entries in this region
6174 s
= entry
->vme_start
;
6175 while ((entry
!= vm_map_to_entry(map
)) && (s
< end
)) {
6177 * At this point, we have deleted all the memory entries
6178 * between "start" and "s". We still need to delete
6179 * all memory entries between "s" and "end".
6180 * While we were blocked and the map was unlocked, some
6181 * new memory entries could have been re-allocated between
6182 * "start" and "s" and we don't want to mess with those.
6183 * Some of those entries could even have been re-assembled
6184 * with an entry after "s" (in vm_map_simplify_entry()), so
6185 * we may have to vm_map_clip_start() again.
6188 if (entry
->vme_start
>= s
) {
6190 * This entry starts on or after "s"
6191 * so no need to clip its start.
6195 * This entry has been re-assembled by a
6196 * vm_map_simplify_entry(). We need to
6197 * re-clip its start.
6199 if ((flags
& VM_MAP_REMOVE_NO_MAP_ALIGN
) &&
6200 entry
->map_aligned
&&
6201 !VM_MAP_PAGE_ALIGNED(s
,
6202 VM_MAP_PAGE_MASK(map
))) {
6204 * The entry will no longer be map-aligned
6205 * after clipping and the caller said it's OK.
6207 entry
->map_aligned
= FALSE
;
6209 if (map
== kalloc_map
) {
6210 panic("vm_map_delete(%p,0x%llx,0x%llx): "
6211 "clipping %p at 0x%llx\n",
6218 vm_map_clip_start(map
, entry
, s
);
6220 if (entry
->vme_end
<= end
) {
6222 * This entry is going away completely, so no need
6223 * to clip and possibly cause an unnecessary unnesting.
6226 if ((flags
& VM_MAP_REMOVE_NO_MAP_ALIGN
) &&
6227 entry
->map_aligned
&&
6228 !VM_MAP_PAGE_ALIGNED(end
,
6229 VM_MAP_PAGE_MASK(map
))) {
6231 * The entry will no longer be map-aligned
6232 * after clipping and the caller said it's OK.
6234 entry
->map_aligned
= FALSE
;
6236 if (map
== kalloc_map
) {
6237 panic("vm_map_delete(%p,0x%llx,0x%llx): "
6238 "clipping %p at 0x%llx\n",
6245 vm_map_clip_end(map
, entry
, end
);
6248 if (entry
->permanent
) {
6249 panic("attempt to remove permanent VM map entry "
6250 "%p [0x%llx:0x%llx]\n",
6251 entry
, (uint64_t) s
, (uint64_t) end
);
6255 if (entry
->in_transition
) {
6256 wait_result_t wait_result
;
6259 * Another thread is wiring/unwiring this entry.
6260 * Let the other thread know we are waiting.
6262 assert(s
== entry
->vme_start
);
6263 entry
->needs_wakeup
= TRUE
;
6266 * wake up anybody waiting on entries that we have
6267 * already unwired/deleted.
6270 vm_map_entry_wakeup(map
);
6271 need_wakeup
= FALSE
;
6274 wait_result
= vm_map_entry_wait(map
, interruptible
);
6276 if (interruptible
&&
6277 wait_result
== THREAD_INTERRUPTED
) {
6279 * We do not clear the needs_wakeup flag,
6280 * since we cannot tell if we were the only one.
6282 return KERN_ABORTED
;
6286 * The entry could have been clipped or it
6287 * may not exist anymore. Look it up again.
6289 if (!vm_map_lookup_entry(map
, s
, &first_entry
)) {
6291 * User: use the next entry
6293 entry
= first_entry
->vme_next
;
6294 s
= entry
->vme_start
;
6296 entry
= first_entry
;
6297 SAVE_HINT_MAP_WRITE(map
, entry
->vme_prev
);
6299 last_timestamp
= map
->timestamp
;
6301 } /* end in_transition */
6303 if (entry
->wired_count
) {
6304 boolean_t user_wire
;
6306 user_wire
= entry
->user_wired_count
> 0;
6309 * Remove a kernel wiring if requested
6311 if (flags
& VM_MAP_REMOVE_KUNWIRE
) {
6312 entry
->wired_count
--;
6316 * Remove all user wirings for proper accounting
6318 if (entry
->user_wired_count
> 0) {
6319 while (entry
->user_wired_count
)
6320 subtract_wire_counts(map
, entry
, user_wire
);
6323 if (entry
->wired_count
!= 0) {
6324 assert(map
!= kernel_map
);
6326 * Cannot continue. Typical case is when
6327 * a user thread has physical io pending on
6328 * on this page. Either wait for the
6329 * kernel wiring to go away or return an
6332 if (flags
& VM_MAP_REMOVE_WAIT_FOR_KWIRE
) {
6333 wait_result_t wait_result
;
6335 assert(s
== entry
->vme_start
);
6336 entry
->needs_wakeup
= TRUE
;
6337 wait_result
= vm_map_entry_wait(map
,
6340 if (interruptible
&&
6341 wait_result
== THREAD_INTERRUPTED
) {
6343 * We do not clear the
6344 * needs_wakeup flag, since we
6345 * cannot tell if we were the
6348 return KERN_ABORTED
;
6352 * The entry could have been clipped or
6353 * it may not exist anymore. Look it
6356 if (!vm_map_lookup_entry(map
, s
,
6358 assert(map
!= kernel_map
);
6360 * User: use the next entry
6362 entry
= first_entry
->vme_next
;
6363 s
= entry
->vme_start
;
6365 entry
= first_entry
;
6366 SAVE_HINT_MAP_WRITE(map
, entry
->vme_prev
);
6368 last_timestamp
= map
->timestamp
;
6372 return KERN_FAILURE
;
6376 entry
->in_transition
= TRUE
;
6378 * copy current entry. see comment in vm_map_wire()
6381 assert(s
== entry
->vme_start
);
6384 * We can unlock the map now. The in_transition
6385 * state guarentees existance of the entry.
6389 if (tmp_entry
.is_sub_map
) {
6391 vm_map_offset_t sub_start
, sub_end
;
6393 vm_map_offset_t pmap_addr
;
6396 sub_map
= VME_SUBMAP(&tmp_entry
);
6397 sub_start
= VME_OFFSET(&tmp_entry
);
6398 sub_end
= sub_start
+ (tmp_entry
.vme_end
-
6399 tmp_entry
.vme_start
);
6400 if (tmp_entry
.use_pmap
) {
6401 pmap
= sub_map
->pmap
;
6402 pmap_addr
= tmp_entry
.vme_start
;
6405 pmap_addr
= tmp_entry
.vme_start
;
6407 (void) vm_map_unwire_nested(sub_map
,
6413 if (VME_OBJECT(&tmp_entry
) == kernel_object
) {
6414 pmap_protect_options(
6416 tmp_entry
.vme_start
,
6419 PMAP_OPTIONS_REMOVE
,
6422 vm_fault_unwire(map
, &tmp_entry
,
6423 VME_OBJECT(&tmp_entry
) == kernel_object
,
6424 map
->pmap
, tmp_entry
.vme_start
);
6429 if (last_timestamp
+1 != map
->timestamp
) {
6431 * Find the entry again. It could have
6432 * been clipped after we unlocked the map.
6434 if (!vm_map_lookup_entry(map
, s
, &first_entry
)){
6435 assert((map
!= kernel_map
) &&
6436 (!entry
->is_sub_map
));
6437 first_entry
= first_entry
->vme_next
;
6438 s
= first_entry
->vme_start
;
6440 SAVE_HINT_MAP_WRITE(map
, entry
->vme_prev
);
6443 SAVE_HINT_MAP_WRITE(map
, entry
->vme_prev
);
6444 first_entry
= entry
;
6447 last_timestamp
= map
->timestamp
;
6449 entry
= first_entry
;
6450 while ((entry
!= vm_map_to_entry(map
)) &&
6451 (entry
->vme_start
< tmp_entry
.vme_end
)) {
6452 assert(entry
->in_transition
);
6453 entry
->in_transition
= FALSE
;
6454 if (entry
->needs_wakeup
) {
6455 entry
->needs_wakeup
= FALSE
;
6458 entry
= entry
->vme_next
;
6461 * We have unwired the entry(s). Go back and
6464 entry
= first_entry
;
6468 /* entry is unwired */
6469 assert(entry
->wired_count
== 0);
6470 assert(entry
->user_wired_count
== 0);
6472 assert(s
== entry
->vme_start
);
6474 if (flags
& VM_MAP_REMOVE_NO_PMAP_CLEANUP
) {
6476 * XXX with the VM_MAP_REMOVE_SAVE_ENTRIES flag to
6477 * vm_map_delete(), some map entries might have been
6478 * transferred to a "zap_map", which doesn't have a
6479 * pmap. The original pmap has already been flushed
6480 * in the vm_map_delete() call targeting the original
6481 * map, but when we get to destroying the "zap_map",
6482 * we don't have any pmap to flush, so let's just skip
6485 } else if (entry
->is_sub_map
) {
6486 if (entry
->use_pmap
) {
6487 #ifndef NO_NESTED_PMAP
6490 if (flags
& VM_MAP_REMOVE_NO_UNNESTING
) {
6492 * This is the final cleanup of the
6493 * address space being terminated.
6494 * No new mappings are expected and
6495 * we don't really need to unnest the
6496 * shared region (and lose the "global"
6497 * pmap mappings, if applicable).
6499 * Tell the pmap layer that we're
6500 * "clean" wrt nesting.
6502 pmap_flags
= PMAP_UNNEST_CLEAN
;
6505 * We're unmapping part of the nested
6506 * shared region, so we can't keep the
6511 pmap_unnest_options(
6513 (addr64_t
)entry
->vme_start
,
6514 entry
->vme_end
- entry
->vme_start
,
6516 #endif /* NO_NESTED_PMAP */
6517 if ((map
->mapped_in_other_pmaps
) && (map
->ref_count
)) {
6518 /* clean up parent map/maps */
6519 vm_map_submap_pmap_clean(
6520 map
, entry
->vme_start
,
6526 vm_map_submap_pmap_clean(
6527 map
, entry
->vme_start
, entry
->vme_end
,
6531 } else if (VME_OBJECT(entry
) != kernel_object
&&
6532 VME_OBJECT(entry
) != compressor_object
) {
6533 object
= VME_OBJECT(entry
);
6534 if ((map
->mapped_in_other_pmaps
) && (map
->ref_count
)) {
6535 vm_object_pmap_protect_options(
6536 object
, VME_OFFSET(entry
),
6537 entry
->vme_end
- entry
->vme_start
,
6541 PMAP_OPTIONS_REMOVE
);
6542 } else if ((VME_OBJECT(entry
) != VM_OBJECT_NULL
) ||
6543 (map
->pmap
== kernel_pmap
)) {
6544 /* Remove translations associated
6545 * with this range unless the entry
6546 * does not have an object, or
6547 * it's the kernel map or a descendant
6548 * since the platform could potentially
6549 * create "backdoor" mappings invisible
6550 * to the VM. It is expected that
6551 * objectless, non-kernel ranges
6552 * do not have such VM invisible
6555 pmap_remove_options(map
->pmap
,
6556 (addr64_t
)entry
->vme_start
,
6557 (addr64_t
)entry
->vme_end
,
6558 PMAP_OPTIONS_REMOVE
);
6562 if (entry
->iokit_acct
) {
6563 /* alternate accounting */
6564 DTRACE_VM4(vm_map_iokit_unmapped_region
,
6566 vm_map_offset_t
, entry
->vme_start
,
6567 vm_map_offset_t
, entry
->vme_end
,
6568 int, VME_ALIAS(entry
));
6569 vm_map_iokit_unmapped_region(map
,
6572 entry
->iokit_acct
= FALSE
;
6576 * All pmap mappings for this map entry must have been
6580 assert(vm_map_pmap_is_empty(map
,
6585 next
= entry
->vme_next
;
6587 if (map
->pmap
== kernel_pmap
&&
6588 map
->ref_count
!= 0 &&
6589 entry
->vme_end
< end
&&
6590 (next
== vm_map_to_entry(map
) ||
6591 next
->vme_start
!= entry
->vme_end
)) {
6592 panic("vm_map_delete(%p,0x%llx,0x%llx): "
6593 "hole after %p at 0x%llx\n",
6598 (uint64_t)entry
->vme_end
);
6601 s
= next
->vme_start
;
6602 last_timestamp
= map
->timestamp
;
6604 if ((flags
& VM_MAP_REMOVE_SAVE_ENTRIES
) &&
6605 zap_map
!= VM_MAP_NULL
) {
6606 vm_map_size_t entry_size
;
6608 * The caller wants to save the affected VM map entries
6609 * into the "zap_map". The caller will take care of
6612 /* unlink the entry from "map" ... */
6613 vm_map_store_entry_unlink(map
, entry
);
6614 /* ... and add it to the end of the "zap_map" */
6615 vm_map_store_entry_link(zap_map
,
6616 vm_map_last_entry(zap_map
),
6618 entry_size
= entry
->vme_end
- entry
->vme_start
;
6619 map
->size
-= entry_size
;
6620 zap_map
->size
+= entry_size
;
6621 /* we didn't unlock the map, so no timestamp increase */
6624 vm_map_entry_delete(map
, entry
);
6625 /* vm_map_entry_delete unlocks the map */
6631 if(entry
== vm_map_to_entry(map
)) {
6634 if (last_timestamp
+1 != map
->timestamp
) {
6636 * we are responsible for deleting everything
6637 * from the give space, if someone has interfered
6638 * we pick up where we left off, back fills should
6639 * be all right for anyone except map_delete and
6640 * we have to assume that the task has been fully
6641 * disabled before we get here
6643 if (!vm_map_lookup_entry(map
, s
, &entry
)){
6644 entry
= entry
->vme_next
;
6645 s
= entry
->vme_start
;
6647 SAVE_HINT_MAP_WRITE(map
, entry
->vme_prev
);
6650 * others can not only allocate behind us, we can
6651 * also see coalesce while we don't have the map lock
6653 if(entry
== vm_map_to_entry(map
)) {
6657 last_timestamp
= map
->timestamp
;
6660 if (map
->wait_for_space
)
6661 thread_wakeup((event_t
) map
);
6663 * wake up anybody waiting on entries that we have already deleted.
6666 vm_map_entry_wakeup(map
);
6668 return KERN_SUCCESS
;
6674 * Remove the given address range from the target map.
6675 * This is the exported form of vm_map_delete.
6680 vm_map_offset_t start
,
6681 vm_map_offset_t end
,
6684 kern_return_t result
;
6687 VM_MAP_RANGE_CHECK(map
, start
, end
);
6689 * For the zone_map, the kernel controls the allocation/freeing of memory.
6690 * Any free to the zone_map should be within the bounds of the map and
6691 * should free up memory. If the VM_MAP_RANGE_CHECK() silently converts a
6692 * free to the zone_map into a no-op, there is a problem and we should
6695 if ((map
== zone_map
) && (start
== end
))
6696 panic("Nothing being freed to the zone_map. start = end = %p\n", (void *)start
);
6697 result
= vm_map_delete(map
, start
, end
, flags
, VM_MAP_NULL
);
6704 * vm_map_remove_locked:
6706 * Remove the given address range from the target locked map.
6707 * This is the exported form of vm_map_delete.
6710 vm_map_remove_locked(
6712 vm_map_offset_t start
,
6713 vm_map_offset_t end
,
6716 kern_return_t result
;
6718 VM_MAP_RANGE_CHECK(map
, start
, end
);
6719 result
= vm_map_delete(map
, start
, end
, flags
, VM_MAP_NULL
);
6725 * Routine: vm_map_copy_discard
6728 * Dispose of a map copy object (returned by
6732 vm_map_copy_discard(
6735 if (copy
== VM_MAP_COPY_NULL
)
6738 switch (copy
->type
) {
6739 case VM_MAP_COPY_ENTRY_LIST
:
6740 while (vm_map_copy_first_entry(copy
) !=
6741 vm_map_copy_to_entry(copy
)) {
6742 vm_map_entry_t entry
= vm_map_copy_first_entry(copy
);
6744 vm_map_copy_entry_unlink(copy
, entry
);
6745 if (entry
->is_sub_map
) {
6746 vm_map_deallocate(VME_SUBMAP(entry
));
6748 vm_object_deallocate(VME_OBJECT(entry
));
6750 vm_map_copy_entry_dispose(copy
, entry
);
6753 case VM_MAP_COPY_OBJECT
:
6754 vm_object_deallocate(copy
->cpy_object
);
6756 case VM_MAP_COPY_KERNEL_BUFFER
:
6759 * The vm_map_copy_t and possibly the data buffer were
6760 * allocated by a single call to kalloc(), i.e. the
6761 * vm_map_copy_t was not allocated out of the zone.
6763 if (copy
->size
> msg_ool_size_small
|| copy
->offset
)
6764 panic("Invalid vm_map_copy_t sz:%lld, ofst:%lld",
6765 (long long)copy
->size
, (long long)copy
->offset
);
6766 kfree(copy
, copy
->size
+ cpy_kdata_hdr_sz
);
6769 zfree(vm_map_copy_zone
, copy
);
6773 * Routine: vm_map_copy_copy
6776 * Move the information in a map copy object to
6777 * a new map copy object, leaving the old one
6780 * This is used by kernel routines that need
6781 * to look at out-of-line data (in copyin form)
6782 * before deciding whether to return SUCCESS.
6783 * If the routine returns FAILURE, the original
6784 * copy object will be deallocated; therefore,
6785 * these routines must make a copy of the copy
6786 * object and leave the original empty so that
6787 * deallocation will not fail.
6793 vm_map_copy_t new_copy
;
6795 if (copy
== VM_MAP_COPY_NULL
)
6796 return VM_MAP_COPY_NULL
;
6799 * Allocate a new copy object, and copy the information
6800 * from the old one into it.
6803 new_copy
= (vm_map_copy_t
) zalloc(vm_map_copy_zone
);
6804 new_copy
->c_u
.hdr
.rb_head_store
.rbh_root
= (void*)(int)SKIP_RB_TREE
;
6807 if (copy
->type
== VM_MAP_COPY_ENTRY_LIST
) {
6809 * The links in the entry chain must be
6810 * changed to point to the new copy object.
6812 vm_map_copy_first_entry(copy
)->vme_prev
6813 = vm_map_copy_to_entry(new_copy
);
6814 vm_map_copy_last_entry(copy
)->vme_next
6815 = vm_map_copy_to_entry(new_copy
);
6819 * Change the old copy object into one that contains
6820 * nothing to be deallocated.
6822 copy
->type
= VM_MAP_COPY_OBJECT
;
6823 copy
->cpy_object
= VM_OBJECT_NULL
;
6826 * Return the new object.
6831 static kern_return_t
6832 vm_map_overwrite_submap_recurse(
6834 vm_map_offset_t dst_addr
,
6835 vm_map_size_t dst_size
)
6837 vm_map_offset_t dst_end
;
6838 vm_map_entry_t tmp_entry
;
6839 vm_map_entry_t entry
;
6840 kern_return_t result
;
6841 boolean_t encountered_sub_map
= FALSE
;
6846 * Verify that the destination is all writeable
6847 * initially. We have to trunc the destination
6848 * address and round the copy size or we'll end up
6849 * splitting entries in strange ways.
6852 dst_end
= vm_map_round_page(dst_addr
+ dst_size
,
6853 VM_MAP_PAGE_MASK(dst_map
));
6854 vm_map_lock(dst_map
);
6857 if (!vm_map_lookup_entry(dst_map
, dst_addr
, &tmp_entry
)) {
6858 vm_map_unlock(dst_map
);
6859 return(KERN_INVALID_ADDRESS
);
6862 vm_map_clip_start(dst_map
,
6864 vm_map_trunc_page(dst_addr
,
6865 VM_MAP_PAGE_MASK(dst_map
)));
6866 if (tmp_entry
->is_sub_map
) {
6867 /* clipping did unnest if needed */
6868 assert(!tmp_entry
->use_pmap
);
6871 for (entry
= tmp_entry
;;) {
6872 vm_map_entry_t next
;
6874 next
= entry
->vme_next
;
6875 while(entry
->is_sub_map
) {
6876 vm_map_offset_t sub_start
;
6877 vm_map_offset_t sub_end
;
6878 vm_map_offset_t local_end
;
6880 if (entry
->in_transition
) {
6882 * Say that we are waiting, and wait for entry.
6884 entry
->needs_wakeup
= TRUE
;
6885 vm_map_entry_wait(dst_map
, THREAD_UNINT
);
6890 encountered_sub_map
= TRUE
;
6891 sub_start
= VME_OFFSET(entry
);
6893 if(entry
->vme_end
< dst_end
)
6894 sub_end
= entry
->vme_end
;
6897 sub_end
-= entry
->vme_start
;
6898 sub_end
+= VME_OFFSET(entry
);
6899 local_end
= entry
->vme_end
;
6900 vm_map_unlock(dst_map
);
6902 result
= vm_map_overwrite_submap_recurse(
6905 sub_end
- sub_start
);
6907 if(result
!= KERN_SUCCESS
)
6909 if (dst_end
<= entry
->vme_end
)
6910 return KERN_SUCCESS
;
6911 vm_map_lock(dst_map
);
6912 if(!vm_map_lookup_entry(dst_map
, local_end
,
6914 vm_map_unlock(dst_map
);
6915 return(KERN_INVALID_ADDRESS
);
6918 next
= entry
->vme_next
;
6921 if ( ! (entry
->protection
& VM_PROT_WRITE
)) {
6922 vm_map_unlock(dst_map
);
6923 return(KERN_PROTECTION_FAILURE
);
6927 * If the entry is in transition, we must wait
6928 * for it to exit that state. Anything could happen
6929 * when we unlock the map, so start over.
6931 if (entry
->in_transition
) {
6934 * Say that we are waiting, and wait for entry.
6936 entry
->needs_wakeup
= TRUE
;
6937 vm_map_entry_wait(dst_map
, THREAD_UNINT
);
6943 * our range is contained completely within this map entry
6945 if (dst_end
<= entry
->vme_end
) {
6946 vm_map_unlock(dst_map
);
6947 return KERN_SUCCESS
;
6950 * check that range specified is contiguous region
6952 if ((next
== vm_map_to_entry(dst_map
)) ||
6953 (next
->vme_start
!= entry
->vme_end
)) {
6954 vm_map_unlock(dst_map
);
6955 return(KERN_INVALID_ADDRESS
);
6959 * Check for permanent objects in the destination.
6961 if ((VME_OBJECT(entry
) != VM_OBJECT_NULL
) &&
6962 ((!VME_OBJECT(entry
)->internal
) ||
6963 (VME_OBJECT(entry
)->true_share
))) {
6964 if(encountered_sub_map
) {
6965 vm_map_unlock(dst_map
);
6966 return(KERN_FAILURE
);
6973 vm_map_unlock(dst_map
);
6974 return(KERN_SUCCESS
);
6978 * Routine: vm_map_copy_overwrite
6981 * Copy the memory described by the map copy
6982 * object (copy; returned by vm_map_copyin) onto
6983 * the specified destination region (dst_map, dst_addr).
6984 * The destination must be writeable.
6986 * Unlike vm_map_copyout, this routine actually
6987 * writes over previously-mapped memory. If the
6988 * previous mapping was to a permanent (user-supplied)
6989 * memory object, it is preserved.
6991 * The attributes (protection and inheritance) of the
6992 * destination region are preserved.
6994 * If successful, consumes the copy object.
6995 * Otherwise, the caller is responsible for it.
6997 * Implementation notes:
6998 * To overwrite aligned temporary virtual memory, it is
6999 * sufficient to remove the previous mapping and insert
7000 * the new copy. This replacement is done either on
7001 * the whole region (if no permanent virtual memory
7002 * objects are embedded in the destination region) or
7003 * in individual map entries.
7005 * To overwrite permanent virtual memory , it is necessary
7006 * to copy each page, as the external memory management
7007 * interface currently does not provide any optimizations.
7009 * Unaligned memory also has to be copied. It is possible
7010 * to use 'vm_trickery' to copy the aligned data. This is
7011 * not done but not hard to implement.
7013 * Once a page of permanent memory has been overwritten,
7014 * it is impossible to interrupt this function; otherwise,
7015 * the call would be neither atomic nor location-independent.
7016 * The kernel-state portion of a user thread must be
7019 * It may be expensive to forward all requests that might
7020 * overwrite permanent memory (vm_write, vm_copy) to
7021 * uninterruptible kernel threads. This routine may be
7022 * called by interruptible threads; however, success is
7023 * not guaranteed -- if the request cannot be performed
7024 * atomically and interruptibly, an error indication is
7028 static kern_return_t
7029 vm_map_copy_overwrite_nested(
7031 vm_map_address_t dst_addr
,
7033 boolean_t interruptible
,
7035 boolean_t discard_on_success
)
7037 vm_map_offset_t dst_end
;
7038 vm_map_entry_t tmp_entry
;
7039 vm_map_entry_t entry
;
7041 boolean_t aligned
= TRUE
;
7042 boolean_t contains_permanent_objects
= FALSE
;
7043 boolean_t encountered_sub_map
= FALSE
;
7044 vm_map_offset_t base_addr
;
7045 vm_map_size_t copy_size
;
7046 vm_map_size_t total_size
;
7050 * Check for null copy object.
7053 if (copy
== VM_MAP_COPY_NULL
)
7054 return(KERN_SUCCESS
);
7057 * Check for special kernel buffer allocated
7058 * by new_ipc_kmsg_copyin.
7061 if (copy
->type
== VM_MAP_COPY_KERNEL_BUFFER
) {
7062 return(vm_map_copyout_kernel_buffer(
7064 copy
, copy
->size
, TRUE
, discard_on_success
));
7068 * Only works for entry lists at the moment. Will
7069 * support page lists later.
7072 assert(copy
->type
== VM_MAP_COPY_ENTRY_LIST
);
7074 if (copy
->size
== 0) {
7075 if (discard_on_success
)
7076 vm_map_copy_discard(copy
);
7077 return(KERN_SUCCESS
);
7081 * Verify that the destination is all writeable
7082 * initially. We have to trunc the destination
7083 * address and round the copy size or we'll end up
7084 * splitting entries in strange ways.
7087 if (!VM_MAP_PAGE_ALIGNED(copy
->size
,
7088 VM_MAP_PAGE_MASK(dst_map
)) ||
7089 !VM_MAP_PAGE_ALIGNED(copy
->offset
,
7090 VM_MAP_PAGE_MASK(dst_map
)) ||
7091 !VM_MAP_PAGE_ALIGNED(dst_addr
,
7092 VM_MAP_PAGE_MASK(dst_map
)))
7095 dst_end
= vm_map_round_page(dst_addr
+ copy
->size
,
7096 VM_MAP_PAGE_MASK(dst_map
));
7098 dst_end
= dst_addr
+ copy
->size
;
7101 vm_map_lock(dst_map
);
7103 /* LP64todo - remove this check when vm_map_commpage64()
7104 * no longer has to stuff in a map_entry for the commpage
7105 * above the map's max_offset.
7107 if (dst_addr
>= dst_map
->max_offset
) {
7108 vm_map_unlock(dst_map
);
7109 return(KERN_INVALID_ADDRESS
);
7113 if (!vm_map_lookup_entry(dst_map
, dst_addr
, &tmp_entry
)) {
7114 vm_map_unlock(dst_map
);
7115 return(KERN_INVALID_ADDRESS
);
7117 vm_map_clip_start(dst_map
,
7119 vm_map_trunc_page(dst_addr
,
7120 VM_MAP_PAGE_MASK(dst_map
)));
7121 for (entry
= tmp_entry
;;) {
7122 vm_map_entry_t next
= entry
->vme_next
;
7124 while(entry
->is_sub_map
) {
7125 vm_map_offset_t sub_start
;
7126 vm_map_offset_t sub_end
;
7127 vm_map_offset_t local_end
;
7129 if (entry
->in_transition
) {
7132 * Say that we are waiting, and wait for entry.
7134 entry
->needs_wakeup
= TRUE
;
7135 vm_map_entry_wait(dst_map
, THREAD_UNINT
);
7140 local_end
= entry
->vme_end
;
7141 if (!(entry
->needs_copy
)) {
7142 /* if needs_copy we are a COW submap */
7143 /* in such a case we just replace so */
7144 /* there is no need for the follow- */
7146 encountered_sub_map
= TRUE
;
7147 sub_start
= VME_OFFSET(entry
);
7149 if(entry
->vme_end
< dst_end
)
7150 sub_end
= entry
->vme_end
;
7153 sub_end
-= entry
->vme_start
;
7154 sub_end
+= VME_OFFSET(entry
);
7155 vm_map_unlock(dst_map
);
7157 kr
= vm_map_overwrite_submap_recurse(
7160 sub_end
- sub_start
);
7161 if(kr
!= KERN_SUCCESS
)
7163 vm_map_lock(dst_map
);
7166 if (dst_end
<= entry
->vme_end
)
7167 goto start_overwrite
;
7168 if(!vm_map_lookup_entry(dst_map
, local_end
,
7170 vm_map_unlock(dst_map
);
7171 return(KERN_INVALID_ADDRESS
);
7173 next
= entry
->vme_next
;
7176 if ( ! (entry
->protection
& VM_PROT_WRITE
)) {
7177 vm_map_unlock(dst_map
);
7178 return(KERN_PROTECTION_FAILURE
);
7182 * If the entry is in transition, we must wait
7183 * for it to exit that state. Anything could happen
7184 * when we unlock the map, so start over.
7186 if (entry
->in_transition
) {
7189 * Say that we are waiting, and wait for entry.
7191 entry
->needs_wakeup
= TRUE
;
7192 vm_map_entry_wait(dst_map
, THREAD_UNINT
);
7198 * our range is contained completely within this map entry
7200 if (dst_end
<= entry
->vme_end
)
7203 * check that range specified is contiguous region
7205 if ((next
== vm_map_to_entry(dst_map
)) ||
7206 (next
->vme_start
!= entry
->vme_end
)) {
7207 vm_map_unlock(dst_map
);
7208 return(KERN_INVALID_ADDRESS
);
7213 * Check for permanent objects in the destination.
7215 if ((VME_OBJECT(entry
) != VM_OBJECT_NULL
) &&
7216 ((!VME_OBJECT(entry
)->internal
) ||
7217 (VME_OBJECT(entry
)->true_share
))) {
7218 contains_permanent_objects
= TRUE
;
7226 * If there are permanent objects in the destination, then
7227 * the copy cannot be interrupted.
7230 if (interruptible
&& contains_permanent_objects
) {
7231 vm_map_unlock(dst_map
);
7232 return(KERN_FAILURE
); /* XXX */
7237 * Make a second pass, overwriting the data
7238 * At the beginning of each loop iteration,
7239 * the next entry to be overwritten is "tmp_entry"
7240 * (initially, the value returned from the lookup above),
7241 * and the starting address expected in that entry
7245 total_size
= copy
->size
;
7246 if(encountered_sub_map
) {
7248 /* re-calculate tmp_entry since we've had the map */
7250 if (!vm_map_lookup_entry( dst_map
, dst_addr
, &tmp_entry
)) {
7251 vm_map_unlock(dst_map
);
7252 return(KERN_INVALID_ADDRESS
);
7255 copy_size
= copy
->size
;
7258 base_addr
= dst_addr
;
7260 /* deconstruct the copy object and do in parts */
7261 /* only in sub_map, interruptable case */
7262 vm_map_entry_t copy_entry
;
7263 vm_map_entry_t previous_prev
= VM_MAP_ENTRY_NULL
;
7264 vm_map_entry_t next_copy
= VM_MAP_ENTRY_NULL
;
7266 int remaining_entries
= 0;
7267 vm_map_offset_t new_offset
= 0;
7269 for (entry
= tmp_entry
; copy_size
== 0;) {
7270 vm_map_entry_t next
;
7272 next
= entry
->vme_next
;
7274 /* tmp_entry and base address are moved along */
7275 /* each time we encounter a sub-map. Otherwise */
7276 /* entry can outpase tmp_entry, and the copy_size */
7277 /* may reflect the distance between them */
7278 /* if the current entry is found to be in transition */
7279 /* we will start over at the beginning or the last */
7280 /* encounter of a submap as dictated by base_addr */
7281 /* we will zero copy_size accordingly. */
7282 if (entry
->in_transition
) {
7284 * Say that we are waiting, and wait for entry.
7286 entry
->needs_wakeup
= TRUE
;
7287 vm_map_entry_wait(dst_map
, THREAD_UNINT
);
7289 if(!vm_map_lookup_entry(dst_map
, base_addr
,
7291 vm_map_unlock(dst_map
);
7292 return(KERN_INVALID_ADDRESS
);
7298 if(entry
->is_sub_map
) {
7299 vm_map_offset_t sub_start
;
7300 vm_map_offset_t sub_end
;
7301 vm_map_offset_t local_end
;
7303 if (entry
->needs_copy
) {
7304 /* if this is a COW submap */
7305 /* just back the range with a */
7306 /* anonymous entry */
7307 if(entry
->vme_end
< dst_end
)
7308 sub_end
= entry
->vme_end
;
7311 if(entry
->vme_start
< base_addr
)
7312 sub_start
= base_addr
;
7314 sub_start
= entry
->vme_start
;
7316 dst_map
, entry
, sub_end
);
7318 dst_map
, entry
, sub_start
);
7319 assert(!entry
->use_pmap
);
7320 entry
->is_sub_map
= FALSE
;
7323 VME_SUBMAP_SET(entry
, NULL
);
7324 entry
->is_shared
= FALSE
;
7325 entry
->needs_copy
= FALSE
;
7326 VME_OFFSET_SET(entry
, 0);
7329 * We should propagate the protections
7330 * of the submap entry here instead
7331 * of forcing them to VM_PROT_ALL...
7332 * Or better yet, we should inherit
7333 * the protection of the copy_entry.
7335 entry
->protection
= VM_PROT_ALL
;
7336 entry
->max_protection
= VM_PROT_ALL
;
7337 entry
->wired_count
= 0;
7338 entry
->user_wired_count
= 0;
7339 if(entry
->inheritance
7340 == VM_INHERIT_SHARE
)
7341 entry
->inheritance
= VM_INHERIT_COPY
;
7344 /* first take care of any non-sub_map */
7345 /* entries to send */
7346 if(base_addr
< entry
->vme_start
) {
7349 entry
->vme_start
- base_addr
;
7352 sub_start
= VME_OFFSET(entry
);
7354 if(entry
->vme_end
< dst_end
)
7355 sub_end
= entry
->vme_end
;
7358 sub_end
-= entry
->vme_start
;
7359 sub_end
+= VME_OFFSET(entry
);
7360 local_end
= entry
->vme_end
;
7361 vm_map_unlock(dst_map
);
7362 copy_size
= sub_end
- sub_start
;
7364 /* adjust the copy object */
7365 if (total_size
> copy_size
) {
7366 vm_map_size_t local_size
= 0;
7367 vm_map_size_t entry_size
;
7370 new_offset
= copy
->offset
;
7371 copy_entry
= vm_map_copy_first_entry(copy
);
7373 vm_map_copy_to_entry(copy
)){
7374 entry_size
= copy_entry
->vme_end
-
7375 copy_entry
->vme_start
;
7376 if((local_size
< copy_size
) &&
7377 ((local_size
+ entry_size
)
7379 vm_map_copy_clip_end(copy
,
7381 copy_entry
->vme_start
+
7382 (copy_size
- local_size
));
7383 entry_size
= copy_entry
->vme_end
-
7384 copy_entry
->vme_start
;
7385 local_size
+= entry_size
;
7386 new_offset
+= entry_size
;
7388 if(local_size
>= copy_size
) {
7389 next_copy
= copy_entry
->vme_next
;
7390 copy_entry
->vme_next
=
7391 vm_map_copy_to_entry(copy
);
7393 copy
->cpy_hdr
.links
.prev
;
7394 copy
->cpy_hdr
.links
.prev
= copy_entry
;
7395 copy
->size
= copy_size
;
7397 copy
->cpy_hdr
.nentries
;
7398 remaining_entries
-= nentries
;
7399 copy
->cpy_hdr
.nentries
= nentries
;
7402 local_size
+= entry_size
;
7403 new_offset
+= entry_size
;
7406 copy_entry
= copy_entry
->vme_next
;
7410 if((entry
->use_pmap
) && (pmap
== NULL
)) {
7411 kr
= vm_map_copy_overwrite_nested(
7416 VME_SUBMAP(entry
)->pmap
,
7418 } else if (pmap
!= NULL
) {
7419 kr
= vm_map_copy_overwrite_nested(
7423 interruptible
, pmap
,
7426 kr
= vm_map_copy_overwrite_nested(
7434 if(kr
!= KERN_SUCCESS
) {
7435 if(next_copy
!= NULL
) {
7436 copy
->cpy_hdr
.nentries
+=
7438 copy
->cpy_hdr
.links
.prev
->vme_next
=
7440 copy
->cpy_hdr
.links
.prev
7442 copy
->size
= total_size
;
7446 if (dst_end
<= local_end
) {
7447 return(KERN_SUCCESS
);
7449 /* otherwise copy no longer exists, it was */
7450 /* destroyed after successful copy_overwrite */
7451 copy
= (vm_map_copy_t
)
7452 zalloc(vm_map_copy_zone
);
7453 copy
->c_u
.hdr
.rb_head_store
.rbh_root
= (void*)(int)SKIP_RB_TREE
;
7454 vm_map_copy_first_entry(copy
) =
7455 vm_map_copy_last_entry(copy
) =
7456 vm_map_copy_to_entry(copy
);
7457 copy
->type
= VM_MAP_COPY_ENTRY_LIST
;
7458 copy
->offset
= new_offset
;
7462 * this does not seem to deal with
7463 * the VM map store (R&B tree)
7466 total_size
-= copy_size
;
7468 /* put back remainder of copy in container */
7469 if(next_copy
!= NULL
) {
7470 copy
->cpy_hdr
.nentries
= remaining_entries
;
7471 copy
->cpy_hdr
.links
.next
= next_copy
;
7472 copy
->cpy_hdr
.links
.prev
= previous_prev
;
7473 copy
->size
= total_size
;
7474 next_copy
->vme_prev
=
7475 vm_map_copy_to_entry(copy
);
7478 base_addr
= local_end
;
7479 vm_map_lock(dst_map
);
7480 if(!vm_map_lookup_entry(dst_map
,
7481 local_end
, &tmp_entry
)) {
7482 vm_map_unlock(dst_map
);
7483 return(KERN_INVALID_ADDRESS
);
7488 if (dst_end
<= entry
->vme_end
) {
7489 copy_size
= dst_end
- base_addr
;
7493 if ((next
== vm_map_to_entry(dst_map
)) ||
7494 (next
->vme_start
!= entry
->vme_end
)) {
7495 vm_map_unlock(dst_map
);
7496 return(KERN_INVALID_ADDRESS
);
7505 /* adjust the copy object */
7506 if (total_size
> copy_size
) {
7507 vm_map_size_t local_size
= 0;
7508 vm_map_size_t entry_size
;
7510 new_offset
= copy
->offset
;
7511 copy_entry
= vm_map_copy_first_entry(copy
);
7512 while(copy_entry
!= vm_map_copy_to_entry(copy
)) {
7513 entry_size
= copy_entry
->vme_end
-
7514 copy_entry
->vme_start
;
7515 if((local_size
< copy_size
) &&
7516 ((local_size
+ entry_size
)
7518 vm_map_copy_clip_end(copy
, copy_entry
,
7519 copy_entry
->vme_start
+
7520 (copy_size
- local_size
));
7521 entry_size
= copy_entry
->vme_end
-
7522 copy_entry
->vme_start
;
7523 local_size
+= entry_size
;
7524 new_offset
+= entry_size
;
7526 if(local_size
>= copy_size
) {
7527 next_copy
= copy_entry
->vme_next
;
7528 copy_entry
->vme_next
=
7529 vm_map_copy_to_entry(copy
);
7531 copy
->cpy_hdr
.links
.prev
;
7532 copy
->cpy_hdr
.links
.prev
= copy_entry
;
7533 copy
->size
= copy_size
;
7535 copy
->cpy_hdr
.nentries
;
7536 remaining_entries
-= nentries
;
7537 copy
->cpy_hdr
.nentries
= nentries
;
7540 local_size
+= entry_size
;
7541 new_offset
+= entry_size
;
7544 copy_entry
= copy_entry
->vme_next
;
7554 local_pmap
= dst_map
->pmap
;
7556 if ((kr
= vm_map_copy_overwrite_aligned(
7557 dst_map
, tmp_entry
, copy
,
7558 base_addr
, local_pmap
)) != KERN_SUCCESS
) {
7559 if(next_copy
!= NULL
) {
7560 copy
->cpy_hdr
.nentries
+=
7562 copy
->cpy_hdr
.links
.prev
->vme_next
=
7564 copy
->cpy_hdr
.links
.prev
=
7566 copy
->size
+= copy_size
;
7570 vm_map_unlock(dst_map
);
7575 * if the copy and dst address are misaligned but the same
7576 * offset within the page we can copy_not_aligned the
7577 * misaligned parts and copy aligned the rest. If they are
7578 * aligned but len is unaligned we simply need to copy
7579 * the end bit unaligned. We'll need to split the misaligned
7580 * bits of the region in this case !
7582 /* ALWAYS UNLOCKS THE dst_map MAP */
7583 kr
= vm_map_copy_overwrite_unaligned(
7588 discard_on_success
);
7589 if (kr
!= KERN_SUCCESS
) {
7590 if(next_copy
!= NULL
) {
7591 copy
->cpy_hdr
.nentries
+=
7593 copy
->cpy_hdr
.links
.prev
->vme_next
=
7595 copy
->cpy_hdr
.links
.prev
=
7597 copy
->size
+= copy_size
;
7602 total_size
-= copy_size
;
7605 base_addr
+= copy_size
;
7607 copy
->offset
= new_offset
;
7608 if(next_copy
!= NULL
) {
7609 copy
->cpy_hdr
.nentries
= remaining_entries
;
7610 copy
->cpy_hdr
.links
.next
= next_copy
;
7611 copy
->cpy_hdr
.links
.prev
= previous_prev
;
7612 next_copy
->vme_prev
= vm_map_copy_to_entry(copy
);
7613 copy
->size
= total_size
;
7615 vm_map_lock(dst_map
);
7617 if (!vm_map_lookup_entry(dst_map
,
7618 base_addr
, &tmp_entry
)) {
7619 vm_map_unlock(dst_map
);
7620 return(KERN_INVALID_ADDRESS
);
7622 if (tmp_entry
->in_transition
) {
7623 entry
->needs_wakeup
= TRUE
;
7624 vm_map_entry_wait(dst_map
, THREAD_UNINT
);
7629 vm_map_clip_start(dst_map
,
7631 vm_map_trunc_page(base_addr
,
7632 VM_MAP_PAGE_MASK(dst_map
)));
7638 * Throw away the vm_map_copy object
7640 if (discard_on_success
)
7641 vm_map_copy_discard(copy
);
7643 return(KERN_SUCCESS
);
7644 }/* vm_map_copy_overwrite */
7647 vm_map_copy_overwrite(
7649 vm_map_offset_t dst_addr
,
7651 boolean_t interruptible
)
7653 vm_map_size_t head_size
, tail_size
;
7654 vm_map_copy_t head_copy
, tail_copy
;
7655 vm_map_offset_t head_addr
, tail_addr
;
7656 vm_map_entry_t entry
;
7666 if (interruptible
||
7667 copy
== VM_MAP_COPY_NULL
||
7668 copy
->type
!= VM_MAP_COPY_ENTRY_LIST
) {
7670 * We can't split the "copy" map if we're interruptible
7671 * or if we don't have a "copy" map...
7674 return vm_map_copy_overwrite_nested(dst_map
,
7682 if (copy
->size
< 3 * PAGE_SIZE
) {
7684 * Too small to bother with optimizing...
7689 if ((dst_addr
& VM_MAP_PAGE_MASK(dst_map
)) !=
7690 (copy
->offset
& VM_MAP_PAGE_MASK(dst_map
))) {
7692 * Incompatible mis-alignment of source and destination...
7698 * Proper alignment or identical mis-alignment at the beginning.
7699 * Let's try and do a small unaligned copy first (if needed)
7700 * and then an aligned copy for the rest.
7702 if (!page_aligned(dst_addr
)) {
7703 head_addr
= dst_addr
;
7704 head_size
= (VM_MAP_PAGE_SIZE(dst_map
) -
7705 (copy
->offset
& VM_MAP_PAGE_MASK(dst_map
)));
7707 if (!page_aligned(copy
->offset
+ copy
->size
)) {
7709 * Mis-alignment at the end.
7710 * Do an aligned copy up to the last page and
7711 * then an unaligned copy for the remaining bytes.
7713 tail_size
= ((copy
->offset
+ copy
->size
) &
7714 VM_MAP_PAGE_MASK(dst_map
));
7715 tail_addr
= dst_addr
+ copy
->size
- tail_size
;
7718 if (head_size
+ tail_size
== copy
->size
) {
7720 * It's all unaligned, no optimization possible...
7726 * Can't optimize if there are any submaps in the
7727 * destination due to the way we free the "copy" map
7728 * progressively in vm_map_copy_overwrite_nested()
7731 vm_map_lock_read(dst_map
);
7732 if (! vm_map_lookup_entry(dst_map
, dst_addr
, &entry
)) {
7733 vm_map_unlock_read(dst_map
);
7737 (entry
!= vm_map_copy_to_entry(copy
) &&
7738 entry
->vme_start
< dst_addr
+ copy
->size
);
7739 entry
= entry
->vme_next
) {
7740 if (entry
->is_sub_map
) {
7741 vm_map_unlock_read(dst_map
);
7745 vm_map_unlock_read(dst_map
);
7749 * Unaligned copy of the first "head_size" bytes, to reach
7754 * Extract "head_copy" out of "copy".
7756 head_copy
= (vm_map_copy_t
) zalloc(vm_map_copy_zone
);
7757 head_copy
->c_u
.hdr
.rb_head_store
.rbh_root
= (void*)(int)SKIP_RB_TREE
;
7758 vm_map_copy_first_entry(head_copy
) =
7759 vm_map_copy_to_entry(head_copy
);
7760 vm_map_copy_last_entry(head_copy
) =
7761 vm_map_copy_to_entry(head_copy
);
7762 head_copy
->type
= VM_MAP_COPY_ENTRY_LIST
;
7763 head_copy
->cpy_hdr
.nentries
= 0;
7764 head_copy
->cpy_hdr
.entries_pageable
=
7765 copy
->cpy_hdr
.entries_pageable
;
7766 vm_map_store_init(&head_copy
->cpy_hdr
);
7768 head_copy
->offset
= copy
->offset
;
7769 head_copy
->size
= head_size
;
7771 copy
->offset
+= head_size
;
7772 copy
->size
-= head_size
;
7774 entry
= vm_map_copy_first_entry(copy
);
7775 vm_map_copy_clip_end(copy
, entry
, copy
->offset
);
7776 vm_map_copy_entry_unlink(copy
, entry
);
7777 vm_map_copy_entry_link(head_copy
,
7778 vm_map_copy_to_entry(head_copy
),
7782 * Do the unaligned copy.
7784 kr
= vm_map_copy_overwrite_nested(dst_map
,
7790 if (kr
!= KERN_SUCCESS
)
7796 * Extract "tail_copy" out of "copy".
7798 tail_copy
= (vm_map_copy_t
) zalloc(vm_map_copy_zone
);
7799 tail_copy
->c_u
.hdr
.rb_head_store
.rbh_root
= (void*)(int)SKIP_RB_TREE
;
7800 vm_map_copy_first_entry(tail_copy
) =
7801 vm_map_copy_to_entry(tail_copy
);
7802 vm_map_copy_last_entry(tail_copy
) =
7803 vm_map_copy_to_entry(tail_copy
);
7804 tail_copy
->type
= VM_MAP_COPY_ENTRY_LIST
;
7805 tail_copy
->cpy_hdr
.nentries
= 0;
7806 tail_copy
->cpy_hdr
.entries_pageable
=
7807 copy
->cpy_hdr
.entries_pageable
;
7808 vm_map_store_init(&tail_copy
->cpy_hdr
);
7810 tail_copy
->offset
= copy
->offset
+ copy
->size
- tail_size
;
7811 tail_copy
->size
= tail_size
;
7813 copy
->size
-= tail_size
;
7815 entry
= vm_map_copy_last_entry(copy
);
7816 vm_map_copy_clip_start(copy
, entry
, tail_copy
->offset
);
7817 entry
= vm_map_copy_last_entry(copy
);
7818 vm_map_copy_entry_unlink(copy
, entry
);
7819 vm_map_copy_entry_link(tail_copy
,
7820 vm_map_copy_last_entry(tail_copy
),
7825 * Copy most (or possibly all) of the data.
7827 kr
= vm_map_copy_overwrite_nested(dst_map
,
7828 dst_addr
+ head_size
,
7833 if (kr
!= KERN_SUCCESS
) {
7838 kr
= vm_map_copy_overwrite_nested(dst_map
,
7847 assert(copy
->type
== VM_MAP_COPY_ENTRY_LIST
);
7848 if (kr
== KERN_SUCCESS
) {
7850 * Discard all the copy maps.
7853 vm_map_copy_discard(head_copy
);
7856 vm_map_copy_discard(copy
);
7858 vm_map_copy_discard(tail_copy
);
7863 * Re-assemble the original copy map.
7866 entry
= vm_map_copy_first_entry(head_copy
);
7867 vm_map_copy_entry_unlink(head_copy
, entry
);
7868 vm_map_copy_entry_link(copy
,
7869 vm_map_copy_to_entry(copy
),
7871 copy
->offset
-= head_size
;
7872 copy
->size
+= head_size
;
7873 vm_map_copy_discard(head_copy
);
7877 entry
= vm_map_copy_last_entry(tail_copy
);
7878 vm_map_copy_entry_unlink(tail_copy
, entry
);
7879 vm_map_copy_entry_link(copy
,
7880 vm_map_copy_last_entry(copy
),
7882 copy
->size
+= tail_size
;
7883 vm_map_copy_discard(tail_copy
);
7892 * Routine: vm_map_copy_overwrite_unaligned [internal use only]
7895 * Physically copy unaligned data
7898 * Unaligned parts of pages have to be physically copied. We use
7899 * a modified form of vm_fault_copy (which understands none-aligned
7900 * page offsets and sizes) to do the copy. We attempt to copy as
7901 * much memory in one go as possibly, however vm_fault_copy copies
7902 * within 1 memory object so we have to find the smaller of "amount left"
7903 * "source object data size" and "target object data size". With
7904 * unaligned data we don't need to split regions, therefore the source
7905 * (copy) object should be one map entry, the target range may be split
7906 * over multiple map entries however. In any event we are pessimistic
7907 * about these assumptions.
7910 * dst_map is locked on entry and is return locked on success,
7911 * unlocked on error.
7914 static kern_return_t
7915 vm_map_copy_overwrite_unaligned(
7917 vm_map_entry_t entry
,
7919 vm_map_offset_t start
,
7920 boolean_t discard_on_success
)
7922 vm_map_entry_t copy_entry
;
7923 vm_map_entry_t copy_entry_next
;
7924 vm_map_version_t version
;
7925 vm_object_t dst_object
;
7926 vm_object_offset_t dst_offset
;
7927 vm_object_offset_t src_offset
;
7928 vm_object_offset_t entry_offset
;
7929 vm_map_offset_t entry_end
;
7930 vm_map_size_t src_size
,
7934 kern_return_t kr
= KERN_SUCCESS
;
7937 copy_entry
= vm_map_copy_first_entry(copy
);
7939 vm_map_lock_write_to_read(dst_map
);
7941 src_offset
= copy
->offset
- vm_object_trunc_page(copy
->offset
);
7942 amount_left
= copy
->size
;
7944 * unaligned so we never clipped this entry, we need the offset into
7945 * the vm_object not just the data.
7947 while (amount_left
> 0) {
7949 if (entry
== vm_map_to_entry(dst_map
)) {
7950 vm_map_unlock_read(dst_map
);
7951 return KERN_INVALID_ADDRESS
;
7954 /* "start" must be within the current map entry */
7955 assert ((start
>=entry
->vme_start
) && (start
<entry
->vme_end
));
7957 dst_offset
= start
- entry
->vme_start
;
7959 dst_size
= entry
->vme_end
- start
;
7961 src_size
= copy_entry
->vme_end
-
7962 (copy_entry
->vme_start
+ src_offset
);
7964 if (dst_size
< src_size
) {
7966 * we can only copy dst_size bytes before
7967 * we have to get the next destination entry
7969 copy_size
= dst_size
;
7972 * we can only copy src_size bytes before
7973 * we have to get the next source copy entry
7975 copy_size
= src_size
;
7978 if (copy_size
> amount_left
) {
7979 copy_size
= amount_left
;
7982 * Entry needs copy, create a shadow shadow object for
7983 * Copy on write region.
7985 if (entry
->needs_copy
&&
7986 ((entry
->protection
& VM_PROT_WRITE
) != 0))
7988 if (vm_map_lock_read_to_write(dst_map
)) {
7989 vm_map_lock_read(dst_map
);
7992 VME_OBJECT_SHADOW(entry
,
7993 (vm_map_size_t
)(entry
->vme_end
7994 - entry
->vme_start
));
7995 entry
->needs_copy
= FALSE
;
7996 vm_map_lock_write_to_read(dst_map
);
7998 dst_object
= VME_OBJECT(entry
);
8000 * unlike with the virtual (aligned) copy we're going
8001 * to fault on it therefore we need a target object.
8003 if (dst_object
== VM_OBJECT_NULL
) {
8004 if (vm_map_lock_read_to_write(dst_map
)) {
8005 vm_map_lock_read(dst_map
);
8008 dst_object
= vm_object_allocate((vm_map_size_t
)
8009 entry
->vme_end
- entry
->vme_start
);
8010 VME_OBJECT(entry
) = dst_object
;
8011 VME_OFFSET_SET(entry
, 0);
8012 assert(entry
->use_pmap
);
8013 vm_map_lock_write_to_read(dst_map
);
8016 * Take an object reference and unlock map. The "entry" may
8017 * disappear or change when the map is unlocked.
8019 vm_object_reference(dst_object
);
8020 version
.main_timestamp
= dst_map
->timestamp
;
8021 entry_offset
= VME_OFFSET(entry
);
8022 entry_end
= entry
->vme_end
;
8023 vm_map_unlock_read(dst_map
);
8025 * Copy as much as possible in one pass
8028 VME_OBJECT(copy_entry
),
8029 VME_OFFSET(copy_entry
) + src_offset
,
8032 entry_offset
+ dst_offset
,
8038 src_offset
+= copy_size
;
8039 amount_left
-= copy_size
;
8041 * Release the object reference
8043 vm_object_deallocate(dst_object
);
8045 * If a hard error occurred, return it now
8047 if (kr
!= KERN_SUCCESS
)
8050 if ((copy_entry
->vme_start
+ src_offset
) == copy_entry
->vme_end
8051 || amount_left
== 0)
8054 * all done with this copy entry, dispose.
8056 copy_entry_next
= copy_entry
->vme_next
;
8058 if (discard_on_success
) {
8059 vm_map_copy_entry_unlink(copy
, copy_entry
);
8060 assert(!copy_entry
->is_sub_map
);
8061 vm_object_deallocate(VME_OBJECT(copy_entry
));
8062 vm_map_copy_entry_dispose(copy
, copy_entry
);
8065 if (copy_entry_next
== vm_map_copy_to_entry(copy
) &&
8068 * not finished copying but run out of source
8070 return KERN_INVALID_ADDRESS
;
8073 copy_entry
= copy_entry_next
;
8078 if (amount_left
== 0)
8079 return KERN_SUCCESS
;
8081 vm_map_lock_read(dst_map
);
8082 if (version
.main_timestamp
== dst_map
->timestamp
) {
8083 if (start
== entry_end
) {
8085 * destination region is split. Use the version
8086 * information to avoid a lookup in the normal
8089 entry
= entry
->vme_next
;
8091 * should be contiguous. Fail if we encounter
8092 * a hole in the destination.
8094 if (start
!= entry
->vme_start
) {
8095 vm_map_unlock_read(dst_map
);
8096 return KERN_INVALID_ADDRESS
;
8101 * Map version check failed.
8102 * we must lookup the entry because somebody
8103 * might have changed the map behind our backs.
8106 if (!vm_map_lookup_entry(dst_map
, start
, &entry
))
8108 vm_map_unlock_read(dst_map
);
8109 return KERN_INVALID_ADDRESS
;
8114 return KERN_SUCCESS
;
8115 }/* vm_map_copy_overwrite_unaligned */
8118 * Routine: vm_map_copy_overwrite_aligned [internal use only]
8121 * Does all the vm_trickery possible for whole pages.
8125 * If there are no permanent objects in the destination,
8126 * and the source and destination map entry zones match,
8127 * and the destination map entry is not shared,
8128 * then the map entries can be deleted and replaced
8129 * with those from the copy. The following code is the
8130 * basic idea of what to do, but there are lots of annoying
8131 * little details about getting protection and inheritance
8132 * right. Should add protection, inheritance, and sharing checks
8133 * to the above pass and make sure that no wiring is involved.
8136 int vm_map_copy_overwrite_aligned_src_not_internal
= 0;
8137 int vm_map_copy_overwrite_aligned_src_not_symmetric
= 0;
8138 int vm_map_copy_overwrite_aligned_src_large
= 0;
8140 static kern_return_t
8141 vm_map_copy_overwrite_aligned(
8143 vm_map_entry_t tmp_entry
,
8145 vm_map_offset_t start
,
8146 __unused pmap_t pmap
)
8149 vm_map_entry_t copy_entry
;
8150 vm_map_size_t copy_size
;
8152 vm_map_entry_t entry
;
8154 while ((copy_entry
= vm_map_copy_first_entry(copy
))
8155 != vm_map_copy_to_entry(copy
))
8157 copy_size
= (copy_entry
->vme_end
- copy_entry
->vme_start
);
8160 if (entry
->is_sub_map
) {
8161 /* unnested when clipped earlier */
8162 assert(!entry
->use_pmap
);
8164 if (entry
== vm_map_to_entry(dst_map
)) {
8165 vm_map_unlock(dst_map
);
8166 return KERN_INVALID_ADDRESS
;
8168 size
= (entry
->vme_end
- entry
->vme_start
);
8170 * Make sure that no holes popped up in the
8171 * address map, and that the protection is
8172 * still valid, in case the map was unlocked
8176 if ((entry
->vme_start
!= start
) || ((entry
->is_sub_map
)
8177 && !entry
->needs_copy
)) {
8178 vm_map_unlock(dst_map
);
8179 return(KERN_INVALID_ADDRESS
);
8181 assert(entry
!= vm_map_to_entry(dst_map
));
8184 * Check protection again
8187 if ( ! (entry
->protection
& VM_PROT_WRITE
)) {
8188 vm_map_unlock(dst_map
);
8189 return(KERN_PROTECTION_FAILURE
);
8193 * Adjust to source size first
8196 if (copy_size
< size
) {
8197 if (entry
->map_aligned
&&
8198 !VM_MAP_PAGE_ALIGNED(entry
->vme_start
+ copy_size
,
8199 VM_MAP_PAGE_MASK(dst_map
))) {
8200 /* no longer map-aligned */
8201 entry
->map_aligned
= FALSE
;
8203 vm_map_clip_end(dst_map
, entry
, entry
->vme_start
+ copy_size
);
8208 * Adjust to destination size
8211 if (size
< copy_size
) {
8212 vm_map_copy_clip_end(copy
, copy_entry
,
8213 copy_entry
->vme_start
+ size
);
8217 assert((entry
->vme_end
- entry
->vme_start
) == size
);
8218 assert((tmp_entry
->vme_end
- tmp_entry
->vme_start
) == size
);
8219 assert((copy_entry
->vme_end
- copy_entry
->vme_start
) == size
);
8222 * If the destination contains temporary unshared memory,
8223 * we can perform the copy by throwing it away and
8224 * installing the source data.
8227 object
= VME_OBJECT(entry
);
8228 if ((!entry
->is_shared
&&
8229 ((object
== VM_OBJECT_NULL
) ||
8230 (object
->internal
&& !object
->true_share
))) ||
8231 entry
->needs_copy
) {
8232 vm_object_t old_object
= VME_OBJECT(entry
);
8233 vm_object_offset_t old_offset
= VME_OFFSET(entry
);
8234 vm_object_offset_t offset
;
8237 * Ensure that the source and destination aren't
8240 if (old_object
== VME_OBJECT(copy_entry
) &&
8241 old_offset
== VME_OFFSET(copy_entry
)) {
8242 vm_map_copy_entry_unlink(copy
, copy_entry
);
8243 vm_map_copy_entry_dispose(copy
, copy_entry
);
8245 if (old_object
!= VM_OBJECT_NULL
)
8246 vm_object_deallocate(old_object
);
8248 start
= tmp_entry
->vme_end
;
8249 tmp_entry
= tmp_entry
->vme_next
;
8253 #define __TRADEOFF1_OBJ_SIZE (64 * 1024 * 1024) /* 64 MB */
8254 #define __TRADEOFF1_COPY_SIZE (128 * 1024) /* 128 KB */
8255 if (VME_OBJECT(copy_entry
) != VM_OBJECT_NULL
&&
8256 VME_OBJECT(copy_entry
)->vo_size
>= __TRADEOFF1_OBJ_SIZE
&&
8257 copy_size
<= __TRADEOFF1_COPY_SIZE
) {
8259 * Virtual vs. Physical copy tradeoff #1.
8261 * Copying only a few pages out of a large
8262 * object: do a physical copy instead of
8263 * a virtual copy, to avoid possibly keeping
8264 * the entire large object alive because of
8265 * those few copy-on-write pages.
8267 vm_map_copy_overwrite_aligned_src_large
++;
8271 if ((dst_map
->pmap
!= kernel_pmap
) &&
8272 (VME_ALIAS(entry
) >= VM_MEMORY_MALLOC
) &&
8273 (VME_ALIAS(entry
) <= VM_MEMORY_MALLOC_LARGE_REUSED
)) {
8274 vm_object_t new_object
, new_shadow
;
8277 * We're about to map something over a mapping
8278 * established by malloc()...
8280 new_object
= VME_OBJECT(copy_entry
);
8281 if (new_object
!= VM_OBJECT_NULL
) {
8282 vm_object_lock_shared(new_object
);
8284 while (new_object
!= VM_OBJECT_NULL
&&
8285 !new_object
->true_share
&&
8286 new_object
->copy_strategy
== MEMORY_OBJECT_COPY_SYMMETRIC
&&
8287 new_object
->internal
) {
8288 new_shadow
= new_object
->shadow
;
8289 if (new_shadow
== VM_OBJECT_NULL
) {
8292 vm_object_lock_shared(new_shadow
);
8293 vm_object_unlock(new_object
);
8294 new_object
= new_shadow
;
8296 if (new_object
!= VM_OBJECT_NULL
) {
8297 if (!new_object
->internal
) {
8299 * The new mapping is backed
8300 * by an external object. We
8301 * don't want malloc'ed memory
8302 * to be replaced with such a
8303 * non-anonymous mapping, so
8304 * let's go off the optimized
8307 vm_map_copy_overwrite_aligned_src_not_internal
++;
8308 vm_object_unlock(new_object
);
8311 if (new_object
->true_share
||
8312 new_object
->copy_strategy
!= MEMORY_OBJECT_COPY_SYMMETRIC
) {
8314 * Same if there's a "true_share"
8315 * object in the shadow chain, or
8316 * an object with a non-default
8317 * (SYMMETRIC) copy strategy.
8319 vm_map_copy_overwrite_aligned_src_not_symmetric
++;
8320 vm_object_unlock(new_object
);
8323 vm_object_unlock(new_object
);
8326 * The new mapping is still backed by
8327 * anonymous (internal) memory, so it's
8328 * OK to substitute it for the original
8333 if (old_object
!= VM_OBJECT_NULL
) {
8334 if(entry
->is_sub_map
) {
8335 if(entry
->use_pmap
) {
8336 #ifndef NO_NESTED_PMAP
8337 pmap_unnest(dst_map
->pmap
,
8338 (addr64_t
)entry
->vme_start
,
8339 entry
->vme_end
- entry
->vme_start
);
8340 #endif /* NO_NESTED_PMAP */
8341 if(dst_map
->mapped_in_other_pmaps
) {
8342 /* clean up parent */
8344 vm_map_submap_pmap_clean(
8345 dst_map
, entry
->vme_start
,
8351 vm_map_submap_pmap_clean(
8352 dst_map
, entry
->vme_start
,
8357 vm_map_deallocate(VME_SUBMAP(entry
));
8359 if(dst_map
->mapped_in_other_pmaps
) {
8360 vm_object_pmap_protect_options(
8368 PMAP_OPTIONS_REMOVE
);
8370 pmap_remove_options(
8372 (addr64_t
)(entry
->vme_start
),
8373 (addr64_t
)(entry
->vme_end
),
8374 PMAP_OPTIONS_REMOVE
);
8376 vm_object_deallocate(old_object
);
8380 entry
->is_sub_map
= FALSE
;
8381 VME_OBJECT_SET(entry
, VME_OBJECT(copy_entry
));
8382 object
= VME_OBJECT(entry
);
8383 entry
->needs_copy
= copy_entry
->needs_copy
;
8384 entry
->wired_count
= 0;
8385 entry
->user_wired_count
= 0;
8386 offset
= VME_OFFSET(copy_entry
);
8387 VME_OFFSET_SET(entry
, offset
);
8389 vm_map_copy_entry_unlink(copy
, copy_entry
);
8390 vm_map_copy_entry_dispose(copy
, copy_entry
);
8393 * we could try to push pages into the pmap at this point, BUT
8394 * this optimization only saved on average 2 us per page if ALL
8395 * the pages in the source were currently mapped
8396 * and ALL the pages in the dest were touched, if there were fewer
8397 * than 2/3 of the pages touched, this optimization actually cost more cycles
8398 * it also puts a lot of pressure on the pmap layer w/r to mapping structures
8402 * Set up for the next iteration. The map
8403 * has not been unlocked, so the next
8404 * address should be at the end of this
8405 * entry, and the next map entry should be
8406 * the one following it.
8409 start
= tmp_entry
->vme_end
;
8410 tmp_entry
= tmp_entry
->vme_next
;
8412 vm_map_version_t version
;
8413 vm_object_t dst_object
;
8414 vm_object_offset_t dst_offset
;
8418 if (entry
->needs_copy
) {
8419 VME_OBJECT_SHADOW(entry
,
8422 entry
->needs_copy
= FALSE
;
8425 dst_object
= VME_OBJECT(entry
);
8426 dst_offset
= VME_OFFSET(entry
);
8429 * Take an object reference, and record
8430 * the map version information so that the
8431 * map can be safely unlocked.
8434 if (dst_object
== VM_OBJECT_NULL
) {
8436 * We would usually have just taken the
8437 * optimized path above if the destination
8438 * object has not been allocated yet. But we
8439 * now disable that optimization if the copy
8440 * entry's object is not backed by anonymous
8441 * memory to avoid replacing malloc'ed
8442 * (i.e. re-usable) anonymous memory with a
8443 * not-so-anonymous mapping.
8444 * So we have to handle this case here and
8445 * allocate a new VM object for this map entry.
8447 dst_object
= vm_object_allocate(
8448 entry
->vme_end
- entry
->vme_start
);
8450 VME_OBJECT_SET(entry
, dst_object
);
8451 VME_OFFSET_SET(entry
, dst_offset
);
8452 assert(entry
->use_pmap
);
8456 vm_object_reference(dst_object
);
8458 /* account for unlock bumping up timestamp */
8459 version
.main_timestamp
= dst_map
->timestamp
+ 1;
8461 vm_map_unlock(dst_map
);
8464 * Copy as much as possible in one pass
8469 VME_OBJECT(copy_entry
),
8470 VME_OFFSET(copy_entry
),
8479 * Release the object reference
8482 vm_object_deallocate(dst_object
);
8485 * If a hard error occurred, return it now
8488 if (r
!= KERN_SUCCESS
)
8491 if (copy_size
!= 0) {
8493 * Dispose of the copied region
8496 vm_map_copy_clip_end(copy
, copy_entry
,
8497 copy_entry
->vme_start
+ copy_size
);
8498 vm_map_copy_entry_unlink(copy
, copy_entry
);
8499 vm_object_deallocate(VME_OBJECT(copy_entry
));
8500 vm_map_copy_entry_dispose(copy
, copy_entry
);
8504 * Pick up in the destination map where we left off.
8506 * Use the version information to avoid a lookup
8507 * in the normal case.
8511 vm_map_lock(dst_map
);
8512 if (version
.main_timestamp
== dst_map
->timestamp
&&
8514 /* We can safely use saved tmp_entry value */
8516 if (tmp_entry
->map_aligned
&&
8517 !VM_MAP_PAGE_ALIGNED(
8519 VM_MAP_PAGE_MASK(dst_map
))) {
8520 /* no longer map-aligned */
8521 tmp_entry
->map_aligned
= FALSE
;
8523 vm_map_clip_end(dst_map
, tmp_entry
, start
);
8524 tmp_entry
= tmp_entry
->vme_next
;
8526 /* Must do lookup of tmp_entry */
8528 if (!vm_map_lookup_entry(dst_map
, start
, &tmp_entry
)) {
8529 vm_map_unlock(dst_map
);
8530 return(KERN_INVALID_ADDRESS
);
8532 if (tmp_entry
->map_aligned
&&
8533 !VM_MAP_PAGE_ALIGNED(
8535 VM_MAP_PAGE_MASK(dst_map
))) {
8536 /* no longer map-aligned */
8537 tmp_entry
->map_aligned
= FALSE
;
8539 vm_map_clip_start(dst_map
, tmp_entry
, start
);
8544 return(KERN_SUCCESS
);
8545 }/* vm_map_copy_overwrite_aligned */
8548 * Routine: vm_map_copyin_kernel_buffer [internal use only]
8551 * Copy in data to a kernel buffer from space in the
8552 * source map. The original space may be optionally
8555 * If successful, returns a new copy object.
8557 static kern_return_t
8558 vm_map_copyin_kernel_buffer(
8560 vm_map_offset_t src_addr
,
8562 boolean_t src_destroy
,
8563 vm_map_copy_t
*copy_result
)
8567 vm_size_t kalloc_size
;
8569 if (len
> msg_ool_size_small
)
8570 return KERN_INVALID_ARGUMENT
;
8572 kalloc_size
= (vm_size_t
)(cpy_kdata_hdr_sz
+ len
);
8574 copy
= (vm_map_copy_t
)kalloc(kalloc_size
);
8575 if (copy
== VM_MAP_COPY_NULL
)
8576 return KERN_RESOURCE_SHORTAGE
;
8577 copy
->type
= VM_MAP_COPY_KERNEL_BUFFER
;
8581 kr
= copyinmap(src_map
, src_addr
, copy
->cpy_kdata
, (vm_size_t
)len
);
8582 if (kr
!= KERN_SUCCESS
) {
8583 kfree(copy
, kalloc_size
);
8587 (void) vm_map_remove(
8589 vm_map_trunc_page(src_addr
,
8590 VM_MAP_PAGE_MASK(src_map
)),
8591 vm_map_round_page(src_addr
+ len
,
8592 VM_MAP_PAGE_MASK(src_map
)),
8593 (VM_MAP_REMOVE_INTERRUPTIBLE
|
8594 VM_MAP_REMOVE_WAIT_FOR_KWIRE
|
8595 ((src_map
== kernel_map
) ? VM_MAP_REMOVE_KUNWIRE
: 0)));
8597 *copy_result
= copy
;
8598 return KERN_SUCCESS
;
8602 * Routine: vm_map_copyout_kernel_buffer [internal use only]
8605 * Copy out data from a kernel buffer into space in the
8606 * destination map. The space may be otpionally dynamically
8609 * If successful, consumes the copy object.
8610 * Otherwise, the caller is responsible for it.
8612 static int vm_map_copyout_kernel_buffer_failures
= 0;
8613 static kern_return_t
8614 vm_map_copyout_kernel_buffer(
8616 vm_map_address_t
*addr
, /* IN/OUT */
8618 vm_map_size_t copy_size
,
8619 boolean_t overwrite
,
8620 boolean_t consume_on_success
)
8622 kern_return_t kr
= KERN_SUCCESS
;
8623 thread_t thread
= current_thread();
8625 assert(copy
->size
== copy_size
);
8628 * check for corrupted vm_map_copy structure
8630 if (copy_size
> msg_ool_size_small
|| copy
->offset
)
8631 panic("Invalid vm_map_copy_t sz:%lld, ofst:%lld",
8632 (long long)copy
->size
, (long long)copy
->offset
);
8637 * Allocate space in the target map for the data
8640 kr
= vm_map_enter(map
,
8642 vm_map_round_page(copy_size
,
8643 VM_MAP_PAGE_MASK(map
)),
8644 (vm_map_offset_t
) 0,
8647 (vm_object_offset_t
) 0,
8651 VM_INHERIT_DEFAULT
);
8652 if (kr
!= KERN_SUCCESS
)
8657 * Copyout the data from the kernel buffer to the target map.
8659 if (thread
->map
== map
) {
8662 * If the target map is the current map, just do
8665 assert((vm_size_t
)copy_size
== copy_size
);
8666 if (copyout(copy
->cpy_kdata
, *addr
, (vm_size_t
)copy_size
)) {
8667 kr
= KERN_INVALID_ADDRESS
;
8674 * If the target map is another map, assume the
8675 * target's address space identity for the duration
8678 vm_map_reference(map
);
8679 oldmap
= vm_map_switch(map
);
8681 assert((vm_size_t
)copy_size
== copy_size
);
8682 if (copyout(copy
->cpy_kdata
, *addr
, (vm_size_t
)copy_size
)) {
8683 vm_map_copyout_kernel_buffer_failures
++;
8684 kr
= KERN_INVALID_ADDRESS
;
8687 (void) vm_map_switch(oldmap
);
8688 vm_map_deallocate(map
);
8691 if (kr
!= KERN_SUCCESS
) {
8692 /* the copy failed, clean up */
8695 * Deallocate the space we allocated in the target map.
8697 (void) vm_map_remove(
8699 vm_map_trunc_page(*addr
,
8700 VM_MAP_PAGE_MASK(map
)),
8701 vm_map_round_page((*addr
+
8702 vm_map_round_page(copy_size
,
8703 VM_MAP_PAGE_MASK(map
))),
8704 VM_MAP_PAGE_MASK(map
)),
8709 /* copy was successful, dicard the copy structure */
8710 if (consume_on_success
) {
8711 kfree(copy
, copy_size
+ cpy_kdata_hdr_sz
);
8719 * Macro: vm_map_copy_insert
8722 * Link a copy chain ("copy") into a map at the
8723 * specified location (after "where").
8725 * The copy chain is destroyed.
8727 * The arguments are evaluated multiple times.
8729 #define vm_map_copy_insert(map, where, copy) \
8731 vm_map_store_copy_insert(map, where, copy); \
8732 zfree(vm_map_copy_zone, copy); \
8738 vm_map_entry_t where
,
8740 vm_map_offset_t adjustment
,
8743 vm_inherit_t inheritance
)
8745 vm_map_entry_t copy_entry
, new_entry
;
8747 for (copy_entry
= vm_map_copy_first_entry(copy
);
8748 copy_entry
!= vm_map_copy_to_entry(copy
);
8749 copy_entry
= copy_entry
->vme_next
) {
8750 /* get a new VM map entry for the map */
8751 new_entry
= vm_map_entry_create(map
,
8752 !map
->hdr
.entries_pageable
);
8753 /* copy the "copy entry" to the new entry */
8754 vm_map_entry_copy(new_entry
, copy_entry
);
8755 /* adjust "start" and "end" */
8756 new_entry
->vme_start
+= adjustment
;
8757 new_entry
->vme_end
+= adjustment
;
8758 /* clear some attributes */
8759 new_entry
->inheritance
= inheritance
;
8760 new_entry
->protection
= cur_prot
;
8761 new_entry
->max_protection
= max_prot
;
8762 new_entry
->behavior
= VM_BEHAVIOR_DEFAULT
;
8763 /* take an extra reference on the entry's "object" */
8764 if (new_entry
->is_sub_map
) {
8765 assert(!new_entry
->use_pmap
); /* not nested */
8766 vm_map_lock(VME_SUBMAP(new_entry
));
8767 vm_map_reference(VME_SUBMAP(new_entry
));
8768 vm_map_unlock(VME_SUBMAP(new_entry
));
8770 vm_object_reference(VME_OBJECT(new_entry
));
8772 /* insert the new entry in the map */
8773 vm_map_store_entry_link(map
, where
, new_entry
);
8774 /* continue inserting the "copy entries" after the new entry */
8781 * Returns true if *size matches (or is in the range of) copy->size.
8782 * Upon returning true, the *size field is updated with the actual size of the
8783 * copy object (may be different for VM_MAP_COPY_ENTRY_LIST types)
8786 vm_map_copy_validate_size(
8789 vm_map_size_t
*size
)
8791 if (copy
== VM_MAP_COPY_NULL
)
8793 vm_map_size_t copy_sz
= copy
->size
;
8794 vm_map_size_t sz
= *size
;
8795 switch (copy
->type
) {
8796 case VM_MAP_COPY_OBJECT
:
8797 case VM_MAP_COPY_KERNEL_BUFFER
:
8801 case VM_MAP_COPY_ENTRY_LIST
:
8803 * potential page-size rounding prevents us from exactly
8804 * validating this flavor of vm_map_copy, but we can at least
8805 * assert that it's within a range.
8807 if (copy_sz
>= sz
&&
8808 copy_sz
<= vm_map_round_page(sz
, VM_MAP_PAGE_MASK(dst_map
))) {
8820 * Routine: vm_map_copyout_size
8823 * Copy out a copy chain ("copy") into newly-allocated
8824 * space in the destination map. Uses a prevalidated
8825 * size for the copy object (vm_map_copy_validate_size).
8827 * If successful, consumes the copy object.
8828 * Otherwise, the caller is responsible for it.
8831 vm_map_copyout_size(
8833 vm_map_address_t
*dst_addr
, /* OUT */
8835 vm_map_size_t copy_size
)
8837 return vm_map_copyout_internal(dst_map
, dst_addr
, copy
, copy_size
,
8838 TRUE
, /* consume_on_success */
8841 VM_INHERIT_DEFAULT
);
8845 * Routine: vm_map_copyout
8848 * Copy out a copy chain ("copy") into newly-allocated
8849 * space in the destination map.
8851 * If successful, consumes the copy object.
8852 * Otherwise, the caller is responsible for it.
8857 vm_map_address_t
*dst_addr
, /* OUT */
8860 return vm_map_copyout_internal(dst_map
, dst_addr
, copy
, copy
? copy
->size
: 0,
8861 TRUE
, /* consume_on_success */
8864 VM_INHERIT_DEFAULT
);
8868 vm_map_copyout_internal(
8870 vm_map_address_t
*dst_addr
, /* OUT */
8872 vm_map_size_t copy_size
,
8873 boolean_t consume_on_success
,
8874 vm_prot_t cur_protection
,
8875 vm_prot_t max_protection
,
8876 vm_inherit_t inheritance
)
8879 vm_map_size_t adjustment
;
8880 vm_map_offset_t start
;
8881 vm_object_offset_t vm_copy_start
;
8882 vm_map_entry_t last
;
8883 vm_map_entry_t entry
;
8884 vm_map_entry_t hole_entry
;
8887 * Check for null copy object.
8890 if (copy
== VM_MAP_COPY_NULL
) {
8892 return(KERN_SUCCESS
);
8895 if (copy
->size
!= copy_size
) {
8897 return KERN_FAILURE
;
8901 * Check for special copy object, created
8902 * by vm_map_copyin_object.
8905 if (copy
->type
== VM_MAP_COPY_OBJECT
) {
8906 vm_object_t object
= copy
->cpy_object
;
8908 vm_object_offset_t offset
;
8910 offset
= vm_object_trunc_page(copy
->offset
);
8911 size
= vm_map_round_page((copy_size
+
8912 (vm_map_size_t
)(copy
->offset
-
8914 VM_MAP_PAGE_MASK(dst_map
));
8916 kr
= vm_map_enter(dst_map
, dst_addr
, size
,
8917 (vm_map_offset_t
) 0, VM_FLAGS_ANYWHERE
,
8918 object
, offset
, FALSE
,
8919 VM_PROT_DEFAULT
, VM_PROT_ALL
,
8920 VM_INHERIT_DEFAULT
);
8921 if (kr
!= KERN_SUCCESS
)
8923 /* Account for non-pagealigned copy object */
8924 *dst_addr
+= (vm_map_offset_t
)(copy
->offset
- offset
);
8925 if (consume_on_success
)
8926 zfree(vm_map_copy_zone
, copy
);
8927 return(KERN_SUCCESS
);
8931 * Check for special kernel buffer allocated
8932 * by new_ipc_kmsg_copyin.
8935 if (copy
->type
== VM_MAP_COPY_KERNEL_BUFFER
) {
8936 return vm_map_copyout_kernel_buffer(dst_map
, dst_addr
,
8937 copy
, copy_size
, FALSE
,
8938 consume_on_success
);
8943 * Find space for the data
8946 vm_copy_start
= vm_map_trunc_page((vm_map_size_t
)copy
->offset
,
8947 VM_MAP_COPY_PAGE_MASK(copy
));
8948 size
= vm_map_round_page((vm_map_size_t
)copy
->offset
+ copy_size
,
8949 VM_MAP_COPY_PAGE_MASK(copy
))
8955 vm_map_lock(dst_map
);
8956 if( dst_map
->disable_vmentry_reuse
== TRUE
) {
8957 VM_MAP_HIGHEST_ENTRY(dst_map
, entry
, start
);
8960 if (dst_map
->holelistenabled
) {
8961 hole_entry
= (vm_map_entry_t
)dst_map
->holes_list
;
8963 if (hole_entry
== NULL
) {
8965 * No more space in the map?
8967 vm_map_unlock(dst_map
);
8968 return(KERN_NO_SPACE
);
8972 start
= last
->vme_start
;
8974 assert(first_free_is_valid(dst_map
));
8975 start
= ((last
= dst_map
->first_free
) == vm_map_to_entry(dst_map
)) ?
8976 vm_map_min(dst_map
) : last
->vme_end
;
8978 start
= vm_map_round_page(start
,
8979 VM_MAP_PAGE_MASK(dst_map
));
8983 vm_map_entry_t next
= last
->vme_next
;
8984 vm_map_offset_t end
= start
+ size
;
8986 if ((end
> dst_map
->max_offset
) || (end
< start
)) {
8987 if (dst_map
->wait_for_space
) {
8988 if (size
<= (dst_map
->max_offset
- dst_map
->min_offset
)) {
8989 assert_wait((event_t
) dst_map
,
8990 THREAD_INTERRUPTIBLE
);
8991 vm_map_unlock(dst_map
);
8992 thread_block(THREAD_CONTINUE_NULL
);
8996 vm_map_unlock(dst_map
);
8997 return(KERN_NO_SPACE
);
9000 if (dst_map
->holelistenabled
) {
9001 if (last
->vme_end
>= end
)
9005 * If there are no more entries, we must win.
9009 * If there is another entry, it must be
9010 * after the end of the potential new region.
9013 if (next
== vm_map_to_entry(dst_map
))
9016 if (next
->vme_start
>= end
)
9022 if (dst_map
->holelistenabled
) {
9023 if (last
== (vm_map_entry_t
) dst_map
->holes_list
) {
9027 vm_map_unlock(dst_map
);
9028 return(KERN_NO_SPACE
);
9030 start
= last
->vme_start
;
9032 start
= last
->vme_end
;
9034 start
= vm_map_round_page(start
,
9035 VM_MAP_PAGE_MASK(dst_map
));
9038 if (dst_map
->holelistenabled
) {
9039 if (vm_map_lookup_entry(dst_map
, last
->vme_start
, &last
)) {
9040 panic("Found an existing entry (%p) instead of potential hole at address: 0x%llx.\n", last
, (unsigned long long)last
->vme_start
);
9045 adjustment
= start
- vm_copy_start
;
9046 if (! consume_on_success
) {
9048 * We're not allowed to consume "copy", so we'll have to
9049 * copy its map entries into the destination map below.
9050 * No need to re-allocate map entries from the correct
9051 * (pageable or not) zone, since we'll get new map entries
9052 * during the transfer.
9053 * We'll also adjust the map entries's "start" and "end"
9054 * during the transfer, to keep "copy"'s entries consistent
9055 * with its "offset".
9057 goto after_adjustments
;
9061 * Since we're going to just drop the map
9062 * entries from the copy into the destination
9063 * map, they must come from the same pool.
9066 if (copy
->cpy_hdr
.entries_pageable
!= dst_map
->hdr
.entries_pageable
) {
9068 * Mismatches occur when dealing with the default
9072 vm_map_entry_t next
, new;
9075 * Find the zone that the copies were allocated from
9078 entry
= vm_map_copy_first_entry(copy
);
9081 * Reinitialize the copy so that vm_map_copy_entry_link
9084 vm_map_store_copy_reset(copy
, entry
);
9085 copy
->cpy_hdr
.entries_pageable
= dst_map
->hdr
.entries_pageable
;
9090 while (entry
!= vm_map_copy_to_entry(copy
)) {
9091 new = vm_map_copy_entry_create(copy
, !copy
->cpy_hdr
.entries_pageable
);
9092 vm_map_entry_copy_full(new, entry
);
9093 assert(!new->iokit_acct
);
9094 if (new->is_sub_map
) {
9095 /* clr address space specifics */
9096 new->use_pmap
= FALSE
;
9098 vm_map_copy_entry_link(copy
,
9099 vm_map_copy_last_entry(copy
),
9101 next
= entry
->vme_next
;
9102 old_zone
= entry
->from_reserved_zone
? vm_map_entry_reserved_zone
: vm_map_entry_zone
;
9103 zfree(old_zone
, entry
);
9109 * Adjust the addresses in the copy chain, and
9110 * reset the region attributes.
9113 for (entry
= vm_map_copy_first_entry(copy
);
9114 entry
!= vm_map_copy_to_entry(copy
);
9115 entry
= entry
->vme_next
) {
9116 if (VM_MAP_PAGE_SHIFT(dst_map
) == PAGE_SHIFT
) {
9118 * We're injecting this copy entry into a map that
9119 * has the standard page alignment, so clear
9120 * "map_aligned" (which might have been inherited
9121 * from the original map entry).
9123 entry
->map_aligned
= FALSE
;
9126 entry
->vme_start
+= adjustment
;
9127 entry
->vme_end
+= adjustment
;
9129 if (entry
->map_aligned
) {
9130 assert(VM_MAP_PAGE_ALIGNED(entry
->vme_start
,
9131 VM_MAP_PAGE_MASK(dst_map
)));
9132 assert(VM_MAP_PAGE_ALIGNED(entry
->vme_end
,
9133 VM_MAP_PAGE_MASK(dst_map
)));
9136 entry
->inheritance
= VM_INHERIT_DEFAULT
;
9137 entry
->protection
= VM_PROT_DEFAULT
;
9138 entry
->max_protection
= VM_PROT_ALL
;
9139 entry
->behavior
= VM_BEHAVIOR_DEFAULT
;
9142 * If the entry is now wired,
9143 * map the pages into the destination map.
9145 if (entry
->wired_count
!= 0) {
9147 vm_object_offset_t offset
;
9152 object
= VME_OBJECT(entry
);
9153 offset
= VME_OFFSET(entry
);
9154 va
= entry
->vme_start
;
9156 pmap_pageable(dst_map
->pmap
,
9161 while (va
< entry
->vme_end
) {
9165 * Look up the page in the object.
9166 * Assert that the page will be found in the
9169 * the object was newly created by
9170 * vm_object_copy_slowly, and has
9171 * copies of all of the pages from
9174 * the object was moved from the old
9175 * map entry; because the old map
9176 * entry was wired, all of the pages
9177 * were in the top-level object.
9178 * (XXX not true if we wire pages for
9181 vm_object_lock(object
);
9183 m
= vm_page_lookup(object
, offset
);
9184 if (m
== VM_PAGE_NULL
|| !VM_PAGE_WIRED(m
) ||
9186 panic("vm_map_copyout: wiring %p", m
);
9190 * The page is assumed to be wired here, so it
9191 * shouldn't be encrypted. Otherwise, we
9192 * couldn't enter it in the page table, since
9193 * we don't want the user to see the encrypted
9196 ASSERT_PAGE_DECRYPTED(m
);
9198 prot
= entry
->protection
;
9200 if (override_nx(dst_map
, VME_ALIAS(entry
)) &&
9202 prot
|= VM_PROT_EXECUTE
;
9204 type_of_fault
= DBG_CACHE_HIT_FAULT
;
9206 vm_fault_enter(m
, dst_map
->pmap
, va
, prot
, prot
,
9207 VM_PAGE_WIRED(m
), FALSE
, FALSE
,
9208 FALSE
, VME_ALIAS(entry
),
9209 ((entry
->iokit_acct
||
9210 (!entry
->is_sub_map
&&
9212 ? PMAP_OPTIONS_ALT_ACCT
9214 NULL
, &type_of_fault
);
9216 vm_object_unlock(object
);
9218 offset
+= PAGE_SIZE_64
;
9227 * Correct the page alignment for the result
9230 *dst_addr
= start
+ (copy
->offset
- vm_copy_start
);
9233 * Update the hints and the map size
9236 if (consume_on_success
) {
9237 SAVE_HINT_MAP_WRITE(dst_map
, vm_map_copy_last_entry(copy
));
9239 SAVE_HINT_MAP_WRITE(dst_map
, last
);
9242 dst_map
->size
+= size
;
9248 if (consume_on_success
) {
9249 vm_map_copy_insert(dst_map
, last
, copy
);
9251 vm_map_copy_remap(dst_map
, last
, copy
, adjustment
,
9252 cur_protection
, max_protection
,
9256 vm_map_unlock(dst_map
);
9259 * XXX If wiring_required, call vm_map_pageable
9262 return(KERN_SUCCESS
);
9266 * Routine: vm_map_copyin
9269 * see vm_map_copyin_common. Exported via Unsupported.exports.
9273 #undef vm_map_copyin
9278 vm_map_address_t src_addr
,
9280 boolean_t src_destroy
,
9281 vm_map_copy_t
*copy_result
) /* OUT */
9283 return(vm_map_copyin_common(src_map
, src_addr
, len
, src_destroy
,
9284 FALSE
, copy_result
, FALSE
));
9288 * Routine: vm_map_copyin_common
9291 * Copy the specified region (src_addr, len) from the
9292 * source address space (src_map), possibly removing
9293 * the region from the source address space (src_destroy).
9296 * A vm_map_copy_t object (copy_result), suitable for
9297 * insertion into another address space (using vm_map_copyout),
9298 * copying over another address space region (using
9299 * vm_map_copy_overwrite). If the copy is unused, it
9300 * should be destroyed (using vm_map_copy_discard).
9302 * In/out conditions:
9303 * The source map should not be locked on entry.
9306 typedef struct submap_map
{
9307 vm_map_t parent_map
;
9308 vm_map_offset_t base_start
;
9309 vm_map_offset_t base_end
;
9310 vm_map_size_t base_len
;
9311 struct submap_map
*next
;
9315 vm_map_copyin_common(
9317 vm_map_address_t src_addr
,
9319 boolean_t src_destroy
,
9320 __unused boolean_t src_volatile
,
9321 vm_map_copy_t
*copy_result
, /* OUT */
9322 boolean_t use_maxprot
)
9328 flags
|= VM_MAP_COPYIN_SRC_DESTROY
;
9331 flags
|= VM_MAP_COPYIN_USE_MAXPROT
;
9333 return vm_map_copyin_internal(src_map
,
9340 vm_map_copyin_internal(
9342 vm_map_address_t src_addr
,
9345 vm_map_copy_t
*copy_result
) /* OUT */
9347 vm_map_entry_t tmp_entry
; /* Result of last map lookup --
9348 * in multi-level lookup, this
9349 * entry contains the actual
9352 vm_map_entry_t new_entry
= VM_MAP_ENTRY_NULL
; /* Map entry for copy */
9354 vm_map_offset_t src_start
; /* Start of current entry --
9355 * where copy is taking place now
9357 vm_map_offset_t src_end
; /* End of entire region to be
9359 vm_map_offset_t src_base
;
9360 vm_map_t base_map
= src_map
;
9361 boolean_t map_share
=FALSE
;
9362 submap_map_t
*parent_maps
= NULL
;
9364 vm_map_copy_t copy
; /* Resulting copy */
9365 vm_map_address_t copy_addr
;
9366 vm_map_size_t copy_size
;
9367 boolean_t src_destroy
;
9368 boolean_t use_maxprot
;
9369 boolean_t preserve_purgeable
;
9371 if (flags
& ~VM_MAP_COPYIN_ALL_FLAGS
) {
9372 return KERN_INVALID_ARGUMENT
;
9375 src_destroy
= (flags
& VM_MAP_COPYIN_SRC_DESTROY
) ? TRUE
: FALSE
;
9376 use_maxprot
= (flags
& VM_MAP_COPYIN_USE_MAXPROT
) ? TRUE
: FALSE
;
9377 preserve_purgeable
=
9378 (flags
& VM_MAP_COPYIN_PRESERVE_PURGEABLE
) ? TRUE
: FALSE
;
9381 * Check for copies of zero bytes.
9385 *copy_result
= VM_MAP_COPY_NULL
;
9386 return(KERN_SUCCESS
);
9390 * Check that the end address doesn't overflow
9392 src_end
= src_addr
+ len
;
9393 if (src_end
< src_addr
)
9394 return KERN_INVALID_ADDRESS
;
9397 * Compute (page aligned) start and end of region
9399 src_start
= vm_map_trunc_page(src_addr
,
9400 VM_MAP_PAGE_MASK(src_map
));
9401 src_end
= vm_map_round_page(src_end
,
9402 VM_MAP_PAGE_MASK(src_map
));
9405 * If the copy is sufficiently small, use a kernel buffer instead
9406 * of making a virtual copy. The theory being that the cost of
9407 * setting up VM (and taking C-O-W faults) dominates the copy costs
9408 * for small regions.
9410 if ((len
< msg_ool_size_small
) &&
9412 !preserve_purgeable
&&
9413 !(flags
& VM_MAP_COPYIN_ENTRY_LIST
) &&
9415 * Since the "msg_ool_size_small" threshold was increased and
9416 * vm_map_copyin_kernel_buffer() doesn't handle accesses beyond the
9417 * address space limits, we revert to doing a virtual copy if the
9418 * copied range goes beyond those limits. Otherwise, mach_vm_read()
9419 * of the commpage would now fail when it used to work.
9421 (src_start
>= vm_map_min(src_map
) &&
9422 src_start
< vm_map_max(src_map
) &&
9423 src_end
>= vm_map_min(src_map
) &&
9424 src_end
< vm_map_max(src_map
)))
9425 return vm_map_copyin_kernel_buffer(src_map
, src_addr
, len
,
9426 src_destroy
, copy_result
);
9428 XPR(XPR_VM_MAP
, "vm_map_copyin_common map 0x%x addr 0x%x len 0x%x dest %d\n", src_map
, src_addr
, len
, src_destroy
, 0);
9431 * Allocate a header element for the list.
9433 * Use the start and end in the header to
9434 * remember the endpoints prior to rounding.
9437 copy
= (vm_map_copy_t
) zalloc(vm_map_copy_zone
);
9438 copy
->c_u
.hdr
.rb_head_store
.rbh_root
= (void*)(int)SKIP_RB_TREE
;
9439 vm_map_copy_first_entry(copy
) =
9440 vm_map_copy_last_entry(copy
) = vm_map_copy_to_entry(copy
);
9441 copy
->type
= VM_MAP_COPY_ENTRY_LIST
;
9442 copy
->cpy_hdr
.nentries
= 0;
9443 copy
->cpy_hdr
.entries_pageable
= TRUE
;
9445 copy
->cpy_hdr
.page_shift
= src_map
->hdr
.page_shift
;
9448 * The copy entries can be broken down for a variety of reasons,
9449 * so we can't guarantee that they will remain map-aligned...
9450 * Will need to adjust the first copy_entry's "vme_start" and
9451 * the last copy_entry's "vme_end" to be rounded to PAGE_MASK
9452 * rather than the original map's alignment.
9454 copy
->cpy_hdr
.page_shift
= PAGE_SHIFT
;
9457 vm_map_store_init( &(copy
->cpy_hdr
) );
9459 copy
->offset
= src_addr
;
9462 new_entry
= vm_map_copy_entry_create(copy
, !copy
->cpy_hdr
.entries_pageable
);
9466 vm_map_unlock(src_map); \
9467 if(src_map != base_map) \
9468 vm_map_deallocate(src_map); \
9469 if (new_entry != VM_MAP_ENTRY_NULL) \
9470 vm_map_copy_entry_dispose(copy,new_entry); \
9471 vm_map_copy_discard(copy); \
9473 submap_map_t *_ptr; \
9475 for(_ptr = parent_maps; _ptr != NULL; _ptr = parent_maps) { \
9476 parent_maps=parent_maps->next; \
9477 if (_ptr->parent_map != base_map) \
9478 vm_map_deallocate(_ptr->parent_map); \
9479 kfree(_ptr, sizeof(submap_map_t)); \
9486 * Find the beginning of the region.
9489 vm_map_lock(src_map
);
9492 * Lookup the original "src_addr" rather than the truncated
9493 * "src_start", in case "src_start" falls in a non-map-aligned
9494 * map entry *before* the map entry that contains "src_addr"...
9496 if (!vm_map_lookup_entry(src_map
, src_addr
, &tmp_entry
))
9497 RETURN(KERN_INVALID_ADDRESS
);
9498 if(!tmp_entry
->is_sub_map
) {
9500 * ... but clip to the map-rounded "src_start" rather than
9501 * "src_addr" to preserve map-alignment. We'll adjust the
9502 * first copy entry at the end, if needed.
9504 vm_map_clip_start(src_map
, tmp_entry
, src_start
);
9506 if (src_start
< tmp_entry
->vme_start
) {
9508 * Move "src_start" up to the start of the
9509 * first map entry to copy.
9511 src_start
= tmp_entry
->vme_start
;
9513 /* set for later submap fix-up */
9514 copy_addr
= src_start
;
9517 * Go through entries until we get to the end.
9521 vm_map_entry_t src_entry
= tmp_entry
; /* Top-level entry */
9522 vm_map_size_t src_size
; /* Size of source
9523 * map entry (in both
9527 vm_object_t src_object
; /* Object to copy */
9528 vm_object_offset_t src_offset
;
9530 boolean_t src_needs_copy
; /* Should source map
9532 * for copy-on-write?
9535 boolean_t new_entry_needs_copy
; /* Will new entry be COW? */
9537 boolean_t was_wired
; /* Was source wired? */
9538 vm_map_version_t version
; /* Version before locks
9539 * dropped to make copy
9541 kern_return_t result
; /* Return value from
9542 * copy_strategically.
9544 while(tmp_entry
->is_sub_map
) {
9545 vm_map_size_t submap_len
;
9548 ptr
= (submap_map_t
*)kalloc(sizeof(submap_map_t
));
9549 ptr
->next
= parent_maps
;
9551 ptr
->parent_map
= src_map
;
9552 ptr
->base_start
= src_start
;
9553 ptr
->base_end
= src_end
;
9554 submap_len
= tmp_entry
->vme_end
- src_start
;
9555 if(submap_len
> (src_end
-src_start
))
9556 submap_len
= src_end
-src_start
;
9557 ptr
->base_len
= submap_len
;
9559 src_start
-= tmp_entry
->vme_start
;
9560 src_start
+= VME_OFFSET(tmp_entry
);
9561 src_end
= src_start
+ submap_len
;
9562 src_map
= VME_SUBMAP(tmp_entry
);
9563 vm_map_lock(src_map
);
9564 /* keep an outstanding reference for all maps in */
9565 /* the parents tree except the base map */
9566 vm_map_reference(src_map
);
9567 vm_map_unlock(ptr
->parent_map
);
9568 if (!vm_map_lookup_entry(
9569 src_map
, src_start
, &tmp_entry
))
9570 RETURN(KERN_INVALID_ADDRESS
);
9572 if(!tmp_entry
->is_sub_map
)
9573 vm_map_clip_start(src_map
, tmp_entry
, src_start
);
9574 src_entry
= tmp_entry
;
9576 /* we are now in the lowest level submap... */
9578 if ((VME_OBJECT(tmp_entry
) != VM_OBJECT_NULL
) &&
9579 (VME_OBJECT(tmp_entry
)->phys_contiguous
)) {
9580 /* This is not, supported for now.In future */
9581 /* we will need to detect the phys_contig */
9582 /* condition and then upgrade copy_slowly */
9583 /* to do physical copy from the device mem */
9584 /* based object. We can piggy-back off of */
9585 /* the was wired boolean to set-up the */
9586 /* proper handling */
9587 RETURN(KERN_PROTECTION_FAILURE
);
9590 * Create a new address map entry to hold the result.
9591 * Fill in the fields from the appropriate source entries.
9592 * We must unlock the source map to do this if we need
9593 * to allocate a map entry.
9595 if (new_entry
== VM_MAP_ENTRY_NULL
) {
9596 version
.main_timestamp
= src_map
->timestamp
;
9597 vm_map_unlock(src_map
);
9599 new_entry
= vm_map_copy_entry_create(copy
, !copy
->cpy_hdr
.entries_pageable
);
9601 vm_map_lock(src_map
);
9602 if ((version
.main_timestamp
+ 1) != src_map
->timestamp
) {
9603 if (!vm_map_lookup_entry(src_map
, src_start
,
9605 RETURN(KERN_INVALID_ADDRESS
);
9607 if (!tmp_entry
->is_sub_map
)
9608 vm_map_clip_start(src_map
, tmp_entry
, src_start
);
9609 continue; /* restart w/ new tmp_entry */
9614 * Verify that the region can be read.
9616 if (((src_entry
->protection
& VM_PROT_READ
) == VM_PROT_NONE
&&
9618 (src_entry
->max_protection
& VM_PROT_READ
) == 0)
9619 RETURN(KERN_PROTECTION_FAILURE
);
9622 * Clip against the endpoints of the entire region.
9625 vm_map_clip_end(src_map
, src_entry
, src_end
);
9627 src_size
= src_entry
->vme_end
- src_start
;
9628 src_object
= VME_OBJECT(src_entry
);
9629 src_offset
= VME_OFFSET(src_entry
);
9630 was_wired
= (src_entry
->wired_count
!= 0);
9632 vm_map_entry_copy(new_entry
, src_entry
);
9633 if (new_entry
->is_sub_map
) {
9634 /* clr address space specifics */
9635 new_entry
->use_pmap
= FALSE
;
9639 * Attempt non-blocking copy-on-write optimizations.
9643 (src_object
== VM_OBJECT_NULL
||
9644 (src_object
->internal
&& !src_object
->true_share
9647 * If we are destroying the source, and the object
9648 * is internal, we can move the object reference
9649 * from the source to the copy. The copy is
9650 * copy-on-write only if the source is.
9651 * We make another reference to the object, because
9652 * destroying the source entry will deallocate it.
9654 vm_object_reference(src_object
);
9657 * Copy is always unwired. vm_map_copy_entry
9658 * set its wired count to zero.
9661 goto CopySuccessful
;
9666 XPR(XPR_VM_MAP
, "vm_map_copyin_common src_obj 0x%x ent 0x%x obj 0x%x was_wired %d\n",
9667 src_object
, new_entry
, VME_OBJECT(new_entry
),
9669 if ((src_object
== VM_OBJECT_NULL
||
9670 (!was_wired
&& !map_share
&& !tmp_entry
->is_shared
)) &&
9671 vm_object_copy_quickly(
9672 &VME_OBJECT(new_entry
),
9676 &new_entry_needs_copy
)) {
9678 new_entry
->needs_copy
= new_entry_needs_copy
;
9681 * Handle copy-on-write obligations
9684 if (src_needs_copy
&& !tmp_entry
->needs_copy
) {
9687 prot
= src_entry
->protection
& ~VM_PROT_WRITE
;
9689 if (override_nx(src_map
, VME_ALIAS(src_entry
))
9691 prot
|= VM_PROT_EXECUTE
;
9693 vm_object_pmap_protect(
9697 (src_entry
->is_shared
?
9700 src_entry
->vme_start
,
9703 assert(tmp_entry
->wired_count
== 0);
9704 tmp_entry
->needs_copy
= TRUE
;
9708 * The map has never been unlocked, so it's safe
9709 * to move to the next entry rather than doing
9713 goto CopySuccessful
;
9717 * Take an object reference, so that we may
9718 * release the map lock(s).
9721 assert(src_object
!= VM_OBJECT_NULL
);
9722 vm_object_reference(src_object
);
9725 * Record the timestamp for later verification.
9729 version
.main_timestamp
= src_map
->timestamp
;
9730 vm_map_unlock(src_map
); /* Increments timestamp once! */
9738 vm_object_lock(src_object
);
9739 result
= vm_object_copy_slowly(
9744 &VME_OBJECT(new_entry
));
9745 VME_OFFSET_SET(new_entry
, 0);
9746 new_entry
->needs_copy
= FALSE
;
9749 else if (src_object
->copy_strategy
== MEMORY_OBJECT_COPY_SYMMETRIC
&&
9750 (tmp_entry
->is_shared
|| map_share
)) {
9751 vm_object_t new_object
;
9753 vm_object_lock_shared(src_object
);
9754 new_object
= vm_object_copy_delayed(
9759 if (new_object
== VM_OBJECT_NULL
)
9762 VME_OBJECT_SET(new_entry
, new_object
);
9763 assert(new_entry
->wired_count
== 0);
9764 new_entry
->needs_copy
= TRUE
;
9765 assert(!new_entry
->iokit_acct
);
9766 assert(new_object
->purgable
== VM_PURGABLE_DENY
);
9767 new_entry
->use_pmap
= TRUE
;
9768 result
= KERN_SUCCESS
;
9771 vm_object_offset_t new_offset
;
9772 new_offset
= VME_OFFSET(new_entry
);
9773 result
= vm_object_copy_strategically(src_object
,
9776 &VME_OBJECT(new_entry
),
9778 &new_entry_needs_copy
);
9779 if (new_offset
!= VME_OFFSET(new_entry
)) {
9780 VME_OFFSET_SET(new_entry
, new_offset
);
9783 new_entry
->needs_copy
= new_entry_needs_copy
;
9786 if (result
== KERN_SUCCESS
&&
9787 preserve_purgeable
&&
9788 src_object
->purgable
!= VM_PURGABLE_DENY
) {
9789 vm_object_t new_object
;
9791 new_object
= VME_OBJECT(new_entry
);
9792 assert(new_object
!= src_object
);
9793 vm_object_lock(new_object
);
9794 assert(new_object
->ref_count
== 1);
9795 assert(new_object
->shadow
== VM_OBJECT_NULL
);
9796 assert(new_object
->copy
== VM_OBJECT_NULL
);
9797 assert(new_object
->vo_purgeable_owner
== NULL
);
9799 new_object
->copy_strategy
= MEMORY_OBJECT_COPY_NONE
;
9800 new_object
->true_share
= TRUE
;
9801 /* start as non-volatile with no owner... */
9802 new_object
->purgable
= VM_PURGABLE_NONVOLATILE
;
9803 vm_purgeable_nonvolatile_enqueue(new_object
, NULL
);
9804 /* ... and move to src_object's purgeable state */
9805 if (src_object
->purgable
!= VM_PURGABLE_NONVOLATILE
) {
9807 state
= src_object
->purgable
;
9808 vm_object_purgable_control(
9810 VM_PURGABLE_SET_STATE
,
9813 vm_object_unlock(new_object
);
9814 new_object
= VM_OBJECT_NULL
;
9817 if (result
!= KERN_SUCCESS
&&
9818 result
!= KERN_MEMORY_RESTART_COPY
) {
9819 vm_map_lock(src_map
);
9824 * Throw away the extra reference
9827 vm_object_deallocate(src_object
);
9830 * Verify that the map has not substantially
9831 * changed while the copy was being made.
9834 vm_map_lock(src_map
);
9836 if ((version
.main_timestamp
+ 1) == src_map
->timestamp
)
9837 goto VerificationSuccessful
;
9840 * Simple version comparison failed.
9842 * Retry the lookup and verify that the
9843 * same object/offset are still present.
9845 * [Note: a memory manager that colludes with
9846 * the calling task can detect that we have
9847 * cheated. While the map was unlocked, the
9848 * mapping could have been changed and restored.]
9851 if (!vm_map_lookup_entry(src_map
, src_start
, &tmp_entry
)) {
9852 if (result
!= KERN_MEMORY_RESTART_COPY
) {
9853 vm_object_deallocate(VME_OBJECT(new_entry
));
9854 VME_OBJECT_SET(new_entry
, VM_OBJECT_NULL
);
9855 assert(!new_entry
->iokit_acct
);
9856 new_entry
->use_pmap
= TRUE
;
9858 RETURN(KERN_INVALID_ADDRESS
);
9861 src_entry
= tmp_entry
;
9862 vm_map_clip_start(src_map
, src_entry
, src_start
);
9864 if ((((src_entry
->protection
& VM_PROT_READ
) == VM_PROT_NONE
) &&
9866 ((src_entry
->max_protection
& VM_PROT_READ
) == 0))
9867 goto VerificationFailed
;
9869 if (src_entry
->vme_end
< new_entry
->vme_end
) {
9871 * This entry might have been shortened
9872 * (vm_map_clip_end) or been replaced with
9873 * an entry that ends closer to "src_start"
9875 * Adjust "new_entry" accordingly; copying
9876 * less memory would be correct but we also
9877 * redo the copy (see below) if the new entry
9878 * no longer points at the same object/offset.
9880 assert(VM_MAP_PAGE_ALIGNED(src_entry
->vme_end
,
9881 VM_MAP_COPY_PAGE_MASK(copy
)));
9882 new_entry
->vme_end
= src_entry
->vme_end
;
9883 src_size
= new_entry
->vme_end
- src_start
;
9884 } else if (src_entry
->vme_end
> new_entry
->vme_end
) {
9886 * This entry might have been extended
9887 * (vm_map_entry_simplify() or coalesce)
9888 * or been replaced with an entry that ends farther
9889 * from "src_start" than before.
9891 * We've called vm_object_copy_*() only on
9892 * the previous <start:end> range, so we can't
9893 * just extend new_entry. We have to re-do
9894 * the copy based on the new entry as if it was
9895 * pointing at a different object/offset (see
9896 * "Verification failed" below).
9900 if ((VME_OBJECT(src_entry
) != src_object
) ||
9901 (VME_OFFSET(src_entry
) != src_offset
) ||
9902 (src_entry
->vme_end
> new_entry
->vme_end
)) {
9905 * Verification failed.
9907 * Start over with this top-level entry.
9910 VerificationFailed
: ;
9912 vm_object_deallocate(VME_OBJECT(new_entry
));
9913 tmp_entry
= src_entry
;
9918 * Verification succeeded.
9921 VerificationSuccessful
: ;
9923 if (result
== KERN_MEMORY_RESTART_COPY
)
9933 * Link in the new copy entry.
9936 vm_map_copy_entry_link(copy
, vm_map_copy_last_entry(copy
),
9940 * Determine whether the entire region
9943 src_base
= src_start
;
9944 src_start
= new_entry
->vme_end
;
9945 new_entry
= VM_MAP_ENTRY_NULL
;
9946 while ((src_start
>= src_end
) && (src_end
!= 0)) {
9949 if (src_map
== base_map
) {
9950 /* back to the top */
9955 assert(ptr
!= NULL
);
9956 parent_maps
= parent_maps
->next
;
9958 /* fix up the damage we did in that submap */
9959 vm_map_simplify_range(src_map
,
9963 vm_map_unlock(src_map
);
9964 vm_map_deallocate(src_map
);
9965 vm_map_lock(ptr
->parent_map
);
9966 src_map
= ptr
->parent_map
;
9967 src_base
= ptr
->base_start
;
9968 src_start
= ptr
->base_start
+ ptr
->base_len
;
9969 src_end
= ptr
->base_end
;
9970 if (!vm_map_lookup_entry(src_map
,
9973 (src_end
> src_start
)) {
9974 RETURN(KERN_INVALID_ADDRESS
);
9976 kfree(ptr
, sizeof(submap_map_t
));
9977 if (parent_maps
== NULL
)
9979 src_entry
= tmp_entry
->vme_prev
;
9982 if ((VM_MAP_PAGE_SHIFT(src_map
) != PAGE_SHIFT
) &&
9983 (src_start
>= src_addr
+ len
) &&
9984 (src_addr
+ len
!= 0)) {
9986 * Stop copying now, even though we haven't reached
9987 * "src_end". We'll adjust the end of the last copy
9988 * entry at the end, if needed.
9990 * If src_map's aligment is different from the
9991 * system's page-alignment, there could be
9992 * extra non-map-aligned map entries between
9993 * the original (non-rounded) "src_addr + len"
9994 * and the rounded "src_end".
9995 * We do not want to copy those map entries since
9996 * they're not part of the copied range.
10001 if ((src_start
>= src_end
) && (src_end
!= 0))
10005 * Verify that there are no gaps in the region
10008 tmp_entry
= src_entry
->vme_next
;
10009 if ((tmp_entry
->vme_start
!= src_start
) ||
10010 (tmp_entry
== vm_map_to_entry(src_map
))) {
10011 RETURN(KERN_INVALID_ADDRESS
);
10016 * If the source should be destroyed, do it now, since the
10017 * copy was successful.
10020 (void) vm_map_delete(
10022 vm_map_trunc_page(src_addr
,
10023 VM_MAP_PAGE_MASK(src_map
)),
10025 ((src_map
== kernel_map
) ?
10026 VM_MAP_REMOVE_KUNWIRE
:
10030 /* fix up the damage we did in the base map */
10031 vm_map_simplify_range(
10033 vm_map_trunc_page(src_addr
,
10034 VM_MAP_PAGE_MASK(src_map
)),
10035 vm_map_round_page(src_end
,
10036 VM_MAP_PAGE_MASK(src_map
)));
10039 vm_map_unlock(src_map
);
10041 if (VM_MAP_PAGE_SHIFT(src_map
) != PAGE_SHIFT
) {
10042 vm_map_offset_t original_start
, original_offset
, original_end
;
10044 assert(VM_MAP_COPY_PAGE_MASK(copy
) == PAGE_MASK
);
10046 /* adjust alignment of first copy_entry's "vme_start" */
10047 tmp_entry
= vm_map_copy_first_entry(copy
);
10048 if (tmp_entry
!= vm_map_copy_to_entry(copy
)) {
10049 vm_map_offset_t adjustment
;
10051 original_start
= tmp_entry
->vme_start
;
10052 original_offset
= VME_OFFSET(tmp_entry
);
10054 /* map-align the start of the first copy entry... */
10055 adjustment
= (tmp_entry
->vme_start
-
10057 tmp_entry
->vme_start
,
10058 VM_MAP_PAGE_MASK(src_map
)));
10059 tmp_entry
->vme_start
-= adjustment
;
10060 VME_OFFSET_SET(tmp_entry
,
10061 VME_OFFSET(tmp_entry
) - adjustment
);
10062 copy_addr
-= adjustment
;
10063 assert(tmp_entry
->vme_start
< tmp_entry
->vme_end
);
10064 /* ... adjust for mis-aligned start of copy range */
10066 (vm_map_trunc_page(copy
->offset
,
10068 vm_map_trunc_page(copy
->offset
,
10069 VM_MAP_PAGE_MASK(src_map
)));
10071 assert(page_aligned(adjustment
));
10072 assert(adjustment
< VM_MAP_PAGE_SIZE(src_map
));
10073 tmp_entry
->vme_start
+= adjustment
;
10074 VME_OFFSET_SET(tmp_entry
,
10075 (VME_OFFSET(tmp_entry
) +
10077 copy_addr
+= adjustment
;
10078 assert(tmp_entry
->vme_start
< tmp_entry
->vme_end
);
10082 * Assert that the adjustments haven't exposed
10083 * more than was originally copied...
10085 assert(tmp_entry
->vme_start
>= original_start
);
10086 assert(VME_OFFSET(tmp_entry
) >= original_offset
);
10088 * ... and that it did not adjust outside of a
10089 * a single 16K page.
10091 assert(vm_map_trunc_page(tmp_entry
->vme_start
,
10092 VM_MAP_PAGE_MASK(src_map
)) ==
10093 vm_map_trunc_page(original_start
,
10094 VM_MAP_PAGE_MASK(src_map
)));
10097 /* adjust alignment of last copy_entry's "vme_end" */
10098 tmp_entry
= vm_map_copy_last_entry(copy
);
10099 if (tmp_entry
!= vm_map_copy_to_entry(copy
)) {
10100 vm_map_offset_t adjustment
;
10102 original_end
= tmp_entry
->vme_end
;
10104 /* map-align the end of the last copy entry... */
10105 tmp_entry
->vme_end
=
10106 vm_map_round_page(tmp_entry
->vme_end
,
10107 VM_MAP_PAGE_MASK(src_map
));
10108 /* ... adjust for mis-aligned end of copy range */
10110 (vm_map_round_page((copy
->offset
+
10112 VM_MAP_PAGE_MASK(src_map
)) -
10113 vm_map_round_page((copy
->offset
+
10117 assert(page_aligned(adjustment
));
10118 assert(adjustment
< VM_MAP_PAGE_SIZE(src_map
));
10119 tmp_entry
->vme_end
-= adjustment
;
10120 assert(tmp_entry
->vme_start
< tmp_entry
->vme_end
);
10124 * Assert that the adjustments haven't exposed
10125 * more than was originally copied...
10127 assert(tmp_entry
->vme_end
<= original_end
);
10129 * ... and that it did not adjust outside of a
10130 * a single 16K page.
10132 assert(vm_map_round_page(tmp_entry
->vme_end
,
10133 VM_MAP_PAGE_MASK(src_map
)) ==
10134 vm_map_round_page(original_end
,
10135 VM_MAP_PAGE_MASK(src_map
)));
10139 /* Fix-up start and end points in copy. This is necessary */
10140 /* when the various entries in the copy object were picked */
10141 /* up from different sub-maps */
10143 tmp_entry
= vm_map_copy_first_entry(copy
);
10144 copy_size
= 0; /* compute actual size */
10145 while (tmp_entry
!= vm_map_copy_to_entry(copy
)) {
10146 assert(VM_MAP_PAGE_ALIGNED(
10147 copy_addr
+ (tmp_entry
->vme_end
-
10148 tmp_entry
->vme_start
),
10149 VM_MAP_COPY_PAGE_MASK(copy
)));
10150 assert(VM_MAP_PAGE_ALIGNED(
10152 VM_MAP_COPY_PAGE_MASK(copy
)));
10155 * The copy_entries will be injected directly into the
10156 * destination map and might not be "map aligned" there...
10158 tmp_entry
->map_aligned
= FALSE
;
10160 tmp_entry
->vme_end
= copy_addr
+
10161 (tmp_entry
->vme_end
- tmp_entry
->vme_start
);
10162 tmp_entry
->vme_start
= copy_addr
;
10163 assert(tmp_entry
->vme_start
< tmp_entry
->vme_end
);
10164 copy_addr
+= tmp_entry
->vme_end
- tmp_entry
->vme_start
;
10165 copy_size
+= tmp_entry
->vme_end
- tmp_entry
->vme_start
;
10166 tmp_entry
= (struct vm_map_entry
*)tmp_entry
->vme_next
;
10169 if (VM_MAP_PAGE_SHIFT(src_map
) != PAGE_SHIFT
&&
10170 copy_size
< copy
->size
) {
10172 * The actual size of the VM map copy is smaller than what
10173 * was requested by the caller. This must be because some
10174 * PAGE_SIZE-sized pages are missing at the end of the last
10175 * VM_MAP_PAGE_SIZE(src_map)-sized chunk of the range.
10176 * The caller might not have been aware of those missing
10177 * pages and might not want to be aware of it, which is
10178 * fine as long as they don't try to access (and crash on)
10179 * those missing pages.
10180 * Let's adjust the size of the "copy", to avoid failing
10181 * in vm_map_copyout() or vm_map_copy_overwrite().
10183 assert(vm_map_round_page(copy_size
,
10184 VM_MAP_PAGE_MASK(src_map
)) ==
10185 vm_map_round_page(copy
->size
,
10186 VM_MAP_PAGE_MASK(src_map
)));
10187 copy
->size
= copy_size
;
10190 *copy_result
= copy
;
10191 return(KERN_SUCCESS
);
10197 vm_map_copy_extract(
10199 vm_map_address_t src_addr
,
10201 vm_map_copy_t
*copy_result
, /* OUT */
10202 vm_prot_t
*cur_prot
, /* OUT */
10203 vm_prot_t
*max_prot
)
10205 vm_map_offset_t src_start
, src_end
;
10206 vm_map_copy_t copy
;
10210 * Check for copies of zero bytes.
10214 *copy_result
= VM_MAP_COPY_NULL
;
10215 return(KERN_SUCCESS
);
10219 * Check that the end address doesn't overflow
10221 src_end
= src_addr
+ len
;
10222 if (src_end
< src_addr
)
10223 return KERN_INVALID_ADDRESS
;
10226 * Compute (page aligned) start and end of region
10228 src_start
= vm_map_trunc_page(src_addr
, PAGE_MASK
);
10229 src_end
= vm_map_round_page(src_end
, PAGE_MASK
);
10232 * Allocate a header element for the list.
10234 * Use the start and end in the header to
10235 * remember the endpoints prior to rounding.
10238 copy
= (vm_map_copy_t
) zalloc(vm_map_copy_zone
);
10239 copy
->c_u
.hdr
.rb_head_store
.rbh_root
= (void*)(int)SKIP_RB_TREE
;
10240 vm_map_copy_first_entry(copy
) =
10241 vm_map_copy_last_entry(copy
) = vm_map_copy_to_entry(copy
);
10242 copy
->type
= VM_MAP_COPY_ENTRY_LIST
;
10243 copy
->cpy_hdr
.nentries
= 0;
10244 copy
->cpy_hdr
.entries_pageable
= TRUE
;
10246 vm_map_store_init(©
->cpy_hdr
);
10251 kr
= vm_map_remap_extract(src_map
,
10259 TRUE
, /* pageable */
10260 FALSE
); /* same_map */
10261 if (kr
!= KERN_SUCCESS
) {
10262 vm_map_copy_discard(copy
);
10266 *copy_result
= copy
;
10267 return KERN_SUCCESS
;
10271 * vm_map_copyin_object:
10273 * Create a copy object from an object.
10274 * Our caller donates an object reference.
10278 vm_map_copyin_object(
10279 vm_object_t object
,
10280 vm_object_offset_t offset
, /* offset of region in object */
10281 vm_object_size_t size
, /* size of region in object */
10282 vm_map_copy_t
*copy_result
) /* OUT */
10284 vm_map_copy_t copy
; /* Resulting copy */
10287 * We drop the object into a special copy object
10288 * that contains the object directly.
10291 copy
= (vm_map_copy_t
) zalloc(vm_map_copy_zone
);
10292 copy
->c_u
.hdr
.rb_head_store
.rbh_root
= (void*)(int)SKIP_RB_TREE
;
10293 copy
->type
= VM_MAP_COPY_OBJECT
;
10294 copy
->cpy_object
= object
;
10295 copy
->offset
= offset
;
10298 *copy_result
= copy
;
10299 return(KERN_SUCCESS
);
10305 vm_map_entry_t old_entry
,
10308 vm_object_t object
;
10309 vm_map_entry_t new_entry
;
10312 * New sharing code. New map entry
10313 * references original object. Internal
10314 * objects use asynchronous copy algorithm for
10315 * future copies. First make sure we have
10316 * the right object. If we need a shadow,
10317 * or someone else already has one, then
10318 * make a new shadow and share it.
10321 object
= VME_OBJECT(old_entry
);
10322 if (old_entry
->is_sub_map
) {
10323 assert(old_entry
->wired_count
== 0);
10324 #ifndef NO_NESTED_PMAP
10325 if(old_entry
->use_pmap
) {
10326 kern_return_t result
;
10328 result
= pmap_nest(new_map
->pmap
,
10329 (VME_SUBMAP(old_entry
))->pmap
,
10330 (addr64_t
)old_entry
->vme_start
,
10331 (addr64_t
)old_entry
->vme_start
,
10332 (uint64_t)(old_entry
->vme_end
- old_entry
->vme_start
));
10334 panic("vm_map_fork_share: pmap_nest failed!");
10336 #endif /* NO_NESTED_PMAP */
10337 } else if (object
== VM_OBJECT_NULL
) {
10338 object
= vm_object_allocate((vm_map_size_t
)(old_entry
->vme_end
-
10339 old_entry
->vme_start
));
10340 VME_OFFSET_SET(old_entry
, 0);
10341 VME_OBJECT_SET(old_entry
, object
);
10342 old_entry
->use_pmap
= TRUE
;
10343 assert(!old_entry
->needs_copy
);
10344 } else if (object
->copy_strategy
!=
10345 MEMORY_OBJECT_COPY_SYMMETRIC
) {
10348 * We are already using an asymmetric
10349 * copy, and therefore we already have
10350 * the right object.
10353 assert(! old_entry
->needs_copy
);
10355 else if (old_entry
->needs_copy
|| /* case 1 */
10356 object
->shadowed
|| /* case 2 */
10357 (!object
->true_share
&& /* case 3 */
10358 !old_entry
->is_shared
&&
10360 (vm_map_size_t
)(old_entry
->vme_end
-
10361 old_entry
->vme_start
)))) {
10364 * We need to create a shadow.
10365 * There are three cases here.
10366 * In the first case, we need to
10367 * complete a deferred symmetrical
10368 * copy that we participated in.
10369 * In the second and third cases,
10370 * we need to create the shadow so
10371 * that changes that we make to the
10372 * object do not interfere with
10373 * any symmetrical copies which
10374 * have occured (case 2) or which
10375 * might occur (case 3).
10377 * The first case is when we had
10378 * deferred shadow object creation
10379 * via the entry->needs_copy mechanism.
10380 * This mechanism only works when
10381 * only one entry points to the source
10382 * object, and we are about to create
10383 * a second entry pointing to the
10384 * same object. The problem is that
10385 * there is no way of mapping from
10386 * an object to the entries pointing
10387 * to it. (Deferred shadow creation
10388 * works with one entry because occurs
10389 * at fault time, and we walk from the
10390 * entry to the object when handling
10393 * The second case is when the object
10394 * to be shared has already been copied
10395 * with a symmetric copy, but we point
10396 * directly to the object without
10397 * needs_copy set in our entry. (This
10398 * can happen because different ranges
10399 * of an object can be pointed to by
10400 * different entries. In particular,
10401 * a single entry pointing to an object
10402 * can be split by a call to vm_inherit,
10403 * which, combined with task_create, can
10404 * result in the different entries
10405 * having different needs_copy values.)
10406 * The shadowed flag in the object allows
10407 * us to detect this case. The problem
10408 * with this case is that if this object
10409 * has or will have shadows, then we
10410 * must not perform an asymmetric copy
10411 * of this object, since such a copy
10412 * allows the object to be changed, which
10413 * will break the previous symmetrical
10414 * copies (which rely upon the object
10415 * not changing). In a sense, the shadowed
10416 * flag says "don't change this object".
10417 * We fix this by creating a shadow
10418 * object for this object, and sharing
10419 * that. This works because we are free
10420 * to change the shadow object (and thus
10421 * to use an asymmetric copy strategy);
10422 * this is also semantically correct,
10423 * since this object is temporary, and
10424 * therefore a copy of the object is
10425 * as good as the object itself. (This
10426 * is not true for permanent objects,
10427 * since the pager needs to see changes,
10428 * which won't happen if the changes
10429 * are made to a copy.)
10431 * The third case is when the object
10432 * to be shared has parts sticking
10433 * outside of the entry we're working
10434 * with, and thus may in the future
10435 * be subject to a symmetrical copy.
10436 * (This is a preemptive version of
10439 VME_OBJECT_SHADOW(old_entry
,
10440 (vm_map_size_t
) (old_entry
->vme_end
-
10441 old_entry
->vme_start
));
10444 * If we're making a shadow for other than
10445 * copy on write reasons, then we have
10446 * to remove write permission.
10449 if (!old_entry
->needs_copy
&&
10450 (old_entry
->protection
& VM_PROT_WRITE
)) {
10453 prot
= old_entry
->protection
& ~VM_PROT_WRITE
;
10455 if (override_nx(old_map
, VME_ALIAS(old_entry
)) && prot
)
10456 prot
|= VM_PROT_EXECUTE
;
10458 if (old_map
->mapped_in_other_pmaps
) {
10459 vm_object_pmap_protect(
10460 VME_OBJECT(old_entry
),
10461 VME_OFFSET(old_entry
),
10462 (old_entry
->vme_end
-
10463 old_entry
->vme_start
),
10465 old_entry
->vme_start
,
10468 pmap_protect(old_map
->pmap
,
10469 old_entry
->vme_start
,
10470 old_entry
->vme_end
,
10475 old_entry
->needs_copy
= FALSE
;
10476 object
= VME_OBJECT(old_entry
);
10481 * If object was using a symmetric copy strategy,
10482 * change its copy strategy to the default
10483 * asymmetric copy strategy, which is copy_delay
10484 * in the non-norma case and copy_call in the
10485 * norma case. Bump the reference count for the
10489 if(old_entry
->is_sub_map
) {
10490 vm_map_lock(VME_SUBMAP(old_entry
));
10491 vm_map_reference(VME_SUBMAP(old_entry
));
10492 vm_map_unlock(VME_SUBMAP(old_entry
));
10494 vm_object_lock(object
);
10495 vm_object_reference_locked(object
);
10496 if (object
->copy_strategy
== MEMORY_OBJECT_COPY_SYMMETRIC
) {
10497 object
->copy_strategy
= MEMORY_OBJECT_COPY_DELAY
;
10499 vm_object_unlock(object
);
10503 * Clone the entry, using object ref from above.
10504 * Mark both entries as shared.
10507 new_entry
= vm_map_entry_create(new_map
, FALSE
); /* Never the kernel
10508 * map or descendants */
10509 vm_map_entry_copy(new_entry
, old_entry
);
10510 old_entry
->is_shared
= TRUE
;
10511 new_entry
->is_shared
= TRUE
;
10514 * If old entry's inheritence is VM_INHERIT_NONE,
10515 * the new entry is for corpse fork, remove the
10516 * write permission from the new entry.
10518 if (old_entry
->inheritance
== VM_INHERIT_NONE
) {
10520 new_entry
->protection
&= ~VM_PROT_WRITE
;
10521 new_entry
->max_protection
&= ~VM_PROT_WRITE
;
10525 * Insert the entry into the new map -- we
10526 * know we're inserting at the end of the new
10530 vm_map_store_entry_link(new_map
, vm_map_last_entry(new_map
), new_entry
);
10533 * Update the physical map
10536 if (old_entry
->is_sub_map
) {
10537 /* Bill Angell pmap support goes here */
10539 pmap_copy(new_map
->pmap
, old_map
->pmap
, new_entry
->vme_start
,
10540 old_entry
->vme_end
- old_entry
->vme_start
,
10541 old_entry
->vme_start
);
10548 vm_map_entry_t
*old_entry_p
,
10550 int vm_map_copyin_flags
)
10552 vm_map_entry_t old_entry
= *old_entry_p
;
10553 vm_map_size_t entry_size
= old_entry
->vme_end
- old_entry
->vme_start
;
10554 vm_map_offset_t start
= old_entry
->vme_start
;
10555 vm_map_copy_t copy
;
10556 vm_map_entry_t last
= vm_map_last_entry(new_map
);
10558 vm_map_unlock(old_map
);
10560 * Use maxprot version of copyin because we
10561 * care about whether this memory can ever
10562 * be accessed, not just whether it's accessible
10565 vm_map_copyin_flags
|= VM_MAP_COPYIN_USE_MAXPROT
;
10566 if (vm_map_copyin_internal(old_map
, start
, entry_size
,
10567 vm_map_copyin_flags
, ©
)
10570 * The map might have changed while it
10571 * was unlocked, check it again. Skip
10572 * any blank space or permanently
10573 * unreadable region.
10575 vm_map_lock(old_map
);
10576 if (!vm_map_lookup_entry(old_map
, start
, &last
) ||
10577 (last
->max_protection
& VM_PROT_READ
) == VM_PROT_NONE
) {
10578 last
= last
->vme_next
;
10580 *old_entry_p
= last
;
10583 * XXX For some error returns, want to
10584 * XXX skip to the next element. Note
10585 * that INVALID_ADDRESS and
10586 * PROTECTION_FAILURE are handled above.
10593 * Insert the copy into the new map
10596 vm_map_copy_insert(new_map
, last
, copy
);
10599 * Pick up the traversal at the end of
10600 * the copied region.
10603 vm_map_lock(old_map
);
10604 start
+= entry_size
;
10605 if (! vm_map_lookup_entry(old_map
, start
, &last
)) {
10606 last
= last
->vme_next
;
10608 if (last
->vme_start
== start
) {
10610 * No need to clip here and we don't
10611 * want to cause any unnecessary
10615 vm_map_clip_start(old_map
, last
, start
);
10618 *old_entry_p
= last
;
10626 * Create and return a new map based on the old
10627 * map, according to the inheritance values on the
10628 * regions in that map and the options.
10630 * The source map must not be locked.
10640 vm_map_entry_t old_entry
;
10641 vm_map_size_t new_size
= 0, entry_size
;
10642 vm_map_entry_t new_entry
;
10643 boolean_t src_needs_copy
;
10644 boolean_t new_entry_needs_copy
;
10645 boolean_t pmap_is64bit
;
10646 int vm_map_copyin_flags
;
10648 if (options
& ~(VM_MAP_FORK_SHARE_IF_INHERIT_NONE
|
10649 VM_MAP_FORK_PRESERVE_PURGEABLE
)) {
10650 /* unsupported option */
10651 return VM_MAP_NULL
;
10655 #if defined(__i386__) || defined(__x86_64__)
10656 old_map
->pmap
->pm_task_map
!= TASK_MAP_32BIT
;
10658 #error Unknown architecture.
10661 new_pmap
= pmap_create(ledger
, (vm_map_size_t
) 0, pmap_is64bit
);
10663 vm_map_reference_swap(old_map
);
10664 vm_map_lock(old_map
);
10666 new_map
= vm_map_create(new_pmap
,
10667 old_map
->min_offset
,
10668 old_map
->max_offset
,
10669 old_map
->hdr
.entries_pageable
);
10670 vm_commit_pagezero_status(new_map
);
10671 /* inherit the parent map's page size */
10672 vm_map_set_page_shift(new_map
, VM_MAP_PAGE_SHIFT(old_map
));
10674 old_entry
= vm_map_first_entry(old_map
);
10675 old_entry
!= vm_map_to_entry(old_map
);
10678 entry_size
= old_entry
->vme_end
- old_entry
->vme_start
;
10680 switch (old_entry
->inheritance
) {
10681 case VM_INHERIT_NONE
:
10683 * Skip making a share entry if VM_MAP_FORK_SHARE_IF_INHERIT_NONE
10684 * is not passed or it is backed by a device pager.
10686 if ((!(options
& VM_MAP_FORK_SHARE_IF_INHERIT_NONE
)) ||
10687 (!old_entry
->is_sub_map
&&
10688 VME_OBJECT(old_entry
) != NULL
&&
10689 VME_OBJECT(old_entry
)->pager
!= NULL
&&
10690 is_device_pager_ops(VME_OBJECT(old_entry
)->pager
->mo_pager_ops
))) {
10695 case VM_INHERIT_SHARE
:
10696 vm_map_fork_share(old_map
, old_entry
, new_map
);
10697 new_size
+= entry_size
;
10700 case VM_INHERIT_COPY
:
10703 * Inline the copy_quickly case;
10704 * upon failure, fall back on call
10705 * to vm_map_fork_copy.
10708 if(old_entry
->is_sub_map
)
10710 if ((old_entry
->wired_count
!= 0) ||
10711 ((VME_OBJECT(old_entry
) != NULL
) &&
10712 (VME_OBJECT(old_entry
)->true_share
))) {
10713 goto slow_vm_map_fork_copy
;
10716 new_entry
= vm_map_entry_create(new_map
, FALSE
); /* never the kernel map or descendants */
10717 vm_map_entry_copy(new_entry
, old_entry
);
10718 if (new_entry
->is_sub_map
) {
10719 /* clear address space specifics */
10720 new_entry
->use_pmap
= FALSE
;
10723 if (! vm_object_copy_quickly(
10724 &VME_OBJECT(new_entry
),
10725 VME_OFFSET(old_entry
),
10726 (old_entry
->vme_end
-
10727 old_entry
->vme_start
),
10729 &new_entry_needs_copy
)) {
10730 vm_map_entry_dispose(new_map
, new_entry
);
10731 goto slow_vm_map_fork_copy
;
10735 * Handle copy-on-write obligations
10738 if (src_needs_copy
&& !old_entry
->needs_copy
) {
10741 prot
= old_entry
->protection
& ~VM_PROT_WRITE
;
10743 if (override_nx(old_map
, VME_ALIAS(old_entry
))
10745 prot
|= VM_PROT_EXECUTE
;
10747 vm_object_pmap_protect(
10748 VME_OBJECT(old_entry
),
10749 VME_OFFSET(old_entry
),
10750 (old_entry
->vme_end
-
10751 old_entry
->vme_start
),
10752 ((old_entry
->is_shared
10753 || old_map
->mapped_in_other_pmaps
)
10756 old_entry
->vme_start
,
10759 assert(old_entry
->wired_count
== 0);
10760 old_entry
->needs_copy
= TRUE
;
10762 new_entry
->needs_copy
= new_entry_needs_copy
;
10765 * Insert the entry at the end
10769 vm_map_store_entry_link(new_map
, vm_map_last_entry(new_map
),
10771 new_size
+= entry_size
;
10774 slow_vm_map_fork_copy
:
10775 vm_map_copyin_flags
= 0;
10776 if (options
& VM_MAP_FORK_PRESERVE_PURGEABLE
) {
10777 vm_map_copyin_flags
|=
10778 VM_MAP_COPYIN_PRESERVE_PURGEABLE
;
10780 if (vm_map_fork_copy(old_map
,
10783 vm_map_copyin_flags
)) {
10784 new_size
+= entry_size
;
10788 old_entry
= old_entry
->vme_next
;
10792 new_map
->size
= new_size
;
10793 vm_map_unlock(old_map
);
10794 vm_map_deallocate(old_map
);
10802 * Setup the "new_map" with the proper execution environment according
10803 * to the type of executable (platform, 64bit, chroot environment).
10804 * Map the comm page and shared region, etc...
10814 SHARED_REGION_TRACE_DEBUG(
10815 ("shared_region: task %p: vm_map_exec(%p,%p,%p,0x%x): ->\n",
10816 (void *)VM_KERNEL_ADDRPERM(current_task()),
10817 (void *)VM_KERNEL_ADDRPERM(new_map
),
10818 (void *)VM_KERNEL_ADDRPERM(task
),
10819 (void *)VM_KERNEL_ADDRPERM(fsroot
),
10821 (void) vm_commpage_enter(new_map
, task
, is64bit
);
10822 (void) vm_shared_region_enter(new_map
, task
, is64bit
, fsroot
, cpu
);
10823 SHARED_REGION_TRACE_DEBUG(
10824 ("shared_region: task %p: vm_map_exec(%p,%p,%p,0x%x): <-\n",
10825 (void *)VM_KERNEL_ADDRPERM(current_task()),
10826 (void *)VM_KERNEL_ADDRPERM(new_map
),
10827 (void *)VM_KERNEL_ADDRPERM(task
),
10828 (void *)VM_KERNEL_ADDRPERM(fsroot
),
10830 return KERN_SUCCESS
;
10834 * vm_map_lookup_locked:
10836 * Finds the VM object, offset, and
10837 * protection for a given virtual address in the
10838 * specified map, assuming a page fault of the
10841 * Returns the (object, offset, protection) for
10842 * this address, whether it is wired down, and whether
10843 * this map has the only reference to the data in question.
10844 * In order to later verify this lookup, a "version"
10847 * The map MUST be locked by the caller and WILL be
10848 * locked on exit. In order to guarantee the
10849 * existence of the returned object, it is returned
10852 * If a lookup is requested with "write protection"
10853 * specified, the map may be changed to perform virtual
10854 * copying operations, although the data referenced will
10858 vm_map_lookup_locked(
10859 vm_map_t
*var_map
, /* IN/OUT */
10860 vm_map_offset_t vaddr
,
10861 vm_prot_t fault_type
,
10862 int object_lock_type
,
10863 vm_map_version_t
*out_version
, /* OUT */
10864 vm_object_t
*object
, /* OUT */
10865 vm_object_offset_t
*offset
, /* OUT */
10866 vm_prot_t
*out_prot
, /* OUT */
10867 boolean_t
*wired
, /* OUT */
10868 vm_object_fault_info_t fault_info
, /* OUT */
10869 vm_map_t
*real_map
)
10871 vm_map_entry_t entry
;
10872 vm_map_t map
= *var_map
;
10873 vm_map_t old_map
= *var_map
;
10874 vm_map_t cow_sub_map_parent
= VM_MAP_NULL
;
10875 vm_map_offset_t cow_parent_vaddr
= 0;
10876 vm_map_offset_t old_start
= 0;
10877 vm_map_offset_t old_end
= 0;
10879 boolean_t mask_protections
;
10880 boolean_t force_copy
;
10881 vm_prot_t original_fault_type
;
10884 * VM_PROT_MASK means that the caller wants us to use "fault_type"
10885 * as a mask against the mapping's actual protections, not as an
10888 mask_protections
= (fault_type
& VM_PROT_IS_MASK
) ? TRUE
: FALSE
;
10889 force_copy
= (fault_type
& VM_PROT_COPY
) ? TRUE
: FALSE
;
10890 fault_type
&= VM_PROT_ALL
;
10891 original_fault_type
= fault_type
;
10896 fault_type
= original_fault_type
;
10899 * If the map has an interesting hint, try it before calling
10900 * full blown lookup routine.
10904 if ((entry
== vm_map_to_entry(map
)) ||
10905 (vaddr
< entry
->vme_start
) || (vaddr
>= entry
->vme_end
)) {
10906 vm_map_entry_t tmp_entry
;
10909 * Entry was either not a valid hint, or the vaddr
10910 * was not contained in the entry, so do a full lookup.
10912 if (!vm_map_lookup_entry(map
, vaddr
, &tmp_entry
)) {
10913 if((cow_sub_map_parent
) && (cow_sub_map_parent
!= map
))
10914 vm_map_unlock(cow_sub_map_parent
);
10915 if((*real_map
!= map
)
10916 && (*real_map
!= cow_sub_map_parent
))
10917 vm_map_unlock(*real_map
);
10918 return KERN_INVALID_ADDRESS
;
10923 if(map
== old_map
) {
10924 old_start
= entry
->vme_start
;
10925 old_end
= entry
->vme_end
;
10929 * Handle submaps. Drop lock on upper map, submap is
10934 if (entry
->is_sub_map
) {
10935 vm_map_offset_t local_vaddr
;
10936 vm_map_offset_t end_delta
;
10937 vm_map_offset_t start_delta
;
10938 vm_map_entry_t submap_entry
;
10939 boolean_t mapped_needs_copy
=FALSE
;
10941 local_vaddr
= vaddr
;
10943 if ((entry
->use_pmap
&&
10944 ! ((fault_type
& VM_PROT_WRITE
) ||
10946 /* if real_map equals map we unlock below */
10947 if ((*real_map
!= map
) &&
10948 (*real_map
!= cow_sub_map_parent
))
10949 vm_map_unlock(*real_map
);
10950 *real_map
= VME_SUBMAP(entry
);
10953 if(entry
->needs_copy
&&
10954 ((fault_type
& VM_PROT_WRITE
) ||
10956 if (!mapped_needs_copy
) {
10957 if (vm_map_lock_read_to_write(map
)) {
10958 vm_map_lock_read(map
);
10962 vm_map_lock_read(VME_SUBMAP(entry
));
10963 *var_map
= VME_SUBMAP(entry
);
10964 cow_sub_map_parent
= map
;
10965 /* reset base to map before cow object */
10966 /* this is the map which will accept */
10967 /* the new cow object */
10968 old_start
= entry
->vme_start
;
10969 old_end
= entry
->vme_end
;
10970 cow_parent_vaddr
= vaddr
;
10971 mapped_needs_copy
= TRUE
;
10973 vm_map_lock_read(VME_SUBMAP(entry
));
10974 *var_map
= VME_SUBMAP(entry
);
10975 if((cow_sub_map_parent
!= map
) &&
10976 (*real_map
!= map
))
10977 vm_map_unlock(map
);
10980 vm_map_lock_read(VME_SUBMAP(entry
));
10981 *var_map
= VME_SUBMAP(entry
);
10982 /* leave map locked if it is a target */
10983 /* cow sub_map above otherwise, just */
10984 /* follow the maps down to the object */
10985 /* here we unlock knowing we are not */
10986 /* revisiting the map. */
10987 if((*real_map
!= map
) && (map
!= cow_sub_map_parent
))
10988 vm_map_unlock_read(map
);
10993 /* calculate the offset in the submap for vaddr */
10994 local_vaddr
= (local_vaddr
- entry
->vme_start
) + VME_OFFSET(entry
);
10997 if(!vm_map_lookup_entry(map
, local_vaddr
, &submap_entry
)) {
10998 if((cow_sub_map_parent
) && (cow_sub_map_parent
!= map
)){
10999 vm_map_unlock(cow_sub_map_parent
);
11001 if((*real_map
!= map
)
11002 && (*real_map
!= cow_sub_map_parent
)) {
11003 vm_map_unlock(*real_map
);
11006 return KERN_INVALID_ADDRESS
;
11009 /* find the attenuated shadow of the underlying object */
11010 /* on our target map */
11012 /* in english the submap object may extend beyond the */
11013 /* region mapped by the entry or, may only fill a portion */
11014 /* of it. For our purposes, we only care if the object */
11015 /* doesn't fill. In this case the area which will */
11016 /* ultimately be clipped in the top map will only need */
11017 /* to be as big as the portion of the underlying entry */
11018 /* which is mapped */
11019 start_delta
= submap_entry
->vme_start
> VME_OFFSET(entry
) ?
11020 submap_entry
->vme_start
- VME_OFFSET(entry
) : 0;
11023 (VME_OFFSET(entry
) + start_delta
+ (old_end
- old_start
)) <=
11024 submap_entry
->vme_end
?
11025 0 : (VME_OFFSET(entry
) +
11026 (old_end
- old_start
))
11027 - submap_entry
->vme_end
;
11029 old_start
+= start_delta
;
11030 old_end
-= end_delta
;
11032 if(submap_entry
->is_sub_map
) {
11033 entry
= submap_entry
;
11034 vaddr
= local_vaddr
;
11035 goto submap_recurse
;
11038 if (((fault_type
& VM_PROT_WRITE
) ||
11040 && cow_sub_map_parent
) {
11042 vm_object_t sub_object
, copy_object
;
11043 vm_object_offset_t copy_offset
;
11044 vm_map_offset_t local_start
;
11045 vm_map_offset_t local_end
;
11046 boolean_t copied_slowly
= FALSE
;
11048 if (vm_map_lock_read_to_write(map
)) {
11049 vm_map_lock_read(map
);
11050 old_start
-= start_delta
;
11051 old_end
+= end_delta
;
11056 sub_object
= VME_OBJECT(submap_entry
);
11057 if (sub_object
== VM_OBJECT_NULL
) {
11059 vm_object_allocate(
11061 (submap_entry
->vme_end
-
11062 submap_entry
->vme_start
));
11063 VME_OBJECT_SET(submap_entry
, sub_object
);
11064 VME_OFFSET_SET(submap_entry
, 0);
11066 local_start
= local_vaddr
-
11067 (cow_parent_vaddr
- old_start
);
11068 local_end
= local_vaddr
+
11069 (old_end
- cow_parent_vaddr
);
11070 vm_map_clip_start(map
, submap_entry
, local_start
);
11071 vm_map_clip_end(map
, submap_entry
, local_end
);
11072 if (submap_entry
->is_sub_map
) {
11073 /* unnesting was done when clipping */
11074 assert(!submap_entry
->use_pmap
);
11077 /* This is the COW case, lets connect */
11078 /* an entry in our space to the underlying */
11079 /* object in the submap, bypassing the */
11083 if(submap_entry
->wired_count
!= 0 ||
11084 (sub_object
->copy_strategy
==
11085 MEMORY_OBJECT_COPY_NONE
)) {
11086 vm_object_lock(sub_object
);
11087 vm_object_copy_slowly(sub_object
,
11088 VME_OFFSET(submap_entry
),
11089 (submap_entry
->vme_end
-
11090 submap_entry
->vme_start
),
11093 copied_slowly
= TRUE
;
11096 /* set up shadow object */
11097 copy_object
= sub_object
;
11098 vm_object_lock(sub_object
);
11099 vm_object_reference_locked(sub_object
);
11100 sub_object
->shadowed
= TRUE
;
11101 vm_object_unlock(sub_object
);
11103 assert(submap_entry
->wired_count
== 0);
11104 submap_entry
->needs_copy
= TRUE
;
11106 prot
= submap_entry
->protection
& ~VM_PROT_WRITE
;
11108 if (override_nx(old_map
,
11109 VME_ALIAS(submap_entry
))
11111 prot
|= VM_PROT_EXECUTE
;
11113 vm_object_pmap_protect(
11115 VME_OFFSET(submap_entry
),
11116 submap_entry
->vme_end
-
11117 submap_entry
->vme_start
,
11118 (submap_entry
->is_shared
11119 || map
->mapped_in_other_pmaps
) ?
11120 PMAP_NULL
: map
->pmap
,
11121 submap_entry
->vme_start
,
11126 * Adjust the fault offset to the submap entry.
11128 copy_offset
= (local_vaddr
-
11129 submap_entry
->vme_start
+
11130 VME_OFFSET(submap_entry
));
11132 /* This works diffently than the */
11133 /* normal submap case. We go back */
11134 /* to the parent of the cow map and*/
11135 /* clip out the target portion of */
11136 /* the sub_map, substituting the */
11137 /* new copy object, */
11139 vm_map_unlock(map
);
11140 local_start
= old_start
;
11141 local_end
= old_end
;
11142 map
= cow_sub_map_parent
;
11143 *var_map
= cow_sub_map_parent
;
11144 vaddr
= cow_parent_vaddr
;
11145 cow_sub_map_parent
= NULL
;
11147 if(!vm_map_lookup_entry(map
,
11149 vm_object_deallocate(
11151 vm_map_lock_write_to_read(map
);
11152 return KERN_INVALID_ADDRESS
;
11155 /* clip out the portion of space */
11156 /* mapped by the sub map which */
11157 /* corresponds to the underlying */
11161 * Clip (and unnest) the smallest nested chunk
11162 * possible around the faulting address...
11164 local_start
= vaddr
& ~(pmap_nesting_size_min
- 1);
11165 local_end
= local_start
+ pmap_nesting_size_min
;
11167 * ... but don't go beyond the "old_start" to "old_end"
11168 * range, to avoid spanning over another VM region
11169 * with a possibly different VM object and/or offset.
11171 if (local_start
< old_start
) {
11172 local_start
= old_start
;
11174 if (local_end
> old_end
) {
11175 local_end
= old_end
;
11178 * Adjust copy_offset to the start of the range.
11180 copy_offset
-= (vaddr
- local_start
);
11182 vm_map_clip_start(map
, entry
, local_start
);
11183 vm_map_clip_end(map
, entry
, local_end
);
11184 if (entry
->is_sub_map
) {
11185 /* unnesting was done when clipping */
11186 assert(!entry
->use_pmap
);
11189 /* substitute copy object for */
11190 /* shared map entry */
11191 vm_map_deallocate(VME_SUBMAP(entry
));
11192 assert(!entry
->iokit_acct
);
11193 entry
->is_sub_map
= FALSE
;
11194 entry
->use_pmap
= TRUE
;
11195 VME_OBJECT_SET(entry
, copy_object
);
11197 /* propagate the submap entry's protections */
11198 entry
->protection
|= submap_entry
->protection
;
11199 entry
->max_protection
|= submap_entry
->max_protection
;
11201 if(copied_slowly
) {
11202 VME_OFFSET_SET(entry
, local_start
- old_start
);
11203 entry
->needs_copy
= FALSE
;
11204 entry
->is_shared
= FALSE
;
11206 VME_OFFSET_SET(entry
, copy_offset
);
11207 assert(entry
->wired_count
== 0);
11208 entry
->needs_copy
= TRUE
;
11209 if(entry
->inheritance
== VM_INHERIT_SHARE
)
11210 entry
->inheritance
= VM_INHERIT_COPY
;
11211 if (map
!= old_map
)
11212 entry
->is_shared
= TRUE
;
11214 if(entry
->inheritance
== VM_INHERIT_SHARE
)
11215 entry
->inheritance
= VM_INHERIT_COPY
;
11217 vm_map_lock_write_to_read(map
);
11219 if((cow_sub_map_parent
)
11220 && (cow_sub_map_parent
!= *real_map
)
11221 && (cow_sub_map_parent
!= map
)) {
11222 vm_map_unlock(cow_sub_map_parent
);
11224 entry
= submap_entry
;
11225 vaddr
= local_vaddr
;
11230 * Check whether this task is allowed to have
11234 prot
= entry
->protection
;
11236 if (override_nx(old_map
, VME_ALIAS(entry
)) && prot
) {
11238 * HACK -- if not a stack, then allow execution
11240 prot
|= VM_PROT_EXECUTE
;
11243 if (mask_protections
) {
11244 fault_type
&= prot
;
11245 if (fault_type
== VM_PROT_NONE
) {
11246 goto protection_failure
;
11249 if (((fault_type
& prot
) != fault_type
)
11251 protection_failure
:
11252 if (*real_map
!= map
) {
11253 vm_map_unlock(*real_map
);
11257 if ((fault_type
& VM_PROT_EXECUTE
) && prot
)
11258 log_stack_execution_failure((addr64_t
)vaddr
, prot
);
11260 DTRACE_VM2(prot_fault
, int, 1, (uint64_t *), NULL
);
11261 return KERN_PROTECTION_FAILURE
;
11265 * If this page is not pageable, we have to get
11266 * it for all possible accesses.
11269 *wired
= (entry
->wired_count
!= 0);
11274 * If the entry was copy-on-write, we either ...
11277 if (entry
->needs_copy
) {
11279 * If we want to write the page, we may as well
11280 * handle that now since we've got the map locked.
11282 * If we don't need to write the page, we just
11283 * demote the permissions allowed.
11286 if ((fault_type
& VM_PROT_WRITE
) || *wired
|| force_copy
) {
11288 * Make a new object, and place it in the
11289 * object chain. Note that no new references
11290 * have appeared -- one just moved from the
11291 * map to the new object.
11294 if (vm_map_lock_read_to_write(map
)) {
11295 vm_map_lock_read(map
);
11299 if (VME_OBJECT(entry
)->shadowed
== FALSE
) {
11300 vm_object_lock(VME_OBJECT(entry
));
11301 VME_OBJECT(entry
)->shadowed
= TRUE
;
11302 vm_object_unlock(VME_OBJECT(entry
));
11304 VME_OBJECT_SHADOW(entry
,
11305 (vm_map_size_t
) (entry
->vme_end
-
11306 entry
->vme_start
));
11307 entry
->needs_copy
= FALSE
;
11309 vm_map_lock_write_to_read(map
);
11311 if ((fault_type
& VM_PROT_WRITE
) == 0 && *wired
== 0) {
11313 * We're attempting to read a copy-on-write
11314 * page -- don't allow writes.
11317 prot
&= (~VM_PROT_WRITE
);
11322 * Create an object if necessary.
11324 if (VME_OBJECT(entry
) == VM_OBJECT_NULL
) {
11326 if (vm_map_lock_read_to_write(map
)) {
11327 vm_map_lock_read(map
);
11331 VME_OBJECT_SET(entry
,
11332 vm_object_allocate(
11333 (vm_map_size_t
)(entry
->vme_end
-
11334 entry
->vme_start
)));
11335 VME_OFFSET_SET(entry
, 0);
11336 vm_map_lock_write_to_read(map
);
11340 * Return the object/offset from this entry. If the entry
11341 * was copy-on-write or empty, it has been fixed up. Also
11342 * return the protection.
11345 *offset
= (vaddr
- entry
->vme_start
) + VME_OFFSET(entry
);
11346 *object
= VME_OBJECT(entry
);
11350 fault_info
->interruptible
= THREAD_UNINT
; /* for now... */
11351 /* ... the caller will change "interruptible" if needed */
11352 fault_info
->cluster_size
= 0;
11353 fault_info
->user_tag
= VME_ALIAS(entry
);
11354 fault_info
->pmap_options
= 0;
11355 if (entry
->iokit_acct
||
11356 (!entry
->is_sub_map
&& !entry
->use_pmap
)) {
11357 fault_info
->pmap_options
|= PMAP_OPTIONS_ALT_ACCT
;
11359 fault_info
->behavior
= entry
->behavior
;
11360 fault_info
->lo_offset
= VME_OFFSET(entry
);
11361 fault_info
->hi_offset
=
11362 (entry
->vme_end
- entry
->vme_start
) + VME_OFFSET(entry
);
11363 fault_info
->no_cache
= entry
->no_cache
;
11364 fault_info
->stealth
= FALSE
;
11365 fault_info
->io_sync
= FALSE
;
11366 if (entry
->used_for_jit
||
11367 entry
->vme_resilient_codesign
) {
11368 fault_info
->cs_bypass
= TRUE
;
11370 fault_info
->cs_bypass
= FALSE
;
11372 fault_info
->mark_zf_absent
= FALSE
;
11373 fault_info
->batch_pmap_op
= FALSE
;
11377 * Lock the object to prevent it from disappearing
11379 if (object_lock_type
== OBJECT_LOCK_EXCLUSIVE
)
11380 vm_object_lock(*object
);
11382 vm_object_lock_shared(*object
);
11385 * Save the version number
11388 out_version
->main_timestamp
= map
->timestamp
;
11390 return KERN_SUCCESS
;
11397 * Verifies that the map in question has not changed
11398 * since the given version. If successful, the map
11399 * will not change until vm_map_verify_done() is called.
11404 vm_map_version_t
*version
) /* REF */
11408 vm_map_lock_read(map
);
11409 result
= (map
->timestamp
== version
->main_timestamp
);
11412 vm_map_unlock_read(map
);
11418 * vm_map_verify_done:
11420 * Releases locks acquired by a vm_map_verify.
11422 * This is now a macro in vm/vm_map.h. It does a
11423 * vm_map_unlock_read on the map.
11428 * TEMPORARYTEMPORARYTEMPORARYTEMPORARYTEMPORARYTEMPORARY
11429 * Goes away after regular vm_region_recurse function migrates to
11431 * vm_region_recurse: A form of vm_region which follows the
11432 * submaps in a target map
11436 #if DEVELOPMENT || DEBUG
11437 int vm_region_footprint
= 0;
11438 #endif /* DEVELOPMENT || DEBUG */
11441 vm_map_region_recurse_64(
11443 vm_map_offset_t
*address
, /* IN/OUT */
11444 vm_map_size_t
*size
, /* OUT */
11445 natural_t
*nesting_depth
, /* IN/OUT */
11446 vm_region_submap_info_64_t submap_info
, /* IN/OUT */
11447 mach_msg_type_number_t
*count
) /* IN/OUT */
11449 mach_msg_type_number_t original_count
;
11450 vm_region_extended_info_data_t extended
;
11451 vm_map_entry_t tmp_entry
;
11452 vm_map_offset_t user_address
;
11453 unsigned int user_max_depth
;
11456 * "curr_entry" is the VM map entry preceding or including the
11457 * address we're looking for.
11458 * "curr_map" is the map or sub-map containing "curr_entry".
11459 * "curr_address" is the equivalent of the top map's "user_address"
11460 * in the current map.
11461 * "curr_offset" is the cumulated offset of "curr_map" in the
11462 * target task's address space.
11463 * "curr_depth" is the depth of "curr_map" in the chain of
11466 * "curr_max_below" and "curr_max_above" limit the range (around
11467 * "curr_address") we should take into account in the current (sub)map.
11468 * They limit the range to what's visible through the map entries
11469 * we've traversed from the top map to the current map.
11472 vm_map_entry_t curr_entry
;
11473 vm_map_address_t curr_address
;
11474 vm_map_offset_t curr_offset
;
11476 unsigned int curr_depth
;
11477 vm_map_offset_t curr_max_below
, curr_max_above
;
11478 vm_map_offset_t curr_skip
;
11481 * "next_" is the same as "curr_" but for the VM region immediately
11482 * after the address we're looking for. We need to keep track of this
11483 * too because we want to return info about that region if the
11484 * address we're looking for is not mapped.
11486 vm_map_entry_t next_entry
;
11487 vm_map_offset_t next_offset
;
11488 vm_map_offset_t next_address
;
11490 unsigned int next_depth
;
11491 vm_map_offset_t next_max_below
, next_max_above
;
11492 vm_map_offset_t next_skip
;
11494 boolean_t look_for_pages
;
11495 vm_region_submap_short_info_64_t short_info
;
11497 if (map
== VM_MAP_NULL
) {
11498 /* no address space to work on */
11499 return KERN_INVALID_ARGUMENT
;
11503 if (*count
< VM_REGION_SUBMAP_SHORT_INFO_COUNT_64
) {
11505 * "info" structure is not big enough and
11508 return KERN_INVALID_ARGUMENT
;
11511 original_count
= *count
;
11513 if (original_count
< VM_REGION_SUBMAP_INFO_V0_COUNT_64
) {
11514 *count
= VM_REGION_SUBMAP_SHORT_INFO_COUNT_64
;
11515 look_for_pages
= FALSE
;
11516 short_info
= (vm_region_submap_short_info_64_t
) submap_info
;
11517 submap_info
= NULL
;
11519 look_for_pages
= TRUE
;
11520 *count
= VM_REGION_SUBMAP_INFO_V0_COUNT_64
;
11523 if (original_count
>= VM_REGION_SUBMAP_INFO_V1_COUNT_64
) {
11524 *count
= VM_REGION_SUBMAP_INFO_V1_COUNT_64
;
11528 user_address
= *address
;
11529 user_max_depth
= *nesting_depth
;
11532 vm_map_lock_read(map
);
11538 curr_address
= user_address
;
11542 curr_max_above
= ((vm_map_offset_t
) -1) - curr_address
;
11543 curr_max_below
= curr_address
;
11551 next_max_above
= (vm_map_offset_t
) -1;
11552 next_max_below
= (vm_map_offset_t
) -1;
11555 if (vm_map_lookup_entry(curr_map
,
11558 /* tmp_entry contains the address we're looking for */
11559 curr_entry
= tmp_entry
;
11561 vm_map_offset_t skip
;
11563 * The address is not mapped. "tmp_entry" is the
11564 * map entry preceding the address. We want the next
11565 * one, if it exists.
11567 curr_entry
= tmp_entry
->vme_next
;
11569 if (curr_entry
== vm_map_to_entry(curr_map
) ||
11570 (curr_entry
->vme_start
>=
11571 curr_address
+ curr_max_above
)) {
11572 /* no next entry at this level: stop looking */
11574 vm_map_unlock_read(curr_map
);
11581 curr_max_above
= 0;
11582 curr_max_below
= 0;
11586 /* adjust current address and offset */
11587 skip
= curr_entry
->vme_start
- curr_address
;
11588 curr_address
= curr_entry
->vme_start
;
11590 curr_offset
+= skip
;
11591 curr_max_above
-= skip
;
11592 curr_max_below
= 0;
11596 * Is the next entry at this level closer to the address (or
11597 * deeper in the submap chain) than the one we had
11600 tmp_entry
= curr_entry
->vme_next
;
11601 if (tmp_entry
== vm_map_to_entry(curr_map
)) {
11602 /* no next entry at this level */
11603 } else if (tmp_entry
->vme_start
>=
11604 curr_address
+ curr_max_above
) {
11606 * tmp_entry is beyond the scope of what we mapped of
11607 * this submap in the upper level: ignore it.
11609 } else if ((next_entry
== NULL
) ||
11610 (tmp_entry
->vme_start
+ curr_offset
<=
11611 next_entry
->vme_start
+ next_offset
)) {
11613 * We didn't have a "next_entry" or this one is
11614 * closer to the address we're looking for:
11615 * use this "tmp_entry" as the new "next_entry".
11617 if (next_entry
!= NULL
) {
11618 /* unlock the last "next_map" */
11619 if (next_map
!= curr_map
&& not_in_kdp
) {
11620 vm_map_unlock_read(next_map
);
11623 next_entry
= tmp_entry
;
11624 next_map
= curr_map
;
11625 next_depth
= curr_depth
;
11626 next_address
= next_entry
->vme_start
;
11627 next_skip
= curr_skip
;
11628 next_skip
+= (next_address
- curr_address
);
11629 next_offset
= curr_offset
;
11630 next_offset
+= (next_address
- curr_address
);
11631 next_max_above
= MIN(next_max_above
, curr_max_above
);
11632 next_max_above
= MIN(next_max_above
,
11633 next_entry
->vme_end
- next_address
);
11634 next_max_below
= MIN(next_max_below
, curr_max_below
);
11635 next_max_below
= MIN(next_max_below
,
11636 next_address
- next_entry
->vme_start
);
11640 * "curr_max_{above,below}" allow us to keep track of the
11641 * portion of the submap that is actually mapped at this level:
11642 * the rest of that submap is irrelevant to us, since it's not
11644 * The relevant portion of the map starts at
11645 * "VME_OFFSET(curr_entry)" up to the size of "curr_entry".
11647 curr_max_above
= MIN(curr_max_above
,
11648 curr_entry
->vme_end
- curr_address
);
11649 curr_max_below
= MIN(curr_max_below
,
11650 curr_address
- curr_entry
->vme_start
);
11652 if (!curr_entry
->is_sub_map
||
11653 curr_depth
>= user_max_depth
) {
11655 * We hit a leaf map or we reached the maximum depth
11656 * we could, so stop looking. Keep the current map
11663 * Get down to the next submap level.
11667 * Lock the next level and unlock the current level,
11668 * unless we need to keep it locked to access the "next_entry"
11672 vm_map_lock_read(VME_SUBMAP(curr_entry
));
11674 if (curr_map
== next_map
) {
11675 /* keep "next_map" locked in case we need it */
11677 /* release this map */
11679 vm_map_unlock_read(curr_map
);
11683 * Adjust the offset. "curr_entry" maps the submap
11684 * at relative address "curr_entry->vme_start" in the
11685 * curr_map but skips the first "VME_OFFSET(curr_entry)"
11686 * bytes of the submap.
11687 * "curr_offset" always represents the offset of a virtual
11688 * address in the curr_map relative to the absolute address
11689 * space (i.e. the top-level VM map).
11692 (VME_OFFSET(curr_entry
) - curr_entry
->vme_start
);
11693 curr_address
= user_address
+ curr_offset
;
11694 /* switch to the submap */
11695 curr_map
= VME_SUBMAP(curr_entry
);
11700 if (curr_entry
== NULL
) {
11701 /* no VM region contains the address... */
11702 #if DEVELOPMENT || DEBUG
11703 if (vm_region_footprint
&& /* we want footprint numbers */
11704 look_for_pages
&& /* & we want page counts */
11705 next_entry
== NULL
&& /* & there are no more regions */
11706 /* & we haven't already provided our fake region: */
11707 user_address
== vm_map_last_entry(map
)->vme_end
) {
11708 ledger_amount_t nonvol
, nonvol_compressed
;
11710 * Add a fake memory region to account for
11711 * purgeable memory that counts towards this
11712 * task's memory footprint, i.e. the resident
11713 * compressed pages of non-volatile objects
11714 * owned by that task.
11716 ledger_get_balance(
11718 task_ledgers
.purgeable_nonvolatile
,
11720 ledger_get_balance(
11722 task_ledgers
.purgeable_nonvolatile_compressed
,
11723 &nonvol_compressed
);
11724 if (nonvol
+ nonvol_compressed
== 0) {
11725 /* no purgeable memory usage to report */
11726 return KERN_FAILURE
;
11728 /* fake region to show nonvolatile footprint */
11729 submap_info
->protection
= VM_PROT_DEFAULT
;
11730 submap_info
->max_protection
= VM_PROT_DEFAULT
;
11731 submap_info
->inheritance
= VM_INHERIT_DEFAULT
;
11732 submap_info
->offset
= 0;
11733 submap_info
->user_tag
= 0;
11734 submap_info
->pages_resident
= (unsigned int) (nonvol
/ PAGE_SIZE
);
11735 submap_info
->pages_shared_now_private
= 0;
11736 submap_info
->pages_swapped_out
= (unsigned int) (nonvol_compressed
/ PAGE_SIZE
);
11737 submap_info
->pages_dirtied
= submap_info
->pages_resident
;
11738 submap_info
->ref_count
= 1;
11739 submap_info
->shadow_depth
= 0;
11740 submap_info
->external_pager
= 0;
11741 submap_info
->share_mode
= SM_PRIVATE
;
11742 submap_info
->is_submap
= 0;
11743 submap_info
->behavior
= VM_BEHAVIOR_DEFAULT
;
11744 submap_info
->object_id
= 0x11111111;
11745 submap_info
->user_wired_count
= 0;
11746 submap_info
->pages_reusable
= 0;
11747 *nesting_depth
= 0;
11748 *size
= (vm_map_size_t
) (nonvol
+ nonvol_compressed
);
11749 *address
= user_address
;
11750 return KERN_SUCCESS
;
11752 #endif /* DEVELOPMENT || DEBUG */
11753 if (next_entry
== NULL
) {
11754 /* ... and no VM region follows it either */
11755 return KERN_INVALID_ADDRESS
;
11757 /* ... gather info about the next VM region */
11758 curr_entry
= next_entry
;
11759 curr_map
= next_map
; /* still locked ... */
11760 curr_address
= next_address
;
11761 curr_skip
= next_skip
;
11762 curr_offset
= next_offset
;
11763 curr_depth
= next_depth
;
11764 curr_max_above
= next_max_above
;
11765 curr_max_below
= next_max_below
;
11767 /* we won't need "next_entry" after all */
11768 if (next_entry
!= NULL
) {
11769 /* release "next_map" */
11770 if (next_map
!= curr_map
&& not_in_kdp
) {
11771 vm_map_unlock_read(next_map
);
11780 next_max_below
= -1;
11781 next_max_above
= -1;
11783 if (curr_entry
->is_sub_map
&&
11784 curr_depth
< user_max_depth
) {
11786 * We're not as deep as we could be: we must have
11787 * gone back up after not finding anything mapped
11788 * below the original top-level map entry's.
11789 * Let's move "curr_address" forward and recurse again.
11791 user_address
= curr_address
;
11792 goto recurse_again
;
11795 *nesting_depth
= curr_depth
;
11796 *size
= curr_max_above
+ curr_max_below
;
11797 *address
= user_address
+ curr_skip
- curr_max_below
;
11799 // LP64todo: all the current tools are 32bit, obviously never worked for 64b
11800 // so probably should be a real 32b ID vs. ptr.
11801 // Current users just check for equality
11802 #define INFO_MAKE_OBJECT_ID(p) ((uint32_t)(uintptr_t)VM_KERNEL_ADDRPERM(p))
11804 if (look_for_pages
) {
11805 submap_info
->user_tag
= VME_ALIAS(curr_entry
);
11806 submap_info
->offset
= VME_OFFSET(curr_entry
);
11807 submap_info
->protection
= curr_entry
->protection
;
11808 submap_info
->inheritance
= curr_entry
->inheritance
;
11809 submap_info
->max_protection
= curr_entry
->max_protection
;
11810 submap_info
->behavior
= curr_entry
->behavior
;
11811 submap_info
->user_wired_count
= curr_entry
->user_wired_count
;
11812 submap_info
->is_submap
= curr_entry
->is_sub_map
;
11813 submap_info
->object_id
= INFO_MAKE_OBJECT_ID(VME_OBJECT(curr_entry
));
11815 short_info
->user_tag
= VME_ALIAS(curr_entry
);
11816 short_info
->offset
= VME_OFFSET(curr_entry
);
11817 short_info
->protection
= curr_entry
->protection
;
11818 short_info
->inheritance
= curr_entry
->inheritance
;
11819 short_info
->max_protection
= curr_entry
->max_protection
;
11820 short_info
->behavior
= curr_entry
->behavior
;
11821 short_info
->user_wired_count
= curr_entry
->user_wired_count
;
11822 short_info
->is_submap
= curr_entry
->is_sub_map
;
11823 short_info
->object_id
= INFO_MAKE_OBJECT_ID(VME_OBJECT(curr_entry
));
11826 extended
.pages_resident
= 0;
11827 extended
.pages_swapped_out
= 0;
11828 extended
.pages_shared_now_private
= 0;
11829 extended
.pages_dirtied
= 0;
11830 extended
.pages_reusable
= 0;
11831 extended
.external_pager
= 0;
11832 extended
.shadow_depth
= 0;
11833 extended
.share_mode
= SM_EMPTY
;
11834 extended
.ref_count
= 0;
11837 if (!curr_entry
->is_sub_map
) {
11838 vm_map_offset_t range_start
, range_end
;
11839 range_start
= MAX((curr_address
- curr_max_below
),
11840 curr_entry
->vme_start
);
11841 range_end
= MIN((curr_address
+ curr_max_above
),
11842 curr_entry
->vme_end
);
11843 vm_map_region_walk(curr_map
,
11846 (VME_OFFSET(curr_entry
) +
11848 curr_entry
->vme_start
)),
11849 range_end
- range_start
,
11851 look_for_pages
, VM_REGION_EXTENDED_INFO_COUNT
);
11852 if (extended
.external_pager
&&
11853 extended
.ref_count
== 2 &&
11854 extended
.share_mode
== SM_SHARED
) {
11855 extended
.share_mode
= SM_PRIVATE
;
11858 if (curr_entry
->use_pmap
) {
11859 extended
.share_mode
= SM_TRUESHARED
;
11861 extended
.share_mode
= SM_PRIVATE
;
11863 extended
.ref_count
= VME_SUBMAP(curr_entry
)->ref_count
;
11867 if (look_for_pages
) {
11868 submap_info
->pages_resident
= extended
.pages_resident
;
11869 submap_info
->pages_swapped_out
= extended
.pages_swapped_out
;
11870 submap_info
->pages_shared_now_private
=
11871 extended
.pages_shared_now_private
;
11872 submap_info
->pages_dirtied
= extended
.pages_dirtied
;
11873 submap_info
->external_pager
= extended
.external_pager
;
11874 submap_info
->shadow_depth
= extended
.shadow_depth
;
11875 submap_info
->share_mode
= extended
.share_mode
;
11876 submap_info
->ref_count
= extended
.ref_count
;
11878 if (original_count
>= VM_REGION_SUBMAP_INFO_V1_COUNT_64
) {
11879 submap_info
->pages_reusable
= extended
.pages_reusable
;
11882 short_info
->external_pager
= extended
.external_pager
;
11883 short_info
->shadow_depth
= extended
.shadow_depth
;
11884 short_info
->share_mode
= extended
.share_mode
;
11885 short_info
->ref_count
= extended
.ref_count
;
11889 vm_map_unlock_read(curr_map
);
11892 return KERN_SUCCESS
;
11898 * User call to obtain information about a region in
11899 * a task's address map. Currently, only one flavor is
11902 * XXX The reserved and behavior fields cannot be filled
11903 * in until the vm merge from the IK is completed, and
11904 * vm_reserve is implemented.
11910 vm_map_offset_t
*address
, /* IN/OUT */
11911 vm_map_size_t
*size
, /* OUT */
11912 vm_region_flavor_t flavor
, /* IN */
11913 vm_region_info_t info
, /* OUT */
11914 mach_msg_type_number_t
*count
, /* IN/OUT */
11915 mach_port_t
*object_name
) /* OUT */
11917 vm_map_entry_t tmp_entry
;
11918 vm_map_entry_t entry
;
11919 vm_map_offset_t start
;
11921 if (map
== VM_MAP_NULL
)
11922 return(KERN_INVALID_ARGUMENT
);
11926 case VM_REGION_BASIC_INFO
:
11927 /* legacy for old 32-bit objects info */
11929 vm_region_basic_info_t basic
;
11931 if (*count
< VM_REGION_BASIC_INFO_COUNT
)
11932 return(KERN_INVALID_ARGUMENT
);
11934 basic
= (vm_region_basic_info_t
) info
;
11935 *count
= VM_REGION_BASIC_INFO_COUNT
;
11937 vm_map_lock_read(map
);
11940 if (!vm_map_lookup_entry(map
, start
, &tmp_entry
)) {
11941 if ((entry
= tmp_entry
->vme_next
) == vm_map_to_entry(map
)) {
11942 vm_map_unlock_read(map
);
11943 return(KERN_INVALID_ADDRESS
);
11949 start
= entry
->vme_start
;
11951 basic
->offset
= (uint32_t)VME_OFFSET(entry
);
11952 basic
->protection
= entry
->protection
;
11953 basic
->inheritance
= entry
->inheritance
;
11954 basic
->max_protection
= entry
->max_protection
;
11955 basic
->behavior
= entry
->behavior
;
11956 basic
->user_wired_count
= entry
->user_wired_count
;
11957 basic
->reserved
= entry
->is_sub_map
;
11959 *size
= (entry
->vme_end
- start
);
11961 if (object_name
) *object_name
= IP_NULL
;
11962 if (entry
->is_sub_map
) {
11963 basic
->shared
= FALSE
;
11965 basic
->shared
= entry
->is_shared
;
11968 vm_map_unlock_read(map
);
11969 return(KERN_SUCCESS
);
11972 case VM_REGION_BASIC_INFO_64
:
11974 vm_region_basic_info_64_t basic
;
11976 if (*count
< VM_REGION_BASIC_INFO_COUNT_64
)
11977 return(KERN_INVALID_ARGUMENT
);
11979 basic
= (vm_region_basic_info_64_t
) info
;
11980 *count
= VM_REGION_BASIC_INFO_COUNT_64
;
11982 vm_map_lock_read(map
);
11985 if (!vm_map_lookup_entry(map
, start
, &tmp_entry
)) {
11986 if ((entry
= tmp_entry
->vme_next
) == vm_map_to_entry(map
)) {
11987 vm_map_unlock_read(map
);
11988 return(KERN_INVALID_ADDRESS
);
11994 start
= entry
->vme_start
;
11996 basic
->offset
= VME_OFFSET(entry
);
11997 basic
->protection
= entry
->protection
;
11998 basic
->inheritance
= entry
->inheritance
;
11999 basic
->max_protection
= entry
->max_protection
;
12000 basic
->behavior
= entry
->behavior
;
12001 basic
->user_wired_count
= entry
->user_wired_count
;
12002 basic
->reserved
= entry
->is_sub_map
;
12004 *size
= (entry
->vme_end
- start
);
12006 if (object_name
) *object_name
= IP_NULL
;
12007 if (entry
->is_sub_map
) {
12008 basic
->shared
= FALSE
;
12010 basic
->shared
= entry
->is_shared
;
12013 vm_map_unlock_read(map
);
12014 return(KERN_SUCCESS
);
12016 case VM_REGION_EXTENDED_INFO
:
12017 if (*count
< VM_REGION_EXTENDED_INFO_COUNT
)
12018 return(KERN_INVALID_ARGUMENT
);
12020 case VM_REGION_EXTENDED_INFO__legacy
:
12021 if (*count
< VM_REGION_EXTENDED_INFO_COUNT__legacy
)
12022 return KERN_INVALID_ARGUMENT
;
12025 vm_region_extended_info_t extended
;
12026 mach_msg_type_number_t original_count
;
12028 extended
= (vm_region_extended_info_t
) info
;
12030 vm_map_lock_read(map
);
12033 if (!vm_map_lookup_entry(map
, start
, &tmp_entry
)) {
12034 if ((entry
= tmp_entry
->vme_next
) == vm_map_to_entry(map
)) {
12035 vm_map_unlock_read(map
);
12036 return(KERN_INVALID_ADDRESS
);
12041 start
= entry
->vme_start
;
12043 extended
->protection
= entry
->protection
;
12044 extended
->user_tag
= VME_ALIAS(entry
);
12045 extended
->pages_resident
= 0;
12046 extended
->pages_swapped_out
= 0;
12047 extended
->pages_shared_now_private
= 0;
12048 extended
->pages_dirtied
= 0;
12049 extended
->external_pager
= 0;
12050 extended
->shadow_depth
= 0;
12052 original_count
= *count
;
12053 if (flavor
== VM_REGION_EXTENDED_INFO__legacy
) {
12054 *count
= VM_REGION_EXTENDED_INFO_COUNT__legacy
;
12056 extended
->pages_reusable
= 0;
12057 *count
= VM_REGION_EXTENDED_INFO_COUNT
;
12060 vm_map_region_walk(map
, start
, entry
, VME_OFFSET(entry
), entry
->vme_end
- start
, extended
, TRUE
, *count
);
12062 if (extended
->external_pager
&& extended
->ref_count
== 2 && extended
->share_mode
== SM_SHARED
)
12063 extended
->share_mode
= SM_PRIVATE
;
12066 *object_name
= IP_NULL
;
12068 *size
= (entry
->vme_end
- start
);
12070 vm_map_unlock_read(map
);
12071 return(KERN_SUCCESS
);
12073 case VM_REGION_TOP_INFO
:
12075 vm_region_top_info_t top
;
12077 if (*count
< VM_REGION_TOP_INFO_COUNT
)
12078 return(KERN_INVALID_ARGUMENT
);
12080 top
= (vm_region_top_info_t
) info
;
12081 *count
= VM_REGION_TOP_INFO_COUNT
;
12083 vm_map_lock_read(map
);
12086 if (!vm_map_lookup_entry(map
, start
, &tmp_entry
)) {
12087 if ((entry
= tmp_entry
->vme_next
) == vm_map_to_entry(map
)) {
12088 vm_map_unlock_read(map
);
12089 return(KERN_INVALID_ADDRESS
);
12095 start
= entry
->vme_start
;
12097 top
->private_pages_resident
= 0;
12098 top
->shared_pages_resident
= 0;
12100 vm_map_region_top_walk(entry
, top
);
12103 *object_name
= IP_NULL
;
12105 *size
= (entry
->vme_end
- start
);
12107 vm_map_unlock_read(map
);
12108 return(KERN_SUCCESS
);
12111 return(KERN_INVALID_ARGUMENT
);
12115 #define OBJ_RESIDENT_COUNT(obj, entry_size) \
12116 MIN((entry_size), \
12117 ((obj)->all_reusable ? \
12118 (obj)->wired_page_count : \
12119 (obj)->resident_page_count - (obj)->reusable_page_count))
12122 vm_map_region_top_walk(
12123 vm_map_entry_t entry
,
12124 vm_region_top_info_t top
)
12127 if (VME_OBJECT(entry
) == 0 || entry
->is_sub_map
) {
12128 top
->share_mode
= SM_EMPTY
;
12129 top
->ref_count
= 0;
12135 struct vm_object
*obj
, *tmp_obj
;
12137 uint32_t entry_size
;
12139 entry_size
= (uint32_t) ((entry
->vme_end
- entry
->vme_start
) / PAGE_SIZE_64
);
12141 obj
= VME_OBJECT(entry
);
12143 vm_object_lock(obj
);
12145 if ((ref_count
= obj
->ref_count
) > 1 && obj
->paging_in_progress
)
12148 assert(obj
->reusable_page_count
<= obj
->resident_page_count
);
12150 if (ref_count
== 1)
12151 top
->private_pages_resident
=
12152 OBJ_RESIDENT_COUNT(obj
, entry_size
);
12154 top
->shared_pages_resident
=
12155 OBJ_RESIDENT_COUNT(obj
, entry_size
);
12156 top
->ref_count
= ref_count
;
12157 top
->share_mode
= SM_COW
;
12159 while ((tmp_obj
= obj
->shadow
)) {
12160 vm_object_lock(tmp_obj
);
12161 vm_object_unlock(obj
);
12164 if ((ref_count
= obj
->ref_count
) > 1 && obj
->paging_in_progress
)
12167 assert(obj
->reusable_page_count
<= obj
->resident_page_count
);
12168 top
->shared_pages_resident
+=
12169 OBJ_RESIDENT_COUNT(obj
, entry_size
);
12170 top
->ref_count
+= ref_count
- 1;
12173 if (entry
->superpage_size
) {
12174 top
->share_mode
= SM_LARGE_PAGE
;
12175 top
->shared_pages_resident
= 0;
12176 top
->private_pages_resident
= entry_size
;
12177 } else if (entry
->needs_copy
) {
12178 top
->share_mode
= SM_COW
;
12179 top
->shared_pages_resident
=
12180 OBJ_RESIDENT_COUNT(obj
, entry_size
);
12182 if (ref_count
== 1 ||
12183 (ref_count
== 2 && !(obj
->pager_trusted
) && !(obj
->internal
))) {
12184 top
->share_mode
= SM_PRIVATE
;
12185 top
->private_pages_resident
=
12186 OBJ_RESIDENT_COUNT(obj
,
12189 top
->share_mode
= SM_SHARED
;
12190 top
->shared_pages_resident
=
12191 OBJ_RESIDENT_COUNT(obj
,
12195 top
->ref_count
= ref_count
;
12197 /* XXX K64: obj_id will be truncated */
12198 top
->obj_id
= (unsigned int) (uintptr_t)VM_KERNEL_ADDRPERM(obj
);
12200 vm_object_unlock(obj
);
12205 vm_map_region_walk(
12207 vm_map_offset_t va
,
12208 vm_map_entry_t entry
,
12209 vm_object_offset_t offset
,
12210 vm_object_size_t range
,
12211 vm_region_extended_info_t extended
,
12212 boolean_t look_for_pages
,
12213 mach_msg_type_number_t count
)
12215 struct vm_object
*obj
, *tmp_obj
;
12216 vm_map_offset_t last_offset
;
12219 struct vm_object
*shadow_object
;
12222 if ((VME_OBJECT(entry
) == 0) ||
12223 (entry
->is_sub_map
) ||
12224 (VME_OBJECT(entry
)->phys_contiguous
&&
12225 !entry
->superpage_size
)) {
12226 extended
->share_mode
= SM_EMPTY
;
12227 extended
->ref_count
= 0;
12231 if (entry
->superpage_size
) {
12232 extended
->shadow_depth
= 0;
12233 extended
->share_mode
= SM_LARGE_PAGE
;
12234 extended
->ref_count
= 1;
12235 extended
->external_pager
= 0;
12236 extended
->pages_resident
= (unsigned int)(range
>> PAGE_SHIFT
);
12237 extended
->shadow_depth
= 0;
12241 obj
= VME_OBJECT(entry
);
12243 vm_object_lock(obj
);
12245 if ((ref_count
= obj
->ref_count
) > 1 && obj
->paging_in_progress
)
12248 if (look_for_pages
) {
12249 for (last_offset
= offset
+ range
;
12250 offset
< last_offset
;
12251 offset
+= PAGE_SIZE_64
, va
+= PAGE_SIZE
) {
12252 #if DEVELOPMENT || DEBUG
12253 if (vm_region_footprint
) {
12254 if (obj
->purgable
!= VM_PURGABLE_DENY
) {
12255 /* alternate accounting */
12256 } else if (entry
->iokit_acct
) {
12257 /* alternate accounting */
12258 extended
->pages_resident
++;
12259 extended
->pages_dirtied
++;
12264 pmap_query_page_info(map
->pmap
, va
, &disp
);
12265 if (disp
& PMAP_QUERY_PAGE_PRESENT
) {
12266 extended
->pages_resident
++;
12267 if (disp
& PMAP_QUERY_PAGE_REUSABLE
) {
12268 extended
->pages_reusable
++;
12269 } else if (!(disp
& PMAP_QUERY_PAGE_INTERNAL
) ||
12270 (disp
& PMAP_QUERY_PAGE_ALTACCT
)) {
12271 /* alternate accounting */
12273 extended
->pages_dirtied
++;
12275 } else if (disp
& PMAP_QUERY_PAGE_COMPRESSED
) {
12276 if (disp
& PMAP_QUERY_PAGE_COMPRESSED_ALTACCT
) {
12277 /* alternate accounting */
12279 extended
->pages_swapped_out
++;
12285 #endif /* DEVELOPMENT || DEBUG */
12286 vm_map_region_look_for_page(map
, va
, obj
,
12288 0, extended
, count
);
12290 #if DEVELOPMENT || DEBUG
12291 if (vm_region_footprint
) {
12292 goto collect_object_info
;
12294 #endif /* DEVELOPMENT || DEBUG */
12296 #if DEVELOPMENT || DEBUG
12297 collect_object_info
:
12298 #endif /* DEVELOPMENT || DEBUG */
12299 shadow_object
= obj
->shadow
;
12302 if ( !(obj
->pager_trusted
) && !(obj
->internal
))
12303 extended
->external_pager
= 1;
12305 if (shadow_object
!= VM_OBJECT_NULL
) {
12306 vm_object_lock(shadow_object
);
12308 shadow_object
!= VM_OBJECT_NULL
;
12310 vm_object_t next_shadow
;
12312 if ( !(shadow_object
->pager_trusted
) &&
12313 !(shadow_object
->internal
))
12314 extended
->external_pager
= 1;
12316 next_shadow
= shadow_object
->shadow
;
12318 vm_object_lock(next_shadow
);
12320 vm_object_unlock(shadow_object
);
12321 shadow_object
= next_shadow
;
12324 extended
->shadow_depth
= shadow_depth
;
12327 if (extended
->shadow_depth
|| entry
->needs_copy
)
12328 extended
->share_mode
= SM_COW
;
12330 if (ref_count
== 1)
12331 extended
->share_mode
= SM_PRIVATE
;
12333 if (obj
->true_share
)
12334 extended
->share_mode
= SM_TRUESHARED
;
12336 extended
->share_mode
= SM_SHARED
;
12339 extended
->ref_count
= ref_count
- extended
->shadow_depth
;
12341 for (i
= 0; i
< extended
->shadow_depth
; i
++) {
12342 if ((tmp_obj
= obj
->shadow
) == 0)
12344 vm_object_lock(tmp_obj
);
12345 vm_object_unlock(obj
);
12347 if ((ref_count
= tmp_obj
->ref_count
) > 1 && tmp_obj
->paging_in_progress
)
12350 extended
->ref_count
+= ref_count
;
12353 vm_object_unlock(obj
);
12355 if (extended
->share_mode
== SM_SHARED
) {
12356 vm_map_entry_t cur
;
12357 vm_map_entry_t last
;
12360 obj
= VME_OBJECT(entry
);
12361 last
= vm_map_to_entry(map
);
12364 if ((ref_count
= obj
->ref_count
) > 1 && obj
->paging_in_progress
)
12366 for (cur
= vm_map_first_entry(map
); cur
!= last
; cur
= cur
->vme_next
)
12367 my_refs
+= vm_map_region_count_obj_refs(cur
, obj
);
12369 if (my_refs
== ref_count
)
12370 extended
->share_mode
= SM_PRIVATE_ALIASED
;
12371 else if (my_refs
> 1)
12372 extended
->share_mode
= SM_SHARED_ALIASED
;
12377 /* object is locked on entry and locked on return */
12381 vm_map_region_look_for_page(
12382 __unused vm_map_t map
,
12383 __unused vm_map_offset_t va
,
12384 vm_object_t object
,
12385 vm_object_offset_t offset
,
12388 vm_region_extended_info_t extended
,
12389 mach_msg_type_number_t count
)
12392 vm_object_t shadow
;
12394 vm_object_t caller_object
;
12396 shadow
= object
->shadow
;
12397 caller_object
= object
;
12402 if ( !(object
->pager_trusted
) && !(object
->internal
))
12403 extended
->external_pager
= 1;
12405 if ((p
= vm_page_lookup(object
, offset
)) != VM_PAGE_NULL
) {
12406 if (shadow
&& (max_refcnt
== 1))
12407 extended
->pages_shared_now_private
++;
12409 if (!p
->fictitious
&&
12410 (p
->dirty
|| pmap_is_modified(VM_PAGE_GET_PHYS_PAGE(p
))))
12411 extended
->pages_dirtied
++;
12412 else if (count
>= VM_REGION_EXTENDED_INFO_COUNT
) {
12413 if (p
->reusable
|| object
->all_reusable
) {
12414 extended
->pages_reusable
++;
12418 extended
->pages_resident
++;
12420 if(object
!= caller_object
)
12421 vm_object_unlock(object
);
12425 if (object
->internal
&&
12427 !object
->terminating
&&
12428 object
->pager_ready
) {
12430 if (VM_COMPRESSOR_PAGER_STATE_GET(object
, offset
)
12431 == VM_EXTERNAL_STATE_EXISTS
) {
12432 /* the pager has that page */
12433 extended
->pages_swapped_out
++;
12434 if (object
!= caller_object
)
12435 vm_object_unlock(object
);
12441 vm_object_lock(shadow
);
12443 if ((ref_count
= shadow
->ref_count
) > 1 && shadow
->paging_in_progress
)
12446 if (++depth
> extended
->shadow_depth
)
12447 extended
->shadow_depth
= depth
;
12449 if (ref_count
> max_refcnt
)
12450 max_refcnt
= ref_count
;
12452 if(object
!= caller_object
)
12453 vm_object_unlock(object
);
12455 offset
= offset
+ object
->vo_shadow_offset
;
12457 shadow
= object
->shadow
;
12460 if(object
!= caller_object
)
12461 vm_object_unlock(object
);
12467 vm_map_region_count_obj_refs(
12468 vm_map_entry_t entry
,
12469 vm_object_t object
)
12472 vm_object_t chk_obj
;
12473 vm_object_t tmp_obj
;
12475 if (VME_OBJECT(entry
) == 0)
12478 if (entry
->is_sub_map
)
12483 chk_obj
= VME_OBJECT(entry
);
12484 vm_object_lock(chk_obj
);
12487 if (chk_obj
== object
)
12489 tmp_obj
= chk_obj
->shadow
;
12491 vm_object_lock(tmp_obj
);
12492 vm_object_unlock(chk_obj
);
12502 * Routine: vm_map_simplify
12505 * Attempt to simplify the map representation in
12506 * the vicinity of the given starting address.
12508 * This routine is intended primarily to keep the
12509 * kernel maps more compact -- they generally don't
12510 * benefit from the "expand a map entry" technology
12511 * at allocation time because the adjacent entry
12512 * is often wired down.
12515 vm_map_simplify_entry(
12517 vm_map_entry_t this_entry
)
12519 vm_map_entry_t prev_entry
;
12521 counter(c_vm_map_simplify_entry_called
++);
12523 prev_entry
= this_entry
->vme_prev
;
12525 if ((this_entry
!= vm_map_to_entry(map
)) &&
12526 (prev_entry
!= vm_map_to_entry(map
)) &&
12528 (prev_entry
->vme_end
== this_entry
->vme_start
) &&
12530 (prev_entry
->is_sub_map
== this_entry
->is_sub_map
) &&
12531 (VME_OBJECT(prev_entry
) == VME_OBJECT(this_entry
)) &&
12532 ((VME_OFFSET(prev_entry
) + (prev_entry
->vme_end
-
12533 prev_entry
->vme_start
))
12534 == VME_OFFSET(this_entry
)) &&
12536 (prev_entry
->behavior
== this_entry
->behavior
) &&
12537 (prev_entry
->needs_copy
== this_entry
->needs_copy
) &&
12538 (prev_entry
->protection
== this_entry
->protection
) &&
12539 (prev_entry
->max_protection
== this_entry
->max_protection
) &&
12540 (prev_entry
->inheritance
== this_entry
->inheritance
) &&
12541 (prev_entry
->use_pmap
== this_entry
->use_pmap
) &&
12542 (VME_ALIAS(prev_entry
) == VME_ALIAS(this_entry
)) &&
12543 (prev_entry
->no_cache
== this_entry
->no_cache
) &&
12544 (prev_entry
->permanent
== this_entry
->permanent
) &&
12545 (prev_entry
->map_aligned
== this_entry
->map_aligned
) &&
12546 (prev_entry
->zero_wired_pages
== this_entry
->zero_wired_pages
) &&
12547 (prev_entry
->used_for_jit
== this_entry
->used_for_jit
) &&
12548 /* from_reserved_zone: OK if that field doesn't match */
12549 (prev_entry
->iokit_acct
== this_entry
->iokit_acct
) &&
12550 (prev_entry
->vme_resilient_codesign
==
12551 this_entry
->vme_resilient_codesign
) &&
12552 (prev_entry
->vme_resilient_media
==
12553 this_entry
->vme_resilient_media
) &&
12555 (prev_entry
->wired_count
== this_entry
->wired_count
) &&
12556 (prev_entry
->user_wired_count
== this_entry
->user_wired_count
) &&
12558 ((prev_entry
->vme_atomic
== FALSE
) && (this_entry
->vme_atomic
== FALSE
)) &&
12559 (prev_entry
->in_transition
== FALSE
) &&
12560 (this_entry
->in_transition
== FALSE
) &&
12561 (prev_entry
->needs_wakeup
== FALSE
) &&
12562 (this_entry
->needs_wakeup
== FALSE
) &&
12563 (prev_entry
->is_shared
== FALSE
) &&
12564 (this_entry
->is_shared
== FALSE
) &&
12565 (prev_entry
->superpage_size
== FALSE
) &&
12566 (this_entry
->superpage_size
== FALSE
)
12568 vm_map_store_entry_unlink(map
, prev_entry
);
12569 assert(prev_entry
->vme_start
< this_entry
->vme_end
);
12570 if (prev_entry
->map_aligned
)
12571 assert(VM_MAP_PAGE_ALIGNED(prev_entry
->vme_start
,
12572 VM_MAP_PAGE_MASK(map
)));
12573 this_entry
->vme_start
= prev_entry
->vme_start
;
12574 VME_OFFSET_SET(this_entry
, VME_OFFSET(prev_entry
));
12576 if (map
->holelistenabled
) {
12577 vm_map_store_update_first_free(map
, this_entry
, TRUE
);
12580 if (prev_entry
->is_sub_map
) {
12581 vm_map_deallocate(VME_SUBMAP(prev_entry
));
12583 vm_object_deallocate(VME_OBJECT(prev_entry
));
12585 vm_map_entry_dispose(map
, prev_entry
);
12586 SAVE_HINT_MAP_WRITE(map
, this_entry
);
12587 counter(c_vm_map_simplified
++);
12594 vm_map_offset_t start
)
12596 vm_map_entry_t this_entry
;
12599 if (vm_map_lookup_entry(map
, start
, &this_entry
)) {
12600 vm_map_simplify_entry(map
, this_entry
);
12601 vm_map_simplify_entry(map
, this_entry
->vme_next
);
12603 counter(c_vm_map_simplify_called
++);
12604 vm_map_unlock(map
);
12608 vm_map_simplify_range(
12610 vm_map_offset_t start
,
12611 vm_map_offset_t end
)
12613 vm_map_entry_t entry
;
12616 * The map should be locked (for "write") by the caller.
12619 if (start
>= end
) {
12620 /* invalid address range */
12624 start
= vm_map_trunc_page(start
,
12625 VM_MAP_PAGE_MASK(map
));
12626 end
= vm_map_round_page(end
,
12627 VM_MAP_PAGE_MASK(map
));
12629 if (!vm_map_lookup_entry(map
, start
, &entry
)) {
12630 /* "start" is not mapped and "entry" ends before "start" */
12631 if (entry
== vm_map_to_entry(map
)) {
12632 /* start with first entry in the map */
12633 entry
= vm_map_first_entry(map
);
12635 /* start with next entry */
12636 entry
= entry
->vme_next
;
12640 while (entry
!= vm_map_to_entry(map
) &&
12641 entry
->vme_start
<= end
) {
12642 /* try and coalesce "entry" with its previous entry */
12643 vm_map_simplify_entry(map
, entry
);
12644 entry
= entry
->vme_next
;
12650 * Routine: vm_map_machine_attribute
12652 * Provide machine-specific attributes to mappings,
12653 * such as cachability etc. for machines that provide
12654 * them. NUMA architectures and machines with big/strange
12655 * caches will use this.
12657 * Responsibilities for locking and checking are handled here,
12658 * everything else in the pmap module. If any non-volatile
12659 * information must be kept, the pmap module should handle
12660 * it itself. [This assumes that attributes do not
12661 * need to be inherited, which seems ok to me]
12664 vm_map_machine_attribute(
12666 vm_map_offset_t start
,
12667 vm_map_offset_t end
,
12668 vm_machine_attribute_t attribute
,
12669 vm_machine_attribute_val_t
* value
) /* IN/OUT */
12672 vm_map_size_t sync_size
;
12673 vm_map_entry_t entry
;
12675 if (start
< vm_map_min(map
) || end
> vm_map_max(map
))
12676 return KERN_INVALID_ADDRESS
;
12678 /* Figure how much memory we need to flush (in page increments) */
12679 sync_size
= end
- start
;
12683 if (attribute
!= MATTR_CACHE
) {
12684 /* If we don't have to find physical addresses, we */
12685 /* don't have to do an explicit traversal here. */
12686 ret
= pmap_attribute(map
->pmap
, start
, end
-start
,
12688 vm_map_unlock(map
);
12692 ret
= KERN_SUCCESS
; /* Assume it all worked */
12695 if (vm_map_lookup_entry(map
, start
, &entry
)) {
12696 vm_map_size_t sub_size
;
12697 if((entry
->vme_end
- start
) > sync_size
) {
12698 sub_size
= sync_size
;
12701 sub_size
= entry
->vme_end
- start
;
12702 sync_size
-= sub_size
;
12704 if(entry
->is_sub_map
) {
12705 vm_map_offset_t sub_start
;
12706 vm_map_offset_t sub_end
;
12708 sub_start
= (start
- entry
->vme_start
)
12709 + VME_OFFSET(entry
);
12710 sub_end
= sub_start
+ sub_size
;
12711 vm_map_machine_attribute(
12717 if (VME_OBJECT(entry
)) {
12719 vm_object_t object
;
12720 vm_object_t base_object
;
12721 vm_object_t last_object
;
12722 vm_object_offset_t offset
;
12723 vm_object_offset_t base_offset
;
12724 vm_map_size_t range
;
12726 offset
= (start
- entry
->vme_start
)
12727 + VME_OFFSET(entry
);
12728 base_offset
= offset
;
12729 object
= VME_OBJECT(entry
);
12730 base_object
= object
;
12731 last_object
= NULL
;
12733 vm_object_lock(object
);
12736 m
= vm_page_lookup(
12739 if (m
&& !m
->fictitious
) {
12741 pmap_attribute_cache_sync(
12742 VM_PAGE_GET_PHYS_PAGE(m
),
12746 } else if (object
->shadow
) {
12747 offset
= offset
+ object
->vo_shadow_offset
;
12748 last_object
= object
;
12749 object
= object
->shadow
;
12750 vm_object_lock(last_object
->shadow
);
12751 vm_object_unlock(last_object
);
12754 range
-= PAGE_SIZE
;
12756 if (base_object
!= object
) {
12757 vm_object_unlock(object
);
12758 vm_object_lock(base_object
);
12759 object
= base_object
;
12761 /* Bump to the next page */
12762 base_offset
+= PAGE_SIZE
;
12763 offset
= base_offset
;
12765 vm_object_unlock(object
);
12770 vm_map_unlock(map
);
12771 return KERN_FAILURE
;
12776 vm_map_unlock(map
);
12782 * vm_map_behavior_set:
12784 * Sets the paging reference behavior of the specified address
12785 * range in the target map. Paging reference behavior affects
12786 * how pagein operations resulting from faults on the map will be
12790 vm_map_behavior_set(
12792 vm_map_offset_t start
,
12793 vm_map_offset_t end
,
12794 vm_behavior_t new_behavior
)
12796 vm_map_entry_t entry
;
12797 vm_map_entry_t temp_entry
;
12800 "vm_map_behavior_set, 0x%X start 0x%X end 0x%X behavior %d",
12801 map
, start
, end
, new_behavior
, 0);
12804 start
< vm_map_min(map
) ||
12805 end
> vm_map_max(map
)) {
12806 return KERN_NO_SPACE
;
12809 switch (new_behavior
) {
12812 * This first block of behaviors all set a persistent state on the specified
12813 * memory range. All we have to do here is to record the desired behavior
12814 * in the vm_map_entry_t's.
12817 case VM_BEHAVIOR_DEFAULT
:
12818 case VM_BEHAVIOR_RANDOM
:
12819 case VM_BEHAVIOR_SEQUENTIAL
:
12820 case VM_BEHAVIOR_RSEQNTL
:
12821 case VM_BEHAVIOR_ZERO_WIRED_PAGES
:
12825 * The entire address range must be valid for the map.
12826 * Note that vm_map_range_check() does a
12827 * vm_map_lookup_entry() internally and returns the
12828 * entry containing the start of the address range if
12829 * the entire range is valid.
12831 if (vm_map_range_check(map
, start
, end
, &temp_entry
)) {
12832 entry
= temp_entry
;
12833 vm_map_clip_start(map
, entry
, start
);
12836 vm_map_unlock(map
);
12837 return(KERN_INVALID_ADDRESS
);
12840 while ((entry
!= vm_map_to_entry(map
)) && (entry
->vme_start
< end
)) {
12841 vm_map_clip_end(map
, entry
, end
);
12842 if (entry
->is_sub_map
) {
12843 assert(!entry
->use_pmap
);
12846 if( new_behavior
== VM_BEHAVIOR_ZERO_WIRED_PAGES
) {
12847 entry
->zero_wired_pages
= TRUE
;
12849 entry
->behavior
= new_behavior
;
12851 entry
= entry
->vme_next
;
12854 vm_map_unlock(map
);
12858 * The rest of these are different from the above in that they cause
12859 * an immediate action to take place as opposed to setting a behavior that
12860 * affects future actions.
12863 case VM_BEHAVIOR_WILLNEED
:
12864 return vm_map_willneed(map
, start
, end
);
12866 case VM_BEHAVIOR_DONTNEED
:
12867 return vm_map_msync(map
, start
, end
- start
, VM_SYNC_DEACTIVATE
| VM_SYNC_CONTIGUOUS
);
12869 case VM_BEHAVIOR_FREE
:
12870 return vm_map_msync(map
, start
, end
- start
, VM_SYNC_KILLPAGES
| VM_SYNC_CONTIGUOUS
);
12872 case VM_BEHAVIOR_REUSABLE
:
12873 return vm_map_reusable_pages(map
, start
, end
);
12875 case VM_BEHAVIOR_REUSE
:
12876 return vm_map_reuse_pages(map
, start
, end
);
12878 case VM_BEHAVIOR_CAN_REUSE
:
12879 return vm_map_can_reuse(map
, start
, end
);
12882 case VM_BEHAVIOR_PAGEOUT
:
12883 return vm_map_pageout(map
, start
, end
);
12884 #endif /* MACH_ASSERT */
12887 return(KERN_INVALID_ARGUMENT
);
12890 return(KERN_SUCCESS
);
12895 * Internals for madvise(MADV_WILLNEED) system call.
12897 * The present implementation is to do a read-ahead if the mapping corresponds
12898 * to a mapped regular file. If it's an anonymous mapping, then we do nothing
12899 * and basically ignore the "advice" (which we are always free to do).
12903 static kern_return_t
12906 vm_map_offset_t start
,
12907 vm_map_offset_t end
12910 vm_map_entry_t entry
;
12911 vm_object_t object
;
12912 memory_object_t pager
;
12913 struct vm_object_fault_info fault_info
;
12915 vm_object_size_t len
;
12916 vm_object_offset_t offset
;
12919 * Fill in static values in fault_info. Several fields get ignored by the code
12920 * we call, but we'll fill them in anyway since uninitialized fields are bad
12921 * when it comes to future backwards compatibility.
12924 fault_info
.interruptible
= THREAD_UNINT
; /* ignored value */
12925 fault_info
.behavior
= VM_BEHAVIOR_SEQUENTIAL
;
12926 fault_info
.no_cache
= FALSE
; /* ignored value */
12927 fault_info
.stealth
= TRUE
;
12928 fault_info
.io_sync
= FALSE
;
12929 fault_info
.cs_bypass
= FALSE
;
12930 fault_info
.mark_zf_absent
= FALSE
;
12931 fault_info
.batch_pmap_op
= FALSE
;
12934 * The MADV_WILLNEED operation doesn't require any changes to the
12935 * vm_map_entry_t's, so the read lock is sufficient.
12938 vm_map_lock_read(map
);
12941 * The madvise semantics require that the address range be fully
12942 * allocated with no holes. Otherwise, we're required to return
12946 if (! vm_map_range_check(map
, start
, end
, &entry
)) {
12947 vm_map_unlock_read(map
);
12948 return KERN_INVALID_ADDRESS
;
12952 * Examine each vm_map_entry_t in the range.
12954 for (; entry
!= vm_map_to_entry(map
) && start
< end
; ) {
12957 * The first time through, the start address could be anywhere
12958 * within the vm_map_entry we found. So adjust the offset to
12959 * correspond. After that, the offset will always be zero to
12960 * correspond to the beginning of the current vm_map_entry.
12962 offset
= (start
- entry
->vme_start
) + VME_OFFSET(entry
);
12965 * Set the length so we don't go beyond the end of the
12966 * map_entry or beyond the end of the range we were given.
12967 * This range could span also multiple map entries all of which
12968 * map different files, so make sure we only do the right amount
12969 * of I/O for each object. Note that it's possible for there
12970 * to be multiple map entries all referring to the same object
12971 * but with different page permissions, but it's not worth
12972 * trying to optimize that case.
12974 len
= MIN(entry
->vme_end
- start
, end
- start
);
12976 if ((vm_size_t
) len
!= len
) {
12977 /* 32-bit overflow */
12978 len
= (vm_size_t
) (0 - PAGE_SIZE
);
12980 fault_info
.cluster_size
= (vm_size_t
) len
;
12981 fault_info
.lo_offset
= offset
;
12982 fault_info
.hi_offset
= offset
+ len
;
12983 fault_info
.user_tag
= VME_ALIAS(entry
);
12984 fault_info
.pmap_options
= 0;
12985 if (entry
->iokit_acct
||
12986 (!entry
->is_sub_map
&& !entry
->use_pmap
)) {
12987 fault_info
.pmap_options
|= PMAP_OPTIONS_ALT_ACCT
;
12991 * If there's no read permission to this mapping, then just
12994 if ((entry
->protection
& VM_PROT_READ
) == 0) {
12995 entry
= entry
->vme_next
;
12996 start
= entry
->vme_start
;
13001 * Find the file object backing this map entry. If there is
13002 * none, then we simply ignore the "will need" advice for this
13003 * entry and go on to the next one.
13005 if ((object
= find_vnode_object(entry
)) == VM_OBJECT_NULL
) {
13006 entry
= entry
->vme_next
;
13007 start
= entry
->vme_start
;
13012 * The data_request() could take a long time, so let's
13013 * release the map lock to avoid blocking other threads.
13015 vm_map_unlock_read(map
);
13017 vm_object_paging_begin(object
);
13018 pager
= object
->pager
;
13019 vm_object_unlock(object
);
13022 * Get the data from the object asynchronously.
13024 * Note that memory_object_data_request() places limits on the
13025 * amount of I/O it will do. Regardless of the len we
13026 * specified, it won't do more than MAX_UPL_TRANSFER_BYTES and it
13027 * silently truncates the len to that size. This isn't
13028 * necessarily bad since madvise shouldn't really be used to
13029 * page in unlimited amounts of data. Other Unix variants
13030 * limit the willneed case as well. If this turns out to be an
13031 * issue for developers, then we can always adjust the policy
13032 * here and still be backwards compatible since this is all
13035 kr
= memory_object_data_request(
13037 offset
+ object
->paging_offset
,
13040 (memory_object_fault_info_t
)&fault_info
);
13042 vm_object_lock(object
);
13043 vm_object_paging_end(object
);
13044 vm_object_unlock(object
);
13047 * If we couldn't do the I/O for some reason, just give up on
13048 * the madvise. We still return success to the user since
13049 * madvise isn't supposed to fail when the advice can't be
13052 if (kr
!= KERN_SUCCESS
) {
13053 return KERN_SUCCESS
;
13057 if (start
>= end
) {
13059 return KERN_SUCCESS
;
13062 /* look up next entry */
13063 vm_map_lock_read(map
);
13064 if (! vm_map_lookup_entry(map
, start
, &entry
)) {
13066 * There's a new hole in the address range.
13068 vm_map_unlock_read(map
);
13069 return KERN_INVALID_ADDRESS
;
13073 vm_map_unlock_read(map
);
13074 return KERN_SUCCESS
;
13078 vm_map_entry_is_reusable(
13079 vm_map_entry_t entry
)
13081 /* Only user map entries */
13083 vm_object_t object
;
13085 if (entry
->is_sub_map
) {
13089 switch (VME_ALIAS(entry
)) {
13090 case VM_MEMORY_MALLOC
:
13091 case VM_MEMORY_MALLOC_SMALL
:
13092 case VM_MEMORY_MALLOC_LARGE
:
13093 case VM_MEMORY_REALLOC
:
13094 case VM_MEMORY_MALLOC_TINY
:
13095 case VM_MEMORY_MALLOC_LARGE_REUSABLE
:
13096 case VM_MEMORY_MALLOC_LARGE_REUSED
:
13098 * This is a malloc() memory region: check if it's still
13099 * in its original state and can be re-used for more
13100 * malloc() allocations.
13105 * Not a malloc() memory region: let the caller decide if
13111 if (entry
->is_shared
||
13112 entry
->is_sub_map
||
13113 entry
->in_transition
||
13114 entry
->protection
!= VM_PROT_DEFAULT
||
13115 entry
->max_protection
!= VM_PROT_ALL
||
13116 entry
->inheritance
!= VM_INHERIT_DEFAULT
||
13118 entry
->permanent
||
13119 entry
->superpage_size
!= FALSE
||
13120 entry
->zero_wired_pages
||
13121 entry
->wired_count
!= 0 ||
13122 entry
->user_wired_count
!= 0) {
13126 object
= VME_OBJECT(entry
);
13127 if (object
== VM_OBJECT_NULL
) {
13133 * Let's proceed even if the VM object is potentially
13135 * We check for this later when processing the actual
13136 * VM pages, so the contents will be safe if shared.
13138 * But we can still mark this memory region as "reusable" to
13139 * acknowledge that the caller did let us know that the memory
13140 * could be re-used and should not be penalized for holding
13141 * on to it. This allows its "resident size" to not include
13142 * the reusable range.
13144 object
->ref_count
== 1 &&
13146 object
->wired_page_count
== 0 &&
13147 object
->copy
== VM_OBJECT_NULL
&&
13148 object
->shadow
== VM_OBJECT_NULL
&&
13149 object
->copy_strategy
== MEMORY_OBJECT_COPY_SYMMETRIC
&&
13150 object
->internal
&&
13151 !object
->true_share
&&
13152 object
->wimg_bits
== VM_WIMG_USE_DEFAULT
&&
13153 !object
->code_signed
) {
13161 static kern_return_t
13162 vm_map_reuse_pages(
13164 vm_map_offset_t start
,
13165 vm_map_offset_t end
)
13167 vm_map_entry_t entry
;
13168 vm_object_t object
;
13169 vm_object_offset_t start_offset
, end_offset
;
13172 * The MADV_REUSE operation doesn't require any changes to the
13173 * vm_map_entry_t's, so the read lock is sufficient.
13176 vm_map_lock_read(map
);
13177 assert(map
->pmap
!= kernel_pmap
); /* protect alias access */
13180 * The madvise semantics require that the address range be fully
13181 * allocated with no holes. Otherwise, we're required to return
13185 if (!vm_map_range_check(map
, start
, end
, &entry
)) {
13186 vm_map_unlock_read(map
);
13187 vm_page_stats_reusable
.reuse_pages_failure
++;
13188 return KERN_INVALID_ADDRESS
;
13192 * Examine each vm_map_entry_t in the range.
13194 for (; entry
!= vm_map_to_entry(map
) && entry
->vme_start
< end
;
13195 entry
= entry
->vme_next
) {
13197 * Sanity check on the VM map entry.
13199 if (! vm_map_entry_is_reusable(entry
)) {
13200 vm_map_unlock_read(map
);
13201 vm_page_stats_reusable
.reuse_pages_failure
++;
13202 return KERN_INVALID_ADDRESS
;
13206 * The first time through, the start address could be anywhere
13207 * within the vm_map_entry we found. So adjust the offset to
13210 if (entry
->vme_start
< start
) {
13211 start_offset
= start
- entry
->vme_start
;
13215 end_offset
= MIN(end
, entry
->vme_end
) - entry
->vme_start
;
13216 start_offset
+= VME_OFFSET(entry
);
13217 end_offset
+= VME_OFFSET(entry
);
13219 assert(!entry
->is_sub_map
);
13220 object
= VME_OBJECT(entry
);
13221 if (object
!= VM_OBJECT_NULL
) {
13222 vm_object_lock(object
);
13223 vm_object_reuse_pages(object
, start_offset
, end_offset
,
13225 vm_object_unlock(object
);
13228 if (VME_ALIAS(entry
) == VM_MEMORY_MALLOC_LARGE_REUSABLE
) {
13231 * We do not hold the VM map exclusively here.
13232 * The "alias" field is not that critical, so it's
13233 * safe to update it here, as long as it is the only
13234 * one that can be modified while holding the VM map
13237 VME_ALIAS_SET(entry
, VM_MEMORY_MALLOC_LARGE_REUSED
);
13241 vm_map_unlock_read(map
);
13242 vm_page_stats_reusable
.reuse_pages_success
++;
13243 return KERN_SUCCESS
;
13247 static kern_return_t
13248 vm_map_reusable_pages(
13250 vm_map_offset_t start
,
13251 vm_map_offset_t end
)
13253 vm_map_entry_t entry
;
13254 vm_object_t object
;
13255 vm_object_offset_t start_offset
, end_offset
;
13256 vm_map_offset_t pmap_offset
;
13259 * The MADV_REUSABLE operation doesn't require any changes to the
13260 * vm_map_entry_t's, so the read lock is sufficient.
13263 vm_map_lock_read(map
);
13264 assert(map
->pmap
!= kernel_pmap
); /* protect alias access */
13267 * The madvise semantics require that the address range be fully
13268 * allocated with no holes. Otherwise, we're required to return
13272 if (!vm_map_range_check(map
, start
, end
, &entry
)) {
13273 vm_map_unlock_read(map
);
13274 vm_page_stats_reusable
.reusable_pages_failure
++;
13275 return KERN_INVALID_ADDRESS
;
13279 * Examine each vm_map_entry_t in the range.
13281 for (; entry
!= vm_map_to_entry(map
) && entry
->vme_start
< end
;
13282 entry
= entry
->vme_next
) {
13283 int kill_pages
= 0;
13286 * Sanity check on the VM map entry.
13288 if (! vm_map_entry_is_reusable(entry
)) {
13289 vm_map_unlock_read(map
);
13290 vm_page_stats_reusable
.reusable_pages_failure
++;
13291 return KERN_INVALID_ADDRESS
;
13294 if (! (entry
->protection
& VM_PROT_WRITE
) && !entry
->used_for_jit
) {
13295 /* not writable: can't discard contents */
13296 vm_map_unlock_read(map
);
13297 vm_page_stats_reusable
.reusable_nonwritable
++;
13298 vm_page_stats_reusable
.reusable_pages_failure
++;
13299 return KERN_PROTECTION_FAILURE
;
13303 * The first time through, the start address could be anywhere
13304 * within the vm_map_entry we found. So adjust the offset to
13307 if (entry
->vme_start
< start
) {
13308 start_offset
= start
- entry
->vme_start
;
13309 pmap_offset
= start
;
13312 pmap_offset
= entry
->vme_start
;
13314 end_offset
= MIN(end
, entry
->vme_end
) - entry
->vme_start
;
13315 start_offset
+= VME_OFFSET(entry
);
13316 end_offset
+= VME_OFFSET(entry
);
13318 assert(!entry
->is_sub_map
);
13319 object
= VME_OBJECT(entry
);
13320 if (object
== VM_OBJECT_NULL
)
13324 vm_object_lock(object
);
13325 if (((object
->ref_count
== 1) ||
13326 (object
->copy_strategy
!= MEMORY_OBJECT_COPY_SYMMETRIC
&&
13327 object
->copy
== VM_OBJECT_NULL
)) &&
13328 object
->shadow
== VM_OBJECT_NULL
&&
13330 * "iokit_acct" entries are billed for their virtual size
13331 * (rather than for their resident pages only), so they
13332 * wouldn't benefit from making pages reusable, and it
13333 * would be hard to keep track of pages that are both
13334 * "iokit_acct" and "reusable" in the pmap stats and
13337 !(entry
->iokit_acct
||
13338 (!entry
->is_sub_map
&& !entry
->use_pmap
))) {
13339 if (object
->ref_count
!= 1) {
13340 vm_page_stats_reusable
.reusable_shared
++;
13346 if (kill_pages
!= -1) {
13347 vm_object_deactivate_pages(object
,
13349 end_offset
- start_offset
,
13351 TRUE
/*reusable_pages*/,
13355 vm_page_stats_reusable
.reusable_pages_shared
++;
13357 vm_object_unlock(object
);
13359 if (VME_ALIAS(entry
) == VM_MEMORY_MALLOC_LARGE
||
13360 VME_ALIAS(entry
) == VM_MEMORY_MALLOC_LARGE_REUSED
) {
13363 * We do not hold the VM map exclusively here.
13364 * The "alias" field is not that critical, so it's
13365 * safe to update it here, as long as it is the only
13366 * one that can be modified while holding the VM map
13369 VME_ALIAS_SET(entry
, VM_MEMORY_MALLOC_LARGE_REUSABLE
);
13373 vm_map_unlock_read(map
);
13374 vm_page_stats_reusable
.reusable_pages_success
++;
13375 return KERN_SUCCESS
;
13379 static kern_return_t
13382 vm_map_offset_t start
,
13383 vm_map_offset_t end
)
13385 vm_map_entry_t entry
;
13388 * The MADV_REUSABLE operation doesn't require any changes to the
13389 * vm_map_entry_t's, so the read lock is sufficient.
13392 vm_map_lock_read(map
);
13393 assert(map
->pmap
!= kernel_pmap
); /* protect alias access */
13396 * The madvise semantics require that the address range be fully
13397 * allocated with no holes. Otherwise, we're required to return
13401 if (!vm_map_range_check(map
, start
, end
, &entry
)) {
13402 vm_map_unlock_read(map
);
13403 vm_page_stats_reusable
.can_reuse_failure
++;
13404 return KERN_INVALID_ADDRESS
;
13408 * Examine each vm_map_entry_t in the range.
13410 for (; entry
!= vm_map_to_entry(map
) && entry
->vme_start
< end
;
13411 entry
= entry
->vme_next
) {
13413 * Sanity check on the VM map entry.
13415 if (! vm_map_entry_is_reusable(entry
)) {
13416 vm_map_unlock_read(map
);
13417 vm_page_stats_reusable
.can_reuse_failure
++;
13418 return KERN_INVALID_ADDRESS
;
13422 vm_map_unlock_read(map
);
13423 vm_page_stats_reusable
.can_reuse_success
++;
13424 return KERN_SUCCESS
;
13429 static kern_return_t
13432 vm_map_offset_t start
,
13433 vm_map_offset_t end
)
13435 vm_map_entry_t entry
;
13438 * The MADV_PAGEOUT operation doesn't require any changes to the
13439 * vm_map_entry_t's, so the read lock is sufficient.
13442 vm_map_lock_read(map
);
13445 * The madvise semantics require that the address range be fully
13446 * allocated with no holes. Otherwise, we're required to return
13450 if (!vm_map_range_check(map
, start
, end
, &entry
)) {
13451 vm_map_unlock_read(map
);
13452 return KERN_INVALID_ADDRESS
;
13456 * Examine each vm_map_entry_t in the range.
13458 for (; entry
!= vm_map_to_entry(map
) && entry
->vme_start
< end
;
13459 entry
= entry
->vme_next
) {
13460 vm_object_t object
;
13463 * Sanity check on the VM map entry.
13465 if (entry
->is_sub_map
) {
13467 vm_map_offset_t submap_start
;
13468 vm_map_offset_t submap_end
;
13469 vm_map_entry_t submap_entry
;
13471 submap
= VME_SUBMAP(entry
);
13472 submap_start
= VME_OFFSET(entry
);
13473 submap_end
= submap_start
+ (entry
->vme_end
-
13476 vm_map_lock_read(submap
);
13478 if (! vm_map_range_check(submap
,
13482 vm_map_unlock_read(submap
);
13483 vm_map_unlock_read(map
);
13484 return KERN_INVALID_ADDRESS
;
13487 object
= VME_OBJECT(submap_entry
);
13488 if (submap_entry
->is_sub_map
||
13489 object
== VM_OBJECT_NULL
||
13490 !object
->internal
) {
13491 vm_map_unlock_read(submap
);
13495 vm_object_pageout(object
);
13497 vm_map_unlock_read(submap
);
13498 submap
= VM_MAP_NULL
;
13499 submap_entry
= VM_MAP_ENTRY_NULL
;
13503 object
= VME_OBJECT(entry
);
13504 if (entry
->is_sub_map
||
13505 object
== VM_OBJECT_NULL
||
13506 !object
->internal
) {
13510 vm_object_pageout(object
);
13513 vm_map_unlock_read(map
);
13514 return KERN_SUCCESS
;
13516 #endif /* MACH_ASSERT */
13520 * Routine: vm_map_entry_insert
13522 * Descritpion: This routine inserts a new vm_entry in a locked map.
13525 vm_map_entry_insert(
13527 vm_map_entry_t insp_entry
,
13528 vm_map_offset_t start
,
13529 vm_map_offset_t end
,
13530 vm_object_t object
,
13531 vm_object_offset_t offset
,
13532 boolean_t needs_copy
,
13533 boolean_t is_shared
,
13534 boolean_t in_transition
,
13535 vm_prot_t cur_protection
,
13536 vm_prot_t max_protection
,
13537 vm_behavior_t behavior
,
13538 vm_inherit_t inheritance
,
13539 unsigned wired_count
,
13540 boolean_t no_cache
,
13541 boolean_t permanent
,
13542 unsigned int superpage_size
,
13543 boolean_t clear_map_aligned
,
13544 boolean_t is_submap
)
13546 vm_map_entry_t new_entry
;
13548 assert(insp_entry
!= (vm_map_entry_t
)0);
13550 new_entry
= vm_map_entry_create(map
, !map
->hdr
.entries_pageable
);
13552 if (VM_MAP_PAGE_SHIFT(map
) != PAGE_SHIFT
) {
13553 new_entry
->map_aligned
= TRUE
;
13555 new_entry
->map_aligned
= FALSE
;
13557 if (clear_map_aligned
&&
13558 (! VM_MAP_PAGE_ALIGNED(start
, VM_MAP_PAGE_MASK(map
)) ||
13559 ! VM_MAP_PAGE_ALIGNED(end
, VM_MAP_PAGE_MASK(map
)))) {
13560 new_entry
->map_aligned
= FALSE
;
13563 new_entry
->vme_start
= start
;
13564 new_entry
->vme_end
= end
;
13565 assert(page_aligned(new_entry
->vme_start
));
13566 assert(page_aligned(new_entry
->vme_end
));
13567 if (new_entry
->map_aligned
) {
13568 assert(VM_MAP_PAGE_ALIGNED(new_entry
->vme_start
,
13569 VM_MAP_PAGE_MASK(map
)));
13570 assert(VM_MAP_PAGE_ALIGNED(new_entry
->vme_end
,
13571 VM_MAP_PAGE_MASK(map
)));
13573 assert(new_entry
->vme_start
< new_entry
->vme_end
);
13575 VME_OBJECT_SET(new_entry
, object
);
13576 VME_OFFSET_SET(new_entry
, offset
);
13577 new_entry
->is_shared
= is_shared
;
13578 new_entry
->is_sub_map
= is_submap
;
13579 new_entry
->needs_copy
= needs_copy
;
13580 new_entry
->in_transition
= in_transition
;
13581 new_entry
->needs_wakeup
= FALSE
;
13582 new_entry
->inheritance
= inheritance
;
13583 new_entry
->protection
= cur_protection
;
13584 new_entry
->max_protection
= max_protection
;
13585 new_entry
->behavior
= behavior
;
13586 new_entry
->wired_count
= wired_count
;
13587 new_entry
->user_wired_count
= 0;
13590 * submap: "use_pmap" means "nested".
13593 new_entry
->use_pmap
= FALSE
;
13596 * object: "use_pmap" means "use pmap accounting" for footprint.
13599 new_entry
->use_pmap
= TRUE
;
13601 VME_ALIAS_SET(new_entry
, 0);
13602 new_entry
->zero_wired_pages
= FALSE
;
13603 new_entry
->no_cache
= no_cache
;
13604 new_entry
->permanent
= permanent
;
13605 if (superpage_size
)
13606 new_entry
->superpage_size
= TRUE
;
13608 new_entry
->superpage_size
= FALSE
;
13609 new_entry
->used_for_jit
= FALSE
;
13610 new_entry
->iokit_acct
= FALSE
;
13611 new_entry
->vme_resilient_codesign
= FALSE
;
13612 new_entry
->vme_resilient_media
= FALSE
;
13613 new_entry
->vme_atomic
= FALSE
;
13616 * Insert the new entry into the list.
13619 vm_map_store_entry_link(map
, insp_entry
, new_entry
);
13620 map
->size
+= end
- start
;
13623 * Update the free space hint and the lookup hint.
13626 SAVE_HINT_MAP_WRITE(map
, new_entry
);
13631 * Routine: vm_map_remap_extract
13633 * Descritpion: This routine returns a vm_entry list from a map.
13635 static kern_return_t
13636 vm_map_remap_extract(
13638 vm_map_offset_t addr
,
13639 vm_map_size_t size
,
13641 struct vm_map_header
*map_header
,
13642 vm_prot_t
*cur_protection
,
13643 vm_prot_t
*max_protection
,
13644 /* What, no behavior? */
13645 vm_inherit_t inheritance
,
13646 boolean_t pageable
,
13647 boolean_t same_map
)
13649 kern_return_t result
;
13650 vm_map_size_t mapped_size
;
13651 vm_map_size_t tmp_size
;
13652 vm_map_entry_t src_entry
; /* result of last map lookup */
13653 vm_map_entry_t new_entry
;
13654 vm_object_offset_t offset
;
13655 vm_map_offset_t map_address
;
13656 vm_map_offset_t src_start
; /* start of entry to map */
13657 vm_map_offset_t src_end
; /* end of region to be mapped */
13658 vm_object_t object
;
13659 vm_map_version_t version
;
13660 boolean_t src_needs_copy
;
13661 boolean_t new_entry_needs_copy
;
13663 assert(map
!= VM_MAP_NULL
);
13665 assert(size
== vm_map_round_page(size
, PAGE_MASK
));
13666 assert(inheritance
== VM_INHERIT_NONE
||
13667 inheritance
== VM_INHERIT_COPY
||
13668 inheritance
== VM_INHERIT_SHARE
);
13671 * Compute start and end of region.
13673 src_start
= vm_map_trunc_page(addr
, PAGE_MASK
);
13674 src_end
= vm_map_round_page(src_start
+ size
, PAGE_MASK
);
13678 * Initialize map_header.
13680 map_header
->links
.next
= (struct vm_map_entry
*)&map_header
->links
;
13681 map_header
->links
.prev
= (struct vm_map_entry
*)&map_header
->links
;
13682 map_header
->nentries
= 0;
13683 map_header
->entries_pageable
= pageable
;
13684 map_header
->page_shift
= PAGE_SHIFT
;
13686 vm_map_store_init( map_header
);
13688 *cur_protection
= VM_PROT_ALL
;
13689 *max_protection
= VM_PROT_ALL
;
13693 result
= KERN_SUCCESS
;
13696 * The specified source virtual space might correspond to
13697 * multiple map entries, need to loop on them.
13700 while (mapped_size
!= size
) {
13701 vm_map_size_t entry_size
;
13704 * Find the beginning of the region.
13706 if (! vm_map_lookup_entry(map
, src_start
, &src_entry
)) {
13707 result
= KERN_INVALID_ADDRESS
;
13711 if (src_start
< src_entry
->vme_start
||
13712 (mapped_size
&& src_start
!= src_entry
->vme_start
)) {
13713 result
= KERN_INVALID_ADDRESS
;
13717 tmp_size
= size
- mapped_size
;
13718 if (src_end
> src_entry
->vme_end
)
13719 tmp_size
-= (src_end
- src_entry
->vme_end
);
13721 entry_size
= (vm_map_size_t
)(src_entry
->vme_end
-
13722 src_entry
->vme_start
);
13724 if(src_entry
->is_sub_map
) {
13725 vm_map_reference(VME_SUBMAP(src_entry
));
13726 object
= VM_OBJECT_NULL
;
13728 object
= VME_OBJECT(src_entry
);
13729 if (src_entry
->iokit_acct
) {
13731 * This entry uses "IOKit accounting".
13733 } else if (object
!= VM_OBJECT_NULL
&&
13734 object
->purgable
!= VM_PURGABLE_DENY
) {
13736 * Purgeable objects have their own accounting:
13737 * no pmap accounting for them.
13739 assert(!src_entry
->use_pmap
);
13742 * Not IOKit or purgeable:
13743 * must be accounted by pmap stats.
13745 assert(src_entry
->use_pmap
);
13748 if (object
== VM_OBJECT_NULL
) {
13749 object
= vm_object_allocate(entry_size
);
13750 VME_OFFSET_SET(src_entry
, 0);
13751 VME_OBJECT_SET(src_entry
, object
);
13752 } else if (object
->copy_strategy
!=
13753 MEMORY_OBJECT_COPY_SYMMETRIC
) {
13755 * We are already using an asymmetric
13756 * copy, and therefore we already have
13757 * the right object.
13759 assert(!src_entry
->needs_copy
);
13760 } else if (src_entry
->needs_copy
|| object
->shadowed
||
13761 (object
->internal
&& !object
->true_share
&&
13762 !src_entry
->is_shared
&&
13763 object
->vo_size
> entry_size
)) {
13765 VME_OBJECT_SHADOW(src_entry
, entry_size
);
13767 if (!src_entry
->needs_copy
&&
13768 (src_entry
->protection
& VM_PROT_WRITE
)) {
13771 prot
= src_entry
->protection
& ~VM_PROT_WRITE
;
13773 if (override_nx(map
,
13774 VME_ALIAS(src_entry
))
13776 prot
|= VM_PROT_EXECUTE
;
13778 if(map
->mapped_in_other_pmaps
) {
13779 vm_object_pmap_protect(
13780 VME_OBJECT(src_entry
),
13781 VME_OFFSET(src_entry
),
13784 src_entry
->vme_start
,
13787 pmap_protect(vm_map_pmap(map
),
13788 src_entry
->vme_start
,
13789 src_entry
->vme_end
,
13794 object
= VME_OBJECT(src_entry
);
13795 src_entry
->needs_copy
= FALSE
;
13799 vm_object_lock(object
);
13800 vm_object_reference_locked(object
); /* object ref. for new entry */
13801 if (object
->copy_strategy
==
13802 MEMORY_OBJECT_COPY_SYMMETRIC
) {
13803 object
->copy_strategy
=
13804 MEMORY_OBJECT_COPY_DELAY
;
13806 vm_object_unlock(object
);
13809 offset
= (VME_OFFSET(src_entry
) +
13810 (src_start
- src_entry
->vme_start
));
13812 new_entry
= _vm_map_entry_create(map_header
, !map_header
->entries_pageable
);
13813 vm_map_entry_copy(new_entry
, src_entry
);
13814 if (new_entry
->is_sub_map
) {
13815 /* clr address space specifics */
13816 new_entry
->use_pmap
= FALSE
;
13819 new_entry
->map_aligned
= FALSE
;
13821 new_entry
->vme_start
= map_address
;
13822 new_entry
->vme_end
= map_address
+ tmp_size
;
13823 assert(new_entry
->vme_start
< new_entry
->vme_end
);
13824 new_entry
->inheritance
= inheritance
;
13825 VME_OFFSET_SET(new_entry
, offset
);
13828 * The new region has to be copied now if required.
13833 * Cannot allow an entry describing a JIT
13834 * region to be shared across address spaces.
13836 if (src_entry
->used_for_jit
== TRUE
&& !same_map
) {
13837 result
= KERN_INVALID_ARGUMENT
;
13840 src_entry
->is_shared
= TRUE
;
13841 new_entry
->is_shared
= TRUE
;
13842 if (!(new_entry
->is_sub_map
))
13843 new_entry
->needs_copy
= FALSE
;
13845 } else if (src_entry
->is_sub_map
) {
13846 /* make this a COW sub_map if not already */
13847 assert(new_entry
->wired_count
== 0);
13848 new_entry
->needs_copy
= TRUE
;
13849 object
= VM_OBJECT_NULL
;
13850 } else if (src_entry
->wired_count
== 0 &&
13851 vm_object_copy_quickly(&VME_OBJECT(new_entry
),
13852 VME_OFFSET(new_entry
),
13853 (new_entry
->vme_end
-
13854 new_entry
->vme_start
),
13856 &new_entry_needs_copy
)) {
13858 new_entry
->needs_copy
= new_entry_needs_copy
;
13859 new_entry
->is_shared
= FALSE
;
13862 * Handle copy_on_write semantics.
13864 if (src_needs_copy
&& !src_entry
->needs_copy
) {
13867 prot
= src_entry
->protection
& ~VM_PROT_WRITE
;
13869 if (override_nx(map
,
13870 VME_ALIAS(src_entry
))
13872 prot
|= VM_PROT_EXECUTE
;
13874 vm_object_pmap_protect(object
,
13877 ((src_entry
->is_shared
13878 || map
->mapped_in_other_pmaps
) ?
13879 PMAP_NULL
: map
->pmap
),
13880 src_entry
->vme_start
,
13883 assert(src_entry
->wired_count
== 0);
13884 src_entry
->needs_copy
= TRUE
;
13887 * Throw away the old object reference of the new entry.
13889 vm_object_deallocate(object
);
13892 new_entry
->is_shared
= FALSE
;
13895 * The map can be safely unlocked since we
13896 * already hold a reference on the object.
13898 * Record the timestamp of the map for later
13899 * verification, and unlock the map.
13901 version
.main_timestamp
= map
->timestamp
;
13902 vm_map_unlock(map
); /* Increments timestamp once! */
13905 * Perform the copy.
13907 if (src_entry
->wired_count
> 0) {
13908 vm_object_lock(object
);
13909 result
= vm_object_copy_slowly(
13914 &VME_OBJECT(new_entry
));
13916 VME_OFFSET_SET(new_entry
, 0);
13917 new_entry
->needs_copy
= FALSE
;
13919 vm_object_offset_t new_offset
;
13921 new_offset
= VME_OFFSET(new_entry
);
13922 result
= vm_object_copy_strategically(
13926 &VME_OBJECT(new_entry
),
13928 &new_entry_needs_copy
);
13929 if (new_offset
!= VME_OFFSET(new_entry
)) {
13930 VME_OFFSET_SET(new_entry
, new_offset
);
13933 new_entry
->needs_copy
= new_entry_needs_copy
;
13937 * Throw away the old object reference of the new entry.
13939 vm_object_deallocate(object
);
13941 if (result
!= KERN_SUCCESS
&&
13942 result
!= KERN_MEMORY_RESTART_COPY
) {
13943 _vm_map_entry_dispose(map_header
, new_entry
);
13949 * Verify that the map has not substantially
13950 * changed while the copy was being made.
13954 if (version
.main_timestamp
+ 1 != map
->timestamp
) {
13956 * Simple version comparison failed.
13958 * Retry the lookup and verify that the
13959 * same object/offset are still present.
13961 vm_object_deallocate(VME_OBJECT(new_entry
));
13962 _vm_map_entry_dispose(map_header
, new_entry
);
13963 if (result
== KERN_MEMORY_RESTART_COPY
)
13964 result
= KERN_SUCCESS
;
13968 if (result
== KERN_MEMORY_RESTART_COPY
) {
13969 vm_object_reference(object
);
13974 _vm_map_store_entry_link(map_header
,
13975 map_header
->links
.prev
, new_entry
);
13977 /*Protections for submap mapping are irrelevant here*/
13978 if( !src_entry
->is_sub_map
) {
13979 *cur_protection
&= src_entry
->protection
;
13980 *max_protection
&= src_entry
->max_protection
;
13982 map_address
+= tmp_size
;
13983 mapped_size
+= tmp_size
;
13984 src_start
+= tmp_size
;
13988 vm_map_unlock(map
);
13989 if (result
!= KERN_SUCCESS
) {
13991 * Free all allocated elements.
13993 for (src_entry
= map_header
->links
.next
;
13994 src_entry
!= (struct vm_map_entry
*)&map_header
->links
;
13995 src_entry
= new_entry
) {
13996 new_entry
= src_entry
->vme_next
;
13997 _vm_map_store_entry_unlink(map_header
, src_entry
);
13998 if (src_entry
->is_sub_map
) {
13999 vm_map_deallocate(VME_SUBMAP(src_entry
));
14001 vm_object_deallocate(VME_OBJECT(src_entry
));
14003 _vm_map_entry_dispose(map_header
, src_entry
);
14010 * Routine: vm_remap
14012 * Map portion of a task's address space.
14013 * Mapped region must not overlap more than
14014 * one vm memory object. Protections and
14015 * inheritance attributes remain the same
14016 * as in the original task and are out parameters.
14017 * Source and Target task can be identical
14018 * Other attributes are identical as for vm_map()
14022 vm_map_t target_map
,
14023 vm_map_address_t
*address
,
14024 vm_map_size_t size
,
14025 vm_map_offset_t mask
,
14028 vm_map_offset_t memory_address
,
14030 vm_prot_t
*cur_protection
,
14031 vm_prot_t
*max_protection
,
14032 vm_inherit_t inheritance
)
14034 kern_return_t result
;
14035 vm_map_entry_t entry
;
14036 vm_map_entry_t insp_entry
= VM_MAP_ENTRY_NULL
;
14037 vm_map_entry_t new_entry
;
14038 struct vm_map_header map_header
;
14039 vm_map_offset_t offset_in_mapping
;
14041 if (target_map
== VM_MAP_NULL
)
14042 return KERN_INVALID_ARGUMENT
;
14044 switch (inheritance
) {
14045 case VM_INHERIT_NONE
:
14046 case VM_INHERIT_COPY
:
14047 case VM_INHERIT_SHARE
:
14048 if (size
!= 0 && src_map
!= VM_MAP_NULL
)
14052 return KERN_INVALID_ARGUMENT
;
14056 * If the user is requesting that we return the address of the
14057 * first byte of the data (rather than the base of the page),
14058 * then we use different rounding semantics: specifically,
14059 * we assume that (memory_address, size) describes a region
14060 * all of whose pages we must cover, rather than a base to be truncated
14061 * down and a size to be added to that base. So we figure out
14062 * the highest page that the requested region includes and make
14063 * sure that the size will cover it.
14065 * The key example we're worried about it is of the form:
14067 * memory_address = 0x1ff0, size = 0x20
14069 * With the old semantics, we round down the memory_address to 0x1000
14070 * and round up the size to 0x1000, resulting in our covering *only*
14071 * page 0x1000. With the new semantics, we'd realize that the region covers
14072 * 0x1ff0-0x2010, and compute a size of 0x2000. Thus, we cover both page
14073 * 0x1000 and page 0x2000 in the region we remap.
14075 if ((flags
& VM_FLAGS_RETURN_DATA_ADDR
) != 0) {
14076 offset_in_mapping
= memory_address
- vm_map_trunc_page(memory_address
, PAGE_MASK
);
14077 size
= vm_map_round_page(memory_address
+ size
- vm_map_trunc_page(memory_address
, PAGE_MASK
), PAGE_MASK
);
14079 size
= vm_map_round_page(size
, PAGE_MASK
);
14082 result
= vm_map_remap_extract(src_map
, memory_address
,
14083 size
, copy
, &map_header
,
14087 target_map
->hdr
.entries_pageable
,
14088 src_map
== target_map
);
14090 if (result
!= KERN_SUCCESS
) {
14095 * Allocate/check a range of free virtual address
14096 * space for the target
14098 *address
= vm_map_trunc_page(*address
,
14099 VM_MAP_PAGE_MASK(target_map
));
14100 vm_map_lock(target_map
);
14101 result
= vm_map_remap_range_allocate(target_map
, address
, size
,
14102 mask
, flags
, &insp_entry
);
14104 for (entry
= map_header
.links
.next
;
14105 entry
!= (struct vm_map_entry
*)&map_header
.links
;
14106 entry
= new_entry
) {
14107 new_entry
= entry
->vme_next
;
14108 _vm_map_store_entry_unlink(&map_header
, entry
);
14109 if (result
== KERN_SUCCESS
) {
14110 if (flags
& VM_FLAGS_RESILIENT_CODESIGN
) {
14111 /* no codesigning -> read-only access */
14112 assert(!entry
->used_for_jit
);
14113 entry
->max_protection
= VM_PROT_READ
;
14114 entry
->protection
= VM_PROT_READ
;
14115 entry
->vme_resilient_codesign
= TRUE
;
14117 entry
->vme_start
+= *address
;
14118 entry
->vme_end
+= *address
;
14119 assert(!entry
->map_aligned
);
14120 vm_map_store_entry_link(target_map
, insp_entry
, entry
);
14121 insp_entry
= entry
;
14123 if (!entry
->is_sub_map
) {
14124 vm_object_deallocate(VME_OBJECT(entry
));
14126 vm_map_deallocate(VME_SUBMAP(entry
));
14128 _vm_map_entry_dispose(&map_header
, entry
);
14132 if (flags
& VM_FLAGS_RESILIENT_CODESIGN
) {
14133 *cur_protection
= VM_PROT_READ
;
14134 *max_protection
= VM_PROT_READ
;
14137 if( target_map
->disable_vmentry_reuse
== TRUE
) {
14138 assert(!target_map
->is_nested_map
);
14139 if( target_map
->highest_entry_end
< insp_entry
->vme_end
){
14140 target_map
->highest_entry_end
= insp_entry
->vme_end
;
14144 if (result
== KERN_SUCCESS
) {
14145 target_map
->size
+= size
;
14146 SAVE_HINT_MAP_WRITE(target_map
, insp_entry
);
14148 vm_map_unlock(target_map
);
14150 if (result
== KERN_SUCCESS
&& target_map
->wiring_required
)
14151 result
= vm_map_wire(target_map
, *address
,
14152 *address
+ size
, *cur_protection
| VM_PROT_MEMORY_TAG_MAKE(VM_KERN_MEMORY_MLOCK
),
14156 * If requested, return the address of the data pointed to by the
14157 * request, rather than the base of the resulting page.
14159 if ((flags
& VM_FLAGS_RETURN_DATA_ADDR
) != 0) {
14160 *address
+= offset_in_mapping
;
14167 * Routine: vm_map_remap_range_allocate
14170 * Allocate a range in the specified virtual address map.
14171 * returns the address and the map entry just before the allocated
14174 * Map must be locked.
14177 static kern_return_t
14178 vm_map_remap_range_allocate(
14180 vm_map_address_t
*address
, /* IN/OUT */
14181 vm_map_size_t size
,
14182 vm_map_offset_t mask
,
14184 vm_map_entry_t
*map_entry
) /* OUT */
14186 vm_map_entry_t entry
;
14187 vm_map_offset_t start
;
14188 vm_map_offset_t end
;
14190 vm_map_entry_t hole_entry
;
14196 if (flags
& VM_FLAGS_ANYWHERE
)
14198 if (flags
& VM_FLAGS_RANDOM_ADDR
)
14201 * Get a random start address.
14203 kr
= vm_map_random_address_for_size(map
, address
, size
);
14204 if (kr
!= KERN_SUCCESS
) {
14211 * Calculate the first possible address.
14214 if (start
< map
->min_offset
)
14215 start
= map
->min_offset
;
14216 if (start
> map
->max_offset
)
14217 return(KERN_NO_SPACE
);
14220 * Look for the first possible address;
14221 * if there's already something at this
14222 * address, we have to start after it.
14225 if( map
->disable_vmentry_reuse
== TRUE
) {
14226 VM_MAP_HIGHEST_ENTRY(map
, entry
, start
);
14229 if (map
->holelistenabled
) {
14230 hole_entry
= (vm_map_entry_t
)map
->holes_list
;
14232 if (hole_entry
== NULL
) {
14234 * No more space in the map?
14236 return(KERN_NO_SPACE
);
14239 boolean_t found_hole
= FALSE
;
14242 if (hole_entry
->vme_start
>= start
) {
14243 start
= hole_entry
->vme_start
;
14248 if (hole_entry
->vme_end
> start
) {
14252 hole_entry
= hole_entry
->vme_next
;
14254 } while (hole_entry
!= (vm_map_entry_t
) map
->holes_list
);
14256 if (found_hole
== FALSE
) {
14257 return (KERN_NO_SPACE
);
14260 entry
= hole_entry
;
14263 assert(first_free_is_valid(map
));
14264 if (start
== map
->min_offset
) {
14265 if ((entry
= map
->first_free
) != vm_map_to_entry(map
))
14266 start
= entry
->vme_end
;
14268 vm_map_entry_t tmp_entry
;
14269 if (vm_map_lookup_entry(map
, start
, &tmp_entry
))
14270 start
= tmp_entry
->vme_end
;
14274 start
= vm_map_round_page(start
,
14275 VM_MAP_PAGE_MASK(map
));
14279 * In any case, the "entry" always precedes
14280 * the proposed new region throughout the
14285 vm_map_entry_t next
;
14288 * Find the end of the proposed new region.
14289 * Be sure we didn't go beyond the end, or
14290 * wrap around the address.
14293 end
= ((start
+ mask
) & ~mask
);
14294 end
= vm_map_round_page(end
,
14295 VM_MAP_PAGE_MASK(map
));
14297 return(KERN_NO_SPACE
);
14301 if ((end
> map
->max_offset
) || (end
< start
)) {
14302 if (map
->wait_for_space
) {
14303 if (size
<= (map
->max_offset
-
14304 map
->min_offset
)) {
14305 assert_wait((event_t
) map
, THREAD_INTERRUPTIBLE
);
14306 vm_map_unlock(map
);
14307 thread_block(THREAD_CONTINUE_NULL
);
14313 return(KERN_NO_SPACE
);
14316 next
= entry
->vme_next
;
14318 if (map
->holelistenabled
) {
14319 if (entry
->vme_end
>= end
)
14323 * If there are no more entries, we must win.
14327 * If there is another entry, it must be
14328 * after the end of the potential new region.
14331 if (next
== vm_map_to_entry(map
))
14334 if (next
->vme_start
>= end
)
14339 * Didn't fit -- move to the next entry.
14344 if (map
->holelistenabled
) {
14345 if (entry
== (vm_map_entry_t
) map
->holes_list
) {
14349 return(KERN_NO_SPACE
);
14351 start
= entry
->vme_start
;
14353 start
= entry
->vme_end
;
14357 if (map
->holelistenabled
) {
14359 if (vm_map_lookup_entry(map
, entry
->vme_start
, &entry
)) {
14360 panic("Found an existing entry (%p) instead of potential hole at address: 0x%llx.\n", entry
, (unsigned long long)entry
->vme_start
);
14367 vm_map_entry_t temp_entry
;
14371 * the address doesn't itself violate
14372 * the mask requirement.
14375 if ((start
& mask
) != 0)
14376 return(KERN_NO_SPACE
);
14380 * ... the address is within bounds
14383 end
= start
+ size
;
14385 if ((start
< map
->min_offset
) ||
14386 (end
> map
->max_offset
) ||
14388 return(KERN_INVALID_ADDRESS
);
14392 * If we're asked to overwrite whatever was mapped in that
14393 * range, first deallocate that range.
14395 if (flags
& VM_FLAGS_OVERWRITE
) {
14399 * We use a "zap_map" to avoid having to unlock
14400 * the "map" in vm_map_delete(), which would compromise
14401 * the atomicity of the "deallocate" and then "remap"
14404 zap_map
= vm_map_create(PMAP_NULL
,
14407 map
->hdr
.entries_pageable
);
14408 if (zap_map
== VM_MAP_NULL
) {
14409 return KERN_RESOURCE_SHORTAGE
;
14411 vm_map_set_page_shift(zap_map
, VM_MAP_PAGE_SHIFT(map
));
14412 vm_map_disable_hole_optimization(zap_map
);
14414 kr
= vm_map_delete(map
, start
, end
,
14415 (VM_MAP_REMOVE_SAVE_ENTRIES
|
14416 VM_MAP_REMOVE_NO_MAP_ALIGN
),
14418 if (kr
== KERN_SUCCESS
) {
14419 vm_map_destroy(zap_map
,
14420 VM_MAP_REMOVE_NO_PMAP_CLEANUP
);
14421 zap_map
= VM_MAP_NULL
;
14426 * ... the starting address isn't allocated
14429 if (vm_map_lookup_entry(map
, start
, &temp_entry
))
14430 return(KERN_NO_SPACE
);
14432 entry
= temp_entry
;
14435 * ... the next region doesn't overlap the
14439 if ((entry
->vme_next
!= vm_map_to_entry(map
)) &&
14440 (entry
->vme_next
->vme_start
< end
))
14441 return(KERN_NO_SPACE
);
14443 *map_entry
= entry
;
14444 return(KERN_SUCCESS
);
14450 * Set the address map for the current thread to the specified map
14458 thread_t thread
= current_thread();
14459 vm_map_t oldmap
= thread
->map
;
14461 mp_disable_preemption();
14462 mycpu
= cpu_number();
14465 * Deactivate the current map and activate the requested map
14467 PMAP_SWITCH_USER(thread
, map
, mycpu
);
14469 mp_enable_preemption();
14475 * Routine: vm_map_write_user
14478 * Copy out data from a kernel space into space in the
14479 * destination map. The space must already exist in the
14481 * NOTE: This routine should only be called by threads
14482 * which can block on a page fault. i.e. kernel mode user
14490 vm_map_address_t dst_addr
,
14493 kern_return_t kr
= KERN_SUCCESS
;
14495 if(current_map() == map
) {
14496 if (copyout(src_p
, dst_addr
, size
)) {
14497 kr
= KERN_INVALID_ADDRESS
;
14502 /* take on the identity of the target map while doing */
14505 vm_map_reference(map
);
14506 oldmap
= vm_map_switch(map
);
14507 if (copyout(src_p
, dst_addr
, size
)) {
14508 kr
= KERN_INVALID_ADDRESS
;
14510 vm_map_switch(oldmap
);
14511 vm_map_deallocate(map
);
14517 * Routine: vm_map_read_user
14520 * Copy in data from a user space source map into the
14521 * kernel map. The space must already exist in the
14523 * NOTE: This routine should only be called by threads
14524 * which can block on a page fault. i.e. kernel mode user
14531 vm_map_address_t src_addr
,
14535 kern_return_t kr
= KERN_SUCCESS
;
14537 if(current_map() == map
) {
14538 if (copyin(src_addr
, dst_p
, size
)) {
14539 kr
= KERN_INVALID_ADDRESS
;
14544 /* take on the identity of the target map while doing */
14547 vm_map_reference(map
);
14548 oldmap
= vm_map_switch(map
);
14549 if (copyin(src_addr
, dst_p
, size
)) {
14550 kr
= KERN_INVALID_ADDRESS
;
14552 vm_map_switch(oldmap
);
14553 vm_map_deallocate(map
);
14560 * vm_map_check_protection:
14562 * Assert that the target map allows the specified
14563 * privilege on the entire address region given.
14564 * The entire region must be allocated.
14567 vm_map_check_protection(vm_map_t map
, vm_map_offset_t start
,
14568 vm_map_offset_t end
, vm_prot_t protection
)
14570 vm_map_entry_t entry
;
14571 vm_map_entry_t tmp_entry
;
14575 if (start
< vm_map_min(map
) || end
> vm_map_max(map
) || start
> end
)
14577 vm_map_unlock(map
);
14581 if (!vm_map_lookup_entry(map
, start
, &tmp_entry
)) {
14582 vm_map_unlock(map
);
14588 while (start
< end
) {
14589 if (entry
== vm_map_to_entry(map
)) {
14590 vm_map_unlock(map
);
14595 * No holes allowed!
14598 if (start
< entry
->vme_start
) {
14599 vm_map_unlock(map
);
14604 * Check protection associated with entry.
14607 if ((entry
->protection
& protection
) != protection
) {
14608 vm_map_unlock(map
);
14612 /* go to next entry */
14614 start
= entry
->vme_end
;
14615 entry
= entry
->vme_next
;
14617 vm_map_unlock(map
);
14622 vm_map_purgable_control(
14624 vm_map_offset_t address
,
14625 vm_purgable_t control
,
14628 vm_map_entry_t entry
;
14629 vm_object_t object
;
14631 boolean_t was_nonvolatile
;
14634 * Vet all the input parameters and current type and state of the
14635 * underlaying object. Return with an error if anything is amiss.
14637 if (map
== VM_MAP_NULL
)
14638 return(KERN_INVALID_ARGUMENT
);
14640 if (control
!= VM_PURGABLE_SET_STATE
&&
14641 control
!= VM_PURGABLE_GET_STATE
&&
14642 control
!= VM_PURGABLE_PURGE_ALL
)
14643 return(KERN_INVALID_ARGUMENT
);
14645 if (control
== VM_PURGABLE_PURGE_ALL
) {
14646 vm_purgeable_object_purge_all();
14647 return KERN_SUCCESS
;
14650 if (control
== VM_PURGABLE_SET_STATE
&&
14651 (((*state
& ~(VM_PURGABLE_ALL_MASKS
)) != 0) ||
14652 ((*state
& VM_PURGABLE_STATE_MASK
) > VM_PURGABLE_STATE_MASK
)))
14653 return(KERN_INVALID_ARGUMENT
);
14655 vm_map_lock_read(map
);
14657 if (!vm_map_lookup_entry(map
, address
, &entry
) || entry
->is_sub_map
) {
14660 * Must pass a valid non-submap address.
14662 vm_map_unlock_read(map
);
14663 return(KERN_INVALID_ADDRESS
);
14666 if ((entry
->protection
& VM_PROT_WRITE
) == 0) {
14668 * Can't apply purgable controls to something you can't write.
14670 vm_map_unlock_read(map
);
14671 return(KERN_PROTECTION_FAILURE
);
14674 object
= VME_OBJECT(entry
);
14675 if (object
== VM_OBJECT_NULL
||
14676 object
->purgable
== VM_PURGABLE_DENY
) {
14678 * Object must already be present and be purgeable.
14680 vm_map_unlock_read(map
);
14681 return KERN_INVALID_ARGUMENT
;
14684 vm_object_lock(object
);
14687 if (VME_OFFSET(entry
) != 0 ||
14688 entry
->vme_end
- entry
->vme_start
!= object
->vo_size
) {
14690 * Can only apply purgable controls to the whole (existing)
14693 vm_map_unlock_read(map
);
14694 vm_object_unlock(object
);
14695 return KERN_INVALID_ARGUMENT
;
14699 assert(!entry
->is_sub_map
);
14700 assert(!entry
->use_pmap
); /* purgeable has its own accounting */
14702 vm_map_unlock_read(map
);
14704 was_nonvolatile
= (object
->purgable
== VM_PURGABLE_NONVOLATILE
);
14706 kr
= vm_object_purgable_control(object
, control
, state
);
14708 if (was_nonvolatile
&&
14709 object
->purgable
!= VM_PURGABLE_NONVOLATILE
&&
14710 map
->pmap
== kernel_pmap
) {
14712 object
->vo_purgeable_volatilizer
= kernel_task
;
14716 vm_object_unlock(object
);
14722 vm_map_page_query_internal(
14723 vm_map_t target_map
,
14724 vm_map_offset_t offset
,
14729 vm_page_info_basic_data_t info
;
14730 mach_msg_type_number_t count
;
14732 count
= VM_PAGE_INFO_BASIC_COUNT
;
14733 kr
= vm_map_page_info(target_map
,
14735 VM_PAGE_INFO_BASIC
,
14736 (vm_page_info_t
) &info
,
14738 if (kr
== KERN_SUCCESS
) {
14739 *disposition
= info
.disposition
;
14740 *ref_count
= info
.ref_count
;
14752 vm_map_offset_t offset
,
14753 vm_page_info_flavor_t flavor
,
14754 vm_page_info_t info
,
14755 mach_msg_type_number_t
*count
)
14757 vm_map_entry_t map_entry
;
14758 vm_object_t object
;
14760 kern_return_t retval
= KERN_SUCCESS
;
14761 boolean_t top_object
;
14764 vm_page_info_basic_t basic_info
;
14766 vm_map_offset_t offset_in_page
;
14769 case VM_PAGE_INFO_BASIC
:
14770 if (*count
!= VM_PAGE_INFO_BASIC_COUNT
) {
14772 * The "vm_page_info_basic_data" structure was not
14773 * properly padded, so allow the size to be off by
14774 * one to maintain backwards binary compatibility...
14776 if (*count
!= VM_PAGE_INFO_BASIC_COUNT
- 1)
14777 return KERN_INVALID_ARGUMENT
;
14781 return KERN_INVALID_ARGUMENT
;
14789 retval
= KERN_SUCCESS
;
14790 offset_in_page
= offset
& PAGE_MASK
;
14791 offset
= vm_map_trunc_page(offset
, PAGE_MASK
);
14793 vm_map_lock_read(map
);
14796 * First, find the map entry covering "offset", going down
14797 * submaps if necessary.
14800 if (!vm_map_lookup_entry(map
, offset
, &map_entry
)) {
14801 vm_map_unlock_read(map
);
14802 return KERN_INVALID_ADDRESS
;
14804 /* compute offset from this map entry's start */
14805 offset
-= map_entry
->vme_start
;
14806 /* compute offset into this map entry's object (or submap) */
14807 offset
+= VME_OFFSET(map_entry
);
14809 if (map_entry
->is_sub_map
) {
14812 sub_map
= VME_SUBMAP(map_entry
);
14813 vm_map_lock_read(sub_map
);
14814 vm_map_unlock_read(map
);
14818 ref_count
= MAX(ref_count
, map
->ref_count
);
14824 object
= VME_OBJECT(map_entry
);
14825 if (object
== VM_OBJECT_NULL
) {
14826 /* no object -> no page */
14827 vm_map_unlock_read(map
);
14831 vm_object_lock(object
);
14832 vm_map_unlock_read(map
);
14835 * Go down the VM object shadow chain until we find the page
14836 * we're looking for.
14839 ref_count
= MAX(ref_count
, object
->ref_count
);
14841 m
= vm_page_lookup(object
, offset
);
14843 if (m
!= VM_PAGE_NULL
) {
14844 disposition
|= VM_PAGE_QUERY_PAGE_PRESENT
;
14847 if (object
->internal
&&
14849 !object
->terminating
&&
14850 object
->pager_ready
) {
14852 if (VM_COMPRESSOR_PAGER_STATE_GET(object
, offset
)
14853 == VM_EXTERNAL_STATE_EXISTS
) {
14854 /* the pager has that page */
14855 disposition
|= VM_PAGE_QUERY_PAGE_PAGED_OUT
;
14860 if (object
->shadow
!= VM_OBJECT_NULL
) {
14861 vm_object_t shadow
;
14863 offset
+= object
->vo_shadow_offset
;
14864 shadow
= object
->shadow
;
14866 vm_object_lock(shadow
);
14867 vm_object_unlock(object
);
14870 top_object
= FALSE
;
14873 // if (!object->internal)
14875 // retval = KERN_FAILURE;
14876 // goto done_with_object;
14881 /* The ref_count is not strictly accurate, it measures the number */
14882 /* of entities holding a ref on the object, they may not be mapping */
14883 /* the object or may not be mapping the section holding the */
14884 /* target page but its still a ball park number and though an over- */
14885 /* count, it picks up the copy-on-write cases */
14887 /* We could also get a picture of page sharing from pmap_attributes */
14888 /* but this would under count as only faulted-in mappings would */
14891 if (top_object
== TRUE
&& object
->shadow
)
14892 disposition
|= VM_PAGE_QUERY_PAGE_COPIED
;
14894 if (! object
->internal
)
14895 disposition
|= VM_PAGE_QUERY_PAGE_EXTERNAL
;
14897 if (m
== VM_PAGE_NULL
)
14898 goto done_with_object
;
14900 if (m
->fictitious
) {
14901 disposition
|= VM_PAGE_QUERY_PAGE_FICTITIOUS
;
14902 goto done_with_object
;
14904 if (m
->dirty
|| pmap_is_modified(VM_PAGE_GET_PHYS_PAGE(m
)))
14905 disposition
|= VM_PAGE_QUERY_PAGE_DIRTY
;
14907 if (m
->reference
|| pmap_is_referenced(VM_PAGE_GET_PHYS_PAGE(m
)))
14908 disposition
|= VM_PAGE_QUERY_PAGE_REF
;
14910 if (m
->vm_page_q_state
== VM_PAGE_ON_SPECULATIVE_Q
)
14911 disposition
|= VM_PAGE_QUERY_PAGE_SPECULATIVE
;
14913 if (m
->cs_validated
)
14914 disposition
|= VM_PAGE_QUERY_PAGE_CS_VALIDATED
;
14916 disposition
|= VM_PAGE_QUERY_PAGE_CS_TAINTED
;
14918 disposition
|= VM_PAGE_QUERY_PAGE_CS_NX
;
14921 vm_object_unlock(object
);
14925 case VM_PAGE_INFO_BASIC
:
14926 basic_info
= (vm_page_info_basic_t
) info
;
14927 basic_info
->disposition
= disposition
;
14928 basic_info
->ref_count
= ref_count
;
14929 basic_info
->object_id
= (vm_object_id_t
) (uintptr_t)
14930 VM_KERNEL_ADDRPERM(object
);
14931 basic_info
->offset
=
14932 (memory_object_offset_t
) offset
+ offset_in_page
;
14933 basic_info
->depth
= depth
;
14943 * Synchronises the memory range specified with its backing store
14944 * image by either flushing or cleaning the contents to the appropriate
14945 * memory manager engaging in a memory object synchronize dialog with
14946 * the manager. The client doesn't return until the manager issues
14947 * m_o_s_completed message. MIG Magically converts user task parameter
14948 * to the task's address map.
14950 * interpretation of sync_flags
14951 * VM_SYNC_INVALIDATE - discard pages, only return precious
14952 * pages to manager.
14954 * VM_SYNC_INVALIDATE & (VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS)
14955 * - discard pages, write dirty or precious
14956 * pages back to memory manager.
14958 * VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS
14959 * - write dirty or precious pages back to
14960 * the memory manager.
14962 * VM_SYNC_CONTIGUOUS - does everything normally, but if there
14963 * is a hole in the region, and we would
14964 * have returned KERN_SUCCESS, return
14965 * KERN_INVALID_ADDRESS instead.
14968 * The memory object attributes have not yet been implemented, this
14969 * function will have to deal with the invalidate attribute
14972 * KERN_INVALID_TASK Bad task parameter
14973 * KERN_INVALID_ARGUMENT both sync and async were specified.
14974 * KERN_SUCCESS The usual.
14975 * KERN_INVALID_ADDRESS There was a hole in the region.
14981 vm_map_address_t address
,
14982 vm_map_size_t size
,
14983 vm_sync_t sync_flags
)
14986 msync_req_t new_msr
;
14987 queue_chain_t req_q
; /* queue of requests for this msync */
14988 vm_map_entry_t entry
;
14989 vm_map_size_t amount_left
;
14990 vm_object_offset_t offset
;
14991 boolean_t do_sync_req
;
14992 boolean_t had_hole
= FALSE
;
14993 memory_object_t pager
;
14994 vm_map_offset_t pmap_offset
;
14996 if ((sync_flags
& VM_SYNC_ASYNCHRONOUS
) &&
14997 (sync_flags
& VM_SYNC_SYNCHRONOUS
))
14998 return(KERN_INVALID_ARGUMENT
);
15001 * align address and size on page boundaries
15003 size
= (vm_map_round_page(address
+ size
,
15004 VM_MAP_PAGE_MASK(map
)) -
15005 vm_map_trunc_page(address
,
15006 VM_MAP_PAGE_MASK(map
)));
15007 address
= vm_map_trunc_page(address
,
15008 VM_MAP_PAGE_MASK(map
));
15010 if (map
== VM_MAP_NULL
)
15011 return(KERN_INVALID_TASK
);
15014 return(KERN_SUCCESS
);
15016 queue_init(&req_q
);
15017 amount_left
= size
;
15019 while (amount_left
> 0) {
15020 vm_object_size_t flush_size
;
15021 vm_object_t object
;
15024 if (!vm_map_lookup_entry(map
,
15028 vm_map_size_t skip
;
15031 * hole in the address map.
15035 if (sync_flags
& VM_SYNC_KILLPAGES
) {
15037 * For VM_SYNC_KILLPAGES, there should be
15038 * no holes in the range, since we couldn't
15039 * prevent someone else from allocating in
15040 * that hole and we wouldn't want to "kill"
15043 vm_map_unlock(map
);
15048 * Check for empty map.
15050 if (entry
== vm_map_to_entry(map
) &&
15051 entry
->vme_next
== entry
) {
15052 vm_map_unlock(map
);
15056 * Check that we don't wrap and that
15057 * we have at least one real map entry.
15059 if ((map
->hdr
.nentries
== 0) ||
15060 (entry
->vme_next
->vme_start
< address
)) {
15061 vm_map_unlock(map
);
15065 * Move up to the next entry if needed
15067 skip
= (entry
->vme_next
->vme_start
- address
);
15068 if (skip
>= amount_left
)
15071 amount_left
-= skip
;
15072 address
= entry
->vme_next
->vme_start
;
15073 vm_map_unlock(map
);
15077 offset
= address
- entry
->vme_start
;
15078 pmap_offset
= address
;
15081 * do we have more to flush than is contained in this
15084 if (amount_left
+ entry
->vme_start
+ offset
> entry
->vme_end
) {
15085 flush_size
= entry
->vme_end
-
15086 (entry
->vme_start
+ offset
);
15088 flush_size
= amount_left
;
15090 amount_left
-= flush_size
;
15091 address
+= flush_size
;
15093 if (entry
->is_sub_map
== TRUE
) {
15094 vm_map_t local_map
;
15095 vm_map_offset_t local_offset
;
15097 local_map
= VME_SUBMAP(entry
);
15098 local_offset
= VME_OFFSET(entry
);
15099 vm_map_unlock(map
);
15104 sync_flags
) == KERN_INVALID_ADDRESS
) {
15109 object
= VME_OBJECT(entry
);
15112 * We can't sync this object if the object has not been
15115 if (object
== VM_OBJECT_NULL
) {
15116 vm_map_unlock(map
);
15119 offset
+= VME_OFFSET(entry
);
15121 vm_object_lock(object
);
15123 if (sync_flags
& (VM_SYNC_KILLPAGES
| VM_SYNC_DEACTIVATE
)) {
15124 int kill_pages
= 0;
15125 boolean_t reusable_pages
= FALSE
;
15127 if (sync_flags
& VM_SYNC_KILLPAGES
) {
15128 if (((object
->ref_count
== 1) ||
15129 ((object
->copy_strategy
!=
15130 MEMORY_OBJECT_COPY_SYMMETRIC
) &&
15131 (object
->copy
== VM_OBJECT_NULL
))) &&
15132 (object
->shadow
== VM_OBJECT_NULL
)) {
15133 if (object
->ref_count
!= 1) {
15134 vm_page_stats_reusable
.free_shared
++;
15141 if (kill_pages
!= -1)
15142 vm_object_deactivate_pages(
15145 (vm_object_size_t
) flush_size
,
15150 vm_object_unlock(object
);
15151 vm_map_unlock(map
);
15155 * We can't sync this object if there isn't a pager.
15156 * Don't bother to sync internal objects, since there can't
15157 * be any "permanent" storage for these objects anyway.
15159 if ((object
->pager
== MEMORY_OBJECT_NULL
) ||
15160 (object
->internal
) || (object
->private)) {
15161 vm_object_unlock(object
);
15162 vm_map_unlock(map
);
15166 * keep reference on the object until syncing is done
15168 vm_object_reference_locked(object
);
15169 vm_object_unlock(object
);
15171 vm_map_unlock(map
);
15173 do_sync_req
= vm_object_sync(object
,
15176 sync_flags
& VM_SYNC_INVALIDATE
,
15177 ((sync_flags
& VM_SYNC_SYNCHRONOUS
) ||
15178 (sync_flags
& VM_SYNC_ASYNCHRONOUS
)),
15179 sync_flags
& VM_SYNC_SYNCHRONOUS
);
15181 * only send a m_o_s if we returned pages or if the entry
15182 * is writable (ie dirty pages may have already been sent back)
15184 if (!do_sync_req
) {
15185 if ((sync_flags
& VM_SYNC_INVALIDATE
) && object
->resident_page_count
== 0) {
15187 * clear out the clustering and read-ahead hints
15189 vm_object_lock(object
);
15191 object
->pages_created
= 0;
15192 object
->pages_used
= 0;
15193 object
->sequential
= 0;
15194 object
->last_alloc
= 0;
15196 vm_object_unlock(object
);
15198 vm_object_deallocate(object
);
15201 msync_req_alloc(new_msr
);
15203 vm_object_lock(object
);
15204 offset
+= object
->paging_offset
;
15206 new_msr
->offset
= offset
;
15207 new_msr
->length
= flush_size
;
15208 new_msr
->object
= object
;
15209 new_msr
->flag
= VM_MSYNC_SYNCHRONIZING
;
15213 * We can't sync this object if there isn't a pager. The
15214 * pager can disappear anytime we're not holding the object
15215 * lock. So this has to be checked anytime we goto re_iterate.
15218 pager
= object
->pager
;
15220 if (pager
== MEMORY_OBJECT_NULL
) {
15221 vm_object_unlock(object
);
15222 vm_object_deallocate(object
);
15223 msync_req_free(new_msr
);
15228 queue_iterate(&object
->msr_q
, msr
, msync_req_t
, msr_q
) {
15230 * need to check for overlapping entry, if found, wait
15231 * on overlapping msr to be done, then reiterate
15234 if (msr
->flag
== VM_MSYNC_SYNCHRONIZING
&&
15235 ((offset
>= msr
->offset
&&
15236 offset
< (msr
->offset
+ msr
->length
)) ||
15237 (msr
->offset
>= offset
&&
15238 msr
->offset
< (offset
+ flush_size
))))
15240 assert_wait((event_t
) msr
,THREAD_INTERRUPTIBLE
);
15242 vm_object_unlock(object
);
15243 thread_block(THREAD_CONTINUE_NULL
);
15244 vm_object_lock(object
);
15248 }/* queue_iterate */
15250 queue_enter(&object
->msr_q
, new_msr
, msync_req_t
, msr_q
);
15252 vm_object_paging_begin(object
);
15253 vm_object_unlock(object
);
15255 queue_enter(&req_q
, new_msr
, msync_req_t
, req_q
);
15257 (void) memory_object_synchronize(
15261 sync_flags
& ~VM_SYNC_CONTIGUOUS
);
15263 vm_object_lock(object
);
15264 vm_object_paging_end(object
);
15265 vm_object_unlock(object
);
15269 * wait for memory_object_sychronize_completed messages from pager(s)
15272 while (!queue_empty(&req_q
)) {
15273 msr
= (msync_req_t
)queue_first(&req_q
);
15275 while(msr
->flag
!= VM_MSYNC_DONE
) {
15276 assert_wait((event_t
) msr
, THREAD_INTERRUPTIBLE
);
15278 thread_block(THREAD_CONTINUE_NULL
);
15281 queue_remove(&req_q
, msr
, msync_req_t
, req_q
);
15283 vm_object_deallocate(msr
->object
);
15284 msync_req_free(msr
);
15285 }/* queue_iterate */
15287 /* for proper msync() behaviour */
15288 if (had_hole
== TRUE
&& (sync_flags
& VM_SYNC_CONTIGUOUS
))
15289 return(KERN_INVALID_ADDRESS
);
15291 return(KERN_SUCCESS
);
15295 * Routine: convert_port_entry_to_map
15297 * Convert from a port specifying an entry or a task
15298 * to a map. Doesn't consume the port ref; produces a map ref,
15299 * which may be null. Unlike convert_port_to_map, the
15300 * port may be task or a named entry backed.
15307 convert_port_entry_to_map(
15311 vm_named_entry_t named_entry
;
15312 uint32_t try_failed_count
= 0;
15314 if(IP_VALID(port
) && (ip_kotype(port
) == IKOT_NAMED_ENTRY
)) {
15317 if(ip_active(port
) && (ip_kotype(port
)
15318 == IKOT_NAMED_ENTRY
)) {
15320 (vm_named_entry_t
)port
->ip_kobject
;
15321 if (!(lck_mtx_try_lock(&(named_entry
)->Lock
))) {
15324 try_failed_count
++;
15325 mutex_pause(try_failed_count
);
15328 named_entry
->ref_count
++;
15329 lck_mtx_unlock(&(named_entry
)->Lock
);
15331 if ((named_entry
->is_sub_map
) &&
15332 (named_entry
->protection
15333 & VM_PROT_WRITE
)) {
15334 map
= named_entry
->backing
.map
;
15336 mach_destroy_memory_entry(port
);
15337 return VM_MAP_NULL
;
15339 vm_map_reference_swap(map
);
15340 mach_destroy_memory_entry(port
);
15344 return VM_MAP_NULL
;
15348 map
= convert_port_to_map(port
);
15354 * Routine: convert_port_entry_to_object
15356 * Convert from a port specifying a named entry to an
15357 * object. Doesn't consume the port ref; produces a map ref,
15358 * which may be null.
15365 convert_port_entry_to_object(
15368 vm_object_t object
= VM_OBJECT_NULL
;
15369 vm_named_entry_t named_entry
;
15370 uint32_t try_failed_count
= 0;
15372 if (IP_VALID(port
) &&
15373 (ip_kotype(port
) == IKOT_NAMED_ENTRY
)) {
15376 if (ip_active(port
) &&
15377 (ip_kotype(port
) == IKOT_NAMED_ENTRY
)) {
15378 named_entry
= (vm_named_entry_t
)port
->ip_kobject
;
15379 if (!(lck_mtx_try_lock(&(named_entry
)->Lock
))) {
15381 try_failed_count
++;
15382 mutex_pause(try_failed_count
);
15385 named_entry
->ref_count
++;
15386 lck_mtx_unlock(&(named_entry
)->Lock
);
15388 if (!(named_entry
->is_sub_map
) &&
15389 !(named_entry
->is_pager
) &&
15390 !(named_entry
->is_copy
) &&
15391 (named_entry
->protection
& VM_PROT_WRITE
)) {
15392 object
= named_entry
->backing
.object
;
15393 vm_object_reference(object
);
15395 mach_destroy_memory_entry(port
);
15403 * Export routines to other components for the things we access locally through
15410 return (current_map_fast());
15414 * vm_map_reference:
15416 * Most code internal to the osfmk will go through a
15417 * macro defining this. This is always here for the
15418 * use of other kernel components.
15420 #undef vm_map_reference
15425 if (map
== VM_MAP_NULL
)
15428 lck_mtx_lock(&map
->s_lock
);
15430 assert(map
->res_count
> 0);
15431 assert(map
->ref_count
>= map
->res_count
);
15435 lck_mtx_unlock(&map
->s_lock
);
15439 * vm_map_deallocate:
15441 * Removes a reference from the specified map,
15442 * destroying it if no references remain.
15443 * The map should not be locked.
15451 if (map
== VM_MAP_NULL
)
15454 lck_mtx_lock(&map
->s_lock
);
15455 ref
= --map
->ref_count
;
15457 vm_map_res_deallocate(map
);
15458 lck_mtx_unlock(&map
->s_lock
);
15461 assert(map
->ref_count
== 0);
15462 lck_mtx_unlock(&map
->s_lock
);
15466 * The map residence count isn't decremented here because
15467 * the vm_map_delete below will traverse the entire map,
15468 * deleting entries, and the residence counts on objects
15469 * and sharing maps will go away then.
15473 vm_map_destroy(map
, VM_MAP_NO_FLAGS
);
15478 vm_map_disable_NX(vm_map_t map
)
15482 if (map
->pmap
== NULL
)
15485 pmap_disable_NX(map
->pmap
);
15489 vm_map_disallow_data_exec(vm_map_t map
)
15494 map
->map_disallow_data_exec
= TRUE
;
15497 /* XXX Consider making these constants (VM_MAX_ADDRESS and MACH_VM_MAX_ADDRESS)
15498 * more descriptive.
15501 vm_map_set_32bit(vm_map_t map
)
15503 map
->max_offset
= (vm_map_offset_t
)VM_MAX_ADDRESS
;
15508 vm_map_set_64bit(vm_map_t map
)
15510 map
->max_offset
= (vm_map_offset_t
)MACH_VM_MAX_ADDRESS
;
15514 vm_compute_max_offset(boolean_t is64
)
15516 return (is64
? (vm_map_offset_t
)MACH_VM_MAX_ADDRESS
: (vm_map_offset_t
)VM_MAX_ADDRESS
);
15520 vm_map_get_max_aslr_slide_pages(vm_map_t map
)
15522 return (1 << (vm_map_is_64bit(map
) ? 16 : 8));
15529 return map
->max_offset
> ((vm_map_offset_t
)VM_MAX_ADDRESS
);
15533 vm_map_has_hard_pagezero(
15535 vm_map_offset_t pagezero_size
)
15539 * We should lock the VM map (for read) here but we can get away
15540 * with it for now because there can't really be any race condition:
15541 * the VM map's min_offset is changed only when the VM map is created
15542 * and when the zero page is established (when the binary gets loaded),
15543 * and this routine gets called only when the task terminates and the
15544 * VM map is being torn down, and when a new map is created via
15545 * load_machfile()/execve().
15547 return (map
->min_offset
>= pagezero_size
);
15551 * Raise a VM map's maximun offset.
15554 vm_map_raise_max_offset(
15556 vm_map_offset_t new_max_offset
)
15561 ret
= KERN_INVALID_ADDRESS
;
15563 if (new_max_offset
>= map
->max_offset
) {
15564 if (!vm_map_is_64bit(map
)) {
15565 if (new_max_offset
<= (vm_map_offset_t
)VM_MAX_ADDRESS
) {
15566 map
->max_offset
= new_max_offset
;
15567 ret
= KERN_SUCCESS
;
15570 if (new_max_offset
<= (vm_map_offset_t
)MACH_VM_MAX_ADDRESS
) {
15571 map
->max_offset
= new_max_offset
;
15572 ret
= KERN_SUCCESS
;
15577 vm_map_unlock(map
);
15583 * Raise a VM map's minimum offset.
15584 * To strictly enforce "page zero" reservation.
15587 vm_map_raise_min_offset(
15589 vm_map_offset_t new_min_offset
)
15591 vm_map_entry_t first_entry
;
15593 new_min_offset
= vm_map_round_page(new_min_offset
,
15594 VM_MAP_PAGE_MASK(map
));
15598 if (new_min_offset
< map
->min_offset
) {
15600 * Can't move min_offset backwards, as that would expose
15601 * a part of the address space that was previously, and for
15602 * possibly good reasons, inaccessible.
15604 vm_map_unlock(map
);
15605 return KERN_INVALID_ADDRESS
;
15607 if (new_min_offset
>= map
->max_offset
) {
15608 /* can't go beyond the end of the address space */
15609 vm_map_unlock(map
);
15610 return KERN_INVALID_ADDRESS
;
15613 first_entry
= vm_map_first_entry(map
);
15614 if (first_entry
!= vm_map_to_entry(map
) &&
15615 first_entry
->vme_start
< new_min_offset
) {
15617 * Some memory was already allocated below the new
15618 * minimun offset. It's too late to change it now...
15620 vm_map_unlock(map
);
15621 return KERN_NO_SPACE
;
15624 map
->min_offset
= new_min_offset
;
15626 assert(map
->holes_list
);
15627 map
->holes_list
->start
= new_min_offset
;
15628 assert(new_min_offset
< map
->holes_list
->end
);
15630 vm_map_unlock(map
);
15632 return KERN_SUCCESS
;
15636 * Set the limit on the maximum amount of user wired memory allowed for this map.
15637 * This is basically a copy of the MEMLOCK rlimit value maintained by the BSD side of
15638 * the kernel. The limits are checked in the mach VM side, so we keep a copy so we
15639 * don't have to reach over to the BSD data structures.
15643 vm_map_set_user_wire_limit(vm_map_t map
,
15646 map
->user_wire_limit
= limit
;
15650 void vm_map_switch_protect(vm_map_t map
,
15654 map
->switch_protect
=val
;
15655 vm_map_unlock(map
);
15659 * IOKit has mapped a region into this map; adjust the pmap's ledgers appropriately.
15660 * phys_footprint is a composite limit consisting of iokit + physmem, so we need to
15661 * bump both counters.
15664 vm_map_iokit_mapped_region(vm_map_t map
, vm_size_t bytes
)
15666 pmap_t pmap
= vm_map_pmap(map
);
15668 ledger_credit(pmap
->ledger
, task_ledgers
.iokit_mapped
, bytes
);
15669 ledger_credit(pmap
->ledger
, task_ledgers
.phys_footprint
, bytes
);
15673 vm_map_iokit_unmapped_region(vm_map_t map
, vm_size_t bytes
)
15675 pmap_t pmap
= vm_map_pmap(map
);
15677 ledger_debit(pmap
->ledger
, task_ledgers
.iokit_mapped
, bytes
);
15678 ledger_debit(pmap
->ledger
, task_ledgers
.phys_footprint
, bytes
);
15681 /* Add (generate) code signature for memory range */
15682 #if CONFIG_DYNAMIC_CODE_SIGNING
15683 kern_return_t
vm_map_sign(vm_map_t map
,
15684 vm_map_offset_t start
,
15685 vm_map_offset_t end
)
15687 vm_map_entry_t entry
;
15689 vm_object_t object
;
15692 * Vet all the input parameters and current type and state of the
15693 * underlaying object. Return with an error if anything is amiss.
15695 if (map
== VM_MAP_NULL
)
15696 return(KERN_INVALID_ARGUMENT
);
15698 vm_map_lock_read(map
);
15700 if (!vm_map_lookup_entry(map
, start
, &entry
) || entry
->is_sub_map
) {
15702 * Must pass a valid non-submap address.
15704 vm_map_unlock_read(map
);
15705 return(KERN_INVALID_ADDRESS
);
15708 if((entry
->vme_start
> start
) || (entry
->vme_end
< end
)) {
15710 * Map entry doesn't cover the requested range. Not handling
15711 * this situation currently.
15713 vm_map_unlock_read(map
);
15714 return(KERN_INVALID_ARGUMENT
);
15717 object
= VME_OBJECT(entry
);
15718 if (object
== VM_OBJECT_NULL
) {
15720 * Object must already be present or we can't sign.
15722 vm_map_unlock_read(map
);
15723 return KERN_INVALID_ARGUMENT
;
15726 vm_object_lock(object
);
15727 vm_map_unlock_read(map
);
15729 while(start
< end
) {
15732 m
= vm_page_lookup(object
,
15733 start
- entry
->vme_start
+ VME_OFFSET(entry
));
15734 if (m
==VM_PAGE_NULL
) {
15735 /* shoud we try to fault a page here? we can probably
15736 * demand it exists and is locked for this request */
15737 vm_object_unlock(object
);
15738 return KERN_FAILURE
;
15740 /* deal with special page status */
15742 (m
->unusual
&& (m
->error
|| m
->restart
|| m
->private || m
->absent
))) {
15743 vm_object_unlock(object
);
15744 return KERN_FAILURE
;
15747 /* Page is OK... now "validate" it */
15748 /* This is the place where we'll call out to create a code
15749 * directory, later */
15750 m
->cs_validated
= TRUE
;
15752 /* The page is now "clean" for codesigning purposes. That means
15753 * we don't consider it as modified (wpmapped) anymore. But
15754 * we'll disconnect the page so we note any future modification
15756 m
->wpmapped
= FALSE
;
15757 refmod
= pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m
));
15759 /* Pull the dirty status from the pmap, since we cleared the
15761 if ((refmod
& VM_MEM_MODIFIED
) && !m
->dirty
) {
15762 SET_PAGE_DIRTY(m
, FALSE
);
15765 /* On to the next page */
15766 start
+= PAGE_SIZE
;
15768 vm_object_unlock(object
);
15770 return KERN_SUCCESS
;
15774 kern_return_t
vm_map_partial_reap(vm_map_t map
, unsigned int *reclaimed_resident
, unsigned int *reclaimed_compressed
)
15776 vm_map_entry_t entry
= VM_MAP_ENTRY_NULL
;
15777 vm_map_entry_t next_entry
;
15778 kern_return_t kr
= KERN_SUCCESS
;
15784 * We use a "zap_map" to avoid having to unlock
15785 * the "map" in vm_map_delete().
15787 zap_map
= vm_map_create(PMAP_NULL
,
15790 map
->hdr
.entries_pageable
);
15792 if (zap_map
== VM_MAP_NULL
) {
15793 return KERN_RESOURCE_SHORTAGE
;
15796 vm_map_set_page_shift(zap_map
,
15797 VM_MAP_PAGE_SHIFT(map
));
15798 vm_map_disable_hole_optimization(zap_map
);
15800 for (entry
= vm_map_first_entry(map
);
15801 entry
!= vm_map_to_entry(map
);
15802 entry
= next_entry
) {
15803 next_entry
= entry
->vme_next
;
15805 if (VME_OBJECT(entry
) &&
15806 !entry
->is_sub_map
&&
15807 (VME_OBJECT(entry
)->internal
== TRUE
) &&
15808 (VME_OBJECT(entry
)->ref_count
== 1)) {
15810 *reclaimed_resident
+= VME_OBJECT(entry
)->resident_page_count
;
15811 *reclaimed_compressed
+= vm_compressor_pager_get_count(VME_OBJECT(entry
)->pager
);
15813 (void)vm_map_delete(map
,
15816 VM_MAP_REMOVE_SAVE_ENTRIES
,
15821 vm_map_unlock(map
);
15824 * Get rid of the "zap_maps" and all the map entries that
15825 * they may still contain.
15827 if (zap_map
!= VM_MAP_NULL
) {
15828 vm_map_destroy(zap_map
, VM_MAP_REMOVE_NO_PMAP_CLEANUP
);
15829 zap_map
= VM_MAP_NULL
;
15836 #if DEVELOPMENT || DEBUG
15839 vm_map_disconnect_page_mappings(
15841 boolean_t do_unnest
)
15843 vm_map_entry_t entry
;
15844 int page_count
= 0;
15846 if (do_unnest
== TRUE
) {
15847 #ifndef NO_NESTED_PMAP
15850 for (entry
= vm_map_first_entry(map
);
15851 entry
!= vm_map_to_entry(map
);
15852 entry
= entry
->vme_next
) {
15854 if (entry
->is_sub_map
&& entry
->use_pmap
) {
15856 * Make sure the range between the start of this entry and
15857 * the end of this entry is no longer nested, so that
15858 * we will only remove mappings from the pmap in use by this
15861 vm_map_clip_unnest(map
, entry
, entry
->vme_start
, entry
->vme_end
);
15864 vm_map_unlock(map
);
15867 vm_map_lock_read(map
);
15869 page_count
= map
->pmap
->stats
.resident_count
;
15871 for (entry
= vm_map_first_entry(map
);
15872 entry
!= vm_map_to_entry(map
);
15873 entry
= entry
->vme_next
) {
15875 if (!entry
->is_sub_map
&& ((VME_OBJECT(entry
) == 0) ||
15876 (VME_OBJECT(entry
)->phys_contiguous
))) {
15879 if (entry
->is_sub_map
)
15880 assert(!entry
->use_pmap
);
15882 pmap_remove_options(map
->pmap
, entry
->vme_start
, entry
->vme_end
, 0);
15884 vm_map_unlock_read(map
);
15895 int c_freezer_swapout_count
;
15896 int c_freezer_compression_count
= 0;
15897 AbsoluteTime c_freezer_last_yield_ts
= 0;
15899 kern_return_t
vm_map_freeze(
15901 unsigned int *purgeable_count
,
15902 unsigned int *wired_count
,
15903 unsigned int *clean_count
,
15904 unsigned int *dirty_count
,
15905 __unused
unsigned int dirty_budget
,
15906 boolean_t
*has_shared
)
15908 vm_map_entry_t entry2
= VM_MAP_ENTRY_NULL
;
15909 kern_return_t kr
= KERN_SUCCESS
;
15911 *purgeable_count
= *wired_count
= *clean_count
= *dirty_count
= 0;
15912 *has_shared
= FALSE
;
15915 * We need the exclusive lock here so that we can
15916 * block any page faults or lookups while we are
15917 * in the middle of freezing this vm map.
15921 assert(VM_CONFIG_COMPRESSOR_IS_PRESENT
);
15923 if (vm_compressor_low_on_space() || vm_swap_low_on_space()) {
15924 kr
= KERN_NO_SPACE
;
15928 c_freezer_compression_count
= 0;
15929 clock_get_uptime(&c_freezer_last_yield_ts
);
15931 for (entry2
= vm_map_first_entry(map
);
15932 entry2
!= vm_map_to_entry(map
);
15933 entry2
= entry2
->vme_next
) {
15935 vm_object_t src_object
= VME_OBJECT(entry2
);
15938 !entry2
->is_sub_map
&&
15939 !src_object
->phys_contiguous
) {
15940 /* If eligible, scan the entry, moving eligible pages over to our parent object */
15942 if (src_object
->internal
== TRUE
) {
15944 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
15946 * Pages belonging to this object could be swapped to disk.
15947 * Make sure it's not a shared object because we could end
15948 * up just bringing it back in again.
15950 if (src_object
->ref_count
> 1) {
15954 vm_object_compressed_freezer_pageout(src_object
);
15956 if (vm_compressor_low_on_space() || vm_swap_low_on_space()) {
15957 kr
= KERN_NO_SPACE
;
15964 vm_map_unlock(map
);
15966 vm_object_compressed_freezer_done();
15968 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
15970 * reset the counter tracking the # of swapped c_segs
15971 * because we are now done with this freeze session and task.
15973 c_freezer_swapout_count
= 0;
15981 * vm_map_entry_should_cow_for_true_share:
15983 * Determines if the map entry should be clipped and setup for copy-on-write
15984 * to avoid applying "true_share" to a large VM object when only a subset is
15987 * For now, we target only the map entries created for the Objective C
15988 * Garbage Collector, which initially have the following properties:
15989 * - alias == VM_MEMORY_MALLOC
15990 * - wired_count == 0
15992 * and a VM object with:
15994 * - copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC
15996 * - vo_size == ANON_CHUNK_SIZE
15998 * Only non-kernel map entries.
16001 vm_map_entry_should_cow_for_true_share(
16002 vm_map_entry_t entry
)
16004 vm_object_t object
;
16006 if (entry
->is_sub_map
) {
16007 /* entry does not point at a VM object */
16011 if (entry
->needs_copy
) {
16012 /* already set for copy_on_write: done! */
16016 if (VME_ALIAS(entry
) != VM_MEMORY_MALLOC
&&
16017 VME_ALIAS(entry
) != VM_MEMORY_MALLOC_SMALL
) {
16018 /* not a malloc heap or Obj-C Garbage Collector heap */
16022 if (entry
->wired_count
) {
16023 /* wired: can't change the map entry... */
16024 vm_counters
.should_cow_but_wired
++;
16028 object
= VME_OBJECT(entry
);
16030 if (object
== VM_OBJECT_NULL
) {
16031 /* no object yet... */
16035 if (!object
->internal
) {
16036 /* not an internal object */
16040 if (object
->copy_strategy
!= MEMORY_OBJECT_COPY_SYMMETRIC
) {
16041 /* not the default copy strategy */
16045 if (object
->true_share
) {
16046 /* already true_share: too late to avoid it */
16050 if (VME_ALIAS(entry
) == VM_MEMORY_MALLOC
&&
16051 object
->vo_size
!= ANON_CHUNK_SIZE
) {
16052 /* ... not an object created for the ObjC Garbage Collector */
16056 if (VME_ALIAS(entry
) == VM_MEMORY_MALLOC_SMALL
&&
16057 object
->vo_size
!= 2048 * 4096) {
16058 /* ... not a "MALLOC_SMALL" heap */
16063 * All the criteria match: we have a large object being targeted for "true_share".
16064 * To limit the adverse side-effects linked with "true_share", tell the caller to
16065 * try and avoid setting up the entire object for "true_share" by clipping the
16066 * targeted range and setting it up for copy-on-write.
16072 vm_map_round_page_mask(
16073 vm_map_offset_t offset
,
16074 vm_map_offset_t mask
)
16076 return VM_MAP_ROUND_PAGE(offset
, mask
);
16080 vm_map_trunc_page_mask(
16081 vm_map_offset_t offset
,
16082 vm_map_offset_t mask
)
16084 return VM_MAP_TRUNC_PAGE(offset
, mask
);
16088 vm_map_page_aligned(
16089 vm_map_offset_t offset
,
16090 vm_map_offset_t mask
)
16092 return ((offset
) & mask
) == 0;
16099 return VM_MAP_PAGE_SHIFT(map
);
16106 return VM_MAP_PAGE_SIZE(map
);
16113 return VM_MAP_PAGE_MASK(map
);
16117 vm_map_set_page_shift(
16121 if (map
->hdr
.nentries
!= 0) {
16122 /* too late to change page size */
16123 return KERN_FAILURE
;
16126 map
->hdr
.page_shift
= pageshift
;
16128 return KERN_SUCCESS
;
16132 vm_map_query_volatile(
16134 mach_vm_size_t
*volatile_virtual_size_p
,
16135 mach_vm_size_t
*volatile_resident_size_p
,
16136 mach_vm_size_t
*volatile_compressed_size_p
,
16137 mach_vm_size_t
*volatile_pmap_size_p
,
16138 mach_vm_size_t
*volatile_compressed_pmap_size_p
)
16140 mach_vm_size_t volatile_virtual_size
;
16141 mach_vm_size_t volatile_resident_count
;
16142 mach_vm_size_t volatile_compressed_count
;
16143 mach_vm_size_t volatile_pmap_count
;
16144 mach_vm_size_t volatile_compressed_pmap_count
;
16145 mach_vm_size_t resident_count
;
16146 vm_map_entry_t entry
;
16147 vm_object_t object
;
16149 /* map should be locked by caller */
16151 volatile_virtual_size
= 0;
16152 volatile_resident_count
= 0;
16153 volatile_compressed_count
= 0;
16154 volatile_pmap_count
= 0;
16155 volatile_compressed_pmap_count
= 0;
16157 for (entry
= vm_map_first_entry(map
);
16158 entry
!= vm_map_to_entry(map
);
16159 entry
= entry
->vme_next
) {
16160 mach_vm_size_t pmap_resident_bytes
, pmap_compressed_bytes
;
16162 if (entry
->is_sub_map
) {
16165 if (! (entry
->protection
& VM_PROT_WRITE
)) {
16168 object
= VME_OBJECT(entry
);
16169 if (object
== VM_OBJECT_NULL
) {
16172 if (object
->purgable
!= VM_PURGABLE_VOLATILE
&&
16173 object
->purgable
!= VM_PURGABLE_EMPTY
) {
16176 if (VME_OFFSET(entry
)) {
16178 * If the map entry has been split and the object now
16179 * appears several times in the VM map, we don't want
16180 * to count the object's resident_page_count more than
16181 * once. We count it only for the first one, starting
16182 * at offset 0 and ignore the other VM map entries.
16186 resident_count
= object
->resident_page_count
;
16187 if ((VME_OFFSET(entry
) / PAGE_SIZE
) >= resident_count
) {
16188 resident_count
= 0;
16190 resident_count
-= (VME_OFFSET(entry
) / PAGE_SIZE
);
16193 volatile_virtual_size
+= entry
->vme_end
- entry
->vme_start
;
16194 volatile_resident_count
+= resident_count
;
16195 if (object
->pager
) {
16196 volatile_compressed_count
+=
16197 vm_compressor_pager_get_count(object
->pager
);
16199 pmap_compressed_bytes
= 0;
16200 pmap_resident_bytes
=
16201 pmap_query_resident(map
->pmap
,
16204 &pmap_compressed_bytes
);
16205 volatile_pmap_count
+= (pmap_resident_bytes
/ PAGE_SIZE
);
16206 volatile_compressed_pmap_count
+= (pmap_compressed_bytes
16210 /* map is still locked on return */
16212 *volatile_virtual_size_p
= volatile_virtual_size
;
16213 *volatile_resident_size_p
= volatile_resident_count
* PAGE_SIZE
;
16214 *volatile_compressed_size_p
= volatile_compressed_count
* PAGE_SIZE
;
16215 *volatile_pmap_size_p
= volatile_pmap_count
* PAGE_SIZE
;
16216 *volatile_compressed_pmap_size_p
= volatile_compressed_pmap_count
* PAGE_SIZE
;
16218 return KERN_SUCCESS
;
16222 vm_map_sizes(vm_map_t map
,
16223 vm_map_size_t
* psize
,
16224 vm_map_size_t
* pfree
,
16225 vm_map_size_t
* plargest_free
)
16227 vm_map_entry_t entry
;
16228 vm_map_offset_t prev
;
16229 vm_map_size_t free
, total_free
, largest_free
;
16234 *psize
= *pfree
= *plargest_free
= 0;
16237 total_free
= largest_free
= 0;
16239 vm_map_lock_read(map
);
16240 if (psize
) *psize
= map
->max_offset
- map
->min_offset
;
16242 prev
= map
->min_offset
;
16243 for (entry
= vm_map_first_entry(map
);; entry
= entry
->vme_next
)
16245 end
= (entry
== vm_map_to_entry(map
));
16247 if (end
) free
= entry
->vme_end
- prev
;
16248 else free
= entry
->vme_start
- prev
;
16250 total_free
+= free
;
16251 if (free
> largest_free
) largest_free
= free
;
16254 prev
= entry
->vme_end
;
16256 vm_map_unlock_read(map
);
16257 if (pfree
) *pfree
= total_free
;
16258 if (plargest_free
) *plargest_free
= largest_free
;
16261 #if VM_SCAN_FOR_SHADOW_CHAIN
16262 int vm_map_shadow_max(vm_map_t map
);
16263 int vm_map_shadow_max(
16266 int shadows
, shadows_max
;
16267 vm_map_entry_t entry
;
16268 vm_object_t object
, next_object
;
16275 vm_map_lock_read(map
);
16277 for (entry
= vm_map_first_entry(map
);
16278 entry
!= vm_map_to_entry(map
);
16279 entry
= entry
->vme_next
) {
16280 if (entry
->is_sub_map
) {
16283 object
= VME_OBJECT(entry
);
16284 if (object
== NULL
) {
16287 vm_object_lock_shared(object
);
16289 object
->shadow
!= NULL
;
16290 shadows
++, object
= next_object
) {
16291 next_object
= object
->shadow
;
16292 vm_object_lock_shared(next_object
);
16293 vm_object_unlock(object
);
16295 vm_object_unlock(object
);
16296 if (shadows
> shadows_max
) {
16297 shadows_max
= shadows
;
16301 vm_map_unlock_read(map
);
16303 return shadows_max
;
16305 #endif /* VM_SCAN_FOR_SHADOW_CHAIN */
16307 void vm_commit_pagezero_status(vm_map_t lmap
) {
16308 pmap_advise_pagezero_range(lmap
->pmap
, lmap
->min_offset
);