2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1980, 1986, 1991, 1993
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)route.c 8.2 (Berkeley) 11/15/93
61 * $FreeBSD: src/sys/net/route.c,v 1.59.2.3 2001/07/29 19:18:02 ume Exp $
64 #include <sys/param.h>
65 #include <sys/sysctl.h>
66 #include <sys/systm.h>
67 #include <sys/malloc.h>
69 #include <sys/socket.h>
70 #include <sys/domain.h>
73 #include <sys/vnode.h>
74 #include <sys/syslog.h>
75 #include <sys/queue.h>
76 #include <sys/mcache.h>
78 #include <sys/protosw.h>
80 #include <sys/kernel.h>
81 #include <kern/locks.h>
82 #include <kern/zalloc.h>
86 #include <net/route.h>
87 #include <net/ntstat.h>
88 #include <net/nwk_wq.h>
93 #include <netinet/in.h>
94 #include <netinet/in_var.h>
95 #include <netinet/ip_var.h>
96 #include <netinet/ip.h>
97 #include <netinet/ip6.h>
98 #include <netinet/in_arp.h>
101 #include <netinet6/ip6_var.h>
102 #include <netinet6/in6_var.h>
103 #include <netinet6/nd6.h>
106 #include <net/if_dl.h>
108 #include <libkern/OSAtomic.h>
109 #include <libkern/OSDebug.h>
111 #include <pexpert/pexpert.h>
114 #include <sys/kauth.h>
118 * Synchronization notes:
120 * Routing entries fall under two locking domains: the global routing table
121 * lock (rnh_lock) and the per-entry lock (rt_lock); the latter is a mutex that
122 * resides (statically defined) in the rtentry structure.
124 * The locking domains for routing are defined as follows:
126 * The global routing lock is used to serialize all accesses to the radix
127 * trees defined by rt_tables[], as well as the tree of masks. This includes
128 * lookups, insertions and removals of nodes to/from the respective tree.
129 * It is also used to protect certain fields in the route entry that aren't
130 * often modified and/or require global serialization (more details below.)
132 * The per-route entry lock is used to serialize accesses to several routing
133 * entry fields (more details below.) Acquiring and releasing this lock is
134 * done via RT_LOCK() and RT_UNLOCK() routines.
136 * In cases where both rnh_lock and rt_lock must be held, the former must be
137 * acquired first in order to maintain lock ordering. It is not a requirement
138 * that rnh_lock be acquired first before rt_lock, but in case both must be
139 * acquired in succession, the correct lock ordering must be followed.
141 * The fields of the rtentry structure are protected in the following way:
145 * - Routing table lock (rnh_lock).
147 * rt_parent, rt_mask, rt_llinfo_free, rt_tree_genid
149 * - Set once during creation and never changes; no locks to read.
151 * rt_flags, rt_genmask, rt_llinfo, rt_rmx, rt_refcnt, rt_gwroute
153 * - Routing entry lock (rt_lock) for read/write access.
155 * - Some values of rt_flags are either set once at creation time,
156 * or aren't currently used, and thus checking against them can
157 * be done without rt_lock: RTF_GATEWAY, RTF_HOST, RTF_DYNAMIC,
158 * RTF_DONE, RTF_XRESOLVE, RTF_STATIC, RTF_BLACKHOLE, RTF_ANNOUNCE,
159 * RTF_USETRAILERS, RTF_WASCLONED, RTF_PINNED, RTF_LOCAL,
160 * RTF_BROADCAST, RTF_MULTICAST, RTF_IFSCOPE, RTF_IFREF.
162 * rt_key, rt_gateway, rt_ifp, rt_ifa
164 * - Always written/modified with both rnh_lock and rt_lock held.
166 * - May be read freely with rnh_lock held, else must hold rt_lock
167 * for read access; holding both locks for read is also okay.
169 * - In the event rnh_lock is not acquired, or is not possible to be
170 * acquired across the operation, setting RTF_CONDEMNED on a route
171 * entry will prevent its rt_key, rt_gateway, rt_ifp and rt_ifa
172 * from being modified. This is typically done on a route that
173 * has been chosen for a removal (from the tree) prior to dropping
174 * the rt_lock, so that those values will remain the same until
175 * the route is freed.
177 * When rnh_lock is held rt_setgate(), rt_setif(), and rtsetifa() are
178 * single-threaded, thus exclusive. This flag will also prevent the
179 * route from being looked up via rt_lookup().
183 * - Assumes that 32-bit writes are atomic; no locks.
187 * - Currently unused; no locks.
189 * Operations on a route entry can be described as follows:
191 * CREATE an entry with reference count set to 0 as part of RTM_ADD/RESOLVE.
193 * INSERTION of an entry into the radix tree holds the rnh_lock, checks
194 * for duplicates and then adds the entry. rtrequest returns the entry
195 * after bumping up the reference count to 1 (for the caller).
197 * LOOKUP of an entry holds the rnh_lock and bumps up the reference count
198 * before returning; it is valid to also bump up the reference count using
199 * RT_ADDREF after the lookup has returned an entry.
201 * REMOVAL of an entry from the radix tree holds the rnh_lock, removes the
202 * entry but does not decrement the reference count. Removal happens when
203 * the route is explicitly deleted (RTM_DELETE) or when it is in the cached
204 * state and it expires. The route is said to be "down" when it is no
205 * longer present in the tree. Freeing the entry will happen on the last
206 * reference release of such a "down" route.
208 * RT_ADDREF/RT_REMREF operates on the routing entry which increments/
209 * decrements the reference count, rt_refcnt, atomically on the rtentry.
210 * rt_refcnt is modified only using this routine. The general rule is to
211 * do RT_ADDREF in the function that is passing the entry as an argument,
212 * in order to prevent the entry from being freed by the callee.
215 #define equal(a1, a2) (bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0)
217 extern void kdp_set_gateway_mac(void *gatewaymac
);
219 __private_extern__
struct rtstat rtstat
= {
220 .rts_badredirect
= 0,
225 .rts_badrtgwroute
= 0
227 struct radix_node_head
*rt_tables
[AF_MAX
+1];
229 decl_lck_mtx_data(, rnh_lock_data
); /* global routing tables mutex */
230 lck_mtx_t
*rnh_lock
= &rnh_lock_data
;
231 static lck_attr_t
*rnh_lock_attr
;
232 static lck_grp_t
*rnh_lock_grp
;
233 static lck_grp_attr_t
*rnh_lock_grp_attr
;
235 /* Lock group and attribute for routing entry locks */
236 static lck_attr_t
*rte_mtx_attr
;
237 static lck_grp_t
*rte_mtx_grp
;
238 static lck_grp_attr_t
*rte_mtx_grp_attr
;
240 int rttrash
= 0; /* routes not in table but not freed */
242 boolean_t trigger_v6_defrtr_select
= FALSE
;
243 unsigned int rte_debug
= 0;
245 /* Possible flags for rte_debug */
246 #define RTD_DEBUG 0x1 /* enable or disable rtentry debug facility */
247 #define RTD_TRACE 0x2 /* trace alloc, free, refcnt and lock */
248 #define RTD_NO_FREE 0x4 /* don't free (good to catch corruptions) */
250 #define RTE_NAME "rtentry" /* name for zone and rt_lock */
252 static struct zone
*rte_zone
; /* special zone for rtentry */
253 #define RTE_ZONE_MAX 65536 /* maximum elements in zone */
254 #define RTE_ZONE_NAME RTE_NAME /* name of rtentry zone */
256 #define RTD_INUSE 0xFEEDFACE /* entry is in use */
257 #define RTD_FREED 0xDEADBEEF /* entry is freed */
259 #define MAX_SCOPE_ADDR_STR_LEN (MAX_IPv6_STR_LEN + 6)
262 __private_extern__
unsigned int ctrace_stack_size
= CTRACE_STACK_SIZE
;
263 __private_extern__
unsigned int ctrace_hist_size
= CTRACE_HIST_SIZE
;
266 * Debug variant of rtentry structure.
269 struct rtentry rtd_entry
; /* rtentry */
270 struct rtentry rtd_entry_saved
; /* saved rtentry */
271 uint32_t rtd_inuse
; /* in use pattern */
272 uint16_t rtd_refhold_cnt
; /* # of rtref */
273 uint16_t rtd_refrele_cnt
; /* # of rtunref */
274 uint32_t rtd_lock_cnt
; /* # of locks */
275 uint32_t rtd_unlock_cnt
; /* # of unlocks */
277 * Alloc and free callers.
282 * Circular lists of rtref and rtunref callers.
284 ctrace_t rtd_refhold
[CTRACE_HIST_SIZE
];
285 ctrace_t rtd_refrele
[CTRACE_HIST_SIZE
];
287 * Circular lists of locks and unlocks.
289 ctrace_t rtd_lock
[CTRACE_HIST_SIZE
];
290 ctrace_t rtd_unlock
[CTRACE_HIST_SIZE
];
294 TAILQ_ENTRY(rtentry_dbg
) rtd_trash_link
;
297 /* List of trash route entries protected by rnh_lock */
298 static TAILQ_HEAD(, rtentry_dbg
) rttrash_head
;
300 static void rte_lock_init(struct rtentry
*);
301 static void rte_lock_destroy(struct rtentry
*);
302 static inline struct rtentry
*rte_alloc_debug(void);
303 static inline void rte_free_debug(struct rtentry
*);
304 static inline void rte_lock_debug(struct rtentry_dbg
*);
305 static inline void rte_unlock_debug(struct rtentry_dbg
*);
306 static void rt_maskedcopy(const struct sockaddr
*,
307 struct sockaddr
*, const struct sockaddr
*);
308 static void rtable_init(void **);
309 static inline void rtref_audit(struct rtentry_dbg
*);
310 static inline void rtunref_audit(struct rtentry_dbg
*);
311 static struct rtentry
*rtalloc1_common_locked(struct sockaddr
*, int, uint32_t,
313 static int rtrequest_common_locked(int, struct sockaddr
*,
314 struct sockaddr
*, struct sockaddr
*, int, struct rtentry
**,
316 static struct rtentry
*rtalloc1_locked(struct sockaddr
*, int, uint32_t);
317 static void rtalloc_ign_common_locked(struct route
*, uint32_t, unsigned int);
318 static inline void sin6_set_ifscope(struct sockaddr
*, unsigned int);
319 static inline void sin6_set_embedded_ifscope(struct sockaddr
*, unsigned int);
320 static inline unsigned int sin6_get_embedded_ifscope(struct sockaddr
*);
321 static struct sockaddr
*ma_copy(int, struct sockaddr
*,
322 struct sockaddr_storage
*, unsigned int);
323 static struct sockaddr
*sa_trim(struct sockaddr
*, int);
324 static struct radix_node
*node_lookup(struct sockaddr
*, struct sockaddr
*,
326 static struct radix_node
*node_lookup_default(int);
327 static struct rtentry
*rt_lookup_common(boolean_t
, boolean_t
, struct sockaddr
*,
328 struct sockaddr
*, struct radix_node_head
*, unsigned int);
329 static int rn_match_ifscope(struct radix_node
*, void *);
330 static struct ifaddr
*ifa_ifwithroute_common_locked(int,
331 const struct sockaddr
*, const struct sockaddr
*, unsigned int);
332 static struct rtentry
*rte_alloc(void);
333 static void rte_free(struct rtentry
*);
334 static void rtfree_common(struct rtentry
*, boolean_t
);
335 static void rte_if_ref(struct ifnet
*, int);
336 static void rt_set_idleref(struct rtentry
*);
337 static void rt_clear_idleref(struct rtentry
*);
338 static void route_event_callback(void *);
339 static void rt_str4(struct rtentry
*, char *, uint32_t, char *, uint32_t);
341 static void rt_str6(struct rtentry
*, char *, uint32_t, char *, uint32_t);
344 uint32_t route_genid_inet
= 0;
346 uint32_t route_genid_inet6
= 0;
349 #define ASSERT_SINIFSCOPE(sa) { \
350 if ((sa)->sa_family != AF_INET || \
351 (sa)->sa_len < sizeof (struct sockaddr_in)) \
352 panic("%s: bad sockaddr_in %p\n", __func__, sa); \
355 #define ASSERT_SIN6IFSCOPE(sa) { \
356 if ((sa)->sa_family != AF_INET6 || \
357 (sa)->sa_len < sizeof (struct sockaddr_in6)) \
358 panic("%s: bad sockaddr_in6 %p\n", __func__, sa); \
362 * Argument to leaf-matching routine; at present it is scoped routing
363 * specific but can be expanded in future to include other search filters.
365 struct matchleaf_arg
{
366 unsigned int ifscope
; /* interface scope */
370 * For looking up the non-scoped default route (sockaddr instead
371 * of sockaddr_in for convenience).
373 static struct sockaddr sin_def
= {
374 .sa_len
= sizeof (struct sockaddr_in
),
375 .sa_family
= AF_INET
,
379 static struct sockaddr_in6 sin6_def
= {
380 .sin6_len
= sizeof (struct sockaddr_in6
),
381 .sin6_family
= AF_INET6
,
384 .sin6_addr
= IN6ADDR_ANY_INIT
,
389 * Interface index (scope) of the primary interface; determined at
390 * the time when the default, non-scoped route gets added, changed
391 * or deleted. Protected by rnh_lock.
393 static unsigned int primary_ifscope
= IFSCOPE_NONE
;
394 static unsigned int primary6_ifscope
= IFSCOPE_NONE
;
396 #define INET_DEFAULT(sa) \
397 ((sa)->sa_family == AF_INET && SIN(sa)->sin_addr.s_addr == 0)
399 #define INET6_DEFAULT(sa) \
400 ((sa)->sa_family == AF_INET6 && \
401 IN6_IS_ADDR_UNSPECIFIED(&SIN6(sa)->sin6_addr))
403 #define SA_DEFAULT(sa) (INET_DEFAULT(sa) || INET6_DEFAULT(sa))
404 #define RT(r) ((struct rtentry *)r)
405 #define RN(r) ((struct radix_node *)r)
406 #define RT_HOST(r) (RT(r)->rt_flags & RTF_HOST)
408 unsigned int rt_verbose
= 0;
409 #if (DEVELOPMENT || DEBUG)
410 SYSCTL_DECL(_net_route
);
411 SYSCTL_UINT(_net_route
, OID_AUTO
, verbose
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
413 #endif /* (DEVELOPMENT || DEBUG) */
416 rtable_init(void **table
)
420 domain_proto_mtx_lock_assert_held();
422 TAILQ_FOREACH(dom
, &domains
, dom_entry
) {
423 if (dom
->dom_rtattach
!= NULL
)
424 dom
->dom_rtattach(&table
[dom
->dom_family
],
430 * Called by route_dinit().
438 _CASSERT(offsetof(struct route
, ro_rt
) ==
439 offsetof(struct route_in6
, ro_rt
));
440 _CASSERT(offsetof(struct route
, ro_lle
) ==
441 offsetof(struct route_in6
, ro_lle
));
442 _CASSERT(offsetof(struct route
, ro_srcia
) ==
443 offsetof(struct route_in6
, ro_srcia
));
444 _CASSERT(offsetof(struct route
, ro_flags
) ==
445 offsetof(struct route_in6
, ro_flags
));
446 _CASSERT(offsetof(struct route
, ro_dst
) ==
447 offsetof(struct route_in6
, ro_dst
));
450 PE_parse_boot_argn("rte_debug", &rte_debug
, sizeof (rte_debug
));
452 rte_debug
|= RTD_DEBUG
;
454 rnh_lock_grp_attr
= lck_grp_attr_alloc_init();
455 rnh_lock_grp
= lck_grp_alloc_init("route", rnh_lock_grp_attr
);
456 rnh_lock_attr
= lck_attr_alloc_init();
457 lck_mtx_init(rnh_lock
, rnh_lock_grp
, rnh_lock_attr
);
459 rte_mtx_grp_attr
= lck_grp_attr_alloc_init();
460 rte_mtx_grp
= lck_grp_alloc_init(RTE_NAME
, rte_mtx_grp_attr
);
461 rte_mtx_attr
= lck_attr_alloc_init();
463 lck_mtx_lock(rnh_lock
);
464 rn_init(); /* initialize all zeroes, all ones, mask table */
465 lck_mtx_unlock(rnh_lock
);
466 rtable_init((void **)rt_tables
);
468 if (rte_debug
& RTD_DEBUG
)
469 size
= sizeof (struct rtentry_dbg
);
471 size
= sizeof (struct rtentry
);
473 rte_zone
= zinit(size
, RTE_ZONE_MAX
* size
, 0, RTE_ZONE_NAME
);
474 if (rte_zone
== NULL
) {
475 panic("%s: failed allocating rte_zone", __func__
);
478 zone_change(rte_zone
, Z_EXPAND
, TRUE
);
479 zone_change(rte_zone
, Z_CALLERACCT
, FALSE
);
480 zone_change(rte_zone
, Z_NOENCRYPT
, TRUE
);
482 TAILQ_INIT(&rttrash_head
);
486 * Given a route, determine whether or not it is the non-scoped default
487 * route; dst typically comes from rt_key(rt) but may be coming from
488 * a separate place when rt is in the process of being created.
491 rt_primary_default(struct rtentry
*rt
, struct sockaddr
*dst
)
493 return (SA_DEFAULT(dst
) && !(rt
->rt_flags
& RTF_IFSCOPE
));
497 * Set the ifscope of the primary interface; caller holds rnh_lock.
500 set_primary_ifscope(int af
, unsigned int ifscope
)
503 primary_ifscope
= ifscope
;
505 primary6_ifscope
= ifscope
;
509 * Return the ifscope of the primary interface; caller holds rnh_lock.
512 get_primary_ifscope(int af
)
514 return (af
== AF_INET
? primary_ifscope
: primary6_ifscope
);
518 * Set the scope ID of a given a sockaddr_in.
521 sin_set_ifscope(struct sockaddr
*sa
, unsigned int ifscope
)
523 /* Caller must pass in sockaddr_in */
524 ASSERT_SINIFSCOPE(sa
);
526 SINIFSCOPE(sa
)->sin_scope_id
= ifscope
;
530 * Set the scope ID of given a sockaddr_in6.
533 sin6_set_ifscope(struct sockaddr
*sa
, unsigned int ifscope
)
535 /* Caller must pass in sockaddr_in6 */
536 ASSERT_SIN6IFSCOPE(sa
);
538 SIN6IFSCOPE(sa
)->sin6_scope_id
= ifscope
;
542 * Given a sockaddr_in, return the scope ID to the caller.
545 sin_get_ifscope(struct sockaddr
*sa
)
547 /* Caller must pass in sockaddr_in */
548 ASSERT_SINIFSCOPE(sa
);
550 return (SINIFSCOPE(sa
)->sin_scope_id
);
554 * Given a sockaddr_in6, return the scope ID to the caller.
557 sin6_get_ifscope(struct sockaddr
*sa
)
559 /* Caller must pass in sockaddr_in6 */
560 ASSERT_SIN6IFSCOPE(sa
);
562 return (SIN6IFSCOPE(sa
)->sin6_scope_id
);
566 sin6_set_embedded_ifscope(struct sockaddr
*sa
, unsigned int ifscope
)
568 /* Caller must pass in sockaddr_in6 */
569 ASSERT_SIN6IFSCOPE(sa
);
570 VERIFY(IN6_IS_SCOPE_EMBED(&(SIN6(sa
)->sin6_addr
)));
572 SIN6(sa
)->sin6_addr
.s6_addr16
[1] = htons(ifscope
);
575 static inline unsigned int
576 sin6_get_embedded_ifscope(struct sockaddr
*sa
)
578 /* Caller must pass in sockaddr_in6 */
579 ASSERT_SIN6IFSCOPE(sa
);
581 return (ntohs(SIN6(sa
)->sin6_addr
.s6_addr16
[1]));
585 * Copy a sockaddr_{in,in6} src to a dst storage and set scope ID into dst.
587 * To clear the scope ID, pass is a NULL pifscope. To set the scope ID, pass
588 * in a non-NULL pifscope with non-zero ifscope. Otherwise if pifscope is
589 * non-NULL and ifscope is IFSCOPE_NONE, the existing scope ID is left intact.
590 * In any case, the effective scope ID value is returned to the caller via
591 * pifscope, if it is non-NULL.
594 sa_copy(struct sockaddr
*src
, struct sockaddr_storage
*dst
,
595 unsigned int *pifscope
)
597 int af
= src
->sa_family
;
598 unsigned int ifscope
= (pifscope
!= NULL
) ? *pifscope
: IFSCOPE_NONE
;
600 VERIFY(af
== AF_INET
|| af
== AF_INET6
);
602 bzero(dst
, sizeof (*dst
));
605 bcopy(src
, dst
, sizeof (struct sockaddr_in
));
606 if (pifscope
== NULL
|| ifscope
!= IFSCOPE_NONE
)
607 sin_set_ifscope(SA(dst
), ifscope
);
609 bcopy(src
, dst
, sizeof (struct sockaddr_in6
));
610 if (pifscope
!= NULL
&&
611 IN6_IS_SCOPE_EMBED(&SIN6(dst
)->sin6_addr
)) {
612 unsigned int eifscope
;
614 * If the address contains the embedded scope ID,
615 * use that as the value for sin6_scope_id as long
616 * the caller doesn't insist on clearing it (by
617 * passing NULL) or setting it.
619 eifscope
= sin6_get_embedded_ifscope(SA(dst
));
620 if (eifscope
!= IFSCOPE_NONE
&& ifscope
== IFSCOPE_NONE
)
622 if (ifscope
!= IFSCOPE_NONE
) {
623 /* Set ifscope from pifscope or eifscope */
624 sin6_set_ifscope(SA(dst
), ifscope
);
626 /* If sin6_scope_id has a value, use that one */
627 ifscope
= sin6_get_ifscope(SA(dst
));
630 * If sin6_scope_id is set but the address doesn't
631 * contain the equivalent embedded value, set it.
633 if (ifscope
!= IFSCOPE_NONE
&& eifscope
!= ifscope
)
634 sin6_set_embedded_ifscope(SA(dst
), ifscope
);
635 } else if (pifscope
== NULL
|| ifscope
!= IFSCOPE_NONE
) {
636 sin6_set_ifscope(SA(dst
), ifscope
);
640 if (pifscope
!= NULL
) {
641 *pifscope
= (af
== AF_INET
) ? sin_get_ifscope(SA(dst
)) :
642 sin6_get_ifscope(SA(dst
));
649 * Copy a mask from src to a dst storage and set scope ID into dst.
651 static struct sockaddr
*
652 ma_copy(int af
, struct sockaddr
*src
, struct sockaddr_storage
*dst
,
653 unsigned int ifscope
)
655 VERIFY(af
== AF_INET
|| af
== AF_INET6
);
657 bzero(dst
, sizeof (*dst
));
658 rt_maskedcopy(src
, SA(dst
), src
);
661 * The length of the mask sockaddr would need to be adjusted
662 * to cover the additional {sin,sin6}_ifscope field; when ifscope
663 * is IFSCOPE_NONE, we'd end up clearing the scope ID field on
664 * the destination mask in addition to extending the length
665 * of the sockaddr, as a side effect. This is okay, as any
666 * trailing zeroes would be skipped by rn_addmask prior to
667 * inserting or looking up the mask in the mask tree.
670 SINIFSCOPE(dst
)->sin_scope_id
= ifscope
;
671 SINIFSCOPE(dst
)->sin_len
=
672 offsetof(struct sockaddr_inifscope
, sin_scope_id
) +
673 sizeof (SINIFSCOPE(dst
)->sin_scope_id
);
675 SIN6IFSCOPE(dst
)->sin6_scope_id
= ifscope
;
676 SIN6IFSCOPE(dst
)->sin6_len
=
677 offsetof(struct sockaddr_in6
, sin6_scope_id
) +
678 sizeof (SIN6IFSCOPE(dst
)->sin6_scope_id
);
685 * Trim trailing zeroes on a sockaddr and update its length.
687 static struct sockaddr
*
688 sa_trim(struct sockaddr
*sa
, int skip
)
690 caddr_t cp
, base
= (caddr_t
)sa
+ skip
;
692 if (sa
->sa_len
<= skip
)
695 for (cp
= base
+ (sa
->sa_len
- skip
); cp
> base
&& cp
[-1] == 0; )
698 sa
->sa_len
= (cp
- base
) + skip
;
699 if (sa
->sa_len
< skip
) {
700 /* Must not happen, and if so, panic */
701 panic("%s: broken logic (sa_len %d < skip %d )", __func__
,
704 } else if (sa
->sa_len
== skip
) {
705 /* If we end up with all zeroes, then there's no mask */
713 * Called by rtm_msg{1,2} routines to "scrub" socket address structures of
714 * kernel private information, so that clients of the routing socket will
715 * not be confused by the presence of the information, or the side effect of
716 * the increased length due to that. The source sockaddr is not modified;
717 * instead, the scrubbing happens on the destination sockaddr storage that
718 * is passed in by the caller.
721 * - removing embedded scope identifiers from network mask and destination
722 * IPv4 and IPv6 socket addresses
723 * - optionally removing global scope interface hardware addresses from
724 * link-layer interface addresses when the MAC framework check fails.
727 rtm_scrub(int type
, int idx
, struct sockaddr
*hint
, struct sockaddr
*sa
,
728 void *buf
, uint32_t buflen
, kauth_cred_t
*credp
)
730 struct sockaddr_storage
*ss
= (struct sockaddr_storage
*)buf
;
731 struct sockaddr
*ret
= sa
;
733 VERIFY(buf
!= NULL
&& buflen
>= sizeof (*ss
));
739 * If this is for an AF_INET/AF_INET6 destination address,
740 * call sa_copy() to clear the scope ID field.
742 if (sa
->sa_family
== AF_INET
&&
743 SINIFSCOPE(sa
)->sin_scope_id
!= IFSCOPE_NONE
) {
744 ret
= sa_copy(sa
, ss
, NULL
);
745 } else if (sa
->sa_family
== AF_INET6
&&
746 SIN6IFSCOPE(sa
)->sin6_scope_id
!= IFSCOPE_NONE
) {
747 ret
= sa_copy(sa
, ss
, NULL
);
754 * If this is for a mask, we can't tell whether or not there
755 * is an valid scope ID value, as the span of bytes between
756 * sa_len and the beginning of the mask (offset of sin_addr in
757 * the case of AF_INET, or sin6_addr for AF_INET6) may be
758 * filled with all-ones by rn_addmask(), and hence we cannot
759 * rely on sa_family. Because of this, we use the sa_family
760 * of the hint sockaddr (RTAX_{DST,IFA}) as indicator as to
761 * whether or not the mask is to be treated as one for AF_INET
762 * or AF_INET6. Clearing the scope ID field involves setting
763 * it to IFSCOPE_NONE followed by calling sa_trim() to trim
764 * trailing zeroes from the storage sockaddr, which reverses
765 * what was done earlier by ma_copy() on the source sockaddr.
768 ((af
= hint
->sa_family
) != AF_INET
&& af
!= AF_INET6
))
769 break; /* nothing to do */
771 skip
= (af
== AF_INET
) ?
772 offsetof(struct sockaddr_in
, sin_addr
) :
773 offsetof(struct sockaddr_in6
, sin6_addr
);
775 if (sa
->sa_len
> skip
&& sa
->sa_len
<= sizeof (*ss
)) {
776 bcopy(sa
, ss
, sa
->sa_len
);
778 * Don't use {sin,sin6}_set_ifscope() as sa_family
779 * and sa_len for the netmask might not be set to
780 * the corresponding expected values of the hint.
782 if (hint
->sa_family
== AF_INET
)
783 SINIFSCOPE(ss
)->sin_scope_id
= IFSCOPE_NONE
;
785 SIN6IFSCOPE(ss
)->sin6_scope_id
= IFSCOPE_NONE
;
786 ret
= sa_trim(SA(ss
), skip
);
789 * For AF_INET6 mask, set sa_len appropriately unless
790 * this is requested via systl_dumpentry(), in which
791 * case we return the raw value.
793 if (hint
->sa_family
== AF_INET6
&&
794 type
!= RTM_GET
&& type
!= RTM_GET2
)
795 SA(ret
)->sa_len
= sizeof (struct sockaddr_in6
);
801 * Break if the gateway is not AF_LINK type (indirect routes)
803 * Else, if is, check if it is resolved. If not yet resolved
804 * simply break else scrub the link layer address.
806 if ((sa
->sa_family
!= AF_LINK
) || (SDL(sa
)->sdl_alen
== 0))
811 if (sa
->sa_family
== AF_LINK
&& credp
) {
812 struct sockaddr_dl
*sdl
= SDL(buf
);
816 /* caller should handle worst case: SOCK_MAXADDRLEN */
817 VERIFY(buflen
>= sa
->sa_len
);
819 bcopy(sa
, sdl
, sa
->sa_len
);
820 bytes
= dlil_ifaddr_bytes(sdl
, &size
, credp
);
821 if (bytes
!= CONST_LLADDR(sdl
)) {
822 VERIFY(sdl
->sdl_alen
== size
);
823 bcopy(bytes
, LLADDR(sdl
), size
);
825 ret
= (struct sockaddr
*)sdl
;
837 * Callback leaf-matching routine for rn_matchaddr_args used
838 * for looking up an exact match for a scoped route entry.
841 rn_match_ifscope(struct radix_node
*rn
, void *arg
)
843 struct rtentry
*rt
= (struct rtentry
*)rn
;
844 struct matchleaf_arg
*ma
= arg
;
845 int af
= rt_key(rt
)->sa_family
;
847 if (!(rt
->rt_flags
& RTF_IFSCOPE
) || (af
!= AF_INET
&& af
!= AF_INET6
))
850 return (af
== AF_INET
?
851 (SINIFSCOPE(rt_key(rt
))->sin_scope_id
== ma
->ifscope
) :
852 (SIN6IFSCOPE(rt_key(rt
))->sin6_scope_id
== ma
->ifscope
));
856 * Atomically increment route generation counter
859 routegenid_update(void)
861 routegenid_inet_update();
863 routegenid_inet6_update();
868 routegenid_inet_update(void)
870 atomic_add_32(&route_genid_inet
, 1);
875 routegenid_inet6_update(void)
877 atomic_add_32(&route_genid_inet6
, 1);
882 * Packet routing routines.
885 rtalloc(struct route
*ro
)
891 rtalloc_scoped(struct route
*ro
, unsigned int ifscope
)
893 rtalloc_scoped_ign(ro
, 0, ifscope
);
897 rtalloc_ign_common_locked(struct route
*ro
, uint32_t ignore
,
898 unsigned int ifscope
)
902 if ((rt
= ro
->ro_rt
) != NULL
) {
904 if (rt
->rt_ifp
!= NULL
&& !ROUTE_UNUSABLE(ro
)) {
909 ROUTE_RELEASE_LOCKED(ro
); /* rnh_lock already held */
911 ro
->ro_rt
= rtalloc1_common_locked(&ro
->ro_dst
, 1, ignore
, ifscope
);
912 if (ro
->ro_rt
!= NULL
) {
913 RT_GENID_SYNC(ro
->ro_rt
);
914 RT_LOCK_ASSERT_NOTHELD(ro
->ro_rt
);
919 rtalloc_ign(struct route
*ro
, uint32_t ignore
)
921 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
922 lck_mtx_lock(rnh_lock
);
923 rtalloc_ign_common_locked(ro
, ignore
, IFSCOPE_NONE
);
924 lck_mtx_unlock(rnh_lock
);
928 rtalloc_scoped_ign(struct route
*ro
, uint32_t ignore
, unsigned int ifscope
)
930 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
931 lck_mtx_lock(rnh_lock
);
932 rtalloc_ign_common_locked(ro
, ignore
, ifscope
);
933 lck_mtx_unlock(rnh_lock
);
936 static struct rtentry
*
937 rtalloc1_locked(struct sockaddr
*dst
, int report
, uint32_t ignflags
)
939 return (rtalloc1_common_locked(dst
, report
, ignflags
, IFSCOPE_NONE
));
943 rtalloc1_scoped_locked(struct sockaddr
*dst
, int report
, uint32_t ignflags
,
944 unsigned int ifscope
)
946 return (rtalloc1_common_locked(dst
, report
, ignflags
, ifscope
));
950 rtalloc1_common_locked(struct sockaddr
*dst
, int report
, uint32_t ignflags
,
951 unsigned int ifscope
)
953 struct radix_node_head
*rnh
= rt_tables
[dst
->sa_family
];
954 struct rtentry
*rt
, *newrt
= NULL
;
955 struct rt_addrinfo info
;
957 int err
= 0, msgtype
= RTM_MISS
;
963 * Find the longest prefix or exact (in the scoped case) address match;
964 * callee adds a reference to entry and checks for root node as well
966 rt
= rt_lookup(FALSE
, dst
, NULL
, rnh
, ifscope
);
972 nflags
= rt
->rt_flags
& ~ignflags
;
974 if (report
&& (nflags
& (RTF_CLONING
| RTF_PRCLONING
))) {
976 * We are apparently adding (report = 0 in delete).
977 * If it requires that it be cloned, do so.
978 * (This implies it wasn't a HOST route.)
980 err
= rtrequest_locked(RTM_RESOLVE
, dst
, NULL
, NULL
, 0, &newrt
);
983 * If the cloning didn't succeed, maybe what we
984 * have from lookup above will do. Return that;
985 * no need to hold another reference since it's
993 * We cloned it; drop the original route found during lookup.
994 * The resulted cloned route (newrt) would now have an extra
995 * reference held during rtrequest.
1000 * If the newly created cloned route is a direct host route
1001 * then also check if it is to a router or not.
1002 * If it is, then set the RTF_ROUTER flag on the host route
1005 * XXX It is possible for the default route to be created post
1006 * cloned route creation of router's IP.
1007 * We can handle that corner case by special handing for RTM_ADD
1010 if ((newrt
->rt_flags
& (RTF_HOST
| RTF_LLINFO
)) ==
1011 (RTF_HOST
| RTF_LLINFO
)) {
1012 struct rtentry
*defrt
= NULL
;
1013 struct sockaddr_storage def_key
;
1015 bzero(&def_key
, sizeof(def_key
));
1016 def_key
.ss_len
= rt_key(newrt
)->sa_len
;
1017 def_key
.ss_family
= rt_key(newrt
)->sa_family
;
1019 defrt
= rtalloc1_scoped_locked((struct sockaddr
*)&def_key
,
1020 0, 0, newrt
->rt_ifp
->if_index
);
1023 if (equal(rt_key(newrt
), defrt
->rt_gateway
)) {
1024 newrt
->rt_flags
|= RTF_ROUTER
;
1026 rtfree_locked(defrt
);
1030 if ((rt
= newrt
) && (rt
->rt_flags
& RTF_XRESOLVE
)) {
1032 * If the new route specifies it be
1033 * externally resolved, then go do that.
1035 msgtype
= RTM_RESOLVE
;
1043 * Either we hit the root or couldn't find any match,
1044 * Which basically means "cant get there from here"
1046 rtstat
.rts_unreach
++;
1051 * If required, report the failure to the supervising
1053 * For a delete, this is not an error. (report == 0)
1055 bzero((caddr_t
)&info
, sizeof(info
));
1056 info
.rti_info
[RTAX_DST
] = dst
;
1057 rt_missmsg(msgtype
, &info
, 0, err
);
1064 rtalloc1(struct sockaddr
*dst
, int report
, uint32_t ignflags
)
1066 struct rtentry
*entry
;
1067 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
1068 lck_mtx_lock(rnh_lock
);
1069 entry
= rtalloc1_locked(dst
, report
, ignflags
);
1070 lck_mtx_unlock(rnh_lock
);
1075 rtalloc1_scoped(struct sockaddr
*dst
, int report
, uint32_t ignflags
,
1076 unsigned int ifscope
)
1078 struct rtentry
*entry
;
1079 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
1080 lck_mtx_lock(rnh_lock
);
1081 entry
= rtalloc1_scoped_locked(dst
, report
, ignflags
, ifscope
);
1082 lck_mtx_unlock(rnh_lock
);
1087 * Remove a reference count from an rtentry.
1088 * If the count gets low enough, take it out of the routing table
1091 rtfree_locked(struct rtentry
*rt
)
1093 rtfree_common(rt
, TRUE
);
1097 rtfree_common(struct rtentry
*rt
, boolean_t locked
)
1099 struct radix_node_head
*rnh
;
1101 LCK_MTX_ASSERT(rnh_lock
, locked
?
1102 LCK_MTX_ASSERT_OWNED
: LCK_MTX_ASSERT_NOTOWNED
);
1105 * Atomically decrement the reference count and if it reaches 0,
1106 * and there is a close function defined, call the close function.
1109 if (rtunref(rt
) > 0) {
1115 * To avoid violating lock ordering, we must drop rt_lock before
1116 * trying to acquire the global rnh_lock. If we are called with
1117 * rnh_lock held, then we already have exclusive access; otherwise
1118 * we do the lock dance.
1122 * Note that we check it again below after grabbing rnh_lock,
1123 * since it is possible that another thread doing a lookup wins
1124 * the race, grabs the rnh_lock first, and bumps up reference
1125 * count in which case the route should be left alone as it is
1126 * still in use. It's also possible that another thread frees
1127 * the route after we drop rt_lock; to prevent the route from
1128 * being freed, we hold an extra reference.
1130 RT_ADDREF_LOCKED(rt
);
1132 lck_mtx_lock(rnh_lock
);
1134 if (rtunref(rt
) > 0) {
1135 /* We've lost the race, so abort */
1142 * We may be blocked on other lock(s) as part of freeing
1143 * the entry below, so convert from spin to full mutex.
1145 RT_CONVERT_LOCK(rt
);
1147 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
1149 /* Negative refcnt must never happen */
1150 if (rt
->rt_refcnt
!= 0) {
1151 panic("rt %p invalid refcnt %d", rt
, rt
->rt_refcnt
);
1154 /* Idle refcnt must have been dropped during rtunref() */
1155 VERIFY(!(rt
->rt_flags
& RTF_IFREF
));
1158 * find the tree for that address family
1159 * Note: in the case of igmp packets, there might not be an rnh
1161 rnh
= rt_tables
[rt_key(rt
)->sa_family
];
1164 * On last reference give the "close method" a chance to cleanup
1165 * private state. This also permits (for IPv4 and IPv6) a chance
1166 * to decide if the routing table entry should be purged immediately
1167 * or at a later time. When an immediate purge is to happen the
1168 * close routine typically issues RTM_DELETE which clears the RTF_UP
1169 * flag on the entry so that the code below reclaims the storage.
1171 if (rnh
!= NULL
&& rnh
->rnh_close
!= NULL
)
1172 rnh
->rnh_close((struct radix_node
*)rt
, rnh
);
1175 * If we are no longer "up" (and ref == 0) then we can free the
1176 * resources associated with the route.
1178 if (!(rt
->rt_flags
& RTF_UP
)) {
1179 struct rtentry
*rt_parent
;
1180 struct ifaddr
*rt_ifa
;
1182 rt
->rt_flags
|= RTF_DEAD
;
1183 if (rt
->rt_nodes
->rn_flags
& (RNF_ACTIVE
| RNF_ROOT
)) {
1184 panic("rt %p freed while in radix tree\n", rt
);
1188 * the rtentry must have been removed from the routing table
1189 * so it is represented in rttrash; remove that now.
1191 (void) OSDecrementAtomic(&rttrash
);
1192 if (rte_debug
& RTD_DEBUG
) {
1193 TAILQ_REMOVE(&rttrash_head
, (struct rtentry_dbg
*)rt
,
1198 * release references on items we hold them on..
1199 * e.g other routes and ifaddrs.
1201 if ((rt_parent
= rt
->rt_parent
) != NULL
)
1202 rt
->rt_parent
= NULL
;
1204 if ((rt_ifa
= rt
->rt_ifa
) != NULL
)
1208 * Now free any attached link-layer info.
1210 if (rt
->rt_llinfo
!= NULL
) {
1211 if (rt
->rt_llinfo_free
!= NULL
)
1212 (*rt
->rt_llinfo_free
)(rt
->rt_llinfo
);
1214 R_Free(rt
->rt_llinfo
);
1215 rt
->rt_llinfo
= NULL
;
1218 /* Destroy eventhandler lists context */
1219 eventhandler_lists_ctxt_destroy(&rt
->rt_evhdlr_ctxt
);
1222 * Route is no longer in the tree and refcnt is 0;
1223 * we have exclusive access, so destroy it.
1226 rte_lock_destroy(rt
);
1228 if (rt_parent
!= NULL
)
1229 rtfree_locked(rt_parent
);
1235 * The key is separately alloc'd so free it (see rt_setgate()).
1236 * This also frees the gateway, as they are always malloc'd
1242 * Free any statistics that may have been allocated
1244 nstat_route_detach(rt
);
1247 * and the rtentry itself of course
1252 * The "close method" has been called, but the route is
1253 * still in the radix tree with zero refcnt, i.e. "up"
1254 * and in the cached state.
1260 lck_mtx_unlock(rnh_lock
);
1264 rtfree(struct rtentry
*rt
)
1266 rtfree_common(rt
, FALSE
);
1270 * Decrements the refcount but does not free the route when
1271 * the refcount reaches zero. Unless you have really good reason,
1272 * use rtfree not rtunref.
1275 rtunref(struct rtentry
*p
)
1277 RT_LOCK_ASSERT_HELD(p
);
1279 if (p
->rt_refcnt
== 0) {
1280 panic("%s(%p) bad refcnt\n", __func__
, p
);
1282 } else if (--p
->rt_refcnt
== 0) {
1284 * Release any idle reference count held on the interface;
1285 * if the route is eligible, still UP and the refcnt becomes
1286 * non-zero at some point in future before it is purged from
1287 * the routing table, rt_set_idleref() will undo this.
1289 rt_clear_idleref(p
);
1292 if (rte_debug
& RTD_DEBUG
)
1293 rtunref_audit((struct rtentry_dbg
*)p
);
1295 /* Return new value */
1296 return (p
->rt_refcnt
);
1300 rtunref_audit(struct rtentry_dbg
*rte
)
1304 if (rte
->rtd_inuse
!= RTD_INUSE
) {
1305 panic("rtunref: on freed rte=%p\n", rte
);
1308 idx
= atomic_add_16_ov(&rte
->rtd_refrele_cnt
, 1) % CTRACE_HIST_SIZE
;
1309 if (rte_debug
& RTD_TRACE
)
1310 ctrace_record(&rte
->rtd_refrele
[idx
]);
1314 * Add a reference count from an rtentry.
1317 rtref(struct rtentry
*p
)
1319 RT_LOCK_ASSERT_HELD(p
);
1321 VERIFY((p
->rt_flags
& RTF_DEAD
) == 0);
1322 if (++p
->rt_refcnt
== 0) {
1323 panic("%s(%p) bad refcnt\n", __func__
, p
);
1325 } else if (p
->rt_refcnt
== 1) {
1327 * Hold an idle reference count on the interface,
1328 * if the route is eligible for it.
1333 if (rte_debug
& RTD_DEBUG
)
1334 rtref_audit((struct rtentry_dbg
*)p
);
1338 rtref_audit(struct rtentry_dbg
*rte
)
1342 if (rte
->rtd_inuse
!= RTD_INUSE
) {
1343 panic("rtref_audit: on freed rte=%p\n", rte
);
1346 idx
= atomic_add_16_ov(&rte
->rtd_refhold_cnt
, 1) % CTRACE_HIST_SIZE
;
1347 if (rte_debug
& RTD_TRACE
)
1348 ctrace_record(&rte
->rtd_refhold
[idx
]);
1352 rtsetifa(struct rtentry
*rt
, struct ifaddr
*ifa
)
1354 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
1356 RT_LOCK_ASSERT_HELD(rt
);
1358 if (rt
->rt_ifa
== ifa
)
1361 /* Become a regular mutex, just in case */
1362 RT_CONVERT_LOCK(rt
);
1364 /* Release the old ifa */
1366 IFA_REMREF(rt
->rt_ifa
);
1371 /* Take a reference to the ifa */
1373 IFA_ADDREF(rt
->rt_ifa
);
1377 * Force a routing table entry to the specified
1378 * destination to go through the given gateway.
1379 * Normally called as a result of a routing redirect
1380 * message from the network layer.
1383 rtredirect(struct ifnet
*ifp
, struct sockaddr
*dst
, struct sockaddr
*gateway
,
1384 struct sockaddr
*netmask
, int flags
, struct sockaddr
*src
,
1385 struct rtentry
**rtp
)
1387 struct rtentry
*rt
= NULL
;
1390 struct rt_addrinfo info
;
1391 struct ifaddr
*ifa
= NULL
;
1392 unsigned int ifscope
= (ifp
!= NULL
) ? ifp
->if_index
: IFSCOPE_NONE
;
1393 struct sockaddr_storage ss
;
1394 int af
= src
->sa_family
;
1396 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
1397 lck_mtx_lock(rnh_lock
);
1400 * Transform src into the internal routing table form for
1401 * comparison against rt_gateway below.
1404 if ((af
== AF_INET
) || (af
== AF_INET6
)) {
1406 if (af
== AF_INET
) {
1408 src
= sa_copy(src
, &ss
, &ifscope
);
1412 * Verify the gateway is directly reachable; if scoped routing
1413 * is enabled, verify that it is reachable from the interface
1414 * where the ICMP redirect arrived on.
1416 if ((ifa
= ifa_ifwithnet_scoped(gateway
, ifscope
)) == NULL
) {
1417 error
= ENETUNREACH
;
1421 /* Lookup route to the destination (from the original IP header) */
1422 rt
= rtalloc1_scoped_locked(dst
, 0, RTF_CLONING
|RTF_PRCLONING
, ifscope
);
1427 * If the redirect isn't from our current router for this dst,
1428 * it's either old or wrong. If it redirects us to ourselves,
1429 * we have a routing loop, perhaps as a result of an interface
1430 * going down recently. Holding rnh_lock here prevents the
1431 * possibility of rt_ifa/ifa's ifa_addr from changing (e.g.
1432 * in_ifinit), so okay to access ifa_addr without locking.
1434 if (!(flags
& RTF_DONE
) && rt
!= NULL
&&
1435 (!equal(src
, rt
->rt_gateway
) || !equal(rt
->rt_ifa
->ifa_addr
,
1440 if ((ifa
= ifa_ifwithaddr(gateway
))) {
1443 error
= EHOSTUNREACH
;
1459 * Create a new entry if we just got back a wildcard entry
1460 * or the the lookup failed. This is necessary for hosts
1461 * which use routing redirects generated by smart gateways
1462 * to dynamically build the routing tables.
1464 if ((rt
== NULL
) || (rt_mask(rt
) != NULL
&& rt_mask(rt
)->sa_len
< 2))
1467 * Don't listen to the redirect if it's
1468 * for a route to an interface.
1470 RT_LOCK_ASSERT_HELD(rt
);
1471 if (rt
->rt_flags
& RTF_GATEWAY
) {
1472 if (((rt
->rt_flags
& RTF_HOST
) == 0) && (flags
& RTF_HOST
)) {
1474 * Changing from route to net => route to host.
1475 * Create new route, rather than smashing route
1476 * to net; similar to cloned routes, the newly
1477 * created host route is scoped as well.
1482 flags
|= RTF_GATEWAY
| RTF_DYNAMIC
;
1483 error
= rtrequest_scoped_locked(RTM_ADD
, dst
,
1484 gateway
, netmask
, flags
, NULL
, ifscope
);
1485 stat
= &rtstat
.rts_dynamic
;
1488 * Smash the current notion of the gateway to
1489 * this destination. Should check about netmask!!!
1491 rt
->rt_flags
|= RTF_MODIFIED
;
1492 flags
|= RTF_MODIFIED
;
1493 stat
= &rtstat
.rts_newgateway
;
1495 * add the key and gateway (in one malloc'd chunk).
1497 error
= rt_setgate(rt
, rt_key(rt
), gateway
);
1502 error
= EHOSTUNREACH
;
1506 RT_LOCK_ASSERT_NOTHELD(rt
);
1508 /* Enqueue event to refresh flow route entries */
1509 route_event_enqueue_nwk_wq_entry(rt
, NULL
, ROUTE_ENTRY_REFRESH
, NULL
, FALSE
);
1520 rtstat
.rts_badredirect
++;
1526 routegenid_inet_update();
1528 else if (af
== AF_INET6
)
1529 routegenid_inet6_update();
1532 lck_mtx_unlock(rnh_lock
);
1533 bzero((caddr_t
)&info
, sizeof(info
));
1534 info
.rti_info
[RTAX_DST
] = dst
;
1535 info
.rti_info
[RTAX_GATEWAY
] = gateway
;
1536 info
.rti_info
[RTAX_NETMASK
] = netmask
;
1537 info
.rti_info
[RTAX_AUTHOR
] = src
;
1538 rt_missmsg(RTM_REDIRECT
, &info
, flags
, error
);
1542 * Routing table ioctl interface.
1545 rtioctl(unsigned long req
, caddr_t data
, struct proc
*p
)
1547 #pragma unused(p, req, data)
1554 const struct sockaddr
*dst
,
1555 const struct sockaddr
*gateway
)
1559 lck_mtx_lock(rnh_lock
);
1560 ifa
= ifa_ifwithroute_locked(flags
, dst
, gateway
);
1561 lck_mtx_unlock(rnh_lock
);
1567 ifa_ifwithroute_locked(int flags
, const struct sockaddr
*dst
,
1568 const struct sockaddr
*gateway
)
1570 return (ifa_ifwithroute_common_locked((flags
& ~RTF_IFSCOPE
), dst
,
1571 gateway
, IFSCOPE_NONE
));
1575 ifa_ifwithroute_scoped_locked(int flags
, const struct sockaddr
*dst
,
1576 const struct sockaddr
*gateway
, unsigned int ifscope
)
1578 if (ifscope
!= IFSCOPE_NONE
)
1579 flags
|= RTF_IFSCOPE
;
1581 flags
&= ~RTF_IFSCOPE
;
1583 return (ifa_ifwithroute_common_locked(flags
, dst
, gateway
, ifscope
));
1586 static struct ifaddr
*
1587 ifa_ifwithroute_common_locked(int flags
, const struct sockaddr
*dst
,
1588 const struct sockaddr
*gw
, unsigned int ifscope
)
1590 struct ifaddr
*ifa
= NULL
;
1591 struct rtentry
*rt
= NULL
;
1592 struct sockaddr_storage dst_ss
, gw_ss
;
1594 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
1597 * Just in case the sockaddr passed in by the caller
1598 * contains a scope ID, make sure to clear it since
1599 * interface addresses aren't scoped.
1603 ((dst
->sa_family
== AF_INET
) ||
1604 (dst
->sa_family
== AF_INET6
)))
1606 if (dst
!= NULL
&& dst
->sa_family
== AF_INET
)
1608 dst
= sa_copy(SA((uintptr_t)dst
), &dst_ss
, NULL
);
1612 ((gw
->sa_family
== AF_INET
) ||
1613 (gw
->sa_family
== AF_INET6
)))
1615 if (gw
!= NULL
&& gw
->sa_family
== AF_INET
)
1617 gw
= sa_copy(SA((uintptr_t)gw
), &gw_ss
, NULL
);
1619 if (!(flags
& RTF_GATEWAY
)) {
1621 * If we are adding a route to an interface,
1622 * and the interface is a pt to pt link
1623 * we should search for the destination
1624 * as our clue to the interface. Otherwise
1625 * we can use the local address.
1627 if (flags
& RTF_HOST
) {
1628 ifa
= ifa_ifwithdstaddr(dst
);
1631 ifa
= ifa_ifwithaddr_scoped(gw
, ifscope
);
1634 * If we are adding a route to a remote net
1635 * or host, the gateway may still be on the
1636 * other end of a pt to pt link.
1638 ifa
= ifa_ifwithdstaddr(gw
);
1641 ifa
= ifa_ifwithnet_scoped(gw
, ifscope
);
1643 /* Workaround to avoid gcc warning regarding const variable */
1644 rt
= rtalloc1_scoped_locked((struct sockaddr
*)(size_t)dst
,
1650 /* Become a regular mutex */
1651 RT_CONVERT_LOCK(rt
);
1654 RT_REMREF_LOCKED(rt
);
1660 * Holding rnh_lock here prevents the possibility of ifa from
1661 * changing (e.g. in_ifinit), so it is safe to access its
1662 * ifa_addr (here and down below) without locking.
1664 if (ifa
!= NULL
&& ifa
->ifa_addr
->sa_family
!= dst
->sa_family
) {
1665 struct ifaddr
*newifa
;
1666 /* Callee adds reference to newifa upon success */
1667 newifa
= ifaof_ifpforaddr(dst
, ifa
->ifa_ifp
);
1668 if (newifa
!= NULL
) {
1674 * If we are adding a gateway, it is quite possible that the
1675 * routing table has a static entry in place for the gateway,
1676 * that may not agree with info garnered from the interfaces.
1677 * The routing table should carry more precedence than the
1678 * interfaces in this matter. Must be careful not to stomp
1679 * on new entries from rtinit, hence (ifa->ifa_addr != gw).
1682 !equal(ifa
->ifa_addr
, (struct sockaddr
*)(size_t)gw
)) &&
1683 (rt
= rtalloc1_scoped_locked((struct sockaddr
*)(size_t)gw
,
1684 0, 0, ifscope
)) != NULL
) {
1690 /* Become a regular mutex */
1691 RT_CONVERT_LOCK(rt
);
1694 RT_REMREF_LOCKED(rt
);
1698 * If an interface scope was specified, the interface index of
1699 * the found ifaddr must be equivalent to that of the scope;
1700 * otherwise there is no match.
1702 if ((flags
& RTF_IFSCOPE
) &&
1703 ifa
!= NULL
&& ifa
->ifa_ifp
->if_index
!= ifscope
) {
1709 * ifa's address family must match destination's address family
1710 * after all is said and done.
1713 ifa
->ifa_addr
->sa_family
!= dst
->sa_family
) {
1721 static int rt_fixdelete(struct radix_node
*, void *);
1722 static int rt_fixchange(struct radix_node
*, void *);
1725 struct rtentry
*rt0
;
1726 struct radix_node_head
*rnh
;
1730 rtrequest_locked(int req
, struct sockaddr
*dst
, struct sockaddr
*gateway
,
1731 struct sockaddr
*netmask
, int flags
, struct rtentry
**ret_nrt
)
1733 return (rtrequest_common_locked(req
, dst
, gateway
, netmask
,
1734 (flags
& ~RTF_IFSCOPE
), ret_nrt
, IFSCOPE_NONE
));
1738 rtrequest_scoped_locked(int req
, struct sockaddr
*dst
,
1739 struct sockaddr
*gateway
, struct sockaddr
*netmask
, int flags
,
1740 struct rtentry
**ret_nrt
, unsigned int ifscope
)
1742 if (ifscope
!= IFSCOPE_NONE
)
1743 flags
|= RTF_IFSCOPE
;
1745 flags
&= ~RTF_IFSCOPE
;
1747 return (rtrequest_common_locked(req
, dst
, gateway
, netmask
,
1748 flags
, ret_nrt
, ifscope
));
1752 * Do appropriate manipulations of a routing tree given all the bits of
1755 * Storing the scope ID in the radix key is an internal job that should be
1756 * left to routines in this module. Callers should specify the scope value
1757 * to the "scoped" variants of route routines instead of manipulating the
1758 * key itself. This is typically done when creating a scoped route, e.g.
1759 * rtrequest(RTM_ADD). Once such a route is created and marked with the
1760 * RTF_IFSCOPE flag, callers can simply use its rt_key(rt) to clone it
1761 * (RTM_RESOLVE) or to remove it (RTM_DELETE). An exception to this is
1762 * during certain routing socket operations where the search key might be
1763 * derived from the routing message itself, in which case the caller must
1764 * specify the destination address and scope value for RTM_ADD/RTM_DELETE.
1767 rtrequest_common_locked(int req
, struct sockaddr
*dst0
,
1768 struct sockaddr
*gateway
, struct sockaddr
*netmask
, int flags
,
1769 struct rtentry
**ret_nrt
, unsigned int ifscope
)
1773 struct radix_node
*rn
;
1774 struct radix_node_head
*rnh
;
1775 struct ifaddr
*ifa
= NULL
;
1776 struct sockaddr
*ndst
, *dst
= dst0
;
1777 struct sockaddr_storage ss
, mask
;
1778 struct timeval caltime
;
1779 int af
= dst
->sa_family
;
1780 void (*ifa_rtrequest
)(int, struct rtentry
*, struct sockaddr
*);
1782 #define senderr(x) { error = x; goto bad; }
1784 DTRACE_ROUTE6(rtrequest
, int, req
, struct sockaddr
*, dst0
,
1785 struct sockaddr
*, gateway
, struct sockaddr
*, netmask
,
1786 int, flags
, unsigned int, ifscope
);
1788 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
1790 * Find the correct routing tree to use for this Address Family
1792 if ((rnh
= rt_tables
[af
]) == NULL
)
1795 * If we are adding a host route then we don't want to put
1796 * a netmask in the tree
1798 if (flags
& RTF_HOST
)
1802 * If Scoped Routing is enabled, use a local copy of the destination
1803 * address to store the scope ID into. This logic is repeated below
1804 * in the RTM_RESOLVE handler since the caller does not normally
1805 * specify such a flag during a resolve, as well as for the handling
1806 * of IPv4 link-local address; instead, it passes in the route used for
1807 * cloning for which the scope info is derived from. Note also that
1808 * in the case of RTM_DELETE, the address passed in by the caller
1809 * might already contain the scope ID info when it is the key itself,
1810 * thus making RTF_IFSCOPE unnecessary; one instance where it is
1811 * explicitly set is inside route_output() as part of handling a
1812 * routing socket request.
1815 if (req
!= RTM_RESOLVE
&& ((af
== AF_INET
) || (af
== AF_INET6
))) {
1817 if (req
!= RTM_RESOLVE
&& af
== AF_INET
) {
1819 /* Transform dst into the internal routing table form */
1820 dst
= sa_copy(dst
, &ss
, &ifscope
);
1822 /* Transform netmask into the internal routing table form */
1823 if (netmask
!= NULL
)
1824 netmask
= ma_copy(af
, netmask
, &mask
, ifscope
);
1826 if (ifscope
!= IFSCOPE_NONE
)
1827 flags
|= RTF_IFSCOPE
;
1828 } else if ((flags
& RTF_IFSCOPE
) &&
1829 (af
!= AF_INET
&& af
!= AF_INET6
)) {
1833 if (ifscope
== IFSCOPE_NONE
)
1834 flags
&= ~RTF_IFSCOPE
;
1838 struct rtentry
*gwrt
= NULL
;
1839 boolean_t was_router
= FALSE
;
1840 uint32_t old_rt_refcnt
= 0;
1842 * Remove the item from the tree and return it.
1843 * Complain if it is not there and do no more processing.
1845 if ((rn
= rnh
->rnh_deladdr(dst
, netmask
, rnh
)) == NULL
)
1847 if (rn
->rn_flags
& (RNF_ACTIVE
| RNF_ROOT
)) {
1848 panic("rtrequest delete");
1851 rt
= (struct rtentry
*)rn
;
1854 old_rt_refcnt
= rt
->rt_refcnt
;
1855 rt
->rt_flags
&= ~RTF_UP
;
1857 * Release any idle reference count held on the interface
1858 * as this route is no longer externally visible.
1860 rt_clear_idleref(rt
);
1862 * Take an extra reference to handle the deletion of a route
1863 * entry whose reference count is already 0; e.g. an expiring
1864 * cloned route entry or an entry that was added to the table
1865 * with 0 reference. If the caller is interested in this route,
1866 * we will return it with the reference intact. Otherwise we
1867 * will decrement the reference via rtfree_locked() and then
1868 * possibly deallocate it.
1870 RT_ADDREF_LOCKED(rt
);
1873 * For consistency, in case the caller didn't set the flag.
1875 rt
->rt_flags
|= RTF_CONDEMNED
;
1878 * Clear RTF_ROUTER if it's set.
1880 if (rt
->rt_flags
& RTF_ROUTER
) {
1882 VERIFY(rt
->rt_flags
& RTF_HOST
);
1883 rt
->rt_flags
&= ~RTF_ROUTER
;
1887 * Enqueue work item to invoke callback for this route entry
1889 * If the old count is 0, it implies that last reference is being
1890 * removed and there's no one listening for this route event.
1892 if (old_rt_refcnt
!= 0)
1893 route_event_enqueue_nwk_wq_entry(rt
, NULL
,
1894 ROUTE_ENTRY_DELETED
, NULL
, TRUE
);
1897 * Now search what's left of the subtree for any cloned
1898 * routes which might have been formed from this node.
1900 if ((rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
)) &&
1903 rnh
->rnh_walktree_from(rnh
, dst
, rt_mask(rt
),
1909 struct route_event rt_ev
;
1910 route_event_init(&rt_ev
, rt
, NULL
, ROUTE_LLENTRY_DELETED
);
1912 (void) rnh
->rnh_walktree(rnh
,
1913 route_event_walktree
, (void *)&rt_ev
);
1918 * Remove any external references we may have.
1920 if ((gwrt
= rt
->rt_gwroute
) != NULL
)
1921 rt
->rt_gwroute
= NULL
;
1924 * give the protocol a chance to keep things in sync.
1926 if ((ifa
= rt
->rt_ifa
) != NULL
) {
1928 ifa_rtrequest
= ifa
->ifa_rtrequest
;
1930 if (ifa_rtrequest
!= NULL
)
1931 ifa_rtrequest(RTM_DELETE
, rt
, NULL
);
1932 /* keep reference on rt_ifa */
1937 * one more rtentry floating around that is not
1938 * linked to the routing table.
1940 (void) OSIncrementAtomic(&rttrash
);
1941 if (rte_debug
& RTD_DEBUG
) {
1942 TAILQ_INSERT_TAIL(&rttrash_head
,
1943 (struct rtentry_dbg
*)rt
, rtd_trash_link
);
1947 * If this is the (non-scoped) default route, clear
1948 * the interface index used for the primary ifscope.
1950 if (rt_primary_default(rt
, rt_key(rt
))) {
1951 set_primary_ifscope(rt_key(rt
)->sa_family
,
1953 if ((rt
->rt_flags
& RTF_STATIC
) &&
1954 rt_key(rt
)->sa_family
== PF_INET6
) {
1955 trigger_v6_defrtr_select
= TRUE
;
1961 * If this is a change in a default route, update
1962 * necp client watchers to re-evaluate
1964 if (SA_DEFAULT(rt_key(rt
))) {
1965 if (rt
->rt_ifp
!= NULL
) {
1966 ifnet_touch_lastupdown(rt
->rt_ifp
);
1968 necp_update_all_clients();
1975 * This might result in another rtentry being freed if
1976 * we held its last reference. Do this after the rtentry
1977 * lock is dropped above, as it could lead to the same
1978 * lock being acquired if gwrt is a clone of rt.
1981 rtfree_locked(gwrt
);
1984 * If the caller wants it, then it can have it,
1985 * but it's up to it to free the rtentry as we won't be
1988 if (ret_nrt
!= NULL
) {
1989 /* Return the route to caller with reference intact */
1992 /* Dereference or deallocate the route */
1996 routegenid_inet_update();
1998 else if (af
== AF_INET6
)
1999 routegenid_inet6_update();
2004 if (ret_nrt
== NULL
|| (rt
= *ret_nrt
) == NULL
)
2007 * According to the UNIX conformance tests, we need to return
2008 * ENETUNREACH when the parent route is RTF_REJECT.
2009 * However, there isn't any point in cloning RTF_REJECT
2010 * routes, so we immediately return an error.
2012 if (rt
->rt_flags
& RTF_REJECT
) {
2013 if (rt
->rt_flags
& RTF_HOST
) {
2014 senderr(EHOSTUNREACH
);
2016 senderr(ENETUNREACH
);
2020 * If cloning, we have the parent route given by the caller
2021 * and will use its rt_gateway, rt_rmx as part of the cloning
2022 * process below. Since rnh_lock is held at this point, the
2023 * parent's rt_ifa and rt_gateway will not change, and its
2024 * relevant rt_flags will not change as well. The only thing
2025 * that could change are the metrics, and thus we hold the
2026 * parent route's rt_lock later on during the actual copying
2031 flags
= rt
->rt_flags
&
2032 ~(RTF_CLONING
| RTF_PRCLONING
| RTF_STATIC
);
2033 flags
|= RTF_WASCLONED
;
2034 gateway
= rt
->rt_gateway
;
2035 if ((netmask
= rt
->rt_genmask
) == NULL
)
2039 if (af
!= AF_INET
&& af
!= AF_INET6
)
2046 * When scoped routing is enabled, cloned entries are
2047 * always scoped according to the interface portion of
2048 * the parent route. The exception to this are IPv4
2049 * link local addresses, or those routes that are cloned
2050 * from a RTF_PROXY route. For the latter, the clone
2051 * gets to keep the RTF_PROXY flag.
2053 if ((af
== AF_INET
&&
2054 IN_LINKLOCAL(ntohl(SIN(dst
)->sin_addr
.s_addr
))) ||
2055 (rt
->rt_flags
& RTF_PROXY
)) {
2056 ifscope
= IFSCOPE_NONE
;
2057 flags
&= ~RTF_IFSCOPE
;
2059 * These types of cloned routes aren't currently
2060 * eligible for idle interface reference counting.
2062 flags
|= RTF_NOIFREF
;
2064 if (flags
& RTF_IFSCOPE
) {
2065 ifscope
= (af
== AF_INET
) ?
2066 sin_get_ifscope(rt_key(rt
)) :
2067 sin6_get_ifscope(rt_key(rt
));
2069 ifscope
= rt
->rt_ifp
->if_index
;
2070 flags
|= RTF_IFSCOPE
;
2072 VERIFY(ifscope
!= IFSCOPE_NONE
);
2076 * Transform dst into the internal routing table form,
2077 * clearing out the scope ID field if ifscope isn't set.
2079 dst
= sa_copy(dst
, &ss
, (ifscope
== IFSCOPE_NONE
) ?
2082 /* Transform netmask into the internal routing table form */
2083 if (netmask
!= NULL
)
2084 netmask
= ma_copy(af
, netmask
, &mask
, ifscope
);
2089 if ((flags
& RTF_GATEWAY
) && !gateway
) {
2090 panic("rtrequest: RTF_GATEWAY but no gateway");
2093 if (flags
& RTF_IFSCOPE
) {
2094 ifa
= ifa_ifwithroute_scoped_locked(flags
, dst0
,
2097 ifa
= ifa_ifwithroute_locked(flags
, dst0
, gateway
);
2100 senderr(ENETUNREACH
);
2103 * We land up here for both RTM_RESOLVE and RTM_ADD
2104 * when we decide to create a route.
2106 if ((rt
= rte_alloc()) == NULL
)
2108 Bzero(rt
, sizeof(*rt
));
2110 eventhandler_lists_ctxt_init(&rt
->rt_evhdlr_ctxt
);
2111 getmicrotime(&caltime
);
2112 rt
->base_calendartime
= caltime
.tv_sec
;
2113 rt
->base_uptime
= net_uptime();
2115 rt
->rt_flags
= RTF_UP
| flags
;
2118 * Point the generation ID to the tree's.
2122 rt
->rt_tree_genid
= &route_genid_inet
;
2126 rt
->rt_tree_genid
= &route_genid_inet6
;
2134 * Add the gateway. Possibly re-malloc-ing the storage for it
2135 * also add the rt_gwroute if possible.
2137 if ((error
= rt_setgate(rt
, dst
, gateway
)) != 0) {
2140 nstat_route_detach(rt
);
2141 rte_lock_destroy(rt
);
2147 * point to the (possibly newly malloc'd) dest address.
2152 * make sure it contains the value we want (masked if needed).
2155 rt_maskedcopy(dst
, ndst
, netmask
);
2157 Bcopy(dst
, ndst
, dst
->sa_len
);
2160 * Note that we now have a reference to the ifa.
2161 * This moved from below so that rnh->rnh_addaddr() can
2162 * examine the ifa and ifa->ifa_ifp if it so desires.
2165 rt
->rt_ifp
= rt
->rt_ifa
->ifa_ifp
;
2167 /* XXX mtu manipulation will be done in rnh_addaddr -- itojun */
2169 rn
= rnh
->rnh_addaddr((caddr_t
)ndst
, (caddr_t
)netmask
,
2172 struct rtentry
*rt2
;
2174 * Uh-oh, we already have one of these in the tree.
2175 * We do a special hack: if the route that's already
2176 * there was generated by the protocol-cloning
2177 * mechanism, then we just blow it away and retry
2178 * the insertion of the new one.
2180 if (flags
& RTF_IFSCOPE
) {
2181 rt2
= rtalloc1_scoped_locked(dst0
, 0,
2182 RTF_CLONING
| RTF_PRCLONING
, ifscope
);
2184 rt2
= rtalloc1_locked(dst
, 0,
2185 RTF_CLONING
| RTF_PRCLONING
);
2187 if (rt2
&& rt2
->rt_parent
) {
2189 * rnh_lock is held here, so rt_key and
2190 * rt_gateway of rt2 will not change.
2192 (void) rtrequest_locked(RTM_DELETE
, rt_key(rt2
),
2193 rt2
->rt_gateway
, rt_mask(rt2
),
2196 rn
= rnh
->rnh_addaddr((caddr_t
)ndst
,
2197 (caddr_t
)netmask
, rnh
, rt
->rt_nodes
);
2199 /* undo the extra ref we got */
2205 * If it still failed to go into the tree,
2206 * then un-make it (this should be a function)
2209 /* Clear gateway route */
2210 rt_set_gwroute(rt
, rt_key(rt
), NULL
);
2212 IFA_REMREF(rt
->rt_ifa
);
2217 nstat_route_detach(rt
);
2218 rte_lock_destroy(rt
);
2223 rt
->rt_parent
= NULL
;
2226 * If we got here from RESOLVE, then we are cloning so clone
2227 * the rest, and note that we are a clone (and increment the
2228 * parent's references). rnh_lock is still held, which prevents
2229 * a lookup from returning the newly-created route. Hence
2230 * holding and releasing the parent's rt_lock while still
2231 * holding the route's rt_lock is safe since the new route
2232 * is not yet externally visible.
2234 if (req
== RTM_RESOLVE
) {
2235 RT_LOCK_SPIN(*ret_nrt
);
2236 VERIFY((*ret_nrt
)->rt_expire
== 0 ||
2237 (*ret_nrt
)->rt_rmx
.rmx_expire
!= 0);
2238 VERIFY((*ret_nrt
)->rt_expire
!= 0 ||
2239 (*ret_nrt
)->rt_rmx
.rmx_expire
== 0);
2240 rt
->rt_rmx
= (*ret_nrt
)->rt_rmx
;
2241 rt_setexpire(rt
, (*ret_nrt
)->rt_expire
);
2242 if ((*ret_nrt
)->rt_flags
&
2243 (RTF_CLONING
| RTF_PRCLONING
)) {
2244 rt
->rt_parent
= (*ret_nrt
);
2245 RT_ADDREF_LOCKED(*ret_nrt
);
2247 RT_UNLOCK(*ret_nrt
);
2251 * if this protocol has something to add to this then
2252 * allow it to do that as well.
2255 ifa_rtrequest
= ifa
->ifa_rtrequest
;
2257 if (ifa_rtrequest
!= NULL
)
2258 ifa_rtrequest(req
, rt
, SA(ret_nrt
? *ret_nrt
: NULL
));
2263 * If this is the (non-scoped) default route, record
2264 * the interface index used for the primary ifscope.
2266 if (rt_primary_default(rt
, rt_key(rt
))) {
2267 set_primary_ifscope(rt_key(rt
)->sa_family
,
2268 rt
->rt_ifp
->if_index
);
2273 * If this is a change in a default route, update
2274 * necp client watchers to re-evaluate
2276 if (SA_DEFAULT(rt_key(rt
))) {
2277 if (rt
->rt_ifp
!= NULL
) {
2278 ifnet_touch_lastupdown(rt
->rt_ifp
);
2280 necp_update_all_clients();
2285 * actually return a resultant rtentry and
2286 * give the caller a single reference.
2290 RT_ADDREF_LOCKED(rt
);
2294 routegenid_inet_update();
2296 else if (af
== AF_INET6
)
2297 routegenid_inet6_update();
2303 * We repeat the same procedures from rt_setgate() here
2304 * because they weren't completed when we called it earlier,
2305 * since the node was embryonic.
2307 if ((rt
->rt_flags
& RTF_GATEWAY
) && rt
->rt_gwroute
!= NULL
)
2308 rt_set_gwroute(rt
, rt_key(rt
), rt
->rt_gwroute
);
2310 if (req
== RTM_ADD
&&
2311 !(rt
->rt_flags
& RTF_HOST
) && rt_mask(rt
) != NULL
) {
2312 struct rtfc_arg arg
;
2316 rnh
->rnh_walktree_from(rnh
, rt_key(rt
), rt_mask(rt
),
2317 rt_fixchange
, &arg
);
2322 nstat_route_new_entry(rt
);
2333 rtrequest(int req
, struct sockaddr
*dst
, struct sockaddr
*gateway
,
2334 struct sockaddr
*netmask
, int flags
, struct rtentry
**ret_nrt
)
2337 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
2338 lck_mtx_lock(rnh_lock
);
2339 error
= rtrequest_locked(req
, dst
, gateway
, netmask
, flags
, ret_nrt
);
2340 lck_mtx_unlock(rnh_lock
);
2345 rtrequest_scoped(int req
, struct sockaddr
*dst
, struct sockaddr
*gateway
,
2346 struct sockaddr
*netmask
, int flags
, struct rtentry
**ret_nrt
,
2347 unsigned int ifscope
)
2350 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
2351 lck_mtx_lock(rnh_lock
);
2352 error
= rtrequest_scoped_locked(req
, dst
, gateway
, netmask
, flags
,
2354 lck_mtx_unlock(rnh_lock
);
2359 * Called from rtrequest(RTM_DELETE, ...) to fix up the route's ``family''
2360 * (i.e., the routes related to it by the operation of cloning). This
2361 * routine is iterated over all potential former-child-routes by way of
2362 * rnh->rnh_walktree_from() above, and those that actually are children of
2363 * the late parent (passed in as VP here) are themselves deleted.
2366 rt_fixdelete(struct radix_node
*rn
, void *vp
)
2368 struct rtentry
*rt
= (struct rtentry
*)rn
;
2369 struct rtentry
*rt0
= vp
;
2371 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2374 if (rt
->rt_parent
== rt0
&&
2375 !(rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
))) {
2377 * Safe to drop rt_lock and use rt_key, since holding
2378 * rnh_lock here prevents another thread from calling
2379 * rt_setgate() on this route.
2382 return (rtrequest_locked(RTM_DELETE
, rt_key(rt
), NULL
,
2383 rt_mask(rt
), rt
->rt_flags
, NULL
));
2390 * This routine is called from rt_setgate() to do the analogous thing for
2391 * adds and changes. There is the added complication in this case of a
2392 * middle insert; i.e., insertion of a new network route between an older
2393 * network route and (cloned) host routes. For this reason, a simple check
2394 * of rt->rt_parent is insufficient; each candidate route must be tested
2395 * against the (mask, value) of the new route (passed as before in vp)
2396 * to see if the new route matches it.
2398 * XXX - it may be possible to do fixdelete() for changes and reserve this
2399 * routine just for adds. I'm not sure why I thought it was necessary to do
2403 rt_fixchange(struct radix_node
*rn
, void *vp
)
2405 struct rtentry
*rt
= (struct rtentry
*)rn
;
2406 struct rtfc_arg
*ap
= vp
;
2407 struct rtentry
*rt0
= ap
->rt0
;
2408 struct radix_node_head
*rnh
= ap
->rnh
;
2409 u_char
*xk1
, *xm1
, *xk2
, *xmp
;
2412 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2416 if (!rt
->rt_parent
||
2417 (rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
))) {
2422 if (rt
->rt_parent
== rt0
)
2426 * There probably is a function somewhere which does this...
2427 * if not, there should be.
2429 len
= imin(rt_key(rt0
)->sa_len
, rt_key(rt
)->sa_len
);
2431 xk1
= (u_char
*)rt_key(rt0
);
2432 xm1
= (u_char
*)rt_mask(rt0
);
2433 xk2
= (u_char
*)rt_key(rt
);
2436 * Avoid applying a less specific route; do this only if the parent
2437 * route (rt->rt_parent) is a network route, since otherwise its mask
2438 * will be NULL if it is a cloning host route.
2440 if ((xmp
= (u_char
*)rt_mask(rt
->rt_parent
)) != NULL
) {
2441 int mlen
= rt_mask(rt
->rt_parent
)->sa_len
;
2442 if (mlen
> rt_mask(rt0
)->sa_len
) {
2447 for (i
= rnh
->rnh_treetop
->rn_offset
; i
< mlen
; i
++) {
2448 if ((xmp
[i
] & ~(xmp
[i
] ^ xm1
[i
])) != xmp
[i
]) {
2455 for (i
= rnh
->rnh_treetop
->rn_offset
; i
< len
; i
++) {
2456 if ((xk2
[i
] & xm1
[i
]) != xk1
[i
]) {
2463 * OK, this node is a clone, and matches the node currently being
2464 * changed/added under the node's mask. So, get rid of it.
2468 * Safe to drop rt_lock and use rt_key, since holding rnh_lock here
2469 * prevents another thread from calling rt_setgate() on this route.
2472 return (rtrequest_locked(RTM_DELETE
, rt_key(rt
), NULL
,
2473 rt_mask(rt
), rt
->rt_flags
, NULL
));
2477 * Round up sockaddr len to multiples of 32-bytes. This will reduce
2478 * or even eliminate the need to re-allocate the chunk of memory used
2479 * for rt_key and rt_gateway in the event the gateway portion changes.
2480 * Certain code paths (e.g. IPsec) are notorious for caching the address
2481 * of rt_gateway; this rounding-up would help ensure that the gateway
2482 * portion never gets deallocated (though it may change contents) and
2483 * thus greatly simplifies things.
2485 #define SA_SIZE(x) (-(-((uintptr_t)(x)) & -(32)))
2488 * Sets the gateway and/or gateway route portion of a route; may be
2489 * called on an existing route to modify the gateway portion. Both
2490 * rt_key and rt_gateway are allocated out of the same memory chunk.
2491 * Route entry lock must be held by caller; this routine will return
2492 * with the lock held.
2495 rt_setgate(struct rtentry
*rt
, struct sockaddr
*dst
, struct sockaddr
*gate
)
2497 int dlen
= SA_SIZE(dst
->sa_len
), glen
= SA_SIZE(gate
->sa_len
);
2498 struct radix_node_head
*rnh
= NULL
;
2499 boolean_t loop
= FALSE
;
2501 if (dst
->sa_family
!= AF_INET
&& dst
->sa_family
!= AF_INET6
) {
2505 rnh
= rt_tables
[dst
->sa_family
];
2506 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2507 RT_LOCK_ASSERT_HELD(rt
);
2510 * If this is for a route that is on its way of being removed,
2511 * or is temporarily frozen, reject the modification request.
2513 if (rt
->rt_flags
& RTF_CONDEMNED
) {
2517 /* Add an extra ref for ourselves */
2518 RT_ADDREF_LOCKED(rt
);
2520 if (rt
->rt_flags
& RTF_GATEWAY
) {
2521 if ((dst
->sa_len
== gate
->sa_len
) &&
2522 (dst
->sa_family
== AF_INET
|| dst
->sa_family
== AF_INET6
)) {
2523 struct sockaddr_storage dst_ss
, gate_ss
;
2525 (void) sa_copy(dst
, &dst_ss
, NULL
);
2526 (void) sa_copy(gate
, &gate_ss
, NULL
);
2528 loop
= equal(SA(&dst_ss
), SA(&gate_ss
));
2530 loop
= (dst
->sa_len
== gate
->sa_len
&&
2536 * A (cloning) network route with the destination equal to the gateway
2537 * will create an endless loop (see notes below), so disallow it.
2539 if (((rt
->rt_flags
& (RTF_HOST
|RTF_GATEWAY
|RTF_LLINFO
)) ==
2540 RTF_GATEWAY
) && loop
) {
2541 /* Release extra ref */
2542 RT_REMREF_LOCKED(rt
);
2543 return (EADDRNOTAVAIL
);
2547 * A host route with the destination equal to the gateway
2548 * will interfere with keeping LLINFO in the routing
2549 * table, so disallow it.
2551 if (((rt
->rt_flags
& (RTF_HOST
|RTF_GATEWAY
|RTF_LLINFO
)) ==
2552 (RTF_HOST
|RTF_GATEWAY
)) && loop
) {
2554 * The route might already exist if this is an RTM_CHANGE
2555 * or a routing redirect, so try to delete it.
2557 if (rt_key(rt
) != NULL
) {
2559 * Safe to drop rt_lock and use rt_key, rt_gateway,
2560 * since holding rnh_lock here prevents another thread
2561 * from calling rt_setgate() on this route.
2564 (void) rtrequest_locked(RTM_DELETE
, rt_key(rt
),
2565 rt
->rt_gateway
, rt_mask(rt
), rt
->rt_flags
, NULL
);
2568 /* Release extra ref */
2569 RT_REMREF_LOCKED(rt
);
2570 return (EADDRNOTAVAIL
);
2574 * The destination is not directly reachable. Get a route
2575 * to the next-hop gateway and store it in rt_gwroute.
2577 if (rt
->rt_flags
& RTF_GATEWAY
) {
2578 struct rtentry
*gwrt
;
2579 unsigned int ifscope
;
2581 if (dst
->sa_family
== AF_INET
)
2582 ifscope
= sin_get_ifscope(dst
);
2583 else if (dst
->sa_family
== AF_INET6
)
2584 ifscope
= sin6_get_ifscope(dst
);
2586 ifscope
= IFSCOPE_NONE
;
2590 * Don't ignore RTF_CLONING, since we prefer that rt_gwroute
2591 * points to a clone rather than a cloning route; see above
2592 * check for cloning loop avoidance (dst == gate).
2594 gwrt
= rtalloc1_scoped_locked(gate
, 1, RTF_PRCLONING
, ifscope
);
2596 RT_LOCK_ASSERT_NOTHELD(gwrt
);
2600 * Cloning loop avoidance:
2602 * In the presence of protocol-cloning and bad configuration,
2603 * it is possible to get stuck in bottomless mutual recursion
2604 * (rtrequest rt_setgate rtalloc1). We avoid this by not
2605 * allowing protocol-cloning to operate for gateways (which
2606 * is probably the correct choice anyway), and avoid the
2607 * resulting reference loops by disallowing any route to run
2608 * through itself as a gateway. This is obviously mandatory
2609 * when we get rt->rt_output(). It implies that a route to
2610 * the gateway must already be present in the system in order
2611 * for the gateway to be referred to by another route.
2614 RT_REMREF_LOCKED(gwrt
);
2615 /* Release extra ref */
2616 RT_REMREF_LOCKED(rt
);
2617 return (EADDRINUSE
); /* failure */
2621 * If scoped, the gateway route must use the same interface;
2622 * we're holding rnh_lock now, so rt_gateway and rt_ifp of gwrt
2623 * should not change and are freely accessible.
2625 if (ifscope
!= IFSCOPE_NONE
&& (rt
->rt_flags
& RTF_IFSCOPE
) &&
2626 gwrt
!= NULL
&& gwrt
->rt_ifp
!= NULL
&&
2627 gwrt
->rt_ifp
->if_index
!= ifscope
) {
2628 rtfree_locked(gwrt
); /* rt != gwrt, no deadlock */
2629 /* Release extra ref */
2630 RT_REMREF_LOCKED(rt
);
2631 return ((rt
->rt_flags
& RTF_HOST
) ?
2632 EHOSTUNREACH
: ENETUNREACH
);
2635 /* Check again since we dropped the lock above */
2636 if (rt
->rt_flags
& RTF_CONDEMNED
) {
2638 rtfree_locked(gwrt
);
2639 /* Release extra ref */
2640 RT_REMREF_LOCKED(rt
);
2644 /* Set gateway route; callee adds ref to gwrt if non-NULL */
2645 rt_set_gwroute(rt
, dst
, gwrt
);
2648 * In case the (non-scoped) default route gets modified via
2649 * an ICMP redirect, record the interface index used for the
2650 * primary ifscope. Also done in rt_setif() to take care
2651 * of the non-redirect cases.
2653 if (rt_primary_default(rt
, dst
) && rt
->rt_ifp
!= NULL
) {
2654 set_primary_ifscope(dst
->sa_family
,
2655 rt
->rt_ifp
->if_index
);
2660 * If this is a change in a default route, update
2661 * necp client watchers to re-evaluate
2663 if (SA_DEFAULT(dst
)) {
2664 necp_update_all_clients();
2669 * Tell the kernel debugger about the new default gateway
2670 * if the gateway route uses the primary interface, or
2671 * if we are in a transient state before the non-scoped
2672 * default gateway is installed (similar to how the system
2673 * was behaving in the past). In future, it would be good
2674 * to do all this only when KDP is enabled.
2676 if ((dst
->sa_family
== AF_INET
) &&
2677 gwrt
!= NULL
&& gwrt
->rt_gateway
->sa_family
== AF_LINK
&&
2678 (gwrt
->rt_ifp
->if_index
== get_primary_ifscope(AF_INET
) ||
2679 get_primary_ifscope(AF_INET
) == IFSCOPE_NONE
)) {
2680 kdp_set_gateway_mac(SDL((void *)gwrt
->rt_gateway
)->
2684 /* Release extra ref from rtalloc1() */
2690 * Prepare to store the gateway in rt_gateway. Both dst and gateway
2691 * are stored one after the other in the same malloc'd chunk. If we
2692 * have room, reuse the old buffer since rt_gateway already points
2693 * to the right place. Otherwise, malloc a new block and update
2694 * the 'dst' address and point rt_gateway to the right place.
2696 if (rt
->rt_gateway
== NULL
|| glen
> SA_SIZE(rt
->rt_gateway
->sa_len
)) {
2699 /* The underlying allocation is done with M_WAITOK set */
2700 R_Malloc(new, caddr_t
, dlen
+ glen
);
2702 /* Clear gateway route */
2703 rt_set_gwroute(rt
, dst
, NULL
);
2704 /* Release extra ref */
2705 RT_REMREF_LOCKED(rt
);
2710 * Copy from 'dst' and not rt_key(rt) because we can get
2711 * here to initialize a newly allocated route entry, in
2712 * which case rt_key(rt) is NULL (and so does rt_gateway).
2714 bzero(new, dlen
+ glen
);
2715 Bcopy(dst
, new, dst
->sa_len
);
2716 R_Free(rt_key(rt
)); /* free old block; NULL is okay */
2717 rt
->rt_nodes
->rn_key
= new;
2718 rt
->rt_gateway
= (struct sockaddr
*)(new + dlen
);
2722 * Copy the new gateway value into the memory chunk.
2724 Bcopy(gate
, rt
->rt_gateway
, gate
->sa_len
);
2727 * For consistency between rt_gateway and rt_key(gwrt).
2729 if ((rt
->rt_flags
& RTF_GATEWAY
) && rt
->rt_gwroute
!= NULL
&&
2730 (rt
->rt_gwroute
->rt_flags
& RTF_IFSCOPE
)) {
2731 if (rt
->rt_gateway
->sa_family
== AF_INET
&&
2732 rt_key(rt
->rt_gwroute
)->sa_family
== AF_INET
) {
2733 sin_set_ifscope(rt
->rt_gateway
,
2734 sin_get_ifscope(rt_key(rt
->rt_gwroute
)));
2735 } else if (rt
->rt_gateway
->sa_family
== AF_INET6
&&
2736 rt_key(rt
->rt_gwroute
)->sa_family
== AF_INET6
) {
2737 sin6_set_ifscope(rt
->rt_gateway
,
2738 sin6_get_ifscope(rt_key(rt
->rt_gwroute
)));
2743 * This isn't going to do anything useful for host routes, so
2744 * don't bother. Also make sure we have a reasonable mask
2745 * (we don't yet have one during adds).
2747 if (!(rt
->rt_flags
& RTF_HOST
) && rt_mask(rt
) != 0) {
2748 struct rtfc_arg arg
;
2752 rnh
->rnh_walktree_from(rnh
, rt_key(rt
), rt_mask(rt
),
2753 rt_fixchange
, &arg
);
2757 /* Release extra ref */
2758 RT_REMREF_LOCKED(rt
);
2765 rt_set_gwroute(struct rtentry
*rt
, struct sockaddr
*dst
, struct rtentry
*gwrt
)
2767 boolean_t gwrt_isrouter
;
2769 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2770 RT_LOCK_ASSERT_HELD(rt
);
2773 RT_ADDREF(gwrt
); /* for this routine */
2776 * Get rid of existing gateway route; if rt_gwroute is already
2777 * set to gwrt, this is slightly redundant (though safe since
2778 * we held an extra ref above) but makes the code simpler.
2780 if (rt
->rt_gwroute
!= NULL
) {
2781 struct rtentry
*ogwrt
= rt
->rt_gwroute
;
2783 VERIFY(rt
!= ogwrt
); /* sanity check */
2784 rt
->rt_gwroute
= NULL
;
2786 rtfree_locked(ogwrt
);
2788 VERIFY(rt
->rt_gwroute
== NULL
);
2792 * And associate the new gateway route.
2794 if ((rt
->rt_gwroute
= gwrt
) != NULL
) {
2795 RT_ADDREF(gwrt
); /* for rt */
2797 if (rt
->rt_flags
& RTF_WASCLONED
) {
2798 /* rt_parent might be NULL if rt is embryonic */
2799 gwrt_isrouter
= (rt
->rt_parent
!= NULL
&&
2800 SA_DEFAULT(rt_key(rt
->rt_parent
)) &&
2801 !RT_HOST(rt
->rt_parent
));
2803 gwrt_isrouter
= (SA_DEFAULT(dst
) && !RT_HOST(rt
));
2806 /* If gwrt points to a default router, mark it accordingly */
2807 if (gwrt_isrouter
&& RT_HOST(gwrt
) &&
2808 !(gwrt
->rt_flags
& RTF_ROUTER
)) {
2810 gwrt
->rt_flags
|= RTF_ROUTER
;
2814 RT_REMREF(gwrt
); /* for this routine */
2819 rt_maskedcopy(const struct sockaddr
*src
, struct sockaddr
*dst
,
2820 const struct sockaddr
*netmask
)
2822 const char *netmaskp
= &netmask
->sa_data
[0];
2823 const char *srcp
= &src
->sa_data
[0];
2824 char *dstp
= &dst
->sa_data
[0];
2825 const char *maskend
= (char *)dst
2826 + MIN(netmask
->sa_len
, src
->sa_len
);
2827 const char *srcend
= (char *)dst
+ src
->sa_len
;
2829 dst
->sa_len
= src
->sa_len
;
2830 dst
->sa_family
= src
->sa_family
;
2832 while (dstp
< maskend
)
2833 *dstp
++ = *srcp
++ & *netmaskp
++;
2835 memset(dstp
, 0, (size_t)(srcend
- dstp
));
2839 * Lookup an AF_INET/AF_INET6 scoped or non-scoped route depending on the
2840 * ifscope value passed in by the caller (IFSCOPE_NONE implies non-scoped).
2842 static struct radix_node
*
2843 node_lookup(struct sockaddr
*dst
, struct sockaddr
*netmask
,
2844 unsigned int ifscope
)
2846 struct radix_node_head
*rnh
;
2847 struct radix_node
*rn
;
2848 struct sockaddr_storage ss
, mask
;
2849 int af
= dst
->sa_family
;
2850 struct matchleaf_arg ma
= { .ifscope
= ifscope
};
2851 rn_matchf_t
*f
= rn_match_ifscope
;
2854 if (af
!= AF_INET
&& af
!= AF_INET6
)
2857 rnh
= rt_tables
[af
];
2860 * Transform dst into the internal routing table form,
2861 * clearing out the scope ID field if ifscope isn't set.
2863 dst
= sa_copy(dst
, &ss
, (ifscope
== IFSCOPE_NONE
) ? NULL
: &ifscope
);
2865 /* Transform netmask into the internal routing table form */
2866 if (netmask
!= NULL
)
2867 netmask
= ma_copy(af
, netmask
, &mask
, ifscope
);
2869 if (ifscope
== IFSCOPE_NONE
)
2872 rn
= rnh
->rnh_lookup_args(dst
, netmask
, rnh
, f
, w
);
2873 if (rn
!= NULL
&& (rn
->rn_flags
& RNF_ROOT
))
2880 * Lookup the AF_INET/AF_INET6 non-scoped default route.
2882 static struct radix_node
*
2883 node_lookup_default(int af
)
2885 struct radix_node_head
*rnh
;
2887 VERIFY(af
== AF_INET
|| af
== AF_INET6
);
2888 rnh
= rt_tables
[af
];
2890 return (af
== AF_INET
? rnh
->rnh_lookup(&sin_def
, NULL
, rnh
) :
2891 rnh
->rnh_lookup(&sin6_def
, NULL
, rnh
));
2895 rt_ifa_is_dst(struct sockaddr
*dst
, struct ifaddr
*ifa
)
2897 boolean_t result
= FALSE
;
2899 if (ifa
== NULL
|| ifa
->ifa_addr
== NULL
)
2904 if (dst
->sa_family
== ifa
->ifa_addr
->sa_family
&&
2905 ((dst
->sa_family
== AF_INET
&&
2906 SIN(dst
)->sin_addr
.s_addr
==
2907 SIN(ifa
->ifa_addr
)->sin_addr
.s_addr
) ||
2908 (dst
->sa_family
== AF_INET6
&&
2909 SA6_ARE_ADDR_EQUAL(SIN6(dst
), SIN6(ifa
->ifa_addr
)))))
2918 * Common routine to lookup/match a route. It invokes the lookup/matchaddr
2919 * callback which could be address family-specific. The main difference
2920 * between the two (at least for AF_INET/AF_INET6) is that a lookup does
2921 * not alter the expiring state of a route, whereas a match would unexpire
2922 * or revalidate the route.
2924 * The optional scope or interface index property of a route allows for a
2925 * per-interface route instance. This permits multiple route entries having
2926 * the same destination (but not necessarily the same gateway) to exist in
2927 * the routing table; each of these entries is specific to the corresponding
2928 * interface. This is made possible by storing the scope ID value into the
2929 * radix key, thus making each route entry unique. These scoped entries
2930 * exist along with the regular, non-scoped entries in the same radix tree
2931 * for a given address family (AF_INET/AF_INET6); the scope logically
2932 * partitions it into multiple per-interface sub-trees.
2934 * When a scoped route lookup is performed, the routing table is searched for
2935 * the best match that would result in a route using the same interface as the
2936 * one associated with the scope (the exception to this are routes that point
2937 * to the loopback interface). The search rule follows the longest matching
2938 * prefix with the additional interface constraint.
2940 static struct rtentry
*
2941 rt_lookup_common(boolean_t lookup_only
, boolean_t coarse
, struct sockaddr
*dst
,
2942 struct sockaddr
*netmask
, struct radix_node_head
*rnh
, unsigned int ifscope
)
2944 struct radix_node
*rn0
, *rn
= NULL
;
2945 int af
= dst
->sa_family
;
2946 struct sockaddr_storage dst_ss
;
2947 struct sockaddr_storage mask_ss
;
2949 #if (DEVELOPMENT || DEBUG)
2950 char dbuf
[MAX_SCOPE_ADDR_STR_LEN
], gbuf
[MAX_IPv6_STR_LEN
];
2951 char s_dst
[MAX_IPv6_STR_LEN
], s_netmask
[MAX_IPv6_STR_LEN
];
2953 VERIFY(!coarse
|| ifscope
== IFSCOPE_NONE
);
2955 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2958 * While we have rnh_lock held, see if we need to schedule the timer.
2960 if (nd6_sched_timeout_want
)
2961 nd6_sched_timeout(NULL
, NULL
);
2968 * Non-scoped route lookup.
2971 if (af
!= AF_INET
&& af
!= AF_INET6
) {
2973 if (af
!= AF_INET
) {
2975 rn
= rnh
->rnh_matchaddr(dst
, rnh
);
2978 * Don't return a root node; also, rnh_matchaddr callback
2979 * would have done the necessary work to clear RTPRF_OURS
2980 * for certain protocol families.
2982 if (rn
!= NULL
&& (rn
->rn_flags
& RNF_ROOT
))
2985 RT_LOCK_SPIN(RT(rn
));
2986 if (!(RT(rn
)->rt_flags
& RTF_CONDEMNED
)) {
2987 RT_ADDREF_LOCKED(RT(rn
));
2997 /* Transform dst/netmask into the internal routing table form */
2998 dst
= sa_copy(dst
, &dst_ss
, &ifscope
);
2999 if (netmask
!= NULL
)
3000 netmask
= ma_copy(af
, netmask
, &mask_ss
, ifscope
);
3001 dontcare
= (ifscope
== IFSCOPE_NONE
);
3003 #if (DEVELOPMENT || DEBUG)
3006 (void) inet_ntop(af
, &SIN(dst
)->sin_addr
.s_addr
,
3007 s_dst
, sizeof (s_dst
));
3009 (void) inet_ntop(af
, &SIN6(dst
)->sin6_addr
,
3010 s_dst
, sizeof (s_dst
));
3012 if (netmask
!= NULL
&& af
== AF_INET
)
3013 (void) inet_ntop(af
, &SIN(netmask
)->sin_addr
.s_addr
,
3014 s_netmask
, sizeof (s_netmask
));
3015 if (netmask
!= NULL
&& af
== AF_INET6
)
3016 (void) inet_ntop(af
, &SIN6(netmask
)->sin6_addr
,
3017 s_netmask
, sizeof (s_netmask
));
3020 printf("%s (%d, %d, %s, %s, %u)\n",
3021 __func__
, lookup_only
, coarse
, s_dst
, s_netmask
, ifscope
);
3026 * Scoped route lookup:
3028 * We first perform a non-scoped lookup for the original result.
3029 * Afterwards, depending on whether or not the caller has specified
3030 * a scope, we perform a more specific scoped search and fallback
3031 * to this original result upon failure.
3033 rn0
= rn
= node_lookup(dst
, netmask
, IFSCOPE_NONE
);
3036 * If the caller did not specify a scope, use the primary scope
3037 * derived from the system's non-scoped default route. If, for
3038 * any reason, there is no primary interface, ifscope will be
3039 * set to IFSCOPE_NONE; if the above lookup resulted in a route,
3040 * we'll do a more-specific search below, scoped to the interface
3044 ifscope
= get_primary_ifscope(af
);
3047 * Keep the original result if either of the following is true:
3049 * 1) The interface portion of the route has the same interface
3050 * index as the scope value and it is marked with RTF_IFSCOPE.
3051 * 2) The route uses the loopback interface, in which case the
3052 * destination (host/net) is local/loopback.
3054 * Otherwise, do a more specified search using the scope;
3055 * we're holding rnh_lock now, so rt_ifp should not change.
3058 struct rtentry
*rt
= RT(rn
);
3059 #if (DEVELOPMENT || DEBUG)
3061 rt_str(rt
, dbuf
, sizeof (dbuf
), gbuf
, sizeof (gbuf
));
3062 printf("%s unscoped search %p to %s->%s->%s ifa_ifp %s\n",
3065 (rt
->rt_ifp
!= NULL
) ? rt
->rt_ifp
->if_xname
: "",
3066 (rt
->rt_ifa
->ifa_ifp
!= NULL
) ?
3067 rt
->rt_ifa
->ifa_ifp
->if_xname
: "");
3070 if (!(rt
->rt_ifp
->if_flags
& IFF_LOOPBACK
) ||
3071 (rt
->rt_flags
& RTF_GATEWAY
)) {
3072 if (rt
->rt_ifp
->if_index
!= ifscope
) {
3074 * Wrong interface; keep the original result
3075 * only if the caller did not specify a scope,
3076 * and do a more specific scoped search using
3077 * the scope of the found route. Otherwise,
3078 * start again from scratch.
3080 * For loopback scope we keep the unscoped
3081 * route for local addresses
3085 ifscope
= rt
->rt_ifp
->if_index
;
3086 else if (ifscope
!= lo_ifp
->if_index
||
3087 rt_ifa_is_dst(dst
, rt
->rt_ifa
) == FALSE
)
3089 } else if (!(rt
->rt_flags
& RTF_IFSCOPE
)) {
3091 * Right interface, except that this route
3092 * isn't marked with RTF_IFSCOPE. Do a more
3093 * specific scoped search. Keep the original
3094 * result and return it it in case the scoped
3103 * Scoped search. Find the most specific entry having the same
3104 * interface scope as the one requested. The following will result
3105 * in searching for the longest prefix scoped match.
3108 rn
= node_lookup(dst
, netmask
, ifscope
);
3109 #if (DEVELOPMENT || DEBUG)
3110 if (rt_verbose
&& rn
!= NULL
) {
3111 struct rtentry
*rt
= RT(rn
);
3113 rt_str(rt
, dbuf
, sizeof (dbuf
), gbuf
, sizeof (gbuf
));
3114 printf("%s scoped search %p to %s->%s->%s ifa %s\n",
3117 (rt
->rt_ifp
!= NULL
) ? rt
->rt_ifp
->if_xname
: "",
3118 (rt
->rt_ifa
->ifa_ifp
!= NULL
) ?
3119 rt
->rt_ifa
->ifa_ifp
->if_xname
: "");
3124 * Use the original result if either of the following is true:
3126 * 1) The scoped search did not yield any result.
3127 * 2) The caller insists on performing a coarse-grained lookup.
3128 * 3) The result from the scoped search is a scoped default route,
3129 * and the original (non-scoped) result is not a default route,
3130 * i.e. the original result is a more specific host/net route.
3131 * 4) The scoped search yielded a net route but the original
3132 * result is a host route, i.e. the original result is treated
3133 * as a more specific route.
3135 if (rn
== NULL
|| coarse
|| (rn0
!= NULL
&&
3136 ((SA_DEFAULT(rt_key(RT(rn
))) && !SA_DEFAULT(rt_key(RT(rn0
)))) ||
3137 (!RT_HOST(rn
) && RT_HOST(rn0
)))))
3141 * If we still don't have a route, use the non-scoped default
3142 * route as long as the interface portion satistifes the scope.
3144 if (rn
== NULL
&& (rn
= node_lookup_default(af
)) != NULL
&&
3145 RT(rn
)->rt_ifp
->if_index
!= ifscope
) {
3151 * Manually clear RTPRF_OURS using rt_validate() and
3152 * bump up the reference count after, and not before;
3153 * we only get here for AF_INET/AF_INET6. node_lookup()
3154 * has done the check against RNF_ROOT, so we can be sure
3155 * that we're not returning a root node here.
3157 RT_LOCK_SPIN(RT(rn
));
3158 if (rt_validate(RT(rn
))) {
3159 RT_ADDREF_LOCKED(RT(rn
));
3166 #if (DEVELOPMENT || DEBUG)
3169 printf("%s %u return NULL\n", __func__
, ifscope
);
3171 struct rtentry
*rt
= RT(rn
);
3173 rt_str(rt
, dbuf
, sizeof (dbuf
), gbuf
, sizeof (gbuf
));
3175 printf("%s %u return %p to %s->%s->%s ifa_ifp %s\n",
3176 __func__
, ifscope
, rt
,
3178 (rt
->rt_ifp
!= NULL
) ? rt
->rt_ifp
->if_xname
: "",
3179 (rt
->rt_ifa
->ifa_ifp
!= NULL
) ?
3180 rt
->rt_ifa
->ifa_ifp
->if_xname
: "");
3188 rt_lookup(boolean_t lookup_only
, struct sockaddr
*dst
, struct sockaddr
*netmask
,
3189 struct radix_node_head
*rnh
, unsigned int ifscope
)
3191 return (rt_lookup_common(lookup_only
, FALSE
, dst
, netmask
,
3196 rt_lookup_coarse(boolean_t lookup_only
, struct sockaddr
*dst
,
3197 struct sockaddr
*netmask
, struct radix_node_head
*rnh
)
3199 return (rt_lookup_common(lookup_only
, TRUE
, dst
, netmask
,
3200 rnh
, IFSCOPE_NONE
));
3204 rt_validate(struct rtentry
*rt
)
3206 RT_LOCK_ASSERT_HELD(rt
);
3208 if ((rt
->rt_flags
& (RTF_UP
| RTF_CONDEMNED
)) == RTF_UP
) {
3209 int af
= rt_key(rt
)->sa_family
;
3212 (void) in_validate(RN(rt
));
3213 else if (af
== AF_INET6
)
3214 (void) in6_validate(RN(rt
));
3219 return (rt
!= NULL
);
3223 * Set up a routing table entry, normally
3227 rtinit(struct ifaddr
*ifa
, int cmd
, int flags
)
3231 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
3233 lck_mtx_lock(rnh_lock
);
3234 error
= rtinit_locked(ifa
, cmd
, flags
);
3235 lck_mtx_unlock(rnh_lock
);
3241 rtinit_locked(struct ifaddr
*ifa
, int cmd
, int flags
)
3243 struct radix_node_head
*rnh
;
3244 uint8_t nbuf
[128]; /* long enough for IPv6 */
3245 #if (DEVELOPMENT || DEBUG)
3246 char dbuf
[MAX_IPv6_STR_LEN
], gbuf
[MAX_IPv6_STR_LEN
];
3247 char abuf
[MAX_IPv6_STR_LEN
];
3249 struct rtentry
*rt
= NULL
;
3250 struct sockaddr
*dst
;
3251 struct sockaddr
*netmask
;
3255 * Holding rnh_lock here prevents the possibility of ifa from
3256 * changing (e.g. in_ifinit), so it is safe to access its
3257 * ifa_{dst}addr (here and down below) without locking.
3259 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
3261 if (flags
& RTF_HOST
) {
3262 dst
= ifa
->ifa_dstaddr
;
3265 dst
= ifa
->ifa_addr
;
3266 netmask
= ifa
->ifa_netmask
;
3269 if (dst
->sa_len
== 0) {
3270 log(LOG_ERR
, "%s: %s failed, invalid dst sa_len %d\n",
3271 __func__
, rtm2str(cmd
), dst
->sa_len
);
3275 if (netmask
!= NULL
&& netmask
->sa_len
> sizeof (nbuf
)) {
3276 log(LOG_ERR
, "%s: %s failed, mask sa_len %d too large\n",
3277 __func__
, rtm2str(cmd
), dst
->sa_len
);
3282 #if (DEVELOPMENT || DEBUG)
3283 if (dst
->sa_family
== AF_INET
) {
3284 (void) inet_ntop(AF_INET
, &SIN(dst
)->sin_addr
.s_addr
,
3285 abuf
, sizeof (abuf
));
3288 else if (dst
->sa_family
== AF_INET6
) {
3289 (void) inet_ntop(AF_INET6
, &SIN6(dst
)->sin6_addr
,
3290 abuf
, sizeof (abuf
));
3293 #endif /* (DEVELOPMENT || DEBUG) */
3295 if ((rnh
= rt_tables
[dst
->sa_family
]) == NULL
) {
3301 * If it's a delete, check that if it exists, it's on the correct
3302 * interface or we might scrub a route to another ifa which would
3303 * be confusing at best and possibly worse.
3305 if (cmd
== RTM_DELETE
) {
3307 * It's a delete, so it should already exist..
3308 * If it's a net, mask off the host bits
3309 * (Assuming we have a mask)
3311 if (netmask
!= NULL
) {
3312 rt_maskedcopy(dst
, SA(nbuf
), netmask
);
3316 * Get an rtentry that is in the routing tree and contains
3317 * the correct info. Note that we perform a coarse-grained
3318 * lookup here, in case there is a scoped variant of the
3319 * subnet/prefix route which we should ignore, as we never
3320 * add a scoped subnet/prefix route as part of adding an
3321 * interface address.
3323 rt
= rt_lookup_coarse(TRUE
, dst
, NULL
, rnh
);
3325 #if (DEVELOPMENT || DEBUG)
3326 rt_str(rt
, dbuf
, sizeof (dbuf
), gbuf
, sizeof (gbuf
));
3329 * Ok so we found the rtentry. it has an extra reference
3330 * for us at this stage. we won't need that so
3334 if (rt
->rt_ifa
!= ifa
) {
3336 * If the interface address in the rtentry
3337 * doesn't match the interface we are using,
3338 * then we don't want to delete it, so return
3339 * an error. This seems to be the only point
3340 * of this whole RTM_DELETE clause.
3342 #if (DEVELOPMENT || DEBUG)
3344 log(LOG_DEBUG
, "%s: not removing "
3345 "route to %s->%s->%s, flags %b, "
3346 "ifaddr %s, rt_ifa 0x%llx != "
3347 "ifa 0x%llx\n", __func__
, dbuf
,
3348 gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3349 rt
->rt_ifp
->if_xname
: ""),
3350 rt
->rt_flags
, RTF_BITS
, abuf
,
3351 (uint64_t)VM_KERNEL_ADDRPERM(
3353 (uint64_t)VM_KERNEL_ADDRPERM(ifa
));
3355 #endif /* (DEVELOPMENT || DEBUG) */
3356 RT_REMREF_LOCKED(rt
);
3359 error
= ((flags
& RTF_HOST
) ?
3360 EHOSTUNREACH
: ENETUNREACH
);
3362 } else if (rt
->rt_flags
& RTF_STATIC
) {
3364 * Don't remove the subnet/prefix route if
3365 * this was manually added from above.
3367 #if (DEVELOPMENT || DEBUG)
3369 log(LOG_DEBUG
, "%s: not removing "
3370 "static route to %s->%s->%s, "
3371 "flags %b, ifaddr %s\n", __func__
,
3372 dbuf
, gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3373 rt
->rt_ifp
->if_xname
: ""),
3374 rt
->rt_flags
, RTF_BITS
, abuf
);
3376 #endif /* (DEVELOPMENT || DEBUG) */
3377 RT_REMREF_LOCKED(rt
);
3383 #if (DEVELOPMENT || DEBUG)
3385 log(LOG_DEBUG
, "%s: removing route to "
3386 "%s->%s->%s, flags %b, ifaddr %s\n",
3387 __func__
, dbuf
, gbuf
,
3388 ((rt
->rt_ifp
!= NULL
) ?
3389 rt
->rt_ifp
->if_xname
: ""),
3390 rt
->rt_flags
, RTF_BITS
, abuf
);
3392 #endif /* (DEVELOPMENT || DEBUG) */
3393 RT_REMREF_LOCKED(rt
);
3399 * Do the actual request
3401 if ((error
= rtrequest_locked(cmd
, dst
, ifa
->ifa_addr
, netmask
,
3402 flags
| ifa
->ifa_flags
, &rt
)) != 0)
3406 #if (DEVELOPMENT || DEBUG)
3407 rt_str(rt
, dbuf
, sizeof (dbuf
), gbuf
, sizeof (gbuf
));
3408 #endif /* (DEVELOPMENT || DEBUG) */
3412 * If we are deleting, and we found an entry, then it's
3413 * been removed from the tree. Notify any listening
3414 * routing agents of the change and throw it away.
3417 rt_newaddrmsg(cmd
, ifa
, error
, rt
);
3419 #if (DEVELOPMENT || DEBUG)
3421 log(LOG_DEBUG
, "%s: removed route to %s->%s->%s, "
3422 "flags %b, ifaddr %s\n", __func__
, dbuf
, gbuf
,
3423 ((rt
->rt_ifp
!= NULL
) ? rt
->rt_ifp
->if_xname
: ""),
3424 rt
->rt_flags
, RTF_BITS
, abuf
);
3426 #endif /* (DEVELOPMENT || DEBUG) */
3432 * We are adding, and we have a returned routing entry.
3433 * We need to sanity check the result. If it came back
3434 * with an unexpected interface, then it must have already
3435 * existed or something.
3438 if (rt
->rt_ifa
!= ifa
) {
3439 void (*ifa_rtrequest
)
3440 (int, struct rtentry
*, struct sockaddr
*);
3441 #if (DEVELOPMENT || DEBUG)
3443 if (!(rt
->rt_ifa
->ifa_ifp
->if_flags
&
3444 (IFF_POINTOPOINT
|IFF_LOOPBACK
))) {
3445 log(LOG_ERR
, "%s: %s route to %s->%s->%s, "
3446 "flags %b, ifaddr %s, rt_ifa 0x%llx != "
3447 "ifa 0x%llx\n", __func__
, rtm2str(cmd
),
3448 dbuf
, gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3449 rt
->rt_ifp
->if_xname
: ""), rt
->rt_flags
,
3451 (uint64_t)VM_KERNEL_ADDRPERM(rt
->rt_ifa
),
3452 (uint64_t)VM_KERNEL_ADDRPERM(ifa
));
3455 log(LOG_DEBUG
, "%s: %s route to %s->%s->%s, "
3456 "flags %b, ifaddr %s, rt_ifa was 0x%llx "
3457 "now 0x%llx\n", __func__
, rtm2str(cmd
),
3458 dbuf
, gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3459 rt
->rt_ifp
->if_xname
: ""), rt
->rt_flags
,
3461 (uint64_t)VM_KERNEL_ADDRPERM(rt
->rt_ifa
),
3462 (uint64_t)VM_KERNEL_ADDRPERM(ifa
));
3464 #endif /* (DEVELOPMENT || DEBUG) */
3467 * Ask that the protocol in question
3468 * remove anything it has associated with
3469 * this route and ifaddr.
3471 ifa_rtrequest
= rt
->rt_ifa
->ifa_rtrequest
;
3472 if (ifa_rtrequest
!= NULL
)
3473 ifa_rtrequest(RTM_DELETE
, rt
, NULL
);
3475 * Set the route's ifa.
3479 if (rt
->rt_ifp
!= ifa
->ifa_ifp
) {
3481 * Purge any link-layer info caching.
3483 if (rt
->rt_llinfo_purge
!= NULL
)
3484 rt
->rt_llinfo_purge(rt
);
3486 * Adjust route ref count for the interfaces.
3488 if (rt
->rt_if_ref_fn
!= NULL
) {
3489 rt
->rt_if_ref_fn(ifa
->ifa_ifp
, 1);
3490 rt
->rt_if_ref_fn(rt
->rt_ifp
, -1);
3495 * And substitute in references to the ifaddr
3498 rt
->rt_ifp
= ifa
->ifa_ifp
;
3500 * If rmx_mtu is not locked, update it
3501 * to the MTU used by the new interface.
3503 if (!(rt
->rt_rmx
.rmx_locks
& RTV_MTU
)) {
3504 rt
->rt_rmx
.rmx_mtu
= rt
->rt_ifp
->if_mtu
;
3505 if (dst
->sa_family
== AF_INET
&&
3506 INTF_ADJUST_MTU_FOR_CLAT46(rt
->rt_ifp
)) {
3507 rt
->rt_rmx
.rmx_mtu
= IN6_LINKMTU(rt
->rt_ifp
);
3508 /* Further adjust the size for CLAT46 expansion */
3509 rt
->rt_rmx
.rmx_mtu
-= CLAT46_HDR_EXPANSION_OVERHD
;
3514 * Now ask the protocol to check if it needs
3515 * any special processing in its new form.
3517 ifa_rtrequest
= ifa
->ifa_rtrequest
;
3518 if (ifa_rtrequest
!= NULL
)
3519 ifa_rtrequest(RTM_ADD
, rt
, NULL
);
3521 #if (DEVELOPMENT || DEBUG)
3523 log(LOG_DEBUG
, "%s: added route to %s->%s->%s, "
3524 "flags %b, ifaddr %s\n", __func__
, dbuf
,
3525 gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3526 rt
->rt_ifp
->if_xname
: ""), rt
->rt_flags
,
3529 #endif /* (DEVELOPMENT || DEBUG) */
3532 * notify any listenning routing agents of the change
3534 rt_newaddrmsg(cmd
, ifa
, error
, rt
);
3536 * We just wanted to add it; we don't actually need a
3537 * reference. This will result in a route that's added
3538 * to the routing table without a reference count. The
3539 * RTM_DELETE code will do the necessary step to adjust
3540 * the reference count at deletion time.
3542 RT_REMREF_LOCKED(rt
);
3555 rt_set_idleref(struct rtentry
*rt
)
3557 RT_LOCK_ASSERT_HELD(rt
);
3560 * We currently keep idle refcnt only on unicast cloned routes
3561 * that aren't marked with RTF_NOIFREF.
3563 if (rt
->rt_parent
!= NULL
&& !(rt
->rt_flags
&
3564 (RTF_NOIFREF
|RTF_BROADCAST
| RTF_MULTICAST
)) &&
3565 (rt
->rt_flags
& (RTF_UP
|RTF_WASCLONED
|RTF_IFREF
)) ==
3566 (RTF_UP
|RTF_WASCLONED
)) {
3567 rt_clear_idleref(rt
); /* drop existing refcnt if any */
3568 rt
->rt_if_ref_fn
= rte_if_ref
;
3569 /* Become a regular mutex, just in case */
3570 RT_CONVERT_LOCK(rt
);
3571 rt
->rt_if_ref_fn(rt
->rt_ifp
, 1);
3572 rt
->rt_flags
|= RTF_IFREF
;
3577 rt_clear_idleref(struct rtentry
*rt
)
3579 RT_LOCK_ASSERT_HELD(rt
);
3581 if (rt
->rt_if_ref_fn
!= NULL
) {
3582 VERIFY((rt
->rt_flags
& (RTF_NOIFREF
| RTF_IFREF
)) == RTF_IFREF
);
3583 /* Become a regular mutex, just in case */
3584 RT_CONVERT_LOCK(rt
);
3585 rt
->rt_if_ref_fn(rt
->rt_ifp
, -1);
3586 rt
->rt_flags
&= ~RTF_IFREF
;
3587 rt
->rt_if_ref_fn
= NULL
;
3592 rt_set_proxy(struct rtentry
*rt
, boolean_t set
)
3594 lck_mtx_lock(rnh_lock
);
3597 * Search for any cloned routes which might have
3598 * been formed from this node, and delete them.
3600 if (rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
)) {
3601 struct radix_node_head
*rnh
= rt_tables
[rt_key(rt
)->sa_family
];
3604 rt
->rt_flags
|= RTF_PROXY
;
3606 rt
->rt_flags
&= ~RTF_PROXY
;
3609 if (rnh
!= NULL
&& rt_mask(rt
)) {
3610 rnh
->rnh_walktree_from(rnh
, rt_key(rt
), rt_mask(rt
),
3616 lck_mtx_unlock(rnh_lock
);
3620 rte_lock_init(struct rtentry
*rt
)
3622 lck_mtx_init(&rt
->rt_lock
, rte_mtx_grp
, rte_mtx_attr
);
3626 rte_lock_destroy(struct rtentry
*rt
)
3628 RT_LOCK_ASSERT_NOTHELD(rt
);
3629 lck_mtx_destroy(&rt
->rt_lock
, rte_mtx_grp
);
3633 rt_lock(struct rtentry
*rt
, boolean_t spin
)
3635 RT_LOCK_ASSERT_NOTHELD(rt
);
3637 lck_mtx_lock_spin(&rt
->rt_lock
);
3639 lck_mtx_lock(&rt
->rt_lock
);
3640 if (rte_debug
& RTD_DEBUG
)
3641 rte_lock_debug((struct rtentry_dbg
*)rt
);
3645 rt_unlock(struct rtentry
*rt
)
3647 if (rte_debug
& RTD_DEBUG
)
3648 rte_unlock_debug((struct rtentry_dbg
*)rt
);
3649 lck_mtx_unlock(&rt
->rt_lock
);
3654 rte_lock_debug(struct rtentry_dbg
*rte
)
3658 RT_LOCK_ASSERT_HELD((struct rtentry
*)rte
);
3659 idx
= atomic_add_32_ov(&rte
->rtd_lock_cnt
, 1) % CTRACE_HIST_SIZE
;
3660 if (rte_debug
& RTD_TRACE
)
3661 ctrace_record(&rte
->rtd_lock
[idx
]);
3665 rte_unlock_debug(struct rtentry_dbg
*rte
)
3669 RT_LOCK_ASSERT_HELD((struct rtentry
*)rte
);
3670 idx
= atomic_add_32_ov(&rte
->rtd_unlock_cnt
, 1) % CTRACE_HIST_SIZE
;
3671 if (rte_debug
& RTD_TRACE
)
3672 ctrace_record(&rte
->rtd_unlock
[idx
]);
3675 static struct rtentry
*
3678 if (rte_debug
& RTD_DEBUG
)
3679 return (rte_alloc_debug());
3681 return ((struct rtentry
*)zalloc(rte_zone
));
3685 rte_free(struct rtentry
*p
)
3687 if (rte_debug
& RTD_DEBUG
) {
3692 if (p
->rt_refcnt
!= 0) {
3693 panic("rte_free: rte=%p refcnt=%d non-zero\n", p
, p
->rt_refcnt
);
3701 rte_if_ref(struct ifnet
*ifp
, int cnt
)
3703 struct kev_msg ev_msg
;
3704 struct net_event_data ev_data
;
3707 /* Force cnt to 1 increment/decrement */
3708 if (cnt
< -1 || cnt
> 1) {
3709 panic("%s: invalid count argument (%d)", __func__
, cnt
);
3712 old
= atomic_add_32_ov(&ifp
->if_route_refcnt
, cnt
);
3713 if (cnt
< 0 && old
== 0) {
3714 panic("%s: ifp=%p negative route refcnt!", __func__
, ifp
);
3718 * The following is done without first holding the ifnet lock,
3719 * for performance reasons. The relevant ifnet fields, with
3720 * the exception of the if_idle_flags, are never changed
3721 * during the lifetime of the ifnet. The if_idle_flags
3722 * may possibly be modified, so in the event that the value
3723 * is stale because IFRF_IDLE_NOTIFY was cleared, we'd end up
3724 * sending the event anyway. This is harmless as it is just
3725 * a notification to the monitoring agent in user space, and
3726 * it is expected to check via SIOCGIFGETRTREFCNT again anyway.
3728 if ((ifp
->if_idle_flags
& IFRF_IDLE_NOTIFY
) && cnt
< 0 && old
== 1) {
3729 bzero(&ev_msg
, sizeof (ev_msg
));
3730 bzero(&ev_data
, sizeof (ev_data
));
3732 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
3733 ev_msg
.kev_class
= KEV_NETWORK_CLASS
;
3734 ev_msg
.kev_subclass
= KEV_DL_SUBCLASS
;
3735 ev_msg
.event_code
= KEV_DL_IF_IDLE_ROUTE_REFCNT
;
3737 strlcpy(&ev_data
.if_name
[0], ifp
->if_name
, IFNAMSIZ
);
3739 ev_data
.if_family
= ifp
->if_family
;
3740 ev_data
.if_unit
= ifp
->if_unit
;
3741 ev_msg
.dv
[0].data_length
= sizeof (struct net_event_data
);
3742 ev_msg
.dv
[0].data_ptr
= &ev_data
;
3744 dlil_post_complete_msg(NULL
, &ev_msg
);
3748 static inline struct rtentry
*
3749 rte_alloc_debug(void)
3751 struct rtentry_dbg
*rte
;
3753 rte
= ((struct rtentry_dbg
*)zalloc(rte_zone
));
3755 bzero(rte
, sizeof (*rte
));
3756 if (rte_debug
& RTD_TRACE
)
3757 ctrace_record(&rte
->rtd_alloc
);
3758 rte
->rtd_inuse
= RTD_INUSE
;
3760 return ((struct rtentry
*)rte
);
3764 rte_free_debug(struct rtentry
*p
)
3766 struct rtentry_dbg
*rte
= (struct rtentry_dbg
*)p
;
3768 if (p
->rt_refcnt
!= 0) {
3769 panic("rte_free: rte=%p refcnt=%d\n", p
, p
->rt_refcnt
);
3772 if (rte
->rtd_inuse
== RTD_FREED
) {
3773 panic("rte_free: double free rte=%p\n", rte
);
3775 } else if (rte
->rtd_inuse
!= RTD_INUSE
) {
3776 panic("rte_free: corrupted rte=%p\n", rte
);
3779 bcopy((caddr_t
)p
, (caddr_t
)&rte
->rtd_entry_saved
, sizeof (*p
));
3780 /* Preserve rt_lock to help catch use-after-free cases */
3781 bzero((caddr_t
)p
, offsetof(struct rtentry
, rt_lock
));
3783 rte
->rtd_inuse
= RTD_FREED
;
3785 if (rte_debug
& RTD_TRACE
)
3786 ctrace_record(&rte
->rtd_free
);
3788 if (!(rte_debug
& RTD_NO_FREE
))
3793 ctrace_record(ctrace_t
*tr
)
3795 tr
->th
= current_thread();
3796 bzero(tr
->pc
, sizeof (tr
->pc
));
3797 (void) OSBacktrace(tr
->pc
, CTRACE_STACK_SIZE
);
3801 route_copyout(struct route
*dst
, const struct route
*src
, size_t length
)
3803 /* Copy everything (rt, srcif, flags, dst) from src */
3804 bcopy(src
, dst
, length
);
3806 /* Hold one reference for the local copy of struct route */
3807 if (dst
->ro_rt
!= NULL
)
3808 RT_ADDREF(dst
->ro_rt
);
3810 /* Hold one reference for the local copy of struct lle */
3811 if (dst
->ro_lle
!= NULL
)
3812 LLE_ADDREF(dst
->ro_lle
);
3814 /* Hold one reference for the local copy of struct ifaddr */
3815 if (dst
->ro_srcia
!= NULL
)
3816 IFA_ADDREF(dst
->ro_srcia
);
3820 route_copyin(struct route
*src
, struct route
*dst
, size_t length
)
3823 * No cached route at the destination?
3824 * If none, then remove old references if present
3825 * and copy entire src route.
3827 if (dst
->ro_rt
== NULL
) {
3829 * Ditch the cached link layer reference (dst)
3830 * since we're about to take everything there is in src
3832 if (dst
->ro_lle
!= NULL
)
3833 LLE_REMREF(dst
->ro_lle
);
3835 * Ditch the address in the cached copy (dst) since
3836 * we're about to take everything there is in src.
3838 if (dst
->ro_srcia
!= NULL
)
3839 IFA_REMREF(dst
->ro_srcia
);
3841 * Copy everything (rt, ro_lle, srcia, flags, dst) from src; the
3842 * references to rt and/or srcia were held at the time
3843 * of storage and are kept intact.
3845 bcopy(src
, dst
, length
);
3850 * We know dst->ro_rt is not NULL here.
3851 * If the src->ro_rt is the same, update ro_lle, srcia and flags
3852 * and ditch the route in the local copy.
3854 if (dst
->ro_rt
== src
->ro_rt
) {
3855 dst
->ro_flags
= src
->ro_flags
;
3857 if (dst
->ro_lle
!= src
->ro_lle
) {
3858 if (dst
->ro_lle
!= NULL
)
3859 LLE_REMREF(dst
->ro_lle
);
3860 dst
->ro_lle
= src
->ro_lle
;
3861 } else if (src
->ro_lle
!= NULL
) {
3862 LLE_REMREF(src
->ro_lle
);
3865 if (dst
->ro_srcia
!= src
->ro_srcia
) {
3866 if (dst
->ro_srcia
!= NULL
)
3867 IFA_REMREF(dst
->ro_srcia
);
3868 dst
->ro_srcia
= src
->ro_srcia
;
3869 } else if (src
->ro_srcia
!= NULL
) {
3870 IFA_REMREF(src
->ro_srcia
);
3877 * If they are dst's ro_rt is not equal to src's,
3878 * and src'd rt is not NULL, then remove old references
3879 * if present and copy entire src route.
3881 if (src
->ro_rt
!= NULL
) {
3884 if (dst
->ro_lle
!= NULL
)
3885 LLE_REMREF(dst
->ro_lle
);
3886 if (dst
->ro_srcia
!= NULL
)
3887 IFA_REMREF(dst
->ro_srcia
);
3888 bcopy(src
, dst
, length
);
3893 * Here, dst's cached route is not NULL but source's is.
3894 * Just get rid of all the other cached reference in src.
3896 if (src
->ro_srcia
!= NULL
) {
3898 * Ditch src address in the local copy (src) since we're
3899 * not caching the route entry anyway (ro_rt is NULL).
3901 IFA_REMREF(src
->ro_srcia
);
3903 if (src
->ro_lle
!= NULL
) {
3905 * Ditch cache lle in the local copy (src) since we're
3906 * not caching the route anyway (ro_rt is NULL).
3908 LLE_REMREF(src
->ro_lle
);
3911 /* This function consumes the references on src */
3914 src
->ro_srcia
= NULL
;
3918 * route_to_gwroute will find the gateway route for a given route.
3920 * If the route is down, look the route up again.
3921 * If the route goes through a gateway, get the route to the gateway.
3922 * If the gateway route is down, look it up again.
3923 * If the route is set to reject, verify it hasn't expired.
3925 * If the returned route is non-NULL, the caller is responsible for
3926 * releasing the reference and unlocking the route.
3928 #define senderr(e) { error = (e); goto bad; }
3930 route_to_gwroute(const struct sockaddr
*net_dest
, struct rtentry
*hint0
,
3931 struct rtentry
**out_route
)
3934 struct rtentry
*rt
= hint0
, *hint
= hint0
;
3936 unsigned int ifindex
;
3945 * Next hop determination. Because we may involve the gateway route
3946 * in addition to the original route, locking is rather complicated.
3947 * The general concept is that regardless of whether the route points
3948 * to the original route or to the gateway route, this routine takes
3949 * an extra reference on such a route. This extra reference will be
3950 * released at the end.
3952 * Care must be taken to ensure that the "hint0" route never gets freed
3953 * via rtfree(), since the caller may have stored it inside a struct
3954 * route with a reference held for that placeholder.
3957 ifindex
= rt
->rt_ifp
->if_index
;
3958 RT_ADDREF_LOCKED(rt
);
3959 if (!(rt
->rt_flags
& RTF_UP
)) {
3960 RT_REMREF_LOCKED(rt
);
3962 /* route is down, find a new one */
3963 hint
= rt
= rtalloc1_scoped((struct sockaddr
*)
3964 (size_t)net_dest
, 1, 0, ifindex
);
3967 ifindex
= rt
->rt_ifp
->if_index
;
3969 senderr(EHOSTUNREACH
);
3974 * We have a reference to "rt" by now; it will either
3975 * be released or freed at the end of this routine.
3977 RT_LOCK_ASSERT_HELD(rt
);
3978 if ((gwroute
= (rt
->rt_flags
& RTF_GATEWAY
))) {
3979 struct rtentry
*gwrt
= rt
->rt_gwroute
;
3980 struct sockaddr_storage ss
;
3981 struct sockaddr
*gw
= (struct sockaddr
*)&ss
;
3984 RT_ADDREF_LOCKED(hint
);
3986 /* If there's no gateway rt, look it up */
3988 bcopy(rt
->rt_gateway
, gw
, MIN(sizeof (ss
),
3989 rt
->rt_gateway
->sa_len
));
3993 /* Become a regular mutex */
3994 RT_CONVERT_LOCK(rt
);
3997 * Take gwrt's lock while holding route's lock;
3998 * this is okay since gwrt never points back
3999 * to "rt", so no lock ordering issues.
4002 if (!(gwrt
->rt_flags
& RTF_UP
)) {
4003 rt
->rt_gwroute
= NULL
;
4005 bcopy(rt
->rt_gateway
, gw
, MIN(sizeof (ss
),
4006 rt
->rt_gateway
->sa_len
));
4010 lck_mtx_lock(rnh_lock
);
4011 gwrt
= rtalloc1_scoped_locked(gw
, 1, 0, ifindex
);
4015 * Bail out if the route is down, no route
4016 * to gateway, circular route, or if the
4017 * gateway portion of "rt" has changed.
4019 if (!(rt
->rt_flags
& RTF_UP
) || gwrt
== NULL
||
4020 gwrt
== rt
|| !equal(gw
, rt
->rt_gateway
)) {
4022 RT_REMREF_LOCKED(gwrt
);
4026 RT_REMREF_LOCKED(hint
);
4030 rtfree_locked(gwrt
);
4031 lck_mtx_unlock(rnh_lock
);
4032 senderr(EHOSTUNREACH
);
4034 VERIFY(gwrt
!= NULL
);
4036 * Set gateway route; callee adds ref to gwrt;
4037 * gwrt has an extra ref from rtalloc1() for
4040 rt_set_gwroute(rt
, rt_key(rt
), gwrt
);
4042 RT_REMREF_LOCKED(rt
); /* hint still holds a refcnt */
4044 lck_mtx_unlock(rnh_lock
);
4047 RT_ADDREF_LOCKED(gwrt
);
4050 RT_REMREF_LOCKED(rt
); /* hint still holds a refcnt */
4054 VERIFY(rt
== gwrt
&& rt
!= hint
);
4057 * This is an opportunity to revalidate the parent route's
4058 * rt_gwroute, in case it now points to a dead route entry.
4059 * Parent route won't go away since the clone (hint) holds
4060 * a reference to it. rt == gwrt.
4063 if ((hint
->rt_flags
& (RTF_WASCLONED
| RTF_UP
)) ==
4064 (RTF_WASCLONED
| RTF_UP
)) {
4065 struct rtentry
*prt
= hint
->rt_parent
;
4066 VERIFY(prt
!= NULL
);
4068 RT_CONVERT_LOCK(hint
);
4071 rt_revalidate_gwroute(prt
, rt
);
4077 /* Clean up "hint" now; see notes above regarding hint0 */
4084 /* rt == gwrt; if it is now down, give up */
4086 if (!(rt
->rt_flags
& RTF_UP
)) {
4088 senderr(EHOSTUNREACH
);
4092 if (rt
->rt_flags
& RTF_REJECT
) {
4093 VERIFY(rt
->rt_expire
== 0 || rt
->rt_rmx
.rmx_expire
!= 0);
4094 VERIFY(rt
->rt_expire
!= 0 || rt
->rt_rmx
.rmx_expire
== 0);
4095 timenow
= net_uptime();
4096 if (rt
->rt_expire
== 0 || timenow
< rt
->rt_expire
) {
4098 senderr(!gwroute
? EHOSTDOWN
: EHOSTUNREACH
);
4102 /* Become a regular mutex */
4103 RT_CONVERT_LOCK(rt
);
4105 /* Caller is responsible for cleaning up "rt" */
4110 /* Clean up route (either it is "rt" or "gwrt") */
4114 RT_REMREF_LOCKED(rt
);
4126 rt_revalidate_gwroute(struct rtentry
*rt
, struct rtentry
*gwrt
)
4128 VERIFY(gwrt
!= NULL
);
4131 if ((rt
->rt_flags
& (RTF_GATEWAY
| RTF_UP
)) == (RTF_GATEWAY
| RTF_UP
) &&
4132 rt
->rt_ifp
== gwrt
->rt_ifp
&& rt
->rt_gateway
->sa_family
==
4133 rt_key(gwrt
)->sa_family
&& (rt
->rt_gwroute
== NULL
||
4134 !(rt
->rt_gwroute
->rt_flags
& RTF_UP
))) {
4136 VERIFY(rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
));
4138 if (rt
->rt_gateway
->sa_family
== AF_INET
||
4139 rt
->rt_gateway
->sa_family
== AF_INET6
) {
4140 struct sockaddr_storage key_ss
, gw_ss
;
4142 * We need to compare rt_key and rt_gateway; create
4143 * local copies to get rid of any ifscope association.
4145 (void) sa_copy(rt_key(gwrt
), &key_ss
, NULL
);
4146 (void) sa_copy(rt
->rt_gateway
, &gw_ss
, NULL
);
4148 isequal
= equal(SA(&key_ss
), SA(&gw_ss
));
4150 isequal
= equal(rt_key(gwrt
), rt
->rt_gateway
);
4153 /* If they are the same, update gwrt */
4156 lck_mtx_lock(rnh_lock
);
4158 rt_set_gwroute(rt
, rt_key(rt
), gwrt
);
4160 lck_mtx_unlock(rnh_lock
);
4170 rt_str4(struct rtentry
*rt
, char *ds
, uint32_t dslen
, char *gs
, uint32_t gslen
)
4172 VERIFY(rt_key(rt
)->sa_family
== AF_INET
);
4175 (void) inet_ntop(AF_INET
,
4176 &SIN(rt_key(rt
))->sin_addr
.s_addr
, ds
, dslen
);
4177 if (dslen
>= MAX_SCOPE_ADDR_STR_LEN
&&
4178 SINIFSCOPE(rt_key(rt
))->sin_scope_id
!= IFSCOPE_NONE
) {
4181 snprintf(scpstr
, sizeof(scpstr
), "@%u",
4182 SINIFSCOPE(rt_key(rt
))->sin_scope_id
);
4184 strlcat(ds
, scpstr
, dslen
);
4189 if (rt
->rt_flags
& RTF_GATEWAY
) {
4190 (void) inet_ntop(AF_INET
,
4191 &SIN(rt
->rt_gateway
)->sin_addr
.s_addr
, gs
, gslen
);
4192 } else if (rt
->rt_ifp
!= NULL
) {
4193 snprintf(gs
, gslen
, "link#%u", rt
->rt_ifp
->if_unit
);
4195 snprintf(gs
, gslen
, "%s", "link");
4202 rt_str6(struct rtentry
*rt
, char *ds
, uint32_t dslen
, char *gs
, uint32_t gslen
)
4204 VERIFY(rt_key(rt
)->sa_family
== AF_INET6
);
4207 (void) inet_ntop(AF_INET6
,
4208 &SIN6(rt_key(rt
))->sin6_addr
, ds
, dslen
);
4209 if (dslen
>= MAX_SCOPE_ADDR_STR_LEN
&&
4210 SIN6IFSCOPE(rt_key(rt
))->sin6_scope_id
!= IFSCOPE_NONE
) {
4213 snprintf(scpstr
, sizeof(scpstr
), "@%u",
4214 SIN6IFSCOPE(rt_key(rt
))->sin6_scope_id
);
4216 strlcat(ds
, scpstr
, dslen
);
4221 if (rt
->rt_flags
& RTF_GATEWAY
) {
4222 (void) inet_ntop(AF_INET6
,
4223 &SIN6(rt
->rt_gateway
)->sin6_addr
, gs
, gslen
);
4224 } else if (rt
->rt_ifp
!= NULL
) {
4225 snprintf(gs
, gslen
, "link#%u", rt
->rt_ifp
->if_unit
);
4227 snprintf(gs
, gslen
, "%s", "link");
4235 rt_str(struct rtentry
*rt
, char *ds
, uint32_t dslen
, char *gs
, uint32_t gslen
)
4237 switch (rt_key(rt
)->sa_family
) {
4239 rt_str4(rt
, ds
, dslen
, gs
, gslen
);
4243 rt_str6(rt
, ds
, dslen
, gs
, gslen
);
4255 void route_event_init(struct route_event
*p_route_ev
, struct rtentry
*rt
,
4256 struct rtentry
*gwrt
, int route_ev_code
)
4258 VERIFY(p_route_ev
!= NULL
);
4259 bzero(p_route_ev
, sizeof(*p_route_ev
));
4261 p_route_ev
->rt
= rt
;
4262 p_route_ev
->gwrt
= gwrt
;
4263 p_route_ev
->route_event_code
= route_ev_code
;
4267 route_event_callback(void *arg
)
4269 struct route_event
*p_rt_ev
= (struct route_event
*)arg
;
4270 struct rtentry
*rt
= p_rt_ev
->rt
;
4271 eventhandler_tag evtag
= p_rt_ev
->evtag
;
4272 int route_ev_code
= p_rt_ev
->route_event_code
;
4274 if (route_ev_code
== ROUTE_EVHDLR_DEREGISTER
) {
4275 VERIFY(evtag
!= NULL
);
4276 EVENTHANDLER_DEREGISTER(&rt
->rt_evhdlr_ctxt
, route_event
,
4282 EVENTHANDLER_INVOKE(&rt
->rt_evhdlr_ctxt
, route_event
, rt_key(rt
),
4283 route_ev_code
, (struct sockaddr
*)&p_rt_ev
->rt_addr
,
4286 /* The code enqueuing the route event held a reference */
4288 /* XXX No reference is taken on gwrt */
4292 route_event_walktree(struct radix_node
*rn
, void *arg
)
4294 struct route_event
*p_route_ev
= (struct route_event
*)arg
;
4295 struct rtentry
*rt
= (struct rtentry
*)rn
;
4296 struct rtentry
*gwrt
= p_route_ev
->rt
;
4298 LCK_MTX_ASSERT(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
4302 /* Return if the entry is pending cleanup */
4303 if (rt
->rt_flags
& RTPRF_OURS
) {
4308 /* Return if it is not an indirect route */
4309 if (!(rt
->rt_flags
& RTF_GATEWAY
)) {
4314 if (rt
->rt_gwroute
!= gwrt
) {
4319 route_event_enqueue_nwk_wq_entry(rt
, gwrt
, p_route_ev
->route_event_code
,
4326 struct route_event_nwk_wq_entry
4328 struct nwk_wq_entry nwk_wqe
;
4329 struct route_event rt_ev_arg
;
4333 route_event_enqueue_nwk_wq_entry(struct rtentry
*rt
, struct rtentry
*gwrt
,
4334 uint32_t route_event_code
, eventhandler_tag evtag
, boolean_t rt_locked
)
4336 struct route_event_nwk_wq_entry
*p_rt_ev
= NULL
;
4337 struct sockaddr
*p_gw_saddr
= NULL
;
4339 MALLOC(p_rt_ev
, struct route_event_nwk_wq_entry
*,
4340 sizeof(struct route_event_nwk_wq_entry
),
4341 M_NWKWQ
, M_WAITOK
| M_ZERO
);
4344 * If the intent is to de-register, don't take
4345 * reference, route event registration already takes
4346 * a reference on route.
4348 if (route_event_code
!= ROUTE_EVHDLR_DEREGISTER
) {
4349 /* The reference is released by route_event_callback */
4351 RT_ADDREF_LOCKED(rt
);
4356 p_rt_ev
->rt_ev_arg
.rt
= rt
;
4357 p_rt_ev
->rt_ev_arg
.gwrt
= gwrt
;
4358 p_rt_ev
->rt_ev_arg
.evtag
= evtag
;
4361 p_gw_saddr
= gwrt
->rt_gateway
;
4363 p_gw_saddr
= rt
->rt_gateway
;
4365 VERIFY(p_gw_saddr
->sa_len
<= sizeof(p_rt_ev
->rt_ev_arg
.rt_addr
));
4366 bcopy(p_gw_saddr
, &(p_rt_ev
->rt_ev_arg
.rt_addr
), p_gw_saddr
->sa_len
);
4368 p_rt_ev
->rt_ev_arg
.route_event_code
= route_event_code
;
4369 p_rt_ev
->nwk_wqe
.func
= route_event_callback
;
4370 p_rt_ev
->nwk_wqe
.is_arg_managed
= TRUE
;
4371 p_rt_ev
->nwk_wqe
.arg
= &p_rt_ev
->rt_ev_arg
;
4372 nwk_wq_enqueue((struct nwk_wq_entry
*)p_rt_ev
);
4376 route_event2str(int route_event
)
4378 const char *route_event_str
= "ROUTE_EVENT_UNKNOWN";
4379 switch (route_event
) {
4380 case ROUTE_STATUS_UPDATE
:
4381 route_event_str
= "ROUTE_STATUS_UPDATE";
4383 case ROUTE_ENTRY_REFRESH
:
4384 route_event_str
= "ROUTE_ENTRY_REFRESH";
4386 case ROUTE_ENTRY_DELETED
:
4387 route_event_str
= "ROUTE_ENTRY_DELETED";
4389 case ROUTE_LLENTRY_RESOLVED
:
4390 route_event_str
= "ROUTE_LLENTRY_RESOLVED";
4392 case ROUTE_LLENTRY_UNREACH
:
4393 route_event_str
= "ROUTE_LLENTRY_UNREACH";
4395 case ROUTE_LLENTRY_CHANGED
:
4396 route_event_str
= "ROUTE_LLENTRY_CHANGED";
4398 case ROUTE_LLENTRY_STALE
:
4399 route_event_str
= "ROUTE_LLENTRY_STALE";
4401 case ROUTE_LLENTRY_TIMEDOUT
:
4402 route_event_str
= "ROUTE_LLENTRY_TIMEDOUT";
4404 case ROUTE_LLENTRY_DELETED
:
4405 route_event_str
= "ROUTE_LLENTRY_DELETED";
4407 case ROUTE_LLENTRY_EXPIRED
:
4408 route_event_str
= "ROUTE_LLENTRY_EXPIRED";
4410 case ROUTE_LLENTRY_PROBED
:
4411 route_event_str
= "ROUTE_LLENTRY_PROBED";
4413 case ROUTE_EVHDLR_DEREGISTER
:
4414 route_event_str
= "ROUTE_EVHDLR_DEREGISTER";
4417 /* Init'd to ROUTE_EVENT_UNKNOWN */
4420 return route_event_str
;
4424 route_op_entitlement_check(struct socket
*so
,
4427 boolean_t allow_root
)
4430 if (route_op_type
== ROUTE_OP_READ
) {
4432 * If needed we can later extend this for more
4433 * granular entitlements and return a bit set of
4436 if (soopt_cred_check(so
, PRIV_NET_RESTRICTED_ROUTE_NC_READ
,
4437 allow_root
, false) == 0)
4442 } else if (cred
!= NULL
) {
4443 uid_t uid
= kauth_cred_getuid(cred
);
4445 /* uid is 0 for root */
4446 if (uid
!= 0 || !allow_root
) {
4447 if (route_op_type
== ROUTE_OP_READ
) {
4448 if (priv_check_cred(cred
,
4449 PRIV_NET_RESTRICTED_ROUTE_NC_READ
, 0) == 0)