]> git.saurik.com Git - apple/xnu.git/blob - bsd/net/if_vlan.c
b4a922301f3dc03ff90a82c0c2d137d42b87fc54
[apple/xnu.git] / bsd / net / if_vlan.c
1 /*
2 * Copyright (c) 2003-2018 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright 1998 Massachusetts Institute of Technology
30 *
31 * Permission to use, copy, modify, and distribute this software and
32 * its documentation for any purpose and without fee is hereby
33 * granted, provided that both the above copyright notice and this
34 * permission notice appear in all copies, that both the above
35 * copyright notice and this permission notice appear in all
36 * supporting documentation, and that the name of M.I.T. not be used
37 * in advertising or publicity pertaining to distribution of the
38 * software without specific, written prior permission. M.I.T. makes
39 * no representations about the suitability of this software for any
40 * purpose. It is provided "as is" without express or implied
41 * warranty.
42 *
43 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
44 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
45 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
46 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
47 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
50 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
51 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
52 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
53 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
54 * SUCH DAMAGE.
55 *
56 * $FreeBSD: src/sys/net/if_vlan.c,v 1.54 2003/10/31 18:32:08 brooks Exp $
57 */
58
59 /*
60 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
61 * Might be extended some day to also handle IEEE 802.1p priority
62 * tagging. This is sort of sneaky in the implementation, since
63 * we need to pretend to be enough of an Ethernet implementation
64 * to make arp work. The way we do this is by telling everyone
65 * that we are an Ethernet, and then catch the packets that
66 * ether_output() left on our output queue when it calls
67 * if_start(), rewrite them for use by the real outgoing interface,
68 * and ask it to send them.
69 */
70
71
72 #include <sys/param.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/queue.h>
77 #include <sys/socket.h>
78 #include <sys/sockio.h>
79 #include <sys/sysctl.h>
80 #include <sys/systm.h>
81 #include <sys/kern_event.h>
82 #include <sys/mcache.h>
83
84 #include <net/bpf.h>
85 #include <net/ethernet.h>
86 #include <net/if.h>
87 #include <net/if_arp.h>
88 #include <net/if_dl.h>
89 #include <net/if_ether.h>
90 #include <net/if_types.h>
91 #include <net/if_vlan_var.h>
92 #include <libkern/OSAtomic.h>
93
94 #include <net/dlil.h>
95
96 #include <net/kpi_interface.h>
97 #include <net/kpi_protocol.h>
98
99 #include <kern/locks.h>
100 #include <kern/zalloc.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/if_ether.h>
105 #endif
106
107 #include <net/if_media.h>
108 #include <net/multicast_list.h>
109 #include <net/ether_if_module.h>
110
111 #define VLANNAME "vlan"
112
113 /**
114 ** vlan locks
115 **/
116 static __inline__ lck_grp_t *
117 my_lck_grp_alloc_init(const char * grp_name)
118 {
119 lck_grp_t * grp;
120 lck_grp_attr_t * grp_attrs;
121
122 grp_attrs = lck_grp_attr_alloc_init();
123 grp = lck_grp_alloc_init(grp_name, grp_attrs);
124 lck_grp_attr_free(grp_attrs);
125 return grp;
126 }
127
128 static __inline__ lck_mtx_t *
129 my_lck_mtx_alloc_init(lck_grp_t * lck_grp)
130 {
131 lck_attr_t * lck_attrs;
132 lck_mtx_t * lck_mtx;
133
134 lck_attrs = lck_attr_alloc_init();
135 lck_mtx = lck_mtx_alloc_init(lck_grp, lck_attrs);
136 lck_attr_free(lck_attrs);
137 return lck_mtx;
138 }
139
140 static lck_mtx_t * vlan_lck_mtx;
141
142 static __inline__ void
143 vlan_lock_init(void)
144 {
145 lck_grp_t * vlan_lck_grp;
146
147 vlan_lck_grp = my_lck_grp_alloc_init("if_vlan");
148 vlan_lck_mtx = my_lck_mtx_alloc_init(vlan_lck_grp);
149 }
150
151 static __inline__ void
152 vlan_assert_lock_held(void)
153 {
154 LCK_MTX_ASSERT(vlan_lck_mtx, LCK_MTX_ASSERT_OWNED);
155 return;
156 }
157
158 static __inline__ void
159 vlan_assert_lock_not_held(void)
160 {
161 LCK_MTX_ASSERT(vlan_lck_mtx, LCK_MTX_ASSERT_NOTOWNED);
162 return;
163 }
164
165 static __inline__ void
166 vlan_lock(void)
167 {
168 lck_mtx_lock(vlan_lck_mtx);
169 return;
170 }
171
172 static __inline__ void
173 vlan_unlock(void)
174 {
175 lck_mtx_unlock(vlan_lck_mtx);
176 return;
177 }
178
179 /**
180 ** vlan structures, types
181 **/
182 struct vlan_parent;
183 LIST_HEAD(vlan_parent_list, vlan_parent);
184 struct ifvlan;
185 LIST_HEAD(ifvlan_list, ifvlan);
186
187 typedef LIST_ENTRY(vlan_parent)
188 vlan_parent_entry;
189 typedef LIST_ENTRY(ifvlan)
190 ifvlan_entry;
191
192 #define VLP_SIGNATURE 0xfaceface
193 typedef struct vlan_parent {
194 vlan_parent_entry vlp_parent_list;/* list of parents */
195 struct ifnet * vlp_ifp; /* interface */
196 struct ifvlan_list vlp_vlan_list;/* list of VLAN's */
197 #define VLPF_SUPPORTS_VLAN_MTU 0x00000001
198 #define VLPF_CHANGE_IN_PROGRESS 0x00000002
199 #define VLPF_DETACHING 0x00000004
200 #define VLPF_LINK_EVENT_REQUIRED 0x00000008
201 u_int32_t vlp_flags;
202 u_int32_t vlp_event_code;
203 struct ifdevmtu vlp_devmtu;
204 int32_t vlp_retain_count;
205 u_int32_t vlp_signature;/* VLP_SIGNATURE */
206 } vlan_parent, * vlan_parent_ref;
207
208 #define IFV_SIGNATURE 0xbeefbeef
209 struct ifvlan {
210 ifvlan_entry ifv_vlan_list;
211 char ifv_name[IFNAMSIZ];/* our unique id */
212 struct ifnet * ifv_ifp; /* our interface */
213 vlan_parent_ref ifv_vlp; /* parent information */
214 struct ifv_linkmib {
215 u_int16_t ifvm_encaplen;/* encapsulation length */
216 u_int16_t ifvm_mtufudge;/* MTU fudged by this much */
217 u_int16_t ifvm_proto; /* encapsulation ethertype */
218 u_int16_t ifvm_tag; /* tag to apply on packets leaving if */
219 } ifv_mib;
220 struct multicast_list ifv_multicast;
221 #define IFVF_PROMISC 0x1 /* promiscuous mode enabled */
222 #define IFVF_DETACHING 0x2 /* interface is detaching */
223 #define IFVF_READY 0x4 /* interface is ready */
224 u_int32_t ifv_flags;
225 int32_t ifv_retain_count;
226 u_int32_t ifv_signature;/* IFV_SIGNATURE */
227 };
228
229 typedef struct ifvlan * ifvlan_ref;
230
231 typedef struct vlan_globals_s {
232 struct vlan_parent_list parent_list;
233 int verbose;
234 } * vlan_globals_ref;
235
236 static vlan_globals_ref g_vlan;
237
238 #define ifv_tag ifv_mib.ifvm_tag
239 #define ifv_encaplen ifv_mib.ifvm_encaplen
240 #define ifv_mtufudge ifv_mib.ifvm_mtufudge
241
242 static void
243 vlan_parent_retain(vlan_parent_ref vlp);
244
245 static void
246 vlan_parent_release(vlan_parent_ref vlp);
247
248 /**
249 ** vlan_parent_ref vlp_flags in-lines
250 **/
251 static __inline__ int
252 vlan_parent_flags_supports_vlan_mtu(vlan_parent_ref vlp)
253 {
254 return (vlp->vlp_flags & VLPF_SUPPORTS_VLAN_MTU) != 0;
255 }
256
257 static __inline__ void
258 vlan_parent_flags_set_supports_vlan_mtu(vlan_parent_ref vlp)
259 {
260 vlp->vlp_flags |= VLPF_SUPPORTS_VLAN_MTU;
261 return;
262 }
263
264 static __inline__ int
265 vlan_parent_flags_change_in_progress(vlan_parent_ref vlp)
266 {
267 return (vlp->vlp_flags & VLPF_CHANGE_IN_PROGRESS) != 0;
268 }
269
270 static __inline__ void
271 vlan_parent_flags_set_change_in_progress(vlan_parent_ref vlp)
272 {
273 vlp->vlp_flags |= VLPF_CHANGE_IN_PROGRESS;
274 return;
275 }
276
277 static __inline__ void
278 vlan_parent_flags_clear_change_in_progress(vlan_parent_ref vlp)
279 {
280 vlp->vlp_flags &= ~VLPF_CHANGE_IN_PROGRESS;
281 return;
282 }
283
284 static __inline__ int
285 vlan_parent_flags_detaching(struct vlan_parent * vlp)
286 {
287 return (vlp->vlp_flags & VLPF_DETACHING) != 0;
288 }
289
290 static __inline__ void
291 vlan_parent_flags_set_detaching(struct vlan_parent * vlp)
292 {
293 vlp->vlp_flags |= VLPF_DETACHING;
294 return;
295 }
296
297 static __inline__ int
298 vlan_parent_flags_link_event_required(vlan_parent_ref vlp)
299 {
300 return (vlp->vlp_flags & VLPF_LINK_EVENT_REQUIRED) != 0;
301 }
302
303 static __inline__ void
304 vlan_parent_flags_set_link_event_required(vlan_parent_ref vlp)
305 {
306 vlp->vlp_flags |= VLPF_LINK_EVENT_REQUIRED;
307 return;
308 }
309
310 static __inline__ void
311 vlan_parent_flags_clear_link_event_required(vlan_parent_ref vlp)
312 {
313 vlp->vlp_flags &= ~VLPF_LINK_EVENT_REQUIRED;
314 return;
315 }
316
317
318 /**
319 ** ifvlan_flags in-lines routines
320 **/
321 static __inline__ int
322 ifvlan_flags_promisc(ifvlan_ref ifv)
323 {
324 return (ifv->ifv_flags & IFVF_PROMISC) != 0;
325 }
326
327 static __inline__ void
328 ifvlan_flags_set_promisc(ifvlan_ref ifv)
329 {
330 ifv->ifv_flags |= IFVF_PROMISC;
331 return;
332 }
333
334 static __inline__ void
335 ifvlan_flags_clear_promisc(ifvlan_ref ifv)
336 {
337 ifv->ifv_flags &= ~IFVF_PROMISC;
338 return;
339 }
340
341 static __inline__ int
342 ifvlan_flags_ready(ifvlan_ref ifv)
343 {
344 return (ifv->ifv_flags & IFVF_READY) != 0;
345 }
346
347 static __inline__ void
348 ifvlan_flags_set_ready(ifvlan_ref ifv)
349 {
350 ifv->ifv_flags |= IFVF_READY;
351 return;
352 }
353
354 static __inline__ int
355 ifvlan_flags_detaching(ifvlan_ref ifv)
356 {
357 return (ifv->ifv_flags & IFVF_DETACHING) != 0;
358 }
359
360 static __inline__ void
361 ifvlan_flags_set_detaching(ifvlan_ref ifv)
362 {
363 ifv->ifv_flags |= IFVF_DETACHING;
364 return;
365 }
366
367 #if 0
368 SYSCTL_DECL(_net_link);
369 SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "IEEE 802.1Q VLAN");
370 SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "for consistency");
371 #endif
372
373 #define VLAN_UNITMAX IF_MAXUNIT
374 #define VLAN_ZONE_MAX_ELEM MIN(IFNETS_MAX, VLAN_UNITMAX)
375 #define M_VLAN M_DEVBUF
376
377 static int vlan_clone_create(struct if_clone *, u_int32_t, void *);
378 static int vlan_clone_destroy(struct ifnet *);
379 static int vlan_input(ifnet_t ifp, protocol_family_t protocol,
380 mbuf_t m, char *frame_header);
381 static int vlan_output(struct ifnet *ifp, struct mbuf *m);
382 static int vlan_ioctl(ifnet_t ifp, u_long cmd, void * addr);
383 static int vlan_attach_protocol(struct ifnet *ifp);
384 static int vlan_detach_protocol(struct ifnet *ifp);
385 static int vlan_setmulti(struct ifnet *ifp);
386 static int vlan_unconfig(ifvlan_ref ifv, int need_to_wait);
387 static int vlan_config(struct ifnet * ifp, struct ifnet * p, int tag);
388 static void vlan_if_free(struct ifnet * ifp);
389 static int vlan_remove(ifvlan_ref ifv, int need_to_wait);
390
391 static struct if_clone vlan_cloner = IF_CLONE_INITIALIZER(VLANNAME,
392 vlan_clone_create,
393 vlan_clone_destroy,
394 0,
395 VLAN_UNITMAX,
396 VLAN_ZONE_MAX_ELEM,
397 sizeof(struct ifvlan));
398 static void interface_link_event(struct ifnet * ifp, u_int32_t event_code);
399 static void vlan_parent_link_event(struct ifnet * p,
400 u_int32_t event_code);
401
402 static int ifvlan_new_mtu(ifvlan_ref ifv, int mtu);
403
404 /**
405 ** ifvlan_ref routines
406 **/
407 static void
408 ifvlan_retain(ifvlan_ref ifv)
409 {
410 if (ifv->ifv_signature != IFV_SIGNATURE) {
411 panic("ifvlan_retain: bad signature\n");
412 }
413 if (ifv->ifv_retain_count == 0) {
414 panic("ifvlan_retain: retain count is 0\n");
415 }
416 OSIncrementAtomic(&ifv->ifv_retain_count);
417 }
418
419 static void
420 ifvlan_release(ifvlan_ref ifv)
421 {
422 u_int32_t old_retain_count;
423
424 if (ifv->ifv_signature != IFV_SIGNATURE) {
425 panic("ifvlan_release: bad signature\n");
426 }
427 old_retain_count = OSDecrementAtomic(&ifv->ifv_retain_count);
428 switch (old_retain_count) {
429 case 0:
430 panic("ifvlan_release: retain count is 0\n");
431 break;
432 case 1:
433 if (g_vlan->verbose) {
434 printf("ifvlan_release(%s)\n", ifv->ifv_name);
435 }
436 ifv->ifv_signature = 0;
437 if_clone_softc_deallocate(&vlan_cloner, ifv);
438 break;
439 default:
440 break;
441 }
442 return;
443 }
444
445 static vlan_parent_ref
446 ifvlan_get_vlan_parent_retained(ifvlan_ref ifv)
447 {
448 vlan_parent_ref vlp = ifv->ifv_vlp;
449
450 if (vlp == NULL || vlan_parent_flags_detaching(vlp)) {
451 return NULL;
452 }
453 vlan_parent_retain(vlp);
454 return vlp;
455 }
456
457 /**
458 ** ifnet_* routines
459 **/
460
461 static ifvlan_ref
462 ifnet_get_ifvlan(struct ifnet * ifp)
463 {
464 ifvlan_ref ifv;
465
466 ifv = (ifvlan_ref)ifnet_softc(ifp);
467 return ifv;
468 }
469
470 static ifvlan_ref
471 ifnet_get_ifvlan_retained(struct ifnet * ifp)
472 {
473 ifvlan_ref ifv;
474
475 ifv = ifnet_get_ifvlan(ifp);
476 if (ifv == NULL) {
477 return NULL;
478 }
479 if (ifvlan_flags_detaching(ifv)) {
480 return NULL;
481 }
482 ifvlan_retain(ifv);
483 return ifv;
484 }
485
486 static int
487 ifnet_ifvlan_vlan_parent_ok(struct ifnet * ifp, ifvlan_ref ifv,
488 vlan_parent_ref vlp)
489 {
490 ifvlan_ref check_ifv;
491
492 check_ifv = ifnet_get_ifvlan(ifp);
493 if (check_ifv != ifv || ifvlan_flags_detaching(ifv)) {
494 /* ifvlan_ref no longer valid */
495 return FALSE;
496 }
497 if (ifv->ifv_vlp != vlp) {
498 /* vlan_parent no longer valid */
499 return FALSE;
500 }
501 if (vlan_parent_flags_detaching(vlp)) {
502 /* parent is detaching */
503 return FALSE;
504 }
505 return TRUE;
506 }
507
508 /**
509 ** vlan, etc. routines
510 **/
511
512 static int
513 vlan_globals_init(void)
514 {
515 vlan_globals_ref v;
516
517 vlan_assert_lock_not_held();
518
519 if (g_vlan != NULL) {
520 return 0;
521 }
522 v = _MALLOC(sizeof(*v), M_VLAN, M_WAITOK);
523 if (v != NULL) {
524 LIST_INIT(&v->parent_list);
525 v->verbose = 0;
526 }
527 vlan_lock();
528 if (g_vlan != NULL) {
529 vlan_unlock();
530 if (v != NULL) {
531 _FREE(v, M_VLAN);
532 }
533 return 0;
534 }
535 g_vlan = v;
536 vlan_unlock();
537 if (v == NULL) {
538 return ENOMEM;
539 }
540 return 0;
541 }
542
543 static int
544 siocgifdevmtu(struct ifnet * ifp, struct ifdevmtu * ifdm_p)
545 {
546 struct ifreq ifr;
547 int error;
548
549 bzero(&ifr, sizeof(ifr));
550 error = ifnet_ioctl(ifp, 0, SIOCGIFDEVMTU, &ifr);
551 if (error == 0) {
552 *ifdm_p = ifr.ifr_devmtu;
553 }
554 return error;
555 }
556
557 static int
558 siocsifaltmtu(struct ifnet * ifp, int mtu)
559 {
560 struct ifreq ifr;
561
562 bzero(&ifr, sizeof(ifr));
563 ifr.ifr_mtu = mtu;
564 return ifnet_ioctl(ifp, 0, SIOCSIFALTMTU, &ifr);
565 }
566
567 /**
568 ** vlan_parent synchronization routines
569 **/
570 static void
571 vlan_parent_retain(vlan_parent_ref vlp)
572 {
573 if (vlp->vlp_signature != VLP_SIGNATURE) {
574 panic("vlan_parent_retain: signature is bad\n");
575 }
576 if (vlp->vlp_retain_count == 0) {
577 panic("vlan_parent_retain: retain count is 0\n");
578 }
579 OSIncrementAtomic(&vlp->vlp_retain_count);
580 }
581
582 static void
583 vlan_parent_release(vlan_parent_ref vlp)
584 {
585 u_int32_t old_retain_count;
586
587 if (vlp->vlp_signature != VLP_SIGNATURE) {
588 panic("vlan_parent_release: signature is bad\n");
589 }
590 old_retain_count = OSDecrementAtomic(&vlp->vlp_retain_count);
591 switch (old_retain_count) {
592 case 0:
593 panic("vlan_parent_release: retain count is 0\n");
594 break;
595 case 1:
596 if (g_vlan->verbose) {
597 struct ifnet * ifp = vlp->vlp_ifp;
598 printf("vlan_parent_release(%s%d)\n", ifnet_name(ifp),
599 ifnet_unit(ifp));
600 }
601 vlp->vlp_signature = 0;
602 FREE(vlp, M_VLAN);
603 break;
604 default:
605 break;
606 }
607 return;
608 }
609
610 /*
611 * Function: vlan_parent_wait
612 * Purpose:
613 * Allows a single thread to gain exclusive access to the vlan_parent
614 * data structure. Some operations take a long time to complete,
615 * and some have side-effects that we can't predict. Holding the
616 * vlan_lock() across such operations is not possible.
617 *
618 * Notes:
619 * Before calling, you must be holding the vlan_lock and have taken
620 * a reference on the vlan_parent_ref.
621 */
622 static void
623 vlan_parent_wait(vlan_parent_ref vlp, const char * msg)
624 {
625 int waited = 0;
626
627 /* other add/remove/multicast-change in progress */
628 while (vlan_parent_flags_change_in_progress(vlp)) {
629 if (g_vlan->verbose) {
630 struct ifnet * ifp = vlp->vlp_ifp;
631
632 printf("%s%d: %s msleep\n", ifnet_name(ifp), ifnet_unit(ifp), msg);
633 }
634 waited = 1;
635 (void)msleep(vlp, vlan_lck_mtx, PZERO, msg, 0);
636 }
637 /* prevent other vlan parent remove/add from taking place */
638 vlan_parent_flags_set_change_in_progress(vlp);
639 if (g_vlan->verbose && waited) {
640 struct ifnet * ifp = vlp->vlp_ifp;
641
642 printf("%s%d: %s woke up\n", ifnet_name(ifp), ifnet_unit(ifp), msg);
643 }
644 return;
645 }
646
647 /*
648 * Function: vlan_parent_signal
649 * Purpose:
650 * Allows the thread that previously invoked vlan_parent_wait() to
651 * give up exclusive access to the vlan_parent data structure, and wake up
652 * any other threads waiting to access
653 * Notes:
654 * Before calling, you must be holding the vlan_lock and have taken
655 * a reference on the vlan_parent_ref.
656 */
657 static void
658 vlan_parent_signal(vlan_parent_ref vlp, const char * msg)
659 {
660 struct ifnet * vlp_ifp = vlp->vlp_ifp;
661
662 if (vlan_parent_flags_link_event_required(vlp)) {
663 vlan_parent_flags_clear_link_event_required(vlp);
664 if (!vlan_parent_flags_detaching(vlp)) {
665 u_int32_t event_code = vlp->vlp_event_code;
666 ifvlan_ref ifv;
667
668 vlan_unlock();
669
670 /* we can safely walk the list unlocked */
671 LIST_FOREACH(ifv, &vlp->vlp_vlan_list, ifv_vlan_list) {
672 struct ifnet * ifp = ifv->ifv_ifp;
673
674 interface_link_event(ifp, event_code);
675 }
676 if (g_vlan->verbose) {
677 printf("%s%d: propagated link event to vlans\n",
678 ifnet_name(vlp_ifp), ifnet_unit(vlp_ifp));
679 }
680 vlan_lock();
681 }
682 }
683 vlan_parent_flags_clear_change_in_progress(vlp);
684 wakeup((caddr_t)vlp);
685 if (g_vlan->verbose) {
686 printf("%s%d: %s wakeup\n",
687 ifnet_name(vlp_ifp), ifnet_unit(vlp_ifp), msg);
688 }
689 return;
690 }
691
692 /*
693 * Program our multicast filter. What we're actually doing is
694 * programming the multicast filter of the parent. This has the
695 * side effect of causing the parent interface to receive multicast
696 * traffic that it doesn't really want, which ends up being discarded
697 * later by the upper protocol layers. Unfortunately, there's no way
698 * to avoid this: there really is only one physical interface.
699 */
700 static int
701 vlan_setmulti(struct ifnet * ifp)
702 {
703 int error = 0;
704 ifvlan_ref ifv;
705 struct ifnet * p;
706 vlan_parent_ref vlp = NULL;
707
708 vlan_lock();
709 ifv = ifnet_get_ifvlan_retained(ifp);
710 if (ifv == NULL) {
711 goto unlock_done;
712 }
713 vlp = ifvlan_get_vlan_parent_retained(ifv);
714 if (vlp == NULL) {
715 /* no parent, no need to program the multicast filter */
716 goto unlock_done;
717 }
718 vlan_parent_wait(vlp, "vlan_setmulti");
719
720 /* check again, things could have changed */
721 if (ifnet_ifvlan_vlan_parent_ok(ifp, ifv, vlp) == FALSE) {
722 goto signal_done;
723 }
724 p = vlp->vlp_ifp;
725 vlan_unlock();
726
727 /* update parent interface with our multicast addresses */
728 error = multicast_list_program(&ifv->ifv_multicast, ifp, p);
729
730 vlan_lock();
731
732 signal_done:
733 vlan_parent_signal(vlp, "vlan_setmulti");
734
735 unlock_done:
736 vlan_unlock();
737 if (ifv != NULL) {
738 ifvlan_release(ifv);
739 }
740 if (vlp != NULL) {
741 vlan_parent_release(vlp);
742 }
743 return error;
744 }
745
746 /**
747 ** vlan_parent list manipulation/lookup routines
748 **/
749 static vlan_parent_ref
750 parent_list_lookup(struct ifnet * p)
751 {
752 vlan_parent_ref vlp;
753
754 LIST_FOREACH(vlp, &g_vlan->parent_list, vlp_parent_list) {
755 if (vlp->vlp_ifp == p) {
756 return vlp;
757 }
758 }
759 return NULL;
760 }
761
762 static ifvlan_ref
763 vlan_parent_lookup_tag(vlan_parent_ref vlp, int tag)
764 {
765 ifvlan_ref ifv;
766
767 LIST_FOREACH(ifv, &vlp->vlp_vlan_list, ifv_vlan_list) {
768 if (tag == ifv->ifv_tag) {
769 return ifv;
770 }
771 }
772 return NULL;
773 }
774
775 static ifvlan_ref
776 vlan_lookup_parent_and_tag(struct ifnet * p, int tag)
777 {
778 vlan_parent_ref vlp;
779
780 vlp = parent_list_lookup(p);
781 if (vlp != NULL) {
782 return vlan_parent_lookup_tag(vlp, tag);
783 }
784 return NULL;
785 }
786
787 static int
788 vlan_parent_find_max_mtu(vlan_parent_ref vlp, ifvlan_ref exclude_ifv)
789 {
790 int max_mtu = 0;
791 ifvlan_ref ifv;
792
793 LIST_FOREACH(ifv, &vlp->vlp_vlan_list, ifv_vlan_list) {
794 int req_mtu;
795
796 if (exclude_ifv == ifv) {
797 continue;
798 }
799 req_mtu = ifnet_mtu(ifv->ifv_ifp) + ifv->ifv_mtufudge;
800 if (req_mtu > max_mtu) {
801 max_mtu = req_mtu;
802 }
803 }
804 return max_mtu;
805 }
806
807 /*
808 * Function: vlan_parent_create
809 * Purpose:
810 * Create a vlan_parent structure to hold the VLAN's for the given
811 * interface. Add it to the list of VLAN parents.
812 */
813 static int
814 vlan_parent_create(struct ifnet * p, vlan_parent_ref * ret_vlp)
815 {
816 int error;
817 vlan_parent_ref vlp;
818
819 *ret_vlp = NULL;
820 vlp = _MALLOC(sizeof(*vlp), M_VLAN, M_WAITOK | M_ZERO);
821 if (vlp == NULL) {
822 return ENOMEM;
823 }
824 error = siocgifdevmtu(p, &vlp->vlp_devmtu);
825 if (error != 0) {
826 printf("vlan_parent_create (%s%d): siocgifdevmtu failed, %d\n",
827 ifnet_name(p), ifnet_unit(p), error);
828 FREE(vlp, M_VLAN);
829 return error;
830 }
831 LIST_INIT(&vlp->vlp_vlan_list);
832 vlp->vlp_ifp = p;
833 vlp->vlp_retain_count = 1;
834 vlp->vlp_signature = VLP_SIGNATURE;
835 if (ifnet_offload(p)
836 & (IF_HWASSIST_VLAN_MTU | IF_HWASSIST_VLAN_TAGGING)) {
837 vlan_parent_flags_set_supports_vlan_mtu(vlp);
838 }
839 *ret_vlp = vlp;
840 return 0;
841 }
842
843 static void
844 vlan_parent_remove_all_vlans(struct ifnet * p)
845 {
846 ifvlan_ref ifv;
847 int need_vlp_release = 0;
848 ifvlan_ref next;
849 vlan_parent_ref vlp;
850
851 vlan_lock();
852 vlp = parent_list_lookup(p);
853 if (vlp == NULL || vlan_parent_flags_detaching(vlp)) {
854 /* no VLAN's */
855 vlan_unlock();
856 return;
857 }
858 vlan_parent_flags_set_detaching(vlp);
859 vlan_parent_retain(vlp);
860 vlan_parent_wait(vlp, "vlan_parent_remove_all_vlans");
861 need_vlp_release++;
862
863 /* check again */
864 if (parent_list_lookup(p) != vlp) {
865 goto signal_done;
866 }
867
868 for (ifv = LIST_FIRST(&vlp->vlp_vlan_list); ifv != NULL; ifv = next) {
869 struct ifnet * ifp = ifv->ifv_ifp;
870 int removed;
871
872 next = LIST_NEXT(ifv, ifv_vlan_list);
873 removed = vlan_remove(ifv, FALSE);
874 if (removed) {
875 vlan_unlock();
876 ifnet_detach(ifp);
877 vlan_lock();
878 }
879 }
880
881 /* the vlan parent has no more VLAN's */
882 ifnet_set_eflags(p, 0, IFEF_VLAN); /* clear IFEF_VLAN */
883
884 LIST_REMOVE(vlp, vlp_parent_list);
885 need_vlp_release++; /* one for being in the list */
886 need_vlp_release++; /* final reference */
887
888 signal_done:
889 vlan_parent_signal(vlp, "vlan_parent_remove_all_vlans");
890 vlan_unlock();
891
892 while (need_vlp_release--) {
893 vlan_parent_release(vlp);
894 }
895 return;
896 }
897
898 static __inline__ int
899 vlan_parent_no_vlans(vlan_parent_ref vlp)
900 {
901 return LIST_EMPTY(&vlp->vlp_vlan_list);
902 }
903
904 static void
905 vlan_parent_add_vlan(vlan_parent_ref vlp, ifvlan_ref ifv, int tag)
906 {
907 LIST_INSERT_HEAD(&vlp->vlp_vlan_list, ifv, ifv_vlan_list);
908 ifv->ifv_vlp = vlp;
909 ifv->ifv_tag = tag;
910 return;
911 }
912
913 static void
914 vlan_parent_remove_vlan(__unused vlan_parent_ref vlp, ifvlan_ref ifv)
915 {
916 ifv->ifv_vlp = NULL;
917 LIST_REMOVE(ifv, ifv_vlan_list);
918 return;
919 }
920
921 static int
922 vlan_clone_attach(void)
923 {
924 int error;
925
926 error = if_clone_attach(&vlan_cloner);
927 if (error != 0) {
928 return error;
929 }
930 vlan_lock_init();
931 return 0;
932 }
933
934 static int
935 vlan_clone_create(struct if_clone *ifc, u_int32_t unit, __unused void *params)
936 {
937 int error;
938 ifvlan_ref ifv;
939 ifnet_t ifp;
940 struct ifnet_init_eparams vlan_init;
941
942 error = vlan_globals_init();
943 if (error != 0) {
944 return error;
945 }
946 ifv = if_clone_softc_allocate(&vlan_cloner);
947 if (ifv == NULL) {
948 return ENOBUFS;
949 }
950 ifv->ifv_retain_count = 1;
951 ifv->ifv_signature = IFV_SIGNATURE;
952 multicast_list_init(&ifv->ifv_multicast);
953
954 /* use the interface name as the unique id for ifp recycle */
955 if ((unsigned int)
956 snprintf(ifv->ifv_name, sizeof(ifv->ifv_name), "%s%d",
957 ifc->ifc_name, unit) >= sizeof(ifv->ifv_name)) {
958 ifvlan_release(ifv);
959 return EINVAL;
960 }
961
962 bzero(&vlan_init, sizeof(vlan_init));
963 vlan_init.ver = IFNET_INIT_CURRENT_VERSION;
964 vlan_init.len = sizeof(vlan_init);
965 vlan_init.flags = IFNET_INIT_LEGACY;
966 vlan_init.uniqueid = ifv->ifv_name;
967 vlan_init.uniqueid_len = strlen(ifv->ifv_name);
968 vlan_init.name = ifc->ifc_name;
969 vlan_init.unit = unit;
970 vlan_init.family = IFNET_FAMILY_VLAN;
971 vlan_init.type = IFT_L2VLAN;
972 vlan_init.output = vlan_output;
973 vlan_init.demux = ether_demux;
974 vlan_init.add_proto = ether_add_proto;
975 vlan_init.del_proto = ether_del_proto;
976 vlan_init.check_multi = ether_check_multi;
977 vlan_init.framer_extended = ether_frameout_extended;
978 vlan_init.softc = ifv;
979 vlan_init.ioctl = vlan_ioctl;
980 vlan_init.set_bpf_tap = NULL;
981 vlan_init.detach = vlan_if_free;
982 vlan_init.broadcast_addr = etherbroadcastaddr;
983 vlan_init.broadcast_len = ETHER_ADDR_LEN;
984 error = ifnet_allocate_extended(&vlan_init, &ifp);
985
986 if (error) {
987 ifvlan_release(ifv);
988 return error;
989 }
990
991 ifnet_set_offload(ifp, 0);
992 ifnet_set_addrlen(ifp, ETHER_ADDR_LEN); /* XXX ethernet specific */
993 ifnet_set_baudrate(ifp, 0);
994 ifnet_set_hdrlen(ifp, ETHER_VLAN_ENCAP_LEN);
995
996 error = ifnet_attach(ifp, NULL);
997 if (error) {
998 ifnet_release(ifp);
999 ifvlan_release(ifv);
1000 return error;
1001 }
1002 ifv->ifv_ifp = ifp;
1003
1004 /* attach as ethernet */
1005 bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1006 return 0;
1007 }
1008
1009 static int
1010 vlan_remove(ifvlan_ref ifv, int need_to_wait)
1011 {
1012 vlan_assert_lock_held();
1013 if (ifvlan_flags_detaching(ifv)) {
1014 return 0;
1015 }
1016 ifvlan_flags_set_detaching(ifv);
1017 vlan_unconfig(ifv, need_to_wait);
1018 return 1;
1019 }
1020
1021
1022 static int
1023 vlan_clone_destroy(struct ifnet *ifp)
1024 {
1025 ifvlan_ref ifv;
1026
1027 vlan_lock();
1028 ifv = ifnet_get_ifvlan_retained(ifp);
1029 if (ifv == NULL) {
1030 vlan_unlock();
1031 return 0;
1032 }
1033 if (vlan_remove(ifv, TRUE) == 0) {
1034 vlan_unlock();
1035 ifvlan_release(ifv);
1036 return 0;
1037 }
1038 vlan_unlock();
1039 ifvlan_release(ifv);
1040 ifnet_detach(ifp);
1041
1042 return 0;
1043 }
1044
1045 static int
1046 vlan_output(struct ifnet * ifp, struct mbuf * m)
1047 {
1048 struct ether_vlan_header * evl;
1049 int encaplen;
1050 ifvlan_ref ifv;
1051 struct ifnet * p;
1052 int soft_vlan;
1053 u_short tag;
1054 vlan_parent_ref vlp = NULL;
1055 int err;
1056 struct flowadv adv = { FADV_SUCCESS };
1057
1058 if (m == 0) {
1059 return 0;
1060 }
1061 if ((m->m_flags & M_PKTHDR) == 0) {
1062 m_freem_list(m);
1063 return 0;
1064 }
1065 vlan_lock();
1066 ifv = ifnet_get_ifvlan_retained(ifp);
1067 if (ifv == NULL || ifvlan_flags_ready(ifv) == 0) {
1068 goto unlock_done;
1069 }
1070 vlp = ifvlan_get_vlan_parent_retained(ifv);
1071 if (vlp == NULL) {
1072 goto unlock_done;
1073 }
1074 p = vlp->vlp_ifp;
1075 (void)ifnet_stat_increment_out(ifp, 1, m->m_pkthdr.len, 0);
1076 soft_vlan = (ifnet_offload(p) & IF_HWASSIST_VLAN_TAGGING) == 0;
1077 tag = ifv->ifv_tag;
1078 encaplen = ifv->ifv_encaplen;
1079 vlan_unlock();
1080
1081 ifvlan_release(ifv);
1082 vlan_parent_release(vlp);
1083
1084 bpf_tap_out(ifp, DLT_EN10MB, m, NULL, 0);
1085
1086 /* do not run parent's if_output() if the parent is not up */
1087 if ((ifnet_flags(p) & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) {
1088 m_freem(m);
1089 atomic_add_64(&ifp->if_collisions, 1);
1090 return 0;
1091 }
1092 /*
1093 * If underlying interface can do VLAN tag insertion itself,
1094 * just pass the packet along. However, we need some way to
1095 * tell the interface where the packet came from so that it
1096 * knows how to find the VLAN tag to use. We use a field in
1097 * the mbuf header to store the VLAN tag, and a bit in the
1098 * csum_flags field to mark the field as valid.
1099 */
1100 if (soft_vlan == 0) {
1101 m->m_pkthdr.csum_flags |= CSUM_VLAN_TAG_VALID;
1102 m->m_pkthdr.vlan_tag = tag;
1103 } else {
1104 M_PREPEND(m, encaplen, M_DONTWAIT, 1);
1105 if (m == NULL) {
1106 printf("%s%d: unable to prepend VLAN header\n", ifnet_name(ifp),
1107 ifnet_unit(ifp));
1108 atomic_add_64(&ifp->if_oerrors, 1);
1109 return 0;
1110 }
1111 /* M_PREPEND takes care of m_len, m_pkthdr.len for us */
1112 if (m->m_len < (int)sizeof(*evl)) {
1113 m = m_pullup(m, sizeof(*evl));
1114 if (m == NULL) {
1115 printf("%s%d: unable to pullup VLAN header\n", ifnet_name(ifp),
1116 ifnet_unit(ifp));
1117 atomic_add_64(&ifp->if_oerrors, 1);
1118 return 0;
1119 }
1120 }
1121
1122 /*
1123 * Transform the Ethernet header into an Ethernet header
1124 * with 802.1Q encapsulation.
1125 */
1126 bcopy(mtod(m, char *) + encaplen,
1127 mtod(m, char *), ETHER_HDR_LEN);
1128 evl = mtod(m, struct ether_vlan_header *);
1129 evl->evl_proto = evl->evl_encap_proto;
1130 evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1131 evl->evl_tag = htons(tag);
1132 }
1133
1134 err = dlil_output(p, PF_VLAN, m, NULL, NULL, 1, &adv);
1135
1136 if (err == 0) {
1137 if (adv.code == FADV_FLOW_CONTROLLED) {
1138 err = EQFULL;
1139 } else if (adv.code == FADV_SUSPENDED) {
1140 err = EQSUSPENDED;
1141 }
1142 }
1143
1144 return err;
1145
1146 unlock_done:
1147 vlan_unlock();
1148 if (ifv != NULL) {
1149 ifvlan_release(ifv);
1150 }
1151 if (vlp != NULL) {
1152 vlan_parent_release(vlp);
1153 }
1154 m_freem_list(m);
1155 return 0;
1156 }
1157
1158 static int
1159 vlan_input(ifnet_t p, __unused protocol_family_t protocol,
1160 mbuf_t m, char *frame_header)
1161 {
1162 struct ether_vlan_header * evl;
1163 struct ifnet * ifp = NULL;
1164 int soft_vlan = 0;
1165 u_int tag = 0;
1166
1167 if (m->m_pkthdr.csum_flags & CSUM_VLAN_TAG_VALID) {
1168 /*
1169 * Packet is tagged, m contains a normal
1170 * Ethernet frame; the tag is stored out-of-band.
1171 */
1172 m->m_pkthdr.csum_flags &= ~CSUM_VLAN_TAG_VALID;
1173 tag = EVL_VLANOFTAG(m->m_pkthdr.vlan_tag);
1174 m->m_pkthdr.vlan_tag = 0;
1175 } else {
1176 soft_vlan = 1;
1177 switch (ifnet_type(p)) {
1178 case IFT_ETHER:
1179 if (m->m_len < ETHER_VLAN_ENCAP_LEN) {
1180 m_freem(m);
1181 return 0;
1182 }
1183 evl = (struct ether_vlan_header *)(void *)frame_header;
1184 if (ntohs(evl->evl_proto) == ETHERTYPE_VLAN) {
1185 /* don't allow VLAN within VLAN */
1186 m_freem(m);
1187 return 0;
1188 }
1189 tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
1190
1191 /*
1192 * Restore the original ethertype. We'll remove
1193 * the encapsulation after we've found the vlan
1194 * interface corresponding to the tag.
1195 */
1196 evl->evl_encap_proto = evl->evl_proto;
1197 break;
1198 default:
1199 printf("vlan_demux: unsupported if type %u",
1200 ifnet_type(p));
1201 m_freem(m);
1202 return 0;
1203 }
1204 }
1205 if (tag != 0) {
1206 ifvlan_ref ifv;
1207
1208 if ((ifnet_eflags(p) & IFEF_VLAN) == 0) {
1209 /* don't bother looking through the VLAN list */
1210 m_freem(m);
1211 return 0;
1212 }
1213 vlan_lock();
1214 ifv = vlan_lookup_parent_and_tag(p, tag);
1215 if (ifv != NULL) {
1216 ifp = ifv->ifv_ifp;
1217 }
1218 if (ifv == NULL
1219 || ifvlan_flags_ready(ifv) == 0
1220 || (ifnet_flags(ifp) & IFF_UP) == 0) {
1221 vlan_unlock();
1222 m_freem(m);
1223 return 0;
1224 }
1225 vlan_unlock();
1226 }
1227 if (soft_vlan) {
1228 /*
1229 * Packet had an in-line encapsulation header;
1230 * remove it. The original header has already
1231 * been fixed up above.
1232 */
1233 m->m_len -= ETHER_VLAN_ENCAP_LEN;
1234 m->m_data += ETHER_VLAN_ENCAP_LEN;
1235 m->m_pkthdr.len -= ETHER_VLAN_ENCAP_LEN;
1236 m->m_pkthdr.csum_flags = 0; /* can't trust hardware checksum */
1237 }
1238 if (tag != 0) {
1239 m->m_pkthdr.rcvif = ifp;
1240 m->m_pkthdr.pkt_hdr = frame_header;
1241 (void)ifnet_stat_increment_in(ifp, 1,
1242 m->m_pkthdr.len + ETHER_HDR_LEN, 0);
1243 bpf_tap_in(ifp, DLT_EN10MB, m, frame_header, ETHER_HDR_LEN);
1244 /* We found a vlan interface, inject on that interface. */
1245 dlil_input_packet_list(ifp, m);
1246 } else {
1247 m->m_pkthdr.pkt_hdr = frame_header;
1248 /* Send priority-tagged packet up through the parent */
1249 dlil_input_packet_list(p, m);
1250 }
1251 return 0;
1252 }
1253
1254 static int
1255 vlan_config(struct ifnet * ifp, struct ifnet * p, int tag)
1256 {
1257 int error;
1258 int first_vlan = FALSE;
1259 ifvlan_ref ifv = NULL;
1260 int ifv_added = FALSE;
1261 int need_vlp_release = 0;
1262 vlan_parent_ref new_vlp = NULL;
1263 ifnet_offload_t offload;
1264 u_int16_t parent_flags;
1265 vlan_parent_ref vlp = NULL;
1266
1267 /* pre-allocate space for vlan_parent, in case we're first */
1268 error = vlan_parent_create(p, &new_vlp);
1269 if (error != 0) {
1270 return error;
1271 }
1272
1273 vlan_lock();
1274 ifv = ifnet_get_ifvlan_retained(ifp);
1275 if (ifv == NULL || ifv->ifv_vlp != NULL) {
1276 vlan_unlock();
1277 if (ifv != NULL) {
1278 ifvlan_release(ifv);
1279 }
1280 vlan_parent_release(new_vlp);
1281 return EBUSY;
1282 }
1283 vlp = parent_list_lookup(p);
1284 if (vlp != NULL) {
1285 vlan_parent_retain(vlp);
1286 need_vlp_release++;
1287 if (vlan_parent_lookup_tag(vlp, tag) != NULL) {
1288 /* already a VLAN with that tag on this interface */
1289 error = EADDRINUSE;
1290 goto unlock_done;
1291 }
1292 } else {
1293 /* one for being in the list */
1294 vlan_parent_retain(new_vlp);
1295
1296 /* we're the first VLAN on this interface */
1297 LIST_INSERT_HEAD(&g_vlan->parent_list, new_vlp, vlp_parent_list);
1298 vlp = new_vlp;
1299
1300 vlan_parent_retain(vlp);
1301 need_vlp_release++;
1302 }
1303
1304 /* need to wait to ensure no one else is trying to add/remove */
1305 vlan_parent_wait(vlp, "vlan_config");
1306
1307 if (ifnet_get_ifvlan(ifp) != ifv) {
1308 error = EINVAL;
1309 goto signal_done;
1310 }
1311
1312 /* check again because someone might have gotten in */
1313 if (parent_list_lookup(p) != vlp) {
1314 error = EBUSY;
1315 goto signal_done;
1316 }
1317
1318 if (vlan_parent_flags_detaching(vlp)
1319 || ifvlan_flags_detaching(ifv) || ifv->ifv_vlp != NULL) {
1320 error = EBUSY;
1321 goto signal_done;
1322 }
1323
1324 /* check again because someone might have gotten the tag */
1325 if (vlan_parent_lookup_tag(vlp, tag) != NULL) {
1326 /* already a VLAN with that tag on this interface */
1327 error = EADDRINUSE;
1328 goto signal_done;
1329 }
1330
1331 if (vlan_parent_no_vlans(vlp)) {
1332 first_vlan = TRUE;
1333 }
1334 vlan_parent_add_vlan(vlp, ifv, tag);
1335 ifvlan_retain(ifv); /* parent references ifv */
1336 ifv_added = TRUE;
1337
1338 /* check whether bond interface is using parent interface */
1339 ifnet_lock_exclusive(p);
1340 if ((ifnet_eflags(p) & IFEF_BOND) != 0) {
1341 ifnet_lock_done(p);
1342 /* don't allow VLAN over interface that's already part of a bond */
1343 error = EBUSY;
1344 goto signal_done;
1345 }
1346 /* prevent BOND interface from using it */
1347 /* Can't use ifnet_set_eflags because that would take the lock */
1348 p->if_eflags |= IFEF_VLAN;
1349 ifnet_lock_done(p);
1350 vlan_unlock();
1351
1352 if (first_vlan) {
1353 /* attach our VLAN "protocol" to the interface */
1354 error = vlan_attach_protocol(p);
1355 if (error) {
1356 vlan_lock();
1357 goto signal_done;
1358 }
1359 }
1360
1361 /* configure parent to receive our multicast addresses */
1362 error = multicast_list_program(&ifv->ifv_multicast, ifp, p);
1363 if (error != 0) {
1364 if (first_vlan) {
1365 (void)vlan_detach_protocol(p);
1366 }
1367 vlan_lock();
1368 goto signal_done;
1369 }
1370
1371 /* set our ethernet address to that of the parent */
1372 ifnet_set_lladdr_and_type(ifp, IF_LLADDR(p), ETHER_ADDR_LEN, IFT_ETHER);
1373
1374 /* no failures past this point */
1375 vlan_lock();
1376
1377 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1378 ifv->ifv_flags = 0;
1379 if (vlan_parent_flags_supports_vlan_mtu(vlp)) {
1380 ifv->ifv_mtufudge = 0;
1381 } else {
1382 /*
1383 * Fudge the MTU by the encapsulation size. This
1384 * makes us incompatible with strictly compliant
1385 * 802.1Q implementations, but allows us to use
1386 * the feature with other NetBSD implementations,
1387 * which might still be useful.
1388 */
1389 ifv->ifv_mtufudge = ifv->ifv_encaplen;
1390 }
1391 ifnet_set_mtu(ifp, ETHERMTU - ifv->ifv_mtufudge);
1392
1393 /*
1394 * Copy only a selected subset of flags from the parent.
1395 * Other flags are none of our business.
1396 */
1397 parent_flags = ifnet_flags(p)
1398 & (IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX);
1399 ifnet_set_flags(ifp, parent_flags,
1400 IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX);
1401
1402 /* use hwassist bits from parent interface, but exclude VLAN bits */
1403 offload = ifnet_offload(p) & ~(IFNET_VLAN_TAGGING | IFNET_VLAN_MTU);
1404 ifnet_set_offload(ifp, offload);
1405
1406 ifnet_set_flags(ifp, IFF_RUNNING, IFF_RUNNING);
1407 ifvlan_flags_set_ready(ifv);
1408 vlan_parent_signal(vlp, "vlan_config");
1409 vlan_unlock();
1410 if (new_vlp != vlp) {
1411 /* throw it away, it wasn't needed */
1412 vlan_parent_release(new_vlp);
1413 }
1414 if (ifv != NULL) {
1415 ifvlan_release(ifv);
1416 }
1417 if (first_vlan) {
1418 /* mark the parent interface up */
1419 ifnet_set_flags(p, IFF_UP, IFF_UP);
1420 (void)ifnet_ioctl(p, 0, SIOCSIFFLAGS, (caddr_t)NULL);
1421 }
1422 return 0;
1423
1424 signal_done:
1425 vlan_assert_lock_held();
1426
1427 if (ifv_added) {
1428 vlan_parent_remove_vlan(vlp, ifv);
1429 if (!vlan_parent_flags_detaching(vlp) && vlan_parent_no_vlans(vlp)) {
1430 /* the vlan parent has no more VLAN's */
1431 ifnet_set_eflags(p, 0, IFEF_VLAN);
1432 LIST_REMOVE(vlp, vlp_parent_list);
1433 /* release outside of the lock below */
1434 need_vlp_release++;
1435
1436 /* one for being in the list */
1437 need_vlp_release++;
1438 }
1439 }
1440 vlan_parent_signal(vlp, "vlan_config");
1441
1442 unlock_done:
1443 vlan_unlock();
1444
1445 while (need_vlp_release--) {
1446 vlan_parent_release(vlp);
1447 }
1448 if (new_vlp != vlp) {
1449 vlan_parent_release(new_vlp);
1450 }
1451 if (ifv != NULL) {
1452 if (ifv_added) {
1453 ifvlan_release(ifv);
1454 }
1455 ifvlan_release(ifv);
1456 }
1457 return error;
1458 }
1459
1460 static void
1461 vlan_link_event(struct ifnet * ifp, struct ifnet * p)
1462 {
1463 struct ifmediareq ifmr;
1464
1465 /* generate a link event based on the state of the underlying interface */
1466 bzero(&ifmr, sizeof(ifmr));
1467 snprintf(ifmr.ifm_name, sizeof(ifmr.ifm_name),
1468 "%s%d", ifnet_name(p), ifnet_unit(p));
1469 if (ifnet_ioctl(p, 0, SIOCGIFMEDIA, &ifmr) == 0
1470 && ifmr.ifm_count > 0 && ifmr.ifm_status & IFM_AVALID) {
1471 u_int32_t event;
1472
1473 event = (ifmr.ifm_status & IFM_ACTIVE)
1474 ? KEV_DL_LINK_ON : KEV_DL_LINK_OFF;
1475 interface_link_event(ifp, event);
1476 }
1477 return;
1478 }
1479
1480 static int
1481 vlan_unconfig(ifvlan_ref ifv, int need_to_wait)
1482 {
1483 struct ifnet * ifp = ifv->ifv_ifp;
1484 int last_vlan = FALSE;
1485 int need_ifv_release = 0;
1486 int need_vlp_release = 0;
1487 struct ifnet * p;
1488 vlan_parent_ref vlp;
1489
1490 vlan_assert_lock_held();
1491 vlp = ifv->ifv_vlp;
1492 if (vlp == NULL) {
1493 return 0;
1494 }
1495 if (need_to_wait) {
1496 need_vlp_release++;
1497 vlan_parent_retain(vlp);
1498 vlan_parent_wait(vlp, "vlan_unconfig");
1499
1500 /* check again because another thread could be in vlan_unconfig */
1501 if (ifv != ifnet_get_ifvlan(ifp)) {
1502 goto signal_done;
1503 }
1504 if (ifv->ifv_vlp != vlp) {
1505 /* vlan parent changed */
1506 goto signal_done;
1507 }
1508 }
1509
1510 /* ifv has a reference on vlp, need to remove it */
1511 need_vlp_release++;
1512 p = vlp->vlp_ifp;
1513
1514 /* remember whether we're the last VLAN on the parent */
1515 if (LIST_NEXT(LIST_FIRST(&vlp->vlp_vlan_list), ifv_vlan_list) == NULL) {
1516 if (g_vlan->verbose) {
1517 printf("vlan_unconfig: last vlan on %s%d\n",
1518 ifnet_name(p), ifnet_unit(p));
1519 }
1520 last_vlan = TRUE;
1521 }
1522
1523 /* back-out any effect our mtu might have had on the parent */
1524 (void)ifvlan_new_mtu(ifv, ETHERMTU - ifv->ifv_mtufudge);
1525
1526 vlan_unlock();
1527
1528 /* un-join multicast on parent interface */
1529 (void)multicast_list_remove(&ifv->ifv_multicast);
1530
1531 /* Clear our MAC address. */
1532 ifnet_set_lladdr_and_type(ifp, NULL, 0, IFT_L2VLAN);
1533
1534 /* detach VLAN "protocol" */
1535 if (last_vlan) {
1536 (void)vlan_detach_protocol(p);
1537 }
1538
1539 vlan_lock();
1540
1541 /* return to the state we were in before SIFVLAN */
1542 ifnet_set_mtu(ifp, 0);
1543 ifnet_set_flags(ifp, 0,
1544 IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX | IFF_RUNNING);
1545 ifnet_set_offload(ifp, 0);
1546 ifv->ifv_mtufudge = 0;
1547
1548 /* Disconnect from parent. */
1549 vlan_parent_remove_vlan(vlp, ifv);
1550 ifv->ifv_flags = 0;
1551
1552 /* vlan_parent has reference to ifv, remove it */
1553 need_ifv_release++;
1554
1555 /* from this point on, no more referencing ifv */
1556 if (last_vlan && !vlan_parent_flags_detaching(vlp)) {
1557 /* the vlan parent has no more VLAN's */
1558 ifnet_set_eflags(p, 0, IFEF_VLAN);
1559 LIST_REMOVE(vlp, vlp_parent_list);
1560
1561 /* one for being in the list */
1562 need_vlp_release++;
1563
1564 /* release outside of the lock below */
1565 need_vlp_release++;
1566 }
1567
1568 signal_done:
1569 if (need_to_wait) {
1570 vlan_parent_signal(vlp, "vlan_unconfig");
1571 }
1572 vlan_unlock();
1573 while (need_ifv_release--) {
1574 ifvlan_release(ifv);
1575 }
1576 while (need_vlp_release--) { /* references to vlp */
1577 vlan_parent_release(vlp);
1578 }
1579 vlan_lock();
1580 return 0;
1581 }
1582
1583 static int
1584 vlan_set_promisc(struct ifnet * ifp)
1585 {
1586 int error = 0;
1587 ifvlan_ref ifv;
1588 vlan_parent_ref vlp;
1589
1590 vlan_lock();
1591 ifv = ifnet_get_ifvlan_retained(ifp);
1592 if (ifv == NULL) {
1593 error = EBUSY;
1594 goto done;
1595 }
1596
1597 vlp = ifv->ifv_vlp;
1598 if (vlp == NULL) {
1599 goto done;
1600 }
1601 if ((ifnet_flags(ifp) & IFF_PROMISC) != 0) {
1602 if (!ifvlan_flags_promisc(ifv)) {
1603 error = ifnet_set_promiscuous(vlp->vlp_ifp, 1);
1604 if (error == 0) {
1605 ifvlan_flags_set_promisc(ifv);
1606 }
1607 }
1608 } else {
1609 if (ifvlan_flags_promisc(ifv)) {
1610 error = ifnet_set_promiscuous(vlp->vlp_ifp, 0);
1611 if (error == 0) {
1612 ifvlan_flags_clear_promisc(ifv);
1613 }
1614 }
1615 }
1616 done:
1617 vlan_unlock();
1618 if (ifv != NULL) {
1619 ifvlan_release(ifv);
1620 }
1621 return error;
1622 }
1623
1624 static int
1625 ifvlan_new_mtu(ifvlan_ref ifv, int mtu)
1626 {
1627 struct ifdevmtu * devmtu_p;
1628 int error = 0;
1629 struct ifnet * ifp = ifv->ifv_ifp;
1630 int max_mtu;
1631 int new_mtu = 0;
1632 int req_mtu;
1633 vlan_parent_ref vlp;
1634
1635 vlan_assert_lock_held();
1636 vlp = ifv->ifv_vlp;
1637 devmtu_p = &vlp->vlp_devmtu;
1638 req_mtu = mtu + ifv->ifv_mtufudge;
1639 if (req_mtu > devmtu_p->ifdm_max || req_mtu < devmtu_p->ifdm_min) {
1640 return EINVAL;
1641 }
1642 max_mtu = vlan_parent_find_max_mtu(vlp, ifv);
1643 if (req_mtu > max_mtu) {
1644 new_mtu = req_mtu;
1645 } else if (max_mtu < devmtu_p->ifdm_current) {
1646 new_mtu = max_mtu;
1647 }
1648 if (new_mtu != 0) {
1649 struct ifnet * p = vlp->vlp_ifp;
1650 vlan_unlock();
1651 error = siocsifaltmtu(p, new_mtu);
1652 vlan_lock();
1653 }
1654 if (error == 0) {
1655 if (new_mtu != 0) {
1656 devmtu_p->ifdm_current = new_mtu;
1657 }
1658 ifnet_set_mtu(ifp, mtu);
1659 }
1660 return error;
1661 }
1662
1663 static int
1664 vlan_set_mtu(struct ifnet * ifp, int mtu)
1665 {
1666 int error = 0;
1667 ifvlan_ref ifv;
1668 vlan_parent_ref vlp;
1669
1670 if (mtu < IF_MINMTU) {
1671 return EINVAL;
1672 }
1673 vlan_lock();
1674 ifv = ifnet_get_ifvlan_retained(ifp);
1675 if (ifv == NULL) {
1676 vlan_unlock();
1677 return EBUSY;
1678 }
1679 vlp = ifvlan_get_vlan_parent_retained(ifv);
1680 if (vlp == NULL) {
1681 vlan_unlock();
1682 ifvlan_release(ifv);
1683 if (mtu != 0) {
1684 return EINVAL;
1685 }
1686 return 0;
1687 }
1688 vlan_parent_wait(vlp, "vlan_set_mtu");
1689
1690 /* check again, something might have changed */
1691 if (ifnet_get_ifvlan(ifp) != ifv
1692 || ifvlan_flags_detaching(ifv)) {
1693 error = EBUSY;
1694 goto signal_done;
1695 }
1696 if (ifv->ifv_vlp != vlp) {
1697 /* vlan parent changed */
1698 goto signal_done;
1699 }
1700 if (vlan_parent_flags_detaching(vlp)) {
1701 if (mtu != 0) {
1702 error = EINVAL;
1703 }
1704 goto signal_done;
1705 }
1706 error = ifvlan_new_mtu(ifv, mtu);
1707
1708 signal_done:
1709 vlan_parent_signal(vlp, "vlan_set_mtu");
1710 vlan_unlock();
1711 vlan_parent_release(vlp);
1712 ifvlan_release(ifv);
1713
1714 return error;
1715 }
1716
1717 static int
1718 vlan_ioctl(ifnet_t ifp, u_long cmd, void * data)
1719 {
1720 struct ifdevmtu * devmtu_p;
1721 int error = 0;
1722 struct ifaddr * ifa;
1723 struct ifmediareq *ifmr;
1724 struct ifreq * ifr;
1725 ifvlan_ref ifv;
1726 struct ifnet * p;
1727 u_short tag;
1728 user_addr_t user_addr;
1729 vlan_parent_ref vlp;
1730 struct vlanreq vlr;
1731
1732 if (ifnet_type(ifp) != IFT_L2VLAN) {
1733 return EOPNOTSUPP;
1734 }
1735 ifr = (struct ifreq *)data;
1736 ifa = (struct ifaddr *)data;
1737
1738 switch (cmd) {
1739 case SIOCSIFADDR:
1740 ifnet_set_flags(ifp, IFF_UP, IFF_UP);
1741 break;
1742
1743 case SIOCGIFMEDIA32:
1744 case SIOCGIFMEDIA64:
1745 vlan_lock();
1746 ifv = (ifvlan_ref)ifnet_softc(ifp);
1747 if (ifv == NULL || ifvlan_flags_detaching(ifv)) {
1748 vlan_unlock();
1749 return ifv == NULL ? EOPNOTSUPP : EBUSY;
1750 }
1751 p = (ifv->ifv_vlp == NULL) ? NULL : ifv->ifv_vlp->vlp_ifp;
1752 vlan_unlock();
1753 ifmr = (struct ifmediareq *)data;
1754 user_addr = (cmd == SIOCGIFMEDIA64) ?
1755 ((struct ifmediareq64 *)ifmr)->ifmu_ulist :
1756 CAST_USER_ADDR_T(((struct ifmediareq32 *)ifmr)->ifmu_ulist);
1757 if (p != NULL) {
1758 struct ifmediareq p_ifmr;
1759
1760 bzero(&p_ifmr, sizeof(p_ifmr));
1761 error = ifnet_ioctl(p, 0, SIOCGIFMEDIA, &p_ifmr);
1762 if (error == 0) {
1763 ifmr->ifm_active = p_ifmr.ifm_active;
1764 ifmr->ifm_current = p_ifmr.ifm_current;
1765 ifmr->ifm_mask = p_ifmr.ifm_mask;
1766 ifmr->ifm_status = p_ifmr.ifm_status;
1767 ifmr->ifm_count = p_ifmr.ifm_count;
1768 /* Limit the result to the parent's current config. */
1769 if (ifmr->ifm_count >= 1 && user_addr != USER_ADDR_NULL) {
1770 ifmr->ifm_count = 1;
1771 error = copyout(&ifmr->ifm_current, user_addr,
1772 sizeof(int));
1773 }
1774 }
1775 } else {
1776 ifmr->ifm_active = ifmr->ifm_current = IFM_NONE;
1777 ifmr->ifm_mask = 0;
1778 ifmr->ifm_status = IFM_AVALID;
1779 ifmr->ifm_count = 1;
1780 if (user_addr != USER_ADDR_NULL) {
1781 error = copyout(&ifmr->ifm_current, user_addr, sizeof(int));
1782 }
1783 }
1784 break;
1785
1786 case SIOCSIFMEDIA:
1787 error = EOPNOTSUPP;
1788 break;
1789
1790 case SIOCGIFDEVMTU:
1791 vlan_lock();
1792 ifv = (ifvlan_ref)ifnet_softc(ifp);
1793 if (ifv == NULL || ifvlan_flags_detaching(ifv)) {
1794 vlan_unlock();
1795 return ifv == NULL ? EOPNOTSUPP : EBUSY;
1796 }
1797 vlp = ifv->ifv_vlp;
1798 if (vlp != NULL) {
1799 int min_mtu = vlp->vlp_devmtu.ifdm_min - ifv->ifv_mtufudge;
1800 devmtu_p = &ifr->ifr_devmtu;
1801 devmtu_p->ifdm_current = ifnet_mtu(ifp);
1802 devmtu_p->ifdm_min = max(min_mtu, IF_MINMTU);
1803 devmtu_p->ifdm_max = vlp->vlp_devmtu.ifdm_max - ifv->ifv_mtufudge;
1804 } else {
1805 devmtu_p = &ifr->ifr_devmtu;
1806 devmtu_p->ifdm_current = 0;
1807 devmtu_p->ifdm_min = 0;
1808 devmtu_p->ifdm_max = 0;
1809 }
1810 vlan_unlock();
1811 break;
1812
1813 case SIOCSIFMTU:
1814 error = vlan_set_mtu(ifp, ifr->ifr_mtu);
1815 break;
1816
1817 case SIOCSIFVLAN:
1818 user_addr = proc_is64bit(current_proc())
1819 ? ifr->ifr_data64 : CAST_USER_ADDR_T(ifr->ifr_data);
1820 error = copyin(user_addr, &vlr, sizeof(vlr));
1821 if (error) {
1822 break;
1823 }
1824 p = NULL;
1825 /* ensure nul termination */
1826 vlr.vlr_parent[IFNAMSIZ - 1] = '\0';
1827 if (vlr.vlr_parent[0] != '\0') {
1828 if (vlr.vlr_tag & ~EVL_VLID_MASK) {
1829 /*
1830 * Don't let the caller set up a VLAN tag with
1831 * anything except VLID bits.
1832 */
1833 error = EINVAL;
1834 break;
1835 }
1836 p = ifunit(vlr.vlr_parent);
1837 if (p == NULL) {
1838 error = ENXIO;
1839 break;
1840 }
1841 if (IFNET_IS_INTCOPROC(p)) {
1842 error = EINVAL;
1843 break;
1844 }
1845
1846 /* can't do VLAN over anything but ethernet or ethernet aggregate */
1847 if (ifnet_type(p) != IFT_ETHER
1848 && ifnet_type(p) != IFT_IEEE8023ADLAG) {
1849 error = EPROTONOSUPPORT;
1850 break;
1851 }
1852 error = vlan_config(ifp, p, vlr.vlr_tag);
1853 if (error) {
1854 break;
1855 }
1856
1857 /* Update promiscuous mode, if necessary. */
1858 (void)vlan_set_promisc(ifp);
1859
1860 /* generate a link event based on the state of the parent */
1861 vlan_link_event(ifp, p);
1862 } else {
1863 int need_link_event = FALSE;
1864
1865 vlan_lock();
1866 ifv = (ifvlan_ref)ifnet_softc(ifp);
1867 if (ifv == NULL || ifvlan_flags_detaching(ifv)) {
1868 vlan_unlock();
1869 error = (ifv == NULL ? EOPNOTSUPP : EBUSY);
1870 break;
1871 }
1872 need_link_event = vlan_remove(ifv, TRUE);
1873 vlan_unlock();
1874 if (need_link_event) {
1875 interface_link_event(ifp, KEV_DL_LINK_OFF);
1876 }
1877 }
1878 break;
1879
1880 case SIOCGIFVLAN:
1881 bzero(&vlr, sizeof vlr);
1882 vlan_lock();
1883 ifv = (ifvlan_ref)ifnet_softc(ifp);
1884 if (ifv == NULL || ifvlan_flags_detaching(ifv)) {
1885 vlan_unlock();
1886 return ifv == NULL ? EOPNOTSUPP : EBUSY;
1887 }
1888 p = (ifv->ifv_vlp == NULL) ? NULL : ifv->ifv_vlp->vlp_ifp;
1889 tag = ifv->ifv_tag;
1890 vlan_unlock();
1891 if (p != NULL) {
1892 snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent),
1893 "%s%d", ifnet_name(p), ifnet_unit(p));
1894 vlr.vlr_tag = tag;
1895 }
1896 user_addr = proc_is64bit(current_proc())
1897 ? ifr->ifr_data64 : CAST_USER_ADDR_T(ifr->ifr_data);
1898 error = copyout(&vlr, user_addr, sizeof(vlr));
1899 break;
1900
1901 case SIOCSIFFLAGS:
1902 /*
1903 * For promiscuous mode, we enable promiscuous mode on
1904 * the parent if we need promiscuous on the VLAN interface.
1905 */
1906 error = vlan_set_promisc(ifp);
1907 break;
1908
1909 case SIOCADDMULTI:
1910 case SIOCDELMULTI:
1911 error = vlan_setmulti(ifp);
1912 break;
1913 default:
1914 error = EOPNOTSUPP;
1915 }
1916 return error;
1917 }
1918
1919 static void
1920 vlan_if_free(struct ifnet * ifp)
1921 {
1922 ifvlan_ref ifv;
1923
1924 if (ifp == NULL) {
1925 return;
1926 }
1927 ifv = (ifvlan_ref)ifnet_softc(ifp);
1928 if (ifv == NULL) {
1929 return;
1930 }
1931 ifvlan_release(ifv);
1932 ifnet_release(ifp);
1933 return;
1934 }
1935
1936 static void
1937 vlan_event(struct ifnet * p, __unused protocol_family_t protocol,
1938 const struct kev_msg * event)
1939 {
1940 int event_code;
1941
1942 /* Check if the interface we are attached to is being detached */
1943 if (event->vendor_code != KEV_VENDOR_APPLE
1944 || event->kev_class != KEV_NETWORK_CLASS
1945 || event->kev_subclass != KEV_DL_SUBCLASS) {
1946 return;
1947 }
1948 event_code = event->event_code;
1949 switch (event_code) {
1950 case KEV_DL_LINK_OFF:
1951 case KEV_DL_LINK_ON:
1952 vlan_parent_link_event(p, event_code);
1953 break;
1954 default:
1955 return;
1956 }
1957 return;
1958 }
1959
1960 static errno_t
1961 vlan_detached(ifnet_t p, __unused protocol_family_t protocol)
1962 {
1963 if (ifnet_is_attached(p, 0) == 0) {
1964 /* if the parent isn't attached, remove all VLANs */
1965 vlan_parent_remove_all_vlans(p);
1966 }
1967 return 0;
1968 }
1969
1970 static void
1971 interface_link_event(struct ifnet * ifp, u_int32_t event_code)
1972 {
1973 struct {
1974 struct kern_event_msg header;
1975 u_int32_t unit;
1976 char if_name[IFNAMSIZ];
1977 } event;
1978
1979 bzero(&event, sizeof(event));
1980 event.header.total_size = sizeof(event);
1981 event.header.vendor_code = KEV_VENDOR_APPLE;
1982 event.header.kev_class = KEV_NETWORK_CLASS;
1983 event.header.kev_subclass = KEV_DL_SUBCLASS;
1984 event.header.event_code = event_code;
1985 event.header.event_data[0] = ifnet_family(ifp);
1986 event.unit = (u_int32_t) ifnet_unit(ifp);
1987 strlcpy(event.if_name, ifnet_name(ifp), IFNAMSIZ);
1988 ifnet_event(ifp, &event.header);
1989 return;
1990 }
1991
1992 static void
1993 vlan_parent_link_event(struct ifnet * p, u_int32_t event_code)
1994 {
1995 vlan_parent_ref vlp;
1996
1997 vlan_lock();
1998 if ((ifnet_eflags(p) & IFEF_VLAN) == 0) {
1999 vlan_unlock();
2000 /* no VLAN's */
2001 return;
2002 }
2003 vlp = parent_list_lookup(p);
2004 if (vlp == NULL) {
2005 /* no VLAN's */
2006 vlan_unlock();
2007 return;
2008 }
2009 vlan_parent_flags_set_link_event_required(vlp);
2010 vlp->vlp_event_code = event_code;
2011 if (vlan_parent_flags_change_in_progress(vlp)) {
2012 /* don't block waiting to generate an event */
2013 vlan_unlock();
2014 return;
2015 }
2016 vlan_parent_retain(vlp);
2017 vlan_parent_wait(vlp, "vlan_parent_link_event");
2018 vlan_parent_signal(vlp, "vlan_parent_link_event");
2019 vlan_unlock();
2020 vlan_parent_release(vlp);
2021 return;
2022 }
2023
2024 /*
2025 * Function: vlan_attach_protocol
2026 * Purpose:
2027 * Attach a DLIL protocol to the interface, using the ETHERTYPE_VLAN
2028 * demux ether type.
2029 *
2030 * The ethernet demux actually special cases VLAN to support hardware.
2031 * The demux here isn't used. The demux will return PF_VLAN for the
2032 * appropriate packets and our vlan_input function will be called.
2033 */
2034 static int
2035 vlan_attach_protocol(struct ifnet *ifp)
2036 {
2037 int error;
2038 struct ifnet_attach_proto_param reg;
2039
2040 bzero(&reg, sizeof(reg));
2041 reg.input = vlan_input;
2042 reg.event = vlan_event;
2043 reg.detached = vlan_detached;
2044 error = ifnet_attach_protocol(ifp, PF_VLAN, &reg);
2045 if (error) {
2046 printf("vlan_proto_attach(%s%d) ifnet_attach_protocol failed, %d\n",
2047 ifnet_name(ifp), ifnet_unit(ifp), error);
2048 }
2049 return error;
2050 }
2051
2052 /*
2053 * Function: vlan_detach_protocol
2054 * Purpose:
2055 * Detach our DLIL protocol from an interface
2056 */
2057 static int
2058 vlan_detach_protocol(struct ifnet *ifp)
2059 {
2060 int error;
2061
2062 error = ifnet_detach_protocol(ifp, PF_VLAN);
2063 if (error) {
2064 printf("vlan_proto_detach(%s%d) ifnet_detach_protocol failed, %d\n",
2065 ifnet_name(ifp), ifnet_unit(ifp), error);
2066 }
2067
2068 return error;
2069 }
2070
2071 /*
2072 * DLIL interface family functions
2073 * We use the ethernet plumb functions, since that's all we support.
2074 * If we wanted to handle multiple LAN types (tokenring, etc.), we'd
2075 * call the appropriate routines for that LAN type instead of hard-coding
2076 * ethernet.
2077 */
2078 static errno_t
2079 vlan_attach_inet(struct ifnet *ifp, protocol_family_t protocol_family)
2080 {
2081 return ether_attach_inet(ifp, protocol_family);
2082 }
2083
2084 static void
2085 vlan_detach_inet(struct ifnet *ifp, protocol_family_t protocol_family)
2086 {
2087 ether_detach_inet(ifp, protocol_family);
2088 }
2089
2090 #if INET6
2091 static errno_t
2092 vlan_attach_inet6(struct ifnet *ifp, protocol_family_t protocol_family)
2093 {
2094 return ether_attach_inet6(ifp, protocol_family);
2095 }
2096
2097 static void
2098 vlan_detach_inet6(struct ifnet *ifp, protocol_family_t protocol_family)
2099 {
2100 ether_detach_inet6(ifp, protocol_family);
2101 }
2102 #endif /* INET6 */
2103
2104 __private_extern__ int
2105 vlan_family_init(void)
2106 {
2107 int error = 0;
2108
2109 error = proto_register_plumber(PF_INET, IFNET_FAMILY_VLAN,
2110 vlan_attach_inet, vlan_detach_inet);
2111 if (error != 0) {
2112 printf("proto_register_plumber failed for AF_INET error=%d\n",
2113 error);
2114 goto done;
2115 }
2116 #if INET6
2117 error = proto_register_plumber(PF_INET6, IFNET_FAMILY_VLAN,
2118 vlan_attach_inet6, vlan_detach_inet6);
2119 if (error != 0) {
2120 printf("proto_register_plumber failed for AF_INET6 error=%d\n",
2121 error);
2122 goto done;
2123 }
2124 #endif
2125 error = vlan_clone_attach();
2126 if (error != 0) {
2127 printf("proto_register_plumber failed vlan_clone_attach error=%d\n",
2128 error);
2129 goto done;
2130 }
2131
2132
2133 done:
2134 return error;
2135 }