]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/ip_dummynet.c
b146d94d62f16029a2415eb041ef1746b93f0446
[apple/xnu.git] / bsd / netinet / ip_dummynet.c
1 /*
2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
30 * Portions Copyright (c) 2000 Akamba Corp.
31 * All rights reserved
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
52 * SUCH DAMAGE.
53 *
54 * $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.84 2004/08/25 09:31:30 pjd Exp $
55 */
56
57 #define DUMMYNET_DEBUG
58
59 /*
60 * This module implements IP dummynet, a bandwidth limiter/delay emulator
61 * used in conjunction with the ipfw package.
62 * Description of the data structures used is in ip_dummynet.h
63 * Here you mainly find the following blocks of code:
64 * + variable declarations;
65 * + heap management functions;
66 * + scheduler and dummynet functions;
67 * + configuration and initialization.
68 *
69 * NOTA BENE: critical sections are protected by the "dummynet lock".
70 *
71 * Most important Changes:
72 *
73 * 010124: Fixed WF2Q behaviour
74 * 010122: Fixed spl protection.
75 * 000601: WF2Q support
76 * 000106: large rewrite, use heaps to handle very many pipes.
77 * 980513: initial release
78 *
79 * include files marked with XXX are probably not needed
80 */
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/queue.h> /* XXX */
87 #include <sys/kernel.h>
88 #include <sys/socket.h>
89 #include <sys/socketvar.h>
90 #include <sys/time.h>
91 #include <sys/sysctl.h>
92 #include <net/if.h>
93 #include <net/route.h>
94 #include <net/kpi_protocol.h>
95 #include <netinet/in.h>
96 #include <netinet/in_systm.h>
97 #include <netinet/in_var.h>
98 #include <netinet/ip.h>
99 #include <netinet/ip_fw.h>
100 #include <netinet/ip_dummynet.h>
101 #include <netinet/ip_var.h>
102
103 #if BRIDGE
104 #include <netinet/if_ether.h> /* for struct arpcom */
105 #include <net/bridge.h>
106 #endif
107
108 /*
109 * We keep a private variable for the simulation time, but we could
110 * probably use an existing one ("softticks" in sys/kern/kern_timer.c)
111 */
112 static dn_key curr_time = 0 ; /* current simulation time */
113
114 /* this is for the timer that fires to call dummynet() - we only enable the timer when
115 there are packets to process, otherwise it's disabled */
116 static int timer_enabled = 0;
117
118 static int dn_hash_size = 64 ; /* default hash size */
119
120 /* statistics on number of queue searches and search steps */
121 static int searches, search_steps ;
122 static int pipe_expire = 1 ; /* expire queue if empty */
123 static int dn_max_ratio = 16 ; /* max queues/buckets ratio */
124
125 static int red_lookup_depth = 256; /* RED - default lookup table depth */
126 static int red_avg_pkt_size = 512; /* RED - default medium packet size */
127 static int red_max_pkt_size = 1500; /* RED - default max packet size */
128
129 /*
130 * Three heaps contain queues and pipes that the scheduler handles:
131 *
132 * ready_heap contains all dn_flow_queue related to fixed-rate pipes.
133 *
134 * wfq_ready_heap contains the pipes associated with WF2Q flows
135 *
136 * extract_heap contains pipes associated with delay lines.
137 *
138 */
139 static struct dn_heap ready_heap, extract_heap, wfq_ready_heap ;
140
141 static int heap_init(struct dn_heap *h, int size) ;
142 static int heap_insert (struct dn_heap *h, dn_key key1, void *p);
143 static void heap_extract(struct dn_heap *h, void *obj);
144
145 static void transmit_event(struct dn_pipe *pipe);
146 static void ready_event(struct dn_flow_queue *q);
147
148 static struct dn_pipe *all_pipes = NULL ; /* list of all pipes */
149 static struct dn_flow_set *all_flow_sets = NULL ;/* list of all flow_sets */
150
151 #ifdef SYSCTL_NODE
152 SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet,
153 CTLFLAG_RW, 0, "Dummynet");
154 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size,
155 CTLFLAG_RW, &dn_hash_size, 0, "Default hash table size");
156 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, curr_time,
157 CTLFLAG_RD, &curr_time, 0, "Current tick");
158 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap,
159 CTLFLAG_RD, &ready_heap.size, 0, "Size of ready heap");
160 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap,
161 CTLFLAG_RD, &extract_heap.size, 0, "Size of extract heap");
162 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, searches,
163 CTLFLAG_RD, &searches, 0, "Number of queue searches");
164 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, search_steps,
165 CTLFLAG_RD, &search_steps, 0, "Number of queue search steps");
166 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire,
167 CTLFLAG_RW, &pipe_expire, 0, "Expire queue if empty");
168 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len,
169 CTLFLAG_RW, &dn_max_ratio, 0,
170 "Max ratio between dynamic queues and buckets");
171 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
172 CTLFLAG_RD, &red_lookup_depth, 0, "Depth of RED lookup table");
173 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
174 CTLFLAG_RD, &red_avg_pkt_size, 0, "RED Medium packet size");
175 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
176 CTLFLAG_RD, &red_max_pkt_size, 0, "RED Max packet size");
177 #endif
178
179 #ifdef DUMMYNET_DEBUG
180 int dummynet_debug = 0;
181 #ifdef SYSCTL_NODE
182 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW, &dummynet_debug,
183 0, "control debugging printfs");
184 #endif
185 #define DPRINTF(X) if (dummynet_debug) printf X
186 #else
187 #define DPRINTF(X)
188 #endif
189
190 /* contrary to the comment above random(), it does not actually
191 * return a value [0, 2^31 - 1], which breaks plr amongst other
192 * things. Masking it should work even if the behavior of
193 * the function is fixed.
194 */
195 #define MY_RANDOM (random() & 0x7FFFFFFF)
196
197 /* dummynet lock */
198 lck_grp_t *dn_mutex_grp;
199 lck_grp_attr_t *dn_mutex_grp_attr;
200 lck_attr_t *dn_mutex_attr;
201 lck_mtx_t *dn_mutex;
202
203 static int config_pipe(struct dn_pipe *p);
204 static int ip_dn_ctl(struct sockopt *sopt);
205
206 static void dummynet(void *);
207 static void dummynet_flush(void);
208 void dummynet_drain(void);
209 static ip_dn_io_t dummynet_io;
210 static void dn_rule_delete(void *);
211
212 int if_tx_rdy(struct ifnet *ifp);
213
214 /*
215 * Heap management functions.
216 *
217 * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2.
218 * Some macros help finding parent/children so we can optimize them.
219 *
220 * heap_init() is called to expand the heap when needed.
221 * Increment size in blocks of 16 entries.
222 * XXX failure to allocate a new element is a pretty bad failure
223 * as we basically stall a whole queue forever!!
224 * Returns 1 on error, 0 on success
225 */
226 #define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 )
227 #define HEAP_LEFT(x) ( 2*(x) + 1 )
228 #define HEAP_IS_LEFT(x) ( (x) & 1 )
229 #define HEAP_RIGHT(x) ( 2*(x) + 2 )
230 #define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
231 #define HEAP_INCREMENT 15
232
233 static int
234 heap_init(struct dn_heap *h, int new_size)
235 {
236 struct dn_heap_entry *p;
237
238 if (h->size >= new_size ) {
239 printf("dummynet: heap_init, Bogus call, have %d want %d\n",
240 h->size, new_size);
241 return 0 ;
242 }
243 new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT ;
244 p = _MALLOC(new_size * sizeof(*p), M_DUMMYNET, M_DONTWAIT );
245 if (p == NULL) {
246 printf("dummynet: heap_init, resize %d failed\n", new_size );
247 return 1 ; /* error */
248 }
249 if (h->size > 0) {
250 bcopy(h->p, p, h->size * sizeof(*p) );
251 FREE(h->p, M_DUMMYNET);
252 }
253 h->p = p ;
254 h->size = new_size ;
255 return 0 ;
256 }
257
258 /*
259 * Insert element in heap. Normally, p != NULL, we insert p in
260 * a new position and bubble up. If p == NULL, then the element is
261 * already in place, and key is the position where to start the
262 * bubble-up.
263 * Returns 1 on failure (cannot allocate new heap entry)
264 *
265 * If offset > 0 the position (index, int) of the element in the heap is
266 * also stored in the element itself at the given offset in bytes.
267 */
268 #define SET_OFFSET(heap, node) \
269 if (heap->offset > 0) \
270 *((int *)((char *)(heap->p[node].object) + heap->offset)) = node ;
271 /*
272 * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value.
273 */
274 #define RESET_OFFSET(heap, node) \
275 if (heap->offset > 0) \
276 *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ;
277 static int
278 heap_insert(struct dn_heap *h, dn_key key1, void *p)
279 {
280 int son = h->elements ;
281
282 if (p == NULL) /* data already there, set starting point */
283 son = key1 ;
284 else { /* insert new element at the end, possibly resize */
285 son = h->elements ;
286 if (son == h->size) /* need resize... */
287 if (heap_init(h, h->elements+1) )
288 return 1 ; /* failure... */
289 h->p[son].object = p ;
290 h->p[son].key = key1 ;
291 h->elements++ ;
292 }
293 while (son > 0) { /* bubble up */
294 int father = HEAP_FATHER(son) ;
295 struct dn_heap_entry tmp ;
296
297 if (DN_KEY_LT( h->p[father].key, h->p[son].key ) )
298 break ; /* found right position */
299 /* son smaller than father, swap and repeat */
300 HEAP_SWAP(h->p[son], h->p[father], tmp) ;
301 SET_OFFSET(h, son);
302 son = father ;
303 }
304 SET_OFFSET(h, son);
305 return 0 ;
306 }
307
308 /*
309 * remove top element from heap, or obj if obj != NULL
310 */
311 static void
312 heap_extract(struct dn_heap *h, void *obj)
313 {
314 int child, father, maxelt = h->elements - 1 ;
315
316 if (maxelt < 0) {
317 printf("dummynet: warning, extract from empty heap 0x%p\n", h);
318 return ;
319 }
320 father = 0 ; /* default: move up smallest child */
321 if (obj != NULL) { /* extract specific element, index is at offset */
322 if (h->offset <= 0)
323 panic("dummynet: heap_extract from middle not supported on this heap!!!\n");
324 father = *((int *)((char *)obj + h->offset)) ;
325 if (father < 0 || father >= h->elements) {
326 printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
327 father, h->elements);
328 panic("dummynet: heap_extract");
329 }
330 }
331 RESET_OFFSET(h, father);
332 child = HEAP_LEFT(father) ; /* left child */
333 while (child <= maxelt) { /* valid entry */
334 if (child != maxelt && DN_KEY_LT(h->p[child+1].key, h->p[child].key) )
335 child = child+1 ; /* take right child, otherwise left */
336 h->p[father] = h->p[child] ;
337 SET_OFFSET(h, father);
338 father = child ;
339 child = HEAP_LEFT(child) ; /* left child for next loop */
340 }
341 h->elements-- ;
342 if (father != maxelt) {
343 /*
344 * Fill hole with last entry and bubble up, reusing the insert code
345 */
346 h->p[father] = h->p[maxelt] ;
347 heap_insert(h, father, NULL); /* this one cannot fail */
348 }
349 }
350
351 #if 0
352 /*
353 * change object position and update references
354 * XXX this one is never used!
355 */
356 static void
357 heap_move(struct dn_heap *h, dn_key new_key, void *object)
358 {
359 int temp;
360 int i ;
361 int maxelt = h->elements-1 ;
362 struct dn_heap_entry buf ;
363
364 if (h->offset <= 0)
365 panic("cannot move items on this heap");
366
367 i = *((int *)((char *)object + h->offset));
368 if (DN_KEY_LT(new_key, h->p[i].key) ) { /* must move up */
369 h->p[i].key = new_key ;
370 for (; i>0 && DN_KEY_LT(new_key, h->p[(temp = HEAP_FATHER(i))].key) ;
371 i = temp ) { /* bubble up */
372 HEAP_SWAP(h->p[i], h->p[temp], buf) ;
373 SET_OFFSET(h, i);
374 }
375 } else { /* must move down */
376 h->p[i].key = new_key ;
377 while ( (temp = HEAP_LEFT(i)) <= maxelt ) { /* found left child */
378 if ((temp != maxelt) && DN_KEY_GT(h->p[temp].key, h->p[temp+1].key))
379 temp++ ; /* select child with min key */
380 if (DN_KEY_GT(new_key, h->p[temp].key)) { /* go down */
381 HEAP_SWAP(h->p[i], h->p[temp], buf) ;
382 SET_OFFSET(h, i);
383 } else
384 break ;
385 i = temp ;
386 }
387 }
388 SET_OFFSET(h, i);
389 }
390 #endif /* heap_move, unused */
391
392 /*
393 * heapify() will reorganize data inside an array to maintain the
394 * heap property. It is needed when we delete a bunch of entries.
395 */
396 static void
397 heapify(struct dn_heap *h)
398 {
399 int i ;
400
401 for (i = 0 ; i < h->elements ; i++ )
402 heap_insert(h, i , NULL) ;
403 }
404
405 /*
406 * cleanup the heap and free data structure
407 */
408 static void
409 heap_free(struct dn_heap *h)
410 {
411 if (h->size >0 )
412 FREE(h->p, M_DUMMYNET);
413 bzero(h, sizeof(*h));
414 }
415
416 /*
417 * --- end of heap management functions ---
418 */
419
420 /*
421 * Return the mbuf tag holding the dummynet state. As an optimization
422 * this is assumed to be the first tag on the list. If this turns out
423 * wrong we'll need to search the list.
424 */
425 static struct dn_pkt_tag *
426 dn_tag_get(struct mbuf *m)
427 {
428 struct m_tag *mtag = m_tag_first(m);
429 /* KASSERT(mtag != NULL &&
430 mtag->m_tag_id == KERNEL_MODULE_TAG_ID &&
431 mtag->m_tag_type == KERNEL_TAG_TYPE_DUMMYNET,
432 ("packet on dummynet queue w/o dummynet tag!"));
433 */
434 return (struct dn_pkt_tag *)(mtag+1);
435 }
436
437 /*
438 * Scheduler functions:
439 *
440 * transmit_event() is called when the delay-line needs to enter
441 * the scheduler, either because of existing pkts getting ready,
442 * or new packets entering the queue. The event handled is the delivery
443 * time of the packet.
444 *
445 * ready_event() does something similar with fixed-rate queues, and the
446 * event handled is the finish time of the head pkt.
447 *
448 * wfq_ready_event() does something similar with WF2Q queues, and the
449 * event handled is the start time of the head pkt.
450 *
451 * In all cases, we make sure that the data structures are consistent
452 * before passing pkts out, because this might trigger recursive
453 * invocations of the procedures.
454 */
455 static void
456 transmit_event(struct dn_pipe *pipe)
457 {
458 struct mbuf *m ;
459 struct dn_pkt_tag *pkt ;
460
461 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
462
463 while ( (m = pipe->head) ) {
464 pkt = dn_tag_get(m);
465 if ( !DN_KEY_LEQ(pkt->output_time, curr_time) )
466 break;
467 /*
468 * first unlink, then call procedures, since ip_input() can invoke
469 * ip_output() and viceversa, thus causing nested calls
470 */
471 pipe->head = m->m_nextpkt ;
472 m->m_nextpkt = NULL;
473
474 /* XXX: drop the lock for now to avoid LOR's */
475 lck_mtx_unlock(dn_mutex);
476 switch (pkt->dn_dir) {
477 case DN_TO_IP_OUT: {
478 struct route tmp_rt = pkt->ro;
479 (void)ip_output(m, NULL, NULL, pkt->flags, NULL, NULL);
480 if (tmp_rt.ro_rt) {
481 rtfree(tmp_rt.ro_rt);
482 tmp_rt.ro_rt = NULL;
483 }
484 break ;
485 }
486 case DN_TO_IP_IN :
487 proto_inject(PF_INET, m);
488 break ;
489
490 #if BRIDGE
491 case DN_TO_BDG_FWD :
492 /*
493 * The bridge requires/assumes the Ethernet header is
494 * contiguous in the first mbuf header. Insure this is true.
495 */
496 if (BDG_LOADED) {
497 if (m->m_len < ETHER_HDR_LEN &&
498 (m = m_pullup(m, ETHER_HDR_LEN)) == NULL) {
499 printf("dummynet/bridge: pullup fail, dropping pkt\n");
500 break;
501 }
502 m = bdg_forward_ptr(m, pkt->ifp);
503 } else {
504 /* somebody unloaded the bridge module. Drop pkt */
505 /* XXX rate limit */
506 printf("dummynet: dropping bridged packet trapped in pipe\n");
507 }
508 if (m)
509 m_freem(m);
510 break;
511 #endif
512 default:
513 printf("dummynet: bad switch %d!\n", pkt->dn_dir);
514 m_freem(m);
515 break ;
516 }
517 lck_mtx_lock(dn_mutex);
518 }
519 /* if there are leftover packets, put into the heap for next event */
520 if ( (m = pipe->head) ) {
521 pkt = dn_tag_get(m);
522 /* XXX should check errors on heap_insert, by draining the
523 * whole pipe p and hoping in the future we are more successful
524 */
525 heap_insert(&extract_heap, pkt->output_time, pipe);
526 }
527 }
528
529 /*
530 * the following macro computes how many ticks we have to wait
531 * before being able to transmit a packet. The credit is taken from
532 * either a pipe (WF2Q) or a flow_queue (per-flow queueing)
533 */
534
535 /* hz is 100, which gives a granularity of 10ms in the old timer.
536 * The timer has been changed to fire every 1ms, so the use of
537 * hz has been modified here. All instances of hz have been left
538 * in place but adjusted by a factor of 10 so that hz is functionally
539 * equal to 1000.
540 */
541 #define SET_TICKS(_m, q, p) \
542 ((_m)->m_pkthdr.len*8*(hz*10) - (q)->numbytes + p->bandwidth - 1 ) / \
543 p->bandwidth ;
544
545 /*
546 * extract pkt from queue, compute output time (could be now)
547 * and put into delay line (p_queue)
548 */
549 static void
550 move_pkt(struct mbuf *pkt, struct dn_flow_queue *q,
551 struct dn_pipe *p, int len)
552 {
553 struct dn_pkt_tag *dt = dn_tag_get(pkt);
554
555 q->head = pkt->m_nextpkt ;
556 q->len-- ;
557 q->len_bytes -= len ;
558
559 dt->output_time = curr_time + p->delay ;
560
561 if (p->head == NULL)
562 p->head = pkt;
563 else
564 p->tail->m_nextpkt = pkt;
565 p->tail = pkt;
566 p->tail->m_nextpkt = NULL;
567 }
568
569 /*
570 * ready_event() is invoked every time the queue must enter the
571 * scheduler, either because the first packet arrives, or because
572 * a previously scheduled event fired.
573 * On invokation, drain as many pkts as possible (could be 0) and then
574 * if there are leftover packets reinsert the pkt in the scheduler.
575 */
576 static void
577 ready_event(struct dn_flow_queue *q)
578 {
579 struct mbuf *pkt;
580 struct dn_pipe *p = q->fs->pipe ;
581 int p_was_empty ;
582
583 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
584
585 if (p == NULL) {
586 printf("dummynet: ready_event- pipe is gone\n");
587 return ;
588 }
589 p_was_empty = (p->head == NULL) ;
590
591 /*
592 * schedule fixed-rate queues linked to this pipe:
593 * Account for the bw accumulated since last scheduling, then
594 * drain as many pkts as allowed by q->numbytes and move to
595 * the delay line (in p) computing output time.
596 * bandwidth==0 (no limit) means we can drain the whole queue,
597 * setting len_scaled = 0 does the job.
598 */
599 q->numbytes += ( curr_time - q->sched_time ) * p->bandwidth;
600 while ( (pkt = q->head) != NULL ) {
601 int len = pkt->m_pkthdr.len;
602 int len_scaled = p->bandwidth ? len*8*(hz*10) : 0 ;
603 if (len_scaled > q->numbytes )
604 break ;
605 q->numbytes -= len_scaled ;
606 move_pkt(pkt, q, p, len);
607 }
608 /*
609 * If we have more packets queued, schedule next ready event
610 * (can only occur when bandwidth != 0, otherwise we would have
611 * flushed the whole queue in the previous loop).
612 * To this purpose we record the current time and compute how many
613 * ticks to go for the finish time of the packet.
614 */
615 if ( (pkt = q->head) != NULL ) { /* this implies bandwidth != 0 */
616 dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */
617 q->sched_time = curr_time ;
618 heap_insert(&ready_heap, curr_time + t, (void *)q );
619 /* XXX should check errors on heap_insert, and drain the whole
620 * queue on error hoping next time we are luckier.
621 */
622 } else { /* RED needs to know when the queue becomes empty */
623 q->q_time = curr_time;
624 q->numbytes = 0;
625 }
626 /*
627 * If the delay line was empty call transmit_event(p) now.
628 * Otherwise, the scheduler will take care of it.
629 */
630 if (p_was_empty)
631 transmit_event(p);
632 }
633
634 /*
635 * Called when we can transmit packets on WF2Q queues. Take pkts out of
636 * the queues at their start time, and enqueue into the delay line.
637 * Packets are drained until p->numbytes < 0. As long as
638 * len_scaled >= p->numbytes, the packet goes into the delay line
639 * with a deadline p->delay. For the last packet, if p->numbytes<0,
640 * there is an additional delay.
641 */
642 static void
643 ready_event_wfq(struct dn_pipe *p)
644 {
645 int p_was_empty = (p->head == NULL) ;
646 struct dn_heap *sch = &(p->scheduler_heap);
647 struct dn_heap *neh = &(p->not_eligible_heap) ;
648
649 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
650
651 if (p->if_name[0] == 0) /* tx clock is simulated */
652 p->numbytes += ( curr_time - p->sched_time ) * p->bandwidth;
653 else { /* tx clock is for real, the ifq must be empty or this is a NOP */
654 if (p->ifp && p->ifp->if_snd.ifq_head != NULL)
655 return ;
656 else {
657 DPRINTF(("dummynet: pipe %d ready from %s --\n",
658 p->pipe_nr, p->if_name));
659 }
660 }
661
662 /*
663 * While we have backlogged traffic AND credit, we need to do
664 * something on the queue.
665 */
666 while ( p->numbytes >=0 && (sch->elements>0 || neh->elements >0) ) {
667 if (sch->elements > 0) { /* have some eligible pkts to send out */
668 struct dn_flow_queue *q = sch->p[0].object ;
669 struct mbuf *pkt = q->head;
670 struct dn_flow_set *fs = q->fs;
671 u_int64_t len = pkt->m_pkthdr.len;
672 int len_scaled = p->bandwidth ? len*8*(hz*10) : 0 ;
673
674 heap_extract(sch, NULL); /* remove queue from heap */
675 p->numbytes -= len_scaled ;
676 move_pkt(pkt, q, p, len);
677
678 p->V += (len<<MY_M) / p->sum ; /* update V */
679 q->S = q->F ; /* update start time */
680 if (q->len == 0) { /* Flow not backlogged any more */
681 fs->backlogged-- ;
682 heap_insert(&(p->idle_heap), q->F, q);
683 } else { /* still backlogged */
684 /*
685 * update F and position in backlogged queue, then
686 * put flow in not_eligible_heap (we will fix this later).
687 */
688 len = (q->head)->m_pkthdr.len;
689 q->F += (len<<MY_M)/(u_int64_t) fs->weight ;
690 if (DN_KEY_LEQ(q->S, p->V))
691 heap_insert(neh, q->S, q);
692 else
693 heap_insert(sch, q->F, q);
694 }
695 }
696 /*
697 * now compute V = max(V, min(S_i)). Remember that all elements in sch
698 * have by definition S_i <= V so if sch is not empty, V is surely
699 * the max and we must not update it. Conversely, if sch is empty
700 * we only need to look at neh.
701 */
702 if (sch->elements == 0 && neh->elements > 0)
703 p->V = MAX64 ( p->V, neh->p[0].key );
704 /* move from neh to sch any packets that have become eligible */
705 while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V) ) {
706 struct dn_flow_queue *q = neh->p[0].object ;
707 heap_extract(neh, NULL);
708 heap_insert(sch, q->F, q);
709 }
710
711 if (p->if_name[0] != '\0') {/* tx clock is from a real thing */
712 p->numbytes = -1 ; /* mark not ready for I/O */
713 break ;
714 }
715 }
716 if (sch->elements == 0 && neh->elements == 0 && p->numbytes >= 0
717 && p->idle_heap.elements > 0) {
718 /*
719 * no traffic and no events scheduled. We can get rid of idle-heap.
720 */
721 int i ;
722
723 for (i = 0 ; i < p->idle_heap.elements ; i++) {
724 struct dn_flow_queue *q = p->idle_heap.p[i].object ;
725
726 q->F = 0 ;
727 q->S = q->F + 1 ;
728 }
729 p->sum = 0 ;
730 p->V = 0 ;
731 p->idle_heap.elements = 0 ;
732 }
733 /*
734 * If we are getting clocks from dummynet (not a real interface) and
735 * If we are under credit, schedule the next ready event.
736 * Also fix the delivery time of the last packet.
737 */
738 if (p->if_name[0]==0 && p->numbytes < 0) { /* this implies bandwidth >0 */
739 dn_key t=0 ; /* number of ticks i have to wait */
740
741 if (p->bandwidth > 0)
742 t = ( p->bandwidth -1 - p->numbytes) / p->bandwidth ;
743 dn_tag_get(p->tail)->output_time += t ;
744 p->sched_time = curr_time ;
745 heap_insert(&wfq_ready_heap, curr_time + t, (void *)p);
746 /* XXX should check errors on heap_insert, and drain the whole
747 * queue on error hoping next time we are luckier.
748 */
749 }
750 /*
751 * If the delay line was empty call transmit_event(p) now.
752 * Otherwise, the scheduler will take care of it.
753 */
754 if (p_was_empty)
755 transmit_event(p);
756 }
757
758 /*
759 * This is called every 1ms. It is used to
760 * increment the current tick counter and schedule expired events.
761 */
762 static void
763 dummynet(__unused void * unused)
764 {
765 void *p ; /* generic parameter to handler */
766 struct dn_heap *h ;
767 struct dn_heap *heaps[3];
768 int i;
769 struct dn_pipe *pe ;
770 struct timespec ts;
771 struct timeval tv;
772
773 heaps[0] = &ready_heap ; /* fixed-rate queues */
774 heaps[1] = &wfq_ready_heap ; /* wfq queues */
775 heaps[2] = &extract_heap ; /* delay line */
776
777 lck_mtx_lock(dn_mutex);
778
779 /* make all time measurements in milliseconds (ms) -
780 * here we convert secs and usecs to msecs (just divide the
781 * usecs and take the closest whole number).
782 */
783 microuptime(&tv);
784 curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
785
786 for (i=0; i < 3 ; i++) {
787 h = heaps[i];
788 while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time) ) {
789 if (h->p[0].key > curr_time)
790 printf("dummynet: warning, heap %d is %d ticks late\n",
791 i, (int)(curr_time - h->p[0].key));
792 p = h->p[0].object ; /* store a copy before heap_extract */
793 heap_extract(h, NULL); /* need to extract before processing */
794 if (i == 0)
795 ready_event(p) ;
796 else if (i == 1) {
797 struct dn_pipe *pipe = p;
798 if (pipe->if_name[0] != '\0')
799 printf("dummynet: bad ready_event_wfq for pipe %s\n",
800 pipe->if_name);
801 else
802 ready_event_wfq(p) ;
803 } else
804 transmit_event(p);
805 }
806 }
807 /* sweep pipes trying to expire idle flow_queues */
808 for (pe = all_pipes; pe ; pe = pe->next )
809 if (pe->idle_heap.elements > 0 &&
810 DN_KEY_LT(pe->idle_heap.p[0].key, pe->V) ) {
811 struct dn_flow_queue *q = pe->idle_heap.p[0].object ;
812
813 heap_extract(&(pe->idle_heap), NULL);
814 q->S = q->F + 1 ; /* mark timestamp as invalid */
815 pe->sum -= q->fs->weight ;
816 }
817
818 /* check the heaps to see if there's still stuff in there, and
819 * only set the timer if there are packets to process
820 */
821 timer_enabled = 0;
822 for (i=0; i < 3 ; i++) {
823 h = heaps[i];
824 if (h->elements > 0) { // set the timer
825 ts.tv_sec = 0;
826 ts.tv_nsec = 1 * 1000000; // 1ms
827 timer_enabled = 1;
828 bsd_timeout(dummynet, NULL, &ts);
829 break;
830 }
831 }
832
833 lck_mtx_unlock(dn_mutex);
834 }
835
836 /*
837 * called by an interface when tx_rdy occurs.
838 */
839 int
840 if_tx_rdy(struct ifnet *ifp)
841 {
842 struct dn_pipe *p;
843
844 lck_mtx_lock(dn_mutex);
845 for (p = all_pipes; p ; p = p->next )
846 if (p->ifp == ifp)
847 break ;
848 if (p == NULL) {
849 char buf[32];
850 snprintf(buf, sizeof(buf), "%s%d",ifp->if_name, ifp->if_unit);
851 for (p = all_pipes; p ; p = p->next )
852 if (!strcmp(p->if_name, buf) ) {
853 p->ifp = ifp ;
854 DPRINTF(("dummynet: ++ tx rdy from %s (now found)\n", buf));
855 break ;
856 }
857 }
858 if (p != NULL) {
859 DPRINTF(("dummynet: ++ tx rdy from %s%d - qlen %d\n", ifp->if_name,
860 ifp->if_unit, ifp->if_snd.ifq_len));
861 p->numbytes = 0 ; /* mark ready for I/O */
862 ready_event_wfq(p);
863 }
864 lck_mtx_lock(dn_mutex);
865
866 return 0;
867 }
868
869 /*
870 * Unconditionally expire empty queues in case of shortage.
871 * Returns the number of queues freed.
872 */
873 static int
874 expire_queues(struct dn_flow_set *fs)
875 {
876 struct dn_flow_queue *q, *prev ;
877 int i, initial_elements = fs->rq_elements ;
878 struct timeval timenow;
879
880 getmicrotime(&timenow);
881
882 if (fs->last_expired == timenow.tv_sec)
883 return 0 ;
884 fs->last_expired = timenow.tv_sec ;
885 for (i = 0 ; i <= fs->rq_size ; i++) /* last one is overflow */
886 for (prev=NULL, q = fs->rq[i] ; q != NULL ; )
887 if (q->head != NULL || q->S != q->F+1) {
888 prev = q ;
889 q = q->next ;
890 } else { /* entry is idle, expire it */
891 struct dn_flow_queue *old_q = q ;
892
893 if (prev != NULL)
894 prev->next = q = q->next ;
895 else
896 fs->rq[i] = q = q->next ;
897 fs->rq_elements-- ;
898 FREE(old_q, M_DUMMYNET);
899 }
900 return initial_elements - fs->rq_elements ;
901 }
902
903 /*
904 * If room, create a new queue and put at head of slot i;
905 * otherwise, create or use the default queue.
906 */
907 static struct dn_flow_queue *
908 create_queue(struct dn_flow_set *fs, int i)
909 {
910 struct dn_flow_queue *q ;
911
912 if (fs->rq_elements > fs->rq_size * dn_max_ratio &&
913 expire_queues(fs) == 0) {
914 /*
915 * No way to get room, use or create overflow queue.
916 */
917 i = fs->rq_size ;
918 if ( fs->rq[i] != NULL )
919 return fs->rq[i] ;
920 }
921 q = _MALLOC(sizeof(*q), M_DUMMYNET, M_DONTWAIT | M_ZERO);
922 if (q == NULL) {
923 printf("dummynet: sorry, cannot allocate queue for new flow\n");
924 return NULL ;
925 }
926 q->fs = fs ;
927 q->hash_slot = i ;
928 q->next = fs->rq[i] ;
929 q->S = q->F + 1; /* hack - mark timestamp as invalid */
930 fs->rq[i] = q ;
931 fs->rq_elements++ ;
932 return q ;
933 }
934
935 /*
936 * Given a flow_set and a pkt in last_pkt, find a matching queue
937 * after appropriate masking. The queue is moved to front
938 * so that further searches take less time.
939 */
940 static struct dn_flow_queue *
941 find_queue(struct dn_flow_set *fs, struct ipfw_flow_id *id)
942 {
943 int i = 0 ; /* we need i and q for new allocations */
944 struct dn_flow_queue *q, *prev;
945
946 if ( !(fs->flags_fs & DN_HAVE_FLOW_MASK) )
947 q = fs->rq[0] ;
948 else {
949 /* first, do the masking */
950 id->dst_ip &= fs->flow_mask.dst_ip ;
951 id->src_ip &= fs->flow_mask.src_ip ;
952 id->dst_port &= fs->flow_mask.dst_port ;
953 id->src_port &= fs->flow_mask.src_port ;
954 id->proto &= fs->flow_mask.proto ;
955 id->flags = 0 ; /* we don't care about this one */
956 /* then, hash function */
957 i = ( (id->dst_ip) & 0xffff ) ^
958 ( (id->dst_ip >> 15) & 0xffff ) ^
959 ( (id->src_ip << 1) & 0xffff ) ^
960 ( (id->src_ip >> 16 ) & 0xffff ) ^
961 (id->dst_port << 1) ^ (id->src_port) ^
962 (id->proto );
963 i = i % fs->rq_size ;
964 /* finally, scan the current list for a match */
965 searches++ ;
966 for (prev=NULL, q = fs->rq[i] ; q ; ) {
967 search_steps++;
968 if (id->dst_ip == q->id.dst_ip &&
969 id->src_ip == q->id.src_ip &&
970 id->dst_port == q->id.dst_port &&
971 id->src_port == q->id.src_port &&
972 id->proto == q->id.proto &&
973 id->flags == q->id.flags)
974 break ; /* found */
975 else if (pipe_expire && q->head == NULL && q->S == q->F+1 ) {
976 /* entry is idle and not in any heap, expire it */
977 struct dn_flow_queue *old_q = q ;
978
979 if (prev != NULL)
980 prev->next = q = q->next ;
981 else
982 fs->rq[i] = q = q->next ;
983 fs->rq_elements-- ;
984 FREE(old_q, M_DUMMYNET);
985 continue ;
986 }
987 prev = q ;
988 q = q->next ;
989 }
990 if (q && prev != NULL) { /* found and not in front */
991 prev->next = q->next ;
992 q->next = fs->rq[i] ;
993 fs->rq[i] = q ;
994 }
995 }
996 if (q == NULL) { /* no match, need to allocate a new entry */
997 q = create_queue(fs, i);
998 if (q != NULL)
999 q->id = *id ;
1000 }
1001 return q ;
1002 }
1003
1004 static int
1005 red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len)
1006 {
1007 /*
1008 * RED algorithm
1009 *
1010 * RED calculates the average queue size (avg) using a low-pass filter
1011 * with an exponential weighted (w_q) moving average:
1012 * avg <- (1-w_q) * avg + w_q * q_size
1013 * where q_size is the queue length (measured in bytes or * packets).
1014 *
1015 * If q_size == 0, we compute the idle time for the link, and set
1016 * avg = (1 - w_q)^(idle/s)
1017 * where s is the time needed for transmitting a medium-sized packet.
1018 *
1019 * Now, if avg < min_th the packet is enqueued.
1020 * If avg > max_th the packet is dropped. Otherwise, the packet is
1021 * dropped with probability P function of avg.
1022 *
1023 */
1024
1025 int64_t p_b = 0;
1026 /* queue in bytes or packets ? */
1027 u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len;
1028
1029 DPRINTF(("\ndummynet: %d q: %2u ", (int) curr_time, q_size));
1030
1031 /* average queue size estimation */
1032 if (q_size != 0) {
1033 /*
1034 * queue is not empty, avg <- avg + (q_size - avg) * w_q
1035 */
1036 int diff = SCALE(q_size) - q->avg;
1037 int64_t v = SCALE_MUL((int64_t) diff, (int64_t) fs->w_q);
1038
1039 q->avg += (int) v;
1040 } else {
1041 /*
1042 * queue is empty, find for how long the queue has been
1043 * empty and use a lookup table for computing
1044 * (1 - * w_q)^(idle_time/s) where s is the time to send a
1045 * (small) packet.
1046 * XXX check wraps...
1047 */
1048 if (q->avg) {
1049 u_int t = (curr_time - q->q_time) / fs->lookup_step;
1050
1051 q->avg = (t < fs->lookup_depth) ?
1052 SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
1053 }
1054 }
1055 DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q->avg)));
1056
1057 /* should i drop ? */
1058
1059 if (q->avg < fs->min_th) {
1060 q->count = -1;
1061 return 0; /* accept packet ; */
1062 }
1063 if (q->avg >= fs->max_th) { /* average queue >= max threshold */
1064 if (fs->flags_fs & DN_IS_GENTLE_RED) {
1065 /*
1066 * According to Gentle-RED, if avg is greater than max_th the
1067 * packet is dropped with a probability
1068 * p_b = c_3 * avg - c_4
1069 * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
1070 */
1071 p_b = SCALE_MUL((int64_t) fs->c_3, (int64_t) q->avg) - fs->c_4;
1072 } else {
1073 q->count = -1;
1074 DPRINTF(("dummynet: - drop"));
1075 return 1 ;
1076 }
1077 } else if (q->avg > fs->min_th) {
1078 /*
1079 * we compute p_b using the linear dropping function p_b = c_1 *
1080 * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
1081 * max_p * min_th / (max_th - min_th)
1082 */
1083 p_b = SCALE_MUL((int64_t) fs->c_1, (int64_t) q->avg) - fs->c_2;
1084 }
1085 if (fs->flags_fs & DN_QSIZE_IS_BYTES)
1086 p_b = (p_b * len) / fs->max_pkt_size;
1087 if (++q->count == 0)
1088 q->random = MY_RANDOM & 0xffff;
1089 else {
1090 /*
1091 * q->count counts packets arrived since last drop, so a greater
1092 * value of q->count means a greater packet drop probability.
1093 */
1094 if (SCALE_MUL(p_b, SCALE((int64_t) q->count)) > q->random) {
1095 q->count = 0;
1096 DPRINTF(("dummynet: - red drop"));
1097 /* after a drop we calculate a new random value */
1098 q->random = MY_RANDOM & 0xffff;
1099 return 1; /* drop */
1100 }
1101 }
1102 /* end of RED algorithm */
1103 return 0 ; /* accept */
1104 }
1105
1106 static __inline
1107 struct dn_flow_set *
1108 locate_flowset(int pipe_nr, struct ip_fw *rule)
1109 {
1110 struct dn_flow_set *fs;
1111 ipfw_insn *cmd = rule->cmd + rule->act_ofs;
1112
1113 if (cmd->opcode == O_LOG)
1114 cmd += F_LEN(cmd);
1115
1116 bcopy(& ((ipfw_insn_pipe *)cmd)->pipe_ptr, &fs, sizeof(fs));
1117
1118 if (fs != NULL)
1119 return fs;
1120
1121 if (cmd->opcode == O_QUEUE) {
1122 for (fs=all_flow_sets; fs && fs->fs_nr != pipe_nr; fs=fs->next)
1123 ;
1124 }
1125 else {
1126 struct dn_pipe *p1;
1127 for (p1 = all_pipes; p1 && p1->pipe_nr != pipe_nr; p1 = p1->next)
1128 ;
1129 if (p1 != NULL)
1130 fs = &(p1->fs) ;
1131 }
1132 /* record for the future */
1133 bcopy(&fs, & ((ipfw_insn_pipe *)cmd)->pipe_ptr, sizeof(fs));
1134
1135 return fs ;
1136 }
1137
1138 /*
1139 * dummynet hook for packets. Below 'pipe' is a pipe or a queue
1140 * depending on whether WF2Q or fixed bw is used.
1141 *
1142 * pipe_nr pipe or queue the packet is destined for.
1143 * dir where shall we send the packet after dummynet.
1144 * m the mbuf with the packet
1145 * ifp the 'ifp' parameter from the caller.
1146 * NULL in ip_input, destination interface in ip_output,
1147 * real_dst in bdg_forward
1148 * ro route parameter (only used in ip_output, NULL otherwise)
1149 * dst destination address, only used by ip_output
1150 * rule matching rule, in case of multiple passes
1151 * flags flags from the caller, only used in ip_output
1152 *
1153 */
1154 static int
1155 dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa)
1156 {
1157 struct dn_pkt_tag *pkt;
1158 struct m_tag *mtag;
1159 struct dn_flow_set *fs;
1160 struct dn_pipe *pipe ;
1161 u_int64_t len = m->m_pkthdr.len ;
1162 struct dn_flow_queue *q = NULL ;
1163 int is_pipe;
1164 struct timespec ts;
1165 struct timeval tv;
1166
1167 #if IPFW2
1168 ipfw_insn *cmd = fwa->rule->cmd + fwa->rule->act_ofs;
1169
1170 if (cmd->opcode == O_LOG)
1171 cmd += F_LEN(cmd);
1172 is_pipe = (cmd->opcode == O_PIPE);
1173 #else
1174 is_pipe = (fwa->rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_PIPE;
1175 #endif
1176
1177 pipe_nr &= 0xffff ;
1178
1179 lck_mtx_lock(dn_mutex);
1180
1181 /* make all time measurements in milliseconds (ms) -
1182 * here we convert secs and usecs to msecs (just divide the
1183 * usecs and take the closest whole number).
1184 */
1185 microuptime(&tv);
1186 curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
1187
1188 /*
1189 * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule.
1190 */
1191 fs = locate_flowset(pipe_nr, fwa->rule);
1192 if (fs == NULL)
1193 goto dropit ; /* this queue/pipe does not exist! */
1194 pipe = fs->pipe ;
1195 if (pipe == NULL) { /* must be a queue, try find a matching pipe */
1196 for (pipe = all_pipes; pipe && pipe->pipe_nr != fs->parent_nr;
1197 pipe = pipe->next)
1198 ;
1199 if (pipe != NULL)
1200 fs->pipe = pipe ;
1201 else {
1202 printf("dummynet: no pipe %d for queue %d, drop pkt\n",
1203 fs->parent_nr, fs->fs_nr);
1204 goto dropit ;
1205 }
1206 }
1207 q = find_queue(fs, &(fwa->f_id));
1208 if ( q == NULL )
1209 goto dropit ; /* cannot allocate queue */
1210 /*
1211 * update statistics, then check reasons to drop pkt
1212 */
1213 q->tot_bytes += len ;
1214 q->tot_pkts++ ;
1215 if ( fs->plr && (MY_RANDOM < fs->plr) )
1216 goto dropit ; /* random pkt drop */
1217 if ( fs->flags_fs & DN_QSIZE_IS_BYTES) {
1218 if (q->len_bytes > fs->qsize)
1219 goto dropit ; /* queue size overflow */
1220 } else {
1221 if (q->len >= fs->qsize)
1222 goto dropit ; /* queue count overflow */
1223 }
1224 if ( fs->flags_fs & DN_IS_RED && red_drops(fs, q, len) )
1225 goto dropit ;
1226
1227 /* XXX expensive to zero, see if we can remove it*/
1228 mtag = m_tag_alloc(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET,
1229 sizeof(struct dn_pkt_tag), M_NOWAIT);
1230 if ( mtag == NULL )
1231 goto dropit ; /* cannot allocate packet header */
1232 m_tag_prepend(m, mtag); /* attach to mbuf chain */
1233
1234 pkt = (struct dn_pkt_tag *)(mtag+1);
1235 bzero(pkt, sizeof(struct dn_pkt_tag));
1236 /* ok, i can handle the pkt now... */
1237 /* build and enqueue packet + parameters */
1238 pkt->rule = fwa->rule ;
1239 pkt->dn_dir = dir ;
1240
1241 pkt->ifp = fwa->oif;
1242 if (dir == DN_TO_IP_OUT) {
1243 /*
1244 * We need to copy *ro because for ICMP pkts (and maybe others)
1245 * the caller passed a pointer into the stack; dst might also be
1246 * a pointer into *ro so it needs to be updated.
1247 */
1248 lck_mtx_lock(rt_mtx);
1249 pkt->ro = *(fwa->ro);
1250 if (fwa->ro->ro_rt)
1251 rtref(fwa->ro->ro_rt);
1252 if (fwa->dst == (struct sockaddr_in *)&fwa->ro->ro_dst) /* dst points into ro */
1253 fwa->dst = (struct sockaddr_in *)&(pkt->ro.ro_dst) ;
1254 lck_mtx_unlock(rt_mtx);
1255
1256 pkt->dn_dst = fwa->dst;
1257 pkt->flags = fwa->flags;
1258 if (fwa->ipoa != NULL)
1259 pkt->ipoa = *(fwa->ipoa);
1260 }
1261 if (q->head == NULL)
1262 q->head = m;
1263 else
1264 q->tail->m_nextpkt = m;
1265 q->tail = m;
1266 q->len++;
1267 q->len_bytes += len ;
1268
1269 if ( q->head != m ) /* flow was not idle, we are done */
1270 goto done;
1271 /*
1272 * If we reach this point the flow was previously idle, so we need
1273 * to schedule it. This involves different actions for fixed-rate or
1274 * WF2Q queues.
1275 */
1276 if (is_pipe) {
1277 /*
1278 * Fixed-rate queue: just insert into the ready_heap.
1279 */
1280 dn_key t = 0 ;
1281 if (pipe->bandwidth)
1282 t = SET_TICKS(m, q, pipe);
1283 q->sched_time = curr_time ;
1284 if (t == 0) /* must process it now */
1285 ready_event( q );
1286 else
1287 heap_insert(&ready_heap, curr_time + t , q );
1288 } else {
1289 /*
1290 * WF2Q. First, compute start time S: if the flow was idle (S=F+1)
1291 * set S to the virtual time V for the controlling pipe, and update
1292 * the sum of weights for the pipe; otherwise, remove flow from
1293 * idle_heap and set S to max(F,V).
1294 * Second, compute finish time F = S + len/weight.
1295 * Third, if pipe was idle, update V=max(S, V).
1296 * Fourth, count one more backlogged flow.
1297 */
1298 if (DN_KEY_GT(q->S, q->F)) { /* means timestamps are invalid */
1299 q->S = pipe->V ;
1300 pipe->sum += fs->weight ; /* add weight of new queue */
1301 } else {
1302 heap_extract(&(pipe->idle_heap), q);
1303 q->S = MAX64(q->F, pipe->V ) ;
1304 }
1305 q->F = q->S + ( len<<MY_M )/(u_int64_t) fs->weight;
1306
1307 if (pipe->not_eligible_heap.elements == 0 &&
1308 pipe->scheduler_heap.elements == 0)
1309 pipe->V = MAX64 ( q->S, pipe->V );
1310 fs->backlogged++ ;
1311 /*
1312 * Look at eligibility. A flow is not eligibile if S>V (when
1313 * this happens, it means that there is some other flow already
1314 * scheduled for the same pipe, so the scheduler_heap cannot be
1315 * empty). If the flow is not eligible we just store it in the
1316 * not_eligible_heap. Otherwise, we store in the scheduler_heap
1317 * and possibly invoke ready_event_wfq() right now if there is
1318 * leftover credit.
1319 * Note that for all flows in scheduler_heap (SCH), S_i <= V,
1320 * and for all flows in not_eligible_heap (NEH), S_i > V .
1321 * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH,
1322 * we only need to look into NEH.
1323 */
1324 if (DN_KEY_GT(q->S, pipe->V) ) { /* not eligible */
1325 if (pipe->scheduler_heap.elements == 0)
1326 printf("dummynet: ++ ouch! not eligible but empty scheduler!\n");
1327 heap_insert(&(pipe->not_eligible_heap), q->S, q);
1328 } else {
1329 heap_insert(&(pipe->scheduler_heap), q->F, q);
1330 if (pipe->numbytes >= 0) { /* pipe is idle */
1331 if (pipe->scheduler_heap.elements != 1)
1332 printf("dummynet: OUCH! pipe should have been idle!\n");
1333 DPRINTF(("dummynet: waking up pipe %d at %d\n",
1334 pipe->pipe_nr, (int)(q->F >> MY_M)));
1335 pipe->sched_time = curr_time ;
1336 ready_event_wfq(pipe);
1337 }
1338 }
1339 }
1340 done:
1341 /* start the timer and set global if not already set */
1342 if (!timer_enabled) {
1343 ts.tv_sec = 0;
1344 ts.tv_nsec = 1 * 1000000; // 1ms
1345 timer_enabled = 1;
1346 bsd_timeout(dummynet, NULL, &ts);
1347 }
1348
1349 lck_mtx_unlock(dn_mutex);
1350 return 0;
1351
1352 dropit:
1353 if (q)
1354 q->drops++ ;
1355 lck_mtx_unlock(dn_mutex);
1356 m_freem(m);
1357 return ( (fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS);
1358 }
1359
1360 /*
1361 * Below, the rtfree is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
1362 * Doing this would probably save us the initial bzero of dn_pkt
1363 */
1364 #define DN_FREE_PKT(_m) do { \
1365 struct m_tag *tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET, NULL); \
1366 if (tag) { \
1367 struct dn_pkt_tag *n = (struct dn_pkt_tag *)(tag+1); \
1368 if (n->ro.ro_rt) { \
1369 rtfree(n->ro.ro_rt); \
1370 n->ro.ro_rt = NULL; \
1371 } \
1372 } \
1373 m_tag_delete(_m, tag); \
1374 m_freem(_m); \
1375 } while (0)
1376
1377 /*
1378 * Dispose all packets and flow_queues on a flow_set.
1379 * If all=1, also remove red lookup table and other storage,
1380 * including the descriptor itself.
1381 * For the one in dn_pipe MUST also cleanup ready_heap...
1382 */
1383 static void
1384 purge_flow_set(struct dn_flow_set *fs, int all)
1385 {
1386 struct dn_flow_queue *q, *qn ;
1387 int i ;
1388
1389 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
1390
1391 for (i = 0 ; i <= fs->rq_size ; i++ ) {
1392 for (q = fs->rq[i] ; q ; q = qn ) {
1393 struct mbuf *m, *mnext;
1394
1395 mnext = q->head;
1396 while ((m = mnext) != NULL) {
1397 mnext = m->m_nextpkt;
1398 DN_FREE_PKT(m);
1399 }
1400 qn = q->next ;
1401 FREE(q, M_DUMMYNET);
1402 }
1403 fs->rq[i] = NULL ;
1404 }
1405 fs->rq_elements = 0 ;
1406 if (all) {
1407 /* RED - free lookup table */
1408 if (fs->w_q_lookup)
1409 FREE(fs->w_q_lookup, M_DUMMYNET);
1410 if (fs->rq)
1411 FREE(fs->rq, M_DUMMYNET);
1412 /* if this fs is not part of a pipe, free it */
1413 if (fs->pipe && fs != &(fs->pipe->fs) )
1414 FREE(fs, M_DUMMYNET);
1415 }
1416 }
1417
1418 /*
1419 * Dispose all packets queued on a pipe (not a flow_set).
1420 * Also free all resources associated to a pipe, which is about
1421 * to be deleted.
1422 */
1423 static void
1424 purge_pipe(struct dn_pipe *pipe)
1425 {
1426 struct mbuf *m, *mnext;
1427
1428 purge_flow_set( &(pipe->fs), 1 );
1429
1430 mnext = pipe->head;
1431 while ((m = mnext) != NULL) {
1432 mnext = m->m_nextpkt;
1433 DN_FREE_PKT(m);
1434 }
1435
1436 heap_free( &(pipe->scheduler_heap) );
1437 heap_free( &(pipe->not_eligible_heap) );
1438 heap_free( &(pipe->idle_heap) );
1439 }
1440
1441 /*
1442 * Delete all pipes and heaps returning memory. Must also
1443 * remove references from all ipfw rules to all pipes.
1444 */
1445 static void
1446 dummynet_flush(void)
1447 {
1448 struct dn_pipe *curr_p, *p ;
1449 struct dn_flow_set *fs, *curr_fs;
1450
1451 lck_mtx_lock(dn_mutex);
1452
1453 /* remove all references to pipes ...*/
1454 flush_pipe_ptrs(NULL);
1455 /* prevent future matches... */
1456 p = all_pipes ;
1457 all_pipes = NULL ;
1458 fs = all_flow_sets ;
1459 all_flow_sets = NULL ;
1460 /* and free heaps so we don't have unwanted events */
1461 heap_free(&ready_heap);
1462 heap_free(&wfq_ready_heap);
1463 heap_free(&extract_heap);
1464
1465 /*
1466 * Now purge all queued pkts and delete all pipes
1467 */
1468 /* scan and purge all flow_sets. */
1469 for ( ; fs ; ) {
1470 curr_fs = fs ;
1471 fs = fs->next ;
1472 purge_flow_set(curr_fs, 1);
1473 }
1474 for ( ; p ; ) {
1475 purge_pipe(p);
1476 curr_p = p ;
1477 p = p->next ;
1478 FREE(curr_p, M_DUMMYNET);
1479 }
1480 lck_mtx_unlock(dn_mutex);
1481 }
1482
1483
1484 extern struct ip_fw *ip_fw_default_rule ;
1485 static void
1486 dn_rule_delete_fs(struct dn_flow_set *fs, void *r)
1487 {
1488 int i ;
1489 struct dn_flow_queue *q ;
1490 struct mbuf *m ;
1491
1492 for (i = 0 ; i <= fs->rq_size ; i++) /* last one is ovflow */
1493 for (q = fs->rq[i] ; q ; q = q->next )
1494 for (m = q->head ; m ; m = m->m_nextpkt ) {
1495 struct dn_pkt_tag *pkt = dn_tag_get(m) ;
1496 if (pkt->rule == r)
1497 pkt->rule = ip_fw_default_rule ;
1498 }
1499 }
1500 /*
1501 * when a firewall rule is deleted, scan all queues and remove the flow-id
1502 * from packets matching this rule.
1503 */
1504 void
1505 dn_rule_delete(void *r)
1506 {
1507 struct dn_pipe *p ;
1508 struct dn_flow_set *fs ;
1509 struct dn_pkt_tag *pkt ;
1510 struct mbuf *m ;
1511
1512 lck_mtx_lock(dn_mutex);
1513
1514 /*
1515 * If the rule references a queue (dn_flow_set), then scan
1516 * the flow set, otherwise scan pipes. Should do either, but doing
1517 * both does not harm.
1518 */
1519 for ( fs = all_flow_sets ; fs ; fs = fs->next )
1520 dn_rule_delete_fs(fs, r);
1521 for ( p = all_pipes ; p ; p = p->next ) {
1522 fs = &(p->fs) ;
1523 dn_rule_delete_fs(fs, r);
1524 for (m = p->head ; m ; m = m->m_nextpkt ) {
1525 pkt = dn_tag_get(m) ;
1526 if (pkt->rule == r)
1527 pkt->rule = ip_fw_default_rule ;
1528 }
1529 }
1530 lck_mtx_unlock(dn_mutex);
1531 }
1532
1533 /*
1534 * setup RED parameters
1535 */
1536 static int
1537 config_red(struct dn_flow_set *p, struct dn_flow_set * x)
1538 {
1539 int i;
1540
1541 x->w_q = p->w_q;
1542 x->min_th = SCALE(p->min_th);
1543 x->max_th = SCALE(p->max_th);
1544 x->max_p = p->max_p;
1545
1546 x->c_1 = p->max_p / (p->max_th - p->min_th);
1547 x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th));
1548 if (x->flags_fs & DN_IS_GENTLE_RED) {
1549 x->c_3 = (SCALE(1) - p->max_p) / p->max_th;
1550 x->c_4 = (SCALE(1) - 2 * p->max_p);
1551 }
1552
1553 /* if the lookup table already exist, free and create it again */
1554 if (x->w_q_lookup) {
1555 FREE(x->w_q_lookup, M_DUMMYNET);
1556 x->w_q_lookup = NULL ;
1557 }
1558 if (red_lookup_depth == 0) {
1559 printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth must be > 0\n");
1560 FREE(x, M_DUMMYNET);
1561 return EINVAL;
1562 }
1563 x->lookup_depth = red_lookup_depth;
1564 x->w_q_lookup = (u_int *) _MALLOC(x->lookup_depth * sizeof(int),
1565 M_DUMMYNET, M_DONTWAIT);
1566 if (x->w_q_lookup == NULL) {
1567 printf("dummynet: sorry, cannot allocate red lookup table\n");
1568 FREE(x, M_DUMMYNET);
1569 return ENOSPC;
1570 }
1571
1572 /* fill the lookup table with (1 - w_q)^x */
1573 x->lookup_step = p->lookup_step ;
1574 x->lookup_weight = p->lookup_weight ;
1575 x->w_q_lookup[0] = SCALE(1) - x->w_q;
1576 for (i = 1; i < x->lookup_depth; i++)
1577 x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight);
1578 if (red_avg_pkt_size < 1)
1579 red_avg_pkt_size = 512 ;
1580 x->avg_pkt_size = red_avg_pkt_size ;
1581 if (red_max_pkt_size < 1)
1582 red_max_pkt_size = 1500 ;
1583 x->max_pkt_size = red_max_pkt_size ;
1584 return 0 ;
1585 }
1586
1587 static int
1588 alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs)
1589 {
1590 if (x->flags_fs & DN_HAVE_FLOW_MASK) { /* allocate some slots */
1591 int l = pfs->rq_size;
1592
1593 if (l == 0)
1594 l = dn_hash_size;
1595 if (l < 4)
1596 l = 4;
1597 else if (l > DN_MAX_HASH_SIZE)
1598 l = DN_MAX_HASH_SIZE;
1599 x->rq_size = l;
1600 } else /* one is enough for null mask */
1601 x->rq_size = 1;
1602 x->rq = _MALLOC((1 + x->rq_size) * sizeof(struct dn_flow_queue *),
1603 M_DUMMYNET, M_DONTWAIT | M_ZERO);
1604 if (x->rq == NULL) {
1605 printf("dummynet: sorry, cannot allocate queue\n");
1606 return ENOSPC;
1607 }
1608 x->rq_elements = 0;
1609 return 0 ;
1610 }
1611
1612 static void
1613 set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src)
1614 {
1615 x->flags_fs = src->flags_fs;
1616 x->qsize = src->qsize;
1617 x->plr = src->plr;
1618 x->flow_mask = src->flow_mask;
1619 if (x->flags_fs & DN_QSIZE_IS_BYTES) {
1620 if (x->qsize > 1024*1024)
1621 x->qsize = 1024*1024 ;
1622 } else {
1623 if (x->qsize == 0)
1624 x->qsize = 50 ;
1625 if (x->qsize > 100)
1626 x->qsize = 50 ;
1627 }
1628 /* configuring RED */
1629 if ( x->flags_fs & DN_IS_RED )
1630 config_red(src, x) ; /* XXX should check errors */
1631 }
1632
1633 /*
1634 * setup pipe or queue parameters.
1635 */
1636
1637 static int
1638 config_pipe(struct dn_pipe *p)
1639 {
1640 int i, r;
1641 struct dn_flow_set *pfs = &(p->fs);
1642 struct dn_flow_queue *q;
1643
1644 /*
1645 * The config program passes parameters as follows:
1646 * bw = bits/second (0 means no limits),
1647 * delay = ms, must be translated into ticks.
1648 * qsize = slots/bytes
1649 */
1650 p->delay = ( p->delay * (hz*10) ) / 1000 ;
1651 /* We need either a pipe number or a flow_set number */
1652 if (p->pipe_nr == 0 && pfs->fs_nr == 0)
1653 return EINVAL ;
1654 if (p->pipe_nr != 0 && pfs->fs_nr != 0)
1655 return EINVAL ;
1656 if (p->pipe_nr != 0) { /* this is a pipe */
1657 struct dn_pipe *x, *a, *b;
1658
1659 lck_mtx_lock(dn_mutex);
1660 /* locate pipe */
1661 for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ;
1662 a = b , b = b->next) ;
1663
1664 if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */
1665 x = _MALLOC(sizeof(struct dn_pipe), M_DUMMYNET, M_DONTWAIT | M_ZERO) ;
1666 if (x == NULL) {
1667 lck_mtx_unlock(dn_mutex);
1668 printf("dummynet: no memory for new pipe\n");
1669 return ENOSPC;
1670 }
1671 x->pipe_nr = p->pipe_nr;
1672 x->fs.pipe = x ;
1673 /* idle_heap is the only one from which we extract from the middle.
1674 */
1675 x->idle_heap.size = x->idle_heap.elements = 0 ;
1676 x->idle_heap.offset=OFFSET_OF(struct dn_flow_queue, heap_pos);
1677 } else {
1678 x = b;
1679 /* Flush accumulated credit for all queues */
1680 for (i = 0; i <= x->fs.rq_size; i++)
1681 for (q = x->fs.rq[i]; q; q = q->next)
1682 q->numbytes = 0;
1683 }
1684
1685 x->bandwidth = p->bandwidth ;
1686 x->numbytes = 0; /* just in case... */
1687 bcopy(p->if_name, x->if_name, sizeof(p->if_name) );
1688 x->ifp = NULL ; /* reset interface ptr */
1689 x->delay = p->delay ;
1690 set_fs_parms(&(x->fs), pfs);
1691
1692
1693 if ( x->fs.rq == NULL ) { /* a new pipe */
1694 r = alloc_hash(&(x->fs), pfs) ;
1695 if (r) {
1696 lck_mtx_unlock(dn_mutex);
1697 FREE(x, M_DUMMYNET);
1698 return r ;
1699 }
1700 x->next = b ;
1701 if (a == NULL)
1702 all_pipes = x ;
1703 else
1704 a->next = x ;
1705 }
1706 lck_mtx_unlock(dn_mutex);
1707 } else { /* config queue */
1708 struct dn_flow_set *x, *a, *b ;
1709
1710 lck_mtx_lock(dn_mutex);
1711 /* locate flow_set */
1712 for (a=NULL, b=all_flow_sets ; b && b->fs_nr < pfs->fs_nr ;
1713 a = b , b = b->next) ;
1714
1715 if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new */
1716 if (pfs->parent_nr == 0) { /* need link to a pipe */
1717 lck_mtx_unlock(dn_mutex);
1718 return EINVAL ;
1719 }
1720 x = _MALLOC(sizeof(struct dn_flow_set), M_DUMMYNET, M_DONTWAIT | M_ZERO);
1721 if (x == NULL) {
1722 lck_mtx_unlock(dn_mutex);
1723 printf("dummynet: no memory for new flow_set\n");
1724 return ENOSPC;
1725 }
1726 x->fs_nr = pfs->fs_nr;
1727 x->parent_nr = pfs->parent_nr;
1728 x->weight = pfs->weight ;
1729 if (x->weight == 0)
1730 x->weight = 1 ;
1731 else if (x->weight > 100)
1732 x->weight = 100 ;
1733 } else {
1734 /* Change parent pipe not allowed; must delete and recreate */
1735 if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr) {
1736 lck_mtx_unlock(dn_mutex);
1737 return EINVAL ;
1738 }
1739 x = b;
1740 }
1741 set_fs_parms(x, pfs);
1742
1743 if ( x->rq == NULL ) { /* a new flow_set */
1744 r = alloc_hash(x, pfs) ;
1745 if (r) {
1746 lck_mtx_unlock(dn_mutex);
1747 FREE(x, M_DUMMYNET);
1748 return r ;
1749 }
1750 x->next = b;
1751 if (a == NULL)
1752 all_flow_sets = x;
1753 else
1754 a->next = x;
1755 }
1756 lck_mtx_unlock(dn_mutex);
1757 }
1758 return 0 ;
1759 }
1760
1761 /*
1762 * Helper function to remove from a heap queues which are linked to
1763 * a flow_set about to be deleted.
1764 */
1765 static void
1766 fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs)
1767 {
1768 int i = 0, found = 0 ;
1769 for (; i < h->elements ;)
1770 if ( ((struct dn_flow_queue *)h->p[i].object)->fs == fs) {
1771 h->elements-- ;
1772 h->p[i] = h->p[h->elements] ;
1773 found++ ;
1774 } else
1775 i++ ;
1776 if (found)
1777 heapify(h);
1778 }
1779
1780 /*
1781 * helper function to remove a pipe from a heap (can be there at most once)
1782 */
1783 static void
1784 pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p)
1785 {
1786 if (h->elements > 0) {
1787 int i = 0 ;
1788 for (i=0; i < h->elements ; i++ ) {
1789 if (h->p[i].object == p) { /* found it */
1790 h->elements-- ;
1791 h->p[i] = h->p[h->elements] ;
1792 heapify(h);
1793 break ;
1794 }
1795 }
1796 }
1797 }
1798
1799 /*
1800 * drain all queues. Called in case of severe mbuf shortage.
1801 */
1802 void
1803 dummynet_drain(void)
1804 {
1805 struct dn_flow_set *fs;
1806 struct dn_pipe *p;
1807 struct mbuf *m, *mnext;
1808
1809 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
1810
1811 heap_free(&ready_heap);
1812 heap_free(&wfq_ready_heap);
1813 heap_free(&extract_heap);
1814 /* remove all references to this pipe from flow_sets */
1815 for (fs = all_flow_sets; fs; fs= fs->next )
1816 purge_flow_set(fs, 0);
1817
1818 for (p = all_pipes; p; p= p->next ) {
1819 purge_flow_set(&(p->fs), 0);
1820
1821 mnext = p->head;
1822 while ((m = mnext) != NULL) {
1823 mnext = m->m_nextpkt;
1824 DN_FREE_PKT(m);
1825 }
1826 p->head = p->tail = NULL ;
1827 }
1828 }
1829
1830 /*
1831 * Fully delete a pipe or a queue, cleaning up associated info.
1832 */
1833 static int
1834 delete_pipe(struct dn_pipe *p)
1835 {
1836 if (p->pipe_nr == 0 && p->fs.fs_nr == 0)
1837 return EINVAL ;
1838 if (p->pipe_nr != 0 && p->fs.fs_nr != 0)
1839 return EINVAL ;
1840 if (p->pipe_nr != 0) { /* this is an old-style pipe */
1841 struct dn_pipe *a, *b;
1842 struct dn_flow_set *fs;
1843
1844 lck_mtx_lock(dn_mutex);
1845 /* locate pipe */
1846 for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ;
1847 a = b , b = b->next) ;
1848 if (b == NULL || (b->pipe_nr != p->pipe_nr) ) {
1849 lck_mtx_unlock(dn_mutex);
1850 return EINVAL ; /* not found */
1851 }
1852
1853 /* unlink from list of pipes */
1854 if (a == NULL)
1855 all_pipes = b->next ;
1856 else
1857 a->next = b->next ;
1858 /* remove references to this pipe from the ip_fw rules. */
1859 flush_pipe_ptrs(&(b->fs));
1860
1861 /* remove all references to this pipe from flow_sets */
1862 for (fs = all_flow_sets; fs; fs= fs->next )
1863 if (fs->pipe == b) {
1864 printf("dummynet: ++ ref to pipe %d from fs %d\n",
1865 p->pipe_nr, fs->fs_nr);
1866 fs->pipe = NULL ;
1867 purge_flow_set(fs, 0);
1868 }
1869 fs_remove_from_heap(&ready_heap, &(b->fs));
1870 purge_pipe(b); /* remove all data associated to this pipe */
1871 /* remove reference to here from extract_heap and wfq_ready_heap */
1872 pipe_remove_from_heap(&extract_heap, b);
1873 pipe_remove_from_heap(&wfq_ready_heap, b);
1874 lck_mtx_unlock(dn_mutex);
1875
1876 FREE(b, M_DUMMYNET);
1877 } else { /* this is a WF2Q queue (dn_flow_set) */
1878 struct dn_flow_set *a, *b;
1879
1880 lck_mtx_lock(dn_mutex);
1881 /* locate set */
1882 for (a = NULL, b = all_flow_sets ; b && b->fs_nr < p->fs.fs_nr ;
1883 a = b , b = b->next) ;
1884 if (b == NULL || (b->fs_nr != p->fs.fs_nr) ) {
1885 lck_mtx_unlock(dn_mutex);
1886 return EINVAL ; /* not found */
1887 }
1888
1889 if (a == NULL)
1890 all_flow_sets = b->next ;
1891 else
1892 a->next = b->next ;
1893 /* remove references to this flow_set from the ip_fw rules. */
1894 flush_pipe_ptrs(b);
1895
1896 if (b->pipe != NULL) {
1897 /* Update total weight on parent pipe and cleanup parent heaps */
1898 b->pipe->sum -= b->weight * b->backlogged ;
1899 fs_remove_from_heap(&(b->pipe->not_eligible_heap), b);
1900 fs_remove_from_heap(&(b->pipe->scheduler_heap), b);
1901 #if 1 /* XXX should i remove from idle_heap as well ? */
1902 fs_remove_from_heap(&(b->pipe->idle_heap), b);
1903 #endif
1904 }
1905 purge_flow_set(b, 1);
1906 lck_mtx_unlock(dn_mutex);
1907 }
1908 return 0 ;
1909 }
1910
1911 /*
1912 * helper function used to copy data from kernel in DUMMYNET_GET
1913 */
1914 static char *
1915 dn_copy_set(struct dn_flow_set *set, char *bp)
1916 {
1917 int i, copied = 0 ;
1918 struct dn_flow_queue *q, *qp = (struct dn_flow_queue *)bp;
1919
1920 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
1921
1922 for (i = 0 ; i <= set->rq_size ; i++)
1923 for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
1924 if (q->hash_slot != i)
1925 printf("dummynet: ++ at %d: wrong slot (have %d, "
1926 "should be %d)\n", copied, q->hash_slot, i);
1927 if (q->fs != set)
1928 printf("dummynet: ++ at %d: wrong fs ptr (have %p, should be %p)\n",
1929 i, q->fs, set);
1930 copied++ ;
1931 bcopy(q, qp, sizeof(*q));
1932 /* cleanup pointers */
1933 qp->next = NULL ;
1934 qp->head = qp->tail = NULL ;
1935 qp->fs = NULL ;
1936 }
1937 if (copied != set->rq_elements)
1938 printf("dummynet: ++ wrong count, have %d should be %d\n",
1939 copied, set->rq_elements);
1940 return (char *)qp ;
1941 }
1942
1943 static size_t
1944 dn_calc_size(void)
1945 {
1946 struct dn_flow_set *set ;
1947 struct dn_pipe *p ;
1948 size_t size ;
1949
1950 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
1951
1952 /*
1953 * compute size of data structures: list of pipes and flow_sets.
1954 */
1955 for (p = all_pipes, size = 0 ; p ; p = p->next )
1956 size += sizeof(*p) +
1957 p->fs.rq_elements * sizeof(struct dn_flow_queue);
1958 for (set = all_flow_sets ; set ; set = set->next )
1959 size += sizeof(*set) +
1960 set->rq_elements * sizeof(struct dn_flow_queue);
1961 return size ;
1962 }
1963
1964 static int
1965 dummynet_get(struct sockopt *sopt)
1966 {
1967 char *buf, *bp ; /* bp is the "copy-pointer" */
1968 size_t size ;
1969 struct dn_flow_set *set ;
1970 struct dn_pipe *p ;
1971 int error=0, i ;
1972
1973 /* XXX lock held too long */
1974 lck_mtx_lock(dn_mutex);
1975 /*
1976 * XXX: Ugly, but we need to allocate memory with M_WAITOK flag and we
1977 * cannot use this flag while holding a mutex.
1978 */
1979 for (i = 0; i < 10; i++) {
1980 size = dn_calc_size();
1981 lck_mtx_unlock(dn_mutex);
1982 buf = _MALLOC(size, M_TEMP, M_WAITOK);
1983 lck_mtx_lock(dn_mutex);
1984 if (size == dn_calc_size())
1985 break;
1986 FREE(buf, M_TEMP);
1987 buf = NULL;
1988 }
1989 if (buf == NULL) {
1990 lck_mtx_unlock(dn_mutex);
1991 return ENOBUFS ;
1992 }
1993 for (p = all_pipes, bp = buf ; p ; p = p->next ) {
1994 struct dn_pipe *pipe_bp = (struct dn_pipe *)bp ;
1995
1996 /*
1997 * copy pipe descriptor into *bp, convert delay back to ms,
1998 * then copy the flow_set descriptor(s) one at a time.
1999 * After each flow_set, copy the queue descriptor it owns.
2000 */
2001 bcopy(p, bp, sizeof(*p));
2002 pipe_bp->delay = (pipe_bp->delay * 1000) / (hz*10) ;
2003 /*
2004 * XXX the following is a hack based on ->next being the
2005 * first field in dn_pipe and dn_flow_set. The correct
2006 * solution would be to move the dn_flow_set to the beginning
2007 * of struct dn_pipe.
2008 */
2009 pipe_bp->next = (struct dn_pipe *)DN_IS_PIPE ;
2010 /* clean pointers */
2011 pipe_bp->head = pipe_bp->tail = NULL ;
2012 pipe_bp->fs.next = NULL ;
2013 pipe_bp->fs.pipe = NULL ;
2014 pipe_bp->fs.rq = NULL ;
2015
2016 bp += sizeof(*p);
2017 bp = dn_copy_set( &(p->fs), bp );
2018 }
2019 for (set = all_flow_sets ; set ; set = set->next ) {
2020 struct dn_flow_set *fs_bp = (struct dn_flow_set *)bp ;
2021 bcopy(set, bp, sizeof(*set));
2022 /* XXX same hack as above */
2023 fs_bp->next = (struct dn_flow_set *)DN_IS_QUEUE ;
2024 fs_bp->pipe = NULL ;
2025 fs_bp->rq = NULL ;
2026 bp += sizeof(*set);
2027 bp = dn_copy_set( set, bp );
2028 }
2029 lck_mtx_unlock(dn_mutex);
2030
2031 error = sooptcopyout(sopt, buf, size);
2032 FREE(buf, M_TEMP);
2033 return error ;
2034 }
2035
2036 /*
2037 * Handler for the various dummynet socket options (get, flush, config, del)
2038 */
2039 static int
2040 ip_dn_ctl(struct sockopt *sopt)
2041 {
2042 int error = 0 ;
2043 struct dn_pipe *p, tmp_pipe;
2044
2045 /* Disallow sets in really-really secure mode. */
2046 if (sopt->sopt_dir == SOPT_SET && securelevel >= 3)
2047 return (EPERM);
2048
2049 switch (sopt->sopt_name) {
2050 default :
2051 printf("dummynet: -- unknown option %d", sopt->sopt_name);
2052 return EINVAL ;
2053
2054 case IP_DUMMYNET_GET :
2055 error = dummynet_get(sopt);
2056 break ;
2057
2058 case IP_DUMMYNET_FLUSH :
2059 dummynet_flush() ;
2060 break ;
2061
2062 case IP_DUMMYNET_CONFIGURE :
2063 p = &tmp_pipe ;
2064 error = sooptcopyin(sopt, p, sizeof(*p), sizeof(*p));
2065 if (error)
2066 break ;
2067 error = config_pipe(p);
2068 break ;
2069
2070 case IP_DUMMYNET_DEL : /* remove a pipe or queue */
2071 p = &tmp_pipe ;
2072 error = sooptcopyin(sopt, p, sizeof(*p), sizeof(*p));
2073 if (error)
2074 break ;
2075
2076 error = delete_pipe(p);
2077 break ;
2078 }
2079 return error ;
2080 }
2081
2082 void
2083 ip_dn_init(void)
2084 {
2085 /* setup locks */
2086 dn_mutex_grp_attr = lck_grp_attr_alloc_init();
2087 dn_mutex_grp = lck_grp_alloc_init("dn", dn_mutex_grp_attr);
2088 dn_mutex_attr = lck_attr_alloc_init();
2089
2090 if ((dn_mutex = lck_mtx_alloc_init(dn_mutex_grp, dn_mutex_attr)) == NULL) {
2091 printf("ip_dn_init: can't alloc dn_mutex\n");
2092 return;
2093 }
2094
2095 all_pipes = NULL ;
2096 all_flow_sets = NULL ;
2097 ready_heap.size = ready_heap.elements = 0 ;
2098 ready_heap.offset = 0 ;
2099
2100 wfq_ready_heap.size = wfq_ready_heap.elements = 0 ;
2101 wfq_ready_heap.offset = 0 ;
2102
2103 extract_heap.size = extract_heap.elements = 0 ;
2104 extract_heap.offset = 0 ;
2105 ip_dn_ctl_ptr = ip_dn_ctl;
2106 ip_dn_io_ptr = dummynet_io;
2107 ip_dn_ruledel_ptr = dn_rule_delete;
2108 }