2 * Copyright (c) 2006-2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 #include <kern/sched_prim.h>
31 #include <kern/kalloc.h>
32 #include <kern/assert.h>
33 #include <kern/debug.h>
34 #include <kern/locks.h>
35 #include <kern/task.h>
36 #include <kern/thread.h>
37 #include <kern/host.h>
38 #include <kern/policy_internal.h>
39 #include <kern/thread_group.h>
41 #include <IOKit/IOBSD.h>
43 #include <corpses/task_corpse.h>
44 #include <libkern/libkern.h>
45 #include <mach/coalition.h>
46 #include <mach/mach_time.h>
47 #include <mach/task.h>
48 #include <mach/host_priv.h>
49 #include <mach/mach_host.h>
51 #include <pexpert/pexpert.h>
52 #include <sys/coalition.h>
53 #include <sys/kern_event.h>
55 #include <sys/proc_info.h>
56 #include <sys/reason.h>
57 #include <sys/signal.h>
58 #include <sys/signalvar.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysproto.h>
64 #include <vm/vm_pageout.h>
65 #include <vm/vm_protos.h>
66 #include <mach/machine/sdt.h>
67 #include <libkern/section_keywords.h>
68 #include <stdatomic.h>
71 #include <vm/vm_map.h>
72 #endif /* CONFIG_FREEZE */
74 #include <sys/kern_memorystatus.h>
75 #include <sys/kern_memorystatus_freeze.h>
76 #include <sys/kern_memorystatus_notify.h>
78 /* For logging clarity */
79 static const char *memorystatus_kill_cause_name
[] = {
80 "", /* kMemorystatusInvalid */
81 "jettisoned", /* kMemorystatusKilled */
82 "highwater", /* kMemorystatusKilledHiwat */
83 "vnode-limit", /* kMemorystatusKilledVnodes */
84 "vm-pageshortage", /* kMemorystatusKilledVMPageShortage */
85 "proc-thrashing", /* kMemorystatusKilledProcThrashing */
86 "fc-thrashing", /* kMemorystatusKilledFCThrashing */
87 "per-process-limit", /* kMemorystatusKilledPerProcessLimit */
88 "disk-space-shortage", /* kMemorystatusKilledDiskSpaceShortage */
89 "idle-exit", /* kMemorystatusKilledIdleExit */
90 "zone-map-exhaustion", /* kMemorystatusKilledZoneMapExhaustion */
91 "vm-compressor-thrashing", /* kMemorystatusKilledVMCompressorThrashing */
92 "vm-compressor-space-shortage", /* kMemorystatusKilledVMCompressorSpaceShortage */
96 memorystatus_priority_band_name(int32_t priority
)
99 case JETSAM_PRIORITY_FOREGROUND
:
101 case JETSAM_PRIORITY_AUDIO_AND_ACCESSORY
:
102 return "AUDIO_AND_ACCESSORY";
103 case JETSAM_PRIORITY_CONDUCTOR
:
105 case JETSAM_PRIORITY_DRIVER_APPLE
:
106 return "DRIVER_APPLE";
107 case JETSAM_PRIORITY_HOME
:
109 case JETSAM_PRIORITY_EXECUTIVE
:
111 case JETSAM_PRIORITY_IMPORTANT
:
113 case JETSAM_PRIORITY_CRITICAL
:
120 /* Does cause indicate vm or fc thrashing? */
122 is_reason_thrashing(unsigned cause
)
125 case kMemorystatusKilledFCThrashing
:
126 case kMemorystatusKilledVMCompressorThrashing
:
127 case kMemorystatusKilledVMCompressorSpaceShortage
:
134 /* Is the zone map almost full? */
136 is_reason_zone_map_exhaustion(unsigned cause
)
138 if (cause
== kMemorystatusKilledZoneMapExhaustion
) {
145 * Returns the current zone map size and capacity to include in the jetsam snapshot.
146 * Defined in zalloc.c
148 extern void get_zone_map_size(uint64_t *current_size
, uint64_t *capacity
);
151 * Returns the name of the largest zone and its size to include in the jetsam snapshot.
152 * Defined in zalloc.c
154 extern void get_largest_zone_info(char *zone_name
, size_t zone_name_len
, uint64_t *zone_size
);
157 * Active / Inactive limit support
158 * proc list must be locked
160 * The SET_*** macros are used to initialize a limit
161 * for the first time.
163 * The CACHE_*** macros are use to cache the limit that will
164 * soon be in effect down in the ledgers.
167 #define SET_ACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \
169 (p)->p_memstat_memlimit_active = (limit); \
171 (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \
173 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \
177 #define SET_INACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \
179 (p)->p_memstat_memlimit_inactive = (limit); \
181 (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \
183 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \
187 #define CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal) \
189 (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_active; \
190 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL) { \
191 (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \
194 (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \
199 #define CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal) \
201 (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_inactive; \
202 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) { \
203 (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \
206 (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \
212 /* General tunables */
214 unsigned long delta_percentage
= 5;
215 unsigned long critical_threshold_percentage
= 5;
216 // On embedded devices with more than 3GB of memory we lower the critical percentage.
217 uint64_t config_jetsam_large_memory_cutoff
= 3UL * (1UL << 30);
218 unsigned long critical_threshold_percentage_larger_devices
= 4;
219 unsigned long delta_percentage_larger_devices
= 4;
220 unsigned long idle_offset_percentage
= 5;
221 unsigned long pressure_threshold_percentage
= 15;
222 unsigned long policy_more_free_offset_percentage
= 5;
223 unsigned long sysproc_aging_aggr_threshold_percentage
= 7;
226 * default jetsam snapshot support
228 memorystatus_jetsam_snapshot_t
*memorystatus_jetsam_snapshot
;
229 memorystatus_jetsam_snapshot_t
*memorystatus_jetsam_snapshot_copy
;
230 unsigned int memorystatus_jetsam_snapshot_count
= 0;
231 unsigned int memorystatus_jetsam_snapshot_copy_count
= 0;
232 unsigned int memorystatus_jetsam_snapshot_max
= 0;
233 unsigned int memorystatus_jetsam_snapshot_size
= 0;
234 uint64_t memorystatus_jetsam_snapshot_last_timestamp
= 0;
235 uint64_t memorystatus_jetsam_snapshot_timeout
= 0;
237 /* General memorystatus stuff */
239 uint64_t memorystatus_sysprocs_idle_delay_time
= 0;
240 uint64_t memorystatus_apps_idle_delay_time
= 0;
242 static lck_grp_attr_t
*memorystatus_jetsam_fg_band_lock_grp_attr
;
243 static lck_grp_t
*memorystatus_jetsam_fg_band_lock_grp
;
244 lck_mtx_t memorystatus_jetsam_fg_band_lock
;
246 /* Idle guard handling */
248 static int32_t memorystatus_scheduled_idle_demotions_sysprocs
= 0;
249 static int32_t memorystatus_scheduled_idle_demotions_apps
= 0;
251 static void memorystatus_perform_idle_demotion(__unused
void *spare1
, __unused
void *spare2
);
252 static void memorystatus_schedule_idle_demotion_locked(proc_t p
, boolean_t set_state
);
253 static void memorystatus_reschedule_idle_demotion_locked(void);
254 int memorystatus_update_priority_for_appnap(proc_t p
, boolean_t is_appnap
);
255 vm_pressure_level_t
convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t
);
256 boolean_t
is_knote_registered_modify_task_pressure_bits(struct knote
*, int, task_t
, vm_pressure_level_t
, vm_pressure_level_t
);
257 void memorystatus_klist_reset_all_for_level(vm_pressure_level_t pressure_level_to_clear
);
258 void memorystatus_send_low_swap_note(void);
259 int memorystatus_get_proccnt_upto_priority(int32_t max_bucket_index
);
260 boolean_t
memorystatus_kill_elevated_process(uint32_t cause
, os_reason_t jetsam_reason
, unsigned int band
, int aggr_count
,
261 uint32_t *errors
, uint64_t *memory_reclaimed
);
262 uint64_t memorystatus_available_memory_internal(proc_t p
);
264 unsigned int memorystatus_level
= 0;
265 static int memorystatus_list_count
= 0;
266 memstat_bucket_t memstat_bucket
[MEMSTAT_BUCKET_COUNT
];
267 static thread_call_t memorystatus_idle_demotion_call
;
268 uint64_t memstat_idle_demotion_deadline
= 0;
269 int system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
270 int applications_aging_band
= JETSAM_PRIORITY_IDLE
;
272 #define isProcessInAgingBands(p) ((isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) || (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)))
274 #define kJetsamAgingPolicyNone (0)
275 #define kJetsamAgingPolicyLegacy (1)
276 #define kJetsamAgingPolicySysProcsReclaimedFirst (2)
277 #define kJetsamAgingPolicyAppsReclaimedFirst (3)
278 #define kJetsamAgingPolicyMax kJetsamAgingPolicyAppsReclaimedFirst
280 unsigned int jetsam_aging_policy
= kJetsamAgingPolicySysProcsReclaimedFirst
;
282 extern int corpse_for_fatal_memkill
;
283 extern uint64_t vm_purgeable_purge_task_owned(task_t task
);
284 boolean_t
memorystatus_allowed_vm_map_fork(task_t
);
285 #if DEVELOPMENT || DEBUG
286 void memorystatus_abort_vm_map_fork(task_t
);
290 * Idle delay timeout factors for daemons based on relaunch behavior. Only used in
291 * kJetsamAgingPolicySysProcsReclaimedFirst aging policy.
293 #define kJetsamSysProcsIdleDelayTimeLowRatio (5)
294 #define kJetsamSysProcsIdleDelayTimeMedRatio (2)
295 #define kJetsamSysProcsIdleDelayTimeHighRatio (1)
296 static_assert(kJetsamSysProcsIdleDelayTimeLowRatio
<= DEFERRED_IDLE_EXIT_TIME_SECS
, "sysproc idle delay time for low relaunch daemons would be 0");
299 * For the kJetsamAgingPolicySysProcsReclaimedFirst aging policy, treat apps as well
300 * behaved daemons for aging purposes.
302 #define kJetsamAppsIdleDelayTimeRatio (kJetsamSysProcsIdleDelayTimeLowRatio)
305 memorystatus_sysprocs_idle_time(proc_t p
)
308 * The kJetsamAgingPolicySysProcsReclaimedFirst aging policy uses the relaunch behavior to
309 * determine the exact idle deferred time provided to the daemons. For all other aging
310 * policies, simply return the default aging idle time.
312 if (jetsam_aging_policy
!= kJetsamAgingPolicySysProcsReclaimedFirst
) {
313 return memorystatus_sysprocs_idle_delay_time
;
316 uint64_t idle_delay_time
= 0;
318 * For system processes, base the idle delay time on the
319 * jetsam relaunch behavior specified by launchd. The idea
320 * is to provide extra protection to the daemons which would
321 * relaunch immediately after jetsam.
323 switch (p
->p_memstat_relaunch_flags
) {
324 case P_MEMSTAT_RELAUNCH_UNKNOWN
:
325 case P_MEMSTAT_RELAUNCH_LOW
:
326 idle_delay_time
= memorystatus_sysprocs_idle_delay_time
/ kJetsamSysProcsIdleDelayTimeLowRatio
;
328 case P_MEMSTAT_RELAUNCH_MED
:
329 idle_delay_time
= memorystatus_sysprocs_idle_delay_time
/ kJetsamSysProcsIdleDelayTimeMedRatio
;
331 case P_MEMSTAT_RELAUNCH_HIGH
:
332 idle_delay_time
= memorystatus_sysprocs_idle_delay_time
/ kJetsamSysProcsIdleDelayTimeHighRatio
;
335 panic("Unknown relaunch flags on process!");
338 return idle_delay_time
;
342 memorystatus_apps_idle_time(__unused proc_t p
)
345 * For kJetsamAgingPolicySysProcsReclaimedFirst, the Apps are considered as low
346 * relaunch candidates. So only provide limited protection to them. In the other
347 * aging policies, return the default aging idle time.
349 if (jetsam_aging_policy
!= kJetsamAgingPolicySysProcsReclaimedFirst
) {
350 return memorystatus_apps_idle_delay_time
;
353 return memorystatus_apps_idle_delay_time
/ kJetsamAppsIdleDelayTimeRatio
;
359 /* Keeping around for future use if we need a utility that can do this OR an app that needs a dynamic adjustment. */
362 sysctl_set_jetsam_aging_policy SYSCTL_HANDLER_ARGS
364 #pragma unused(oidp, arg1, arg2)
366 int error
= 0, val
= 0;
367 memstat_bucket_t
*old_bucket
= 0;
368 int old_system_procs_aging_band
= 0, new_system_procs_aging_band
= 0;
369 int old_applications_aging_band
= 0, new_applications_aging_band
= 0;
370 proc_t p
= NULL
, next_proc
= NULL
;
373 error
= sysctl_io_number(req
, jetsam_aging_policy
, sizeof(int), &val
, NULL
);
374 if (error
|| !req
->newptr
) {
378 if ((val
< 0) || (val
> kJetsamAgingPolicyMax
)) {
379 printf("jetsam: ordering policy sysctl has invalid value - %d\n", val
);
384 * We need to synchronize with any potential adding/removal from aging bands
385 * that might be in progress currently. We use the proc_list_lock() just for
386 * consistency with all the routines dealing with 'aging' processes. We need
387 * a lighterweight lock.
391 old_system_procs_aging_band
= system_procs_aging_band
;
392 old_applications_aging_band
= applications_aging_band
;
395 case kJetsamAgingPolicyNone
:
396 new_system_procs_aging_band
= JETSAM_PRIORITY_IDLE
;
397 new_applications_aging_band
= JETSAM_PRIORITY_IDLE
;
400 case kJetsamAgingPolicyLegacy
:
402 * Legacy behavior where some daemons get a 10s protection once and only before the first clean->dirty->clean transition before going into IDLE band.
404 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
405 new_applications_aging_band
= JETSAM_PRIORITY_IDLE
;
408 case kJetsamAgingPolicySysProcsReclaimedFirst
:
409 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
410 new_applications_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
413 case kJetsamAgingPolicyAppsReclaimedFirst
:
414 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
415 new_applications_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
422 if (old_system_procs_aging_band
&& (old_system_procs_aging_band
!= new_system_procs_aging_band
)) {
423 old_bucket
= &memstat_bucket
[old_system_procs_aging_band
];
424 p
= TAILQ_FIRST(&old_bucket
->list
);
427 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
430 if (new_system_procs_aging_band
== JETSAM_PRIORITY_IDLE
) {
431 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
434 memorystatus_update_priority_locked(p
, new_system_procs_aging_band
, false, true);
442 if (old_applications_aging_band
&& (old_applications_aging_band
!= new_applications_aging_band
)) {
443 old_bucket
= &memstat_bucket
[old_applications_aging_band
];
444 p
= TAILQ_FIRST(&old_bucket
->list
);
447 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
450 if (new_applications_aging_band
== JETSAM_PRIORITY_IDLE
) {
451 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
454 memorystatus_update_priority_locked(p
, new_applications_aging_band
, false, true);
462 jetsam_aging_policy
= val
;
463 system_procs_aging_band
= new_system_procs_aging_band
;
464 applications_aging_band
= new_applications_aging_band
;
471 SYSCTL_PROC(_kern
, OID_AUTO
, set_jetsam_aging_policy
, CTLTYPE_INT
| CTLFLAG_RW
,
472 0, 0, sysctl_set_jetsam_aging_policy
, "I", "Jetsam Aging Policy");
476 sysctl_jetsam_set_sysprocs_idle_delay_time SYSCTL_HANDLER_ARGS
478 #pragma unused(oidp, arg1, arg2)
480 int error
= 0, val
= 0, old_time_in_secs
= 0;
481 uint64_t old_time_in_ns
= 0;
483 absolutetime_to_nanoseconds(memorystatus_sysprocs_idle_delay_time
, &old_time_in_ns
);
484 old_time_in_secs
= old_time_in_ns
/ NSEC_PER_SEC
;
486 error
= sysctl_io_number(req
, old_time_in_secs
, sizeof(int), &val
, NULL
);
487 if (error
|| !req
->newptr
) {
491 if ((val
< 0) || (val
> INT32_MAX
)) {
492 printf("jetsam: new idle delay interval has invalid value.\n");
496 nanoseconds_to_absolutetime((uint64_t)val
* NSEC_PER_SEC
, &memorystatus_sysprocs_idle_delay_time
);
501 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_sysprocs_idle_delay_time
, CTLTYPE_INT
| CTLFLAG_RW
,
502 0, 0, sysctl_jetsam_set_sysprocs_idle_delay_time
, "I", "Aging window for system processes");
506 sysctl_jetsam_set_apps_idle_delay_time SYSCTL_HANDLER_ARGS
508 #pragma unused(oidp, arg1, arg2)
510 int error
= 0, val
= 0, old_time_in_secs
= 0;
511 uint64_t old_time_in_ns
= 0;
513 absolutetime_to_nanoseconds(memorystatus_apps_idle_delay_time
, &old_time_in_ns
);
514 old_time_in_secs
= old_time_in_ns
/ NSEC_PER_SEC
;
516 error
= sysctl_io_number(req
, old_time_in_secs
, sizeof(int), &val
, NULL
);
517 if (error
|| !req
->newptr
) {
521 if ((val
< 0) || (val
> INT32_MAX
)) {
522 printf("jetsam: new idle delay interval has invalid value.\n");
526 nanoseconds_to_absolutetime((uint64_t)val
* NSEC_PER_SEC
, &memorystatus_apps_idle_delay_time
);
531 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_apps_idle_delay_time
, CTLTYPE_INT
| CTLFLAG_RW
,
532 0, 0, sysctl_jetsam_set_apps_idle_delay_time
, "I", "Aging window for applications");
534 SYSCTL_INT(_kern
, OID_AUTO
, jetsam_aging_policy
, CTLTYPE_INT
| CTLFLAG_RD
, &jetsam_aging_policy
, 0, "");
536 static unsigned int memorystatus_dirty_count
= 0;
538 SYSCTL_INT(_kern
, OID_AUTO
, max_task_pmem
, CTLFLAG_RD
| CTLFLAG_LOCKED
| CTLFLAG_MASKED
, &max_task_footprint_mb
, 0, "");
540 static int memorystatus_highwater_enabled
= 1; /* Update the cached memlimit data. */
541 static boolean_t
proc_jetsam_state_is_active_locked(proc_t
);
544 #if CONFIG_MEMORYSTATUS
545 int legacy_footprint_bonus_mb
= 50; /* This value was chosen after looking at the top 30 apps
546 * that needed the additional room in their footprint when
547 * the 'correct' accounting methods were applied to them.
550 #if DEVELOPMENT || DEBUG
551 SYSCTL_INT(_kern
, OID_AUTO
, legacy_footprint_bonus_mb
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &legacy_footprint_bonus_mb
, 0, "");
552 #endif /* DEVELOPMENT || DEBUG */
555 memorystatus_act_on_legacy_footprint_entitlement(proc_t p
, boolean_t footprint_increase
)
557 int memlimit_mb_active
= 0, memlimit_mb_inactive
= 0;
558 boolean_t memlimit_active_is_fatal
= FALSE
, memlimit_inactive_is_fatal
= 0, use_active_limit
= FALSE
;
566 if (p
->p_memstat_memlimit_active
> 0) {
567 memlimit_mb_active
= p
->p_memstat_memlimit_active
;
568 } else if (p
->p_memstat_memlimit_active
== -1) {
569 memlimit_mb_active
= max_task_footprint_mb
;
572 * Nothing to do for '0' which is
573 * a special value only used internally
574 * to test 'no limits'.
580 if (p
->p_memstat_memlimit_inactive
> 0) {
581 memlimit_mb_inactive
= p
->p_memstat_memlimit_inactive
;
582 } else if (p
->p_memstat_memlimit_inactive
== -1) {
583 memlimit_mb_inactive
= max_task_footprint_mb
;
586 * Nothing to do for '0' which is
587 * a special value only used internally
588 * to test 'no limits'.
594 if (footprint_increase
) {
595 memlimit_mb_active
+= legacy_footprint_bonus_mb
;
596 memlimit_mb_inactive
+= legacy_footprint_bonus_mb
;
598 memlimit_mb_active
-= legacy_footprint_bonus_mb
;
599 if (memlimit_mb_active
== max_task_footprint_mb
) {
600 memlimit_mb_active
= -1; /* reverting back to default system limit */
603 memlimit_mb_inactive
-= legacy_footprint_bonus_mb
;
604 if (memlimit_mb_inactive
== max_task_footprint_mb
) {
605 memlimit_mb_inactive
= -1; /* reverting back to default system limit */
609 memlimit_active_is_fatal
= (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
);
610 memlimit_inactive_is_fatal
= (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
);
612 SET_ACTIVE_LIMITS_LOCKED(p
, memlimit_mb_active
, memlimit_active_is_fatal
);
613 SET_INACTIVE_LIMITS_LOCKED(p
, memlimit_mb_inactive
, memlimit_inactive_is_fatal
);
615 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
616 use_active_limit
= TRUE
;
617 CACHE_ACTIVE_LIMITS_LOCKED(p
, memlimit_active_is_fatal
);
619 CACHE_INACTIVE_LIMITS_LOCKED(p
, memlimit_inactive_is_fatal
);
623 if (memorystatus_highwater_enabled
) {
624 task_set_phys_footprint_limit_internal(p
->task
,
625 (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1,
626 NULL
, /*return old value */
627 use_active_limit
, /*active limit?*/
628 (use_active_limit
? memlimit_active_is_fatal
: memlimit_inactive_is_fatal
));
635 memorystatus_act_on_ios13extended_footprint_entitlement(proc_t p
)
637 int memlimit_mb_active
= 0, memlimit_mb_inactive
= 0;
638 boolean_t memlimit_active_is_fatal
= FALSE
, memlimit_inactive_is_fatal
= 0, use_active_limit
= FALSE
;
640 if (max_mem
< 1500ULL * 1024 * 1024 ||
641 max_mem
> 2ULL * 1024 * 1024 * 1024) {
642 /* ios13extended_footprint is only for 2GB devices */
648 if (p
->p_memstat_memlimit_active
> 0) {
649 memlimit_mb_active
= p
->p_memstat_memlimit_active
;
650 } else if (p
->p_memstat_memlimit_active
== -1) {
651 memlimit_mb_active
= max_task_footprint_mb
;
654 * Nothing to do for '0' which is
655 * a special value only used internally
656 * to test 'no limits'.
662 if (p
->p_memstat_memlimit_inactive
> 0) {
663 memlimit_mb_inactive
= p
->p_memstat_memlimit_inactive
;
664 } else if (p
->p_memstat_memlimit_inactive
== -1) {
665 memlimit_mb_inactive
= max_task_footprint_mb
;
668 * Nothing to do for '0' which is
669 * a special value only used internally
670 * to test 'no limits'.
676 /* limit to "almost 2GB" */
677 int ios13extended_footprint_mb
= 1800;
678 if (memlimit_mb_active
> ios13extended_footprint_mb
) {
679 /* do not lower the current limit */
683 memlimit_mb_active
= ios13extended_footprint_mb
;
684 memlimit_mb_inactive
= ios13extended_footprint_mb
;
686 memlimit_active_is_fatal
= (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
);
687 memlimit_inactive_is_fatal
= (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
);
689 SET_ACTIVE_LIMITS_LOCKED(p
, memlimit_mb_active
, memlimit_active_is_fatal
);
690 SET_INACTIVE_LIMITS_LOCKED(p
, memlimit_mb_inactive
, memlimit_inactive_is_fatal
);
692 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
693 use_active_limit
= TRUE
;
694 CACHE_ACTIVE_LIMITS_LOCKED(p
, memlimit_active_is_fatal
);
696 CACHE_INACTIVE_LIMITS_LOCKED(p
, memlimit_inactive_is_fatal
);
700 if (memorystatus_highwater_enabled
) {
701 task_set_phys_footprint_limit_internal(p
->task
,
702 (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1,
703 NULL
, /*return old value */
704 use_active_limit
, /*active limit?*/
705 (use_active_limit
? memlimit_active_is_fatal
: memlimit_inactive_is_fatal
));
711 #endif /* CONFIG_MEMORYSTATUS */
712 #endif /* __arm64__ */
716 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_level
, CTLFLAG_RD
| CTLFLAG_LOCKED
, &memorystatus_level
, 0, "");
718 #endif /* CONFIG_EMBEDDED */
721 memorystatus_get_level(__unused
struct proc
*p
, struct memorystatus_get_level_args
*args
, __unused
int *ret
)
723 user_addr_t level
= 0;
727 if (copyout(&memorystatus_level
, level
, sizeof(memorystatus_level
)) != 0) {
734 static void memorystatus_thread(void *param __unused
, wait_result_t wr __unused
);
738 static boolean_t
memorystatus_kill_specific_process(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
);
739 static boolean_t
memorystatus_kill_process_sync(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
);
742 static int memorystatus_cmd_set_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
744 static int memorystatus_set_memlimit_properties(pid_t pid
, memorystatus_memlimit_properties_t
*entry
);
746 static int memorystatus_cmd_get_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
748 static int memorystatus_cmd_get_memlimit_excess_np(pid_t pid
, uint32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
750 static void memorystatus_get_memlimit_properties_internal(proc_t p
, memorystatus_memlimit_properties_t
*p_entry
);
751 static int memorystatus_set_memlimit_properties_internal(proc_t p
, memorystatus_memlimit_properties_t
*p_entry
);
753 int proc_get_memstat_priority(proc_t
, boolean_t
);
755 static boolean_t memorystatus_idle_snapshot
= 0;
757 unsigned int memorystatus_delta
= 0;
759 /* Jetsam Loop Detection */
760 static boolean_t memorystatus_jld_enabled
= FALSE
; /* Enable jetsam loop detection */
761 static uint32_t memorystatus_jld_eval_period_msecs
= 0; /* Init pass sets this based on device memory size */
762 static int memorystatus_jld_eval_aggressive_count
= 3; /* Raise the priority max after 'n' aggressive loops */
763 static int memorystatus_jld_eval_aggressive_priority_band_max
= 15; /* Kill aggressively up through this band */
766 * A FG app can request that the aggressive jetsam mechanism display some leniency in the FG band. This 'lenient' mode is described as:
767 * --- if aggressive jetsam kills an app in the FG band and gets back >=AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD memory, it will stop the aggressive march further into and up the jetsam bands.
770 * - Such a request is respected/acknowledged only once while that 'requesting' app is in the FG band i.e. if aggressive jetsam was
771 * needed and the 'lenient' mode was deployed then that's it for this special mode while the app is in the FG band.
773 * - If the app is still in the FG band and aggressive jetsam is needed again, there will be no stop-and-check the next time around.
775 * - Also, the transition of the 'requesting' app away from the FG band will void this special behavior.
778 #define AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD 25
779 boolean_t memorystatus_aggressive_jetsam_lenient_allowed
= FALSE
;
780 boolean_t memorystatus_aggressive_jetsam_lenient
= FALSE
;
782 #if DEVELOPMENT || DEBUG
784 * Jetsam Loop Detection tunables.
787 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_period_msecs
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_jld_eval_period_msecs
, 0, "");
788 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_aggressive_count
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_jld_eval_aggressive_count
, 0, "");
789 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_aggressive_priority_band_max
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_jld_eval_aggressive_priority_band_max
, 0, "");
790 #endif /* DEVELOPMENT || DEBUG */
792 static uint32_t kill_under_pressure_cause
= 0;
795 * snapshot support for memstats collected at boot.
797 static memorystatus_jetsam_snapshot_t memorystatus_at_boot_snapshot
;
799 static void memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t
*od_snapshot
, uint32_t ods_list_count
);
800 static boolean_t
memorystatus_init_jetsam_snapshot_entry_locked(proc_t p
, memorystatus_jetsam_snapshot_entry_t
*entry
, uint64_t gencount
);
801 static void memorystatus_update_jetsam_snapshot_entry_locked(proc_t p
, uint32_t kill_cause
, uint64_t killtime
);
803 static void memorystatus_clear_errors(void);
804 static void memorystatus_get_task_phys_footprint_page_counts(task_t task
,
805 uint64_t *internal_pages
, uint64_t *internal_compressed_pages
,
806 uint64_t *purgeable_nonvolatile_pages
, uint64_t *purgeable_nonvolatile_compressed_pages
,
807 uint64_t *alternate_accounting_pages
, uint64_t *alternate_accounting_compressed_pages
,
808 uint64_t *iokit_mapped_pages
, uint64_t *page_table_pages
);
810 static void memorystatus_get_task_memory_region_count(task_t task
, uint64_t *count
);
812 static uint32_t memorystatus_build_state(proc_t p
);
813 //static boolean_t memorystatus_issue_pressure_kevent(boolean_t pressured);
815 static boolean_t
memorystatus_kill_top_process(boolean_t any
, boolean_t sort_flag
, uint32_t cause
, os_reason_t jetsam_reason
, int32_t *priority
,
816 uint32_t *errors
, uint64_t *memory_reclaimed
);
817 static boolean_t
memorystatus_kill_processes_aggressive(uint32_t cause
, int aggr_count
, int32_t priority_max
, uint32_t *errors
, uint64_t *memory_reclaimed
);
818 static boolean_t
memorystatus_kill_hiwat_proc(uint32_t *errors
, boolean_t
*purged
, uint64_t *memory_reclaimed
);
820 static boolean_t
memorystatus_kill_process_async(pid_t victim_pid
, uint32_t cause
);
822 /* Priority Band Sorting Routines */
823 static int memorystatus_sort_bucket(unsigned int bucket_index
, int sort_order
);
824 static int memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index
, int coal_sort_order
);
825 static void memorystatus_sort_by_largest_process_locked(unsigned int bucket_index
);
826 static int memorystatus_move_list_locked(unsigned int bucket_index
, pid_t
*pid_list
, int list_sz
);
829 typedef int (*cmpfunc_t
)(const void *a
, const void *b
);
830 extern void qsort(void *a
, size_t n
, size_t es
, cmpfunc_t cmp
);
831 static int memstat_asc_cmp(const void *a
, const void *b
);
835 extern unsigned int vm_page_free_count
;
836 extern unsigned int vm_page_active_count
;
837 extern unsigned int vm_page_inactive_count
;
838 extern unsigned int vm_page_throttled_count
;
839 extern unsigned int vm_page_purgeable_count
;
840 extern unsigned int vm_page_wire_count
;
841 #if CONFIG_SECLUDED_MEMORY
842 extern unsigned int vm_page_secluded_count
;
843 extern unsigned int vm_page_secluded_count_over_target
;
844 #endif /* CONFIG_SECLUDED_MEMORY */
846 /* Aggressive jetsam pages threshold for sysproc aging policy */
847 unsigned int memorystatus_sysproc_aging_aggr_pages
= 0;
850 unsigned int memorystatus_available_pages
= (unsigned int)-1;
851 unsigned int memorystatus_available_pages_pressure
= 0;
852 unsigned int memorystatus_available_pages_critical
= 0;
853 unsigned int memorystatus_available_pages_critical_base
= 0;
854 unsigned int memorystatus_available_pages_critical_idle_offset
= 0;
856 #if DEVELOPMENT || DEBUG
857 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages
, CTLFLAG_RD
| CTLFLAG_LOCKED
, &memorystatus_available_pages
, 0, "");
859 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages
, CTLFLAG_RD
| CTLFLAG_MASKED
| CTLFLAG_LOCKED
, &memorystatus_available_pages
, 0, "");
860 #endif /* DEVELOPMENT || DEBUG */
862 static unsigned int memorystatus_jetsam_policy
= kPolicyDefault
;
863 unsigned int memorystatus_policy_more_free_offset_pages
= 0;
864 static void memorystatus_update_levels_locked(boolean_t critical_only
);
865 static unsigned int memorystatus_thread_wasted_wakeup
= 0;
867 /* Callback into vm_compressor.c to signal that thrashing has been mitigated. */
868 extern void vm_thrashing_jetsam_done(void);
869 static int memorystatus_cmd_set_jetsam_memory_limit(pid_t pid
, int32_t high_water_mark
, __unused
int32_t *retval
, boolean_t is_fatal_limit
);
870 #if DEVELOPMENT || DEBUG
871 static inline uint32_t
872 roundToNearestMB(uint32_t in
)
874 return (in
+ ((1 << 20) - 1)) >> 20;
877 static int memorystatus_cmd_increase_jetsam_task_limit(pid_t pid
, uint32_t byte_increase
);
880 int32_t max_kill_priority
= JETSAM_PRIORITY_MAX
;
882 #else /* CONFIG_JETSAM */
884 uint64_t memorystatus_available_pages
= (uint64_t)-1;
885 uint64_t memorystatus_available_pages_pressure
= (uint64_t)-1;
886 uint64_t memorystatus_available_pages_critical
= (uint64_t)-1;
888 int32_t max_kill_priority
= JETSAM_PRIORITY_IDLE
;
889 #endif /* CONFIG_JETSAM */
891 #if DEVELOPMENT || DEBUG
893 lck_grp_attr_t
*disconnect_page_mappings_lck_grp_attr
;
894 lck_grp_t
*disconnect_page_mappings_lck_grp
;
895 static lck_mtx_t disconnect_page_mappings_mutex
;
897 extern boolean_t kill_on_no_paging_space
;
898 #endif /* DEVELOPMENT || DEBUG */
903 extern struct knote
*vm_find_knote_from_pid(pid_t
, struct klist
*);
905 #if DEVELOPMENT || DEBUG
907 static unsigned int memorystatus_debug_dump_this_bucket
= 0;
910 memorystatus_debug_dump_bucket_locked(unsigned int bucket_index
)
914 int ledger_limit
= 0;
915 unsigned int b
= bucket_index
;
916 boolean_t traverse_all_buckets
= FALSE
;
918 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
919 traverse_all_buckets
= TRUE
;
922 traverse_all_buckets
= FALSE
;
927 * footprint reported in [pages / MB ]
928 * limits reported as:
929 * L-limit proc's Ledger limit
930 * C-limit proc's Cached limit, should match Ledger
931 * A-limit proc's Active limit
932 * IA-limit proc's Inactive limit
933 * F==Fatal, NF==NonFatal
936 printf("memorystatus_debug_dump ***START*(PAGE_SIZE_64=%llu)**\n", PAGE_SIZE_64
);
937 printf("bucket [pid] [pages / MB] [state] [EP / RP / AP] dirty deadline [L-limit / C-limit / A-limit / IA-limit] name\n");
938 p
= memorystatus_get_first_proc_locked(&b
, traverse_all_buckets
);
940 bytes
= get_task_phys_footprint(p
->task
);
941 task_get_phys_footprint_limit(p
->task
, &ledger_limit
);
942 printf("%2d [%5d] [%5lld /%3lldMB] 0x%-8x [%2d / %2d / %2d] 0x%-3x %10lld [%3d / %3d%s / %3d%s / %3d%s] %s\n",
944 (bytes
/ PAGE_SIZE_64
), /* task's footprint converted from bytes to pages */
945 (bytes
/ (1024ULL * 1024ULL)), /* task's footprint converted from bytes to MB */
946 p
->p_memstat_state
, p
->p_memstat_effectivepriority
, p
->p_memstat_requestedpriority
, p
->p_memstat_assertionpriority
,
947 p
->p_memstat_dirty
, p
->p_memstat_idledeadline
,
949 p
->p_memstat_memlimit
,
950 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"),
951 p
->p_memstat_memlimit_active
,
952 (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
? "F " : "NF"),
953 p
->p_memstat_memlimit_inactive
,
954 (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
? "F " : "NF"),
955 (*p
->p_name
? p
->p_name
: "unknown"));
956 p
= memorystatus_get_next_proc_locked(&b
, p
, traverse_all_buckets
);
958 printf("memorystatus_debug_dump ***END***\n");
962 sysctl_memorystatus_debug_dump_bucket SYSCTL_HANDLER_ARGS
964 #pragma unused(oidp, arg2)
965 int bucket_index
= 0;
967 error
= SYSCTL_OUT(req
, arg1
, sizeof(int));
968 if (error
|| !req
->newptr
) {
971 error
= SYSCTL_IN(req
, &bucket_index
, sizeof(int));
972 if (error
|| !req
->newptr
) {
975 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
977 * All jetsam buckets will be dumped.
981 * Only a single bucket will be dumped.
986 memorystatus_debug_dump_bucket_locked(bucket_index
);
988 memorystatus_debug_dump_this_bucket
= bucket_index
;
993 * Debug aid to look at jetsam buckets and proc jetsam fields.
994 * Use this sysctl to act on a particular jetsam bucket.
995 * Writing the sysctl triggers the dump.
996 * Usage: sysctl kern.memorystatus_debug_dump_this_bucket=<bucket_index>
999 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_debug_dump_this_bucket
, CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_debug_dump_this_bucket
, 0, sysctl_memorystatus_debug_dump_bucket
, "I", "");
1002 /* Debug aid to aid determination of limit */
1005 sysctl_memorystatus_highwater_enable SYSCTL_HANDLER_ARGS
1007 #pragma unused(oidp, arg2)
1010 int error
, enable
= 0;
1011 boolean_t use_active
; /* use the active limit and active limit attributes */
1014 error
= SYSCTL_OUT(req
, arg1
, sizeof(int));
1015 if (error
|| !req
->newptr
) {
1019 error
= SYSCTL_IN(req
, &enable
, sizeof(int));
1020 if (error
|| !req
->newptr
) {
1024 if (!(enable
== 0 || enable
== 1)) {
1030 p
= memorystatus_get_first_proc_locked(&b
, TRUE
);
1032 use_active
= proc_jetsam_state_is_active_locked(p
);
1035 if (use_active
== TRUE
) {
1036 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
1038 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
1042 * Disabling limits does not touch the stored variants.
1043 * Set the cached limit fields to system_wide defaults.
1045 p
->p_memstat_memlimit
= -1;
1046 p
->p_memstat_state
|= P_MEMSTAT_FATAL_MEMLIMIT
;
1051 * Enforce the cached limit by writing to the ledger.
1053 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, use_active
, is_fatal
);
1055 p
= memorystatus_get_next_proc_locked(&b
, p
, TRUE
);
1058 memorystatus_highwater_enabled
= enable
;
1065 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_highwater_enabled
, CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_highwater_enabled
, 0, sysctl_memorystatus_highwater_enable
, "I", "");
1067 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_idle_snapshot
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_idle_snapshot
, 0, "");
1070 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical
, CTLFLAG_RD
| CTLFLAG_LOCKED
, &memorystatus_available_pages_critical
, 0, "");
1071 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical_base
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_available_pages_critical_base
, 0, "");
1072 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical_idle_offset
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_available_pages_critical_idle_offset
, 0, "");
1073 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_policy_more_free_offset_pages
, CTLFLAG_RW
, &memorystatus_policy_more_free_offset_pages
, 0, "");
1075 static unsigned int memorystatus_jetsam_panic_debug
= 0;
1077 #if VM_PRESSURE_EVENTS
1079 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_pressure
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_available_pages_pressure
, 0, "");
1081 #endif /* VM_PRESSURE_EVENTS */
1083 #endif /* CONFIG_JETSAM */
1085 #endif /* DEVELOPMENT || DEBUG */
1087 extern kern_return_t
kernel_thread_start_priority(thread_continue_t continuation
,
1090 thread_t
*new_thread
);
1092 #if DEVELOPMENT || DEBUG
1095 sysctl_memorystatus_disconnect_page_mappings SYSCTL_HANDLER_ARGS
1097 #pragma unused(arg1, arg2)
1098 int error
= 0, pid
= 0;
1101 error
= sysctl_handle_int(oidp
, &pid
, 0, req
);
1102 if (error
|| !req
->newptr
) {
1106 lck_mtx_lock(&disconnect_page_mappings_mutex
);
1109 vm_pageout_disconnect_all_pages();
1114 error
= task_disconnect_page_mappings(p
->task
);
1125 lck_mtx_unlock(&disconnect_page_mappings_mutex
);
1130 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_disconnect_page_mappings
, CTLTYPE_INT
| CTLFLAG_WR
| CTLFLAG_LOCKED
| CTLFLAG_MASKED
,
1131 0, 0, &sysctl_memorystatus_disconnect_page_mappings
, "I", "");
1133 #endif /* DEVELOPMENT || DEBUG */
1137 * Picks the sorting routine for a given jetsam priority band.
1140 * bucket_index - jetsam priority band to be sorted.
1141 * sort_order - JETSAM_SORT_xxx from kern_memorystatus.h
1142 * Currently sort_order is only meaningful when handling
1150 memorystatus_sort_bucket(unsigned int bucket_index
, int sort_order
)
1152 int coal_sort_order
;
1155 * Verify the jetsam priority
1157 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
1161 #if DEVELOPMENT || DEBUG
1162 if (sort_order
== JETSAM_SORT_DEFAULT
) {
1163 coal_sort_order
= COALITION_SORT_DEFAULT
;
1165 coal_sort_order
= sort_order
; /* only used for testing scenarios */
1168 /* Verify default */
1169 if (sort_order
== JETSAM_SORT_DEFAULT
) {
1170 coal_sort_order
= COALITION_SORT_DEFAULT
;
1178 if (memstat_bucket
[bucket_index
].count
== 0) {
1183 switch (bucket_index
) {
1184 case JETSAM_PRIORITY_FOREGROUND
:
1185 if (memorystatus_sort_by_largest_coalition_locked(bucket_index
, coal_sort_order
) == 0) {
1187 * Fall back to per process sorting when zero coalitions are found.
1189 memorystatus_sort_by_largest_process_locked(bucket_index
);
1193 memorystatus_sort_by_largest_process_locked(bucket_index
);
1202 * Sort processes by size for a single jetsam bucket.
1206 memorystatus_sort_by_largest_process_locked(unsigned int bucket_index
)
1208 proc_t p
= NULL
, insert_after_proc
= NULL
, max_proc
= NULL
;
1209 proc_t next_p
= NULL
, prev_max_proc
= NULL
;
1210 uint32_t pages
= 0, max_pages
= 0;
1211 memstat_bucket_t
*current_bucket
;
1213 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
1217 current_bucket
= &memstat_bucket
[bucket_index
];
1219 p
= TAILQ_FIRST(¤t_bucket
->list
);
1222 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
);
1227 while ((next_p
= TAILQ_NEXT(p
, p_memstat_list
)) != NULL
) {
1228 /* traversing list until we find next largest process */
1230 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
);
1231 if (pages
> max_pages
) {
1237 if (prev_max_proc
!= max_proc
) {
1238 /* found a larger process, place it in the list */
1239 TAILQ_REMOVE(¤t_bucket
->list
, max_proc
, p_memstat_list
);
1240 if (insert_after_proc
== NULL
) {
1241 TAILQ_INSERT_HEAD(¤t_bucket
->list
, max_proc
, p_memstat_list
);
1243 TAILQ_INSERT_AFTER(¤t_bucket
->list
, insert_after_proc
, max_proc
, p_memstat_list
);
1245 prev_max_proc
= max_proc
;
1248 insert_after_proc
= max_proc
;
1250 p
= TAILQ_NEXT(max_proc
, p_memstat_list
);
1255 memorystatus_get_first_proc_locked(unsigned int *bucket_index
, boolean_t search
)
1257 memstat_bucket_t
*current_bucket
;
1260 if ((*bucket_index
) >= MEMSTAT_BUCKET_COUNT
) {
1264 current_bucket
= &memstat_bucket
[*bucket_index
];
1265 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1266 if (!next_p
&& search
) {
1267 while (!next_p
&& (++(*bucket_index
) < MEMSTAT_BUCKET_COUNT
)) {
1268 current_bucket
= &memstat_bucket
[*bucket_index
];
1269 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1277 memorystatus_get_next_proc_locked(unsigned int *bucket_index
, proc_t p
, boolean_t search
)
1279 memstat_bucket_t
*current_bucket
;
1282 if (!p
|| ((*bucket_index
) >= MEMSTAT_BUCKET_COUNT
)) {
1286 next_p
= TAILQ_NEXT(p
, p_memstat_list
);
1287 while (!next_p
&& search
&& (++(*bucket_index
) < MEMSTAT_BUCKET_COUNT
)) {
1288 current_bucket
= &memstat_bucket
[*bucket_index
];
1289 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1296 * Structure to hold state for a jetsam thread.
1297 * Typically there should be a single jetsam thread
1298 * unless parallel jetsam is enabled.
1300 struct jetsam_thread_state
{
1301 uint8_t inited
; /* boolean - if the thread is initialized */
1302 uint8_t limit_to_low_bands
; /* boolean */
1303 int memorystatus_wakeup
; /* wake channel */
1304 int index
; /* jetsam thread index */
1305 thread_t thread
; /* jetsam thread pointer */
1308 /* Maximum number of jetsam threads allowed */
1309 #define JETSAM_THREADS_LIMIT 3
1311 /* Number of active jetsam threads */
1312 _Atomic
int active_jetsam_threads
= 1;
1314 /* Number of maximum jetsam threads configured */
1315 int max_jetsam_threads
= JETSAM_THREADS_LIMIT
;
1318 * Global switch for enabling fast jetsam. Fast jetsam is
1319 * hooked up via the system_override() system call. It has the
1320 * following effects:
1321 * - Raise the jetsam threshold ("clear-the-deck")
1322 * - Enabled parallel jetsam on eligible devices
1324 int fast_jetsam_enabled
= 0;
1326 /* Routine to find the jetsam state structure for the current jetsam thread */
1327 static inline struct jetsam_thread_state
*
1328 jetsam_current_thread(void)
1330 for (int thr_id
= 0; thr_id
< max_jetsam_threads
; thr_id
++) {
1331 if (jetsam_threads
[thr_id
].thread
== current_thread()) {
1332 return &(jetsam_threads
[thr_id
]);
1339 __private_extern__
void
1340 memorystatus_init(void)
1342 kern_return_t result
;
1346 memorystatus_freeze_jetsam_band
= JETSAM_PRIORITY_UI_SUPPORT
;
1347 memorystatus_frozen_processes_max
= FREEZE_PROCESSES_MAX
;
1348 memorystatus_frozen_shared_mb_max
= ((MAX_FROZEN_SHARED_MB_PERCENT
* max_task_footprint_mb
) / 100); /* 10% of the system wide task limit */
1349 memorystatus_freeze_shared_mb_per_process_max
= (memorystatus_frozen_shared_mb_max
/ 4);
1350 memorystatus_freeze_pages_min
= FREEZE_PAGES_MIN
;
1351 memorystatus_freeze_pages_max
= FREEZE_PAGES_MAX
;
1352 memorystatus_max_frozen_demotions_daily
= MAX_FROZEN_PROCESS_DEMOTIONS
;
1353 memorystatus_thaw_count_demotion_threshold
= MIN_THAW_DEMOTION_THRESHOLD
;
1356 #if DEVELOPMENT || DEBUG
1357 disconnect_page_mappings_lck_grp_attr
= lck_grp_attr_alloc_init();
1358 disconnect_page_mappings_lck_grp
= lck_grp_alloc_init("disconnect_page_mappings", disconnect_page_mappings_lck_grp_attr
);
1360 lck_mtx_init(&disconnect_page_mappings_mutex
, disconnect_page_mappings_lck_grp
, NULL
);
1362 if (kill_on_no_paging_space
== TRUE
) {
1363 max_kill_priority
= JETSAM_PRIORITY_MAX
;
1367 memorystatus_jetsam_fg_band_lock_grp_attr
= lck_grp_attr_alloc_init();
1368 memorystatus_jetsam_fg_band_lock_grp
=
1369 lck_grp_alloc_init("memorystatus_jetsam_fg_band", memorystatus_jetsam_fg_band_lock_grp_attr
);
1370 lck_mtx_init(&memorystatus_jetsam_fg_band_lock
, memorystatus_jetsam_fg_band_lock_grp
, NULL
);
1373 for (i
= 0; i
< MEMSTAT_BUCKET_COUNT
; i
++) {
1374 TAILQ_INIT(&memstat_bucket
[i
].list
);
1375 memstat_bucket
[i
].count
= 0;
1376 memstat_bucket
[i
].relaunch_high_count
= 0;
1378 memorystatus_idle_demotion_call
= thread_call_allocate((thread_call_func_t
)memorystatus_perform_idle_demotion
, NULL
);
1380 nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS
* NSEC_PER_SEC
, &memorystatus_sysprocs_idle_delay_time
);
1381 nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS
* NSEC_PER_SEC
, &memorystatus_apps_idle_delay_time
);
1384 /* Apply overrides */
1385 if (!PE_parse_boot_argn("kern.jetsam_delta", &delta_percentage
, sizeof(delta_percentage
))) {
1386 PE_get_default("kern.jetsam_delta", &delta_percentage
, sizeof(delta_percentage
));
1388 if (delta_percentage
== 0) {
1389 delta_percentage
= 5;
1391 if (max_mem
> config_jetsam_large_memory_cutoff
) {
1392 critical_threshold_percentage
= critical_threshold_percentage_larger_devices
;
1393 delta_percentage
= delta_percentage_larger_devices
;
1395 assert(delta_percentage
< 100);
1396 if (!PE_parse_boot_argn("kern.jetsam_critical_threshold", &critical_threshold_percentage
, sizeof(critical_threshold_percentage
))) {
1397 PE_get_default("kern.jetsam_critical_threshold", &critical_threshold_percentage
, sizeof(critical_threshold_percentage
));
1399 assert(critical_threshold_percentage
< 100);
1400 PE_get_default("kern.jetsam_idle_offset", &idle_offset_percentage
, sizeof(idle_offset_percentage
));
1401 assert(idle_offset_percentage
< 100);
1402 PE_get_default("kern.jetsam_pressure_threshold", &pressure_threshold_percentage
, sizeof(pressure_threshold_percentage
));
1403 assert(pressure_threshold_percentage
< 100);
1404 PE_get_default("kern.jetsam_freeze_threshold", &freeze_threshold_percentage
, sizeof(freeze_threshold_percentage
));
1405 assert(freeze_threshold_percentage
< 100);
1408 if (!PE_parse_boot_argn("jetsam_aging_policy", &jetsam_aging_policy
,
1409 sizeof(jetsam_aging_policy
))) {
1410 if (!PE_get_default("kern.jetsam_aging_policy", &jetsam_aging_policy
,
1411 sizeof(jetsam_aging_policy
))) {
1412 jetsam_aging_policy
= kJetsamAgingPolicySysProcsReclaimedFirst
;
1416 if (jetsam_aging_policy
> kJetsamAgingPolicyMax
) {
1417 jetsam_aging_policy
= kJetsamAgingPolicySysProcsReclaimedFirst
;
1420 switch (jetsam_aging_policy
) {
1421 case kJetsamAgingPolicyNone
:
1422 system_procs_aging_band
= JETSAM_PRIORITY_IDLE
;
1423 applications_aging_band
= JETSAM_PRIORITY_IDLE
;
1426 case kJetsamAgingPolicyLegacy
:
1428 * Legacy behavior where some daemons get a 10s protection once
1429 * AND only before the first clean->dirty->clean transition before
1430 * going into IDLE band.
1432 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1433 applications_aging_band
= JETSAM_PRIORITY_IDLE
;
1436 case kJetsamAgingPolicySysProcsReclaimedFirst
:
1437 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1438 applications_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
1441 case kJetsamAgingPolicyAppsReclaimedFirst
:
1442 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
1443 applications_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1451 * The aging bands cannot overlap with the JETSAM_PRIORITY_ELEVATED_INACTIVE
1452 * band and must be below it in priority. This is so that we don't have to make
1453 * our 'aging' code worry about a mix of processes, some of which need to age
1454 * and some others that need to stay elevated in the jetsam bands.
1456 assert(JETSAM_PRIORITY_ELEVATED_INACTIVE
> system_procs_aging_band
);
1457 assert(JETSAM_PRIORITY_ELEVATED_INACTIVE
> applications_aging_band
);
1459 /* Take snapshots for idle-exit kills by default? First check the boot-arg... */
1460 if (!PE_parse_boot_argn("jetsam_idle_snapshot", &memorystatus_idle_snapshot
, sizeof(memorystatus_idle_snapshot
))) {
1461 /* ...no boot-arg, so check the device tree */
1462 PE_get_default("kern.jetsam_idle_snapshot", &memorystatus_idle_snapshot
, sizeof(memorystatus_idle_snapshot
));
1465 memorystatus_delta
= delta_percentage
* atop_64(max_mem
) / 100;
1466 memorystatus_available_pages_critical_idle_offset
= idle_offset_percentage
* atop_64(max_mem
) / 100;
1467 memorystatus_available_pages_critical_base
= (critical_threshold_percentage
/ delta_percentage
) * memorystatus_delta
;
1468 memorystatus_policy_more_free_offset_pages
= (policy_more_free_offset_percentage
/ delta_percentage
) * memorystatus_delta
;
1469 memorystatus_sysproc_aging_aggr_pages
= sysproc_aging_aggr_threshold_percentage
* atop_64(max_mem
) / 100;
1471 /* Jetsam Loop Detection */
1472 if (max_mem
<= (512 * 1024 * 1024)) {
1473 /* 512 MB devices */
1474 memorystatus_jld_eval_period_msecs
= 8000; /* 8000 msecs == 8 second window */
1476 /* 1GB and larger devices */
1477 memorystatus_jld_eval_period_msecs
= 6000; /* 6000 msecs == 6 second window */
1480 memorystatus_jld_enabled
= TRUE
;
1482 /* No contention at this point */
1483 memorystatus_update_levels_locked(FALSE
);
1485 #endif /* CONFIG_JETSAM */
1487 memorystatus_jetsam_snapshot_max
= maxproc
;
1489 memorystatus_jetsam_snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
1490 (sizeof(memorystatus_jetsam_snapshot_entry_t
) * memorystatus_jetsam_snapshot_max
);
1492 memorystatus_jetsam_snapshot
=
1493 (memorystatus_jetsam_snapshot_t
*)kalloc(memorystatus_jetsam_snapshot_size
);
1494 if (!memorystatus_jetsam_snapshot
) {
1495 panic("Could not allocate memorystatus_jetsam_snapshot");
1498 memorystatus_jetsam_snapshot_copy
=
1499 (memorystatus_jetsam_snapshot_t
*)kalloc(memorystatus_jetsam_snapshot_size
);
1500 if (!memorystatus_jetsam_snapshot_copy
) {
1501 panic("Could not allocate memorystatus_jetsam_snapshot_copy");
1504 nanoseconds_to_absolutetime((uint64_t)JETSAM_SNAPSHOT_TIMEOUT_SECS
* NSEC_PER_SEC
, &memorystatus_jetsam_snapshot_timeout
);
1506 memset(&memorystatus_at_boot_snapshot
, 0, sizeof(memorystatus_jetsam_snapshot_t
));
1509 memorystatus_freeze_threshold
= (freeze_threshold_percentage
/ delta_percentage
) * memorystatus_delta
;
1512 /* Check the boot-arg to see if fast jetsam is allowed */
1513 if (!PE_parse_boot_argn("fast_jetsam_enabled", &fast_jetsam_enabled
, sizeof(fast_jetsam_enabled
))) {
1514 fast_jetsam_enabled
= 0;
1517 /* Check the boot-arg to configure the maximum number of jetsam threads */
1518 if (!PE_parse_boot_argn("max_jetsam_threads", &max_jetsam_threads
, sizeof(max_jetsam_threads
))) {
1519 max_jetsam_threads
= JETSAM_THREADS_LIMIT
;
1522 /* Restrict the maximum number of jetsam threads to JETSAM_THREADS_LIMIT */
1523 if (max_jetsam_threads
> JETSAM_THREADS_LIMIT
) {
1524 max_jetsam_threads
= JETSAM_THREADS_LIMIT
;
1527 /* For low CPU systems disable fast jetsam mechanism */
1528 if (vm_pageout_state
.vm_restricted_to_single_processor
== TRUE
) {
1529 max_jetsam_threads
= 1;
1530 fast_jetsam_enabled
= 0;
1533 /* Initialize the jetsam_threads state array */
1534 jetsam_threads
= kalloc(sizeof(struct jetsam_thread_state
) * max_jetsam_threads
);
1536 /* Initialize all the jetsam threads */
1537 for (i
= 0; i
< max_jetsam_threads
; i
++) {
1538 jetsam_threads
[i
].inited
= FALSE
;
1539 jetsam_threads
[i
].index
= i
;
1540 result
= kernel_thread_start_priority(memorystatus_thread
, NULL
, 95 /* MAXPRI_KERNEL */, &jetsam_threads
[i
].thread
);
1541 if (result
!= KERN_SUCCESS
) {
1542 panic("Could not create memorystatus_thread %d", i
);
1544 thread_deallocate(jetsam_threads
[i
].thread
);
1548 /* Centralised for the purposes of allowing panic-on-jetsam */
1550 vm_run_compactor(void);
1553 * The jetsam no frills kill call
1554 * Return: 0 on success
1555 * error code on failure (EINVAL...)
1558 jetsam_do_kill(proc_t p
, int jetsam_flags
, os_reason_t jetsam_reason
)
1561 error
= exit_with_reason(p
, W_EXITCODE(0, SIGKILL
), (int *)NULL
, FALSE
, FALSE
, jetsam_flags
, jetsam_reason
);
1566 * Wrapper for processes exiting with memorystatus details
1569 memorystatus_do_kill(proc_t p
, uint32_t cause
, os_reason_t jetsam_reason
, uint64_t *footprint_of_killed_proc
)
1572 __unused pid_t victim_pid
= p
->p_pid
;
1573 uint64_t footprint
= get_task_phys_footprint(p
->task
);
1574 #if (KDEBUG_LEVEL >= KDEBUG_LEVEL_STANDARD)
1575 int32_t memstat_effectivepriority
= p
->p_memstat_effectivepriority
;
1576 #endif /* (KDEBUG_LEVEL >= KDEBUG_LEVEL_STANDARD) */
1578 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DO_KILL
)) | DBG_FUNC_START
,
1579 victim_pid
, cause
, vm_page_free_count
, footprint
, 0);
1580 DTRACE_MEMORYSTATUS4(memorystatus_do_kill
, proc_t
, p
, os_reason_t
, jetsam_reason
, uint32_t, cause
, uint64_t, footprint
);
1581 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
1582 if (memorystatus_jetsam_panic_debug
& (1 << cause
)) {
1583 panic("memorystatus_do_kill(): jetsam debug panic (cause: %d)", cause
);
1586 #pragma unused(cause)
1589 if (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
) {
1590 printf("memorystatus: killing process %d [%s] in high band %s (%d) - memorystatus_available_pages: %llu\n", p
->p_pid
,
1591 (*p
->p_name
? p
->p_name
: "unknown"),
1592 memorystatus_priority_band_name(p
->p_memstat_effectivepriority
), p
->p_memstat_effectivepriority
,
1593 (uint64_t)memorystatus_available_pages
);
1597 * The jetsam_reason (os_reason_t) has enough information about the kill cause.
1598 * We don't really need jetsam_flags anymore, so it's okay that not all possible kill causes have been mapped.
1600 int jetsam_flags
= P_LTERM_JETSAM
;
1602 case kMemorystatusKilledHiwat
: jetsam_flags
|= P_JETSAM_HIWAT
; break;
1603 case kMemorystatusKilledVnodes
: jetsam_flags
|= P_JETSAM_VNODE
; break;
1604 case kMemorystatusKilledVMPageShortage
: jetsam_flags
|= P_JETSAM_VMPAGESHORTAGE
; break;
1605 case kMemorystatusKilledVMCompressorThrashing
:
1606 case kMemorystatusKilledVMCompressorSpaceShortage
: jetsam_flags
|= P_JETSAM_VMTHRASHING
; break;
1607 case kMemorystatusKilledFCThrashing
: jetsam_flags
|= P_JETSAM_FCTHRASHING
; break;
1608 case kMemorystatusKilledPerProcessLimit
: jetsam_flags
|= P_JETSAM_PID
; break;
1609 case kMemorystatusKilledIdleExit
: jetsam_flags
|= P_JETSAM_IDLEEXIT
; break;
1611 error
= jetsam_do_kill(p
, jetsam_flags
, jetsam_reason
);
1612 *footprint_of_killed_proc
= ((error
== 0) ? footprint
: 0);
1614 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DO_KILL
)) | DBG_FUNC_END
,
1615 victim_pid
, memstat_effectivepriority
, vm_page_free_count
, error
, 0);
1617 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_COMPACTOR_RUN
)) | DBG_FUNC_START
,
1618 victim_pid
, cause
, vm_page_free_count
, *footprint_of_killed_proc
, 0);
1622 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_COMPACTOR_RUN
)) | DBG_FUNC_END
,
1623 victim_pid
, cause
, vm_page_free_count
, 0, 0);
1633 memorystatus_check_levels_locked(void)
1637 memorystatus_update_levels_locked(TRUE
);
1638 #else /* CONFIG_JETSAM */
1640 * Nothing to do here currently since we update
1641 * memorystatus_available_pages in vm_pressure_response.
1643 #endif /* CONFIG_JETSAM */
1647 * Pin a process to a particular jetsam band when it is in the background i.e. not doing active work.
1648 * For an application: that means no longer in the FG band
1649 * For a daemon: that means no longer in its 'requested' jetsam priority band
1653 memorystatus_update_inactive_jetsam_priority_band(pid_t pid
, uint32_t op_flags
, int jetsam_prio
, boolean_t effective_now
)
1656 boolean_t enable
= FALSE
;
1659 if (op_flags
== MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE
) {
1661 } else if (op_flags
== MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE
) {
1669 if ((enable
&& ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) == P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
)) ||
1670 (!enable
&& ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) == 0))) {
1672 * No change in state.
1678 p
->p_memstat_state
|= P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
;
1679 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1681 if (effective_now
) {
1682 if (p
->p_memstat_effectivepriority
< jetsam_prio
) {
1683 if (memorystatus_highwater_enabled
) {
1685 * Process is about to transition from
1686 * inactive --> active
1687 * assign active state
1690 boolean_t use_active
= TRUE
;
1691 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
1692 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, use_active
, is_fatal
);
1694 memorystatus_update_priority_locked(p
, jetsam_prio
, FALSE
, FALSE
);
1697 if (isProcessInAgingBands(p
)) {
1698 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1702 p
->p_memstat_state
&= ~P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
;
1703 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1705 if (effective_now
) {
1706 if (p
->p_memstat_effectivepriority
== jetsam_prio
) {
1707 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1710 if (isProcessInAgingBands(p
)) {
1711 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1728 memorystatus_perform_idle_demotion(__unused
void *spare1
, __unused
void *spare2
)
1731 uint64_t current_time
= 0, idle_delay_time
= 0;
1732 int demote_prio_band
= 0;
1733 memstat_bucket_t
*demotion_bucket
;
1735 MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion()\n");
1737 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_IDLE_DEMOTE
) | DBG_FUNC_START
, 0, 0, 0, 0, 0);
1739 current_time
= mach_absolute_time();
1743 demote_prio_band
= JETSAM_PRIORITY_IDLE
+ 1;
1745 for (; demote_prio_band
< JETSAM_PRIORITY_MAX
; demote_prio_band
++) {
1746 if (demote_prio_band
!= system_procs_aging_band
&& demote_prio_band
!= applications_aging_band
) {
1750 demotion_bucket
= &memstat_bucket
[demote_prio_band
];
1751 p
= TAILQ_FIRST(&demotion_bucket
->list
);
1754 MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion() found %d\n", p
->p_pid
);
1756 assert(p
->p_memstat_idledeadline
);
1758 assert(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
);
1760 if (current_time
>= p
->p_memstat_idledeadline
) {
1761 if ((isSysProc(p
) &&
1762 ((p
->p_memstat_dirty
& (P_DIRTY_IDLE_EXIT_ENABLED
| P_DIRTY_IS_DIRTY
)) != P_DIRTY_IDLE_EXIT_ENABLED
)) || /* system proc marked dirty*/
1763 task_has_assertions((struct task
*)(p
->task
))) { /* has outstanding assertions which might indicate outstanding work too */
1764 idle_delay_time
= (isSysProc(p
)) ? memorystatus_sysprocs_idle_time(p
) : memorystatus_apps_idle_time(p
);
1766 p
->p_memstat_idledeadline
+= idle_delay_time
;
1767 p
= TAILQ_NEXT(p
, p_memstat_list
);
1769 proc_t next_proc
= NULL
;
1771 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
1772 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1774 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, false, true);
1780 // No further candidates
1786 memorystatus_reschedule_idle_demotion_locked();
1790 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_IDLE_DEMOTE
) | DBG_FUNC_END
, 0, 0, 0, 0, 0);
1794 memorystatus_schedule_idle_demotion_locked(proc_t p
, boolean_t set_state
)
1796 boolean_t present_in_sysprocs_aging_bucket
= FALSE
;
1797 boolean_t present_in_apps_aging_bucket
= FALSE
;
1798 uint64_t idle_delay_time
= 0;
1800 if (jetsam_aging_policy
== kJetsamAgingPolicyNone
) {
1804 if ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) ||
1805 (p
->p_memstat_state
& P_MEMSTAT_PRIORITY_ASSERTION
)) {
1807 * This process isn't going to be making the trip to the lower bands.
1812 if (isProcessInAgingBands(p
)) {
1813 if (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) {
1814 assert((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) != P_DIRTY_AGING_IN_PROGRESS
);
1817 if (isSysProc(p
) && system_procs_aging_band
) {
1818 present_in_sysprocs_aging_bucket
= TRUE
;
1819 } else if (isApp(p
) && applications_aging_band
) {
1820 present_in_apps_aging_bucket
= TRUE
;
1824 assert(!present_in_sysprocs_aging_bucket
);
1825 assert(!present_in_apps_aging_bucket
);
1827 MEMORYSTATUS_DEBUG(1, "memorystatus_schedule_idle_demotion_locked: scheduling demotion to idle band for pid %d (dirty:0x%x, set_state %d, demotions %d).\n",
1828 p
->p_pid
, p
->p_memstat_dirty
, set_state
, (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
));
1831 assert((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
);
1834 idle_delay_time
= (isSysProc(p
)) ? memorystatus_sysprocs_idle_time(p
) : memorystatus_apps_idle_time(p
);
1836 p
->p_memstat_dirty
|= P_DIRTY_AGING_IN_PROGRESS
;
1837 p
->p_memstat_idledeadline
= mach_absolute_time() + idle_delay_time
;
1840 assert(p
->p_memstat_idledeadline
);
1842 if (isSysProc(p
) && present_in_sysprocs_aging_bucket
== FALSE
) {
1843 memorystatus_scheduled_idle_demotions_sysprocs
++;
1844 } else if (isApp(p
) && present_in_apps_aging_bucket
== FALSE
) {
1845 memorystatus_scheduled_idle_demotions_apps
++;
1850 memorystatus_invalidate_idle_demotion_locked(proc_t p
, boolean_t clear_state
)
1852 boolean_t present_in_sysprocs_aging_bucket
= FALSE
;
1853 boolean_t present_in_apps_aging_bucket
= FALSE
;
1855 if (!system_procs_aging_band
&& !applications_aging_band
) {
1859 if ((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) == 0) {
1863 if (isProcessInAgingBands(p
)) {
1864 if (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) {
1865 assert((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) == P_DIRTY_AGING_IN_PROGRESS
);
1868 if (isSysProc(p
) && system_procs_aging_band
) {
1869 assert(p
->p_memstat_effectivepriority
== system_procs_aging_band
);
1870 assert(p
->p_memstat_idledeadline
);
1871 present_in_sysprocs_aging_bucket
= TRUE
;
1872 } else if (isApp(p
) && applications_aging_band
) {
1873 assert(p
->p_memstat_effectivepriority
== applications_aging_band
);
1874 assert(p
->p_memstat_idledeadline
);
1875 present_in_apps_aging_bucket
= TRUE
;
1879 MEMORYSTATUS_DEBUG(1, "memorystatus_invalidate_idle_demotion(): invalidating demotion to idle band for pid %d (clear_state %d, demotions %d).\n",
1880 p
->p_pid
, clear_state
, (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
));
1884 p
->p_memstat_idledeadline
= 0;
1885 p
->p_memstat_dirty
&= ~P_DIRTY_AGING_IN_PROGRESS
;
1888 if (isSysProc(p
) && present_in_sysprocs_aging_bucket
== TRUE
) {
1889 memorystatus_scheduled_idle_demotions_sysprocs
--;
1890 assert(memorystatus_scheduled_idle_demotions_sysprocs
>= 0);
1891 } else if (isApp(p
) && present_in_apps_aging_bucket
== TRUE
) {
1892 memorystatus_scheduled_idle_demotions_apps
--;
1893 assert(memorystatus_scheduled_idle_demotions_apps
>= 0);
1896 assert((memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
) >= 0);
1900 memorystatus_reschedule_idle_demotion_locked(void)
1902 if (0 == (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
)) {
1903 if (memstat_idle_demotion_deadline
) {
1904 /* Transitioned 1->0, so cancel next call */
1905 thread_call_cancel(memorystatus_idle_demotion_call
);
1906 memstat_idle_demotion_deadline
= 0;
1909 memstat_bucket_t
*demotion_bucket
;
1910 proc_t p
= NULL
, p1
= NULL
, p2
= NULL
;
1912 if (system_procs_aging_band
) {
1913 demotion_bucket
= &memstat_bucket
[system_procs_aging_band
];
1914 p1
= TAILQ_FIRST(&demotion_bucket
->list
);
1919 if (applications_aging_band
) {
1920 demotion_bucket
= &memstat_bucket
[applications_aging_band
];
1921 p2
= TAILQ_FIRST(&demotion_bucket
->list
);
1924 p
= (p1
->p_memstat_idledeadline
> p2
->p_memstat_idledeadline
) ? p2
: p1
;
1926 p
= (p1
== NULL
) ? p2
: p1
;
1933 assert(p
&& p
->p_memstat_idledeadline
);
1934 if (memstat_idle_demotion_deadline
!= p
->p_memstat_idledeadline
) {
1935 thread_call_enter_delayed(memorystatus_idle_demotion_call
, p
->p_memstat_idledeadline
);
1936 memstat_idle_demotion_deadline
= p
->p_memstat_idledeadline
;
1947 memorystatus_add(proc_t p
, boolean_t locked
)
1949 memstat_bucket_t
*bucket
;
1951 MEMORYSTATUS_DEBUG(1, "memorystatus_list_add(): adding pid %d with priority %d.\n", p
->p_pid
, p
->p_memstat_effectivepriority
);
1957 DTRACE_MEMORYSTATUS2(memorystatus_add
, proc_t
, p
, int32_t, p
->p_memstat_effectivepriority
);
1959 /* Processes marked internal do not have priority tracked */
1960 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
1965 * Opt out system processes from being frozen by default.
1966 * For coalition-based freezing, we only want to freeze sysprocs that have specifically opted in.
1969 p
->p_memstat_state
|= P_MEMSTAT_FREEZE_DISABLED
;
1972 bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
1974 if (isSysProc(p
) && system_procs_aging_band
&& (p
->p_memstat_effectivepriority
== system_procs_aging_band
)) {
1975 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_sysprocs
- 1);
1976 } else if (isApp(p
) && applications_aging_band
&& (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
1977 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_apps
- 1);
1978 } else if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
1980 * Entering the idle band.
1981 * Record idle start time.
1983 p
->p_memstat_idle_start
= mach_absolute_time();
1986 TAILQ_INSERT_TAIL(&bucket
->list
, p
, p_memstat_list
);
1988 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
1989 bucket
->relaunch_high_count
++;
1992 memorystatus_list_count
++;
1994 memorystatus_check_levels_locked();
2006 * Moves a process from one jetsam bucket to another.
2007 * which changes the LRU position of the process.
2009 * Monitors transition between buckets and if necessary
2010 * will update cached memory limits accordingly.
2012 * skip_demotion_check:
2013 * - if the 'jetsam aging policy' is NOT 'legacy':
2014 * When this flag is TRUE, it means we are going
2015 * to age the ripe processes out of the aging bands and into the
2016 * IDLE band and apply their inactive memory limits.
2018 * - if the 'jetsam aging policy' is 'legacy':
2019 * When this flag is TRUE, it might mean the above aging mechanism
2021 * It might be that we have a process that has used up its 'idle deferral'
2022 * stay that is given to it once per lifetime. And in this case, the process
2023 * won't be going through any aging codepaths. But we still need to apply
2024 * the right inactive limits and so we explicitly set this to TRUE if the
2025 * new priority for the process is the IDLE band.
2028 memorystatus_update_priority_locked(proc_t p
, int priority
, boolean_t head_insert
, boolean_t skip_demotion_check
)
2030 memstat_bucket_t
*old_bucket
, *new_bucket
;
2032 assert(priority
< MEMSTAT_BUCKET_COUNT
);
2034 /* Ensure that exit isn't underway, leaving the proc retained but removed from its bucket */
2035 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
2039 MEMORYSTATUS_DEBUG(1, "memorystatus_update_priority_locked(): setting %s(%d) to priority %d, inserting at %s\n",
2040 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
, priority
, head_insert
? "head" : "tail");
2042 DTRACE_MEMORYSTATUS3(memorystatus_update_priority
, proc_t
, p
, int32_t, p
->p_memstat_effectivepriority
, int, priority
);
2044 old_bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
2046 if (skip_demotion_check
== FALSE
) {
2049 * For system processes, the memorystatus_dirty_* routines take care of adding/removing
2050 * the processes from the aging bands and balancing the demotion counts.
2051 * We can, however, override that if the process has an 'elevated inactive jetsam band' attribute.
2054 if (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) {
2056 * 2 types of processes can use the non-standard elevated inactive band:
2057 * - Frozen processes that always land in memorystatus_freeze_jetsam_band
2059 * - processes that specifically opt-in to the elevated inactive support e.g. docked processes.
2062 if (p
->p_memstat_state
& P_MEMSTAT_FROZEN
) {
2063 if (priority
<= memorystatus_freeze_jetsam_band
) {
2064 priority
= memorystatus_freeze_jetsam_band
;
2067 #endif /* CONFIG_FREEZE */
2069 if (priority
<= JETSAM_PRIORITY_ELEVATED_INACTIVE
) {
2070 priority
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
2073 assert(!(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
));
2075 } else if (isApp(p
)) {
2077 * Check to see if the application is being lowered in jetsam priority. If so, and:
2078 * - it has an 'elevated inactive jetsam band' attribute, then put it in the appropriate band.
2079 * - it is a normal application, then let it age in the aging band if that policy is in effect.
2082 if (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) {
2084 if (p
->p_memstat_state
& P_MEMSTAT_FROZEN
) {
2085 if (priority
<= memorystatus_freeze_jetsam_band
) {
2086 priority
= memorystatus_freeze_jetsam_band
;
2089 #endif /* CONFIG_FREEZE */
2091 if (priority
<= JETSAM_PRIORITY_ELEVATED_INACTIVE
) {
2092 priority
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
2096 if (applications_aging_band
) {
2097 if (p
->p_memstat_effectivepriority
== applications_aging_band
) {
2098 assert(old_bucket
->count
== (memorystatus_scheduled_idle_demotions_apps
+ 1));
2101 if ((jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) && (priority
<= applications_aging_band
)) {
2102 assert(!(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
));
2103 priority
= applications_aging_band
;
2104 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2111 if ((system_procs_aging_band
&& (priority
== system_procs_aging_band
)) || (applications_aging_band
&& (priority
== applications_aging_band
))) {
2112 assert(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
);
2115 #if DEVELOPMENT || DEBUG
2116 if (priority
== JETSAM_PRIORITY_IDLE
&& /* if the process is on its way into the IDLE band */
2117 skip_demotion_check
== FALSE
&& /* and it isn't via the path that will set the INACTIVE memlimits */
2118 (p
->p_memstat_dirty
& P_DIRTY_TRACK
) && /* and it has 'DIRTY' tracking enabled */
2119 ((p
->p_memstat_memlimit
!= p
->p_memstat_memlimit_inactive
) || /* and we notice that the current limit isn't the right value (inactive) */
2120 ((p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
) ? (!(p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
)) : (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
)))) { /* OR type (fatal vs non-fatal) */
2121 printf("memorystatus_update_priority_locked: on %s with 0x%x, prio: %d and %d\n", p
->p_name
, p
->p_memstat_state
, priority
, p
->p_memstat_memlimit
); /* then we must catch this */
2123 #endif /* DEVELOPMENT || DEBUG */
2125 TAILQ_REMOVE(&old_bucket
->list
, p
, p_memstat_list
);
2126 old_bucket
->count
--;
2127 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
2128 old_bucket
->relaunch_high_count
--;
2131 new_bucket
= &memstat_bucket
[priority
];
2133 TAILQ_INSERT_HEAD(&new_bucket
->list
, p
, p_memstat_list
);
2135 TAILQ_INSERT_TAIL(&new_bucket
->list
, p
, p_memstat_list
);
2137 new_bucket
->count
++;
2138 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
2139 new_bucket
->relaunch_high_count
++;
2142 if (memorystatus_highwater_enabled
) {
2144 boolean_t use_active
;
2147 * If cached limit data is updated, then the limits
2148 * will be enforced by writing to the ledgers.
2150 boolean_t ledger_update_needed
= TRUE
;
2153 * Here, we must update the cached memory limit if the task
2154 * is transitioning between:
2155 * active <--> inactive
2158 * dirty <--> clean is ignored
2160 * We bypass non-idle processes that have opted into dirty tracking because
2161 * a move between buckets does not imply a transition between the
2162 * dirty <--> clean state.
2165 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
2166 if (skip_demotion_check
== TRUE
&& priority
== JETSAM_PRIORITY_IDLE
) {
2167 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2170 ledger_update_needed
= FALSE
;
2172 } else if ((priority
>= JETSAM_PRIORITY_FOREGROUND
) && (p
->p_memstat_effectivepriority
< JETSAM_PRIORITY_FOREGROUND
)) {
2174 * inactive --> active
2176 * assign active state
2178 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2180 } else if ((priority
< JETSAM_PRIORITY_FOREGROUND
) && (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
)) {
2182 * active --> inactive
2184 * assign inactive state
2186 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2190 * The transition between jetsam priority buckets apparently did
2191 * not affect active/inactive state.
2192 * This is not unusual... especially during startup when
2193 * processes are getting established in their respective bands.
2195 ledger_update_needed
= FALSE
;
2199 * Enforce the new limits by writing to the ledger
2201 if (ledger_update_needed
) {
2202 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, use_active
, is_fatal
);
2204 MEMORYSTATUS_DEBUG(3, "memorystatus_update_priority_locked: new limit on pid %d (%dMB %s) priority old --> new (%d --> %d) dirty?=0x%x %s\n",
2205 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
2206 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, priority
, p
->p_memstat_dirty
,
2207 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
2212 * Record idle start or idle delta.
2214 if (p
->p_memstat_effectivepriority
== priority
) {
2216 * This process is not transitioning between
2217 * jetsam priority buckets. Do nothing.
2219 } else if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
2222 * Transitioning out of the idle priority bucket.
2223 * Record idle delta.
2225 assert(p
->p_memstat_idle_start
!= 0);
2226 now
= mach_absolute_time();
2227 if (now
> p
->p_memstat_idle_start
) {
2228 p
->p_memstat_idle_delta
= now
- p
->p_memstat_idle_start
;
2232 * About to become active and so memory footprint could change.
2233 * So mark it eligible for freeze-considerations next time around.
2235 if (p
->p_memstat_state
& P_MEMSTAT_FREEZE_IGNORE
) {
2236 p
->p_memstat_state
&= ~P_MEMSTAT_FREEZE_IGNORE
;
2238 } else if (priority
== JETSAM_PRIORITY_IDLE
) {
2240 * Transitioning into the idle priority bucket.
2241 * Record idle start.
2243 p
->p_memstat_idle_start
= mach_absolute_time();
2246 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CHANGE_PRIORITY
), p
->p_pid
, priority
, p
->p_memstat_effectivepriority
, 0, 0);
2248 p
->p_memstat_effectivepriority
= priority
;
2250 #if CONFIG_SECLUDED_MEMORY
2251 if (secluded_for_apps
&&
2252 task_could_use_secluded_mem(p
->task
)) {
2253 task_set_can_use_secluded_mem(
2255 (priority
>= JETSAM_PRIORITY_FOREGROUND
));
2257 #endif /* CONFIG_SECLUDED_MEMORY */
2259 memorystatus_check_levels_locked();
2263 memorystatus_relaunch_flags_update(proc_t p
, int relaunch_flags
)
2265 p
->p_memstat_relaunch_flags
= relaunch_flags
;
2266 KDBG(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_RELAUNCH_FLAGS
), p
->p_pid
, relaunch_flags
, 0, 0, 0);
2272 * Description: Update the jetsam priority and memory limit attributes for a given process.
2275 * p init this process's jetsam information.
2276 * priority The jetsam priority band
2277 * user_data user specific data, unused by the kernel
2278 * is_assertion When true, a priority update is driven by an assertion.
2279 * effective guards against race if process's update already occurred
2280 * update_memlimit When true we know this is the init step via the posix_spawn path.
2282 * memlimit_active Value in megabytes; The monitored footprint level while the
2283 * process is active. Exceeding it may result in termination
2284 * based on it's associated fatal flag.
2286 * memlimit_active_is_fatal When a process is active and exceeds its memory footprint,
2287 * this describes whether or not it should be immediately fatal.
2289 * memlimit_inactive Value in megabytes; The monitored footprint level while the
2290 * process is inactive. Exceeding it may result in termination
2291 * based on it's associated fatal flag.
2293 * memlimit_inactive_is_fatal When a process is inactive and exceeds its memory footprint,
2294 * this describes whether or not it should be immediatly fatal.
2296 * Returns: 0 Success
2301 memorystatus_update(proc_t p
, int priority
, uint64_t user_data
, boolean_t is_assertion
, boolean_t effective
, boolean_t update_memlimit
,
2302 int32_t memlimit_active
, boolean_t memlimit_active_is_fatal
,
2303 int32_t memlimit_inactive
, boolean_t memlimit_inactive_is_fatal
)
2306 boolean_t head_insert
= false;
2308 MEMORYSTATUS_DEBUG(1, "memorystatus_update: changing (%s) pid %d: priority %d, user_data 0x%llx\n", (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
, priority
, user_data
);
2310 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_UPDATE
) | DBG_FUNC_START
, p
->p_pid
, priority
, user_data
, effective
, 0);
2312 if (priority
== -1) {
2313 /* Use as shorthand for default priority */
2314 priority
= JETSAM_PRIORITY_DEFAULT
;
2315 } else if ((priority
== system_procs_aging_band
) || (priority
== applications_aging_band
)) {
2316 /* Both the aging bands are reserved for internal use; if requested, adjust to JETSAM_PRIORITY_IDLE. */
2317 priority
= JETSAM_PRIORITY_IDLE
;
2318 } else if (priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
2319 /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle queue */
2320 priority
= JETSAM_PRIORITY_IDLE
;
2322 } else if ((priority
< 0) || (priority
>= MEMSTAT_BUCKET_COUNT
)) {
2330 assert(!(p
->p_memstat_state
& P_MEMSTAT_INTERNAL
));
2332 if (effective
&& (p
->p_memstat_state
& P_MEMSTAT_PRIORITYUPDATED
)) {
2335 MEMORYSTATUS_DEBUG(1, "memorystatus_update: effective change specified for pid %d, but change already occurred.\n", p
->p_pid
);
2339 if ((p
->p_memstat_state
& P_MEMSTAT_TERMINATED
) || ((p
->p_listflag
& P_LIST_EXITED
) != 0)) {
2341 * This could happen when a process calling posix_spawn() is exiting on the jetsam thread.
2348 p
->p_memstat_state
|= P_MEMSTAT_PRIORITYUPDATED
;
2349 p
->p_memstat_userdata
= user_data
;
2352 if (priority
== JETSAM_PRIORITY_IDLE
) {
2354 * Assertions relinquish control when the process is heading to IDLE.
2356 if (p
->p_memstat_state
& P_MEMSTAT_PRIORITY_ASSERTION
) {
2358 * Mark the process as no longer being managed by assertions.
2360 p
->p_memstat_state
&= ~P_MEMSTAT_PRIORITY_ASSERTION
;
2363 * Ignore an idle priority transition if the process is not
2364 * already managed by assertions. We won't treat this as
2365 * an error, but we will log the unexpected behavior and bail.
2367 os_log(OS_LOG_DEFAULT
, "memorystatus: Ignore assertion driven idle priority. Process not previously controlled %s:%d\n",
2368 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
);
2376 * Process is now being managed by assertions,
2378 p
->p_memstat_state
|= P_MEMSTAT_PRIORITY_ASSERTION
;
2381 /* Always update the assertion priority in this path */
2383 p
->p_memstat_assertionpriority
= priority
;
2385 int memstat_dirty_flags
= memorystatus_dirty_get(p
, TRUE
); /* proc_list_lock is held */
2387 if (memstat_dirty_flags
!= 0) {
2389 * Calculate maximum priority only when dirty tracking processes are involved.
2392 if (memstat_dirty_flags
& PROC_DIRTY_IS_DIRTY
) {
2393 maxpriority
= MAX(p
->p_memstat_assertionpriority
, p
->p_memstat_requestedpriority
);
2397 if (memstat_dirty_flags
& PROC_DIRTY_ALLOWS_IDLE_EXIT
) {
2399 * The aging policy must be evaluated and applied here because runnningboardd
2400 * has relinquished its hold on the jetsam priority by attempting to move a
2401 * clean process to the idle band.
2404 int newpriority
= JETSAM_PRIORITY_IDLE
;
2405 if ((p
->p_memstat_dirty
& (P_DIRTY_IDLE_EXIT_ENABLED
| P_DIRTY_IS_DIRTY
)) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2406 newpriority
= (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) ? system_procs_aging_band
: JETSAM_PRIORITY_IDLE
;
2409 maxpriority
= MAX(p
->p_memstat_assertionpriority
, newpriority
);
2411 if (newpriority
== system_procs_aging_band
) {
2412 memorystatus_schedule_idle_demotion_locked(p
, FALSE
);
2416 * Preserves requestedpriority when the process does not support pressured exit.
2418 maxpriority
= MAX(p
->p_memstat_assertionpriority
, p
->p_memstat_requestedpriority
);
2421 priority
= maxpriority
;
2424 p
->p_memstat_requestedpriority
= priority
;
2427 if (update_memlimit
) {
2429 boolean_t use_active
;
2432 * Posix_spawn'd processes come through this path to instantiate ledger limits.
2433 * Forked processes do not come through this path, so no ledger limits exist.
2434 * (That's why forked processes can consume unlimited memory.)
2437 MEMORYSTATUS_DEBUG(3, "memorystatus_update(enter): pid %d, priority %d, dirty=0x%x, Active(%dMB %s), Inactive(%dMB, %s)\n",
2438 p
->p_pid
, priority
, p
->p_memstat_dirty
,
2439 memlimit_active
, (memlimit_active_is_fatal
? "F " : "NF"),
2440 memlimit_inactive
, (memlimit_inactive_is_fatal
? "F " : "NF"));
2442 if (memlimit_active
<= 0) {
2444 * This process will have a system_wide task limit when active.
2445 * System_wide task limit is always fatal.
2446 * It's quite common to see non-fatal flag passed in here.
2447 * It's not an error, we just ignore it.
2451 * For backward compatibility with some unexplained launchd behavior,
2452 * we allow a zero sized limit. But we still enforce system_wide limit
2453 * when written to the ledgers.
2456 if (memlimit_active
< 0) {
2457 memlimit_active
= -1; /* enforces system_wide task limit */
2459 memlimit_active_is_fatal
= TRUE
;
2462 if (memlimit_inactive
<= 0) {
2464 * This process will have a system_wide task limit when inactive.
2465 * System_wide task limit is always fatal.
2468 memlimit_inactive
= -1;
2469 memlimit_inactive_is_fatal
= TRUE
;
2473 * Initialize the active limit variants for this process.
2475 SET_ACTIVE_LIMITS_LOCKED(p
, memlimit_active
, memlimit_active_is_fatal
);
2478 * Initialize the inactive limit variants for this process.
2480 SET_INACTIVE_LIMITS_LOCKED(p
, memlimit_inactive
, memlimit_inactive_is_fatal
);
2483 * Initialize the cached limits for target process.
2484 * When the target process is dirty tracked, it's typically
2485 * in a clean state. Non dirty tracked processes are
2486 * typically active (Foreground or above).
2487 * But just in case, we don't make assumptions...
2490 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
2491 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2494 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2499 * Enforce the cached limit by writing to the ledger.
2501 if (memorystatus_highwater_enabled
) {
2503 task_set_phys_footprint_limit_internal(p
->task
, ((p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1), NULL
, use_active
, is_fatal
);
2505 MEMORYSTATUS_DEBUG(3, "memorystatus_update: init: limit on pid %d (%dMB %s) targeting priority(%d) dirty?=0x%x %s\n",
2506 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
2507 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), priority
, p
->p_memstat_dirty
,
2508 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
2513 * We can't add to the aging bands buckets here.
2514 * But, we could be removing it from those buckets.
2515 * Check and take appropriate steps if so.
2518 if (isProcessInAgingBands(p
)) {
2519 if ((jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) && isApp(p
) && (priority
> applications_aging_band
)) {
2521 * Runningboardd is pulling up an application that is in the aging band.
2522 * We reset the app's state here so that it'll get a fresh stay in the
2523 * aging band on the way back.
2525 * We always handled the app 'aging' in the memorystatus_update_priority_locked()
2526 * function. Daemons used to be handled via the dirty 'set/clear/track' path.
2527 * But with extensions (daemon-app hybrid), runningboardd is now going through
2528 * this routine for daemons too and things have gotten a bit tangled. This should
2529 * be simplified/untangled at some point and might require some assistance from
2532 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2534 memorystatus_invalidate_idle_demotion_locked(p
, FALSE
);
2536 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
2538 if (jetsam_aging_policy
== kJetsamAgingPolicyLegacy
&& priority
== JETSAM_PRIORITY_IDLE
) {
2540 * Daemons with 'inactive' limits will go through the dirty tracking codepath.
2541 * This path deals with apps that may have 'inactive' limits e.g. WebContent processes.
2542 * If this is the legacy aging policy we explicitly need to apply those limits. If it
2543 * is any other aging policy, then we don't need to worry because all processes
2544 * will go through the aging bands and then the demotion thread will take care to
2545 * move them into the IDLE band and apply the required limits.
2547 memorystatus_update_priority_locked(p
, priority
, head_insert
, TRUE
);
2551 memorystatus_update_priority_locked(p
, priority
, head_insert
, FALSE
);
2557 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_UPDATE
) | DBG_FUNC_END
, ret
, 0, 0, 0, 0);
2563 memorystatus_remove(proc_t p
)
2566 memstat_bucket_t
*bucket
;
2567 boolean_t reschedule
= FALSE
;
2569 MEMORYSTATUS_DEBUG(1, "memorystatus_list_remove: removing pid %d\n", p
->p_pid
);
2572 * Check if this proc is locked (because we're performing a freeze).
2573 * If so, we fail and instruct the caller to try again later.
2575 if (p
->p_memstat_state
& P_MEMSTAT_LOCKED
) {
2579 assert(!(p
->p_memstat_state
& P_MEMSTAT_INTERNAL
));
2581 bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
2583 if (isSysProc(p
) && system_procs_aging_band
&& (p
->p_memstat_effectivepriority
== system_procs_aging_band
)) {
2584 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_sysprocs
);
2586 } else if (isApp(p
) && applications_aging_band
&& (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
2587 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_apps
);
2595 if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
2596 uint64_t now
= mach_absolute_time();
2597 if (now
> p
->p_memstat_idle_start
) {
2598 p
->p_memstat_idle_delta
= now
- p
->p_memstat_idle_start
;
2602 TAILQ_REMOVE(&bucket
->list
, p
, p_memstat_list
);
2604 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
2605 bucket
->relaunch_high_count
--;
2608 memorystatus_list_count
--;
2610 /* If awaiting demotion to the idle band, clean up */
2612 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2613 memorystatus_reschedule_idle_demotion_locked();
2616 memorystatus_check_levels_locked();
2619 if (p
->p_memstat_state
& (P_MEMSTAT_FROZEN
)) {
2620 if (p
->p_memstat_state
& P_MEMSTAT_REFREEZE_ELIGIBLE
) {
2621 p
->p_memstat_state
&= ~P_MEMSTAT_REFREEZE_ELIGIBLE
;
2622 memorystatus_refreeze_eligible_count
--;
2625 memorystatus_frozen_count
--;
2626 memorystatus_frozen_shared_mb
-= p
->p_memstat_freeze_sharedanon_pages
;
2627 p
->p_memstat_freeze_sharedanon_pages
= 0;
2630 if (p
->p_memstat_state
& P_MEMSTAT_SUSPENDED
) {
2631 memorystatus_suspended_count
--;
2645 * Validate dirty tracking flags with process state.
2651 * The proc_list_lock is held by the caller.
2655 memorystatus_validate_track_flags(struct proc
*target_p
, uint32_t pcontrol
)
2657 /* See that the process isn't marked for termination */
2658 if (target_p
->p_memstat_dirty
& P_DIRTY_TERMINATED
) {
2662 /* Idle exit requires that process be tracked */
2663 if ((pcontrol
& PROC_DIRTY_ALLOW_IDLE_EXIT
) &&
2664 !(pcontrol
& PROC_DIRTY_TRACK
)) {
2668 /* 'Launch in progress' tracking requires that process have enabled dirty tracking too. */
2669 if ((pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) &&
2670 !(pcontrol
& PROC_DIRTY_TRACK
)) {
2674 /* Only one type of DEFER behavior is allowed.*/
2675 if ((pcontrol
& PROC_DIRTY_DEFER
) &&
2676 (pcontrol
& PROC_DIRTY_DEFER_ALWAYS
)) {
2680 /* Deferral is only relevant if idle exit is specified */
2681 if (((pcontrol
& PROC_DIRTY_DEFER
) ||
2682 (pcontrol
& PROC_DIRTY_DEFER_ALWAYS
)) &&
2683 !(pcontrol
& PROC_DIRTY_ALLOWS_IDLE_EXIT
)) {
2691 memorystatus_update_idle_priority_locked(proc_t p
)
2695 MEMORYSTATUS_DEBUG(1, "memorystatus_update_idle_priority_locked(): pid %d dirty 0x%X\n", p
->p_pid
, p
->p_memstat_dirty
);
2697 assert(isSysProc(p
));
2699 if ((p
->p_memstat_dirty
& (P_DIRTY_IDLE_EXIT_ENABLED
| P_DIRTY_IS_DIRTY
)) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2700 priority
= (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) ? system_procs_aging_band
: JETSAM_PRIORITY_IDLE
;
2702 priority
= p
->p_memstat_requestedpriority
;
2705 if (p
->p_memstat_state
& P_MEMSTAT_PRIORITY_ASSERTION
) {
2707 * This process has a jetsam priority managed by an assertion.
2708 * Policy is to choose the max priority.
2710 if (p
->p_memstat_assertionpriority
> priority
) {
2711 os_log(OS_LOG_DEFAULT
, "memorystatus: assertion priority %d overrides priority %d for %s:%d\n",
2712 p
->p_memstat_assertionpriority
, priority
,
2713 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
);
2714 priority
= p
->p_memstat_assertionpriority
;
2718 if (priority
!= p
->p_memstat_effectivepriority
) {
2719 if ((jetsam_aging_policy
== kJetsamAgingPolicyLegacy
) &&
2720 (priority
== JETSAM_PRIORITY_IDLE
)) {
2722 * This process is on its way into the IDLE band. The system is
2723 * using 'legacy' jetsam aging policy. That means, this process
2724 * has already used up its idle-deferral aging time that is given
2725 * once per its lifetime. So we need to set the INACTIVE limits
2726 * explicitly because it won't be going through the demotion paths
2727 * that take care to apply the limits appropriately.
2730 if (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) {
2732 * This process has the 'elevated inactive jetsam band' attribute.
2733 * So, there will be no trip to IDLE after all.
2734 * Instead, we pin the process in the elevated band,
2735 * where its ACTIVE limits will apply.
2738 priority
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
2741 memorystatus_update_priority_locked(p
, priority
, false, true);
2743 memorystatus_update_priority_locked(p
, priority
, false, false);
2749 * Processes can opt to have their state tracked by the kernel, indicating when they are busy (dirty) or idle
2750 * (clean). They may also indicate that they support termination when idle, with the result that they are promoted
2751 * to their desired, higher, jetsam priority when dirty (and are therefore killed later), and demoted to the low
2752 * priority idle band when clean (and killed earlier, protecting higher priority procesess).
2754 * If the deferral flag is set, then newly tracked processes will be protected for an initial period (as determined by
2755 * memorystatus_sysprocs_idle_delay_time); if they go clean during this time, then they will be moved to a deferred-idle band
2756 * with a slightly higher priority, guarding against immediate termination under memory pressure and being unable to
2757 * make forward progress. Finally, when the guard expires, they will be moved to the standard, lowest-priority, idle
2758 * band. The deferral can be cleared early by clearing the appropriate flag.
2760 * The deferral timer is active only for the duration that the process is marked as guarded and clean; if the process
2761 * is marked dirty, the timer will be cancelled. Upon being subsequently marked clean, the deferment will either be
2762 * re-enabled or the guard state cleared, depending on whether the guard deadline has passed.
2766 memorystatus_dirty_track(proc_t p
, uint32_t pcontrol
)
2768 unsigned int old_dirty
;
2769 boolean_t reschedule
= FALSE
;
2770 boolean_t already_deferred
= FALSE
;
2771 boolean_t defer_now
= FALSE
;
2774 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_TRACK
),
2775 p
->p_pid
, p
->p_memstat_dirty
, pcontrol
, 0, 0);
2779 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
2781 * Process is on its way out.
2787 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
2792 if ((ret
= memorystatus_validate_track_flags(p
, pcontrol
)) != 0) {
2797 old_dirty
= p
->p_memstat_dirty
;
2799 /* These bits are cumulative, as per <rdar://problem/11159924> */
2800 if (pcontrol
& PROC_DIRTY_TRACK
) {
2801 p
->p_memstat_dirty
|= P_DIRTY_TRACK
;
2804 if (pcontrol
& PROC_DIRTY_ALLOW_IDLE_EXIT
) {
2805 p
->p_memstat_dirty
|= P_DIRTY_ALLOW_IDLE_EXIT
;
2808 if (pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) {
2809 p
->p_memstat_dirty
|= P_DIRTY_LAUNCH_IN_PROGRESS
;
2812 if (old_dirty
& P_DIRTY_AGING_IN_PROGRESS
) {
2813 already_deferred
= TRUE
;
2817 /* This can be set and cleared exactly once. */
2818 if (pcontrol
& (PROC_DIRTY_DEFER
| PROC_DIRTY_DEFER_ALWAYS
)) {
2819 if ((pcontrol
& (PROC_DIRTY_DEFER
)) &&
2820 !(old_dirty
& P_DIRTY_DEFER
)) {
2821 p
->p_memstat_dirty
|= P_DIRTY_DEFER
;
2824 if ((pcontrol
& (PROC_DIRTY_DEFER_ALWAYS
)) &&
2825 !(old_dirty
& P_DIRTY_DEFER_ALWAYS
)) {
2826 p
->p_memstat_dirty
|= P_DIRTY_DEFER_ALWAYS
;
2832 MEMORYSTATUS_DEBUG(1, "memorystatus_on_track_dirty(): set idle-exit %s / defer %s / dirty %s for pid %d\n",
2833 ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) ? "Y" : "N",
2834 defer_now
? "Y" : "N",
2835 p
->p_memstat_dirty
& P_DIRTY
? "Y" : "N",
2838 /* Kick off or invalidate the idle exit deferment if there's a state transition. */
2839 if (!(p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
)) {
2840 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2841 if (defer_now
&& !already_deferred
) {
2843 * Request to defer a clean process that's idle-exit enabled
2844 * and not already in the jetsam deferred band. Most likely a
2847 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2849 } else if (!defer_now
) {
2851 * The process isn't asking for the 'aging' facility.
2852 * Could be that it is:
2855 if (already_deferred
) {
2857 * already in the aging bands. Traditionally,
2858 * some processes have tried to use this to
2859 * opt out of the 'aging' facility.
2862 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2865 * agnostic to the 'aging' facility. In that case,
2866 * we'll go ahead and opt it in because this is likely
2867 * a new launch (clean process, dirty tracking enabled)
2870 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2878 * We are trying to operate on a dirty process. Dirty processes have to
2879 * be removed from the deferred band. The question is do we reset the
2880 * deferred state or not?
2882 * This could be a legal request like:
2883 * - this process had opted into the 'aging' band
2884 * - but it's now dirty and requests to opt out.
2885 * In this case, we remove the process from the band and reset its
2886 * state too. It'll opt back in properly when needed.
2888 * OR, this request could be a user-space bug. E.g.:
2889 * - this process had opted into the 'aging' band when clean
2890 * - and, then issues another request to again put it into the band except
2891 * this time the process is dirty.
2892 * The process going dirty, as a transition in memorystatus_dirty_set(), will pull the process out of
2893 * the deferred band with its state intact. So our request below is no-op.
2894 * But we do it here anyways for coverage.
2896 * memorystatus_update_idle_priority_locked()
2897 * single-mindedly treats a dirty process as "cannot be in the aging band".
2900 if (!defer_now
&& already_deferred
) {
2901 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2904 boolean_t reset_state
= (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) ? TRUE
: FALSE
;
2906 memorystatus_invalidate_idle_demotion_locked(p
, reset_state
);
2911 memorystatus_update_idle_priority_locked(p
);
2914 memorystatus_reschedule_idle_demotion_locked();
2926 memorystatus_dirty_set(proc_t p
, boolean_t self
, uint32_t pcontrol
)
2929 boolean_t kill
= false;
2930 boolean_t reschedule
= FALSE
;
2931 boolean_t was_dirty
= FALSE
;
2932 boolean_t now_dirty
= FALSE
;
2934 MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_set(): %d %d 0x%x 0x%x\n", self
, p
->p_pid
, pcontrol
, p
->p_memstat_dirty
);
2935 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_SET
), p
->p_pid
, self
, pcontrol
, 0, 0);
2939 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
2941 * Process is on its way out.
2947 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
2952 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
2956 if (!(p
->p_memstat_dirty
& P_DIRTY_TRACK
)) {
2957 /* Dirty tracking not enabled */
2959 } else if (pcontrol
&& (p
->p_memstat_dirty
& P_DIRTY_TERMINATED
)) {
2961 * Process is set to be terminated and we're attempting to mark it dirty.
2962 * Set for termination and marking as clean is OK - see <rdar://problem/10594349>.
2966 int flag
= (self
== TRUE
) ? P_DIRTY
: P_DIRTY_SHUTDOWN
;
2967 if (pcontrol
&& !(p
->p_memstat_dirty
& flag
)) {
2968 /* Mark the process as having been dirtied at some point */
2969 p
->p_memstat_dirty
|= (flag
| P_DIRTY_MARKED
);
2970 memorystatus_dirty_count
++;
2972 } else if ((pcontrol
== 0) && (p
->p_memstat_dirty
& flag
)) {
2973 if ((flag
== P_DIRTY_SHUTDOWN
) && (!(p
->p_memstat_dirty
& P_DIRTY
))) {
2974 /* Clearing the dirty shutdown flag, and the process is otherwise clean - kill */
2975 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
2977 } else if ((flag
== P_DIRTY
) && (p
->p_memstat_dirty
& P_DIRTY_TERMINATED
)) {
2978 /* Kill previously terminated processes if set clean */
2981 p
->p_memstat_dirty
&= ~flag
;
2982 memorystatus_dirty_count
--;
2994 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
2998 if ((was_dirty
== TRUE
&& now_dirty
== FALSE
) ||
2999 (was_dirty
== FALSE
&& now_dirty
== TRUE
)) {
3000 /* Manage idle exit deferral, if applied */
3001 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
3003 * Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band OR it might be heading back
3004 * there once it's clean again. For the legacy case, this only applies if it has some protection window left.
3005 * P_DIRTY_DEFER: one-time protection window given at launch
3006 * P_DIRTY_DEFER_ALWAYS: protection window given for every dirty->clean transition. Like non-legacy mode.
3008 * Non-Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band. It will always stop over
3009 * in that band on it's way to IDLE.
3012 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
3014 * New dirty process i.e. "was_dirty == FALSE && now_dirty == TRUE"
3016 * The process will move from its aging band to its higher requested
3019 boolean_t reset_state
= (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) ? TRUE
: FALSE
;
3021 memorystatus_invalidate_idle_demotion_locked(p
, reset_state
);
3025 * Process is back from "dirty" to "clean".
3028 if (jetsam_aging_policy
== kJetsamAgingPolicyLegacy
) {
3029 if (((p
->p_memstat_dirty
& P_DIRTY_DEFER_ALWAYS
) == FALSE
) &&
3030 (mach_absolute_time() >= p
->p_memstat_idledeadline
)) {
3032 * The process' hasn't enrolled in the "always defer after dirty"
3033 * mode and its deadline has expired. It currently
3034 * does not reside in any of the aging buckets.
3036 * It's on its way to the JETSAM_PRIORITY_IDLE
3037 * bucket via memorystatus_update_idle_priority_locked()
3040 * So all we need to do is reset all the state on the
3041 * process that's related to the aging bucket i.e.
3042 * the AGING_IN_PROGRESS flag and the timer deadline.
3045 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
3049 * Process enrolled in "always stop in deferral band after dirty" OR
3050 * it still has some protection window left and so
3051 * we just re-arm the timer without modifying any
3052 * state on the process iff it still wants into that band.
3055 if (p
->p_memstat_dirty
& P_DIRTY_DEFER_ALWAYS
) {
3056 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
3058 } else if (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) {
3059 memorystatus_schedule_idle_demotion_locked(p
, FALSE
);
3064 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
3070 memorystatus_update_idle_priority_locked(p
);
3072 if (memorystatus_highwater_enabled
) {
3073 boolean_t ledger_update_needed
= TRUE
;
3074 boolean_t use_active
;
3077 * We are in this path because this process transitioned between
3078 * dirty <--> clean state. Update the cached memory limits.
3081 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
3083 * process is pinned in elevated band
3087 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
3089 ledger_update_needed
= TRUE
;
3092 * process is clean...but if it has opted into pressured-exit
3093 * we don't apply the INACTIVE limit till the process has aged
3094 * out and is entering the IDLE band.
3095 * See memorystatus_update_priority_locked() for that.
3098 if (p
->p_memstat_dirty
& P_DIRTY_ALLOW_IDLE_EXIT
) {
3099 ledger_update_needed
= FALSE
;
3101 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
3103 ledger_update_needed
= TRUE
;
3108 * Enforce the new limits by writing to the ledger.
3110 * This is a hot path and holding the proc_list_lock while writing to the ledgers,
3111 * (where the task lock is taken) is bad. So, we temporarily drop the proc_list_lock.
3112 * We aren't traversing the jetsam bucket list here, so we should be safe.
3113 * See rdar://21394491.
3116 if (ledger_update_needed
&& proc_ref_locked(p
) == p
) {
3118 if (p
->p_memstat_memlimit
> 0) {
3119 ledger_limit
= p
->p_memstat_memlimit
;
3124 task_set_phys_footprint_limit_internal(p
->task
, ledger_limit
, NULL
, use_active
, is_fatal
);
3126 proc_rele_locked(p
);
3128 MEMORYSTATUS_DEBUG(3, "memorystatus_dirty_set: new limit on pid %d (%dMB %s) priority(%d) dirty?=0x%x %s\n",
3129 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
3130 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, p
->p_memstat_dirty
,
3131 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
3135 /* If the deferral state changed, reschedule the demotion timer */
3137 memorystatus_reschedule_idle_demotion_locked();
3142 if (proc_ref_locked(p
) == p
) {
3144 psignal(p
, SIGKILL
);
3146 proc_rele_locked(p
);
3157 memorystatus_dirty_clear(proc_t p
, uint32_t pcontrol
)
3161 MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_clear(): %d 0x%x 0x%x\n", p
->p_pid
, pcontrol
, p
->p_memstat_dirty
);
3163 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_CLEAR
), p
->p_pid
, pcontrol
, 0, 0, 0);
3167 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
3169 * Process is on its way out.
3175 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
3180 if (!(p
->p_memstat_dirty
& P_DIRTY_TRACK
)) {
3181 /* Dirty tracking not enabled */
3186 if (!pcontrol
|| (pcontrol
& (PROC_DIRTY_LAUNCH_IN_PROGRESS
| PROC_DIRTY_DEFER
| PROC_DIRTY_DEFER_ALWAYS
)) == 0) {
3191 if (pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) {
3192 p
->p_memstat_dirty
&= ~P_DIRTY_LAUNCH_IN_PROGRESS
;
3195 /* This can be set and cleared exactly once. */
3196 if (pcontrol
& (PROC_DIRTY_DEFER
| PROC_DIRTY_DEFER_ALWAYS
)) {
3197 if (p
->p_memstat_dirty
& P_DIRTY_DEFER
) {
3198 p
->p_memstat_dirty
&= ~(P_DIRTY_DEFER
);
3201 if (p
->p_memstat_dirty
& P_DIRTY_DEFER_ALWAYS
) {
3202 p
->p_memstat_dirty
&= ~(P_DIRTY_DEFER_ALWAYS
);
3205 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
3206 memorystatus_update_idle_priority_locked(p
);
3207 memorystatus_reschedule_idle_demotion_locked();
3218 memorystatus_dirty_get(proc_t p
, boolean_t locked
)
3226 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
3227 ret
|= PROC_DIRTY_TRACKED
;
3228 if (p
->p_memstat_dirty
& P_DIRTY_ALLOW_IDLE_EXIT
) {
3229 ret
|= PROC_DIRTY_ALLOWS_IDLE_EXIT
;
3231 if (p
->p_memstat_dirty
& P_DIRTY
) {
3232 ret
|= PROC_DIRTY_IS_DIRTY
;
3234 if (p
->p_memstat_dirty
& P_DIRTY_LAUNCH_IN_PROGRESS
) {
3235 ret
|= PROC_DIRTY_LAUNCH_IS_IN_PROGRESS
;
3247 memorystatus_on_terminate(proc_t p
)
3253 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
3255 if ((p
->p_memstat_dirty
& (P_DIRTY_TRACK
| P_DIRTY_IS_DIRTY
)) == P_DIRTY_TRACK
) {
3256 /* Clean; mark as terminated and issue SIGKILL */
3259 /* Dirty, terminated, or state tracking is unsupported; issue SIGTERM to allow cleanup */
3269 memorystatus_on_suspend(proc_t p
)
3273 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
);
3277 memorystatus_suspended_count
++;
3279 p
->p_memstat_state
|= P_MEMSTAT_SUSPENDED
;
3284 memorystatus_on_resume(proc_t p
)
3294 frozen
= (p
->p_memstat_state
& P_MEMSTAT_FROZEN
);
3297 * Now that we don't _thaw_ a process completely,
3298 * resuming it (and having some on-demand swapins)
3299 * shouldn't preclude it from being counted as frozen.
3301 * memorystatus_frozen_count--;
3303 * We preserve the P_MEMSTAT_FROZEN state since the process
3304 * could have state on disk AND so will deserve some protection
3305 * in the jetsam bands.
3307 if ((p
->p_memstat_state
& P_MEMSTAT_REFREEZE_ELIGIBLE
) == 0) {
3308 p
->p_memstat_state
|= P_MEMSTAT_REFREEZE_ELIGIBLE
;
3309 memorystatus_refreeze_eligible_count
++;
3311 p
->p_memstat_thaw_count
++;
3313 memorystatus_thaw_count
++;
3316 memorystatus_suspended_count
--;
3322 * P_MEMSTAT_FROZEN will remain unchanged. This used to be:
3323 * p->p_memstat_state &= ~(P_MEMSTAT_SUSPENDED | P_MEMSTAT_FROZEN);
3325 p
->p_memstat_state
&= ~P_MEMSTAT_SUSPENDED
;
3331 memorystatus_freeze_entry_t data
= { pid
, FALSE
, 0 };
3332 memorystatus_send_note(kMemorystatusFreezeNote
, &data
, sizeof(data
));
3338 memorystatus_on_inactivity(proc_t p
)
3342 /* Wake the freeze thread */
3343 thread_wakeup((event_t
)&memorystatus_freeze_wakeup
);
3348 * The proc_list_lock is held by the caller.
3351 memorystatus_build_state(proc_t p
)
3353 uint32_t snapshot_state
= 0;
3356 if (p
->p_memstat_state
& P_MEMSTAT_SUSPENDED
) {
3357 snapshot_state
|= kMemorystatusSuspended
;
3359 if (p
->p_memstat_state
& P_MEMSTAT_FROZEN
) {
3360 snapshot_state
|= kMemorystatusFrozen
;
3362 if (p
->p_memstat_state
& P_MEMSTAT_REFREEZE_ELIGIBLE
) {
3363 snapshot_state
|= kMemorystatusWasThawed
;
3365 if (p
->p_memstat_state
& P_MEMSTAT_PRIORITY_ASSERTION
) {
3366 snapshot_state
|= kMemorystatusAssertion
;
3370 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
3371 snapshot_state
|= kMemorystatusTracked
;
3373 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
3374 snapshot_state
|= kMemorystatusSupportsIdleExit
;
3376 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
3377 snapshot_state
|= kMemorystatusDirty
;
3380 return snapshot_state
;
3384 kill_idle_exit_proc(void)
3386 proc_t p
, victim_p
= PROC_NULL
;
3387 uint64_t current_time
, footprint_of_killed_proc
;
3388 boolean_t killed
= FALSE
;
3390 os_reason_t jetsam_reason
= OS_REASON_NULL
;
3392 /* Pick next idle exit victim. */
3393 current_time
= mach_absolute_time();
3395 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_IDLE_EXIT
);
3396 if (jetsam_reason
== OS_REASON_NULL
) {
3397 printf("kill_idle_exit_proc: failed to allocate jetsam reason\n");
3402 p
= memorystatus_get_first_proc_locked(&i
, FALSE
);
3404 /* No need to look beyond the idle band */
3405 if (p
->p_memstat_effectivepriority
!= JETSAM_PRIORITY_IDLE
) {
3409 if ((p
->p_memstat_dirty
& (P_DIRTY_ALLOW_IDLE_EXIT
| P_DIRTY_IS_DIRTY
| P_DIRTY_TERMINATED
)) == (P_DIRTY_ALLOW_IDLE_EXIT
)) {
3410 if (current_time
>= p
->p_memstat_idledeadline
) {
3411 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
3412 victim_p
= proc_ref_locked(p
);
3417 p
= memorystatus_get_next_proc_locked(&i
, p
, FALSE
);
3423 printf("memorystatus: killing_idle_process pid %d [%s] jetsam_reason->osr_code: %llu\n", victim_p
->p_pid
, (*victim_p
->p_name
? victim_p
->p_name
: "unknown"), jetsam_reason
->osr_code
);
3424 killed
= memorystatus_do_kill(victim_p
, kMemorystatusKilledIdleExit
, jetsam_reason
, &footprint_of_killed_proc
);
3425 proc_rele(victim_p
);
3427 os_reason_free(jetsam_reason
);
3434 memorystatus_thread_wake(void)
3437 int active_thr
= atomic_load(&active_jetsam_threads
);
3439 /* Wakeup all the jetsam threads */
3440 for (thr_id
= 0; thr_id
< active_thr
; thr_id
++) {
3441 thread_wakeup((event_t
)&jetsam_threads
[thr_id
].memorystatus_wakeup
);
3448 memorystatus_thread_pool_max()
3450 /* Increase the jetsam thread pool to max_jetsam_threads */
3451 int max_threads
= max_jetsam_threads
;
3452 printf("Expanding memorystatus pool to %d!\n", max_threads
);
3453 atomic_store(&active_jetsam_threads
, max_threads
);
3457 memorystatus_thread_pool_default()
3459 /* Restore the jetsam thread pool to a single thread */
3460 printf("Reverting memorystatus pool back to 1\n");
3461 atomic_store(&active_jetsam_threads
, 1);
3464 #endif /* CONFIG_JETSAM */
3466 extern void vm_pressure_response(void);
3469 memorystatus_thread_block(uint32_t interval_ms
, thread_continue_t continuation
)
3471 struct jetsam_thread_state
*jetsam_thread
= jetsam_current_thread();
3473 assert(jetsam_thread
!= NULL
);
3475 assert_wait_timeout(&jetsam_thread
->memorystatus_wakeup
, THREAD_UNINT
, interval_ms
, NSEC_PER_MSEC
);
3477 assert_wait(&jetsam_thread
->memorystatus_wakeup
, THREAD_UNINT
);
3480 return thread_block(continuation
);
3484 memorystatus_avail_pages_below_pressure(void)
3488 * Instead of CONFIG_EMBEDDED for these *avail_pages* routines, we should
3489 * key off of the system having dynamic swap support. With full swap support,
3490 * the system shouldn't really need to worry about various page thresholds.
3492 return memorystatus_available_pages
<= memorystatus_available_pages_pressure
;
3493 #else /* CONFIG_EMBEDDED */
3495 #endif /* CONFIG_EMBEDDED */
3499 memorystatus_avail_pages_below_critical(void)
3502 return memorystatus_available_pages
<= memorystatus_available_pages_critical
;
3503 #else /* CONFIG_EMBEDDED */
3505 #endif /* CONFIG_EMBEDDED */
3509 memorystatus_post_snapshot(int32_t priority
, uint32_t cause
)
3511 boolean_t is_idle_priority
;
3513 if (jetsam_aging_policy
== kJetsamAgingPolicyLegacy
) {
3514 is_idle_priority
= (priority
== JETSAM_PRIORITY_IDLE
);
3516 is_idle_priority
= (priority
== JETSAM_PRIORITY_IDLE
|| priority
== JETSAM_PRIORITY_IDLE_DEFERRED
);
3519 #pragma unused(cause)
3521 * Don't generate logs for steady-state idle-exit kills,
3522 * unless it is overridden for debug or by the device
3526 return !is_idle_priority
|| memorystatus_idle_snapshot
;
3528 #else /* CONFIG_EMBEDDED */
3530 * Don't generate logs for steady-state idle-exit kills,
3532 * - it is overridden for debug or by the device
3535 * - the kill causes are important i.e. not kMemorystatusKilledIdleExit
3538 boolean_t snapshot_eligible_kill_cause
= (is_reason_thrashing(cause
) || is_reason_zone_map_exhaustion(cause
));
3539 return !is_idle_priority
|| memorystatus_idle_snapshot
|| snapshot_eligible_kill_cause
;
3540 #endif /* CONFIG_EMBEDDED */
3544 memorystatus_action_needed(void)
3547 return is_reason_thrashing(kill_under_pressure_cause
) ||
3548 is_reason_zone_map_exhaustion(kill_under_pressure_cause
) ||
3549 memorystatus_available_pages
<= memorystatus_available_pages_pressure
;
3550 #else /* CONFIG_EMBEDDED */
3551 return is_reason_thrashing(kill_under_pressure_cause
) ||
3552 is_reason_zone_map_exhaustion(kill_under_pressure_cause
);
3553 #endif /* CONFIG_EMBEDDED */
3557 memorystatus_act_on_hiwat_processes(uint32_t *errors
, uint32_t *hwm_kill
, boolean_t
*post_snapshot
, __unused boolean_t
*is_critical
, uint64_t *memory_reclaimed
)
3559 boolean_t purged
= FALSE
, killed
= FALSE
;
3561 *memory_reclaimed
= 0;
3562 killed
= memorystatus_kill_hiwat_proc(errors
, &purged
, memory_reclaimed
);
3565 *hwm_kill
= *hwm_kill
+ 1;
3566 *post_snapshot
= TRUE
;
3569 if (purged
== FALSE
) {
3570 /* couldn't purge and couldn't kill */
3571 memorystatus_hwm_candidates
= FALSE
;
3576 /* No highwater processes to kill. Continue or stop for now? */
3577 if (!is_reason_thrashing(kill_under_pressure_cause
) &&
3578 !is_reason_zone_map_exhaustion(kill_under_pressure_cause
) &&
3579 (memorystatus_available_pages
> memorystatus_available_pages_critical
)) {
3581 * We are _not_ out of pressure but we are above the critical threshold and there's:
3582 * - no compressor thrashing
3583 * - enough zone memory
3584 * - no more HWM processes left.
3585 * For now, don't kill any other processes.
3588 if (*hwm_kill
== 0) {
3589 memorystatus_thread_wasted_wakeup
++;
3592 *is_critical
= FALSE
;
3596 #endif /* CONFIG_JETSAM */
3602 * kJetsamHighRelaunchCandidatesThreshold defines the percentage of candidates
3603 * in the idle & deferred bands that need to be bad candidates in order to trigger
3604 * aggressive jetsam.
3606 #define kJetsamHighRelaunchCandidatesThreshold (100)
3608 /* kJetsamMinCandidatesThreshold defines the minimum number of candidates in the
3609 * idle/deferred bands to trigger aggressive jetsam. This value basically decides
3610 * how much memory the system is ready to hold in the lower bands without triggering
3611 * aggressive jetsam. This number should ideally be tuned based on the memory config
3614 #define kJetsamMinCandidatesThreshold (5)
3617 memorystatus_aggressive_jetsam_needed_sysproc_aging(__unused
int jld_eval_aggressive_count
, __unused
int *jld_idle_kills
, __unused
int jld_idle_kill_candidates
, int *total_candidates
, int *elevated_bucket_count
)
3619 boolean_t aggressive_jetsam_needed
= false;
3622 * For the kJetsamAgingPolicySysProcsReclaimedFirst aging policy, we maintain the jetsam
3623 * relaunch behavior for all daemons. Also, daemons and apps are aged in deferred bands on
3624 * every dirty->clean transition. For this aging policy, the best way to determine if
3625 * aggressive jetsam is needed, is to see if the kill candidates are mostly bad candidates.
3626 * If yes, then we need to go to higher bands to reclaim memory.
3629 /* Get total candidate counts for idle and idle deferred bands */
3630 *total_candidates
= memstat_bucket
[JETSAM_PRIORITY_IDLE
].count
+ memstat_bucket
[system_procs_aging_band
].count
;
3631 /* Get counts of bad kill candidates in idle and idle deferred bands */
3632 int bad_candidates
= memstat_bucket
[JETSAM_PRIORITY_IDLE
].relaunch_high_count
+ memstat_bucket
[system_procs_aging_band
].relaunch_high_count
;
3634 *elevated_bucket_count
= memstat_bucket
[JETSAM_PRIORITY_ELEVATED_INACTIVE
].count
;
3638 /* Check if the number of bad candidates is greater than kJetsamHighRelaunchCandidatesThreshold % */
3639 aggressive_jetsam_needed
= (((bad_candidates
* 100) / *total_candidates
) >= kJetsamHighRelaunchCandidatesThreshold
);
3642 * Since the new aging policy bases the aggressive jetsam trigger on percentage of
3643 * bad candidates, it is prone to being overly aggressive. In order to mitigate that,
3644 * make sure the system is really under memory pressure before triggering aggressive
3647 if (memorystatus_available_pages
> memorystatus_sysproc_aging_aggr_pages
) {
3648 aggressive_jetsam_needed
= false;
3651 #if DEVELOPMENT || DEBUG
3652 printf("memorystatus: aggressive%d: [%s] Bad Candidate Threshold Check (total: %d, bad: %d, threshold: %d %%); Memory Pressure Check (available_pgs: %llu, threshold_pgs: %llu)\n",
3653 jld_eval_aggressive_count
, aggressive_jetsam_needed
? "PASSED" : "FAILED", *total_candidates
, bad_candidates
,
3654 kJetsamHighRelaunchCandidatesThreshold
, (uint64_t)memorystatus_available_pages
, (uint64_t)memorystatus_sysproc_aging_aggr_pages
);
3655 #endif /* DEVELOPMENT || DEBUG */
3656 return aggressive_jetsam_needed
;
3660 memorystatus_aggressive_jetsam_needed_default(__unused
int jld_eval_aggressive_count
, int *jld_idle_kills
, int jld_idle_kill_candidates
, int *total_candidates
, int *elevated_bucket_count
)
3662 boolean_t aggressive_jetsam_needed
= false;
3663 /* Jetsam Loop Detection - locals */
3664 memstat_bucket_t
*bucket
;
3665 int jld_bucket_count
= 0;
3668 switch (jetsam_aging_policy
) {
3669 case kJetsamAgingPolicyLegacy
:
3670 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3671 jld_bucket_count
= bucket
->count
;
3672 bucket
= &memstat_bucket
[JETSAM_PRIORITY_AGING_BAND1
];
3673 jld_bucket_count
+= bucket
->count
;
3675 case kJetsamAgingPolicyAppsReclaimedFirst
:
3676 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3677 jld_bucket_count
= bucket
->count
;
3678 bucket
= &memstat_bucket
[system_procs_aging_band
];
3679 jld_bucket_count
+= bucket
->count
;
3680 bucket
= &memstat_bucket
[applications_aging_band
];
3681 jld_bucket_count
+= bucket
->count
;
3683 case kJetsamAgingPolicyNone
:
3685 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3686 jld_bucket_count
= bucket
->count
;
3690 bucket
= &memstat_bucket
[JETSAM_PRIORITY_ELEVATED_INACTIVE
];
3691 *elevated_bucket_count
= bucket
->count
;
3692 *total_candidates
= jld_bucket_count
;
3695 aggressive_jetsam_needed
= (*jld_idle_kills
> jld_idle_kill_candidates
);
3697 #if DEVELOPMENT || DEBUG
3698 if (aggressive_jetsam_needed
) {
3699 printf("memorystatus: aggressive%d: idle candidates: %d, idle kills: %d\n",
3700 jld_eval_aggressive_count
,
3701 jld_idle_kill_candidates
,
3704 #endif /* DEVELOPMENT || DEBUG */
3705 return aggressive_jetsam_needed
;
3709 memorystatus_act_aggressive(uint32_t cause
, os_reason_t jetsam_reason
, int *jld_idle_kills
, boolean_t
*corpse_list_purged
, boolean_t
*post_snapshot
, uint64_t *memory_reclaimed
)
3711 boolean_t aggressive_jetsam_needed
= false;
3713 uint32_t errors
= 0;
3714 uint64_t footprint_of_killed_proc
= 0;
3715 int elevated_bucket_count
= 0;
3716 int total_candidates
= 0;
3717 *memory_reclaimed
= 0;
3720 * The aggressive jetsam logic looks at the number of times it has been in the
3721 * aggressive loop to determine the max priority band it should kill upto. The
3722 * static variables below are used to track that property.
3724 * To reset those values, the implementation checks if it has been
3725 * memorystatus_jld_eval_period_msecs since the parameters were reset.
3727 static int jld_eval_aggressive_count
= 0;
3728 static int32_t jld_priority_band_max
= JETSAM_PRIORITY_UI_SUPPORT
;
3729 static uint64_t jld_timestamp_msecs
= 0;
3730 static int jld_idle_kill_candidates
= 0;
3732 if (memorystatus_jld_enabled
== FALSE
) {
3733 /* If aggressive jetsam is disabled, nothing to do here */
3737 /* Get current timestamp (msecs only) */
3738 struct timeval jld_now_tstamp
= {0, 0};
3739 uint64_t jld_now_msecs
= 0;
3740 microuptime(&jld_now_tstamp
);
3741 jld_now_msecs
= (jld_now_tstamp
.tv_sec
* 1000);
3744 * The aggressive jetsam logic looks at the number of candidates and their
3745 * properties to decide if aggressive jetsam should be engaged.
3747 if (jetsam_aging_policy
== kJetsamAgingPolicySysProcsReclaimedFirst
) {
3749 * For the kJetsamAgingPolicySysProcsReclaimedFirst aging policy, the logic looks at the number of
3750 * candidates in the idle and deferred band and how many out of them are marked as high relaunch
3753 aggressive_jetsam_needed
= memorystatus_aggressive_jetsam_needed_sysproc_aging(jld_eval_aggressive_count
,
3754 jld_idle_kills
, jld_idle_kill_candidates
, &total_candidates
, &elevated_bucket_count
);
3757 * The other aging policies look at number of candidate processes over a specific time window and
3758 * evaluate if the system is in a jetsam loop. If yes, aggressive jetsam is triggered.
3760 aggressive_jetsam_needed
= memorystatus_aggressive_jetsam_needed_default(jld_eval_aggressive_count
,
3761 jld_idle_kills
, jld_idle_kill_candidates
, &total_candidates
, &elevated_bucket_count
);
3765 * Check if its been really long since the aggressive jetsam evaluation
3766 * parameters have been refreshed. This logic also resets the jld_eval_aggressive_count
3767 * counter to make sure we reset the aggressive jetsam severity.
3769 boolean_t param_reval
= false;
3771 if ((total_candidates
== 0) ||
3772 (jld_now_msecs
> (jld_timestamp_msecs
+ memorystatus_jld_eval_period_msecs
))) {
3773 jld_timestamp_msecs
= jld_now_msecs
;
3774 jld_idle_kill_candidates
= total_candidates
;
3775 *jld_idle_kills
= 0;
3776 jld_eval_aggressive_count
= 0;
3777 jld_priority_band_max
= JETSAM_PRIORITY_UI_SUPPORT
;
3782 * If the parameters have been updated, re-evaluate the aggressive_jetsam_needed condition for
3783 * the non kJetsamAgingPolicySysProcsReclaimedFirst policy since its based on jld_idle_kill_candidates etc.
3785 if ((param_reval
== true) && (jetsam_aging_policy
!= kJetsamAgingPolicySysProcsReclaimedFirst
)) {
3786 aggressive_jetsam_needed
= (*jld_idle_kills
> jld_idle_kill_candidates
);
3790 * It is also possible that the system is down to a very small number of processes in the candidate
3791 * bands. In that case, the decisions made by the memorystatus_aggressive_jetsam_needed_* routines
3792 * would not be useful. In that case, do not trigger aggressive jetsam.
3794 if (total_candidates
< kJetsamMinCandidatesThreshold
) {
3795 #if DEVELOPMENT || DEBUG
3796 printf("memorystatus: aggressive: [FAILED] Low Candidate Count (current: %d, threshold: %d)\n", total_candidates
, kJetsamMinCandidatesThreshold
);
3797 #endif /* DEVELOPMENT || DEBUG */
3798 aggressive_jetsam_needed
= false;
3801 if (aggressive_jetsam_needed
== false) {
3802 /* Either the aging policy or the candidate count decided that aggressive jetsam is not needed. Nothing more to do here. */
3806 /* Looks like aggressive jetsam is needed */
3807 jld_eval_aggressive_count
++;
3809 if (jld_eval_aggressive_count
== memorystatus_jld_eval_aggressive_count
) {
3810 memorystatus_issue_fg_band_notify();
3813 * If we reach this aggressive cycle, corpses might be causing memory pressure.
3814 * So, in an effort to avoid jetsams in the FG band, we will attempt to purge
3815 * corpse memory prior to this final march through JETSAM_PRIORITY_UI_SUPPORT.
3817 if (total_corpses_count() > 0 && !*corpse_list_purged
) {
3818 task_purge_all_corpses();
3819 *corpse_list_purged
= TRUE
;
3821 } else if (jld_eval_aggressive_count
> memorystatus_jld_eval_aggressive_count
) {
3823 * Bump up the jetsam priority limit (eg: the bucket index)
3824 * Enforce bucket index sanity.
3826 if ((memorystatus_jld_eval_aggressive_priority_band_max
< 0) ||
3827 (memorystatus_jld_eval_aggressive_priority_band_max
>= MEMSTAT_BUCKET_COUNT
)) {
3829 * Do nothing. Stick with the default level.
3832 jld_priority_band_max
= memorystatus_jld_eval_aggressive_priority_band_max
;
3836 /* Visit elevated processes first */
3837 while (elevated_bucket_count
) {
3838 elevated_bucket_count
--;
3841 * memorystatus_kill_elevated_process() drops a reference,
3842 * so take another one so we can continue to use this exit reason
3843 * even after it returns.
3846 os_reason_ref(jetsam_reason
);
3847 killed
= memorystatus_kill_elevated_process(
3850 JETSAM_PRIORITY_ELEVATED_INACTIVE
,
3851 jld_eval_aggressive_count
,
3852 &errors
, &footprint_of_killed_proc
);
3854 *post_snapshot
= TRUE
;
3855 *memory_reclaimed
+= footprint_of_killed_proc
;
3856 if (memorystatus_avail_pages_below_pressure()) {
3858 * Still under pressure.
3859 * Find another pinned processes.
3867 * No pinned processes left to kill.
3868 * Abandon elevated band.
3875 * memorystatus_kill_processes_aggressive() allocates its own
3876 * jetsam_reason so the kMemorystatusKilledProcThrashing cause
3877 * is consistent throughout the aggressive march.
3879 killed
= memorystatus_kill_processes_aggressive(
3880 kMemorystatusKilledProcThrashing
,
3881 jld_eval_aggressive_count
,
3882 jld_priority_band_max
,
3883 &errors
, &footprint_of_killed_proc
);
3886 /* Always generate logs after aggressive kill */
3887 *post_snapshot
= TRUE
;
3888 *memory_reclaimed
+= footprint_of_killed_proc
;
3889 *jld_idle_kills
= 0;
3898 memorystatus_thread(void *param __unused
, wait_result_t wr __unused
)
3900 boolean_t post_snapshot
= FALSE
;
3901 uint32_t errors
= 0;
3902 uint32_t hwm_kill
= 0;
3903 boolean_t sort_flag
= TRUE
;
3904 boolean_t corpse_list_purged
= FALSE
;
3905 int jld_idle_kills
= 0;
3906 struct jetsam_thread_state
*jetsam_thread
= jetsam_current_thread();
3907 uint64_t total_memory_reclaimed
= 0;
3909 assert(jetsam_thread
!= NULL
);
3910 if (jetsam_thread
->inited
== FALSE
) {
3912 * It's the first time the thread has run, so just mark the thread as privileged and block.
3913 * This avoids a spurious pass with unset variables, as set out in <rdar://problem/9609402>.
3917 thread_wire(host_priv_self(), current_thread(), TRUE
);
3918 snprintf(name
, 32, "VM_memorystatus_%d", jetsam_thread
->index
+ 1);
3920 /* Limit all but one thread to the lower jetsam bands, as that's where most of the victims are. */
3921 if (jetsam_thread
->index
== 0) {
3922 if (vm_pageout_state
.vm_restricted_to_single_processor
== TRUE
) {
3923 thread_vm_bind_group_add();
3925 jetsam_thread
->limit_to_low_bands
= FALSE
;
3927 jetsam_thread
->limit_to_low_bands
= TRUE
;
3929 thread_set_thread_name(current_thread(), name
);
3930 jetsam_thread
->inited
= TRUE
;
3931 memorystatus_thread_block(0, memorystatus_thread
);
3934 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_SCAN
) | DBG_FUNC_START
,
3935 memorystatus_available_pages
, memorystatus_jld_enabled
, memorystatus_jld_eval_period_msecs
, memorystatus_jld_eval_aggressive_count
, 0);
3938 * Jetsam aware version.
3940 * The VM pressure notification thread is working it's way through clients in parallel.
3942 * So, while the pressure notification thread is targeting processes in order of
3943 * increasing jetsam priority, we can hopefully reduce / stop it's work by killing
3944 * any processes that have exceeded their highwater mark.
3946 * If we run out of HWM processes and our available pages drops below the critical threshold, then,
3947 * we target the least recently used process in order of increasing jetsam priority (exception: the FG band).
3949 while (memorystatus_action_needed()) {
3953 uint64_t memory_reclaimed
= 0;
3954 uint64_t jetsam_reason_code
= JETSAM_REASON_INVALID
;
3955 os_reason_t jetsam_reason
= OS_REASON_NULL
;
3957 cause
= kill_under_pressure_cause
;
3959 case kMemorystatusKilledFCThrashing
:
3960 jetsam_reason_code
= JETSAM_REASON_MEMORY_FCTHRASHING
;
3962 case kMemorystatusKilledVMCompressorThrashing
:
3963 jetsam_reason_code
= JETSAM_REASON_MEMORY_VMCOMPRESSOR_THRASHING
;
3965 case kMemorystatusKilledVMCompressorSpaceShortage
:
3966 jetsam_reason_code
= JETSAM_REASON_MEMORY_VMCOMPRESSOR_SPACE_SHORTAGE
;
3968 case kMemorystatusKilledZoneMapExhaustion
:
3969 jetsam_reason_code
= JETSAM_REASON_ZONE_MAP_EXHAUSTION
;
3971 case kMemorystatusKilledVMPageShortage
:
3974 jetsam_reason_code
= JETSAM_REASON_MEMORY_VMPAGESHORTAGE
;
3975 cause
= kMemorystatusKilledVMPageShortage
;
3980 boolean_t is_critical
= TRUE
;
3981 if (memorystatus_act_on_hiwat_processes(&errors
, &hwm_kill
, &post_snapshot
, &is_critical
, &memory_reclaimed
)) {
3982 total_memory_reclaimed
+= memory_reclaimed
;
3983 if (is_critical
== FALSE
) {
3985 * For now, don't kill any other processes.
3993 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, jetsam_reason_code
);
3994 if (jetsam_reason
== OS_REASON_NULL
) {
3995 printf("memorystatus_thread: failed to allocate jetsam reason\n");
3998 /* Only unlimited jetsam threads should act aggressive */
3999 if (!jetsam_thread
->limit_to_low_bands
&&
4000 memorystatus_act_aggressive(cause
, jetsam_reason
, &jld_idle_kills
, &corpse_list_purged
, &post_snapshot
, &memory_reclaimed
)) {
4001 total_memory_reclaimed
+= memory_reclaimed
;
4006 * memorystatus_kill_top_process() drops a reference,
4007 * so take another one so we can continue to use this exit reason
4008 * even after it returns
4010 os_reason_ref(jetsam_reason
);
4013 killed
= memorystatus_kill_top_process(TRUE
, sort_flag
, cause
, jetsam_reason
, &priority
, &errors
, &memory_reclaimed
);
4017 total_memory_reclaimed
+= memory_reclaimed
;
4018 if (memorystatus_post_snapshot(priority
, cause
) == TRUE
) {
4019 post_snapshot
= TRUE
;
4022 /* Jetsam Loop Detection */
4023 if (memorystatus_jld_enabled
== TRUE
) {
4024 if ((priority
== JETSAM_PRIORITY_IDLE
) || (priority
== system_procs_aging_band
) || (priority
== applications_aging_band
)) {
4028 * We've reached into bands beyond idle deferred.
4029 * We make no attempt to monitor them
4035 * If we have jetsammed a process in or above JETSAM_PRIORITY_UI_SUPPORT
4036 * then we attempt to relieve pressure by purging corpse memory and notifying
4037 * anybody wanting to know this.
4039 if (priority
>= JETSAM_PRIORITY_UI_SUPPORT
) {
4040 memorystatus_issue_fg_band_notify();
4041 if (total_corpses_count() > 0 && !corpse_list_purged
) {
4042 task_purge_all_corpses();
4043 corpse_list_purged
= TRUE
;
4049 if (memorystatus_avail_pages_below_critical()) {
4051 * Still under pressure and unable to kill a process - purge corpse memory
4053 if (total_corpses_count() > 0) {
4054 task_purge_all_corpses();
4055 corpse_list_purged
= TRUE
;
4058 if (!jetsam_thread
->limit_to_low_bands
&& memorystatus_avail_pages_below_critical()) {
4060 * Still under pressure and unable to kill a process - panic
4062 panic("memorystatus_jetsam_thread: no victim! available pages:%llu\n", (uint64_t)memorystatus_available_pages
);
4069 * We do not want to over-kill when thrashing has been detected.
4070 * To avoid that, we reset the flag here and notify the
4073 if (is_reason_thrashing(kill_under_pressure_cause
)) {
4074 kill_under_pressure_cause
= 0;
4076 vm_thrashing_jetsam_done();
4077 #endif /* CONFIG_JETSAM */
4078 } else if (is_reason_zone_map_exhaustion(kill_under_pressure_cause
)) {
4079 kill_under_pressure_cause
= 0;
4082 os_reason_free(jetsam_reason
);
4085 kill_under_pressure_cause
= 0;
4088 memorystatus_clear_errors();
4091 if (post_snapshot
) {
4093 size_t snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
4094 sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_count
);
4095 uint64_t timestamp_now
= mach_absolute_time();
4096 memorystatus_jetsam_snapshot
->notification_time
= timestamp_now
;
4097 memorystatus_jetsam_snapshot
->js_gencount
++;
4098 if (memorystatus_jetsam_snapshot_count
> 0 && (memorystatus_jetsam_snapshot_last_timestamp
== 0 ||
4099 timestamp_now
> memorystatus_jetsam_snapshot_last_timestamp
+ memorystatus_jetsam_snapshot_timeout
)) {
4101 int ret
= memorystatus_send_note(kMemorystatusSnapshotNote
, &snapshot_size
, sizeof(snapshot_size
));
4104 memorystatus_jetsam_snapshot_last_timestamp
= timestamp_now
;
4112 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_SCAN
) | DBG_FUNC_END
,
4113 memorystatus_available_pages
, total_memory_reclaimed
, 0, 0, 0);
4115 memorystatus_thread_block(0, memorystatus_thread
);
4120 * when an idle-exitable proc was killed
4122 * when there are no more idle-exitable procs found
4123 * when the attempt to kill an idle-exitable proc failed
4126 memorystatus_idle_exit_from_VM(void)
4129 * This routine should no longer be needed since we are
4130 * now using jetsam bands on all platforms and so will deal
4131 * with IDLE processes within the memorystatus thread itself.
4133 * But we still use it because we observed that macos systems
4134 * started heavy compression/swapping with a bunch of
4135 * idle-exitable processes alive and doing nothing. We decided
4136 * to rather kill those processes than start swapping earlier.
4139 return kill_idle_exit_proc();
4143 * Callback invoked when allowable physical memory footprint exceeded
4144 * (dirty pages + IOKit mappings)
4146 * This is invoked for both advisory, non-fatal per-task high watermarks,
4147 * as well as the fatal task memory limits.
4150 memorystatus_on_ledger_footprint_exceeded(boolean_t warning
, boolean_t memlimit_is_active
, boolean_t memlimit_is_fatal
)
4152 os_reason_t jetsam_reason
= OS_REASON_NULL
;
4154 proc_t p
= current_proc();
4156 #if VM_PRESSURE_EVENTS
4157 if (warning
== TRUE
) {
4159 * This is a warning path which implies that the current process is close, but has
4160 * not yet exceeded its per-process memory limit.
4162 if (memorystatus_warn_process(p
->p_pid
, memlimit_is_active
, memlimit_is_fatal
, FALSE
/* not exceeded */) != TRUE
) {
4163 /* Print warning, since it's possible that task has not registered for pressure notifications */
4164 os_log(OS_LOG_DEFAULT
, "memorystatus_on_ledger_footprint_exceeded: failed to warn the current task (%d exiting, or no handler registered?).\n", p
->p_pid
);
4168 #endif /* VM_PRESSURE_EVENTS */
4170 if (memlimit_is_fatal
) {
4172 * If this process has no high watermark or has a fatal task limit, then we have been invoked because the task
4173 * has violated either the system-wide per-task memory limit OR its own task limit.
4175 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_PERPROCESSLIMIT
);
4176 if (jetsam_reason
== NULL
) {
4177 printf("task_exceeded footprint: failed to allocate jetsam reason\n");
4178 } else if (corpse_for_fatal_memkill
!= 0 && proc_send_synchronous_EXC_RESOURCE(p
) == FALSE
) {
4179 /* Set OS_REASON_FLAG_GENERATE_CRASH_REPORT to generate corpse */
4180 jetsam_reason
->osr_flags
|= OS_REASON_FLAG_GENERATE_CRASH_REPORT
;
4183 if (memorystatus_kill_process_sync(p
->p_pid
, kMemorystatusKilledPerProcessLimit
, jetsam_reason
) != TRUE
) {
4184 printf("task_exceeded_footprint: failed to kill the current task (exiting?).\n");
4188 * HWM offender exists. Done without locks or synchronization.
4189 * See comment near its declaration for more details.
4191 memorystatus_hwm_candidates
= TRUE
;
4193 #if VM_PRESSURE_EVENTS
4195 * The current process is not in the warning path.
4196 * This path implies the current process has exceeded a non-fatal (soft) memory limit.
4197 * Failure to send note is ignored here.
4199 (void)memorystatus_warn_process(p
->p_pid
, memlimit_is_active
, memlimit_is_fatal
, TRUE
/* exceeded */);
4201 #endif /* VM_PRESSURE_EVENTS */
4206 memorystatus_log_exception(const int max_footprint_mb
, boolean_t memlimit_is_active
, boolean_t memlimit_is_fatal
)
4208 proc_t p
= current_proc();
4211 * The limit violation is logged here, but only once per process per limit.
4212 * Soft memory limit is a non-fatal high-water-mark
4213 * Hard memory limit is a fatal custom-task-limit or system-wide per-task memory limit.
4216 os_log_with_startup_serial(OS_LOG_DEFAULT
, "EXC_RESOURCE -> %s[%d] exceeded mem limit: %s%s %d MB (%s)\n",
4217 ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"), (p
? p
->p_pid
: -1), (memlimit_is_active
? "Active" : "Inactive"),
4218 (memlimit_is_fatal
? "Hard" : "Soft"), max_footprint_mb
,
4219 (memlimit_is_fatal
? "fatal" : "non-fatal"));
4227 * Evaluates process state to determine which limit
4228 * should be applied (active vs. inactive limit).
4230 * Processes that have the 'elevated inactive jetsam band' attribute
4231 * are first evaluated based on their current priority band.
4232 * presently elevated ==> active
4234 * Processes that opt into dirty tracking are evaluated
4235 * based on clean vs dirty state.
4237 * clean ==> inactive
4239 * Process that do not opt into dirty tracking are
4240 * evalulated based on priority level.
4241 * Foreground or above ==> active
4242 * Below Foreground ==> inactive
4244 * Return: TRUE if active
4249 proc_jetsam_state_is_active_locked(proc_t p
)
4251 if ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) &&
4252 (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_ELEVATED_INACTIVE
)) {
4254 * process has the 'elevated inactive jetsam band' attribute
4255 * and process is present in the elevated band
4256 * implies active state
4259 } else if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
4261 * process has opted into dirty tracking
4262 * active state is based on dirty vs. clean
4264 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
4267 * implies active state
4273 * implies inactive state
4277 } else if (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
) {
4279 * process is Foreground or higher
4280 * implies active state
4285 * process found below Foreground
4286 * implies inactive state
4293 memorystatus_kill_process_sync(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
)
4297 uint32_t errors
= 0;
4298 uint64_t memory_reclaimed
= 0;
4300 if (victim_pid
== -1) {
4301 /* No pid, so kill first process */
4302 res
= memorystatus_kill_top_process(TRUE
, TRUE
, cause
, jetsam_reason
, NULL
, &errors
, &memory_reclaimed
);
4304 res
= memorystatus_kill_specific_process(victim_pid
, cause
, jetsam_reason
);
4308 memorystatus_clear_errors();
4312 /* Fire off snapshot notification */
4314 size_t snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
4315 sizeof(memorystatus_jetsam_snapshot_entry_t
) * memorystatus_jetsam_snapshot_count
;
4316 uint64_t timestamp_now
= mach_absolute_time();
4317 memorystatus_jetsam_snapshot
->notification_time
= timestamp_now
;
4318 if (memorystatus_jetsam_snapshot_count
> 0 && (memorystatus_jetsam_snapshot_last_timestamp
== 0 ||
4319 timestamp_now
> memorystatus_jetsam_snapshot_last_timestamp
+ memorystatus_jetsam_snapshot_timeout
)) {
4321 int ret
= memorystatus_send_note(kMemorystatusSnapshotNote
, &snapshot_size
, sizeof(snapshot_size
));
4324 memorystatus_jetsam_snapshot_last_timestamp
= timestamp_now
;
4336 * Jetsam a specific process.
4339 memorystatus_kill_specific_process(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
)
4343 uint64_t killtime
= 0;
4344 uint64_t footprint_of_killed_proc
;
4346 clock_usec_t tv_usec
;
4349 /* TODO - add a victim queue and push this into the main jetsam thread */
4351 p
= proc_find(victim_pid
);
4353 os_reason_free(jetsam_reason
);
4359 if (memorystatus_jetsam_snapshot_count
== 0) {
4360 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
4363 killtime
= mach_absolute_time();
4364 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
4365 tv_msec
= tv_usec
/ 1000;
4367 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
4371 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
, &footprint_of_killed_proc
);
4373 os_log_with_startup_serial(OS_LOG_DEFAULT
, "%lu.%03d memorystatus: killing_specific_process pid %d [%s] (%s %d) %lluKB - memorystatus_available_pages: %llu\n",
4374 (unsigned long)tv_sec
, tv_msec
, victim_pid
, ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"),
4375 memorystatus_kill_cause_name
[cause
], (p
? p
->p_memstat_effectivepriority
: -1),
4376 footprint_of_killed_proc
>> 10, (uint64_t)memorystatus_available_pages
);
4385 * Toggle the P_MEMSTAT_TERMINATED state.
4386 * Takes the proc_list_lock.
4389 proc_memstat_terminated(proc_t p
, boolean_t set
)
4391 #if DEVELOPMENT || DEBUG
4395 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
4397 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
4402 #pragma unused(p, set)
4406 #endif /* DEVELOPMENT || DEBUG */
4413 * This is invoked when cpulimits have been exceeded while in fatal mode.
4414 * The jetsam_flags do not apply as those are for memory related kills.
4415 * We call this routine so that the offending process is killed with
4416 * a non-zero exit status.
4419 jetsam_on_ledger_cpulimit_exceeded(void)
4422 int jetsam_flags
= 0; /* make it obvious */
4423 proc_t p
= current_proc();
4424 os_reason_t jetsam_reason
= OS_REASON_NULL
;
4426 printf("task_exceeded_cpulimit: killing pid %d [%s]\n",
4427 p
->p_pid
, (*p
->p_name
? p
->p_name
: "(unknown)"));
4429 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_CPULIMIT
);
4430 if (jetsam_reason
== OS_REASON_NULL
) {
4431 printf("task_exceeded_cpulimit: unable to allocate memory for jetsam reason\n");
4434 retval
= jetsam_do_kill(p
, jetsam_flags
, jetsam_reason
);
4437 printf("task_exceeded_cpulimit: failed to kill current task (exiting?).\n");
4441 #endif /* CONFIG_JETSAM */
4444 memorystatus_get_task_memory_region_count(task_t task
, uint64_t *count
)
4449 *count
= get_task_memory_region_count(task
);
4453 #define MEMORYSTATUS_VM_MAP_FORK_ALLOWED 0x100000000
4454 #define MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED 0x200000000
4456 #if DEVELOPMENT || DEBUG
4459 * Sysctl only used to test memorystatus_allowed_vm_map_fork() path.
4460 * set a new pidwatch value
4462 * get the current pidwatch value
4464 * The pidwatch_val starts out with a PID to watch for in the map_fork path.
4466 * - OR'd with MEMORYSTATUS_VM_MAP_FORK_ALLOWED if we allow the map_fork.
4467 * - OR'd with MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED if we disallow the map_fork.
4468 * - set to -1ull if the map_fork() is aborted for other reasons.
4471 uint64_t memorystatus_vm_map_fork_pidwatch_val
= 0;
4473 static int sysctl_memorystatus_vm_map_fork_pidwatch SYSCTL_HANDLER_ARGS
{
4474 #pragma unused(oidp, arg1, arg2)
4476 uint64_t new_value
= 0;
4477 uint64_t old_value
= 0;
4481 * The pid is held in the low 32 bits.
4482 * The 'allowed' flags are in the upper 32 bits.
4484 old_value
= memorystatus_vm_map_fork_pidwatch_val
;
4486 error
= sysctl_io_number(req
, old_value
, sizeof(old_value
), &new_value
, NULL
);
4488 if (error
|| !req
->newptr
) {
4490 * No new value passed in.
4496 * A new pid was passed in via req->newptr.
4497 * Ignore any attempt to set the higher order bits.
4499 memorystatus_vm_map_fork_pidwatch_val
= new_value
& 0xFFFFFFFF;
4500 printf("memorystatus: pidwatch old_value = 0x%llx, new_value = 0x%llx \n", old_value
, new_value
);
4505 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_vm_map_fork_pidwatch
, CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
| CTLFLAG_MASKED
,
4506 0, 0, sysctl_memorystatus_vm_map_fork_pidwatch
, "Q", "get/set pid watched for in vm_map_fork");
4510 * Record if a watched process fails to qualify for a vm_map_fork().
4513 memorystatus_abort_vm_map_fork(task_t task
)
4515 if (memorystatus_vm_map_fork_pidwatch_val
!= 0) {
4516 proc_t p
= get_bsdtask_info(task
);
4517 if (p
!= NULL
&& memorystatus_vm_map_fork_pidwatch_val
== (uint64_t)p
->p_pid
) {
4518 memorystatus_vm_map_fork_pidwatch_val
= -1ull;
4524 set_vm_map_fork_pidwatch(task_t task
, uint64_t x
)
4526 if (memorystatus_vm_map_fork_pidwatch_val
!= 0) {
4527 proc_t p
= get_bsdtask_info(task
);
4528 if (p
&& (memorystatus_vm_map_fork_pidwatch_val
== (uint64_t)p
->p_pid
)) {
4529 memorystatus_vm_map_fork_pidwatch_val
|= x
;
4534 #else /* DEVELOPMENT || DEBUG */
4538 set_vm_map_fork_pidwatch(task_t task
, uint64_t x
)
4540 #pragma unused(task)
4544 #endif /* DEVELOPMENT || DEBUG */
4547 * Called during EXC_RESOURCE handling when a process exceeds a soft
4548 * memory limit. This is the corpse fork path and here we decide if
4549 * vm_map_fork will be allowed when creating the corpse.
4550 * The task being considered is suspended.
4552 * By default, a vm_map_fork is allowed to proceed.
4554 * A few simple policy assumptions:
4555 * Desktop platform is not considered in this path.
4556 * The vm_map_fork is always allowed.
4558 * If the device has a zero system-wide task limit,
4559 * then the vm_map_fork is allowed.
4561 * And if a process's memory footprint calculates less
4562 * than or equal to quarter of the system-wide task limit,
4563 * then the vm_map_fork is allowed. This calculation
4564 * is based on the assumption that a process can
4565 * munch memory up to the system-wide task limit.
4567 extern boolean_t corpse_threshold_system_limit
;
4569 memorystatus_allowed_vm_map_fork(task_t task
)
4571 boolean_t is_allowed
= TRUE
; /* default */
4575 uint64_t footprint_in_bytes
;
4576 uint64_t max_allowed_bytes
;
4578 if (max_task_footprint_mb
== 0) {
4579 set_vm_map_fork_pidwatch(task
, MEMORYSTATUS_VM_MAP_FORK_ALLOWED
);
4583 footprint_in_bytes
= get_task_phys_footprint(task
);
4586 * Maximum is 1/4 of the system-wide task limit by default.
4588 max_allowed_bytes
= ((uint64_t)max_task_footprint_mb
* 1024 * 1024) >> 2;
4590 #if DEBUG || DEVELOPMENT
4591 if (corpse_threshold_system_limit
) {
4592 max_allowed_bytes
= (uint64_t)max_task_footprint_mb
* (1UL << 20);
4594 #endif /* DEBUG || DEVELOPMENT */
4596 if (footprint_in_bytes
> max_allowed_bytes
) {
4597 printf("memorystatus disallowed vm_map_fork %lld %lld\n", footprint_in_bytes
, max_allowed_bytes
);
4598 set_vm_map_fork_pidwatch(task
, MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED
);
4601 #endif /* CONFIG_EMBEDDED */
4603 set_vm_map_fork_pidwatch(task
, MEMORYSTATUS_VM_MAP_FORK_ALLOWED
);
4608 memorystatus_get_task_page_counts(task_t task
, uint32_t *footprint
, uint32_t *max_footprint_lifetime
, uint32_t *purgeable_pages
)
4615 pages
= (get_task_phys_footprint(task
) / PAGE_SIZE_64
);
4616 assert(((uint32_t)pages
) == pages
);
4617 *footprint
= (uint32_t)pages
;
4619 if (max_footprint_lifetime
) {
4620 pages
= (get_task_phys_footprint_lifetime_max(task
) / PAGE_SIZE_64
);
4621 assert(((uint32_t)pages
) == pages
);
4622 *max_footprint_lifetime
= (uint32_t)pages
;
4624 if (purgeable_pages
) {
4625 pages
= (get_task_purgeable_size(task
) / PAGE_SIZE_64
);
4626 assert(((uint32_t)pages
) == pages
);
4627 *purgeable_pages
= (uint32_t)pages
;
4632 memorystatus_get_task_phys_footprint_page_counts(task_t task
,
4633 uint64_t *internal_pages
, uint64_t *internal_compressed_pages
,
4634 uint64_t *purgeable_nonvolatile_pages
, uint64_t *purgeable_nonvolatile_compressed_pages
,
4635 uint64_t *alternate_accounting_pages
, uint64_t *alternate_accounting_compressed_pages
,
4636 uint64_t *iokit_mapped_pages
, uint64_t *page_table_pages
)
4640 if (internal_pages
) {
4641 *internal_pages
= (get_task_internal(task
) / PAGE_SIZE_64
);
4644 if (internal_compressed_pages
) {
4645 *internal_compressed_pages
= (get_task_internal_compressed(task
) / PAGE_SIZE_64
);
4648 if (purgeable_nonvolatile_pages
) {
4649 *purgeable_nonvolatile_pages
= (get_task_purgeable_nonvolatile(task
) / PAGE_SIZE_64
);
4652 if (purgeable_nonvolatile_compressed_pages
) {
4653 *purgeable_nonvolatile_compressed_pages
= (get_task_purgeable_nonvolatile_compressed(task
) / PAGE_SIZE_64
);
4656 if (alternate_accounting_pages
) {
4657 *alternate_accounting_pages
= (get_task_alternate_accounting(task
) / PAGE_SIZE_64
);
4660 if (alternate_accounting_compressed_pages
) {
4661 *alternate_accounting_compressed_pages
= (get_task_alternate_accounting_compressed(task
) / PAGE_SIZE_64
);
4664 if (iokit_mapped_pages
) {
4665 *iokit_mapped_pages
= (get_task_iokit_mapped(task
) / PAGE_SIZE_64
);
4668 if (page_table_pages
) {
4669 *page_table_pages
= (get_task_page_table(task
) / PAGE_SIZE_64
);
4674 * This routine only acts on the global jetsam event snapshot.
4675 * Updating the process's entry can race when the memorystatus_thread
4676 * has chosen to kill a process that is racing to exit on another core.
4679 memorystatus_update_jetsam_snapshot_entry_locked(proc_t p
, uint32_t kill_cause
, uint64_t killtime
)
4681 memorystatus_jetsam_snapshot_entry_t
*entry
= NULL
;
4682 memorystatus_jetsam_snapshot_t
*snapshot
= NULL
;
4683 memorystatus_jetsam_snapshot_entry_t
*snapshot_list
= NULL
;
4687 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
4689 if (memorystatus_jetsam_snapshot_count
== 0) {
4691 * No active snapshot.
4698 * Sanity check as this routine should only be called
4699 * from a jetsam kill path.
4701 assert(kill_cause
!= 0 && killtime
!= 0);
4703 snapshot
= memorystatus_jetsam_snapshot
;
4704 snapshot_list
= memorystatus_jetsam_snapshot
->entries
;
4706 for (i
= 0; i
< memorystatus_jetsam_snapshot_count
; i
++) {
4707 if (snapshot_list
[i
].pid
== p
->p_pid
) {
4708 entry
= &snapshot_list
[i
];
4710 if (entry
->killed
|| entry
->jse_killtime
) {
4712 * We apparently raced on the exit path
4713 * for this process, as it's snapshot entry
4714 * has already recorded a kill.
4716 assert(entry
->killed
&& entry
->jse_killtime
);
4721 * Update the entry we just found in the snapshot.
4724 entry
->killed
= kill_cause
;
4725 entry
->jse_killtime
= killtime
;
4726 entry
->jse_gencount
= snapshot
->js_gencount
;
4727 entry
->jse_idle_delta
= p
->p_memstat_idle_delta
;
4729 entry
->jse_thaw_count
= p
->p_memstat_thaw_count
;
4730 #else /* CONFIG_FREEZE */
4731 entry
->jse_thaw_count
= 0;
4732 #endif /* CONFIG_FREEZE */
4735 * If a process has moved between bands since snapshot was
4736 * initialized, then likely these fields changed too.
4738 if (entry
->priority
!= p
->p_memstat_effectivepriority
) {
4739 strlcpy(entry
->name
, p
->p_name
, sizeof(entry
->name
));
4740 entry
->priority
= p
->p_memstat_effectivepriority
;
4741 entry
->state
= memorystatus_build_state(p
);
4742 entry
->user_data
= p
->p_memstat_userdata
;
4743 entry
->fds
= p
->p_fd
->fd_nfiles
;
4747 * Always update the page counts on a kill.
4751 uint32_t max_pages_lifetime
= 0;
4752 uint32_t purgeable_pages
= 0;
4754 memorystatus_get_task_page_counts(p
->task
, &pages
, &max_pages_lifetime
, &purgeable_pages
);
4755 entry
->pages
= (uint64_t)pages
;
4756 entry
->max_pages_lifetime
= (uint64_t)max_pages_lifetime
;
4757 entry
->purgeable_pages
= (uint64_t)purgeable_pages
;
4759 uint64_t internal_pages
= 0;
4760 uint64_t internal_compressed_pages
= 0;
4761 uint64_t purgeable_nonvolatile_pages
= 0;
4762 uint64_t purgeable_nonvolatile_compressed_pages
= 0;
4763 uint64_t alternate_accounting_pages
= 0;
4764 uint64_t alternate_accounting_compressed_pages
= 0;
4765 uint64_t iokit_mapped_pages
= 0;
4766 uint64_t page_table_pages
= 0;
4768 memorystatus_get_task_phys_footprint_page_counts(p
->task
, &internal_pages
, &internal_compressed_pages
,
4769 &purgeable_nonvolatile_pages
, &purgeable_nonvolatile_compressed_pages
,
4770 &alternate_accounting_pages
, &alternate_accounting_compressed_pages
,
4771 &iokit_mapped_pages
, &page_table_pages
);
4773 entry
->jse_internal_pages
= internal_pages
;
4774 entry
->jse_internal_compressed_pages
= internal_compressed_pages
;
4775 entry
->jse_purgeable_nonvolatile_pages
= purgeable_nonvolatile_pages
;
4776 entry
->jse_purgeable_nonvolatile_compressed_pages
= purgeable_nonvolatile_compressed_pages
;
4777 entry
->jse_alternate_accounting_pages
= alternate_accounting_pages
;
4778 entry
->jse_alternate_accounting_compressed_pages
= alternate_accounting_compressed_pages
;
4779 entry
->jse_iokit_mapped_pages
= iokit_mapped_pages
;
4780 entry
->jse_page_table_pages
= page_table_pages
;
4782 uint64_t region_count
= 0;
4783 memorystatus_get_task_memory_region_count(p
->task
, ®ion_count
);
4784 entry
->jse_memory_region_count
= region_count
;
4790 if (entry
== NULL
) {
4792 * The entry was not found in the snapshot, so the process must have
4793 * launched after the snapshot was initialized.
4794 * Let's try to append the new entry.
4796 if (memorystatus_jetsam_snapshot_count
< memorystatus_jetsam_snapshot_max
) {
4798 * A populated snapshot buffer exists
4799 * and there is room to init a new entry.
4801 assert(memorystatus_jetsam_snapshot_count
== snapshot
->entry_count
);
4803 unsigned int next
= memorystatus_jetsam_snapshot_count
;
4805 if (memorystatus_init_jetsam_snapshot_entry_locked(p
, &snapshot_list
[next
], (snapshot
->js_gencount
)) == TRUE
) {
4806 entry
= &snapshot_list
[next
];
4807 entry
->killed
= kill_cause
;
4808 entry
->jse_killtime
= killtime
;
4810 snapshot
->entry_count
= ++next
;
4811 memorystatus_jetsam_snapshot_count
= next
;
4813 if (memorystatus_jetsam_snapshot_count
>= memorystatus_jetsam_snapshot_max
) {
4815 * We just used the last slot in the snapshot buffer.
4816 * We only want to log it once... so we do it here
4817 * when we notice we've hit the max.
4819 printf("memorystatus: WARNING snapshot buffer is full, count %d\n",
4820 memorystatus_jetsam_snapshot_count
);
4827 if (entry
== NULL
) {
4829 * If we reach here, the snapshot buffer could not be updated.
4830 * Most likely, the buffer is full, in which case we would have
4831 * logged a warning in the previous call.
4833 * For now, we will stop appending snapshot entries.
4834 * When the buffer is consumed, the snapshot state will reset.
4837 MEMORYSTATUS_DEBUG(4, "memorystatus_update_jetsam_snapshot_entry_locked: failed to update pid %d, priority %d, count %d\n",
4838 p
->p_pid
, p
->p_memstat_effectivepriority
, memorystatus_jetsam_snapshot_count
);
4846 memorystatus_pages_update(unsigned int pages_avail
)
4848 memorystatus_available_pages
= pages_avail
;
4850 #if VM_PRESSURE_EVENTS
4852 * Since memorystatus_available_pages changes, we should
4853 * re-evaluate the pressure levels on the system and
4854 * check if we need to wake the pressure thread.
4855 * We also update memorystatus_level in that routine.
4857 vm_pressure_response();
4859 if (memorystatus_available_pages
<= memorystatus_available_pages_pressure
) {
4860 if (memorystatus_hwm_candidates
|| (memorystatus_available_pages
<= memorystatus_available_pages_critical
)) {
4861 memorystatus_thread_wake();
4866 * We can't grab the freezer_mutex here even though that synchronization would be correct to inspect
4867 * the # of frozen processes and wakeup the freezer thread. Reason being that we come here into this
4868 * code with (possibly) the page-queue locks held and preemption disabled. So trying to grab a mutex here
4869 * will result in the "mutex with preemption disabled" panic.
4872 if (memorystatus_freeze_thread_should_run() == TRUE
) {
4874 * The freezer thread is usually woken up by some user-space call i.e. pid_hibernate(any process).
4875 * That trigger isn't invoked often enough and so we are enabling this explicit wakeup here.
4877 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
4878 thread_wakeup((event_t
)&memorystatus_freeze_wakeup
);
4881 #endif /* CONFIG_FREEZE */
4883 #else /* VM_PRESSURE_EVENTS */
4885 boolean_t critical
, delta
;
4887 if (!memorystatus_delta
) {
4891 critical
= (pages_avail
< memorystatus_available_pages_critical
) ? TRUE
: FALSE
;
4892 delta
= ((pages_avail
>= (memorystatus_available_pages
+ memorystatus_delta
))
4893 || (memorystatus_available_pages
>= (pages_avail
+ memorystatus_delta
))) ? TRUE
: FALSE
;
4895 if (critical
|| delta
) {
4896 unsigned int total_pages
;
4898 total_pages
= (unsigned int) atop_64(max_mem
);
4899 #if CONFIG_SECLUDED_MEMORY
4900 total_pages
-= vm_page_secluded_count
;
4901 #endif /* CONFIG_SECLUDED_MEMORY */
4902 memorystatus_level
= memorystatus_available_pages
* 100 / total_pages
;
4903 memorystatus_thread_wake();
4905 #endif /* VM_PRESSURE_EVENTS */
4907 #endif /* CONFIG_JETSAM */
4910 memorystatus_init_jetsam_snapshot_entry_locked(proc_t p
, memorystatus_jetsam_snapshot_entry_t
*entry
, uint64_t gencount
)
4913 clock_usec_t tv_usec
;
4915 uint32_t max_pages_lifetime
= 0;
4916 uint32_t purgeable_pages
= 0;
4917 uint64_t internal_pages
= 0;
4918 uint64_t internal_compressed_pages
= 0;
4919 uint64_t purgeable_nonvolatile_pages
= 0;
4920 uint64_t purgeable_nonvolatile_compressed_pages
= 0;
4921 uint64_t alternate_accounting_pages
= 0;
4922 uint64_t alternate_accounting_compressed_pages
= 0;
4923 uint64_t iokit_mapped_pages
= 0;
4924 uint64_t page_table_pages
= 0;
4925 uint64_t region_count
= 0;
4926 uint64_t cids
[COALITION_NUM_TYPES
];
4928 memset(entry
, 0, sizeof(memorystatus_jetsam_snapshot_entry_t
));
4930 entry
->pid
= p
->p_pid
;
4931 strlcpy(&entry
->name
[0], p
->p_name
, sizeof(entry
->name
));
4932 entry
->priority
= p
->p_memstat_effectivepriority
;
4934 memorystatus_get_task_page_counts(p
->task
, &pages
, &max_pages_lifetime
, &purgeable_pages
);
4935 entry
->pages
= (uint64_t)pages
;
4936 entry
->max_pages_lifetime
= (uint64_t)max_pages_lifetime
;
4937 entry
->purgeable_pages
= (uint64_t)purgeable_pages
;
4939 memorystatus_get_task_phys_footprint_page_counts(p
->task
, &internal_pages
, &internal_compressed_pages
,
4940 &purgeable_nonvolatile_pages
, &purgeable_nonvolatile_compressed_pages
,
4941 &alternate_accounting_pages
, &alternate_accounting_compressed_pages
,
4942 &iokit_mapped_pages
, &page_table_pages
);
4944 entry
->jse_internal_pages
= internal_pages
;
4945 entry
->jse_internal_compressed_pages
= internal_compressed_pages
;
4946 entry
->jse_purgeable_nonvolatile_pages
= purgeable_nonvolatile_pages
;
4947 entry
->jse_purgeable_nonvolatile_compressed_pages
= purgeable_nonvolatile_compressed_pages
;
4948 entry
->jse_alternate_accounting_pages
= alternate_accounting_pages
;
4949 entry
->jse_alternate_accounting_compressed_pages
= alternate_accounting_compressed_pages
;
4950 entry
->jse_iokit_mapped_pages
= iokit_mapped_pages
;
4951 entry
->jse_page_table_pages
= page_table_pages
;
4953 memorystatus_get_task_memory_region_count(p
->task
, ®ion_count
);
4954 entry
->jse_memory_region_count
= region_count
;
4956 entry
->state
= memorystatus_build_state(p
);
4957 entry
->user_data
= p
->p_memstat_userdata
;
4958 memcpy(&entry
->uuid
[0], &p
->p_uuid
[0], sizeof(p
->p_uuid
));
4959 entry
->fds
= p
->p_fd
->fd_nfiles
;
4961 absolutetime_to_microtime(get_task_cpu_time(p
->task
), &tv_sec
, &tv_usec
);
4962 entry
->cpu_time
.tv_sec
= (int64_t)tv_sec
;
4963 entry
->cpu_time
.tv_usec
= (int64_t)tv_usec
;
4965 assert(p
->p_stats
!= NULL
);
4966 entry
->jse_starttime
= p
->p_stats
->ps_start
; /* abstime process started */
4967 entry
->jse_killtime
= 0; /* abstime jetsam chose to kill process */
4968 entry
->killed
= 0; /* the jetsam kill cause */
4969 entry
->jse_gencount
= gencount
; /* indicates a pass through jetsam thread, when process was targeted to be killed */
4971 entry
->jse_idle_delta
= p
->p_memstat_idle_delta
; /* Most recent timespan spent in idle-band */
4974 entry
->jse_thaw_count
= p
->p_memstat_thaw_count
;
4975 #else /* CONFIG_FREEZE */
4976 entry
->jse_thaw_count
= 0;
4977 #endif /* CONFIG_FREEZE */
4979 proc_coalitionids(p
, cids
);
4980 entry
->jse_coalition_jetsam_id
= cids
[COALITION_TYPE_JETSAM
];
4986 memorystatus_init_snapshot_vmstats(memorystatus_jetsam_snapshot_t
*snapshot
)
4988 kern_return_t kr
= KERN_SUCCESS
;
4989 mach_msg_type_number_t count
= HOST_VM_INFO64_COUNT
;
4990 vm_statistics64_data_t vm_stat
;
4992 if ((kr
= host_statistics64(host_self(), HOST_VM_INFO64
, (host_info64_t
)&vm_stat
, &count
)) != KERN_SUCCESS
) {
4993 printf("memorystatus_init_jetsam_snapshot_stats: host_statistics64 failed with %d\n", kr
);
4994 memset(&snapshot
->stats
, 0, sizeof(snapshot
->stats
));
4996 snapshot
->stats
.free_pages
= vm_stat
.free_count
;
4997 snapshot
->stats
.active_pages
= vm_stat
.active_count
;
4998 snapshot
->stats
.inactive_pages
= vm_stat
.inactive_count
;
4999 snapshot
->stats
.throttled_pages
= vm_stat
.throttled_count
;
5000 snapshot
->stats
.purgeable_pages
= vm_stat
.purgeable_count
;
5001 snapshot
->stats
.wired_pages
= vm_stat
.wire_count
;
5003 snapshot
->stats
.speculative_pages
= vm_stat
.speculative_count
;
5004 snapshot
->stats
.filebacked_pages
= vm_stat
.external_page_count
;
5005 snapshot
->stats
.anonymous_pages
= vm_stat
.internal_page_count
;
5006 snapshot
->stats
.compressions
= vm_stat
.compressions
;
5007 snapshot
->stats
.decompressions
= vm_stat
.decompressions
;
5008 snapshot
->stats
.compressor_pages
= vm_stat
.compressor_page_count
;
5009 snapshot
->stats
.total_uncompressed_pages_in_compressor
= vm_stat
.total_uncompressed_pages_in_compressor
;
5012 get_zone_map_size(&snapshot
->stats
.zone_map_size
, &snapshot
->stats
.zone_map_capacity
);
5014 bzero(snapshot
->stats
.largest_zone_name
, sizeof(snapshot
->stats
.largest_zone_name
));
5015 get_largest_zone_info(snapshot
->stats
.largest_zone_name
, sizeof(snapshot
->stats
.largest_zone_name
),
5016 &snapshot
->stats
.largest_zone_size
);
5020 * Collect vm statistics at boot.
5021 * Called only once (see kern_exec.c)
5022 * Data can be consumed at any time.
5025 memorystatus_init_at_boot_snapshot()
5027 memorystatus_init_snapshot_vmstats(&memorystatus_at_boot_snapshot
);
5028 memorystatus_at_boot_snapshot
.entry_count
= 0;
5029 memorystatus_at_boot_snapshot
.notification_time
= 0; /* updated when consumed */
5030 memorystatus_at_boot_snapshot
.snapshot_time
= mach_absolute_time();
5034 memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t
*od_snapshot
, uint32_t ods_list_count
)
5037 unsigned int b
= 0, i
= 0;
5039 memorystatus_jetsam_snapshot_t
*snapshot
= NULL
;
5040 memorystatus_jetsam_snapshot_entry_t
*snapshot_list
= NULL
;
5041 unsigned int snapshot_max
= 0;
5043 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
5047 * This is an on_demand snapshot
5049 snapshot
= od_snapshot
;
5050 snapshot_list
= od_snapshot
->entries
;
5051 snapshot_max
= ods_list_count
;
5054 * This is a jetsam event snapshot
5056 snapshot
= memorystatus_jetsam_snapshot
;
5057 snapshot_list
= memorystatus_jetsam_snapshot
->entries
;
5058 snapshot_max
= memorystatus_jetsam_snapshot_max
;
5062 * Init the snapshot header information
5064 memorystatus_init_snapshot_vmstats(snapshot
);
5065 snapshot
->snapshot_time
= mach_absolute_time();
5066 snapshot
->notification_time
= 0;
5067 snapshot
->js_gencount
= 0;
5069 next_p
= memorystatus_get_first_proc_locked(&b
, TRUE
);
5072 next_p
= memorystatus_get_next_proc_locked(&b
, p
, TRUE
);
5074 if (FALSE
== memorystatus_init_jetsam_snapshot_entry_locked(p
, &snapshot_list
[i
], snapshot
->js_gencount
)) {
5078 MEMORYSTATUS_DEBUG(0, "jetsam snapshot pid %d, uuid = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5080 p
->p_uuid
[0], p
->p_uuid
[1], p
->p_uuid
[2], p
->p_uuid
[3], p
->p_uuid
[4], p
->p_uuid
[5], p
->p_uuid
[6], p
->p_uuid
[7],
5081 p
->p_uuid
[8], p
->p_uuid
[9], p
->p_uuid
[10], p
->p_uuid
[11], p
->p_uuid
[12], p
->p_uuid
[13], p
->p_uuid
[14], p
->p_uuid
[15]);
5083 if (++i
== snapshot_max
) {
5088 snapshot
->entry_count
= i
;
5091 /* update the system buffer count */
5092 memorystatus_jetsam_snapshot_count
= i
;
5096 #if DEVELOPMENT || DEBUG
5100 memorystatus_cmd_set_panic_bits(user_addr_t buffer
, uint32_t buffer_size
)
5103 memorystatus_jetsam_panic_options_t debug
;
5105 if (buffer_size
!= sizeof(memorystatus_jetsam_panic_options_t
)) {
5109 ret
= copyin(buffer
, &debug
, buffer_size
);
5114 /* Panic bits match kMemorystatusKilled* enum */
5115 memorystatus_jetsam_panic_debug
= (memorystatus_jetsam_panic_debug
& ~debug
.mask
) | (debug
.data
& debug
.mask
);
5117 /* Copyout new value */
5118 debug
.data
= memorystatus_jetsam_panic_debug
;
5119 ret
= copyout(&debug
, buffer
, sizeof(memorystatus_jetsam_panic_options_t
));
5123 #endif /* CONFIG_JETSAM */
5126 * Triggers a sort_order on a specified jetsam priority band.
5127 * This is for testing only, used to force a path through the sort
5131 memorystatus_cmd_test_jetsam_sort(int priority
, int sort_order
)
5135 unsigned int bucket_index
= 0;
5137 if (priority
== -1) {
5138 /* Use as shorthand for default priority */
5139 bucket_index
= JETSAM_PRIORITY_DEFAULT
;
5141 bucket_index
= (unsigned int)priority
;
5144 error
= memorystatus_sort_bucket(bucket_index
, sort_order
);
5149 #endif /* DEVELOPMENT || DEBUG */
5152 * Prepare the process to be killed (set state, update snapshot) and kill it.
5154 static uint64_t memorystatus_purge_before_jetsam_success
= 0;
5157 memorystatus_kill_proc(proc_t p
, uint32_t cause
, os_reason_t jetsam_reason
, boolean_t
*killed
, uint64_t *footprint_of_killed_proc
)
5160 uint32_t aPid_ep
= 0;
5162 uint64_t killtime
= 0;
5164 clock_usec_t tv_usec
;
5166 boolean_t retval
= FALSE
;
5169 aPid_ep
= p
->p_memstat_effectivepriority
;
5171 if (cause
!= kMemorystatusKilledVnodes
&& cause
!= kMemorystatusKilledZoneMapExhaustion
) {
5173 * Genuine memory pressure and not other (vnode/zone) resource exhaustion.
5175 boolean_t success
= FALSE
;
5176 uint64_t num_pages_purged
;
5177 uint64_t num_pages_reclaimed
= 0;
5178 uint64_t num_pages_unsecluded
= 0;
5180 networking_memstatus_callout(p
, cause
);
5181 num_pages_purged
= vm_purgeable_purge_task_owned(p
->task
);
5182 num_pages_reclaimed
+= num_pages_purged
;
5183 #if CONFIG_SECLUDED_MEMORY
5184 if (cause
== kMemorystatusKilledVMPageShortage
&&
5185 vm_page_secluded_count
> 0 &&
5186 task_can_use_secluded_mem(p
->task
, FALSE
)) {
5188 * We're about to kill a process that has access
5189 * to the secluded pool. Drain that pool into the
5190 * free or active queues to make these pages re-appear
5191 * as "available", which might make us no longer need
5192 * to kill that process.
5193 * Since the secluded pool does not get refilled while
5194 * a process has access to it, it should remain
5197 num_pages_unsecluded
= vm_page_secluded_drain();
5198 num_pages_reclaimed
+= num_pages_unsecluded
;
5200 #endif /* CONFIG_SECLUDED_MEMORY */
5202 if (num_pages_reclaimed
) {
5204 * We actually reclaimed something and so let's
5205 * check if we need to continue with the kill.
5207 if (cause
== kMemorystatusKilledHiwat
) {
5208 uint64_t footprint_in_bytes
= get_task_phys_footprint(p
->task
);
5209 uint64_t memlimit_in_bytes
= (((uint64_t)p
->p_memstat_memlimit
) * 1024ULL * 1024ULL); /* convert MB to bytes */
5210 success
= (footprint_in_bytes
<= memlimit_in_bytes
);
5212 success
= (memorystatus_avail_pages_below_pressure() == FALSE
);
5213 #if CONFIG_SECLUDED_MEMORY
5214 if (!success
&& num_pages_unsecluded
) {
5216 * We just drained the secluded pool
5217 * because we're about to kill a
5218 * process that has access to it.
5219 * This is an important process and
5220 * we'd rather not kill it unless
5221 * absolutely necessary, so declare
5222 * success even if draining the pool
5223 * did not quite get us out of the
5224 * "pressure" level but still got
5225 * us out of the "critical" level.
5227 success
= (memorystatus_avail_pages_below_critical() == FALSE
);
5229 #endif /* CONFIG_SECLUDED_MEMORY */
5233 memorystatus_purge_before_jetsam_success
++;
5235 os_log_with_startup_serial(OS_LOG_DEFAULT
, "memorystatus: reclaimed %llu pages (%llu purged, %llu unsecluded) from pid %d [%s] and avoided %s\n",
5236 num_pages_reclaimed
, num_pages_purged
, num_pages_unsecluded
, aPid
, ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"), memorystatus_kill_cause_name
[cause
]);
5245 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
5246 MEMORYSTATUS_DEBUG(1, "jetsam: killing pid %d [%s] - %lld Mb > 1 (%d Mb)\n",
5247 aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
5248 (footprint_in_bytes
/ (1024ULL * 1024ULL)), /* converted bytes to MB */
5249 p
->p_memstat_memlimit
);
5250 #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
5252 killtime
= mach_absolute_time();
5253 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
5254 tv_msec
= tv_usec
/ 1000;
5257 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
5260 char kill_reason_string
[128];
5262 if (cause
== kMemorystatusKilledHiwat
) {
5263 strlcpy(kill_reason_string
, "killing_highwater_process", 128);
5265 if (aPid_ep
== JETSAM_PRIORITY_IDLE
) {
5266 strlcpy(kill_reason_string
, "killing_idle_process", 128);
5268 strlcpy(kill_reason_string
, "killing_top_process", 128);
5273 * memorystatus_do_kill drops a reference, so take another one so we can
5274 * continue to use this exit reason even after memorystatus_do_kill()
5277 os_reason_ref(jetsam_reason
);
5279 retval
= memorystatus_do_kill(p
, cause
, jetsam_reason
, footprint_of_killed_proc
);
5282 os_log_with_startup_serial(OS_LOG_DEFAULT
, "%lu.%03d memorystatus: %s pid %d [%s] (%s %d) %lluKB - memorystatus_available_pages: %llu",
5283 (unsigned long)tv_sec
, tv_msec
, kill_reason_string
,
5284 aPid
, ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"),
5285 memorystatus_kill_cause_name
[cause
], aPid_ep
,
5286 (*footprint_of_killed_proc
) >> 10, (uint64_t)memorystatus_available_pages
);
5292 * Jetsam the first process in the queue.
5295 memorystatus_kill_top_process(boolean_t any
, boolean_t sort_flag
, uint32_t cause
, os_reason_t jetsam_reason
,
5296 int32_t *priority
, uint32_t *errors
, uint64_t *memory_reclaimed
)
5299 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5300 boolean_t new_snapshot
= FALSE
, force_new_snapshot
= FALSE
, killed
= FALSE
, freed_mem
= FALSE
;
5303 int32_t local_max_kill_prio
= JETSAM_PRIORITY_IDLE
;
5304 uint64_t footprint_of_killed_proc
= 0;
5306 #ifndef CONFIG_FREEZE
5310 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
5311 memorystatus_available_pages
, 0, 0, 0, 0);
5315 if (sort_flag
== TRUE
) {
5316 (void)memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND
, JETSAM_SORT_DEFAULT
);
5319 local_max_kill_prio
= max_kill_priority
;
5321 force_new_snapshot
= FALSE
;
5323 #else /* CONFIG_JETSAM */
5325 if (sort_flag
== TRUE
) {
5326 (void)memorystatus_sort_bucket(JETSAM_PRIORITY_IDLE
, JETSAM_SORT_DEFAULT
);
5330 * On macos, we currently only have 2 reasons to be here:
5332 * kMemorystatusKilledZoneMapExhaustion
5334 * kMemorystatusKilledVMCompressorSpaceShortage
5336 * If we are here because of kMemorystatusKilledZoneMapExhaustion, we will consider
5337 * any and all processes as eligible kill candidates since we need to avoid a panic.
5339 * Since this function can be called async. it is harder to toggle the max_kill_priority
5340 * value before and after a call. And so we use this local variable to set the upper band
5341 * on the eligible kill bands.
5343 if (cause
== kMemorystatusKilledZoneMapExhaustion
) {
5344 local_max_kill_prio
= JETSAM_PRIORITY_MAX
;
5346 local_max_kill_prio
= max_kill_priority
;
5350 * And, because we are here under extreme circumstances, we force a snapshot even for
5353 force_new_snapshot
= TRUE
;
5355 #endif /* CONFIG_JETSAM */
5357 if (cause
!= kMemorystatusKilledZoneMapExhaustion
&&
5358 jetsam_current_thread() != NULL
&&
5359 jetsam_current_thread()->limit_to_low_bands
&&
5360 local_max_kill_prio
> JETSAM_PRIORITY_BACKGROUND
) {
5361 local_max_kill_prio
= JETSAM_PRIORITY_BACKGROUND
;
5366 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5367 while (next_p
&& (next_p
->p_memstat_effectivepriority
<= local_max_kill_prio
)) {
5369 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
5373 aPid_ep
= p
->p_memstat_effectivepriority
;
5375 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
5376 continue; /* with lock held */
5379 if (cause
== kMemorystatusKilledVnodes
) {
5381 * If the system runs out of vnodes, we systematically jetsam
5382 * processes in hopes of stumbling onto a vnode gain that helps
5383 * the system recover. The process that happens to trigger
5384 * this path has no known relationship to the vnode shortage.
5385 * Deadlock avoidance: attempt to safeguard the caller.
5388 if (p
== current_proc()) {
5389 /* do not jetsam the current process */
5396 boolean_t reclaim_proc
= !(p
->p_memstat_state
& P_MEMSTAT_LOCKED
);
5397 if (any
|| reclaim_proc
) {
5408 if (proc_ref_locked(p
) == p
) {
5410 * Mark as terminated so that if exit1() indicates success, but the process (for example)
5411 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
5412 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
5413 * acquisition of the proc lock.
5415 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5418 * We need to restart the search again because
5419 * proc_ref_locked _can_ drop the proc_list lock
5420 * and we could have lost our stored next_p via
5421 * an exit() on another core.
5424 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5429 * Capture a snapshot if none exists and:
5430 * - we are forcing a new snapshot creation, either because:
5431 * - on a particular platform we need these snapshots every time, OR
5432 * - a boot-arg/embedded device tree property has been set.
5433 * - priority was not requested (this is something other than an ambient kill)
5434 * - the priority was requested *and* the targeted process is not at idle priority
5436 if ((memorystatus_jetsam_snapshot_count
== 0) &&
5437 (force_new_snapshot
|| memorystatus_idle_snapshot
|| ((!priority
) || (priority
&& (aPid_ep
!= JETSAM_PRIORITY_IDLE
))))) {
5438 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
5439 new_snapshot
= TRUE
;
5444 freed_mem
= memorystatus_kill_proc(p
, cause
, jetsam_reason
, &killed
, &footprint_of_killed_proc
); /* purged and/or killed 'p' */
5448 *memory_reclaimed
= footprint_of_killed_proc
;
5450 *priority
= aPid_ep
;
5455 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5463 * Failure - first unwind the state,
5464 * then fall through to restart the search.
5467 proc_rele_locked(p
);
5468 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5469 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
5473 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5480 os_reason_free(jetsam_reason
);
5483 *memory_reclaimed
= 0;
5485 /* Clear snapshot if freshly captured and no target was found */
5488 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
5493 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
5494 memorystatus_available_pages
, killed
? aPid
: 0, killed
, *memory_reclaimed
, 0);
5500 * Jetsam aggressively
5503 memorystatus_kill_processes_aggressive(uint32_t cause
, int aggr_count
,
5504 int32_t priority_max
, uint32_t *errors
, uint64_t *memory_reclaimed
)
5507 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5508 boolean_t new_snapshot
= FALSE
, killed
= FALSE
;
5511 int32_t aPid_ep
= 0;
5512 unsigned int memorystatus_level_snapshot
= 0;
5513 uint64_t killtime
= 0;
5515 clock_usec_t tv_usec
;
5517 os_reason_t jetsam_reason
= OS_REASON_NULL
;
5518 uint64_t footprint_of_killed_proc
= 0;
5520 *memory_reclaimed
= 0;
5522 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
5523 memorystatus_available_pages
, priority_max
, 0, 0, 0);
5525 if (priority_max
>= JETSAM_PRIORITY_FOREGROUND
) {
5527 * Check if aggressive jetsam has been asked to kill upto or beyond the
5528 * JETSAM_PRIORITY_FOREGROUND bucket. If yes, sort the FG band based on
5529 * coalition footprint.
5531 memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND
, JETSAM_SORT_DEFAULT
);
5534 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, cause
);
5535 if (jetsam_reason
== OS_REASON_NULL
) {
5536 printf("memorystatus_kill_processes_aggressive: failed to allocate exit reason\n");
5541 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5543 if (((next_p
->p_listflag
& P_LIST_EXITED
) != 0) ||
5544 ((unsigned int)(next_p
->p_memstat_effectivepriority
) != i
)) {
5546 * We have raced with next_p running on another core.
5547 * It may be exiting or it may have moved to a different
5548 * jetsam priority band. This means we have lost our
5549 * place in line while traversing the jetsam list. We
5550 * attempt to recover by rewinding to the beginning of the band
5551 * we were already traversing. By doing this, we do not guarantee
5552 * that no process escapes this aggressive march, but we can make
5553 * skipping an entire range of processes less likely. (PR-21069019)
5556 MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: rewinding band %d, %s(%d) moved or exiting.\n",
5557 aggr_count
, i
, (*next_p
->p_name
? next_p
->p_name
: "unknown"), next_p
->p_pid
);
5559 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5564 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
5566 if (p
->p_memstat_effectivepriority
> priority_max
) {
5568 * Bail out of this killing spree if we have
5569 * reached beyond the priority_max jetsam band.
5570 * That is, we kill up to and through the
5571 * priority_max jetsam band.
5578 aPid_ep
= p
->p_memstat_effectivepriority
;
5580 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
5585 * Capture a snapshot if none exists.
5587 if (memorystatus_jetsam_snapshot_count
== 0) {
5588 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
5589 new_snapshot
= TRUE
;
5593 * Mark as terminated so that if exit1() indicates success, but the process (for example)
5594 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
5595 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
5596 * acquisition of the proc lock.
5598 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5600 killtime
= mach_absolute_time();
5601 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
5602 tv_msec
= tv_usec
/ 1000;
5604 /* Shift queue, update stats */
5605 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
5608 * In order to kill the target process, we will drop the proc_list_lock.
5609 * To guaranteee that p and next_p don't disappear out from under the lock,
5610 * we must take a ref on both.
5611 * If we cannot get a reference, then it's likely we've raced with
5612 * that process exiting on another core.
5614 if (proc_ref_locked(p
) == p
) {
5616 while (next_p
&& (proc_ref_locked(next_p
) != next_p
)) {
5620 * We must have raced with next_p exiting on another core.
5621 * Recover by getting the next eligible process in the band.
5624 MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: skipping %d [%s] (exiting?)\n",
5625 aggr_count
, next_p
->p_pid
, (*next_p
->p_name
? next_p
->p_name
: "(unknown)"));
5628 next_p
= memorystatus_get_next_proc_locked(&i
, temp_p
, TRUE
);
5633 printf("%lu.%03d memorystatus: %s%d pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n",
5634 (unsigned long)tv_sec
, tv_msec
,
5635 ((aPid_ep
== JETSAM_PRIORITY_IDLE
) ? "killing_idle_process_aggressive" : "killing_top_process_aggressive"),
5636 aggr_count
, aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
5637 memorystatus_kill_cause_name
[cause
], aPid_ep
, (uint64_t)memorystatus_available_pages
);
5639 memorystatus_level_snapshot
= memorystatus_level
;
5642 * memorystatus_do_kill() drops a reference, so take another one so we can
5643 * continue to use this exit reason even after memorystatus_do_kill()
5646 os_reason_ref(jetsam_reason
);
5647 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
, &footprint_of_killed_proc
);
5651 *memory_reclaimed
+= footprint_of_killed_proc
;
5658 * Continue the killing spree.
5662 proc_rele_locked(next_p
);
5665 if (aPid_ep
== JETSAM_PRIORITY_FOREGROUND
&& memorystatus_aggressive_jetsam_lenient
== TRUE
) {
5666 if (memorystatus_level
> memorystatus_level_snapshot
&& ((memorystatus_level
- memorystatus_level_snapshot
) >= AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD
)) {
5667 #if DEVELOPMENT || DEBUG
5668 printf("Disabling Lenient mode after one-time deployment.\n");
5669 #endif /* DEVELOPMENT || DEBUG */
5670 memorystatus_aggressive_jetsam_lenient
= FALSE
;
5679 * Failure - first unwind the state,
5680 * then fall through to restart the search.
5683 proc_rele_locked(p
);
5685 proc_rele_locked(next_p
);
5687 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5688 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
5694 * Failure - restart the search at the beginning of
5695 * the band we were already traversing.
5697 * We might have raced with "p" exiting on another core, resulting in no
5698 * ref on "p". Or, we may have failed to kill "p".
5700 * Either way, we fall thru to here, leaving the proc in the
5701 * P_MEMSTAT_TERMINATED or P_MEMSTAT_ERROR state.
5703 * And, we hold the the proc_list_lock at this point.
5706 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5712 os_reason_free(jetsam_reason
);
5714 /* Clear snapshot if freshly captured and no target was found */
5715 if (new_snapshot
&& (kill_count
== 0)) {
5717 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
5721 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
5722 memorystatus_available_pages
, 0, kill_count
, *memory_reclaimed
, 0);
5724 if (kill_count
> 0) {
5732 memorystatus_kill_hiwat_proc(uint32_t *errors
, boolean_t
*purged
, uint64_t *memory_reclaimed
)
5735 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5736 boolean_t new_snapshot
= FALSE
, killed
= FALSE
, freed_mem
= FALSE
;
5739 os_reason_t jetsam_reason
= OS_REASON_NULL
;
5740 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM_HIWAT
) | DBG_FUNC_START
,
5741 memorystatus_available_pages
, 0, 0, 0, 0);
5743 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_HIGHWATER
);
5744 if (jetsam_reason
== OS_REASON_NULL
) {
5745 printf("memorystatus_kill_hiwat_proc: failed to allocate exit reason\n");
5750 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5752 uint64_t footprint_in_bytes
= 0;
5753 uint64_t memlimit_in_bytes
= 0;
5757 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
5760 aPid_ep
= p
->p_memstat_effectivepriority
;
5762 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
5766 /* skip if no limit set */
5767 if (p
->p_memstat_memlimit
<= 0) {
5771 footprint_in_bytes
= get_task_phys_footprint(p
->task
);
5772 memlimit_in_bytes
= (((uint64_t)p
->p_memstat_memlimit
) * 1024ULL * 1024ULL); /* convert MB to bytes */
5773 skip
= (footprint_in_bytes
<= memlimit_in_bytes
);
5777 if (p
->p_memstat_state
& P_MEMSTAT_LOCKED
) {
5788 if (memorystatus_jetsam_snapshot_count
== 0) {
5789 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
5790 new_snapshot
= TRUE
;
5793 if (proc_ref_locked(p
) == p
) {
5795 * Mark as terminated so that if exit1() indicates success, but the process (for example)
5796 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
5797 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
5798 * acquisition of the proc lock.
5800 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5805 * We need to restart the search again because
5806 * proc_ref_locked _can_ drop the proc_list lock
5807 * and we could have lost our stored next_p via
5808 * an exit() on another core.
5811 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5815 footprint_in_bytes
= 0;
5816 freed_mem
= memorystatus_kill_proc(p
, kMemorystatusKilledHiwat
, jetsam_reason
, &killed
, &footprint_in_bytes
); /* purged and/or killed 'p' */
5820 if (killed
== FALSE
) {
5821 /* purged 'p'..don't reset HWM candidate count */
5825 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5828 *memory_reclaimed
= footprint_in_bytes
;
5834 * Failure - first unwind the state,
5835 * then fall through to restart the search.
5838 proc_rele_locked(p
);
5839 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5840 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
5844 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5851 os_reason_free(jetsam_reason
);
5854 *memory_reclaimed
= 0;
5856 /* Clear snapshot if freshly captured and no target was found */
5859 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
5864 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM_HIWAT
) | DBG_FUNC_END
,
5865 memorystatus_available_pages
, killed
? aPid
: 0, killed
, *memory_reclaimed
, 0);
5871 * Jetsam a process pinned in the elevated band.
5873 * Return: true -- a pinned process was jetsammed
5874 * false -- no pinned process was jetsammed
5877 memorystatus_kill_elevated_process(uint32_t cause
, os_reason_t jetsam_reason
, unsigned int band
, int aggr_count
, uint32_t *errors
, uint64_t *memory_reclaimed
)
5880 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5881 boolean_t new_snapshot
= FALSE
, killed
= FALSE
;
5884 uint64_t killtime
= 0;
5886 clock_usec_t tv_usec
;
5888 uint64_t footprint_of_killed_proc
= 0;
5891 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
5892 memorystatus_available_pages
, 0, 0, 0, 0);
5895 boolean_t consider_frozen_only
= FALSE
;
5897 if (band
== (unsigned int) memorystatus_freeze_jetsam_band
) {
5898 consider_frozen_only
= TRUE
;
5900 #endif /* CONFIG_FREEZE */
5904 next_p
= memorystatus_get_first_proc_locked(&band
, FALSE
);
5907 next_p
= memorystatus_get_next_proc_locked(&band
, p
, FALSE
);
5910 aPid_ep
= p
->p_memstat_effectivepriority
;
5913 * Only pick a process pinned in this elevated band
5915 if (!(p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
)) {
5919 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
5924 if (consider_frozen_only
&& !(p
->p_memstat_state
& P_MEMSTAT_FROZEN
)) {
5928 if (p
->p_memstat_state
& P_MEMSTAT_LOCKED
) {
5931 #endif /* CONFIG_FREEZE */
5933 #if DEVELOPMENT || DEBUG
5934 MEMORYSTATUS_DEBUG(1, "jetsam: elevated%d process pid %d [%s] - memorystatus_available_pages: %d\n",
5936 aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
5937 memorystatus_available_pages
);
5938 #endif /* DEVELOPMENT || DEBUG */
5940 if (memorystatus_jetsam_snapshot_count
== 0) {
5941 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
5942 new_snapshot
= TRUE
;
5945 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5947 killtime
= mach_absolute_time();
5948 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
5949 tv_msec
= tv_usec
/ 1000;
5951 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
5953 if (proc_ref_locked(p
) == p
) {
5957 * memorystatus_do_kill drops a reference, so take another one so we can
5958 * continue to use this exit reason even after memorystatus_do_kill()
5961 os_reason_ref(jetsam_reason
);
5962 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
, &footprint_of_killed_proc
);
5964 os_log_with_startup_serial(OS_LOG_DEFAULT
, "%lu.%03d memorystatus: killing_top_process_elevated%d pid %d [%s] (%s %d) %lluKB - memorystatus_available_pages: %llu\n",
5965 (unsigned long)tv_sec
, tv_msec
,
5967 aPid
, ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"),
5968 memorystatus_kill_cause_name
[cause
], aPid_ep
,
5969 footprint_of_killed_proc
>> 10, (uint64_t)memorystatus_available_pages
);
5973 *memory_reclaimed
= footprint_of_killed_proc
;
5980 * Failure - first unwind the state,
5981 * then fall through to restart the search.
5984 proc_rele_locked(p
);
5985 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5986 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
5991 * Failure - restart the search.
5993 * We might have raced with "p" exiting on another core, resulting in no
5994 * ref on "p". Or, we may have failed to kill "p".
5996 * Either way, we fall thru to here, leaving the proc in the
5997 * P_MEMSTAT_TERMINATED state or P_MEMSTAT_ERROR state.
5999 * And, we hold the the proc_list_lock at this point.
6002 next_p
= memorystatus_get_first_proc_locked(&band
, FALSE
);
6008 os_reason_free(jetsam_reason
);
6010 if (kill_count
== 0) {
6011 *memory_reclaimed
= 0;
6013 /* Clear snapshot if freshly captured and no target was found */
6016 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
6021 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
6022 memorystatus_available_pages
, killed
? aPid
: 0, kill_count
, *memory_reclaimed
, 0);
6028 memorystatus_kill_process_async(pid_t victim_pid
, uint32_t cause
)
6031 * TODO: allow a general async path
6033 * NOTE: If a new async kill cause is added, make sure to update memorystatus_thread() to
6034 * add the appropriate exit reason code mapping.
6036 if ((victim_pid
!= -1) ||
6037 (cause
!= kMemorystatusKilledVMPageShortage
&&
6038 cause
!= kMemorystatusKilledVMCompressorThrashing
&&
6039 cause
!= kMemorystatusKilledVMCompressorSpaceShortage
&&
6040 cause
!= kMemorystatusKilledFCThrashing
&&
6041 cause
!= kMemorystatusKilledZoneMapExhaustion
)) {
6045 kill_under_pressure_cause
= cause
;
6046 memorystatus_thread_wake();
6051 memorystatus_kill_on_VM_compressor_space_shortage(boolean_t async
)
6054 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMCompressorSpaceShortage
);
6056 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_VMCOMPRESSOR_SPACE_SHORTAGE
);
6057 if (jetsam_reason
== OS_REASON_NULL
) {
6058 printf("memorystatus_kill_on_VM_compressor_space_shortage -- sync: failed to allocate jetsam reason\n");
6061 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMCompressorSpaceShortage
, jetsam_reason
);
6067 memorystatus_kill_on_VM_compressor_thrashing(boolean_t async
)
6070 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMCompressorThrashing
);
6072 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_VMCOMPRESSOR_THRASHING
);
6073 if (jetsam_reason
== OS_REASON_NULL
) {
6074 printf("memorystatus_kill_on_VM_compressor_thrashing -- sync: failed to allocate jetsam reason\n");
6077 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMCompressorThrashing
, jetsam_reason
);
6082 memorystatus_kill_on_VM_page_shortage(boolean_t async
)
6085 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMPageShortage
);
6087 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_VMPAGESHORTAGE
);
6088 if (jetsam_reason
== OS_REASON_NULL
) {
6089 printf("memorystatus_kill_on_VM_page_shortage -- sync: failed to allocate jetsam reason\n");
6092 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMPageShortage
, jetsam_reason
);
6097 memorystatus_kill_on_FC_thrashing(boolean_t async
)
6100 return memorystatus_kill_process_async(-1, kMemorystatusKilledFCThrashing
);
6102 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_FCTHRASHING
);
6103 if (jetsam_reason
== OS_REASON_NULL
) {
6104 printf("memorystatus_kill_on_FC_thrashing -- sync: failed to allocate jetsam reason\n");
6107 return memorystatus_kill_process_sync(-1, kMemorystatusKilledFCThrashing
, jetsam_reason
);
6112 memorystatus_kill_on_vnode_limit(void)
6114 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_VNODE
);
6115 if (jetsam_reason
== OS_REASON_NULL
) {
6116 printf("memorystatus_kill_on_vnode_limit: failed to allocate jetsam reason\n");
6119 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVnodes
, jetsam_reason
);
6122 #endif /* CONFIG_JETSAM */
6125 memorystatus_kill_on_zone_map_exhaustion(pid_t pid
)
6127 boolean_t res
= FALSE
;
6129 res
= memorystatus_kill_process_async(-1, kMemorystatusKilledZoneMapExhaustion
);
6131 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_ZONE_MAP_EXHAUSTION
);
6132 if (jetsam_reason
== OS_REASON_NULL
) {
6133 printf("memorystatus_kill_on_zone_map_exhaustion: failed to allocate jetsam reason\n");
6136 res
= memorystatus_kill_process_sync(pid
, kMemorystatusKilledZoneMapExhaustion
, jetsam_reason
);
6142 memorystatus_on_pageout_scan_end(void)
6147 /* Return both allocated and actual size, since there's a race between allocation and list compilation */
6149 memorystatus_get_priority_list(memorystatus_priority_entry_t
**list_ptr
, size_t *buffer_size
, size_t *list_size
, boolean_t size_only
)
6151 uint32_t list_count
, i
= 0;
6152 memorystatus_priority_entry_t
*list_entry
;
6155 list_count
= memorystatus_list_count
;
6156 *list_size
= sizeof(memorystatus_priority_entry_t
) * list_count
;
6158 /* Just a size check? */
6163 /* Otherwise, validate the size of the buffer */
6164 if (*buffer_size
< *list_size
) {
6168 *list_ptr
= (memorystatus_priority_entry_t
*)kalloc(*list_size
);
6173 memset(*list_ptr
, 0, *list_size
);
6175 *buffer_size
= *list_size
;
6178 list_entry
= *list_ptr
;
6182 p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6183 while (p
&& (*list_size
< *buffer_size
)) {
6184 list_entry
->pid
= p
->p_pid
;
6185 list_entry
->priority
= p
->p_memstat_effectivepriority
;
6186 list_entry
->user_data
= p
->p_memstat_userdata
;
6188 if (p
->p_memstat_memlimit
<= 0) {
6189 task_get_phys_footprint_limit(p
->task
, &list_entry
->limit
);
6191 list_entry
->limit
= p
->p_memstat_memlimit
;
6194 list_entry
->state
= memorystatus_build_state(p
);
6197 *list_size
+= sizeof(memorystatus_priority_entry_t
);
6199 p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
6204 MEMORYSTATUS_DEBUG(1, "memorystatus_get_priority_list: returning %lu for size\n", (unsigned long)*list_size
);
6210 memorystatus_get_priority_pid(pid_t pid
, user_addr_t buffer
, size_t buffer_size
)
6213 memorystatus_priority_entry_t mp_entry
;
6216 /* Validate inputs */
6217 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_priority_entry_t
))) {
6221 proc_t p
= proc_find(pid
);
6226 memset(&mp_entry
, 0, sizeof(memorystatus_priority_entry_t
));
6228 mp_entry
.pid
= p
->p_pid
;
6229 mp_entry
.priority
= p
->p_memstat_effectivepriority
;
6230 mp_entry
.user_data
= p
->p_memstat_userdata
;
6231 if (p
->p_memstat_memlimit
<= 0) {
6232 ret
= task_get_phys_footprint_limit(p
->task
, &mp_entry
.limit
);
6233 if (ret
!= KERN_SUCCESS
) {
6238 mp_entry
.limit
= p
->p_memstat_memlimit
;
6240 mp_entry
.state
= memorystatus_build_state(p
);
6244 error
= copyout(&mp_entry
, buffer
, buffer_size
);
6250 memorystatus_cmd_get_priority_list(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, int32_t *retval
)
6253 boolean_t size_only
;
6257 * When a non-zero pid is provided, the 'list' has only one entry.
6260 size_only
= ((buffer
== USER_ADDR_NULL
) ? TRUE
: FALSE
);
6263 list_size
= sizeof(memorystatus_priority_entry_t
) * 1;
6265 error
= memorystatus_get_priority_pid(pid
, buffer
, buffer_size
);
6268 memorystatus_priority_entry_t
*list
= NULL
;
6269 error
= memorystatus_get_priority_list(&list
, &buffer_size
, &list_size
, size_only
);
6273 error
= copyout(list
, buffer
, list_size
);
6278 kfree(list
, buffer_size
);
6283 *retval
= list_size
;
6290 memorystatus_clear_errors(void)
6295 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CLEAR_ERRORS
) | DBG_FUNC_START
, 0, 0, 0, 0, 0);
6299 p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6301 if (p
->p_memstat_state
& P_MEMSTAT_ERROR
) {
6302 p
->p_memstat_state
&= ~P_MEMSTAT_ERROR
;
6304 p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
6309 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CLEAR_ERRORS
) | DBG_FUNC_END
, 0, 0, 0, 0, 0);
6314 memorystatus_update_levels_locked(boolean_t critical_only
)
6316 memorystatus_available_pages_critical
= memorystatus_available_pages_critical_base
;
6319 * If there's an entry in the first bucket, we have idle processes.
6322 memstat_bucket_t
*first_bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
6323 if (first_bucket
->count
) {
6324 memorystatus_available_pages_critical
+= memorystatus_available_pages_critical_idle_offset
;
6326 if (memorystatus_available_pages_critical
> memorystatus_available_pages_pressure
) {
6328 * The critical threshold must never exceed the pressure threshold
6330 memorystatus_available_pages_critical
= memorystatus_available_pages_pressure
;
6334 if (memorystatus_jetsam_policy
& kPolicyMoreFree
) {
6335 memorystatus_available_pages_critical
+= memorystatus_policy_more_free_offset_pages
;
6338 if (critical_only
) {
6342 #if VM_PRESSURE_EVENTS
6343 memorystatus_available_pages_pressure
= pressure_threshold_percentage
* (atop_64(max_mem
) / 100);
6348 memorystatus_fast_jetsam_override(boolean_t enable_override
)
6350 /* If fast jetsam is not enabled, simply return */
6351 if (!fast_jetsam_enabled
) {
6355 if (enable_override
) {
6356 if ((memorystatus_jetsam_policy
& kPolicyMoreFree
) == kPolicyMoreFree
) {
6360 memorystatus_jetsam_policy
|= kPolicyMoreFree
;
6361 memorystatus_thread_pool_max();
6362 memorystatus_update_levels_locked(TRUE
);
6365 if ((memorystatus_jetsam_policy
& kPolicyMoreFree
) == 0) {
6369 memorystatus_jetsam_policy
&= ~kPolicyMoreFree
;
6370 memorystatus_thread_pool_default();
6371 memorystatus_update_levels_locked(TRUE
);
6378 sysctl_kern_memorystatus_policy_more_free SYSCTL_HANDLER_ARGS
6380 #pragma unused(arg1, arg2, oidp)
6381 int error
= 0, more_free
= 0;
6384 * TODO: Enable this privilege check?
6386 * error = priv_check_cred(kauth_cred_get(), PRIV_VM_JETSAM, 0);
6391 error
= sysctl_handle_int(oidp
, &more_free
, 0, req
);
6392 if (error
|| !req
->newptr
) {
6397 memorystatus_fast_jetsam_override(true);
6399 memorystatus_fast_jetsam_override(false);
6404 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_policy_more_free
, CTLTYPE_INT
| CTLFLAG_WR
| CTLFLAG_LOCKED
| CTLFLAG_MASKED
,
6405 0, 0, &sysctl_kern_memorystatus_policy_more_free
, "I", "");
6407 #endif /* CONFIG_JETSAM */
6410 * Get the at_boot snapshot
6413 memorystatus_get_at_boot_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6415 size_t input_size
= *snapshot_size
;
6418 * The at_boot snapshot has no entry list.
6420 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
);
6427 * Validate the size of the snapshot buffer
6429 if (input_size
< *snapshot_size
) {
6434 * Update the notification_time only
6436 memorystatus_at_boot_snapshot
.notification_time
= mach_absolute_time();
6437 *snapshot
= &memorystatus_at_boot_snapshot
;
6439 MEMORYSTATUS_DEBUG(7, "memorystatus_get_at_boot_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%d)\n",
6440 (long)input_size
, (long)*snapshot_size
, 0);
6445 * Get the previous fully populated snapshot
6448 memorystatus_get_jetsam_snapshot_copy(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6450 size_t input_size
= *snapshot_size
;
6452 if (memorystatus_jetsam_snapshot_copy_count
> 0) {
6453 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_copy_count
));
6462 if (input_size
< *snapshot_size
) {
6466 *snapshot
= memorystatus_jetsam_snapshot_copy
;
6468 MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot_copy: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
6469 (long)input_size
, (long)*snapshot_size
, (long)memorystatus_jetsam_snapshot_copy_count
);
6475 memorystatus_get_on_demand_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6477 size_t input_size
= *snapshot_size
;
6478 uint32_t ods_list_count
= memorystatus_list_count
;
6479 memorystatus_jetsam_snapshot_t
*ods
= NULL
; /* The on_demand snapshot buffer */
6481 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (ods_list_count
));
6488 * Validate the size of the snapshot buffer.
6489 * This is inherently racey. May want to revisit
6490 * this error condition and trim the output when
6493 if (input_size
< *snapshot_size
) {
6498 * Allocate and initialize a snapshot buffer.
6500 ods
= (memorystatus_jetsam_snapshot_t
*)kalloc(*snapshot_size
);
6505 memset(ods
, 0, *snapshot_size
);
6508 memorystatus_init_jetsam_snapshot_locked(ods
, ods_list_count
);
6512 * Return the kernel allocated, on_demand buffer.
6513 * The caller of this routine will copy the data out
6514 * to user space and then free the kernel allocated
6519 MEMORYSTATUS_DEBUG(7, "memorystatus_get_on_demand_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
6520 (long)input_size
, (long)*snapshot_size
, (long)ods_list_count
);
6526 memorystatus_get_jetsam_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6528 size_t input_size
= *snapshot_size
;
6530 if (memorystatus_jetsam_snapshot_count
> 0) {
6531 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_count
));
6540 if (input_size
< *snapshot_size
) {
6544 *snapshot
= memorystatus_jetsam_snapshot
;
6546 MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
6547 (long)input_size
, (long)*snapshot_size
, (long)memorystatus_jetsam_snapshot_count
);
6554 memorystatus_cmd_get_jetsam_snapshot(int32_t flags
, user_addr_t buffer
, size_t buffer_size
, int32_t *retval
)
6557 boolean_t size_only
;
6558 boolean_t is_default_snapshot
= FALSE
;
6559 boolean_t is_on_demand_snapshot
= FALSE
;
6560 boolean_t is_at_boot_snapshot
= FALSE
;
6561 memorystatus_jetsam_snapshot_t
*snapshot
;
6563 size_only
= ((buffer
== USER_ADDR_NULL
) ? TRUE
: FALSE
);
6567 is_default_snapshot
= TRUE
;
6568 error
= memorystatus_get_jetsam_snapshot(&snapshot
, &buffer_size
, size_only
);
6570 if (flags
& ~(MEMORYSTATUS_SNAPSHOT_ON_DEMAND
| MEMORYSTATUS_SNAPSHOT_AT_BOOT
| MEMORYSTATUS_SNAPSHOT_COPY
)) {
6572 * Unsupported bit set in flag.
6577 if (flags
& (flags
- 0x1)) {
6579 * Can't have multiple flags set at the same time.
6584 if (flags
& MEMORYSTATUS_SNAPSHOT_ON_DEMAND
) {
6585 is_on_demand_snapshot
= TRUE
;
6587 * When not requesting the size only, the following call will allocate
6588 * an on_demand snapshot buffer, which is freed below.
6590 error
= memorystatus_get_on_demand_snapshot(&snapshot
, &buffer_size
, size_only
);
6591 } else if (flags
& MEMORYSTATUS_SNAPSHOT_AT_BOOT
) {
6592 is_at_boot_snapshot
= TRUE
;
6593 error
= memorystatus_get_at_boot_snapshot(&snapshot
, &buffer_size
, size_only
);
6594 } else if (flags
& MEMORYSTATUS_SNAPSHOT_COPY
) {
6595 error
= memorystatus_get_jetsam_snapshot_copy(&snapshot
, &buffer_size
, size_only
);
6598 * Invalid flag setting.
6609 * Copy the data out to user space and clear the snapshot buffer.
6610 * If working with the jetsam snapshot,
6611 * clearing the buffer means, reset the count.
6612 * If working with an on_demand snapshot
6613 * clearing the buffer means, free it.
6614 * If working with the at_boot snapshot
6615 * there is nothing to clear or update.
6616 * If working with a copy of the snapshot
6617 * there is nothing to clear or update.
6620 if ((error
= copyout(snapshot
, buffer
, buffer_size
)) == 0) {
6621 if (is_default_snapshot
) {
6623 * The jetsam snapshot is never freed, its count is simply reset.
6624 * However, we make a copy for any parties that might be interested
6625 * in the previous fully populated snapshot.
6628 memcpy(memorystatus_jetsam_snapshot_copy
, memorystatus_jetsam_snapshot
, memorystatus_jetsam_snapshot_size
);
6629 memorystatus_jetsam_snapshot_copy_count
= memorystatus_jetsam_snapshot_count
;
6630 snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
6631 memorystatus_jetsam_snapshot_last_timestamp
= 0;
6636 if (is_on_demand_snapshot
) {
6638 * The on_demand snapshot is always freed,
6639 * even if the copyout failed.
6642 kfree(snapshot
, buffer_size
);
6648 *retval
= buffer_size
;
6655 * Routine: memorystatus_cmd_grp_set_priorities
6656 * Purpose: Update priorities for a group of processes.
6659 * Move each process out of its effective priority
6660 * band and into a new priority band.
6661 * Maintains relative order from lowest to highest priority.
6662 * In single band, maintains relative order from head to tail.
6664 * eg: before [effectivepriority | pid]
6666 * [17 | p55, p67, p19 ]
6671 * after [ new band | pid]
6672 * [ xxx | p71, p82, p25, p103, p10, p55, p67, p19, p101]
6674 * Returns: 0 on success, else non-zero.
6676 * Caveat: We know there is a race window regarding recycled pids.
6677 * A process could be killed before the kernel can act on it here.
6678 * If a pid cannot be found in any of the jetsam priority bands,
6679 * then we simply ignore it. No harm.
6680 * But, if the pid has been recycled then it could be an issue.
6681 * In that scenario, we might move an unsuspecting process to the new
6682 * priority band. It's not clear how the kernel can safeguard
6683 * against this, but it would be an extremely rare case anyway.
6684 * The caller of this api might avoid such race conditions by
6685 * ensuring that the processes passed in the pid list are suspended.
6690 memorystatus_cmd_grp_set_priorities(user_addr_t buffer
, size_t buffer_size
)
6693 * We only handle setting priority
6698 memorystatus_properties_entry_v1_t
*entries
= NULL
;
6699 uint32_t entry_count
= 0;
6701 /* This will be the ordered proc list */
6702 typedef struct memorystatus_internal_properties
{
6705 } memorystatus_internal_properties_t
;
6707 memorystatus_internal_properties_t
*table
= NULL
;
6708 size_t table_size
= 0;
6709 uint32_t table_count
= 0;
6712 uint32_t bucket_index
= 0;
6713 boolean_t head_insert
;
6714 int32_t new_priority
;
6719 if ((buffer
== USER_ADDR_NULL
) || (buffer_size
== 0)) {
6724 entry_count
= (buffer_size
/ sizeof(memorystatus_properties_entry_v1_t
));
6725 if ((entries
= (memorystatus_properties_entry_v1_t
*)kalloc(buffer_size
)) == NULL
) {
6730 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_START
, MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY
, entry_count
, 0, 0, 0);
6732 if ((error
= copyin(buffer
, entries
, buffer_size
)) != 0) {
6736 /* Verify sanity of input priorities */
6737 if (entries
[0].version
== MEMORYSTATUS_MPE_VERSION_1
) {
6738 if ((buffer_size
% MEMORYSTATUS_MPE_VERSION_1_SIZE
) != 0) {
6747 for (i
= 0; i
< entry_count
; i
++) {
6748 if (entries
[i
].priority
== -1) {
6749 /* Use as shorthand for default priority */
6750 entries
[i
].priority
= JETSAM_PRIORITY_DEFAULT
;
6751 } else if ((entries
[i
].priority
== system_procs_aging_band
) || (entries
[i
].priority
== applications_aging_band
)) {
6752 /* Both the aging bands are reserved for internal use;
6753 * if requested, adjust to JETSAM_PRIORITY_IDLE. */
6754 entries
[i
].priority
= JETSAM_PRIORITY_IDLE
;
6755 } else if (entries
[i
].priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
6756 /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle
6758 /* Deal with this later */
6759 } else if ((entries
[i
].priority
< 0) || (entries
[i
].priority
>= MEMSTAT_BUCKET_COUNT
)) {
6766 table_size
= sizeof(memorystatus_internal_properties_t
) * entry_count
;
6767 if ((table
= (memorystatus_internal_properties_t
*)kalloc(table_size
)) == NULL
) {
6771 memset(table
, 0, table_size
);
6775 * For each jetsam bucket entry, spin through the input property list.
6776 * When a matching pid is found, populate an adjacent table with the
6777 * appropriate proc pointer and new property values.
6778 * This traversal automatically preserves order from lowest
6779 * to highest priority.
6786 /* Create the ordered table */
6787 p
= memorystatus_get_first_proc_locked(&bucket_index
, TRUE
);
6788 while (p
&& (table_count
< entry_count
)) {
6789 for (i
= 0; i
< entry_count
; i
++) {
6790 if (p
->p_pid
== entries
[i
].pid
) {
6791 /* Build the table data */
6792 table
[table_count
].proc
= p
;
6793 table
[table_count
].priority
= entries
[i
].priority
;
6798 p
= memorystatus_get_next_proc_locked(&bucket_index
, p
, TRUE
);
6801 /* We now have ordered list of procs ready to move */
6802 for (i
= 0; i
< table_count
; i
++) {
6806 /* Allow head inserts -- but relative order is now */
6807 if (table
[i
].priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
6808 new_priority
= JETSAM_PRIORITY_IDLE
;
6811 new_priority
= table
[i
].priority
;
6812 head_insert
= false;
6816 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
6821 * Take appropriate steps if moving proc out of
6822 * either of the aging bands.
6824 if ((p
->p_memstat_effectivepriority
== system_procs_aging_band
) || (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
6825 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
6828 memorystatus_update_priority_locked(p
, new_priority
, head_insert
, false);
6834 * if (table_count != entry_count)
6835 * then some pids were not found in a jetsam band.
6836 * harmless but interesting...
6839 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_END
, MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY
, entry_count
, table_count
, 0, 0);
6842 kfree(entries
, buffer_size
);
6845 kfree(table
, table_size
);
6851 memorystatus_internal_probabilities_t
*memorystatus_global_probabilities_table
= NULL
;
6852 size_t memorystatus_global_probabilities_size
= 0;
6855 memorystatus_cmd_grp_set_probabilities(user_addr_t buffer
, size_t buffer_size
)
6858 memorystatus_properties_entry_v1_t
*entries
= NULL
;
6859 uint32_t entry_count
= 0, i
= 0;
6860 memorystatus_internal_probabilities_t
*tmp_table_new
= NULL
, *tmp_table_old
= NULL
;
6861 size_t tmp_table_new_size
= 0, tmp_table_old_size
= 0;
6864 if ((buffer
== USER_ADDR_NULL
) || (buffer_size
== 0)) {
6869 entry_count
= (buffer_size
/ sizeof(memorystatus_properties_entry_v1_t
));
6871 if ((entries
= (memorystatus_properties_entry_v1_t
*) kalloc(buffer_size
)) == NULL
) {
6876 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_START
, MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY
, entry_count
, 0, 0, 0);
6878 if ((error
= copyin(buffer
, entries
, buffer_size
)) != 0) {
6882 if (entries
[0].version
== MEMORYSTATUS_MPE_VERSION_1
) {
6883 if ((buffer_size
% MEMORYSTATUS_MPE_VERSION_1_SIZE
) != 0) {
6892 /* Verify sanity of input priorities */
6893 for (i
= 0; i
< entry_count
; i
++) {
6895 * 0 - low probability of use.
6896 * 1 - high probability of use.
6898 * Keeping this field an int (& not a bool) to allow
6899 * us to experiment with different values/approaches
6902 if (entries
[i
].use_probability
> 1) {
6908 tmp_table_new_size
= sizeof(memorystatus_internal_probabilities_t
) * entry_count
;
6910 if ((tmp_table_new
= (memorystatus_internal_probabilities_t
*) kalloc(tmp_table_new_size
)) == NULL
) {
6914 memset(tmp_table_new
, 0, tmp_table_new_size
);
6918 if (memorystatus_global_probabilities_table
) {
6919 tmp_table_old
= memorystatus_global_probabilities_table
;
6920 tmp_table_old_size
= memorystatus_global_probabilities_size
;
6923 memorystatus_global_probabilities_table
= tmp_table_new
;
6924 memorystatus_global_probabilities_size
= tmp_table_new_size
;
6925 tmp_table_new
= NULL
;
6927 for (i
= 0; i
< entry_count
; i
++) {
6928 /* Build the table data */
6929 strlcpy(memorystatus_global_probabilities_table
[i
].proc_name
, entries
[i
].proc_name
, MAXCOMLEN
+ 1);
6930 memorystatus_global_probabilities_table
[i
].use_probability
= entries
[i
].use_probability
;
6936 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_END
, MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY
, entry_count
, tmp_table_new_size
, 0, 0);
6939 kfree(entries
, buffer_size
);
6943 if (tmp_table_old
) {
6944 kfree(tmp_table_old
, tmp_table_old_size
);
6945 tmp_table_old
= NULL
;
6952 memorystatus_cmd_grp_set_properties(int32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
6956 if ((flags
& MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY
) == MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY
) {
6957 error
= memorystatus_cmd_grp_set_priorities(buffer
, buffer_size
);
6958 } else if ((flags
& MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY
) == MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY
) {
6959 error
= memorystatus_cmd_grp_set_probabilities(buffer
, buffer_size
);
6968 * This routine is used to update a process's jetsam priority position and stored user_data.
6969 * It is not used for the setting of memory limits, which is why the last 6 args to the
6970 * memorystatus_update() call are 0 or FALSE.
6972 * Flags passed into this call are used to distinguish the motivation behind a jetsam priority
6973 * transition. By default, the kernel updates the process's original requested priority when
6974 * no flag is passed. But when the MEMORYSTATUS_SET_PRIORITY_ASSERTION flag is used, the kernel
6975 * updates the process's assertion driven priority.
6977 * The assertion flag was introduced for use by the device's assertion mediator (eg: runningboardd).
6978 * When an assertion is controlling a process's jetsam priority, it may conflict with that process's
6979 * dirty/clean (active/inactive) jetsam state. The kernel attempts to resolve a priority transition
6980 * conflict by reviewing the process state and then choosing the maximum jetsam band at play,
6981 * eg: requested priority versus assertion priority.
6985 memorystatus_cmd_set_priority_properties(pid_t pid
, uint32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
6988 boolean_t is_assertion
= FALSE
; /* priority is driven by an assertion */
6989 memorystatus_priority_properties_t mpp_entry
;
6991 /* Validate inputs */
6992 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_priority_properties_t
))) {
6996 /* Validate flags */
6999 * Default. This path updates requestedpriority.
7002 if (flags
& ~(MEMORYSTATUS_SET_PRIORITY_ASSERTION
)) {
7004 * Unsupported bit set in flag.
7007 } else if (flags
& MEMORYSTATUS_SET_PRIORITY_ASSERTION
) {
7008 is_assertion
= TRUE
;
7012 error
= copyin(buffer
, &mpp_entry
, buffer_size
);
7022 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
7028 os_log(OS_LOG_DEFAULT
, "memorystatus: set assertion priority(%d) target %s:%d\n",
7029 mpp_entry
.priority
, (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
);
7032 error
= memorystatus_update(p
, mpp_entry
.priority
, mpp_entry
.user_data
, is_assertion
, FALSE
, FALSE
, 0, 0, FALSE
, FALSE
);
7040 memorystatus_cmd_set_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
7043 memorystatus_memlimit_properties_t mmp_entry
;
7045 /* Validate inputs */
7046 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_memlimit_properties_t
))) {
7050 error
= copyin(buffer
, &mmp_entry
, buffer_size
);
7053 error
= memorystatus_set_memlimit_properties(pid
, &mmp_entry
);
7060 memorystatus_get_memlimit_properties_internal(proc_t p
, memorystatus_memlimit_properties_t
* p_entry
)
7062 memset(p_entry
, 0, sizeof(memorystatus_memlimit_properties_t
));
7064 if (p
->p_memstat_memlimit_active
> 0) {
7065 p_entry
->memlimit_active
= p
->p_memstat_memlimit_active
;
7067 task_convert_phys_footprint_limit(-1, &p_entry
->memlimit_active
);
7070 if (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
) {
7071 p_entry
->memlimit_active_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7075 * Get the inactive limit and attributes
7077 if (p
->p_memstat_memlimit_inactive
<= 0) {
7078 task_convert_phys_footprint_limit(-1, &p_entry
->memlimit_inactive
);
7080 p_entry
->memlimit_inactive
= p
->p_memstat_memlimit_inactive
;
7082 if (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
) {
7083 p_entry
->memlimit_inactive_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7088 * When getting the memlimit settings, we can't simply call task_get_phys_footprint_limit().
7089 * That gets the proc's cached memlimit and there is no guarantee that the active/inactive
7090 * limits will be the same in the no-limit case. Instead we convert limits <= 0 using
7091 * task_convert_phys_footprint_limit(). It computes the same limit value that would be written
7092 * to the task's ledgers via task_set_phys_footprint_limit().
7095 memorystatus_cmd_get_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
7097 memorystatus_memlimit_properties2_t mmp_entry
;
7099 /* Validate inputs */
7100 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) ||
7101 ((buffer_size
!= sizeof(memorystatus_memlimit_properties_t
)) &&
7102 (buffer_size
!= sizeof(memorystatus_memlimit_properties2_t
)))) {
7106 memset(&mmp_entry
, 0, sizeof(memorystatus_memlimit_properties2_t
));
7108 proc_t p
= proc_find(pid
);
7114 * Get the active limit and attributes.
7115 * No locks taken since we hold a reference to the proc.
7118 memorystatus_get_memlimit_properties_internal(p
, &mmp_entry
.v1
);
7121 #if DEVELOPMENT || DEBUG
7123 * Get the limit increased via SPI
7125 mmp_entry
.memlimit_increase
= roundToNearestMB(p
->p_memlimit_increase
);
7126 mmp_entry
.memlimit_increase_bytes
= p
->p_memlimit_increase
;
7127 #endif /* DEVELOPMENT || DEBUG */
7128 #endif /* CONFIG_JETSAM */
7132 int error
= copyout(&mmp_entry
, buffer
, buffer_size
);
7139 * SPI for kbd - pr24956468
7140 * This is a very simple snapshot that calculates how much a
7141 * process's phys_footprint exceeds a specific memory limit.
7142 * Only the inactive memory limit is supported for now.
7143 * The delta is returned as bytes in excess or zero.
7146 memorystatus_cmd_get_memlimit_excess_np(pid_t pid
, uint32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
7149 uint64_t footprint_in_bytes
= 0;
7150 uint64_t delta_in_bytes
= 0;
7151 int32_t memlimit_mb
= 0;
7152 uint64_t memlimit_bytes
= 0;
7154 /* Validate inputs */
7155 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(uint64_t)) || (flags
!= 0)) {
7159 proc_t p
= proc_find(pid
);
7165 * Get the inactive limit.
7166 * No locks taken since we hold a reference to the proc.
7169 if (p
->p_memstat_memlimit_inactive
<= 0) {
7170 task_convert_phys_footprint_limit(-1, &memlimit_mb
);
7172 memlimit_mb
= p
->p_memstat_memlimit_inactive
;
7175 footprint_in_bytes
= get_task_phys_footprint(p
->task
);
7179 memlimit_bytes
= memlimit_mb
* 1024 * 1024; /* MB to bytes */
7182 * Computed delta always returns >= 0 bytes
7184 if (footprint_in_bytes
> memlimit_bytes
) {
7185 delta_in_bytes
= footprint_in_bytes
- memlimit_bytes
;
7188 error
= copyout(&delta_in_bytes
, buffer
, sizeof(delta_in_bytes
));
7195 memorystatus_cmd_get_pressure_status(int32_t *retval
)
7199 /* Need privilege for check */
7200 error
= priv_check_cred(kauth_cred_get(), PRIV_VM_PRESSURE
, 0);
7205 /* Inherently racy, so it's not worth taking a lock here */
7206 *retval
= (kVMPressureNormal
!= memorystatus_vm_pressure_level
) ? 1 : 0;
7212 memorystatus_get_pressure_status_kdp()
7214 return (kVMPressureNormal
!= memorystatus_vm_pressure_level
) ? 1 : 0;
7218 * Every process, including a P_MEMSTAT_INTERNAL process (currently only pid 1), is allowed to set a HWM.
7220 * This call is inflexible -- it does not distinguish between active/inactive, fatal/non-fatal
7221 * So, with 2-level HWM preserving previous behavior will map as follows.
7222 * - treat the limit passed in as both an active and inactive limit.
7223 * - treat the is_fatal_limit flag as though it applies to both active and inactive limits.
7225 * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK
7226 * - the is_fatal_limit is FALSE, meaning the active and inactive limits are non-fatal/soft
7227 * - so mapping is (active/non-fatal, inactive/non-fatal)
7229 * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT
7230 * - the is_fatal_limit is TRUE, meaning the process's active and inactive limits are fatal/hard
7231 * - so mapping is (active/fatal, inactive/fatal)
7236 memorystatus_cmd_set_jetsam_memory_limit(pid_t pid
, int32_t high_water_mark
, __unused
int32_t *retval
, boolean_t is_fatal_limit
)
7239 memorystatus_memlimit_properties_t entry
;
7241 entry
.memlimit_active
= high_water_mark
;
7242 entry
.memlimit_active_attr
= 0;
7243 entry
.memlimit_inactive
= high_water_mark
;
7244 entry
.memlimit_inactive_attr
= 0;
7246 if (is_fatal_limit
== TRUE
) {
7247 entry
.memlimit_active_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7248 entry
.memlimit_inactive_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7251 error
= memorystatus_set_memlimit_properties(pid
, &entry
);
7254 #endif /* CONFIG_JETSAM */
7257 memorystatus_set_memlimit_properties_internal(proc_t p
, memorystatus_memlimit_properties_t
*p_entry
)
7261 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
7264 * Store the active limit variants in the proc.
7266 SET_ACTIVE_LIMITS_LOCKED(p
, p_entry
->memlimit_active
, p_entry
->memlimit_active_attr
);
7269 * Store the inactive limit variants in the proc.
7271 SET_INACTIVE_LIMITS_LOCKED(p
, p_entry
->memlimit_inactive
, p_entry
->memlimit_inactive_attr
);
7274 * Enforce appropriate limit variant by updating the cached values
7275 * and writing the ledger.
7276 * Limit choice is based on process active/inactive state.
7279 if (memorystatus_highwater_enabled
) {
7281 boolean_t use_active
;
7283 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
7284 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
7287 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
7291 /* Enforce the limit by writing to the ledgers */
7292 error
= (task_set_phys_footprint_limit_internal(p
->task
, ((p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1), NULL
, use_active
, is_fatal
) == 0) ? 0 : EINVAL
;
7294 MEMORYSTATUS_DEBUG(3, "memorystatus_set_memlimit_properties: new limit on pid %d (%dMB %s) current priority (%d) dirty_state?=0x%x %s\n",
7295 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
7296 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, p
->p_memstat_dirty
,
7297 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
7298 DTRACE_MEMORYSTATUS2(memorystatus_set_memlimit
, proc_t
, p
, int32_t, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1));
7305 memorystatus_set_memlimit_properties(pid_t pid
, memorystatus_memlimit_properties_t
*entry
)
7307 memorystatus_memlimit_properties_t set_entry
;
7309 proc_t p
= proc_find(pid
);
7315 * Check for valid attribute flags.
7317 const uint32_t valid_attrs
= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7318 if ((entry
->memlimit_active_attr
& (~valid_attrs
)) != 0) {
7322 if ((entry
->memlimit_inactive_attr
& (~valid_attrs
)) != 0) {
7328 * Setup the active memlimit properties
7330 set_entry
.memlimit_active
= entry
->memlimit_active
;
7331 set_entry
.memlimit_active_attr
= entry
->memlimit_active_attr
& MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7334 * Setup the inactive memlimit properties
7336 set_entry
.memlimit_inactive
= entry
->memlimit_inactive
;
7337 set_entry
.memlimit_inactive_attr
= entry
->memlimit_inactive_attr
& MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7340 * Setting a limit of <= 0 implies that the process has no
7341 * high-water-mark and has no per-task-limit. That means
7342 * the system_wide task limit is in place, which by the way,
7346 if (set_entry
.memlimit_active
<= 0) {
7348 * Enforce the fatal system_wide task limit while process is active.
7350 set_entry
.memlimit_active
= -1;
7351 set_entry
.memlimit_active_attr
= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7354 #if DEVELOPMENT || DEBUG
7356 /* add the current increase to it, for roots */
7357 set_entry
.memlimit_active
+= roundToNearestMB(p
->p_memlimit_increase
);
7359 #endif /* DEVELOPMENT || DEBUG */
7360 #endif /* CONFIG_JETSAM */
7362 if (set_entry
.memlimit_inactive
<= 0) {
7364 * Enforce the fatal system_wide task limit while process is inactive.
7366 set_entry
.memlimit_inactive
= -1;
7367 set_entry
.memlimit_inactive_attr
= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7370 #if DEVELOPMENT || DEBUG
7372 /* add the current increase to it, for roots */
7373 set_entry
.memlimit_inactive
+= roundToNearestMB(p
->p_memlimit_increase
);
7375 #endif /* DEVELOPMENT || DEBUG */
7376 #endif /* CONFIG_JETSAM */
7380 int error
= memorystatus_set_memlimit_properties_internal(p
, &set_entry
);
7389 * Returns the jetsam priority (effective or requested) of the process
7390 * associated with this task.
7393 proc_get_memstat_priority(proc_t p
, boolean_t effective_priority
)
7396 if (effective_priority
) {
7397 return p
->p_memstat_effectivepriority
;
7399 return p
->p_memstat_requestedpriority
;
7406 memorystatus_get_process_is_managed(pid_t pid
, int *is_managed
)
7410 /* Validate inputs */
7421 *is_managed
= ((p
->p_memstat_state
& P_MEMSTAT_MANAGED
) ? 1 : 0);
7422 proc_rele_locked(p
);
7429 memorystatus_set_process_is_managed(pid_t pid
, boolean_t set_managed
)
7433 /* Validate inputs */
7444 if (set_managed
== TRUE
) {
7445 p
->p_memstat_state
|= P_MEMSTAT_MANAGED
;
7447 * The P_MEMSTAT_MANAGED bit is set by assertiond for Apps.
7448 * Also opt them in to being frozen (they might have started
7449 * off with the P_MEMSTAT_FREEZE_DISABLED bit set.)
7451 p
->p_memstat_state
&= ~P_MEMSTAT_FREEZE_DISABLED
;
7453 p
->p_memstat_state
&= ~P_MEMSTAT_MANAGED
;
7455 proc_rele_locked(p
);
7462 memorystatus_control(struct proc
*p __unused
, struct memorystatus_control_args
*args
, int *ret
)
7465 boolean_t skip_auth_check
= FALSE
;
7466 os_reason_t jetsam_reason
= OS_REASON_NULL
;
7470 #pragma unused(jetsam_reason)
7473 /* We don't need entitlements if we're setting/ querying the freeze preference for a process. Skip the check below. */
7474 if (args
->command
== MEMORYSTATUS_CMD_SET_PROCESS_IS_FREEZABLE
|| args
->command
== MEMORYSTATUS_CMD_GET_PROCESS_IS_FREEZABLE
) {
7475 skip_auth_check
= TRUE
;
7478 /* Need to be root or have entitlement. */
7479 if (!kauth_cred_issuser(kauth_cred_get()) && !IOTaskHasEntitlement(current_task(), MEMORYSTATUS_ENTITLEMENT
) && !skip_auth_check
) {
7486 * Do not enforce it for snapshots.
7488 if (args
->command
!= MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT
) {
7489 if (args
->buffersize
> MEMORYSTATUS_BUFFERSIZE_MAX
) {
7495 switch (args
->command
) {
7496 case MEMORYSTATUS_CMD_GET_PRIORITY_LIST
:
7497 error
= memorystatus_cmd_get_priority_list(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
7499 case MEMORYSTATUS_CMD_SET_PRIORITY_PROPERTIES
:
7500 error
= memorystatus_cmd_set_priority_properties(args
->pid
, args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7502 case MEMORYSTATUS_CMD_SET_MEMLIMIT_PROPERTIES
:
7503 error
= memorystatus_cmd_set_memlimit_properties(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
7505 case MEMORYSTATUS_CMD_GET_MEMLIMIT_PROPERTIES
:
7506 error
= memorystatus_cmd_get_memlimit_properties(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
7508 case MEMORYSTATUS_CMD_GET_MEMLIMIT_EXCESS
:
7509 error
= memorystatus_cmd_get_memlimit_excess_np(args
->pid
, args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7511 case MEMORYSTATUS_CMD_GRP_SET_PROPERTIES
:
7512 error
= memorystatus_cmd_grp_set_properties((int32_t)args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7514 case MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT
:
7515 error
= memorystatus_cmd_get_jetsam_snapshot((int32_t)args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7517 case MEMORYSTATUS_CMD_GET_PRESSURE_STATUS
:
7518 error
= memorystatus_cmd_get_pressure_status(ret
);
7521 case MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK
:
7523 * This call does not distinguish between active and inactive limits.
7524 * Default behavior in 2-level HWM world is to set both.
7525 * Non-fatal limit is also assumed for both.
7527 error
= memorystatus_cmd_set_jetsam_memory_limit(args
->pid
, (int32_t)args
->flags
, ret
, FALSE
);
7529 case MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT
:
7531 * This call does not distinguish between active and inactive limits.
7532 * Default behavior in 2-level HWM world is to set both.
7533 * Fatal limit is also assumed for both.
7535 error
= memorystatus_cmd_set_jetsam_memory_limit(args
->pid
, (int32_t)args
->flags
, ret
, TRUE
);
7537 #endif /* CONFIG_JETSAM */
7539 #if DEVELOPMENT || DEBUG
7540 case MEMORYSTATUS_CMD_TEST_JETSAM
:
7541 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_GENERIC
);
7542 if (jetsam_reason
== OS_REASON_NULL
) {
7543 printf("memorystatus_control: failed to allocate jetsam reason\n");
7546 error
= memorystatus_kill_process_sync(args
->pid
, kMemorystatusKilled
, jetsam_reason
) ? 0 : EINVAL
;
7548 case MEMORYSTATUS_CMD_TEST_JETSAM_SORT
:
7549 error
= memorystatus_cmd_test_jetsam_sort(args
->pid
, (int32_t)args
->flags
);
7552 case MEMORYSTATUS_CMD_SET_JETSAM_PANIC_BITS
:
7553 error
= memorystatus_cmd_set_panic_bits(args
->buffer
, args
->buffersize
);
7555 #endif /* CONFIG_JETSAM */
7556 #else /* DEVELOPMENT || DEBUG */
7557 #pragma unused(jetsam_reason)
7558 #endif /* DEVELOPMENT || DEBUG */
7559 case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_ENABLE
:
7560 if (memorystatus_aggressive_jetsam_lenient_allowed
== FALSE
) {
7561 #if DEVELOPMENT || DEBUG
7562 printf("Enabling Lenient Mode\n");
7563 #endif /* DEVELOPMENT || DEBUG */
7565 memorystatus_aggressive_jetsam_lenient_allowed
= TRUE
;
7566 memorystatus_aggressive_jetsam_lenient
= TRUE
;
7570 case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_DISABLE
:
7571 #if DEVELOPMENT || DEBUG
7572 printf("Disabling Lenient mode\n");
7573 #endif /* DEVELOPMENT || DEBUG */
7574 memorystatus_aggressive_jetsam_lenient_allowed
= FALSE
;
7575 memorystatus_aggressive_jetsam_lenient
= FALSE
;
7578 case MEMORYSTATUS_CMD_GET_AGGRESSIVE_JETSAM_LENIENT_MODE
:
7579 *ret
= (memorystatus_aggressive_jetsam_lenient
? 1 : 0);
7582 case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_ENABLE
:
7583 case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_DISABLE
:
7584 error
= memorystatus_low_mem_privileged_listener(args
->command
);
7587 case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE
:
7588 case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE
:
7589 error
= memorystatus_update_inactive_jetsam_priority_band(args
->pid
, args
->command
, JETSAM_PRIORITY_ELEVATED_INACTIVE
, args
->flags
? TRUE
: FALSE
);
7591 case MEMORYSTATUS_CMD_SET_PROCESS_IS_MANAGED
:
7592 error
= memorystatus_set_process_is_managed(args
->pid
, args
->flags
);
7595 case MEMORYSTATUS_CMD_GET_PROCESS_IS_MANAGED
:
7596 error
= memorystatus_get_process_is_managed(args
->pid
, ret
);
7600 case MEMORYSTATUS_CMD_SET_PROCESS_IS_FREEZABLE
:
7601 error
= memorystatus_set_process_is_freezable(args
->pid
, args
->flags
? TRUE
: FALSE
);
7604 case MEMORYSTATUS_CMD_GET_PROCESS_IS_FREEZABLE
:
7605 error
= memorystatus_get_process_is_freezable(args
->pid
, ret
);
7608 #if DEVELOPMENT || DEBUG
7609 case MEMORYSTATUS_CMD_FREEZER_CONTROL
:
7610 error
= memorystatus_freezer_control(args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7612 #endif /* DEVELOPMENT || DEBUG */
7613 #endif /* CONFIG_FREEZE */
7616 #if DEVELOPMENT || DEBUG
7617 case MEMORYSTATUS_CMD_INCREASE_JETSAM_TASK_LIMIT
:
7618 error
= memorystatus_cmd_increase_jetsam_task_limit(args
->pid
, args
->flags
);
7620 #endif /* DEVELOPMENT */
7621 #endif /* CONFIG_JETSAM */
7631 /* Coalition support */
7633 /* sorting info for a particular priority bucket */
7634 typedef struct memstat_sort_info
{
7635 coalition_t msi_coal
;
7636 uint64_t msi_page_count
;
7639 } memstat_sort_info_t
;
7642 * qsort from smallest page count to largest page count
7644 * return < 0 for a < b
7649 memstat_asc_cmp(const void *a
, const void *b
)
7651 const memstat_sort_info_t
*msA
= (const memstat_sort_info_t
*)a
;
7652 const memstat_sort_info_t
*msB
= (const memstat_sort_info_t
*)b
;
7654 return (int)((uint64_t)msA
->msi_page_count
- (uint64_t)msB
->msi_page_count
);
7658 * Return the number of pids rearranged during this sort.
7661 memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index
, int coal_sort_order
)
7663 #define MAX_SORT_PIDS 80
7664 #define MAX_COAL_LEADERS 10
7666 unsigned int b
= bucket_index
;
7670 coalition_t coal
= COALITION_NULL
;
7672 int total_pids_moved
= 0;
7676 * The system is typically under memory pressure when in this
7677 * path, hence, we want to avoid dynamic memory allocation.
7679 memstat_sort_info_t leaders
[MAX_COAL_LEADERS
];
7680 pid_t pid_list
[MAX_SORT_PIDS
];
7682 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
7687 * Clear the array that holds coalition leader information
7689 for (i
= 0; i
< MAX_COAL_LEADERS
; i
++) {
7690 leaders
[i
].msi_coal
= COALITION_NULL
;
7691 leaders
[i
].msi_page_count
= 0; /* will hold total coalition page count */
7692 leaders
[i
].msi_pid
= 0; /* will hold coalition leader pid */
7693 leaders
[i
].msi_ntasks
= 0; /* will hold the number of tasks in a coalition */
7696 p
= memorystatus_get_first_proc_locked(&b
, FALSE
);
7698 coal
= task_get_coalition(p
->task
, COALITION_TYPE_JETSAM
);
7699 if (coalition_is_leader(p
->task
, coal
)) {
7700 if (nleaders
< MAX_COAL_LEADERS
) {
7701 int coal_ntasks
= 0;
7702 uint64_t coal_page_count
= coalition_get_page_count(coal
, &coal_ntasks
);
7703 leaders
[nleaders
].msi_coal
= coal
;
7704 leaders
[nleaders
].msi_page_count
= coal_page_count
;
7705 leaders
[nleaders
].msi_pid
= p
->p_pid
; /* the coalition leader */
7706 leaders
[nleaders
].msi_ntasks
= coal_ntasks
;
7710 * We've hit MAX_COAL_LEADERS meaning we can handle no more coalitions.
7711 * Abandoned coalitions will linger at the tail of the priority band
7712 * when this sort session ends.
7713 * TODO: should this be an assert?
7715 printf("%s: WARNING: more than %d leaders in priority band [%d]\n",
7716 __FUNCTION__
, MAX_COAL_LEADERS
, bucket_index
);
7720 p
= memorystatus_get_next_proc_locked(&b
, p
, FALSE
);
7723 if (nleaders
== 0) {
7724 /* Nothing to sort */
7729 * Sort the coalition leader array, from smallest coalition page count
7730 * to largest coalition page count. When inserted in the priority bucket,
7731 * smallest coalition is handled first, resulting in the last to be jetsammed.
7734 qsort(leaders
, nleaders
, sizeof(memstat_sort_info_t
), memstat_asc_cmp
);
7738 for (i
= 0; i
< nleaders
; i
++) {
7739 printf("%s: coal_leader[%d of %d] pid[%d] pages[%llu] ntasks[%d]\n",
7740 __FUNCTION__
, i
, nleaders
, leaders
[i
].msi_pid
, leaders
[i
].msi_page_count
,
7741 leaders
[i
].msi_ntasks
);
7746 * During coalition sorting, processes in a priority band are rearranged
7747 * by being re-inserted at the head of the queue. So, when handling a
7748 * list, the first process that gets moved to the head of the queue,
7749 * ultimately gets pushed toward the queue tail, and hence, jetsams last.
7751 * So, for example, the coalition leader is expected to jetsam last,
7752 * after its coalition members. Therefore, the coalition leader is
7753 * inserted at the head of the queue first.
7755 * After processing a coalition, the jetsam order is as follows:
7756 * undefs(jetsam first), extensions, xpc services, leader(jetsam last)
7760 * Coalition members are rearranged in the priority bucket here,
7761 * based on their coalition role.
7763 total_pids_moved
= 0;
7764 for (i
= 0; i
< nleaders
; i
++) {
7765 /* a bit of bookkeeping */
7768 /* Coalition leaders are jetsammed last, so move into place first */
7769 pid_list
[0] = leaders
[i
].msi_pid
;
7770 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
, 1);
7772 /* xpc services should jetsam after extensions */
7773 ntasks
= coalition_get_pid_list(leaders
[i
].msi_coal
, COALITION_ROLEMASK_XPC
,
7774 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
7777 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
7778 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
7781 /* extensions should jetsam after unmarked processes */
7782 ntasks
= coalition_get_pid_list(leaders
[i
].msi_coal
, COALITION_ROLEMASK_EXT
,
7783 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
7786 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
7787 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
7790 /* undefined coalition members should be the first to jetsam */
7791 ntasks
= coalition_get_pid_list(leaders
[i
].msi_coal
, COALITION_ROLEMASK_UNDEF
,
7792 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
7795 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
7796 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
7800 if (pids_moved
== leaders
[i
].msi_ntasks
) {
7802 * All the pids in the coalition were found in this band.
7804 printf("%s: pids_moved[%d] equal total coalition ntasks[%d] \n", __FUNCTION__
,
7805 pids_moved
, leaders
[i
].msi_ntasks
);
7806 } else if (pids_moved
> leaders
[i
].msi_ntasks
) {
7808 * Apparently new coalition members showed up during the sort?
7810 printf("%s: pids_moved[%d] were greater than expected coalition ntasks[%d] \n", __FUNCTION__
,
7811 pids_moved
, leaders
[i
].msi_ntasks
);
7814 * Apparently not all the pids in the coalition were found in this band?
7816 printf("%s: pids_moved[%d] were less than expected coalition ntasks[%d] \n", __FUNCTION__
,
7817 pids_moved
, leaders
[i
].msi_ntasks
);
7821 total_pids_moved
+= pids_moved
;
7824 return total_pids_moved
;
7829 * Traverse a list of pids, searching for each within the priority band provided.
7830 * If pid is found, move it to the front of the priority band.
7831 * Never searches outside the priority band provided.
7834 * bucket_index - jetsam priority band.
7835 * pid_list - pointer to a list of pids.
7836 * list_sz - number of pids in the list.
7838 * Pid list ordering is important in that,
7839 * pid_list[n] is expected to jetsam ahead of pid_list[n+1].
7840 * The sort_order is set by the coalition default.
7843 * the number of pids found and hence moved within the priority band.
7846 memorystatus_move_list_locked(unsigned int bucket_index
, pid_t
*pid_list
, int list_sz
)
7848 memstat_bucket_t
*current_bucket
;
7852 if ((pid_list
== NULL
) || (list_sz
<= 0)) {
7856 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
7860 current_bucket
= &memstat_bucket
[bucket_index
];
7861 for (i
= 0; i
< list_sz
; i
++) {
7862 unsigned int b
= bucket_index
;
7864 proc_t aProc
= NULL
;
7868 list_index
= ((list_sz
- 1) - i
);
7869 aPid
= pid_list
[list_index
];
7871 /* never search beyond bucket_index provided */
7872 p
= memorystatus_get_first_proc_locked(&b
, FALSE
);
7874 if (p
->p_pid
== aPid
) {
7878 p
= memorystatus_get_next_proc_locked(&b
, p
, FALSE
);
7881 if (aProc
== NULL
) {
7882 /* pid not found in this band, just skip it */
7885 TAILQ_REMOVE(¤t_bucket
->list
, aProc
, p_memstat_list
);
7886 TAILQ_INSERT_HEAD(¤t_bucket
->list
, aProc
, p_memstat_list
);
7894 memorystatus_get_proccnt_upto_priority(int32_t max_bucket_index
)
7896 int32_t i
= JETSAM_PRIORITY_IDLE
;
7899 if (max_bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
7903 while (i
<= max_bucket_index
) {
7904 count
+= memstat_bucket
[i
++].count
;
7911 memorystatus_update_priority_for_appnap(proc_t p
, boolean_t is_appnap
)
7914 if (!p
|| (!isApp(p
)) || (p
->p_memstat_state
& (P_MEMSTAT_INTERNAL
| P_MEMSTAT_MANAGED
))) {
7916 * Ineligible processes OR system processes e.g. launchd.
7918 * We also skip processes that have the P_MEMSTAT_MANAGED bit set, i.e.
7919 * they're managed by assertiond. These are iOS apps that have been ported
7920 * to macOS. assertiond might be in the process of modifying the app's
7921 * priority / memory limit - so it might have the proc_list lock, and then try
7922 * to take the task lock. Meanwhile we've entered this function with the task lock
7923 * held, and we need the proc_list lock below. So we'll deadlock with assertiond.
7925 * It should be fine to read the P_MEMSTAT_MANAGED bit without the proc_list
7926 * lock here, since assertiond only sets this bit on process launch.
7933 * We would like to use memorystatus_update() here to move the processes
7934 * within the bands. Unfortunately memorystatus_update() calls
7935 * memorystatus_update_priority_locked() which uses any band transitions
7936 * as an indication to modify ledgers. For that it needs the task lock
7937 * and since we came into this function with the task lock held, we'll deadlock.
7939 * Unfortunately we can't completely disable ledger updates because we still
7940 * need the ledger updates for a subset of processes i.e. daemons.
7941 * When all processes on all platforms support memory limits, we can simply call
7942 * memorystatus_update().
7944 * It also has some logic to deal with 'aging' which, currently, is only applicable
7945 * on CONFIG_JETSAM configs. So, till every platform has CONFIG_JETSAM we'll need
7946 * to do this explicit band transition.
7949 memstat_bucket_t
*current_bucket
, *new_bucket
;
7950 int32_t priority
= 0;
7954 if (((p
->p_listflag
& P_LIST_EXITED
) != 0) ||
7955 (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
))) {
7957 * If the process is on its way out OR
7958 * jetsam has alread tried and failed to kill this process,
7959 * let's skip the whole jetsam band transition.
7966 current_bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
7967 new_bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
7968 priority
= JETSAM_PRIORITY_IDLE
;
7970 if (p
->p_memstat_effectivepriority
!= JETSAM_PRIORITY_IDLE
) {
7972 * It is possible that someone pulled this process
7973 * out of the IDLE band without updating its app-nap
7980 current_bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
7981 new_bucket
= &memstat_bucket
[p
->p_memstat_requestedpriority
];
7982 priority
= p
->p_memstat_requestedpriority
;
7985 TAILQ_REMOVE(¤t_bucket
->list
, p
, p_memstat_list
);
7986 current_bucket
->count
--;
7987 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
7988 current_bucket
->relaunch_high_count
--;
7990 TAILQ_INSERT_TAIL(&new_bucket
->list
, p
, p_memstat_list
);
7991 new_bucket
->count
++;
7992 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
7993 new_bucket
->relaunch_high_count
++;
7996 * Record idle start or idle delta.
7998 if (p
->p_memstat_effectivepriority
== priority
) {
8000 * This process is not transitioning between
8001 * jetsam priority buckets. Do nothing.
8003 } else if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
8006 * Transitioning out of the idle priority bucket.
8007 * Record idle delta.
8009 assert(p
->p_memstat_idle_start
!= 0);
8010 now
= mach_absolute_time();
8011 if (now
> p
->p_memstat_idle_start
) {
8012 p
->p_memstat_idle_delta
= now
- p
->p_memstat_idle_start
;
8014 } else if (priority
== JETSAM_PRIORITY_IDLE
) {
8016 * Transitioning into the idle priority bucket.
8017 * Record idle start.
8019 p
->p_memstat_idle_start
= mach_absolute_time();
8022 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CHANGE_PRIORITY
), p
->p_pid
, priority
, p
->p_memstat_effectivepriority
, 0, 0);
8024 p
->p_memstat_effectivepriority
= priority
;
8030 #else /* !CONFIG_JETSAM */
8032 #pragma unused(is_appnap)
8034 #endif /* !CONFIG_JETSAM */
8038 memorystatus_available_memory_internal(proc_t p
)
8040 #ifdef XNU_TARGET_OS_OSX
8044 const uint64_t footprint_in_bytes
= get_task_phys_footprint(p
->task
);
8045 int32_t memlimit_mb
;
8046 int64_t memlimit_bytes
;
8049 if (isApp(p
) == FALSE
) {
8053 if (p
->p_memstat_memlimit
> 0) {
8054 memlimit_mb
= p
->p_memstat_memlimit
;
8055 } else if (task_convert_phys_footprint_limit(-1, &memlimit_mb
) != KERN_SUCCESS
) {
8059 if (memlimit_mb
<= 0) {
8060 memlimit_bytes
= INT_MAX
& ~((1 << 20) - 1);
8062 memlimit_bytes
= ((int64_t) memlimit_mb
) << 20;
8065 rc
= memlimit_bytes
- footprint_in_bytes
;
8067 return (rc
>= 0) ? rc
: 0;
8072 memorystatus_available_memory(struct proc
*p
, __unused
struct memorystatus_available_memory_args
*args
, uint64_t *ret
)
8074 *ret
= memorystatus_available_memory_internal(p
);
8080 #if DEVELOPMENT || DEBUG
8082 memorystatus_cmd_increase_jetsam_task_limit(pid_t pid
, uint32_t byte_increase
)
8084 memorystatus_memlimit_properties_t mmp_entry
;
8086 /* Validate inputs */
8087 if ((pid
== 0) || (byte_increase
== 0)) {
8091 proc_t p
= proc_find(pid
);
8097 const uint32_t current_memlimit_increase
= roundToNearestMB(p
->p_memlimit_increase
);
8098 const uint32_t page_aligned_increase
= round_page(p
->p_memlimit_increase
+ byte_increase
); /* round to page */
8102 memorystatus_get_memlimit_properties_internal(p
, &mmp_entry
);
8104 if (mmp_entry
.memlimit_active
> 0) {
8105 mmp_entry
.memlimit_active
-= current_memlimit_increase
;
8106 mmp_entry
.memlimit_active
+= roundToNearestMB(page_aligned_increase
);
8109 if (mmp_entry
.memlimit_inactive
> 0) {
8110 mmp_entry
.memlimit_inactive
-= current_memlimit_increase
;
8111 mmp_entry
.memlimit_inactive
+= roundToNearestMB(page_aligned_increase
);
8115 * Store the updated delta limit in the proc.
8117 p
->p_memlimit_increase
= page_aligned_increase
;
8119 int error
= memorystatus_set_memlimit_properties_internal(p
, &mmp_entry
);
8126 #endif /* DEVELOPMENT */
8127 #endif /* CONFIG_JETSAM */