2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
30 * Copyright (c) 1982, 1986, 1989, 1993
31 * The Regents of the University of California. All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
70 #include <sys/param.h>
71 #include <sys/resourcevar.h>
72 #include <sys/kernel.h>
73 #include <sys/systm.h>
74 #include <sys/proc_internal.h>
75 #include <sys/kauth.h>
76 #include <sys/vnode.h>
80 #include <sys/mount_internal.h>
81 #include <sys/sysproto.h>
82 #include <sys/signalvar.h>
83 #include <sys/protosw.h> /* for net_uptime2timeval() */
85 #include <kern/clock.h>
86 #include <kern/task.h>
87 #include <kern/thread_call.h>
89 #include <security/mac_framework.h>
92 #define HZ 100 /* XXX */
94 /* simple lock used to access timezone, tz structure */
95 lck_spin_t
* tz_slock
;
96 lck_grp_t
* tz_slock_grp
;
97 lck_attr_t
* tz_slock_attr
;
98 lck_grp_attr_t
*tz_slock_grp_attr
;
100 static void setthetime(
103 void time_zone_slock_init(void);
106 * Time of day and interval timer support.
108 * These routines provide the kernel entry points to get and set
109 * the time-of-day and per-process interval timers. Subroutines
110 * here provide support for adding and subtracting timeval structures
111 * and decrementing interval timers, optionally reloading the interval
112 * timers when they expire.
118 struct gettimeofday_args
*uap
,
119 __unused
int32_t *retval
)
122 struct timezone ltz
; /* local copy */
127 if (uap
->tp
|| uap
->mach_absolute_time
) {
128 clock_gettimeofday_and_absolute_time(&secs
, &usecs
, &mach_time
);
132 /* Casting secs through a uint32_t to match arm64 commpage */
133 if (IS_64BIT_PROCESS(p
)) {
134 struct user64_timeval user_atv
= {};
135 user_atv
.tv_sec
= (uint32_t)secs
;
136 user_atv
.tv_usec
= usecs
;
137 error
= copyout(&user_atv
, uap
->tp
, sizeof(user_atv
));
139 struct user32_timeval user_atv
= {};
140 user_atv
.tv_sec
= (uint32_t)secs
;
141 user_atv
.tv_usec
= usecs
;
142 error
= copyout(&user_atv
, uap
->tp
, sizeof(user_atv
));
150 lck_spin_lock(tz_slock
);
152 lck_spin_unlock(tz_slock
);
154 error
= copyout((caddr_t
)<z
, CAST_USER_ADDR_T(uap
->tzp
), sizeof(tz
));
157 if (error
== 0 && uap
->mach_absolute_time
) {
158 error
= copyout(&mach_time
, uap
->mach_absolute_time
, sizeof(mach_time
));
165 * XXX Y2038 bug because of setthetime() argument
169 settimeofday(__unused
struct proc
*p
, struct settimeofday_args
*uap
, __unused
int32_t *retval
)
175 bzero(&atv
, sizeof(atv
));
178 error
= mac_system_check_settime(kauth_cred_get());
182 if ((error
= suser(kauth_cred_get(), &p
->p_acflag
)))
184 /* Verify all parameters before changing time */
186 if (IS_64BIT_PROCESS(p
)) {
187 struct user64_timeval user_atv
;
188 error
= copyin(uap
->tv
, &user_atv
, sizeof(user_atv
));
189 atv
.tv_sec
= user_atv
.tv_sec
;
190 atv
.tv_usec
= user_atv
.tv_usec
;
192 struct user32_timeval user_atv
;
193 error
= copyin(uap
->tv
, &user_atv
, sizeof(user_atv
));
194 atv
.tv_sec
= user_atv
.tv_sec
;
195 atv
.tv_usec
= user_atv
.tv_usec
;
200 if (uap
->tzp
&& (error
= copyin(uap
->tzp
, (caddr_t
)&atz
, sizeof(atz
))))
204 if (atv
.tv_sec
< 0 || (atv
.tv_sec
== 0 && atv
.tv_usec
< 0))
209 lck_spin_lock(tz_slock
);
211 lck_spin_unlock(tz_slock
);
220 clock_set_calendar_microtime(tv
->tv_sec
, tv
->tv_usec
);
224 * XXX Y2038 bug because of clock_adjtime() first argument
228 adjtime(struct proc
*p
, struct adjtime_args
*uap
, __unused
int32_t *retval
)
234 error
= mac_system_check_settime(kauth_cred_get());
238 if ((error
= priv_check_cred(kauth_cred_get(), PRIV_ADJTIME
, 0)))
240 if (IS_64BIT_PROCESS(p
)) {
241 struct user64_timeval user_atv
;
242 error
= copyin(uap
->delta
, &user_atv
, sizeof(user_atv
));
243 atv
.tv_sec
= user_atv
.tv_sec
;
244 atv
.tv_usec
= user_atv
.tv_usec
;
246 struct user32_timeval user_atv
;
247 error
= copyin(uap
->delta
, &user_atv
, sizeof(user_atv
));
248 atv
.tv_sec
= user_atv
.tv_sec
;
249 atv
.tv_usec
= user_atv
.tv_usec
;
255 * Compute the total correction and the rate at which to apply it.
257 clock_adjtime(&atv
.tv_sec
, &atv
.tv_usec
);
260 if (IS_64BIT_PROCESS(p
)) {
261 struct user64_timeval user_atv
;
262 user_atv
.tv_sec
= atv
.tv_sec
;
263 user_atv
.tv_usec
= atv
.tv_usec
;
264 error
= copyout(&user_atv
, uap
->olddelta
, sizeof(user_atv
));
266 struct user32_timeval user_atv
;
267 user_atv
.tv_sec
= atv
.tv_sec
;
268 user_atv
.tv_usec
= atv
.tv_usec
;
269 error
= copyout(&user_atv
, uap
->olddelta
, sizeof(user_atv
));
277 * Verify the calendar value. If negative,
278 * reset to zero (the epoch).
282 __unused
time_t base
)
288 * The calendar has already been
289 * set up from the platform clock.
291 * The value returned by microtime()
292 * is gotten from the calendar.
296 if (tv
.tv_sec
< 0 || tv
.tv_usec
< 0) {
297 printf ("WARNING: preposterous time in Real Time Clock");
298 tv
.tv_sec
= 0; /* the UNIX epoch */
301 printf(" -- CHECK AND RESET THE DATE!\n");
309 clock_nsec_t nanosecs
;
311 clock_get_boottime_nanotime(&secs
, &nanosecs
);
316 boottime_timeval(struct timeval
*tv
)
319 clock_usec_t microsecs
;
321 clock_get_boottime_microtime(&secs
, µsecs
);
324 tv
->tv_usec
= microsecs
;
328 * Get value of an interval timer. The process virtual and
329 * profiling virtual time timers are kept internally in the
330 * way they are specified externally: in time until they expire.
332 * The real time interval timer expiration time (p_rtime)
333 * is kept as an absolute time rather than as a delta, so that
334 * it is easy to keep periodic real-time signals from drifting.
336 * The real time timer is processed by a callout routine.
337 * Since a callout may be delayed in real time due to
338 * other processing in the system, it is possible for the real
339 * time callout routine (realitexpire, given below), to be delayed
340 * in real time past when it is supposed to occur. It does not
341 * suffice, therefore, to reload the real time .it_value from the
342 * real time .it_interval. Rather, we compute the next time in
343 * absolute time when the timer should go off.
346 * EINVAL Invalid argument
347 * copyout:EFAULT Bad address
351 getitimer(struct proc
*p
, struct getitimer_args
*uap
, __unused
int32_t *retval
)
353 struct itimerval aitv
;
355 if (uap
->which
> ITIMER_PROF
)
358 bzero(&aitv
, sizeof(aitv
));
361 switch (uap
->which
) {
365 * If time for real time timer has passed return 0,
366 * else return difference between current time and
367 * time for the timer to go off.
369 aitv
= p
->p_realtimer
;
370 if (timerisset(&p
->p_rtime
)) {
374 if (timercmp(&p
->p_rtime
, &now
, <))
375 timerclear(&aitv
.it_value
);
377 aitv
.it_value
= p
->p_rtime
;
378 timevalsub(&aitv
.it_value
, &now
);
382 timerclear(&aitv
.it_value
);
386 aitv
= p
->p_vtimer_user
;
390 aitv
= p
->p_vtimer_prof
;
396 if (IS_64BIT_PROCESS(p
)) {
397 struct user64_itimerval user_itv
;
398 user_itv
.it_interval
.tv_sec
= aitv
.it_interval
.tv_sec
;
399 user_itv
.it_interval
.tv_usec
= aitv
.it_interval
.tv_usec
;
400 user_itv
.it_value
.tv_sec
= aitv
.it_value
.tv_sec
;
401 user_itv
.it_value
.tv_usec
= aitv
.it_value
.tv_usec
;
402 return (copyout((caddr_t
)&user_itv
, uap
->itv
, sizeof (user_itv
)));
404 struct user32_itimerval user_itv
;
405 user_itv
.it_interval
.tv_sec
= aitv
.it_interval
.tv_sec
;
406 user_itv
.it_interval
.tv_usec
= aitv
.it_interval
.tv_usec
;
407 user_itv
.it_value
.tv_sec
= aitv
.it_value
.tv_sec
;
408 user_itv
.it_value
.tv_usec
= aitv
.it_value
.tv_usec
;
409 return (copyout((caddr_t
)&user_itv
, uap
->itv
, sizeof (user_itv
)));
415 * EINVAL Invalid argument
416 * copyin:EFAULT Bad address
417 * getitimer:EINVAL Invalid argument
418 * getitimer:EFAULT Bad address
422 setitimer(struct proc
*p
, struct setitimer_args
*uap
, int32_t *retval
)
424 struct itimerval aitv
;
428 bzero(&aitv
, sizeof(aitv
));
430 if (uap
->which
> ITIMER_PROF
)
432 if ((itvp
= uap
->itv
)) {
433 if (IS_64BIT_PROCESS(p
)) {
434 struct user64_itimerval user_itv
;
435 if ((error
= copyin(itvp
, (caddr_t
)&user_itv
, sizeof (user_itv
))))
437 aitv
.it_interval
.tv_sec
= user_itv
.it_interval
.tv_sec
;
438 aitv
.it_interval
.tv_usec
= user_itv
.it_interval
.tv_usec
;
439 aitv
.it_value
.tv_sec
= user_itv
.it_value
.tv_sec
;
440 aitv
.it_value
.tv_usec
= user_itv
.it_value
.tv_usec
;
442 struct user32_itimerval user_itv
;
443 if ((error
= copyin(itvp
, (caddr_t
)&user_itv
, sizeof (user_itv
))))
445 aitv
.it_interval
.tv_sec
= user_itv
.it_interval
.tv_sec
;
446 aitv
.it_interval
.tv_usec
= user_itv
.it_interval
.tv_usec
;
447 aitv
.it_value
.tv_sec
= user_itv
.it_value
.tv_sec
;
448 aitv
.it_value
.tv_usec
= user_itv
.it_value
.tv_usec
;
451 if ((uap
->itv
= uap
->oitv
) && (error
= getitimer(p
, (struct getitimer_args
*)uap
, retval
)))
455 if (itimerfix(&aitv
.it_value
) || itimerfix(&aitv
.it_interval
))
458 switch (uap
->which
) {
462 if (timerisset(&aitv
.it_value
)) {
463 microuptime(&p
->p_rtime
);
464 timevaladd(&p
->p_rtime
, &aitv
.it_value
);
465 p
->p_realtimer
= aitv
;
466 if (!thread_call_enter_delayed_with_leeway(p
->p_rcall
, NULL
,
467 tvtoabstime(&p
->p_rtime
), 0, THREAD_CALL_DELAY_USER_NORMAL
))
470 timerclear(&p
->p_rtime
);
471 p
->p_realtimer
= aitv
;
472 if (thread_call_cancel(p
->p_rcall
))
481 if (timerisset(&aitv
.it_value
))
482 task_vtimer_set(p
->task
, TASK_VTIMER_USER
);
484 task_vtimer_clear(p
->task
, TASK_VTIMER_USER
);
487 p
->p_vtimer_user
= aitv
;
492 if (timerisset(&aitv
.it_value
))
493 task_vtimer_set(p
->task
, TASK_VTIMER_PROF
);
495 task_vtimer_clear(p
->task
, TASK_VTIMER_PROF
);
498 p
->p_vtimer_prof
= aitv
;
507 * Real interval timer expired:
508 * send process whose timer expired an alarm signal.
509 * If time is not set up to reload, then just return.
510 * Else compute next time timer should go off which is > current time.
511 * This is where delay in processing this timeout causes multiple
512 * SIGALRM calls to be compressed into one.
521 r
= proc_find(p
->p_pid
);
525 assert(p
->p_ractive
> 0);
527 if (--p
->p_ractive
> 0 || r
!= p
) {
529 * bail, because either proc is exiting
530 * or there's another active thread call
539 if (!timerisset(&p
->p_realtimer
.it_interval
)) {
541 * p_realtimer was cleared while this call was pending,
542 * send one last SIGALRM, but don't re-arm
544 timerclear(&p
->p_rtime
);
555 * Send the signal before re-arming the next thread call,
556 * so in case psignal blocks, we won't create yet another thread call.
563 /* Should we still re-arm the next thread call? */
564 if (!timerisset(&p
->p_realtimer
.it_interval
)) {
565 timerclear(&p
->p_rtime
);
573 timevaladd(&p
->p_rtime
, &p
->p_realtimer
.it_interval
);
575 if (timercmp(&p
->p_rtime
, &t
, <=)) {
576 if ((p
->p_rtime
.tv_sec
+ 2) >= t
.tv_sec
) {
578 timevaladd(&p
->p_rtime
, &p
->p_realtimer
.it_interval
);
579 if (timercmp(&p
->p_rtime
, &t
, >))
583 p
->p_rtime
= p
->p_realtimer
.it_interval
;
584 timevaladd(&p
->p_rtime
, &t
);
588 assert(p
->p_rcall
!= NULL
);
590 if (!thread_call_enter_delayed_with_leeway(p
->p_rcall
, NULL
, tvtoabstime(&p
->p_rtime
), 0,
591 THREAD_CALL_DELAY_USER_NORMAL
)) {
601 * Called once in proc_exit to clean up after an armed or pending realitexpire
603 * This will only be called after the proc refcount is drained,
604 * so realitexpire cannot be currently holding a proc ref.
605 * i.e. it will/has gotten PROC_NULL from proc_find.
608 proc_free_realitimer(proc_t p
)
612 assert(p
->p_rcall
!= NULL
);
613 assert(p
->p_refcount
== 0);
615 timerclear(&p
->p_realtimer
.it_interval
);
617 if (thread_call_cancel(p
->p_rcall
)) {
618 assert(p
->p_ractive
> 0);
622 while (p
->p_ractive
> 0) {
630 thread_call_t call
= p
->p_rcall
;
635 thread_call_free(call
);
639 * Check that a proposed value to load into the .it_value or
640 * .it_interval part of an interval timer is acceptable.
647 if (tv
->tv_sec
< 0 || tv
->tv_sec
> 100000000 ||
648 tv
->tv_usec
< 0 || tv
->tv_usec
>= 1000000)
654 timespec_is_valid(const struct timespec
*ts
)
656 /* The INT32_MAX limit ensures the timespec is safe for clock_*() functions
657 * which accept 32-bit ints. */
658 if (ts
->tv_sec
< 0 || ts
->tv_sec
> INT32_MAX
||
659 ts
->tv_nsec
< 0 || (unsigned long long)ts
->tv_nsec
> NSEC_PER_SEC
) {
666 * Decrement an interval timer by a specified number
667 * of microseconds, which must be less than a second,
668 * i.e. < 1000000. If the timer expires, then reload
669 * it. In this case, carry over (usec - old value) to
670 * reduce the value reloaded into the timer so that
671 * the timer does not drift. This routine assumes
672 * that it is called in a context where the timers
673 * on which it is operating cannot change in value.
677 struct itimerval
*itp
, int usec
)
682 if (itp
->it_value
.tv_usec
< usec
) {
683 if (itp
->it_value
.tv_sec
== 0) {
684 /* expired, and already in next interval */
685 usec
-= itp
->it_value
.tv_usec
;
688 itp
->it_value
.tv_usec
+= 1000000;
689 itp
->it_value
.tv_sec
--;
691 itp
->it_value
.tv_usec
-= usec
;
693 if (timerisset(&itp
->it_value
)) {
697 /* expired, exactly at end of interval */
699 if (timerisset(&itp
->it_interval
)) {
700 itp
->it_value
= itp
->it_interval
;
701 if (itp
->it_value
.tv_sec
> 0) {
702 itp
->it_value
.tv_usec
-= usec
;
703 if (itp
->it_value
.tv_usec
< 0) {
704 itp
->it_value
.tv_usec
+= 1000000;
705 itp
->it_value
.tv_sec
--;
709 itp
->it_value
.tv_usec
= 0; /* sec is already 0 */
715 * Add and subtract routines for timevals.
716 * N.B.: subtract routine doesn't deal with
717 * results which are before the beginning,
718 * it just gets very confused in this case.
727 t1
->tv_sec
+= t2
->tv_sec
;
728 t1
->tv_usec
+= t2
->tv_usec
;
737 t1
->tv_sec
-= t2
->tv_sec
;
738 t1
->tv_usec
-= t2
->tv_usec
;
746 if (t1
->tv_usec
< 0) {
748 t1
->tv_usec
+= 1000000;
750 if (t1
->tv_usec
>= 1000000) {
752 t1
->tv_usec
-= 1000000;
757 * Return the best possible estimate of the time in the timeval
758 * to which tvp points.
765 clock_usec_t tv_usec
;
767 clock_get_calendar_microtime(&tv_sec
, &tv_usec
);
769 tvp
->tv_sec
= tv_sec
;
770 tvp
->tv_usec
= tv_usec
;
774 microtime_with_abstime(
775 struct timeval
*tvp
, uint64_t *abstime
)
778 clock_usec_t tv_usec
;
780 clock_get_calendar_absolute_and_microtime(&tv_sec
, &tv_usec
, abstime
);
782 tvp
->tv_sec
= tv_sec
;
783 tvp
->tv_usec
= tv_usec
;
791 clock_usec_t tv_usec
;
793 clock_get_system_microtime(&tv_sec
, &tv_usec
);
795 tvp
->tv_sec
= tv_sec
;
796 tvp
->tv_usec
= tv_usec
;
800 * Ditto for timespec.
804 struct timespec
*tsp
)
807 clock_nsec_t tv_nsec
;
809 clock_get_calendar_nanotime(&tv_sec
, &tv_nsec
);
811 tsp
->tv_sec
= tv_sec
;
812 tsp
->tv_nsec
= tv_nsec
;
817 struct timespec
*tsp
)
820 clock_nsec_t tv_nsec
;
822 clock_get_system_nanotime(&tv_sec
, &tv_nsec
);
824 tsp
->tv_sec
= tv_sec
;
825 tsp
->tv_nsec
= tv_nsec
;
832 uint64_t result
, usresult
;
834 clock_interval_to_absolutetime_interval(
835 tvp
->tv_sec
, NSEC_PER_SEC
, &result
);
836 clock_interval_to_absolutetime_interval(
837 tvp
->tv_usec
, NSEC_PER_USEC
, &usresult
);
839 return (result
+ usresult
);
843 tstoabstime(struct timespec
*ts
)
845 uint64_t abstime_s
, abstime_ns
;
846 clock_interval_to_absolutetime_interval(ts
->tv_sec
, NSEC_PER_SEC
, &abstime_s
);
847 clock_interval_to_absolutetime_interval(ts
->tv_nsec
, 1, &abstime_ns
);
848 return abstime_s
+ abstime_ns
;
853 * ratecheck(): simple time-based rate-limit checking.
856 ratecheck(struct timeval
*lasttime
, const struct timeval
*mininterval
)
858 struct timeval tv
, delta
;
861 net_uptime2timeval(&tv
);
863 timevalsub(&delta
, lasttime
);
866 * check for 0,0 is so that the message will be seen at least once,
867 * even if interval is huge.
869 if (timevalcmp(&delta
, mininterval
, >=) ||
870 (lasttime
->tv_sec
== 0 && lasttime
->tv_usec
== 0)) {
879 * ppsratecheck(): packets (or events) per second limitation.
882 ppsratecheck(struct timeval
*lasttime
, int *curpps
, int maxpps
)
884 struct timeval tv
, delta
;
887 net_uptime2timeval(&tv
);
889 timersub(&tv
, lasttime
, &delta
);
892 * Check for 0,0 so that the message will be seen at least once.
893 * If more than one second has passed since the last update of
894 * lasttime, reset the counter.
896 * we do increment *curpps even in *curpps < maxpps case, as some may
897 * try to use *curpps for stat purposes as well.
899 if ((lasttime
->tv_sec
== 0 && lasttime
->tv_usec
== 0) ||
904 } else if (maxpps
< 0)
906 else if (*curpps
< maxpps
)
911 #if 1 /* DIAGNOSTIC? */
912 /* be careful about wrap-around */
914 *curpps
= *curpps
+ 1;
917 * assume that there's not too many calls to this function.
918 * not sure if the assumption holds, as it depends on *caller's*
919 * behavior, not the behavior of this function.
920 * IMHO it is wrong to make assumption on the caller's behavior,
921 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
923 *curpps
= *curpps
+ 1;
928 #endif /* NETWORKING */
931 time_zone_slock_init(void)
933 /* allocate lock group attribute and group */
934 tz_slock_grp_attr
= lck_grp_attr_alloc_init();
936 tz_slock_grp
= lck_grp_alloc_init("tzlock", tz_slock_grp_attr
);
938 /* Allocate lock attribute */
939 tz_slock_attr
= lck_attr_alloc_init();
941 /* Allocate the spin lock */
942 tz_slock
= lck_spin_alloc_init(tz_slock_grp
, tz_slock_attr
);