2 * Copyright (c) 1998-2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/filedesc.h>
74 #include <sys/proc_internal.h>
75 #include <sys/kauth.h>
76 #include <sys/file_internal.h>
77 #include <sys/fcntl.h>
78 #include <sys/malloc.h>
80 #include <sys/domain.h>
81 #include <sys/kernel.h>
82 #include <sys/event.h>
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/resourcevar.h>
88 #include <sys/signalvar.h>
89 #include <sys/sysctl.h>
90 #include <sys/syslog.h>
92 #include <sys/uio_internal.h>
94 #include <sys/kdebug.h>
98 #include <sys/kern_event.h>
99 #include <net/route.h>
100 #include <net/init.h>
101 #include <net/net_api_stats.h>
102 #include <net/ntstat.h>
103 #include <net/content_filter.h>
104 #include <netinet/in.h>
105 #include <netinet/in_pcb.h>
106 #include <netinet/in_tclass.h>
107 #include <netinet/in_var.h>
108 #include <netinet/tcp_var.h>
109 #include <netinet/ip6.h>
110 #include <netinet6/ip6_var.h>
111 #include <netinet/flow_divert.h>
112 #include <kern/zalloc.h>
113 #include <kern/locks.h>
114 #include <machine/limits.h>
115 #include <libkern/OSAtomic.h>
116 #include <pexpert/pexpert.h>
117 #include <kern/assert.h>
118 #include <kern/task.h>
119 #include <kern/policy_internal.h>
121 #include <sys/kpi_mbuf.h>
122 #include <sys/mcache.h>
123 #include <sys/unpcb.h>
124 #include <libkern/section_keywords.h>
127 #include <security/mac_framework.h>
131 #include <netinet/mp_pcb.h>
132 #include <netinet/mptcp_var.h>
133 #endif /* MULTIPATH */
135 #define ROUNDUP(a, b) (((a) + ((b) - 1)) & (~((b) - 1)))
137 #if DEBUG || DEVELOPMENT
138 #define DEBUG_KERNEL_ADDRPERM(_v) (_v)
140 #define DEBUG_KERNEL_ADDRPERM(_v) VM_KERNEL_ADDRPERM(_v)
143 /* TODO: this should be in a header file somewhere */
144 extern char *proc_name_address(void *p
);
146 static u_int32_t so_cache_hw
; /* High water mark for socache */
147 static u_int32_t so_cache_timeouts
; /* number of timeouts */
148 static u_int32_t so_cache_max_freed
; /* max freed per timeout */
149 static u_int32_t cached_sock_count
= 0;
150 STAILQ_HEAD(, socket
) so_cache_head
;
151 int max_cached_sock_count
= MAX_CACHED_SOCKETS
;
152 static u_int32_t so_cache_time
;
153 static int socketinit_done
;
154 static struct zone
*so_cache_zone
;
156 static lck_grp_t
*so_cache_mtx_grp
;
157 static lck_attr_t
*so_cache_mtx_attr
;
158 static lck_grp_attr_t
*so_cache_mtx_grp_attr
;
159 static lck_mtx_t
*so_cache_mtx
;
161 #include <machine/limits.h>
163 static int filt_sorattach(struct knote
*kn
, struct kevent_qos_s
*kev
);
164 static void filt_sordetach(struct knote
*kn
);
165 static int filt_soread(struct knote
*kn
, long hint
);
166 static int filt_sortouch(struct knote
*kn
, struct kevent_qos_s
*kev
);
167 static int filt_sorprocess(struct knote
*kn
, struct kevent_qos_s
*kev
);
169 static int filt_sowattach(struct knote
*kn
, struct kevent_qos_s
*kev
);
170 static void filt_sowdetach(struct knote
*kn
);
171 static int filt_sowrite(struct knote
*kn
, long hint
);
172 static int filt_sowtouch(struct knote
*kn
, struct kevent_qos_s
*kev
);
173 static int filt_sowprocess(struct knote
*kn
, struct kevent_qos_s
*kev
);
175 static int filt_sockattach(struct knote
*kn
, struct kevent_qos_s
*kev
);
176 static void filt_sockdetach(struct knote
*kn
);
177 static int filt_sockev(struct knote
*kn
, long hint
);
178 static int filt_socktouch(struct knote
*kn
, struct kevent_qos_s
*kev
);
179 static int filt_sockprocess(struct knote
*kn
, struct kevent_qos_s
*kev
);
181 static int sooptcopyin_timeval(struct sockopt
*, struct timeval
*);
182 static int sooptcopyout_timeval(struct sockopt
*, const struct timeval
*);
184 SECURITY_READ_ONLY_EARLY(struct filterops
) soread_filtops
= {
186 .f_attach
= filt_sorattach
,
187 .f_detach
= filt_sordetach
,
188 .f_event
= filt_soread
,
189 .f_touch
= filt_sortouch
,
190 .f_process
= filt_sorprocess
,
193 SECURITY_READ_ONLY_EARLY(struct filterops
) sowrite_filtops
= {
195 .f_attach
= filt_sowattach
,
196 .f_detach
= filt_sowdetach
,
197 .f_event
= filt_sowrite
,
198 .f_touch
= filt_sowtouch
,
199 .f_process
= filt_sowprocess
,
202 SECURITY_READ_ONLY_EARLY(struct filterops
) sock_filtops
= {
204 .f_attach
= filt_sockattach
,
205 .f_detach
= filt_sockdetach
,
206 .f_event
= filt_sockev
,
207 .f_touch
= filt_socktouch
,
208 .f_process
= filt_sockprocess
,
211 SECURITY_READ_ONLY_EARLY(struct filterops
) soexcept_filtops
= {
213 .f_attach
= filt_sorattach
,
214 .f_detach
= filt_sordetach
,
215 .f_event
= filt_soread
,
216 .f_touch
= filt_sortouch
,
217 .f_process
= filt_sorprocess
,
220 SYSCTL_DECL(_kern_ipc
);
222 #define EVEN_MORE_LOCKING_DEBUG 0
224 int socket_debug
= 0;
225 SYSCTL_INT(_kern_ipc
, OID_AUTO
, socket_debug
,
226 CTLFLAG_RW
| CTLFLAG_LOCKED
, &socket_debug
, 0, "");
228 static unsigned long sodefunct_calls
= 0;
229 SYSCTL_LONG(_kern_ipc
, OID_AUTO
, sodefunct_calls
, CTLFLAG_LOCKED
,
230 &sodefunct_calls
, "");
232 static int socket_zone
= M_SOCKET
;
233 so_gen_t so_gencnt
; /* generation count for sockets */
235 MALLOC_DEFINE(M_SONAME
, "soname", "socket name");
236 MALLOC_DEFINE(M_PCB
, "pcb", "protocol control block");
238 #define DBG_LAYER_IN_BEG NETDBG_CODE(DBG_NETSOCK, 0)
239 #define DBG_LAYER_IN_END NETDBG_CODE(DBG_NETSOCK, 2)
240 #define DBG_LAYER_OUT_BEG NETDBG_CODE(DBG_NETSOCK, 1)
241 #define DBG_LAYER_OUT_END NETDBG_CODE(DBG_NETSOCK, 3)
242 #define DBG_FNC_SOSEND NETDBG_CODE(DBG_NETSOCK, (4 << 8) | 1)
243 #define DBG_FNC_SOSEND_LIST NETDBG_CODE(DBG_NETSOCK, (4 << 8) | 3)
244 #define DBG_FNC_SORECEIVE NETDBG_CODE(DBG_NETSOCK, (8 << 8))
245 #define DBG_FNC_SORECEIVE_LIST NETDBG_CODE(DBG_NETSOCK, (8 << 8) | 3)
246 #define DBG_FNC_SOSHUTDOWN NETDBG_CODE(DBG_NETSOCK, (9 << 8))
248 #define MAX_SOOPTGETM_SIZE (128 * MCLBYTES)
250 int somaxconn
= SOMAXCONN
;
251 SYSCTL_INT(_kern_ipc
, KIPC_SOMAXCONN
, somaxconn
,
252 CTLFLAG_RW
| CTLFLAG_LOCKED
, &somaxconn
, 0, "");
254 /* Should we get a maximum also ??? */
255 static int sosendmaxchain
= 65536;
256 static int sosendminchain
= 16384;
257 static int sorecvmincopy
= 16384;
258 SYSCTL_INT(_kern_ipc
, OID_AUTO
, sosendminchain
,
259 CTLFLAG_RW
| CTLFLAG_LOCKED
, &sosendminchain
, 0, "");
260 SYSCTL_INT(_kern_ipc
, OID_AUTO
, sorecvmincopy
,
261 CTLFLAG_RW
| CTLFLAG_LOCKED
, &sorecvmincopy
, 0, "");
264 * Set to enable jumbo clusters (if available) for large writes when
265 * the socket is marked with SOF_MULTIPAGES; see below.
268 SYSCTL_INT(_kern_ipc
, OID_AUTO
, sosendjcl
,
269 CTLFLAG_RW
| CTLFLAG_LOCKED
, &sosendjcl
, 0, "");
272 * Set this to ignore SOF_MULTIPAGES and use jumbo clusters for large
273 * writes on the socket for all protocols on any network interfaces,
274 * depending upon sosendjcl above. Be extra careful when setting this
275 * to 1, because sending down packets that cross physical pages down to
276 * broken drivers (those that falsely assume that the physical pages
277 * are contiguous) might lead to system panics or silent data corruption.
278 * When set to 0, the system will respect SOF_MULTIPAGES, which is set
279 * only for TCP sockets whose outgoing interface is IFNET_MULTIPAGES
280 * capable. Set this to 1 only for testing/debugging purposes.
282 int sosendjcl_ignore_capab
= 0;
283 SYSCTL_INT(_kern_ipc
, OID_AUTO
, sosendjcl_ignore_capab
,
284 CTLFLAG_RW
| CTLFLAG_LOCKED
, &sosendjcl_ignore_capab
, 0, "");
287 * Set this to ignore SOF1_IF_2KCL and use big clusters for large
288 * writes on the socket for all protocols on any network interfaces.
289 * Be extra careful when setting this to 1, because sending down packets with
290 * clusters larger that 2 KB might lead to system panics or data corruption.
291 * When set to 0, the system will respect SOF1_IF_2KCL, which is set
292 * on the outgoing interface
293 * Set this to 1 for testing/debugging purposes only.
295 int sosendbigcl_ignore_capab
= 0;
296 SYSCTL_INT(_kern_ipc
, OID_AUTO
, sosendbigcl_ignore_capab
,
297 CTLFLAG_RW
| CTLFLAG_LOCKED
, &sosendbigcl_ignore_capab
, 0, "");
299 int sodefunctlog
= 0;
300 SYSCTL_INT(_kern_ipc
, OID_AUTO
, sodefunctlog
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
301 &sodefunctlog
, 0, "");
303 int sothrottlelog
= 0;
304 SYSCTL_INT(_kern_ipc
, OID_AUTO
, sothrottlelog
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
305 &sothrottlelog
, 0, "");
307 int sorestrictrecv
= 1;
308 SYSCTL_INT(_kern_ipc
, OID_AUTO
, sorestrictrecv
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
309 &sorestrictrecv
, 0, "Enable inbound interface restrictions");
311 int sorestrictsend
= 1;
312 SYSCTL_INT(_kern_ipc
, OID_AUTO
, sorestrictsend
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
313 &sorestrictsend
, 0, "Enable outbound interface restrictions");
315 int soreserveheadroom
= 1;
316 SYSCTL_INT(_kern_ipc
, OID_AUTO
, soreserveheadroom
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
317 &soreserveheadroom
, 0, "To allocate contiguous datagram buffers");
319 #if (DEBUG || DEVELOPMENT)
320 int so_notsent_lowat_check
= 1;
321 SYSCTL_INT(_kern_ipc
, OID_AUTO
, notsent_lowat
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
322 &so_notsent_lowat_check
, 0, "enable/disable notsnet lowat check");
323 #endif /* DEBUG || DEVELOPMENT */
325 int so_accept_list_waits
= 0;
326 #if (DEBUG || DEVELOPMENT)
327 SYSCTL_INT(_kern_ipc
, OID_AUTO
, accept_list_waits
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
328 &so_accept_list_waits
, 0, "number of waits for listener incomp list");
329 #endif /* DEBUG || DEVELOPMENT */
331 extern struct inpcbinfo tcbinfo
;
333 /* TODO: these should be in header file */
334 extern int get_inpcb_str_size(void);
335 extern int get_tcp_str_size(void);
337 vm_size_t so_cache_zone_element_size
;
339 static int sodelayed_copy(struct socket
*, struct uio
*, struct mbuf
**,
341 static void cached_sock_alloc(struct socket
**, int);
342 static void cached_sock_free(struct socket
*);
345 * Maximum of extended background idle sockets per process
346 * Set to zero to disable further setting of the option
349 #define SO_IDLE_BK_IDLE_MAX_PER_PROC 1
350 #define SO_IDLE_BK_IDLE_TIME 600
351 #define SO_IDLE_BK_IDLE_RCV_HIWAT 131072
353 struct soextbkidlestat soextbkidlestat
;
355 SYSCTL_UINT(_kern_ipc
, OID_AUTO
, maxextbkidleperproc
,
356 CTLFLAG_RW
| CTLFLAG_LOCKED
, &soextbkidlestat
.so_xbkidle_maxperproc
, 0,
357 "Maximum of extended background idle sockets per process");
359 SYSCTL_UINT(_kern_ipc
, OID_AUTO
, extbkidletime
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
360 &soextbkidlestat
.so_xbkidle_time
, 0,
361 "Time in seconds to keep extended background idle sockets");
363 SYSCTL_UINT(_kern_ipc
, OID_AUTO
, extbkidlercvhiwat
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
364 &soextbkidlestat
.so_xbkidle_rcvhiwat
, 0,
365 "High water mark for extended background idle sockets");
367 SYSCTL_STRUCT(_kern_ipc
, OID_AUTO
, extbkidlestat
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
368 &soextbkidlestat
, soextbkidlestat
, "");
370 int so_set_extended_bk_idle(struct socket
*, int);
374 * SOTCDB_NO_DSCP is set by default, to prevent the networking stack from
375 * setting the DSCP code on the packet based on the service class; see
376 * <rdar://problem/11277343> for details.
378 __private_extern__ u_int32_t sotcdb
= 0;
379 SYSCTL_INT(_kern_ipc
, OID_AUTO
, sotcdb
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
385 _CASSERT(sizeof(so_gencnt
) == sizeof(uint64_t));
386 VERIFY(IS_P2ALIGNED(&so_gencnt
, sizeof(uint32_t)));
389 _CASSERT(sizeof(struct sa_endpoints
) == sizeof(struct user64_sa_endpoints
));
390 _CASSERT(offsetof(struct sa_endpoints
, sae_srcif
) == offsetof(struct user64_sa_endpoints
, sae_srcif
));
391 _CASSERT(offsetof(struct sa_endpoints
, sae_srcaddr
) == offsetof(struct user64_sa_endpoints
, sae_srcaddr
));
392 _CASSERT(offsetof(struct sa_endpoints
, sae_srcaddrlen
) == offsetof(struct user64_sa_endpoints
, sae_srcaddrlen
));
393 _CASSERT(offsetof(struct sa_endpoints
, sae_dstaddr
) == offsetof(struct user64_sa_endpoints
, sae_dstaddr
));
394 _CASSERT(offsetof(struct sa_endpoints
, sae_dstaddrlen
) == offsetof(struct user64_sa_endpoints
, sae_dstaddrlen
));
396 _CASSERT(sizeof(struct sa_endpoints
) == sizeof(struct user32_sa_endpoints
));
397 _CASSERT(offsetof(struct sa_endpoints
, sae_srcif
) == offsetof(struct user32_sa_endpoints
, sae_srcif
));
398 _CASSERT(offsetof(struct sa_endpoints
, sae_srcaddr
) == offsetof(struct user32_sa_endpoints
, sae_srcaddr
));
399 _CASSERT(offsetof(struct sa_endpoints
, sae_srcaddrlen
) == offsetof(struct user32_sa_endpoints
, sae_srcaddrlen
));
400 _CASSERT(offsetof(struct sa_endpoints
, sae_dstaddr
) == offsetof(struct user32_sa_endpoints
, sae_dstaddr
));
401 _CASSERT(offsetof(struct sa_endpoints
, sae_dstaddrlen
) == offsetof(struct user32_sa_endpoints
, sae_dstaddrlen
));
404 if (socketinit_done
) {
405 printf("socketinit: already called...\n");
410 PE_parse_boot_argn("socket_debug", &socket_debug
,
411 sizeof(socket_debug
));
414 * allocate lock group attribute and group for socket cache mutex
416 so_cache_mtx_grp_attr
= lck_grp_attr_alloc_init();
417 so_cache_mtx_grp
= lck_grp_alloc_init("so_cache",
418 so_cache_mtx_grp_attr
);
421 * allocate the lock attribute for socket cache mutex
423 so_cache_mtx_attr
= lck_attr_alloc_init();
425 /* cached sockets mutex */
426 so_cache_mtx
= lck_mtx_alloc_init(so_cache_mtx_grp
, so_cache_mtx_attr
);
427 if (so_cache_mtx
== NULL
) {
428 panic("%s: unable to allocate so_cache_mtx\n", __func__
);
431 STAILQ_INIT(&so_cache_head
);
433 so_cache_zone_element_size
= (vm_size_t
)(sizeof(struct socket
) + 4
434 + get_inpcb_str_size() + 4 + get_tcp_str_size());
436 so_cache_zone
= zinit(so_cache_zone_element_size
,
437 (120000 * so_cache_zone_element_size
), 8192, "socache zone");
438 zone_change(so_cache_zone
, Z_CALLERACCT
, FALSE
);
439 zone_change(so_cache_zone
, Z_NOENCRYPT
, TRUE
);
441 bzero(&soextbkidlestat
, sizeof(struct soextbkidlestat
));
442 soextbkidlestat
.so_xbkidle_maxperproc
= SO_IDLE_BK_IDLE_MAX_PER_PROC
;
443 soextbkidlestat
.so_xbkidle_time
= SO_IDLE_BK_IDLE_TIME
;
444 soextbkidlestat
.so_xbkidle_rcvhiwat
= SO_IDLE_BK_IDLE_RCV_HIWAT
;
448 socket_tclass_init();
451 #endif /* MULTIPATH */
455 cached_sock_alloc(struct socket
**so
, int waitok
)
460 lck_mtx_lock(so_cache_mtx
);
462 if (!STAILQ_EMPTY(&so_cache_head
)) {
463 VERIFY(cached_sock_count
> 0);
465 *so
= STAILQ_FIRST(&so_cache_head
);
466 STAILQ_REMOVE_HEAD(&so_cache_head
, so_cache_ent
);
467 STAILQ_NEXT((*so
), so_cache_ent
) = NULL
;
470 lck_mtx_unlock(so_cache_mtx
);
472 temp
= (*so
)->so_saved_pcb
;
473 bzero((caddr_t
)*so
, sizeof(struct socket
));
475 (*so
)->so_saved_pcb
= temp
;
477 lck_mtx_unlock(so_cache_mtx
);
480 *so
= (struct socket
*)zalloc(so_cache_zone
);
482 *so
= (struct socket
*)zalloc_noblock(so_cache_zone
);
489 bzero((caddr_t
)*so
, sizeof(struct socket
));
492 * Define offsets for extra structures into our
493 * single block of memory. Align extra structures
494 * on longword boundaries.
497 offset
= (uintptr_t)*so
;
498 offset
+= sizeof(struct socket
);
500 offset
= ALIGN(offset
);
502 (*so
)->so_saved_pcb
= (caddr_t
)offset
;
503 offset
+= get_inpcb_str_size();
505 offset
= ALIGN(offset
);
507 ((struct inpcb
*)(void *)(*so
)->so_saved_pcb
)->inp_saved_ppcb
=
511 OSBitOrAtomic(SOF1_CACHED_IN_SOCK_LAYER
, &(*so
)->so_flags1
);
515 cached_sock_free(struct socket
*so
)
517 lck_mtx_lock(so_cache_mtx
);
519 so_cache_time
= net_uptime();
520 if (++cached_sock_count
> max_cached_sock_count
) {
522 lck_mtx_unlock(so_cache_mtx
);
523 zfree(so_cache_zone
, so
);
525 if (so_cache_hw
< cached_sock_count
) {
526 so_cache_hw
= cached_sock_count
;
529 STAILQ_INSERT_TAIL(&so_cache_head
, so
, so_cache_ent
);
531 so
->cache_timestamp
= so_cache_time
;
532 lck_mtx_unlock(so_cache_mtx
);
537 so_update_last_owner_locked(struct socket
*so
, proc_t self
)
539 if (so
->last_pid
!= 0) {
541 * last_pid and last_upid should remain zero for sockets
542 * created using sock_socket. The check above achieves that
544 if (self
== PROC_NULL
) {
545 self
= current_proc();
548 if (so
->last_upid
!= proc_uniqueid(self
) ||
549 so
->last_pid
!= proc_pid(self
)) {
550 so
->last_upid
= proc_uniqueid(self
);
551 so
->last_pid
= proc_pid(self
);
552 proc_getexecutableuuid(self
, so
->last_uuid
,
553 sizeof(so
->last_uuid
));
554 if (so
->so_proto
!= NULL
&& so
->so_proto
->pr_update_last_owner
!= NULL
) {
555 (*so
->so_proto
->pr_update_last_owner
)(so
, self
, NULL
);
558 proc_pidoriginatoruuid(so
->so_vuuid
, sizeof(so
->so_vuuid
));
563 so_update_policy(struct socket
*so
)
565 if (SOCK_DOM(so
) == PF_INET
|| SOCK_DOM(so
) == PF_INET6
) {
566 (void) inp_update_policy(sotoinpcb(so
));
572 so_update_necp_policy(struct socket
*so
, struct sockaddr
*override_local_addr
,
573 struct sockaddr
*override_remote_addr
)
575 if (SOCK_DOM(so
) == PF_INET
|| SOCK_DOM(so
) == PF_INET6
) {
576 inp_update_necp_policy(sotoinpcb(so
), override_local_addr
,
577 override_remote_addr
, 0);
587 boolean_t rc
= FALSE
;
589 lck_mtx_lock(so_cache_mtx
);
591 so_cache_time
= net_uptime();
593 while (!STAILQ_EMPTY(&so_cache_head
)) {
594 VERIFY(cached_sock_count
> 0);
595 p
= STAILQ_FIRST(&so_cache_head
);
596 if ((so_cache_time
- p
->cache_timestamp
) <
597 SO_CACHE_TIME_LIMIT
) {
601 STAILQ_REMOVE_HEAD(&so_cache_head
, so_cache_ent
);
604 zfree(so_cache_zone
, p
);
606 if (++n_freed
>= SO_CACHE_MAX_FREE_BATCH
) {
607 so_cache_max_freed
++;
612 /* Schedule again if there is more to cleanup */
613 if (!STAILQ_EMPTY(&so_cache_head
)) {
617 lck_mtx_unlock(so_cache_mtx
);
622 * Get a socket structure from our zone, and initialize it.
623 * We don't implement `waitok' yet (see comments in uipc_domain.c).
624 * Note that it would probably be better to allocate socket
625 * and PCB at the same time, but I'm not convinced that all
626 * the protocols can be easily modified to do this.
629 soalloc(int waitok
, int dom
, int type
)
633 if ((dom
== PF_INET
) && (type
== SOCK_STREAM
)) {
634 cached_sock_alloc(&so
, waitok
);
636 MALLOC_ZONE(so
, struct socket
*, sizeof(*so
), socket_zone
,
639 bzero(so
, sizeof(*so
));
643 so
->so_gencnt
= OSIncrementAtomic64((SInt64
*)&so_gencnt
);
644 so
->so_zone
= socket_zone
;
647 * Increment the socket allocation statistics
649 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_alloc_total
);
651 #if CONFIG_MACF_SOCKET
652 /* Convert waitok to M_WAITOK/M_NOWAIT for MAC Framework. */
653 if (mac_socket_label_init(so
, !waitok
) != 0) {
657 #endif /* MAC_SOCKET */
664 socreate_internal(int dom
, struct socket
**aso
, int type
, int proto
,
665 struct proc
*p
, uint32_t flags
, struct proc
*ep
)
672 extern int tcpconsdebug
;
679 prp
= pffindproto(dom
, proto
, type
);
681 prp
= pffindtype(dom
, type
);
684 if (prp
== NULL
|| prp
->pr_usrreqs
->pru_attach
== NULL
) {
685 if (pffinddomain(dom
) == NULL
) {
689 if (pffindprotonotype(dom
, proto
) != NULL
) {
693 return EPROTONOSUPPORT
;
695 if (prp
->pr_type
!= type
) {
698 so
= soalloc(1, dom
, type
);
705 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_domain_local_total
);
708 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_domain_inet_total
);
709 if (type
== SOCK_STREAM
) {
710 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_inet_stream_total
);
712 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_inet_dgram_total
);
716 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_domain_route_total
);
719 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_domain_ndrv_total
);
722 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_domain_key_total
);
725 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_domain_inet6_total
);
726 if (type
== SOCK_STREAM
) {
727 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_inet6_stream_total
);
729 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_inet6_dgram_total
);
733 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_domain_system_total
);
736 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_domain_multipath_total
);
739 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_domain_other_total
);
743 if (flags
& SOCF_MPTCP
) {
744 so
->so_state
|= SS_NBIO
;
747 TAILQ_INIT(&so
->so_incomp
);
748 TAILQ_INIT(&so
->so_comp
);
750 so
->last_upid
= proc_uniqueid(p
);
751 so
->last_pid
= proc_pid(p
);
752 proc_getexecutableuuid(p
, so
->last_uuid
, sizeof(so
->last_uuid
));
753 proc_pidoriginatoruuid(so
->so_vuuid
, sizeof(so
->so_vuuid
));
755 if (ep
!= PROC_NULL
&& ep
!= p
) {
756 so
->e_upid
= proc_uniqueid(ep
);
757 so
->e_pid
= proc_pid(ep
);
758 proc_getexecutableuuid(ep
, so
->e_uuid
, sizeof(so
->e_uuid
));
759 so
->so_flags
|= SOF_DELEGATED
;
762 so
->so_cred
= kauth_cred_proc_ref(p
);
763 if (!suser(kauth_cred_get(), NULL
)) {
764 so
->so_state
|= SS_PRIV
;
768 so
->so_rcv
.sb_flags
|= SB_RECV
;
769 so
->so_rcv
.sb_so
= so
->so_snd
.sb_so
= so
;
770 so
->next_lock_lr
= 0;
771 so
->next_unlock_lr
= 0;
773 #if CONFIG_MACF_SOCKET
774 mac_socket_label_associate(kauth_cred_get(), so
);
775 #endif /* MAC_SOCKET */
778 * Attachment will create the per pcb lock if necessary and
779 * increase refcount for creation, make sure it's done before
780 * socket is inserted in lists.
784 error
= (*prp
->pr_usrreqs
->pru_attach
)(so
, proto
, p
);
788 * If so_pcb is not zero, the socket will be leaked,
789 * so protocol attachment handler must be coded carefuly
791 so
->so_state
|= SS_NOFDREF
;
792 VERIFY(so
->so_usecount
> 0);
794 sofreelastref(so
, 1); /* will deallocate the socket */
799 * Note: needs so_pcb to be set after pru_attach
801 if (prp
->pr_update_last_owner
!= NULL
) {
802 (*prp
->pr_update_last_owner
)(so
, p
, ep
);
805 atomic_add_32(&prp
->pr_domain
->dom_refs
, 1);
806 TAILQ_INIT(&so
->so_evlist
);
808 /* Attach socket filters for this protocol */
811 if (tcpconsdebug
== 2) {
812 so
->so_options
|= SO_DEBUG
;
815 so_set_default_traffic_class(so
);
818 * If this thread or task is marked to create backgrounded sockets,
819 * mark the socket as background.
821 if (!(flags
& SOCF_MPTCP
) &&
822 proc_get_effective_thread_policy(current_thread(), TASK_POLICY_NEW_SOCKETS_BG
)) {
823 socket_set_traffic_mgt_flags(so
, TRAFFIC_MGT_SO_BACKGROUND
);
824 so
->so_background_thread
= current_thread();
829 * Don't mark Unix domain or system
830 * eligible for defunct by default.
834 so
->so_flags
|= SOF_NODEFUNCT
;
841 * Entitlements can't be checked at socket creation time except if the
842 * application requested a feature guarded by a privilege (c.f., socket
844 * The priv(9) and the Sandboxing APIs are designed with the idea that
845 * a privilege check should only be triggered by a userland request.
846 * A privilege check at socket creation time is time consuming and
847 * could trigger many authorisation error messages from the security
862 * <pru_attach>:ENOBUFS[AF_UNIX]
863 * <pru_attach>:ENOBUFS[TCP]
864 * <pru_attach>:ENOMEM[TCP]
865 * <pru_attach>:??? [other protocol families, IPSEC]
868 socreate(int dom
, struct socket
**aso
, int type
, int proto
)
870 return socreate_internal(dom
, aso
, type
, proto
, current_proc(), 0,
875 socreate_delegate(int dom
, struct socket
**aso
, int type
, int proto
, pid_t epid
)
878 struct proc
*ep
= PROC_NULL
;
880 if ((proc_selfpid() != epid
) && ((ep
= proc_find(epid
)) == PROC_NULL
)) {
885 error
= socreate_internal(dom
, aso
, type
, proto
, current_proc(), 0, ep
);
888 * It might not be wise to hold the proc reference when calling
889 * socreate_internal since it calls soalloc with M_WAITOK
892 if (ep
!= PROC_NULL
) {
901 * <pru_bind>:EINVAL Invalid argument [COMMON_START]
902 * <pru_bind>:EAFNOSUPPORT Address family not supported
903 * <pru_bind>:EADDRNOTAVAIL Address not available.
904 * <pru_bind>:EINVAL Invalid argument
905 * <pru_bind>:EAFNOSUPPORT Address family not supported [notdef]
906 * <pru_bind>:EACCES Permission denied
907 * <pru_bind>:EADDRINUSE Address in use
908 * <pru_bind>:EAGAIN Resource unavailable, try again
909 * <pru_bind>:EPERM Operation not permitted
913 * Notes: It's not possible to fully enumerate the return codes above,
914 * since socket filter authors and protocol family authors may
915 * not choose to limit their error returns to those listed, even
916 * though this may result in some software operating incorrectly.
918 * The error codes which are enumerated above are those known to
919 * be returned by the tcp_usr_bind function supplied.
922 sobindlock(struct socket
*so
, struct sockaddr
*nam
, int dolock
)
924 struct proc
*p
= current_proc();
931 so_update_last_owner_locked(so
, p
);
932 so_update_policy(so
);
935 so_update_necp_policy(so
, nam
, NULL
);
939 * If this is a bind request on a socket that has been marked
940 * as inactive, reject it now before we go any further.
942 if (so
->so_flags
& SOF_DEFUNCT
) {
944 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] (%d)\n",
945 __func__
, proc_pid(p
), proc_best_name(p
),
946 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
),
947 SOCK_DOM(so
), SOCK_TYPE(so
), error
);
952 error
= sflt_bind(so
, nam
);
955 error
= (*so
->so_proto
->pr_usrreqs
->pru_bind
)(so
, nam
, p
);
959 socket_unlock(so
, 1);
962 if (error
== EJUSTRETURN
) {
970 sodealloc(struct socket
*so
)
972 kauth_cred_unref(&so
->so_cred
);
974 /* Remove any filters */
978 cfil_sock_detach(so
);
979 #endif /* CONTENT_FILTER */
981 /* Delete the state allocated for msg queues on a socket */
982 if (so
->so_flags
& SOF_ENABLE_MSGS
) {
983 FREE(so
->so_msg_state
, M_TEMP
);
984 so
->so_msg_state
= NULL
;
986 VERIFY(so
->so_msg_state
== NULL
);
988 so
->so_gencnt
= OSIncrementAtomic64((SInt64
*)&so_gencnt
);
990 #if CONFIG_MACF_SOCKET
991 mac_socket_label_destroy(so
);
992 #endif /* MAC_SOCKET */
994 if (so
->so_flags1
& SOF1_CACHED_IN_SOCK_LAYER
) {
995 cached_sock_free(so
);
997 FREE_ZONE(so
, sizeof(*so
), so
->so_zone
);
1002 * Returns: 0 Success
1005 * <pru_listen>:EINVAL[AF_UNIX]
1006 * <pru_listen>:EINVAL[TCP]
1007 * <pru_listen>:EADDRNOTAVAIL[TCP] Address not available.
1008 * <pru_listen>:EINVAL[TCP] Invalid argument
1009 * <pru_listen>:EAFNOSUPPORT[TCP] Address family not supported [notdef]
1010 * <pru_listen>:EACCES[TCP] Permission denied
1011 * <pru_listen>:EADDRINUSE[TCP] Address in use
1012 * <pru_listen>:EAGAIN[TCP] Resource unavailable, try again
1013 * <pru_listen>:EPERM[TCP] Operation not permitted
1016 * Notes: Other <pru_listen> returns depend on the protocol family; all
1017 * <sf_listen> returns depend on what the filter author causes
1018 * their filter to return.
1021 solisten(struct socket
*so
, int backlog
)
1023 struct proc
*p
= current_proc();
1028 so_update_last_owner_locked(so
, p
);
1029 so_update_policy(so
);
1032 so_update_necp_policy(so
, NULL
, NULL
);
1035 if (so
->so_proto
== NULL
) {
1039 if ((so
->so_proto
->pr_flags
& PR_CONNREQUIRED
) == 0) {
1045 * If the listen request is made on a socket that is not fully
1046 * disconnected, or on a socket that has been marked as inactive,
1047 * reject the request now.
1050 (SS_ISCONNECTED
| SS_ISCONNECTING
| SS_ISDISCONNECTING
)) ||
1051 (so
->so_flags
& SOF_DEFUNCT
)) {
1053 if (so
->so_flags
& SOF_DEFUNCT
) {
1054 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] "
1055 "(%d)\n", __func__
, proc_pid(p
),
1057 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
),
1058 SOCK_DOM(so
), SOCK_TYPE(so
), error
);
1063 if ((so
->so_restrictions
& SO_RESTRICT_DENY_IN
) != 0) {
1068 error
= sflt_listen(so
);
1070 error
= (*so
->so_proto
->pr_usrreqs
->pru_listen
)(so
, p
);
1074 if (error
== EJUSTRETURN
) {
1080 if (TAILQ_EMPTY(&so
->so_comp
)) {
1081 so
->so_options
|= SO_ACCEPTCONN
;
1084 * POSIX: The implementation may have an upper limit on the length of
1085 * the listen queue-either global or per accepting socket. If backlog
1086 * exceeds this limit, the length of the listen queue is set to the
1089 * If listen() is called with a backlog argument value that is less
1090 * than 0, the function behaves as if it had been called with a backlog
1091 * argument value of 0.
1093 * A backlog argument of 0 may allow the socket to accept connections,
1094 * in which case the length of the listen queue may be set to an
1095 * implementation-defined minimum value.
1097 if (backlog
<= 0 || backlog
> somaxconn
) {
1098 backlog
= somaxconn
;
1101 so
->so_qlimit
= backlog
;
1103 socket_unlock(so
, 1);
1108 * The "accept list lock" protects the fields related to the listener queues
1109 * because we can unlock a socket to respect the lock ordering between
1110 * the listener socket and its clients sockets. The lock ordering is first to
1111 * acquire the client socket before the listener socket.
1113 * The accept list lock serializes access to the following fields:
1114 * - of the listener socket:
1119 * - of client sockets that are in so_comp or so_incomp:
1123 * As one can see the accept list lock protects the consistent of the
1124 * linkage of the client sockets.
1126 * Note that those fields may be read without holding the accept list lock
1127 * for a preflight provided the accept list lock is taken when committing
1128 * to take an action based on the result of the preflight. The preflight
1129 * saves the cost of doing the unlock/lock dance.
1132 so_acquire_accept_list(struct socket
*head
, struct socket
*so
)
1134 lck_mtx_t
*mutex_held
;
1136 if (head
->so_proto
->pr_getlock
== NULL
) {
1139 mutex_held
= (*head
->so_proto
->pr_getlock
)(head
, PR_F_WILLUNLOCK
);
1140 LCK_MTX_ASSERT(mutex_held
, LCK_MTX_ASSERT_OWNED
);
1142 if (!(head
->so_flags1
& SOF1_ACCEPT_LIST_HELD
)) {
1143 head
->so_flags1
|= SOF1_ACCEPT_LIST_HELD
;
1147 socket_unlock(so
, 0);
1149 while (head
->so_flags1
& SOF1_ACCEPT_LIST_HELD
) {
1150 so_accept_list_waits
+= 1;
1151 msleep((caddr_t
)&head
->so_incomp
, mutex_held
,
1152 PSOCK
| PCATCH
, __func__
, NULL
);
1154 head
->so_flags1
|= SOF1_ACCEPT_LIST_HELD
;
1156 socket_unlock(head
, 0);
1158 socket_lock(head
, 0);
1163 so_release_accept_list(struct socket
*head
)
1165 if (head
->so_proto
->pr_getlock
!= NULL
) {
1166 lck_mtx_t
*mutex_held
;
1168 mutex_held
= (*head
->so_proto
->pr_getlock
)(head
, 0);
1169 LCK_MTX_ASSERT(mutex_held
, LCK_MTX_ASSERT_OWNED
);
1171 head
->so_flags1
&= ~SOF1_ACCEPT_LIST_HELD
;
1172 wakeup((caddr_t
)&head
->so_incomp
);
1177 sofreelastref(struct socket
*so
, int dealloc
)
1179 struct socket
*head
= so
->so_head
;
1181 /* Assume socket is locked */
1183 if (!(so
->so_flags
& SOF_PCBCLEARING
) || !(so
->so_state
& SS_NOFDREF
)) {
1184 selthreadclear(&so
->so_snd
.sb_sel
);
1185 selthreadclear(&so
->so_rcv
.sb_sel
);
1186 so
->so_rcv
.sb_flags
&= ~(SB_SEL
| SB_UPCALL
);
1187 so
->so_snd
.sb_flags
&= ~(SB_SEL
| SB_UPCALL
);
1188 so
->so_event
= sonullevent
;
1193 * Need to lock the listener when the protocol has
1196 if (head
->so_proto
->pr_getlock
!= NULL
) {
1197 socket_lock(head
, 1);
1198 so_acquire_accept_list(head
, so
);
1200 if (so
->so_state
& SS_INCOMP
) {
1201 so
->so_state
&= ~SS_INCOMP
;
1202 TAILQ_REMOVE(&head
->so_incomp
, so
, so_list
);
1207 if (head
->so_proto
->pr_getlock
!= NULL
) {
1208 so_release_accept_list(head
);
1209 socket_unlock(head
, 1);
1211 } else if (so
->so_state
& SS_COMP
) {
1212 if (head
->so_proto
->pr_getlock
!= NULL
) {
1213 so_release_accept_list(head
);
1214 socket_unlock(head
, 1);
1217 * We must not decommission a socket that's
1218 * on the accept(2) queue. If we do, then
1219 * accept(2) may hang after select(2) indicated
1220 * that the listening socket was ready.
1222 selthreadclear(&so
->so_snd
.sb_sel
);
1223 selthreadclear(&so
->so_rcv
.sb_sel
);
1224 so
->so_rcv
.sb_flags
&= ~(SB_SEL
| SB_UPCALL
);
1225 so
->so_snd
.sb_flags
&= ~(SB_SEL
| SB_UPCALL
);
1226 so
->so_event
= sonullevent
;
1229 if (head
->so_proto
->pr_getlock
!= NULL
) {
1230 so_release_accept_list(head
);
1231 socket_unlock(head
, 1);
1233 printf("sofree: not queued\n");
1240 if (so
->so_flags
& SOF_FLOW_DIVERT
) {
1241 flow_divert_detach(so
);
1243 #endif /* FLOW_DIVERT */
1245 /* 3932268: disable upcall */
1246 so
->so_rcv
.sb_flags
&= ~SB_UPCALL
;
1247 so
->so_snd
.sb_flags
&= ~(SB_UPCALL
| SB_SNDBYTE_CNT
);
1248 so
->so_event
= sonullevent
;
1256 soclose_wait_locked(struct socket
*so
)
1258 lck_mtx_t
*mutex_held
;
1260 if (so
->so_proto
->pr_getlock
!= NULL
) {
1261 mutex_held
= (*so
->so_proto
->pr_getlock
)(so
, PR_F_WILLUNLOCK
);
1263 mutex_held
= so
->so_proto
->pr_domain
->dom_mtx
;
1265 LCK_MTX_ASSERT(mutex_held
, LCK_MTX_ASSERT_OWNED
);
1268 * Double check here and return if there's no outstanding upcall;
1269 * otherwise proceed further only if SOF_UPCALLCLOSEWAIT is set.
1271 if (!so
->so_upcallusecount
|| !(so
->so_flags
& SOF_UPCALLCLOSEWAIT
)) {
1274 so
->so_rcv
.sb_flags
&= ~SB_UPCALL
;
1275 so
->so_snd
.sb_flags
&= ~SB_UPCALL
;
1276 so
->so_flags
|= SOF_CLOSEWAIT
;
1278 (void) msleep((caddr_t
)&so
->so_upcallusecount
, mutex_held
, (PZERO
- 1),
1279 "soclose_wait_locked", NULL
);
1280 LCK_MTX_ASSERT(mutex_held
, LCK_MTX_ASSERT_OWNED
);
1281 so
->so_flags
&= ~SOF_CLOSEWAIT
;
1285 * Close a socket on last file table reference removal.
1286 * Initiate disconnect if connected.
1287 * Free socket when disconnect complete.
1290 soclose_locked(struct socket
*so
)
1295 if (so
->so_usecount
== 0) {
1296 panic("soclose: so=%p refcount=0\n", so
);
1300 sflt_notify(so
, sock_evt_closing
, NULL
);
1302 if (so
->so_upcallusecount
) {
1303 soclose_wait_locked(so
);
1308 * We have to wait until the content filters are done
1310 if ((so
->so_flags
& SOF_CONTENT_FILTER
) != 0) {
1311 cfil_sock_close_wait(so
);
1312 cfil_sock_is_closed(so
);
1313 cfil_sock_detach(so
);
1315 #endif /* CONTENT_FILTER */
1317 if (so
->so_flags1
& SOF1_EXTEND_BK_IDLE_INPROG
) {
1318 soresume(current_proc(), so
, 1);
1319 so
->so_flags1
&= ~SOF1_EXTEND_BK_IDLE_WANTED
;
1322 if ((so
->so_options
& SO_ACCEPTCONN
)) {
1323 struct socket
*sp
, *sonext
;
1324 int persocklock
= 0;
1325 int incomp_overflow_only
;
1328 * We do not want new connection to be added
1329 * to the connection queues
1331 so
->so_options
&= ~SO_ACCEPTCONN
;
1334 * We can drop the lock on the listener once
1335 * we've acquired the incoming list
1337 if (so
->so_proto
->pr_getlock
!= NULL
) {
1339 so_acquire_accept_list(so
, NULL
);
1340 socket_unlock(so
, 0);
1343 incomp_overflow_only
= 1;
1345 TAILQ_FOREACH_SAFE(sp
, &so
->so_incomp
, so_list
, sonext
) {
1348 * skip sockets thrown away by tcpdropdropblreq
1349 * they will get cleanup by the garbage collection.
1350 * otherwise, remove the incomp socket from the queue
1351 * and let soabort trigger the appropriate cleanup.
1353 if (sp
->so_flags
& SOF_OVERFLOW
) {
1357 if (persocklock
!= 0) {
1363 * The extra reference for the list insure the
1364 * validity of the socket pointer when we perform the
1365 * unlock of the head above
1367 if (sp
->so_state
& SS_INCOMP
) {
1368 sp
->so_state
&= ~SS_INCOMP
;
1370 TAILQ_REMOVE(&so
->so_incomp
, sp
, so_list
);
1376 panic("%s sp %p in so_incomp but !SS_INCOMP",
1380 if (persocklock
!= 0) {
1381 socket_unlock(sp
, 1);
1385 TAILQ_FOREACH_SAFE(sp
, &so
->so_comp
, so_list
, sonext
) {
1386 /* Dequeue from so_comp since sofree() won't do it */
1387 if (persocklock
!= 0) {
1391 if (sp
->so_state
& SS_COMP
) {
1392 sp
->so_state
&= ~SS_COMP
;
1394 TAILQ_REMOVE(&so
->so_comp
, sp
, so_list
);
1399 panic("%s sp %p in so_comp but !SS_COMP",
1404 socket_unlock(sp
, 1);
1408 if (incomp_overflow_only
== 0 && !TAILQ_EMPTY(&so
->so_incomp
)) {
1409 #if (DEBUG | DEVELOPMENT)
1410 panic("%s head %p so_comp not empty\n", __func__
, so
);
1411 #endif /* (DEVELOPMENT || DEBUG) */
1416 if (!TAILQ_EMPTY(&so
->so_comp
)) {
1417 #if (DEBUG | DEVELOPMENT)
1418 panic("%s head %p so_comp not empty\n", __func__
, so
);
1419 #endif /* (DEVELOPMENT || DEBUG) */
1426 so_release_accept_list(so
);
1429 if (so
->so_pcb
== NULL
) {
1430 /* 3915887: mark the socket as ready for dealloc */
1431 so
->so_flags
|= SOF_PCBCLEARING
;
1434 if (so
->so_state
& SS_ISCONNECTED
) {
1435 if ((so
->so_state
& SS_ISDISCONNECTING
) == 0) {
1436 error
= sodisconnectlocked(so
);
1441 if (so
->so_options
& SO_LINGER
) {
1442 lck_mtx_t
*mutex_held
;
1444 if ((so
->so_state
& SS_ISDISCONNECTING
) &&
1445 (so
->so_state
& SS_NBIO
)) {
1448 if (so
->so_proto
->pr_getlock
!= NULL
) {
1449 mutex_held
= (*so
->so_proto
->pr_getlock
)(so
, PR_F_WILLUNLOCK
);
1451 mutex_held
= so
->so_proto
->pr_domain
->dom_mtx
;
1453 while (so
->so_state
& SS_ISCONNECTED
) {
1454 ts
.tv_sec
= (so
->so_linger
/ 100);
1455 ts
.tv_nsec
= (so
->so_linger
% 100) *
1456 NSEC_PER_USEC
* 1000 * 10;
1457 error
= msleep((caddr_t
)&so
->so_timeo
,
1458 mutex_held
, PSOCK
| PCATCH
, "soclose", &ts
);
1461 * It's OK when the time fires,
1462 * don't report an error
1464 if (error
== EWOULDBLOCK
) {
1473 if (so
->so_usecount
== 0) {
1474 panic("soclose: usecount is zero so=%p\n", so
);
1477 if (so
->so_pcb
!= NULL
&& !(so
->so_flags
& SOF_PCBCLEARING
)) {
1478 int error2
= (*so
->so_proto
->pr_usrreqs
->pru_detach
)(so
);
1483 if (so
->so_usecount
<= 0) {
1484 panic("soclose: usecount is zero so=%p\n", so
);
1488 if (so
->so_pcb
!= NULL
&& !(so
->so_flags
& SOF_MP_SUBFLOW
) &&
1489 (so
->so_state
& SS_NOFDREF
)) {
1490 panic("soclose: NOFDREF");
1493 so
->so_state
|= SS_NOFDREF
;
1495 if ((so
->so_flags
& SOF_KNOTE
) != 0) {
1496 KNOTE(&so
->so_klist
, SO_FILT_HINT_LOCKED
);
1499 atomic_add_32(&so
->so_proto
->pr_domain
->dom_refs
, -1);
1502 VERIFY(so
->so_usecount
> 0);
1509 soclose(struct socket
*so
)
1514 if (so
->so_retaincnt
== 0) {
1515 error
= soclose_locked(so
);
1518 * if the FD is going away, but socket is
1519 * retained in kernel remove its reference
1522 if (so
->so_usecount
< 2) {
1523 panic("soclose: retaincnt non null and so=%p "
1524 "usecount=%d\n", so
, so
->so_usecount
);
1527 socket_unlock(so
, 1);
1532 * Must be called at splnet...
1534 /* Should already be locked */
1536 soabort(struct socket
*so
)
1540 #ifdef MORE_LOCKING_DEBUG
1541 lck_mtx_t
*mutex_held
;
1543 if (so
->so_proto
->pr_getlock
!= NULL
) {
1544 mutex_held
= (*so
->so_proto
->pr_getlock
)(so
, 0);
1546 mutex_held
= so
->so_proto
->pr_domain
->dom_mtx
;
1548 LCK_MTX_ASSERT(mutex_held
, LCK_MTX_ASSERT_OWNED
);
1551 if ((so
->so_flags
& SOF_ABORTED
) == 0) {
1552 so
->so_flags
|= SOF_ABORTED
;
1553 error
= (*so
->so_proto
->pr_usrreqs
->pru_abort
)(so
);
1563 soacceptlock(struct socket
*so
, struct sockaddr
**nam
, int dolock
)
1571 so_update_last_owner_locked(so
, PROC_NULL
);
1572 so_update_policy(so
);
1574 so_update_necp_policy(so
, NULL
, NULL
);
1577 if ((so
->so_state
& SS_NOFDREF
) == 0) {
1578 panic("soaccept: !NOFDREF");
1580 so
->so_state
&= ~SS_NOFDREF
;
1581 error
= (*so
->so_proto
->pr_usrreqs
->pru_accept
)(so
, nam
);
1584 socket_unlock(so
, 1);
1590 soaccept(struct socket
*so
, struct sockaddr
**nam
)
1592 return soacceptlock(so
, nam
, 1);
1596 soacceptfilter(struct socket
*so
, struct socket
*head
)
1598 struct sockaddr
*local
= NULL
, *remote
= NULL
;
1602 * Hold the lock even if this socket has not been made visible
1603 * to the filter(s). For sockets with global locks, this protects
1604 * against the head or peer going away
1607 if (sogetaddr_locked(so
, &remote
, 1) != 0 ||
1608 sogetaddr_locked(so
, &local
, 0) != 0) {
1609 so
->so_state
&= ~SS_NOFDREF
;
1610 socket_unlock(so
, 1);
1612 /* Out of resources; try it again next time */
1613 error
= ECONNABORTED
;
1617 error
= sflt_accept(head
, so
, local
, remote
);
1620 * If we get EJUSTRETURN from one of the filters, mark this socket
1621 * as inactive and return it anyway. This newly accepted socket
1622 * will be disconnected later before we hand it off to the caller.
1624 if (error
== EJUSTRETURN
) {
1626 (void) sosetdefunct(current_proc(), so
,
1627 SHUTDOWN_SOCKET_LEVEL_DISCONNECT_INTERNAL
, FALSE
);
1632 * This may seem like a duplication to the above error
1633 * handling part when we return ECONNABORTED, except
1634 * the following is done while holding the lock since
1635 * the socket has been exposed to the filter(s) earlier.
1637 so
->so_state
&= ~SS_NOFDREF
;
1638 socket_unlock(so
, 1);
1640 /* Propagate socket filter's error code to the caller */
1642 socket_unlock(so
, 1);
1645 /* Callee checks for NULL pointer */
1646 sock_freeaddr(remote
);
1647 sock_freeaddr(local
);
1652 * Returns: 0 Success
1653 * EOPNOTSUPP Operation not supported on socket
1654 * EISCONN Socket is connected
1655 * <pru_connect>:EADDRNOTAVAIL Address not available.
1656 * <pru_connect>:EINVAL Invalid argument
1657 * <pru_connect>:EAFNOSUPPORT Address family not supported [notdef]
1658 * <pru_connect>:EACCES Permission denied
1659 * <pru_connect>:EADDRINUSE Address in use
1660 * <pru_connect>:EAGAIN Resource unavailable, try again
1661 * <pru_connect>:EPERM Operation not permitted
1662 * <sf_connect_out>:??? [anything a filter writer might set]
1665 soconnectlock(struct socket
*so
, struct sockaddr
*nam
, int dolock
)
1668 struct proc
*p
= current_proc();
1674 so_update_last_owner_locked(so
, p
);
1675 so_update_policy(so
);
1678 so_update_necp_policy(so
, NULL
, nam
);
1682 * If this is a listening socket or if this is a previously-accepted
1683 * socket that has been marked as inactive, reject the connect request.
1685 if ((so
->so_options
& SO_ACCEPTCONN
) || (so
->so_flags
& SOF_DEFUNCT
)) {
1687 if (so
->so_flags
& SOF_DEFUNCT
) {
1688 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] "
1689 "(%d)\n", __func__
, proc_pid(p
),
1691 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
),
1692 SOCK_DOM(so
), SOCK_TYPE(so
), error
);
1695 socket_unlock(so
, 1);
1700 if ((so
->so_restrictions
& SO_RESTRICT_DENY_OUT
) != 0) {
1702 socket_unlock(so
, 1);
1708 * If protocol is connection-based, can only connect once.
1709 * Otherwise, if connected, try to disconnect first.
1710 * This allows user to disconnect by connecting to, e.g.,
1713 if (so
->so_state
& (SS_ISCONNECTED
| SS_ISCONNECTING
) &&
1714 ((so
->so_proto
->pr_flags
& PR_CONNREQUIRED
) ||
1715 (error
= sodisconnectlocked(so
)))) {
1719 * Run connect filter before calling protocol:
1720 * - non-blocking connect returns before completion;
1722 error
= sflt_connectout(so
, nam
);
1724 if (error
== EJUSTRETURN
) {
1728 error
= (*so
->so_proto
->pr_usrreqs
->pru_connect
)
1733 socket_unlock(so
, 1);
1739 soconnect(struct socket
*so
, struct sockaddr
*nam
)
1741 return soconnectlock(so
, nam
, 1);
1745 * Returns: 0 Success
1746 * <pru_connect2>:EINVAL[AF_UNIX]
1747 * <pru_connect2>:EPROTOTYPE[AF_UNIX]
1748 * <pru_connect2>:??? [other protocol families]
1750 * Notes: <pru_connect2> is not supported by [TCP].
1753 soconnect2(struct socket
*so1
, struct socket
*so2
)
1757 socket_lock(so1
, 1);
1758 if (so2
->so_proto
->pr_lock
) {
1759 socket_lock(so2
, 1);
1762 error
= (*so1
->so_proto
->pr_usrreqs
->pru_connect2
)(so1
, so2
);
1764 socket_unlock(so1
, 1);
1765 if (so2
->so_proto
->pr_lock
) {
1766 socket_unlock(so2
, 1);
1772 soconnectxlocked(struct socket
*so
, struct sockaddr
*src
,
1773 struct sockaddr
*dst
, struct proc
*p
, uint32_t ifscope
,
1774 sae_associd_t aid
, sae_connid_t
*pcid
, uint32_t flags
, void *arg
,
1775 uint32_t arglen
, uio_t auio
, user_ssize_t
*bytes_written
)
1779 so_update_last_owner_locked(so
, p
);
1780 so_update_policy(so
);
1783 * If this is a listening socket or if this is a previously-accepted
1784 * socket that has been marked as inactive, reject the connect request.
1786 if ((so
->so_options
& SO_ACCEPTCONN
) || (so
->so_flags
& SOF_DEFUNCT
)) {
1788 if (so
->so_flags
& SOF_DEFUNCT
) {
1789 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] "
1790 "(%d)\n", __func__
, proc_pid(p
),
1792 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
),
1793 SOCK_DOM(so
), SOCK_TYPE(so
), error
);
1798 if ((so
->so_restrictions
& SO_RESTRICT_DENY_OUT
) != 0) {
1803 * If protocol is connection-based, can only connect once
1804 * unless PR_MULTICONN is set. Otherwise, if connected,
1805 * try to disconnect first. This allows user to disconnect
1806 * by connecting to, e.g., a null address.
1808 if ((so
->so_state
& (SS_ISCONNECTED
| SS_ISCONNECTING
)) &&
1809 !(so
->so_proto
->pr_flags
& PR_MULTICONN
) &&
1810 ((so
->so_proto
->pr_flags
& PR_CONNREQUIRED
) ||
1811 (error
= sodisconnectlocked(so
)) != 0)) {
1815 * Run connect filter before calling protocol:
1816 * - non-blocking connect returns before completion;
1818 error
= sflt_connectout(so
, dst
);
1820 /* Disable PRECONNECT_DATA, as we don't need to send a SYN anymore. */
1821 so
->so_flags1
&= ~SOF1_PRECONNECT_DATA
;
1822 if (error
== EJUSTRETURN
) {
1826 error
= (*so
->so_proto
->pr_usrreqs
->pru_connectx
)
1827 (so
, src
, dst
, p
, ifscope
, aid
, pcid
,
1828 flags
, arg
, arglen
, auio
, bytes_written
);
1836 sodisconnectlocked(struct socket
*so
)
1840 if ((so
->so_state
& SS_ISCONNECTED
) == 0) {
1844 if (so
->so_state
& SS_ISDISCONNECTING
) {
1849 error
= (*so
->so_proto
->pr_usrreqs
->pru_disconnect
)(so
);
1851 sflt_notify(so
, sock_evt_disconnected
, NULL
);
1858 /* Locking version */
1860 sodisconnect(struct socket
*so
)
1865 error
= sodisconnectlocked(so
);
1866 socket_unlock(so
, 1);
1871 sodisconnectxlocked(struct socket
*so
, sae_associd_t aid
, sae_connid_t cid
)
1876 * Call the protocol disconnectx handler; let it handle all
1877 * matters related to the connection state of this session.
1879 error
= (*so
->so_proto
->pr_usrreqs
->pru_disconnectx
)(so
, aid
, cid
);
1882 * The event applies only for the session, not for
1883 * the disconnection of individual subflows.
1885 if (so
->so_state
& (SS_ISDISCONNECTING
| SS_ISDISCONNECTED
)) {
1886 sflt_notify(so
, sock_evt_disconnected
, NULL
);
1893 sodisconnectx(struct socket
*so
, sae_associd_t aid
, sae_connid_t cid
)
1898 error
= sodisconnectxlocked(so
, aid
, cid
);
1899 socket_unlock(so
, 1);
1903 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
1906 * sosendcheck will lock the socket buffer if it isn't locked and
1907 * verify that there is space for the data being inserted.
1909 * Returns: 0 Success
1911 * sblock:EWOULDBLOCK
1918 sosendcheck(struct socket
*so
, struct sockaddr
*addr
, user_ssize_t resid
,
1919 int32_t clen
, int32_t atomic
, int flags
, int *sblocked
,
1920 struct mbuf
*control
)
1927 if (*sblocked
== 0) {
1928 if ((so
->so_snd
.sb_flags
& SB_LOCK
) != 0 &&
1929 so
->so_send_filt_thread
!= 0 &&
1930 so
->so_send_filt_thread
== current_thread()) {
1932 * We're being called recursively from a filter,
1933 * allow this to continue. Radar 4150520.
1934 * Don't set sblocked because we don't want
1935 * to perform an unlock later.
1939 error
= sblock(&so
->so_snd
, SBLOCKWAIT(flags
));
1941 if (so
->so_flags
& SOF_DEFUNCT
) {
1951 * If a send attempt is made on a socket that has been marked
1952 * as inactive (disconnected), reject the request.
1954 if (so
->so_flags
& SOF_DEFUNCT
) {
1957 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] (%d)\n",
1958 __func__
, proc_selfpid(), proc_best_name(current_proc()),
1959 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
),
1960 SOCK_DOM(so
), SOCK_TYPE(so
), error
);
1964 if (so
->so_state
& SS_CANTSENDMORE
) {
1967 * Can re-inject data of half closed connections
1969 if ((so
->so_state
& SS_ISDISCONNECTED
) == 0 &&
1970 so
->so_snd
.sb_cfil_thread
== current_thread() &&
1971 cfil_sock_data_pending(&so
->so_snd
) != 0) {
1973 "so %llx ignore SS_CANTSENDMORE",
1974 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
));
1976 #endif /* CONTENT_FILTER */
1980 error
= so
->so_error
;
1985 if ((so
->so_state
& SS_ISCONNECTED
) == 0) {
1986 if ((so
->so_proto
->pr_flags
& PR_CONNREQUIRED
) != 0) {
1987 if (((so
->so_state
& SS_ISCONFIRMING
) == 0) &&
1988 (resid
!= 0 || clen
== 0) &&
1989 !(so
->so_flags1
& SOF1_PRECONNECT_DATA
)) {
1992 } else if (addr
== 0) {
1993 return (so
->so_proto
->pr_flags
& PR_CONNREQUIRED
) ?
1994 ENOTCONN
: EDESTADDRREQ
;
1998 if (so
->so_flags
& SOF_ENABLE_MSGS
) {
1999 space
= msgq_sbspace(so
, control
);
2001 space
= sbspace(&so
->so_snd
);
2004 if (flags
& MSG_OOB
) {
2007 if ((atomic
&& resid
> so
->so_snd
.sb_hiwat
) ||
2008 clen
> so
->so_snd
.sb_hiwat
) {
2012 if ((space
< resid
+ clen
&&
2013 (atomic
|| (space
< (int32_t)so
->so_snd
.sb_lowat
) ||
2015 (so
->so_type
== SOCK_STREAM
&& so_wait_for_if_feedback(so
))) {
2017 * don't block the connectx call when there's more data
2018 * than can be copied.
2020 if (so
->so_flags1
& SOF1_PRECONNECT_DATA
) {
2024 if (space
< (int32_t)so
->so_snd
.sb_lowat
) {
2028 if ((so
->so_state
& SS_NBIO
) || (flags
& MSG_NBIO
) ||
2032 sbunlock(&so
->so_snd
, TRUE
); /* keep socket locked */
2034 error
= sbwait(&so
->so_snd
);
2036 if (so
->so_flags
& SOF_DEFUNCT
) {
2048 * If send must go all at once and message is larger than
2049 * send buffering, then hard error.
2050 * Lock against other senders.
2051 * If must go all at once and not enough room now, then
2052 * inform user that this would block and do nothing.
2053 * Otherwise, if nonblocking, send as much as possible.
2054 * The data to be sent is described by "uio" if nonzero,
2055 * otherwise by the mbuf chain "top" (which must be null
2056 * if uio is not). Data provided in mbuf chain must be small
2057 * enough to send all at once.
2059 * Returns nonzero on error, timeout or signal; callers
2060 * must check for short counts if EINTR/ERESTART are returned.
2061 * Data and control buffers are freed on return.
2063 * Returns: 0 Success
2069 * sosendcheck:EWOULDBLOCK
2073 * sosendcheck:??? [value from so_error]
2074 * <pru_send>:ECONNRESET[TCP]
2075 * <pru_send>:EINVAL[TCP]
2076 * <pru_send>:ENOBUFS[TCP]
2077 * <pru_send>:EADDRINUSE[TCP]
2078 * <pru_send>:EADDRNOTAVAIL[TCP]
2079 * <pru_send>:EAFNOSUPPORT[TCP]
2080 * <pru_send>:EACCES[TCP]
2081 * <pru_send>:EAGAIN[TCP]
2082 * <pru_send>:EPERM[TCP]
2083 * <pru_send>:EMSGSIZE[TCP]
2084 * <pru_send>:EHOSTUNREACH[TCP]
2085 * <pru_send>:ENETUNREACH[TCP]
2086 * <pru_send>:ENETDOWN[TCP]
2087 * <pru_send>:ENOMEM[TCP]
2088 * <pru_send>:ENOBUFS[TCP]
2089 * <pru_send>:???[TCP] [ignorable: mostly IPSEC/firewall/DLIL]
2090 * <pru_send>:EINVAL[AF_UNIX]
2091 * <pru_send>:EOPNOTSUPP[AF_UNIX]
2092 * <pru_send>:EPIPE[AF_UNIX]
2093 * <pru_send>:ENOTCONN[AF_UNIX]
2094 * <pru_send>:EISCONN[AF_UNIX]
2095 * <pru_send>:???[AF_UNIX] [whatever a filter author chooses]
2096 * <sf_data_out>:??? [whatever a filter author chooses]
2098 * Notes: Other <pru_send> returns depend on the protocol family; all
2099 * <sf_data_out> returns depend on what the filter author causes
2100 * their filter to return.
2103 sosend(struct socket
*so
, struct sockaddr
*addr
, struct uio
*uio
,
2104 struct mbuf
*top
, struct mbuf
*control
, int flags
)
2107 struct mbuf
*m
, *freelist
= NULL
;
2108 user_ssize_t space
, len
, resid
, orig_resid
;
2109 int clen
= 0, error
, dontroute
, mlen
, sendflags
;
2110 int atomic
= sosendallatonce(so
) || top
;
2112 struct proc
*p
= current_proc();
2113 struct mbuf
*control_copy
= NULL
;
2114 uint16_t headroom
= 0;
2115 boolean_t en_tracing
= FALSE
;
2118 resid
= uio_resid(uio
);
2120 resid
= top
->m_pkthdr
.len
;
2123 KERNEL_DEBUG((DBG_FNC_SOSEND
| DBG_FUNC_START
), so
, resid
,
2124 so
->so_snd
.sb_cc
, so
->so_snd
.sb_lowat
, so
->so_snd
.sb_hiwat
);
2129 * trace if tracing & network (vs. unix) sockets & and
2132 if (ENTR_SHOULDTRACE
&&
2133 (SOCK_CHECK_DOM(so
, AF_INET
) || SOCK_CHECK_DOM(so
, AF_INET6
))) {
2134 struct inpcb
*inp
= sotoinpcb(so
);
2135 if (inp
->inp_last_outifp
!= NULL
&&
2136 !(inp
->inp_last_outifp
->if_flags
& IFF_LOOPBACK
)) {
2138 KERNEL_ENERGYTRACE(kEnTrActKernSockWrite
, DBG_FUNC_START
,
2139 VM_KERNEL_ADDRPERM(so
),
2140 ((so
->so_state
& SS_NBIO
) ? kEnTrFlagNonBlocking
: 0),
2147 * Re-injection should not affect process accounting
2149 if ((flags
& MSG_SKIPCFIL
) == 0) {
2150 so_update_last_owner_locked(so
, p
);
2151 so_update_policy(so
);
2154 so_update_necp_policy(so
, NULL
, addr
);
2158 if (so
->so_type
!= SOCK_STREAM
&& (flags
& MSG_OOB
) != 0) {
2164 * In theory resid should be unsigned.
2165 * However, space must be signed, as it might be less than 0
2166 * if we over-committed, and we must use a signed comparison
2167 * of space and resid. On the other hand, a negative resid
2168 * causes us to loop sending 0-length segments to the protocol.
2170 * Usually, MSG_EOR isn't used on SOCK_STREAM type sockets.
2171 * But it will be used by sockets doing message delivery.
2173 * Note: We limit resid to be a positive int value as we use
2174 * imin() to set bytes_to_copy -- radr://14558484
2176 if (resid
< 0 || resid
> INT_MAX
|| (so
->so_type
== SOCK_STREAM
&&
2177 !(so
->so_flags
& SOF_ENABLE_MSGS
) && (flags
& MSG_EOR
))) {
2182 dontroute
= (flags
& MSG_DONTROUTE
) &&
2183 (so
->so_options
& SO_DONTROUTE
) == 0 &&
2184 (so
->so_proto
->pr_flags
& PR_ATOMIC
);
2185 OSIncrementAtomicLong(&p
->p_stats
->p_ru
.ru_msgsnd
);
2187 if (control
!= NULL
) {
2188 clen
= control
->m_len
;
2191 if (soreserveheadroom
!= 0) {
2192 headroom
= so
->so_pktheadroom
;
2196 error
= sosendcheck(so
, addr
, resid
, clen
, atomic
, flags
,
2197 &sblocked
, control
);
2203 if (so
->so_flags
& SOF_ENABLE_MSGS
) {
2204 space
= msgq_sbspace(so
, control
);
2206 space
= sbspace(&so
->so_snd
) - clen
;
2208 space
+= ((flags
& MSG_OOB
) ? 1024 : 0);
2213 * Data is prepackaged in "top".
2216 if (flags
& MSG_EOR
) {
2217 top
->m_flags
|= M_EOR
;
2226 bytes_to_copy
= imin(resid
, space
);
2228 bytes_to_alloc
= bytes_to_copy
;
2230 bytes_to_alloc
+= headroom
;
2233 if (sosendminchain
> 0) {
2236 chainlength
= sosendmaxchain
;
2240 * Use big 4 KB cluster when the outgoing interface
2241 * does not prefer 2 KB clusters
2243 bigcl
= !(so
->so_flags1
& SOF1_IF_2KCL
) ||
2244 sosendbigcl_ignore_capab
;
2247 * Attempt to use larger than system page-size
2248 * clusters for large writes only if there is
2249 * a jumbo cluster pool and if the socket is
2250 * marked accordingly.
2252 jumbocl
= sosendjcl
&& njcl
> 0 &&
2253 ((so
->so_flags
& SOF_MULTIPAGES
) ||
2254 sosendjcl_ignore_capab
) &&
2257 socket_unlock(so
, 0);
2261 int hdrs_needed
= (top
== NULL
) ? 1 : 0;
2264 * try to maintain a local cache of mbuf
2265 * clusters needed to complete this
2266 * write the list is further limited to
2267 * the number that are currently needed
2268 * to fill the socket this mechanism
2269 * allows a large number of mbufs/
2270 * clusters to be grabbed under a single
2271 * mbuf lock... if we can't get any
2272 * clusters, than fall back to trying
2273 * for mbufs if we fail early (or
2274 * miscalcluate the number needed) make
2275 * sure to release any clusters we
2276 * haven't yet consumed.
2278 if (freelist
== NULL
&&
2279 bytes_to_alloc
> MBIGCLBYTES
&&
2282 bytes_to_alloc
/ M16KCLBYTES
;
2284 if ((bytes_to_alloc
-
2285 (num_needed
* M16KCLBYTES
))
2291 m_getpackets_internal(
2292 (unsigned int *)&num_needed
,
2293 hdrs_needed
, M_WAIT
, 0,
2296 * Fall back to 4K cluster size
2297 * if allocation failed
2301 if (freelist
== NULL
&&
2302 bytes_to_alloc
> MCLBYTES
&&
2305 bytes_to_alloc
/ MBIGCLBYTES
;
2307 if ((bytes_to_alloc
-
2308 (num_needed
* MBIGCLBYTES
)) >=
2314 m_getpackets_internal(
2315 (unsigned int *)&num_needed
,
2316 hdrs_needed
, M_WAIT
, 0,
2319 * Fall back to cluster size
2320 * if allocation failed
2325 * Allocate a cluster as we want to
2326 * avoid to split the data in more
2327 * that one segment and using MINCLSIZE
2328 * would lead us to allocate two mbufs
2330 if (soreserveheadroom
!= 0 &&
2333 bytes_to_alloc
> _MHLEN
) ||
2334 bytes_to_alloc
> _MLEN
)) {
2335 num_needed
= ROUNDUP(bytes_to_alloc
, MCLBYTES
) /
2338 m_getpackets_internal(
2339 (unsigned int *)&num_needed
,
2340 hdrs_needed
, M_WAIT
, 0,
2343 * Fall back to a single mbuf
2344 * if allocation failed
2346 } else if (freelist
== NULL
&&
2347 bytes_to_alloc
> MINCLSIZE
) {
2349 bytes_to_alloc
/ MCLBYTES
;
2351 if ((bytes_to_alloc
-
2352 (num_needed
* MCLBYTES
)) >=
2358 m_getpackets_internal(
2359 (unsigned int *)&num_needed
,
2360 hdrs_needed
, M_WAIT
, 0,
2363 * Fall back to a single mbuf
2364 * if allocation failed
2368 * For datagram protocols, leave
2369 * headroom for protocol headers
2370 * in the first cluster of the chain
2372 if (freelist
!= NULL
&& atomic
&&
2373 top
== NULL
&& headroom
> 0) {
2374 freelist
->m_data
+= headroom
;
2378 * Fall back to regular mbufs without
2379 * reserving the socket headroom
2381 if (freelist
== NULL
) {
2390 if (freelist
== NULL
) {
2396 * For datagram protocols,
2397 * leave room for protocol
2398 * headers in first mbuf.
2400 if (atomic
&& top
== NULL
&&
2401 bytes_to_copy
< MHLEN
) {
2407 freelist
= m
->m_next
;
2410 if ((m
->m_flags
& M_EXT
)) {
2411 mlen
= m
->m_ext
.ext_size
-
2413 } else if ((m
->m_flags
& M_PKTHDR
)) {
2415 MHLEN
- M_LEADINGSPACE(m
);
2417 mlen
= MLEN
- M_LEADINGSPACE(m
);
2419 len
= imin(mlen
, bytes_to_copy
);
2425 error
= uiomove(mtod(m
, caddr_t
),
2428 resid
= uio_resid(uio
);
2432 top
->m_pkthdr
.len
+= len
;
2438 if (flags
& MSG_EOR
) {
2439 top
->m_flags
|= M_EOR
;
2443 bytes_to_copy
= min(resid
, space
);
2444 } while (space
> 0 &&
2445 (chainlength
< sosendmaxchain
|| atomic
||
2446 resid
< MINCLSIZE
));
2456 so
->so_options
|= SO_DONTROUTE
;
2460 * Compute flags here, for pru_send and NKEs
2462 * If the user set MSG_EOF, the protocol
2463 * understands this flag and nothing left to
2464 * send then use PRU_SEND_EOF instead of PRU_SEND.
2466 sendflags
= (flags
& MSG_OOB
) ? PRUS_OOB
:
2467 ((flags
& MSG_EOF
) &&
2468 (so
->so_proto
->pr_flags
& PR_IMPLOPCL
) &&
2469 (resid
<= 0)) ? PRUS_EOF
:
2470 /* If there is more to send set PRUS_MORETOCOME */
2471 (resid
> 0 && space
> 0) ? PRUS_MORETOCOME
: 0;
2473 if ((flags
& MSG_SKIPCFIL
) == 0) {
2475 * Socket filter processing
2477 error
= sflt_data_out(so
, addr
, &top
,
2478 &control
, (sendflags
& MSG_OOB
) ?
2479 sock_data_filt_flag_oob
: 0);
2481 if (error
== EJUSTRETURN
) {
2491 * Content filter processing
2493 error
= cfil_sock_data_out(so
, addr
, top
,
2494 control
, sendflags
);
2496 if (error
== EJUSTRETURN
) {
2504 #endif /* CONTENT_FILTER */
2506 if (so
->so_flags
& SOF_ENABLE_MSGS
) {
2508 * Make a copy of control mbuf,
2509 * so that msg priority can be
2510 * passed to subsequent mbufs.
2512 control_copy
= m_dup(control
, M_NOWAIT
);
2514 error
= (*so
->so_proto
->pr_usrreqs
->pru_send
)
2515 (so
, sendflags
, top
, addr
, control
, p
);
2518 so
->so_options
&= ~SO_DONTROUTE
;
2522 control
= control_copy
;
2523 control_copy
= NULL
;
2529 } while (resid
&& space
> 0);
2534 sbunlock(&so
->so_snd
, FALSE
); /* will unlock socket */
2536 socket_unlock(so
, 1);
2541 if (control
!= NULL
) {
2544 if (freelist
!= NULL
) {
2545 m_freem_list(freelist
);
2547 if (control_copy
!= NULL
) {
2548 m_freem(control_copy
);
2551 soclearfastopen(so
);
2554 /* resid passed here is the bytes left in uio */
2555 KERNEL_ENERGYTRACE(kEnTrActKernSockWrite
, DBG_FUNC_END
,
2556 VM_KERNEL_ADDRPERM(so
),
2557 ((error
== EWOULDBLOCK
) ? kEnTrFlagNoWork
: 0),
2558 (int64_t)(orig_resid
- resid
));
2560 KERNEL_DEBUG(DBG_FNC_SOSEND
| DBG_FUNC_END
, so
, resid
,
2561 so
->so_snd
.sb_cc
, space
, error
);
2567 sosend_reinject(struct socket
*so
, struct sockaddr
*addr
, struct mbuf
*top
, struct mbuf
*control
, uint32_t sendflags
)
2569 struct mbuf
*m0
= NULL
, *control_end
= NULL
;
2571 socket_lock_assert_owned(so
);
2574 * top must points to mbuf chain to be sent.
2575 * If control is not NULL, top must be packet header
2577 VERIFY(top
!= NULL
&&
2578 (control
== NULL
|| top
->m_flags
& M_PKTHDR
));
2581 * If control is not passed in, see if we can get it
2584 if (control
== NULL
&& (top
->m_flags
& M_PKTHDR
) == 0) {
2585 // Locate start of control if present and start of data
2586 for (m0
= top
; m0
!= NULL
; m0
= m0
->m_next
) {
2587 if (m0
->m_flags
& M_PKTHDR
) {
2590 } else if (m0
->m_type
== MT_CONTROL
) {
2591 if (control
== NULL
) {
2592 // Found start of control
2595 if (control
!= NULL
&& m0
->m_next
!= NULL
&& m0
->m_next
->m_type
!= MT_CONTROL
) {
2596 // Found end of control
2601 if (control_end
!= NULL
) {
2602 control_end
->m_next
= NULL
;
2606 int error
= (*so
->so_proto
->pr_usrreqs
->pru_send
)
2607 (so
, sendflags
, top
, addr
, control
, current_proc());
2613 * Supported only connected sockets (no address) without ancillary data
2614 * (control mbuf) for atomic protocols
2617 sosend_list(struct socket
*so
, struct uio
**uioarray
, u_int uiocnt
, int flags
)
2619 struct mbuf
*m
, *freelist
= NULL
;
2620 user_ssize_t len
, resid
;
2621 int error
, dontroute
, mlen
;
2622 int atomic
= sosendallatonce(so
);
2624 struct proc
*p
= current_proc();
2627 struct mbuf
*top
= NULL
;
2628 uint16_t headroom
= 0;
2631 KERNEL_DEBUG((DBG_FNC_SOSEND_LIST
| DBG_FUNC_START
), so
, uiocnt
,
2632 so
->so_snd
.sb_cc
, so
->so_snd
.sb_lowat
, so
->so_snd
.sb_hiwat
);
2634 if (so
->so_type
!= SOCK_DGRAM
) {
2642 if (so
->so_proto
->pr_usrreqs
->pru_send_list
== NULL
) {
2643 error
= EPROTONOSUPPORT
;
2646 if (flags
& ~(MSG_DONTWAIT
| MSG_NBIO
)) {
2650 resid
= uio_array_resid(uioarray
, uiocnt
);
2653 * In theory resid should be unsigned.
2654 * However, space must be signed, as it might be less than 0
2655 * if we over-committed, and we must use a signed comparison
2656 * of space and resid. On the other hand, a negative resid
2657 * causes us to loop sending 0-length segments to the protocol.
2659 * Note: We limit resid to be a positive int value as we use
2660 * imin() to set bytes_to_copy -- radr://14558484
2662 if (resid
< 0 || resid
> INT_MAX
) {
2668 so_update_last_owner_locked(so
, p
);
2669 so_update_policy(so
);
2672 so_update_necp_policy(so
, NULL
, NULL
);
2675 dontroute
= (flags
& MSG_DONTROUTE
) &&
2676 (so
->so_options
& SO_DONTROUTE
) == 0 &&
2677 (so
->so_proto
->pr_flags
& PR_ATOMIC
);
2678 OSIncrementAtomicLong(&p
->p_stats
->p_ru
.ru_msgsnd
);
2680 error
= sosendcheck(so
, NULL
, resid
, 0, atomic
, flags
,
2687 * Use big 4 KB clusters when the outgoing interface does not prefer
2690 bigcl
= !(so
->so_flags1
& SOF1_IF_2KCL
) || sosendbigcl_ignore_capab
;
2692 if (soreserveheadroom
!= 0) {
2693 headroom
= so
->so_pktheadroom
;
2700 size_t maxpktlen
= 0;
2703 if (sosendminchain
> 0) {
2706 chainlength
= sosendmaxchain
;
2709 socket_unlock(so
, 0);
2712 * Find a set of uio that fit in a reasonable number
2715 for (i
= uiofirst
; i
< uiocnt
; i
++) {
2716 struct uio
*auio
= uioarray
[i
];
2718 len
= uio_resid(auio
);
2720 /* Do nothing for empty messages */
2728 if (len
> maxpktlen
) {
2733 if (chainlength
> sosendmaxchain
) {
2738 * Nothing left to send
2740 if (num_needed
== 0) {
2745 * Allocate buffer large enough to include headroom space for
2746 * network and link header
2749 bytes_to_alloc
= maxpktlen
+ headroom
;
2752 * Allocate a single contiguous buffer of the smallest available
2753 * size when possible
2755 if (bytes_to_alloc
> MCLBYTES
&&
2756 bytes_to_alloc
<= MBIGCLBYTES
&& bigcl
) {
2757 freelist
= m_getpackets_internal(
2758 (unsigned int *)&num_needed
,
2759 num_needed
, M_WAIT
, 1,
2761 } else if (bytes_to_alloc
> _MHLEN
&&
2762 bytes_to_alloc
<= MCLBYTES
) {
2763 freelist
= m_getpackets_internal(
2764 (unsigned int *)&num_needed
,
2765 num_needed
, M_WAIT
, 1,
2768 freelist
= m_allocpacket_internal(
2769 (unsigned int *)&num_needed
,
2770 bytes_to_alloc
, NULL
, M_WAIT
, 1, 0);
2773 if (freelist
== NULL
) {
2779 * Copy each uio of the set into its own mbuf packet
2781 for (i
= uiofirst
, m
= freelist
;
2782 i
< uiolast
&& m
!= NULL
;
2786 struct uio
*auio
= uioarray
[i
];
2788 bytes_to_copy
= uio_resid(auio
);
2790 /* Do nothing for empty messages */
2791 if (bytes_to_copy
== 0) {
2795 * Leave headroom for protocol headers
2796 * in the first mbuf of the chain
2798 m
->m_data
+= headroom
;
2800 for (n
= m
; n
!= NULL
; n
= n
->m_next
) {
2801 if ((m
->m_flags
& M_EXT
)) {
2802 mlen
= m
->m_ext
.ext_size
-
2804 } else if ((m
->m_flags
& M_PKTHDR
)) {
2806 MHLEN
- M_LEADINGSPACE(m
);
2808 mlen
= MLEN
- M_LEADINGSPACE(m
);
2810 len
= imin(mlen
, bytes_to_copy
);
2813 * Note: uiomove() decrements the iovec
2816 error
= uiomove(mtod(n
, caddr_t
),
2822 m
->m_pkthdr
.len
+= len
;
2824 VERIFY(m
->m_pkthdr
.len
<= maxpktlen
);
2826 bytes_to_copy
-= len
;
2829 if (m
->m_pkthdr
.len
== 0) {
2831 "%s:%d so %llx pkt %llx type %u len null\n",
2833 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
),
2834 (uint64_t)DEBUG_KERNEL_ADDRPERM(m
),
2852 so
->so_options
|= SO_DONTROUTE
;
2855 if ((flags
& MSG_SKIPCFIL
) == 0) {
2856 struct mbuf
**prevnextp
= NULL
;
2858 for (i
= uiofirst
, m
= top
;
2859 i
< uiolast
&& m
!= NULL
;
2861 struct mbuf
*nextpkt
= m
->m_nextpkt
;
2864 * Socket filter processing
2866 error
= sflt_data_out(so
, NULL
, &m
,
2868 if (error
!= 0 && error
!= EJUSTRETURN
) {
2875 * Content filter processing
2877 error
= cfil_sock_data_out(so
, NULL
, m
,
2879 if (error
!= 0 && error
!= EJUSTRETURN
) {
2883 #endif /* CONTENT_FILTER */
2885 * Remove packet from the list when
2886 * swallowed by a filter
2888 if (error
== EJUSTRETURN
) {
2890 if (prevnextp
!= NULL
) {
2891 *prevnextp
= nextpkt
;
2899 prevnextp
= &m
->m_nextpkt
;
2904 error
= (*so
->so_proto
->pr_usrreqs
->pru_send_list
)
2905 (so
, 0, top
, NULL
, NULL
, p
);
2909 so
->so_options
&= ~SO_DONTROUTE
;
2914 } while (resid
> 0 && error
== 0);
2917 sbunlock(&so
->so_snd
, FALSE
); /* will unlock socket */
2919 socket_unlock(so
, 1);
2925 if (freelist
!= NULL
) {
2926 m_freem_list(freelist
);
2929 KERNEL_DEBUG(DBG_FNC_SOSEND_LIST
| DBG_FUNC_END
, so
, resid
,
2930 so
->so_snd
.sb_cc
, 0, error
);
2936 * May return ERESTART when packet is dropped by MAC policy check
2939 soreceive_addr(struct proc
*p
, struct socket
*so
, struct sockaddr
**psa
,
2940 int flags
, struct mbuf
**mp
, struct mbuf
**nextrecordp
, int canwait
)
2943 struct mbuf
*m
= *mp
;
2944 struct mbuf
*nextrecord
= *nextrecordp
;
2946 KASSERT(m
->m_type
== MT_SONAME
, ("receive 1a"));
2947 #if CONFIG_MACF_SOCKET_SUBSET
2949 * Call the MAC framework for policy checking if we're in
2950 * the user process context and the socket isn't connected.
2952 if (p
!= kernproc
&& !(so
->so_state
& SS_ISCONNECTED
)) {
2953 struct mbuf
*m0
= m
;
2955 * Dequeue this record (temporarily) from the receive
2956 * list since we're about to drop the socket's lock
2957 * where a new record may arrive and be appended to
2958 * the list. Upon MAC policy failure, the record
2959 * will be freed. Otherwise, we'll add it back to
2960 * the head of the list. We cannot rely on SB_LOCK
2961 * because append operation uses the socket's lock.
2964 m
->m_nextpkt
= NULL
;
2965 sbfree(&so
->so_rcv
, m
);
2967 } while (m
!= NULL
);
2969 so
->so_rcv
.sb_mb
= nextrecord
;
2970 SB_EMPTY_FIXUP(&so
->so_rcv
);
2971 SBLASTRECORDCHK(&so
->so_rcv
, "soreceive 1a");
2972 SBLASTMBUFCHK(&so
->so_rcv
, "soreceive 1a");
2973 socket_unlock(so
, 0);
2975 if (mac_socket_check_received(proc_ucred(p
), so
,
2976 mtod(m
, struct sockaddr
*)) != 0) {
2978 * MAC policy failure; free this record and
2979 * process the next record (or block until
2980 * one is available). We have adjusted sb_cc
2981 * and sb_mbcnt above so there is no need to
2982 * call sbfree() again.
2986 * Clear SB_LOCK but don't unlock the socket.
2987 * Process the next record or wait for one.
2990 sbunlock(&so
->so_rcv
, TRUE
); /* stay locked */
2996 * If the socket has been defunct'd, drop it.
2998 if (so
->so_flags
& SOF_DEFUNCT
) {
3004 * Re-adjust the socket receive list and re-enqueue
3005 * the record in front of any packets which may have
3006 * been appended while we dropped the lock.
3008 for (m
= m0
; m
->m_next
!= NULL
; m
= m
->m_next
) {
3009 sballoc(&so
->so_rcv
, m
);
3011 sballoc(&so
->so_rcv
, m
);
3012 if (so
->so_rcv
.sb_mb
== NULL
) {
3013 so
->so_rcv
.sb_lastrecord
= m0
;
3014 so
->so_rcv
.sb_mbtail
= m
;
3017 nextrecord
= m
->m_nextpkt
= so
->so_rcv
.sb_mb
;
3018 so
->so_rcv
.sb_mb
= m
;
3019 SBLASTRECORDCHK(&so
->so_rcv
, "soreceive 1b");
3020 SBLASTMBUFCHK(&so
->so_rcv
, "soreceive 1b");
3022 #endif /* CONFIG_MACF_SOCKET_SUBSET */
3024 *psa
= dup_sockaddr(mtod(m
, struct sockaddr
*), canwait
);
3025 if ((*psa
== NULL
) && (flags
& MSG_NEEDSA
)) {
3026 error
= EWOULDBLOCK
;
3030 if (flags
& MSG_PEEK
) {
3033 sbfree(&so
->so_rcv
, m
);
3034 if (m
->m_next
== NULL
&& so
->so_rcv
.sb_cc
!= 0) {
3035 panic("%s: about to create invalid socketbuf",
3039 MFREE(m
, so
->so_rcv
.sb_mb
);
3040 m
= so
->so_rcv
.sb_mb
;
3042 m
->m_nextpkt
= nextrecord
;
3044 so
->so_rcv
.sb_mb
= nextrecord
;
3045 SB_EMPTY_FIXUP(&so
->so_rcv
);
3050 *nextrecordp
= nextrecord
;
3056 * Process one or more MT_CONTROL mbufs present before any data mbufs
3057 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
3058 * just copy the data; if !MSG_PEEK, we call into the protocol to
3059 * perform externalization.
3062 soreceive_ctl(struct socket
*so
, struct mbuf
**controlp
, int flags
,
3063 struct mbuf
**mp
, struct mbuf
**nextrecordp
)
3066 struct mbuf
*cm
= NULL
, *cmn
;
3067 struct mbuf
**cme
= &cm
;
3068 struct sockbuf
*sb_rcv
= &so
->so_rcv
;
3069 struct mbuf
**msgpcm
= NULL
;
3070 struct mbuf
*m
= *mp
;
3071 struct mbuf
*nextrecord
= *nextrecordp
;
3072 struct protosw
*pr
= so
->so_proto
;
3075 * Externalizing the control messages would require us to
3076 * drop the socket's lock below. Once we re-acquire the
3077 * lock, the mbuf chain might change. In order to preserve
3078 * consistency, we unlink all control messages from the
3079 * first mbuf chain in one shot and link them separately
3080 * onto a different chain.
3083 if (flags
& MSG_PEEK
) {
3084 if (controlp
!= NULL
) {
3085 if (*controlp
== NULL
) {
3088 *controlp
= m_copy(m
, 0, m
->m_len
);
3091 * If we failed to allocate an mbuf,
3092 * release any previously allocated
3093 * mbufs for control data. Return
3094 * an error. Keep the mbufs in the
3095 * socket as this is using
3098 if (*controlp
== NULL
) {
3103 controlp
= &(*controlp
)->m_next
;
3107 m
->m_nextpkt
= NULL
;
3109 sb_rcv
->sb_mb
= m
->m_next
;
3112 cme
= &(*cme
)->m_next
;
3115 } while (m
!= NULL
&& m
->m_type
== MT_CONTROL
);
3117 if (!(flags
& MSG_PEEK
)) {
3118 if (sb_rcv
->sb_mb
!= NULL
) {
3119 sb_rcv
->sb_mb
->m_nextpkt
= nextrecord
;
3121 sb_rcv
->sb_mb
= nextrecord
;
3122 SB_EMPTY_FIXUP(sb_rcv
);
3124 if (nextrecord
== NULL
) {
3125 sb_rcv
->sb_lastrecord
= m
;
3129 SBLASTRECORDCHK(&so
->so_rcv
, "soreceive ctl");
3130 SBLASTMBUFCHK(&so
->so_rcv
, "soreceive ctl");
3132 while (cm
!= NULL
) {
3137 cmsg_type
= mtod(cm
, struct cmsghdr
*)->cmsg_type
;
3140 * Call the protocol to externalize SCM_RIGHTS message
3141 * and return the modified message to the caller upon
3142 * success. Otherwise, all other control messages are
3143 * returned unmodified to the caller. Note that we
3144 * only get into this loop if MSG_PEEK is not set.
3146 if (pr
->pr_domain
->dom_externalize
!= NULL
&&
3147 cmsg_type
== SCM_RIGHTS
) {
3149 * Release socket lock: see 3903171. This
3150 * would also allow more records to be appended
3151 * to the socket buffer. We still have SB_LOCK
3152 * set on it, so we can be sure that the head
3153 * of the mbuf chain won't change.
3155 socket_unlock(so
, 0);
3156 error
= (*pr
->pr_domain
->dom_externalize
)(cm
);
3162 if (controlp
!= NULL
&& error
== 0) {
3164 controlp
= &(*controlp
)->m_next
;
3171 * Update the value of nextrecord in case we received new
3172 * records when the socket was unlocked above for
3173 * externalizing SCM_RIGHTS.
3176 nextrecord
= sb_rcv
->sb_mb
->m_nextpkt
;
3178 nextrecord
= sb_rcv
->sb_mb
;
3183 *nextrecordp
= nextrecord
;
3189 * Implement receive operations on a socket.
3190 * We depend on the way that records are added to the sockbuf
3191 * by sbappend*. In particular, each record (mbufs linked through m_next)
3192 * must begin with an address if the protocol so specifies,
3193 * followed by an optional mbuf or mbufs containing ancillary data,
3194 * and then zero or more mbufs of data.
3195 * In order to avoid blocking network interrupts for the entire time here,
3196 * we splx() while doing the actual copy to user space.
3197 * Although the sockbuf is locked, new data may still be appended,
3198 * and thus we must maintain consistency of the sockbuf during that time.
3200 * The caller may receive the data as a single mbuf chain by supplying
3201 * an mbuf **mp0 for use in returning the chain. The uio is then used
3202 * only for the count in uio_resid.
3204 * Returns: 0 Success
3209 * sblock:EWOULDBLOCK
3213 * sodelayed_copy:EFAULT
3214 * <pru_rcvoob>:EINVAL[TCP]
3215 * <pru_rcvoob>:EWOULDBLOCK[TCP]
3217 * <pr_domain->dom_externalize>:EMSGSIZE[AF_UNIX]
3218 * <pr_domain->dom_externalize>:ENOBUFS[AF_UNIX]
3219 * <pr_domain->dom_externalize>:???
3221 * Notes: Additional return values from calls through <pru_rcvoob> and
3222 * <pr_domain->dom_externalize> depend on protocols other than
3223 * TCP or AF_UNIX, which are documented above.
3226 soreceive(struct socket
*so
, struct sockaddr
**psa
, struct uio
*uio
,
3227 struct mbuf
**mp0
, struct mbuf
**controlp
, int *flagsp
)
3229 struct mbuf
*m
, **mp
, *ml
= NULL
;
3230 struct mbuf
*nextrecord
, *free_list
;
3231 int flags
, error
, offset
;
3233 struct protosw
*pr
= so
->so_proto
;
3235 user_ssize_t orig_resid
= uio_resid(uio
);
3236 user_ssize_t delayed_copy_len
;
3239 struct proc
*p
= current_proc();
3240 boolean_t en_tracing
= FALSE
;
3243 * Sanity check on the length passed by caller as we are making 'int'
3246 if (orig_resid
< 0 || orig_resid
> INT_MAX
) {
3250 KERNEL_DEBUG(DBG_FNC_SORECEIVE
| DBG_FUNC_START
, so
,
3251 uio_resid(uio
), so
->so_rcv
.sb_cc
, so
->so_rcv
.sb_lowat
,
3252 so
->so_rcv
.sb_hiwat
);
3255 so_update_last_owner_locked(so
, p
);
3256 so_update_policy(so
);
3258 #ifdef MORE_LOCKING_DEBUG
3259 if (so
->so_usecount
== 1) {
3260 panic("%s: so=%x no other reference on socket\n", __func__
, so
);
3268 if (controlp
!= NULL
) {
3271 if (flagsp
!= NULL
) {
3272 flags
= *flagsp
& ~MSG_EOR
;
3278 * If a recv attempt is made on a previously-accepted socket
3279 * that has been marked as inactive (disconnected), reject
3282 if (so
->so_flags
& SOF_DEFUNCT
) {
3283 struct sockbuf
*sb
= &so
->so_rcv
;
3286 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] (%d)\n",
3287 __func__
, proc_pid(p
), proc_best_name(p
),
3288 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
),
3289 SOCK_DOM(so
), SOCK_TYPE(so
), error
);
3291 * This socket should have been disconnected and flushed
3292 * prior to being returned from sodefunct(); there should
3293 * be no data on its receive list, so panic otherwise.
3295 if (so
->so_state
& SS_DEFUNCT
) {
3296 sb_empty_assert(sb
, __func__
);
3298 socket_unlock(so
, 1);
3302 if ((so
->so_flags1
& SOF1_PRECONNECT_DATA
) &&
3303 pr
->pr_usrreqs
->pru_preconnect
) {
3305 * A user may set the CONNECT_RESUME_ON_READ_WRITE-flag but not
3306 * calling write() right after this. *If* the app calls a read
3307 * we do not want to block this read indefinetely. Thus,
3308 * we trigger a connect so that the session gets initiated.
3310 error
= (*pr
->pr_usrreqs
->pru_preconnect
)(so
);
3313 socket_unlock(so
, 1);
3318 if (ENTR_SHOULDTRACE
&&
3319 (SOCK_CHECK_DOM(so
, AF_INET
) || SOCK_CHECK_DOM(so
, AF_INET6
))) {
3321 * enable energy tracing for inet sockets that go over
3322 * non-loopback interfaces only.
3324 struct inpcb
*inp
= sotoinpcb(so
);
3325 if (inp
->inp_last_outifp
!= NULL
&&
3326 !(inp
->inp_last_outifp
->if_flags
& IFF_LOOPBACK
)) {
3328 KERNEL_ENERGYTRACE(kEnTrActKernSockRead
, DBG_FUNC_START
,
3329 VM_KERNEL_ADDRPERM(so
),
3330 ((so
->so_state
& SS_NBIO
) ?
3331 kEnTrFlagNonBlocking
: 0),
3332 (int64_t)orig_resid
);
3337 * When SO_WANTOOBFLAG is set we try to get out-of-band data
3338 * regardless of the flags argument. Here is the case were
3339 * out-of-band data is not inline.
3341 if ((flags
& MSG_OOB
) ||
3342 ((so
->so_options
& SO_WANTOOBFLAG
) != 0 &&
3343 (so
->so_options
& SO_OOBINLINE
) == 0 &&
3344 (so
->so_oobmark
|| (so
->so_state
& SS_RCVATMARK
)))) {
3345 m
= m_get(M_WAIT
, MT_DATA
);
3347 socket_unlock(so
, 1);
3348 KERNEL_DEBUG(DBG_FNC_SORECEIVE
| DBG_FUNC_END
,
3349 ENOBUFS
, 0, 0, 0, 0);
3352 error
= (*pr
->pr_usrreqs
->pru_rcvoob
)(so
, m
, flags
& MSG_PEEK
);
3356 socket_unlock(so
, 0);
3358 error
= uiomove(mtod(m
, caddr_t
),
3359 imin(uio_resid(uio
), m
->m_len
), uio
);
3361 } while (uio_resid(uio
) && error
== 0 && m
!= NULL
);
3368 if ((so
->so_options
& SO_WANTOOBFLAG
) != 0) {
3369 if (error
== EWOULDBLOCK
|| error
== EINVAL
) {
3371 * Let's try to get normal data:
3372 * EWOULDBLOCK: out-of-band data not
3373 * receive yet. EINVAL: out-of-band data
3378 } else if (error
== 0 && flagsp
!= NULL
) {
3382 socket_unlock(so
, 1);
3384 KERNEL_ENERGYTRACE(kEnTrActKernSockRead
, DBG_FUNC_END
,
3385 VM_KERNEL_ADDRPERM(so
), 0,
3386 (int64_t)(orig_resid
- uio_resid(uio
)));
3388 KERNEL_DEBUG(DBG_FNC_SORECEIVE
| DBG_FUNC_END
, error
,
3398 if (so
->so_state
& SS_ISCONFIRMING
&& uio_resid(uio
)) {
3399 (*pr
->pr_usrreqs
->pru_rcvd
)(so
, 0);
3403 delayed_copy_len
= 0;
3405 #ifdef MORE_LOCKING_DEBUG
3406 if (so
->so_usecount
<= 1) {
3407 printf("soreceive: sblock so=0x%llx ref=%d on socket\n",
3408 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
), so
->so_usecount
);
3412 * See if the socket has been closed (SS_NOFDREF|SS_CANTRCVMORE)
3413 * and if so just return to the caller. This could happen when
3414 * soreceive() is called by a socket upcall function during the
3415 * time the socket is freed. The socket buffer would have been
3416 * locked across the upcall, therefore we cannot put this thread
3417 * to sleep (else we will deadlock) or return EWOULDBLOCK (else
3418 * we may livelock), because the lock on the socket buffer will
3419 * only be released when the upcall routine returns to its caller.
3420 * Because the socket has been officially closed, there can be
3421 * no further read on it.
3423 * A multipath subflow socket would have its SS_NOFDREF set by
3424 * default, so check for SOF_MP_SUBFLOW socket flag; when the
3425 * socket is closed for real, SOF_MP_SUBFLOW would be cleared.
3427 if ((so
->so_state
& (SS_NOFDREF
| SS_CANTRCVMORE
)) ==
3428 (SS_NOFDREF
| SS_CANTRCVMORE
) && !(so
->so_flags
& SOF_MP_SUBFLOW
)) {
3429 socket_unlock(so
, 1);
3433 error
= sblock(&so
->so_rcv
, SBLOCKWAIT(flags
));
3435 socket_unlock(so
, 1);
3436 KERNEL_DEBUG(DBG_FNC_SORECEIVE
| DBG_FUNC_END
, error
,
3439 KERNEL_ENERGYTRACE(kEnTrActKernSockRead
, DBG_FUNC_END
,
3440 VM_KERNEL_ADDRPERM(so
), 0,
3441 (int64_t)(orig_resid
- uio_resid(uio
)));
3446 m
= so
->so_rcv
.sb_mb
;
3448 * If we have less data than requested, block awaiting more
3449 * (subject to any timeout) if:
3450 * 1. the current count is less than the low water mark, or
3451 * 2. MSG_WAITALL is set, and it is possible to do the entire
3452 * receive operation at once if we block (resid <= hiwat).
3453 * 3. MSG_DONTWAIT is not set
3454 * If MSG_WAITALL is set but resid is larger than the receive buffer,
3455 * we have to do the receive in sections, and thus risk returning
3456 * a short count if a timeout or signal occurs after we start.
3458 if (m
== NULL
|| (((flags
& MSG_DONTWAIT
) == 0 &&
3459 so
->so_rcv
.sb_cc
< uio_resid(uio
)) &&
3460 (so
->so_rcv
.sb_cc
< so
->so_rcv
.sb_lowat
||
3461 ((flags
& MSG_WAITALL
) && uio_resid(uio
) <= so
->so_rcv
.sb_hiwat
)) &&
3462 m
->m_nextpkt
== NULL
&& (pr
->pr_flags
& PR_ATOMIC
) == 0)) {
3464 * Panic if we notice inconsistencies in the socket's
3465 * receive list; both sb_mb and sb_cc should correctly
3466 * reflect the contents of the list, otherwise we may
3467 * end up with false positives during select() or poll()
3468 * which could put the application in a bad state.
3470 SB_MB_CHECK(&so
->so_rcv
);
3476 error
= so
->so_error
;
3477 if ((flags
& MSG_PEEK
) == 0) {
3482 if (so
->so_state
& SS_CANTRCVMORE
) {
3485 * Deal with half closed connections
3487 if ((so
->so_state
& SS_ISDISCONNECTED
) == 0 &&
3488 cfil_sock_data_pending(&so
->so_rcv
) != 0) {
3490 "so %llx ignore SS_CANTRCVMORE",
3491 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
));
3493 #endif /* CONTENT_FILTER */
3500 for (; m
!= NULL
; m
= m
->m_next
) {
3501 if (m
->m_type
== MT_OOBDATA
|| (m
->m_flags
& M_EOR
)) {
3502 m
= so
->so_rcv
.sb_mb
;
3506 if ((so
->so_state
& (SS_ISCONNECTED
| SS_ISCONNECTING
)) == 0 &&
3507 (so
->so_proto
->pr_flags
& PR_CONNREQUIRED
)) {
3511 if (uio_resid(uio
) == 0) {
3515 if ((so
->so_state
& SS_NBIO
) ||
3516 (flags
& (MSG_DONTWAIT
| MSG_NBIO
))) {
3517 error
= EWOULDBLOCK
;
3520 SBLASTRECORDCHK(&so
->so_rcv
, "soreceive sbwait 1");
3521 SBLASTMBUFCHK(&so
->so_rcv
, "soreceive sbwait 1");
3522 sbunlock(&so
->so_rcv
, TRUE
); /* keep socket locked */
3523 #if EVEN_MORE_LOCKING_DEBUG
3525 printf("Waiting for socket data\n");
3529 error
= sbwait(&so
->so_rcv
);
3530 #if EVEN_MORE_LOCKING_DEBUG
3532 printf("SORECEIVE - sbwait returned %d\n", error
);
3535 if (so
->so_usecount
< 1) {
3536 panic("%s: after 2nd sblock so=%p ref=%d on socket\n",
3537 __func__
, so
, so
->so_usecount
);
3541 socket_unlock(so
, 1);
3542 KERNEL_DEBUG(DBG_FNC_SORECEIVE
| DBG_FUNC_END
, error
,
3545 KERNEL_ENERGYTRACE(kEnTrActKernSockRead
, DBG_FUNC_END
,
3546 VM_KERNEL_ADDRPERM(so
), 0,
3547 (int64_t)(orig_resid
- uio_resid(uio
)));
3554 OSIncrementAtomicLong(&p
->p_stats
->p_ru
.ru_msgrcv
);
3555 SBLASTRECORDCHK(&so
->so_rcv
, "soreceive 1");
3556 SBLASTMBUFCHK(&so
->so_rcv
, "soreceive 1");
3557 nextrecord
= m
->m_nextpkt
;
3559 if ((pr
->pr_flags
& PR_ADDR
) && m
->m_type
== MT_SONAME
) {
3560 error
= soreceive_addr(p
, so
, psa
, flags
, &m
, &nextrecord
,
3562 if (error
== ERESTART
) {
3564 } else if (error
!= 0) {
3571 * Process one or more MT_CONTROL mbufs present before any data mbufs
3572 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
3573 * just copy the data; if !MSG_PEEK, we call into the protocol to
3574 * perform externalization.
3576 if (m
!= NULL
&& m
->m_type
== MT_CONTROL
) {
3577 error
= soreceive_ctl(so
, controlp
, flags
, &m
, &nextrecord
);
3585 * If the socket is a TCP socket with message delivery
3586 * enabled, then create a control msg to deliver the
3587 * relative TCP sequence number for this data. Waiting
3588 * until this point will protect against failures to
3589 * allocate an mbuf for control msgs.
3591 if (so
->so_type
== SOCK_STREAM
&& SOCK_PROTO(so
) == IPPROTO_TCP
&&
3592 (so
->so_flags
& SOF_ENABLE_MSGS
) && controlp
!= NULL
) {
3593 struct mbuf
*seq_cm
;
3595 seq_cm
= sbcreatecontrol((caddr_t
)&m
->m_pkthdr
.msg_seq
,
3596 sizeof(uint32_t), SCM_SEQNUM
, SOL_SOCKET
);
3597 if (seq_cm
== NULL
) {
3598 /* unable to allocate a control mbuf */
3603 controlp
= &seq_cm
->m_next
;
3607 if (!(flags
& MSG_PEEK
)) {
3609 * We get here because m points to an mbuf following
3610 * any MT_SONAME or MT_CONTROL mbufs which have been
3611 * processed above. In any case, m should be pointing
3612 * to the head of the mbuf chain, and the nextrecord
3613 * should be either NULL or equal to m->m_nextpkt.
3614 * See comments above about SB_LOCK.
3616 if (m
!= so
->so_rcv
.sb_mb
||
3617 m
->m_nextpkt
!= nextrecord
) {
3618 panic("%s: post-control !sync so=%p m=%p "
3619 "nextrecord=%p\n", __func__
, so
, m
,
3623 if (nextrecord
== NULL
) {
3624 so
->so_rcv
.sb_lastrecord
= m
;
3628 if (type
== MT_OOBDATA
) {
3632 if (!(flags
& MSG_PEEK
)) {
3633 SB_EMPTY_FIXUP(&so
->so_rcv
);
3636 SBLASTRECORDCHK(&so
->so_rcv
, "soreceive 2");
3637 SBLASTMBUFCHK(&so
->so_rcv
, "soreceive 2");
3642 if (!(flags
& MSG_PEEK
) && uio_resid(uio
) > sorecvmincopy
) {
3651 (uio_resid(uio
) - delayed_copy_len
) > 0 && error
== 0) {
3652 if (m
->m_type
== MT_OOBDATA
) {
3653 if (type
!= MT_OOBDATA
) {
3656 } else if (type
== MT_OOBDATA
) {
3660 * Make sure to allways set MSG_OOB event when getting
3661 * out of band data inline.
3663 if ((so
->so_options
& SO_WANTOOBFLAG
) != 0 &&
3664 (so
->so_options
& SO_OOBINLINE
) != 0 &&
3665 (so
->so_state
& SS_RCVATMARK
) != 0) {
3668 so
->so_state
&= ~SS_RCVATMARK
;
3669 len
= uio_resid(uio
) - delayed_copy_len
;
3670 if (so
->so_oobmark
&& len
> so
->so_oobmark
- offset
) {
3671 len
= so
->so_oobmark
- offset
;
3673 if (len
> m
->m_len
- moff
) {
3674 len
= m
->m_len
- moff
;
3677 * If mp is set, just pass back the mbufs.
3678 * Otherwise copy them out via the uio, then free.
3679 * Sockbuf must be consistent here (points to current mbuf,
3680 * it points to next record) when we drop priority;
3681 * we must note any additions to the sockbuf when we
3682 * block interrupts again.
3685 SBLASTRECORDCHK(&so
->so_rcv
, "soreceive uiomove");
3686 SBLASTMBUFCHK(&so
->so_rcv
, "soreceive uiomove");
3687 if (can_delay
&& len
== m
->m_len
) {
3689 * only delay the copy if we're consuming the
3690 * mbuf and we're NOT in MSG_PEEK mode
3691 * and we have enough data to make it worthwile
3692 * to drop and retake the lock... can_delay
3693 * reflects the state of the 2 latter
3694 * constraints moff should always be zero
3697 delayed_copy_len
+= len
;
3699 if (delayed_copy_len
) {
3700 error
= sodelayed_copy(so
, uio
,
3701 &free_list
, &delayed_copy_len
);
3707 * can only get here if MSG_PEEK is not
3708 * set therefore, m should point at the
3709 * head of the rcv queue; if it doesn't,
3710 * it means something drastically
3711 * changed while we were out from behind
3712 * the lock in sodelayed_copy. perhaps
3713 * a RST on the stream. in any event,
3714 * the stream has been interrupted. it's
3715 * probably best just to return whatever
3716 * data we've moved and let the caller
3719 if (m
!= so
->so_rcv
.sb_mb
) {
3723 socket_unlock(so
, 0);
3724 error
= uiomove(mtod(m
, caddr_t
) + moff
,
3733 uio_setresid(uio
, (uio_resid(uio
) - len
));
3735 if (len
== m
->m_len
- moff
) {
3736 if (m
->m_flags
& M_EOR
) {
3739 if (flags
& MSG_PEEK
) {
3743 nextrecord
= m
->m_nextpkt
;
3744 sbfree(&so
->so_rcv
, m
);
3745 m
->m_nextpkt
= NULL
;
3748 * If this packet is an unordered packet
3749 * (indicated by M_UNORDERED_DATA flag), remove
3750 * the additional bytes added to the
3751 * receive socket buffer size.
3753 if ((so
->so_flags
& SOF_ENABLE_MSGS
) &&
3755 (m
->m_flags
& M_UNORDERED_DATA
) &&
3756 sbreserve(&so
->so_rcv
,
3757 so
->so_rcv
.sb_hiwat
- m
->m_len
)) {
3758 if (so
->so_msg_state
->msg_uno_bytes
>
3761 msg_uno_bytes
-= m
->m_len
;
3766 m
->m_flags
&= ~M_UNORDERED_DATA
;
3772 so
->so_rcv
.sb_mb
= m
= m
->m_next
;
3775 if (free_list
== NULL
) {
3781 so
->so_rcv
.sb_mb
= m
= m
->m_next
;
3785 m
->m_nextpkt
= nextrecord
;
3786 if (nextrecord
== NULL
) {
3787 so
->so_rcv
.sb_lastrecord
= m
;
3790 so
->so_rcv
.sb_mb
= nextrecord
;
3791 SB_EMPTY_FIXUP(&so
->so_rcv
);
3793 SBLASTRECORDCHK(&so
->so_rcv
, "soreceive 3");
3794 SBLASTMBUFCHK(&so
->so_rcv
, "soreceive 3");
3797 if (flags
& MSG_PEEK
) {
3803 if (flags
& MSG_DONTWAIT
) {
3804 copy_flag
= M_DONTWAIT
;
3808 *mp
= m_copym(m
, 0, len
, copy_flag
);
3810 * Failed to allocate an mbuf?
3811 * Adjust uio_resid back, it was
3812 * adjusted down by len bytes which
3813 * we didn't copy over.
3817 (uio_resid(uio
) + len
));
3823 so
->so_rcv
.sb_cc
-= len
;
3826 if (so
->so_oobmark
) {
3827 if ((flags
& MSG_PEEK
) == 0) {
3828 so
->so_oobmark
-= len
;
3829 if (so
->so_oobmark
== 0) {
3830 so
->so_state
|= SS_RCVATMARK
;
3832 * delay posting the actual event until
3833 * after any delayed copy processing
3841 if (offset
== so
->so_oobmark
) {
3846 if (flags
& MSG_EOR
) {
3850 * If the MSG_WAITALL or MSG_WAITSTREAM flag is set
3851 * (for non-atomic socket), we must not quit until
3852 * "uio->uio_resid == 0" or an error termination.
3853 * If a signal/timeout occurs, return with a short
3854 * count but without error. Keep sockbuf locked
3855 * against other readers.
3857 while (flags
& (MSG_WAITALL
| MSG_WAITSTREAM
) && m
== NULL
&&
3858 (uio_resid(uio
) - delayed_copy_len
) > 0 &&
3859 !sosendallatonce(so
) && !nextrecord
) {
3860 if (so
->so_error
|| ((so
->so_state
& SS_CANTRCVMORE
)
3862 && cfil_sock_data_pending(&so
->so_rcv
) == 0
3863 #endif /* CONTENT_FILTER */
3869 * Depending on the protocol (e.g. TCP), the following
3870 * might cause the socket lock to be dropped and later
3871 * be reacquired, and more data could have arrived and
3872 * have been appended to the receive socket buffer by
3873 * the time it returns. Therefore, we only sleep in
3874 * sbwait() below if and only if the socket buffer is
3875 * empty, in order to avoid a false sleep.
3877 if (pr
->pr_flags
& PR_WANTRCVD
&& so
->so_pcb
&&
3878 (((struct inpcb
*)so
->so_pcb
)->inp_state
!=
3879 INPCB_STATE_DEAD
)) {
3880 (*pr
->pr_usrreqs
->pru_rcvd
)(so
, flags
);
3883 SBLASTRECORDCHK(&so
->so_rcv
, "soreceive sbwait 2");
3884 SBLASTMBUFCHK(&so
->so_rcv
, "soreceive sbwait 2");
3886 if (so
->so_rcv
.sb_mb
== NULL
&& sbwait(&so
->so_rcv
)) {
3891 * have to wait until after we get back from the sbwait
3892 * to do the copy because we will drop the lock if we
3893 * have enough data that has been delayed... by dropping
3894 * the lock we open up a window allowing the netisr
3895 * thread to process the incoming packets and to change
3896 * the state of this socket... we're issuing the sbwait
3897 * because the socket is empty and we're expecting the
3898 * netisr thread to wake us up when more packets arrive;
3899 * if we allow that processing to happen and then sbwait
3900 * we could stall forever with packets sitting in the
3901 * socket if no further packets arrive from the remote
3904 * we want to copy before we've collected all the data
3905 * to satisfy this request to allow the copy to overlap
3906 * the incoming packet processing on an MP system
3908 if (delayed_copy_len
> sorecvmincopy
&&
3909 (delayed_copy_len
> (so
->so_rcv
.sb_hiwat
/ 2))) {
3910 error
= sodelayed_copy(so
, uio
,
3911 &free_list
, &delayed_copy_len
);
3917 m
= so
->so_rcv
.sb_mb
;
3919 nextrecord
= m
->m_nextpkt
;
3921 SB_MB_CHECK(&so
->so_rcv
);
3924 #ifdef MORE_LOCKING_DEBUG
3925 if (so
->so_usecount
<= 1) {
3926 panic("%s: after big while so=%p ref=%d on socket\n",
3927 __func__
, so
, so
->so_usecount
);
3932 if (m
!= NULL
&& pr
->pr_flags
& PR_ATOMIC
) {
3933 if (so
->so_options
& SO_DONTTRUNC
) {
3934 flags
|= MSG_RCVMORE
;
3937 if ((flags
& MSG_PEEK
) == 0) {
3938 (void) sbdroprecord(&so
->so_rcv
);
3944 * pru_rcvd below (for TCP) may cause more data to be received
3945 * if the socket lock is dropped prior to sending the ACK; some
3946 * legacy OpenTransport applications don't handle this well
3947 * (if it receives less data than requested while MSG_HAVEMORE
3948 * is set), and so we set the flag now based on what we know
3949 * prior to calling pru_rcvd.
3951 if ((so
->so_options
& SO_WANTMORE
) && so
->so_rcv
.sb_cc
> 0) {
3952 flags
|= MSG_HAVEMORE
;
3955 if ((flags
& MSG_PEEK
) == 0) {
3957 so
->so_rcv
.sb_mb
= nextrecord
;
3959 * First part is an inline SB_EMPTY_FIXUP(). Second
3960 * part makes sure sb_lastrecord is up-to-date if
3961 * there is still data in the socket buffer.
3963 if (so
->so_rcv
.sb_mb
== NULL
) {
3964 so
->so_rcv
.sb_mbtail
= NULL
;
3965 so
->so_rcv
.sb_lastrecord
= NULL
;
3966 } else if (nextrecord
->m_nextpkt
== NULL
) {
3967 so
->so_rcv
.sb_lastrecord
= nextrecord
;
3969 SB_MB_CHECK(&so
->so_rcv
);
3971 SBLASTRECORDCHK(&so
->so_rcv
, "soreceive 4");
3972 SBLASTMBUFCHK(&so
->so_rcv
, "soreceive 4");
3973 if (pr
->pr_flags
& PR_WANTRCVD
&& so
->so_pcb
) {
3974 (*pr
->pr_usrreqs
->pru_rcvd
)(so
, flags
);
3978 if (delayed_copy_len
) {
3979 error
= sodelayed_copy(so
, uio
, &free_list
, &delayed_copy_len
);
3984 if (free_list
!= NULL
) {
3985 m_freem_list(free_list
);
3989 postevent(so
, 0, EV_OOB
);
3992 if (orig_resid
== uio_resid(uio
) && orig_resid
&&
3993 (flags
& MSG_EOR
) == 0 && (so
->so_state
& SS_CANTRCVMORE
) == 0) {
3994 sbunlock(&so
->so_rcv
, TRUE
); /* keep socket locked */
3998 if (flagsp
!= NULL
) {
4002 #ifdef MORE_LOCKING_DEBUG
4003 if (so
->so_usecount
<= 1) {
4004 panic("%s: release so=%p ref=%d on socket\n", __func__
,
4005 so
, so
->so_usecount
);
4009 if (delayed_copy_len
) {
4010 error
= sodelayed_copy(so
, uio
, &free_list
, &delayed_copy_len
);
4013 if (free_list
!= NULL
) {
4014 m_freem_list(free_list
);
4017 sbunlock(&so
->so_rcv
, FALSE
); /* will unlock socket */
4020 KERNEL_ENERGYTRACE(kEnTrActKernSockRead
, DBG_FUNC_END
,
4021 VM_KERNEL_ADDRPERM(so
),
4022 ((error
== EWOULDBLOCK
) ? kEnTrFlagNoWork
: 0),
4023 (int64_t)(orig_resid
- uio_resid(uio
)));
4025 KERNEL_DEBUG(DBG_FNC_SORECEIVE
| DBG_FUNC_END
, so
, uio_resid(uio
),
4026 so
->so_rcv
.sb_cc
, 0, error
);
4032 * Returns: 0 Success
4036 sodelayed_copy(struct socket
*so
, struct uio
*uio
, struct mbuf
**free_list
,
4037 user_ssize_t
*resid
)
4044 socket_unlock(so
, 0);
4046 while (m
!= NULL
&& error
== 0) {
4047 error
= uiomove(mtod(m
, caddr_t
), (int)m
->m_len
, uio
);
4050 m_freem_list(*free_list
);
4061 sodelayed_copy_list(struct socket
*so
, struct recv_msg_elem
*msgarray
,
4062 u_int uiocnt
, struct mbuf
**free_list
, user_ssize_t
*resid
)
4066 struct mbuf
*ml
, *m
;
4070 for (ml
= *free_list
, i
= 0; ml
!= NULL
&& i
< uiocnt
;
4071 ml
= ml
->m_nextpkt
, i
++) {
4072 auio
= msgarray
[i
].uio
;
4073 for (m
= ml
; m
!= NULL
; m
= m
->m_next
) {
4074 error
= uiomove(mtod(m
, caddr_t
), m
->m_len
, auio
);
4081 m_freem_list(*free_list
);
4090 soreceive_list(struct socket
*so
, struct recv_msg_elem
*msgarray
, u_int uiocnt
,
4094 struct mbuf
*nextrecord
;
4095 struct mbuf
*ml
= NULL
, *free_list
= NULL
, *free_tail
= NULL
;
4097 user_ssize_t len
, pktlen
, delayed_copy_len
= 0;
4098 struct protosw
*pr
= so
->so_proto
;
4100 struct proc
*p
= current_proc();
4101 struct uio
*auio
= NULL
;
4104 struct sockaddr
**psa
= NULL
;
4105 struct mbuf
**controlp
= NULL
;
4108 struct mbuf
*free_others
= NULL
;
4110 KERNEL_DEBUG(DBG_FNC_SORECEIVE_LIST
| DBG_FUNC_START
,
4112 so
->so_rcv
.sb_cc
, so
->so_rcv
.sb_lowat
, so
->so_rcv
.sb_hiwat
);
4116 * - Only supports don't wait flags
4117 * - Only support datagram sockets (could be extended to raw)
4119 * - Protocol must support packet chains
4120 * - The uio array is NULL (should we panic?)
4122 if (flagsp
!= NULL
) {
4127 if (flags
& ~(MSG_PEEK
| MSG_WAITALL
| MSG_DONTWAIT
| MSG_NEEDSA
|
4129 printf("%s invalid flags 0x%x\n", __func__
, flags
);
4133 if (so
->so_type
!= SOCK_DGRAM
) {
4137 if (sosendallatonce(so
) == 0) {
4141 if (so
->so_proto
->pr_usrreqs
->pru_send_list
== NULL
) {
4142 error
= EPROTONOSUPPORT
;
4145 if (msgarray
== NULL
) {
4146 printf("%s uioarray is NULL\n", __func__
);
4151 printf("%s uiocnt is 0\n", __func__
);
4156 * Sanity check on the length passed by caller as we are making 'int'
4159 resid
= recv_msg_array_resid(msgarray
, uiocnt
);
4160 if (resid
< 0 || resid
> INT_MAX
) {
4165 if (!(flags
& MSG_PEEK
) && sorecvmincopy
> 0) {
4172 so_update_last_owner_locked(so
, p
);
4173 so_update_policy(so
);
4176 so_update_necp_policy(so
, NULL
, NULL
);
4180 * If a recv attempt is made on a previously-accepted socket
4181 * that has been marked as inactive (disconnected), reject
4184 if (so
->so_flags
& SOF_DEFUNCT
) {
4185 struct sockbuf
*sb
= &so
->so_rcv
;
4188 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] (%d)\n",
4189 __func__
, proc_pid(p
), proc_best_name(p
),
4190 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
),
4191 SOCK_DOM(so
), SOCK_TYPE(so
), error
);
4193 * This socket should have been disconnected and flushed
4194 * prior to being returned from sodefunct(); there should
4195 * be no data on its receive list, so panic otherwise.
4197 if (so
->so_state
& SS_DEFUNCT
) {
4198 sb_empty_assert(sb
, __func__
);
4205 * The uio may be empty
4207 if (npkts
>= uiocnt
) {
4213 * See if the socket has been closed (SS_NOFDREF|SS_CANTRCVMORE)
4214 * and if so just return to the caller. This could happen when
4215 * soreceive() is called by a socket upcall function during the
4216 * time the socket is freed. The socket buffer would have been
4217 * locked across the upcall, therefore we cannot put this thread
4218 * to sleep (else we will deadlock) or return EWOULDBLOCK (else
4219 * we may livelock), because the lock on the socket buffer will
4220 * only be released when the upcall routine returns to its caller.
4221 * Because the socket has been officially closed, there can be
4222 * no further read on it.
4224 if ((so
->so_state
& (SS_NOFDREF
| SS_CANTRCVMORE
)) ==
4225 (SS_NOFDREF
| SS_CANTRCVMORE
)) {
4230 error
= sblock(&so
->so_rcv
, SBLOCKWAIT(flags
));
4236 m
= so
->so_rcv
.sb_mb
;
4238 * Block awaiting more datagram if needed
4240 if (m
== NULL
|| (((flags
& MSG_DONTWAIT
) == 0 &&
4241 (so
->so_rcv
.sb_cc
< so
->so_rcv
.sb_lowat
||
4242 ((flags
& MSG_WAITALL
) && npkts
< uiocnt
))))) {
4244 * Panic if we notice inconsistencies in the socket's
4245 * receive list; both sb_mb and sb_cc should correctly
4246 * reflect the contents of the list, otherwise we may
4247 * end up with false positives during select() or poll()
4248 * which could put the application in a bad state.
4250 SB_MB_CHECK(&so
->so_rcv
);
4253 error
= so
->so_error
;
4254 if ((flags
& MSG_PEEK
) == 0) {
4259 if (so
->so_state
& SS_CANTRCVMORE
) {
4262 if ((so
->so_state
& (SS_ISCONNECTED
| SS_ISCONNECTING
)) == 0 &&
4263 (so
->so_proto
->pr_flags
& PR_CONNREQUIRED
)) {
4267 if ((so
->so_state
& SS_NBIO
) ||
4268 (flags
& (MSG_DONTWAIT
| MSG_NBIO
))) {
4269 error
= EWOULDBLOCK
;
4273 * Do not block if we got some data
4275 if (free_list
!= NULL
) {
4280 SBLASTRECORDCHK(&so
->so_rcv
, "soreceive sbwait 1");
4281 SBLASTMBUFCHK(&so
->so_rcv
, "soreceive sbwait 1");
4283 sbunlock(&so
->so_rcv
, TRUE
); /* keep socket locked */
4286 error
= sbwait(&so
->so_rcv
);
4293 OSIncrementAtomicLong(&p
->p_stats
->p_ru
.ru_msgrcv
);
4294 SBLASTRECORDCHK(&so
->so_rcv
, "soreceive 1");
4295 SBLASTMBUFCHK(&so
->so_rcv
, "soreceive 1");
4298 * Consume the current uio index as we have a datagram
4300 auio
= msgarray
[npkts
].uio
;
4301 resid
= uio_resid(auio
);
4302 msgarray
[npkts
].which
|= SOCK_MSG_DATA
;
4303 psa
= (msgarray
[npkts
].which
& SOCK_MSG_SA
) ?
4304 &msgarray
[npkts
].psa
: NULL
;
4305 controlp
= (msgarray
[npkts
].which
& SOCK_MSG_CONTROL
) ?
4306 &msgarray
[npkts
].controlp
: NULL
;
4308 nextrecord
= m
->m_nextpkt
;
4310 if ((pr
->pr_flags
& PR_ADDR
) && m
->m_type
== MT_SONAME
) {
4311 error
= soreceive_addr(p
, so
, psa
, flags
, &m
, &nextrecord
, 1);
4312 if (error
== ERESTART
) {
4314 } else if (error
!= 0) {
4319 if (m
!= NULL
&& m
->m_type
== MT_CONTROL
) {
4320 error
= soreceive_ctl(so
, controlp
, flags
, &m
, &nextrecord
);
4326 if (m
->m_pkthdr
.len
== 0) {
4327 printf("%s:%d so %llx pkt %llx type %u pktlen null\n",
4329 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
),
4330 (uint64_t)DEBUG_KERNEL_ADDRPERM(m
),
4335 * Loop to copy the mbufs of the current record
4336 * Support zero length packets
4340 while (m
!= NULL
&& (len
= resid
- pktlen
) >= 0 && error
== 0) {
4341 if (m
->m_len
== 0) {
4342 panic("%p m_len zero", m
);
4344 if (m
->m_type
== 0) {
4345 panic("%p m_type zero", m
);
4348 * Clip to the residual length
4350 if (len
> m
->m_len
) {
4355 * Copy the mbufs via the uio or delay the copy
4356 * Sockbuf must be consistent here (points to current mbuf,
4357 * it points to next record) when we drop priority;
4358 * we must note any additions to the sockbuf when we
4359 * block interrupts again.
4361 if (len
> 0 && can_delay
== 0) {
4362 socket_unlock(so
, 0);
4363 error
= uiomove(mtod(m
, caddr_t
), (int)len
, auio
);
4369 delayed_copy_len
+= len
;
4372 if (len
== m
->m_len
) {
4374 * m was entirely copied
4376 sbfree(&so
->so_rcv
, m
);
4377 nextrecord
= m
->m_nextpkt
;
4378 m
->m_nextpkt
= NULL
;
4381 * Set the first packet to the head of the free list
4383 if (free_list
== NULL
) {
4387 * Link current packet to tail of free list
4390 if (free_tail
!= NULL
) {
4391 free_tail
->m_nextpkt
= m
;
4396 * Link current mbuf to last mbuf of current packet
4404 * Move next buf to head of socket buffer
4406 so
->so_rcv
.sb_mb
= m
= ml
->m_next
;
4410 m
->m_nextpkt
= nextrecord
;
4411 if (nextrecord
== NULL
) {
4412 so
->so_rcv
.sb_lastrecord
= m
;
4415 so
->so_rcv
.sb_mb
= nextrecord
;
4416 SB_EMPTY_FIXUP(&so
->so_rcv
);
4418 SBLASTRECORDCHK(&so
->so_rcv
, "soreceive 3");
4419 SBLASTMBUFCHK(&so
->so_rcv
, "soreceive 3");
4422 * Stop the loop on partial copy
4427 #ifdef MORE_LOCKING_DEBUG
4428 if (so
->so_usecount
<= 1) {
4429 panic("%s: after big while so=%llx ref=%d on socket\n",
4431 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
), so
->so_usecount
);
4436 * Tell the caller we made a partial copy
4439 if (so
->so_options
& SO_DONTTRUNC
) {
4441 * Copyout first the freelist then the partial mbuf
4443 socket_unlock(so
, 0);
4444 if (delayed_copy_len
) {
4445 error
= sodelayed_copy_list(so
, msgarray
,
4446 uiocnt
, &free_list
, &delayed_copy_len
);
4450 error
= uiomove(mtod(m
, caddr_t
), (int)len
,
4460 so
->so_rcv
.sb_cc
-= len
;
4461 flags
|= MSG_RCVMORE
;
4463 (void) sbdroprecord(&so
->so_rcv
);
4464 nextrecord
= so
->so_rcv
.sb_mb
;
4471 so
->so_rcv
.sb_mb
= nextrecord
;
4473 * First part is an inline SB_EMPTY_FIXUP(). Second
4474 * part makes sure sb_lastrecord is up-to-date if
4475 * there is still data in the socket buffer.
4477 if (so
->so_rcv
.sb_mb
== NULL
) {
4478 so
->so_rcv
.sb_mbtail
= NULL
;
4479 so
->so_rcv
.sb_lastrecord
= NULL
;
4480 } else if (nextrecord
->m_nextpkt
== NULL
) {
4481 so
->so_rcv
.sb_lastrecord
= nextrecord
;
4483 SB_MB_CHECK(&so
->so_rcv
);
4485 SBLASTRECORDCHK(&so
->so_rcv
, "soreceive 4");
4486 SBLASTMBUFCHK(&so
->so_rcv
, "soreceive 4");
4489 * We can continue to the next packet as long as:
4490 * - We haven't exhausted the uio array
4491 * - There was no error
4492 * - A packet was not truncated
4493 * - We can still receive more data
4495 if (npkts
< uiocnt
&& error
== 0 &&
4496 (flags
& (MSG_RCVMORE
| MSG_TRUNC
)) == 0 &&
4497 (so
->so_state
& SS_CANTRCVMORE
) == 0) {
4498 sbunlock(&so
->so_rcv
, TRUE
); /* keep socket locked */
4503 if (flagsp
!= NULL
) {
4509 * pru_rcvd may cause more data to be received if the socket lock
4510 * is dropped so we set MSG_HAVEMORE now based on what we know.
4511 * That way the caller won't be surprised if it receives less data
4514 if ((so
->so_options
& SO_WANTMORE
) && so
->so_rcv
.sb_cc
> 0) {
4515 flags
|= MSG_HAVEMORE
;
4518 if (pr
->pr_flags
& PR_WANTRCVD
&& so
->so_pcb
) {
4519 (*pr
->pr_usrreqs
->pru_rcvd
)(so
, flags
);
4523 sbunlock(&so
->so_rcv
, FALSE
); /* will unlock socket */
4525 socket_unlock(so
, 1);
4528 if (delayed_copy_len
) {
4529 error
= sodelayed_copy_list(so
, msgarray
, uiocnt
,
4530 &free_list
, &delayed_copy_len
);
4534 * Amortize the cost of freeing the mbufs
4536 if (free_list
!= NULL
) {
4537 m_freem_list(free_list
);
4539 if (free_others
!= NULL
) {
4540 m_freem_list(free_others
);
4543 KERNEL_DEBUG(DBG_FNC_SORECEIVE_LIST
| DBG_FUNC_END
, error
,
4549 so_statistics_event_to_nstat_event(int64_t *input_options
,
4550 uint64_t *nstat_event
)
4553 switch (*input_options
) {
4554 case SO_STATISTICS_EVENT_ENTER_CELLFALLBACK
:
4555 *nstat_event
= NSTAT_EVENT_SRC_ENTER_CELLFALLBACK
;
4557 case SO_STATISTICS_EVENT_EXIT_CELLFALLBACK
:
4558 *nstat_event
= NSTAT_EVENT_SRC_EXIT_CELLFALLBACK
;
4560 #if (DEBUG || DEVELOPMENT)
4561 case SO_STATISTICS_EVENT_RESERVED_1
:
4562 *nstat_event
= NSTAT_EVENT_SRC_RESERVED_1
;
4564 case SO_STATISTICS_EVENT_RESERVED_2
:
4565 *nstat_event
= NSTAT_EVENT_SRC_RESERVED_2
;
4567 #endif /* (DEBUG || DEVELOPMENT) */
4576 * Returns: 0 Success
4579 * <pru_shutdown>:EINVAL
4580 * <pru_shutdown>:EADDRNOTAVAIL[TCP]
4581 * <pru_shutdown>:ENOBUFS[TCP]
4582 * <pru_shutdown>:EMSGSIZE[TCP]
4583 * <pru_shutdown>:EHOSTUNREACH[TCP]
4584 * <pru_shutdown>:ENETUNREACH[TCP]
4585 * <pru_shutdown>:ENETDOWN[TCP]
4586 * <pru_shutdown>:ENOMEM[TCP]
4587 * <pru_shutdown>:EACCES[TCP]
4588 * <pru_shutdown>:EMSGSIZE[TCP]
4589 * <pru_shutdown>:ENOBUFS[TCP]
4590 * <pru_shutdown>:???[TCP] [ignorable: mostly IPSEC/firewall/DLIL]
4591 * <pru_shutdown>:??? [other protocol families]
4594 soshutdown(struct socket
*so
, int how
)
4598 KERNEL_DEBUG(DBG_FNC_SOSHUTDOWN
| DBG_FUNC_START
, how
, 0, 0, 0, 0);
4606 (SS_ISCONNECTED
| SS_ISCONNECTING
| SS_ISDISCONNECTING
)) == 0) {
4609 error
= soshutdownlock(so
, how
);
4611 socket_unlock(so
, 1);
4618 KERNEL_DEBUG(DBG_FNC_SOSHUTDOWN
| DBG_FUNC_END
, how
, error
, 0, 0, 0);
4624 soshutdownlock_final(struct socket
*so
, int how
)
4626 struct protosw
*pr
= so
->so_proto
;
4629 sflt_notify(so
, sock_evt_shutdown
, &how
);
4631 if (how
!= SHUT_WR
) {
4632 if ((so
->so_state
& SS_CANTRCVMORE
) != 0) {
4633 /* read already shut down */
4638 postevent(so
, 0, EV_RCLOSED
);
4640 if (how
!= SHUT_RD
) {
4641 if ((so
->so_state
& SS_CANTSENDMORE
) != 0) {
4642 /* write already shut down */
4646 error
= (*pr
->pr_usrreqs
->pru_shutdown
)(so
);
4647 postevent(so
, 0, EV_WCLOSED
);
4650 KERNEL_DEBUG(DBG_FNC_SOSHUTDOWN
, how
, 1, 0, 0, 0);
4655 soshutdownlock(struct socket
*so
, int how
)
4661 * A content filter may delay the actual shutdown until it
4662 * has processed the pending data
4664 if (so
->so_flags
& SOF_CONTENT_FILTER
) {
4665 error
= cfil_sock_shutdown(so
, &how
);
4666 if (error
== EJUSTRETURN
) {
4669 } else if (error
!= 0) {
4673 #endif /* CONTENT_FILTER */
4675 error
= soshutdownlock_final(so
, how
);
4682 sowflush(struct socket
*so
)
4684 struct sockbuf
*sb
= &so
->so_snd
;
4687 * Obtain lock on the socket buffer (SB_LOCK). This is required
4688 * to prevent the socket buffer from being unexpectedly altered
4689 * while it is used by another thread in socket send/receive.
4691 * sblock() must not fail here, hence the assertion.
4693 (void) sblock(sb
, SBL_WAIT
| SBL_NOINTR
| SBL_IGNDEFUNCT
);
4694 VERIFY(sb
->sb_flags
& SB_LOCK
);
4696 sb
->sb_flags
&= ~(SB_SEL
| SB_UPCALL
);
4697 sb
->sb_flags
|= SB_DROP
;
4698 sb
->sb_upcall
= NULL
;
4699 sb
->sb_upcallarg
= NULL
;
4701 sbunlock(sb
, TRUE
); /* keep socket locked */
4703 selthreadclear(&sb
->sb_sel
);
4708 sorflush(struct socket
*so
)
4710 struct sockbuf
*sb
= &so
->so_rcv
;
4711 struct protosw
*pr
= so
->so_proto
;
4714 lck_mtx_t
*mutex_held
;
4716 * XXX: This code is currently commented out, because we may get here
4717 * as part of sofreelastref(), and at that time, pr_getlock() may no
4718 * longer be able to return us the lock; this will be fixed in future.
4720 if (so
->so_proto
->pr_getlock
!= NULL
) {
4721 mutex_held
= (*so
->so_proto
->pr_getlock
)(so
, 0);
4723 mutex_held
= so
->so_proto
->pr_domain
->dom_mtx
;
4726 LCK_MTX_ASSERT(mutex_held
, LCK_MTX_ASSERT_OWNED
);
4729 sflt_notify(so
, sock_evt_flush_read
, NULL
);
4734 * Obtain lock on the socket buffer (SB_LOCK). This is required
4735 * to prevent the socket buffer from being unexpectedly altered
4736 * while it is used by another thread in socket send/receive.
4738 * sblock() must not fail here, hence the assertion.
4740 (void) sblock(sb
, SBL_WAIT
| SBL_NOINTR
| SBL_IGNDEFUNCT
);
4741 VERIFY(sb
->sb_flags
& SB_LOCK
);
4744 * Copy only the relevant fields from "sb" to "asb" which we
4745 * need for sbrelease() to function. In particular, skip
4746 * sb_sel as it contains the wait queue linkage, which would
4747 * wreak havoc if we were to issue selthreadclear() on "asb".
4748 * Make sure to not carry over SB_LOCK in "asb", as we need
4749 * to acquire it later as part of sbrelease().
4751 bzero(&asb
, sizeof(asb
));
4752 asb
.sb_cc
= sb
->sb_cc
;
4753 asb
.sb_hiwat
= sb
->sb_hiwat
;
4754 asb
.sb_mbcnt
= sb
->sb_mbcnt
;
4755 asb
.sb_mbmax
= sb
->sb_mbmax
;
4756 asb
.sb_ctl
= sb
->sb_ctl
;
4757 asb
.sb_lowat
= sb
->sb_lowat
;
4758 asb
.sb_mb
= sb
->sb_mb
;
4759 asb
.sb_mbtail
= sb
->sb_mbtail
;
4760 asb
.sb_lastrecord
= sb
->sb_lastrecord
;
4761 asb
.sb_so
= sb
->sb_so
;
4762 asb
.sb_flags
= sb
->sb_flags
;
4763 asb
.sb_flags
&= ~(SB_LOCK
| SB_SEL
| SB_KNOTE
| SB_UPCALL
);
4764 asb
.sb_flags
|= SB_DROP
;
4767 * Ideally we'd bzero() these and preserve the ones we need;
4768 * but to do that we'd need to shuffle things around in the
4769 * sockbuf, and we can't do it now because there are KEXTS
4770 * that are directly referring to the socket structure.
4772 * Setting SB_DROP acts as a barrier to prevent further appends.
4773 * Clearing SB_SEL is done for selthreadclear() below.
4782 sb
->sb_mbtail
= NULL
;
4783 sb
->sb_lastrecord
= NULL
;
4784 sb
->sb_timeo
.tv_sec
= 0;
4785 sb
->sb_timeo
.tv_usec
= 0;
4786 sb
->sb_upcall
= NULL
;
4787 sb
->sb_upcallarg
= NULL
;
4788 sb
->sb_flags
&= ~(SB_SEL
| SB_UPCALL
);
4789 sb
->sb_flags
|= SB_DROP
;
4791 sbunlock(sb
, TRUE
); /* keep socket locked */
4794 * Note that selthreadclear() is called on the original "sb" and
4795 * not the local "asb" because of the way wait queue linkage is
4796 * implemented. Given that selwakeup() may be triggered, SB_SEL
4797 * should no longer be set (cleared above.)
4799 selthreadclear(&sb
->sb_sel
);
4801 if ((pr
->pr_flags
& PR_RIGHTS
) && pr
->pr_domain
->dom_dispose
) {
4802 (*pr
->pr_domain
->dom_dispose
)(asb
.sb_mb
);
4809 * Perhaps this routine, and sooptcopyout(), below, ought to come in
4810 * an additional variant to handle the case where the option value needs
4811 * to be some kind of integer, but not a specific size.
4812 * In addition to their use here, these functions are also called by the
4813 * protocol-level pr_ctloutput() routines.
4815 * Returns: 0 Success
4820 sooptcopyin(struct sockopt
*sopt
, void *buf
, size_t len
, size_t minlen
)
4825 * If the user gives us more than we wanted, we ignore it,
4826 * but if we don't get the minimum length the caller
4827 * wants, we return EINVAL. On success, sopt->sopt_valsize
4828 * is set to however much we actually retrieved.
4830 if ((valsize
= sopt
->sopt_valsize
) < minlen
) {
4833 if (valsize
> len
) {
4834 sopt
->sopt_valsize
= valsize
= len
;
4837 if (sopt
->sopt_p
!= kernproc
) {
4838 return copyin(sopt
->sopt_val
, buf
, valsize
);
4841 bcopy(CAST_DOWN(caddr_t
, sopt
->sopt_val
), buf
, valsize
);
4846 * sooptcopyin_timeval
4847 * Copy in a timeval value into tv_p, and take into account whether the
4848 * the calling process is 64-bit or 32-bit. Moved the sanity checking
4849 * code here so that we can verify the 64-bit tv_sec value before we lose
4850 * the top 32-bits assigning tv64.tv_sec to tv_p->tv_sec.
4853 sooptcopyin_timeval(struct sockopt
*sopt
, struct timeval
*tv_p
)
4857 if (proc_is64bit(sopt
->sopt_p
)) {
4858 struct user64_timeval tv64
;
4860 if (sopt
->sopt_valsize
< sizeof(tv64
)) {
4864 sopt
->sopt_valsize
= sizeof(tv64
);
4865 if (sopt
->sopt_p
!= kernproc
) {
4866 error
= copyin(sopt
->sopt_val
, &tv64
, sizeof(tv64
));
4871 bcopy(CAST_DOWN(caddr_t
, sopt
->sopt_val
), &tv64
,
4874 if (tv64
.tv_sec
< 0 || tv64
.tv_sec
> LONG_MAX
||
4875 tv64
.tv_usec
< 0 || tv64
.tv_usec
>= 1000000) {
4879 tv_p
->tv_sec
= tv64
.tv_sec
;
4880 tv_p
->tv_usec
= tv64
.tv_usec
;
4882 struct user32_timeval tv32
;
4884 if (sopt
->sopt_valsize
< sizeof(tv32
)) {
4888 sopt
->sopt_valsize
= sizeof(tv32
);
4889 if (sopt
->sopt_p
!= kernproc
) {
4890 error
= copyin(sopt
->sopt_val
, &tv32
, sizeof(tv32
));
4895 bcopy(CAST_DOWN(caddr_t
, sopt
->sopt_val
), &tv32
,
4900 * K64todo "comparison is always false due to
4901 * limited range of data type"
4903 if (tv32
.tv_sec
< 0 || tv32
.tv_sec
> LONG_MAX
||
4904 tv32
.tv_usec
< 0 || tv32
.tv_usec
>= 1000000) {
4908 tv_p
->tv_sec
= tv32
.tv_sec
;
4909 tv_p
->tv_usec
= tv32
.tv_usec
;
4915 soopt_cred_check(struct socket
*so
, int priv
, boolean_t allow_root
,
4916 boolean_t ignore_delegate
)
4918 kauth_cred_t cred
= NULL
;
4919 proc_t ep
= PROC_NULL
;
4923 if (ignore_delegate
== false && so
->so_flags
& SOF_DELEGATED
) {
4924 ep
= proc_find(so
->e_pid
);
4926 cred
= kauth_cred_proc_ref(ep
);
4930 uid
= kauth_cred_getuid(cred
? cred
: so
->so_cred
);
4932 /* uid is 0 for root */
4933 if (uid
!= 0 || !allow_root
) {
4934 error
= priv_check_cred(cred
? cred
: so
->so_cred
, priv
, 0);
4937 kauth_cred_unref(&cred
);
4939 if (ep
!= PROC_NULL
) {
4947 * Returns: 0 Success
4952 * sooptcopyin:EINVAL
4953 * sooptcopyin:EFAULT
4954 * sooptcopyin_timeval:EINVAL
4955 * sooptcopyin_timeval:EFAULT
4956 * sooptcopyin_timeval:EDOM
4957 * <pr_ctloutput>:EOPNOTSUPP[AF_UNIX]
4958 * <pr_ctloutput>:???w
4959 * sflt_attach_private:??? [whatever a filter author chooses]
4960 * <sf_setoption>:??? [whatever a filter author chooses]
4962 * Notes: Other <pru_listen> returns depend on the protocol family; all
4963 * <sf_listen> returns depend on what the filter author causes
4964 * their filter to return.
4967 sosetoptlock(struct socket
*so
, struct sockopt
*sopt
, int dolock
)
4970 int64_t long_optval
;
4973 #if CONFIG_MACF_SOCKET
4975 #endif /* MAC_SOCKET */
4977 if (sopt
->sopt_dir
!= SOPT_SET
) {
4978 sopt
->sopt_dir
= SOPT_SET
;
4985 if ((so
->so_state
& (SS_CANTRCVMORE
| SS_CANTSENDMORE
)) ==
4986 (SS_CANTRCVMORE
| SS_CANTSENDMORE
) &&
4987 (so
->so_flags
& SOF_NPX_SETOPTSHUT
) == 0) {
4988 /* the socket has been shutdown, no more sockopt's */
4993 error
= sflt_setsockopt(so
, sopt
);
4995 if (error
== EJUSTRETURN
) {
5001 if (sopt
->sopt_level
!= SOL_SOCKET
) {
5002 if (so
->so_proto
!= NULL
&&
5003 so
->so_proto
->pr_ctloutput
!= NULL
) {
5004 error
= (*so
->so_proto
->pr_ctloutput
)(so
, sopt
);
5007 error
= ENOPROTOOPT
;
5010 * Allow socket-level (SOL_SOCKET) options to be filtered by
5011 * the protocol layer, if needed. A zero value returned from
5012 * the handler means use default socket-level processing as
5013 * done by the rest of this routine. Otherwise, any other
5014 * return value indicates that the option is unsupported.
5016 if (so
->so_proto
!= NULL
&& (error
= so
->so_proto
->pr_usrreqs
->
5017 pru_socheckopt(so
, sopt
)) != 0) {
5022 switch (sopt
->sopt_name
) {
5025 error
= sooptcopyin(sopt
, &l
, sizeof(l
), sizeof(l
));
5030 so
->so_linger
= (sopt
->sopt_name
== SO_LINGER
) ?
5031 l
.l_linger
: l
.l_linger
* hz
;
5032 if (l
.l_onoff
!= 0) {
5033 so
->so_options
|= SO_LINGER
;
5035 so
->so_options
&= ~SO_LINGER
;
5042 case SO_USELOOPBACK
:
5048 case SO_TIMESTAMP_MONOTONIC
:
5049 case SO_TIMESTAMP_CONTINUOUS
:
5052 case SO_WANTOOBFLAG
:
5053 case SO_NOWAKEFROMSLEEP
:
5054 case SO_NOAPNFALLBK
:
5055 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
5061 so
->so_options
|= sopt
->sopt_name
;
5063 so
->so_options
&= ~sopt
->sopt_name
;
5071 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
5078 * Values < 1 make no sense for any of these
5079 * options, so disallow them.
5086 switch (sopt
->sopt_name
) {
5089 struct sockbuf
*sb
=
5090 (sopt
->sopt_name
== SO_SNDBUF
) ?
5091 &so
->so_snd
: &so
->so_rcv
;
5092 if (sbreserve(sb
, (u_int32_t
)optval
) == 0) {
5096 sb
->sb_flags
|= SB_USRSIZE
;
5097 sb
->sb_flags
&= ~SB_AUTOSIZE
;
5098 sb
->sb_idealsize
= (u_int32_t
)optval
;
5102 * Make sure the low-water is never greater than
5106 int space
= sbspace(&so
->so_snd
);
5107 u_int32_t hiwat
= so
->so_snd
.sb_hiwat
;
5109 if (so
->so_snd
.sb_flags
& SB_UNIX
) {
5111 (struct unpcb
*)(so
->so_pcb
);
5113 unp
->unp_conn
!= NULL
) {
5114 hiwat
+= unp
->unp_conn
->unp_cc
;
5118 so
->so_snd
.sb_lowat
=
5122 if (space
>= so
->so_snd
.sb_lowat
) {
5129 so
->so_rcv
.sb_lowat
=
5130 (optval
> so
->so_rcv
.sb_hiwat
) ?
5131 so
->so_rcv
.sb_hiwat
: optval
;
5132 data_len
= so
->so_rcv
.sb_cc
5133 - so
->so_rcv
.sb_ctl
;
5134 if (data_len
>= so
->so_rcv
.sb_lowat
) {
5144 error
= sooptcopyin_timeval(sopt
, &tv
);
5149 switch (sopt
->sopt_name
) {
5151 so
->so_snd
.sb_timeo
= tv
;
5154 so
->so_rcv
.sb_timeo
= tv
;
5162 error
= sooptcopyin(sopt
, &nke
, sizeof(nke
),
5168 error
= sflt_attach_internal(so
, nke
.nke_handle
);
5173 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
5179 so
->so_flags
|= SOF_NOSIGPIPE
;
5181 so
->so_flags
&= ~SOF_NOSIGPIPE
;
5186 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
5192 so
->so_flags
|= SOF_NOADDRAVAIL
;
5194 so
->so_flags
&= ~SOF_NOADDRAVAIL
;
5198 case SO_REUSESHAREUID
:
5199 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
5205 so
->so_flags
|= SOF_REUSESHAREUID
;
5207 so
->so_flags
&= ~SOF_REUSESHAREUID
;
5211 case SO_NOTIFYCONFLICT
:
5212 if (kauth_cred_issuser(kauth_cred_get()) == 0) {
5216 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
5222 so
->so_flags
|= SOF_NOTIFYCONFLICT
;
5224 so
->so_flags
&= ~SOF_NOTIFYCONFLICT
;
5228 case SO_RESTRICTIONS
:
5229 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
5235 error
= so_set_restrictions(so
, optval
);
5238 case SO_AWDL_UNRESTRICTED
:
5239 if (SOCK_DOM(so
) != PF_INET
&&
5240 SOCK_DOM(so
) != PF_INET6
) {
5244 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
5250 error
= soopt_cred_check(so
,
5251 PRIV_NET_RESTRICTED_AWDL
, false, false);
5253 inp_set_awdl_unrestricted(
5257 inp_clear_awdl_unrestricted(sotoinpcb(so
));
5260 case SO_INTCOPROC_ALLOW
:
5261 if (SOCK_DOM(so
) != PF_INET6
) {
5265 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
5271 inp_get_intcoproc_allowed(sotoinpcb(so
)) == FALSE
) {
5272 error
= soopt_cred_check(so
,
5273 PRIV_NET_RESTRICTED_INTCOPROC
, false, false);
5275 inp_set_intcoproc_allowed(
5278 } else if (optval
== 0) {
5279 inp_clear_intcoproc_allowed(sotoinpcb(so
));
5284 #if CONFIG_MACF_SOCKET
5285 if ((error
= sooptcopyin(sopt
, &extmac
, sizeof(extmac
),
5286 sizeof(extmac
))) != 0) {
5290 error
= mac_setsockopt_label(proc_ucred(sopt
->sopt_p
),
5294 #endif /* MAC_SOCKET */
5297 case SO_UPCALLCLOSEWAIT
:
5298 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
5304 so
->so_flags
|= SOF_UPCALLCLOSEWAIT
;
5306 so
->so_flags
&= ~SOF_UPCALLCLOSEWAIT
;
5311 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
5317 so
->so_flags
|= SOF_BINDRANDOMPORT
;
5319 so
->so_flags
&= ~SOF_BINDRANDOMPORT
;
5323 case SO_NP_EXTENSIONS
: {
5324 struct so_np_extensions sonpx
;
5326 error
= sooptcopyin(sopt
, &sonpx
, sizeof(sonpx
),
5331 if (sonpx
.npx_mask
& ~SONPX_MASK_VALID
) {
5336 * Only one bit defined for now
5338 if ((sonpx
.npx_mask
& SONPX_SETOPTSHUT
)) {
5339 if ((sonpx
.npx_flags
& SONPX_SETOPTSHUT
)) {
5340 so
->so_flags
|= SOF_NPX_SETOPTSHUT
;
5342 so
->so_flags
&= ~SOF_NPX_SETOPTSHUT
;
5348 case SO_TRAFFIC_CLASS
: {
5349 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
5354 if (optval
>= SO_TC_NET_SERVICE_OFFSET
) {
5355 int netsvc
= optval
- SO_TC_NET_SERVICE_OFFSET
;
5356 error
= so_set_net_service_type(so
, netsvc
);
5359 error
= so_set_traffic_class(so
, optval
);
5363 so
->so_flags1
&= ~SOF1_TC_NET_SERV_TYPE
;
5364 so
->so_netsvctype
= _NET_SERVICE_TYPE_UNSPEC
;
5368 case SO_RECV_TRAFFIC_CLASS
: {
5369 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
5375 so
->so_flags
&= ~SOF_RECV_TRAFFIC_CLASS
;
5377 so
->so_flags
|= SOF_RECV_TRAFFIC_CLASS
;
5382 #if (DEVELOPMENT || DEBUG)
5383 case SO_TRAFFIC_CLASS_DBG
: {
5384 struct so_tcdbg so_tcdbg
;
5386 error
= sooptcopyin(sopt
, &so_tcdbg
,
5387 sizeof(struct so_tcdbg
), sizeof(struct so_tcdbg
));
5391 error
= so_set_tcdbg(so
, &so_tcdbg
);
5397 #endif /* (DEVELOPMENT || DEBUG) */
5399 case SO_PRIVILEGED_TRAFFIC_CLASS
:
5400 error
= priv_check_cred(kauth_cred_get(),
5401 PRIV_NET_PRIVILEGED_TRAFFIC_CLASS
, 0);
5405 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
5411 so
->so_flags
&= ~SOF_PRIVILEGED_TRAFFIC_CLASS
;
5413 so
->so_flags
|= SOF_PRIVILEGED_TRAFFIC_CLASS
;
5417 #if (DEVELOPMENT || DEBUG)
5419 error
= sosetdefunct(current_proc(), so
, 0, FALSE
);
5421 error
= sodefunct(current_proc(), so
, 0);
5425 #endif /* (DEVELOPMENT || DEBUG) */
5428 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
5430 if (error
!= 0 || (so
->so_flags
& SOF_DEFUNCT
)) {
5437 * Any process can set SO_DEFUNCTOK (clear
5438 * SOF_NODEFUNCT), but only root can clear
5439 * SO_DEFUNCTOK (set SOF_NODEFUNCT).
5442 kauth_cred_issuser(kauth_cred_get()) == 0) {
5447 so
->so_flags
&= ~SOF_NODEFUNCT
;
5449 so
->so_flags
|= SOF_NODEFUNCT
;
5452 if (SOCK_DOM(so
) == PF_INET
||
5453 SOCK_DOM(so
) == PF_INET6
) {
5454 char s
[MAX_IPv6_STR_LEN
];
5455 char d
[MAX_IPv6_STR_LEN
];
5456 struct inpcb
*inp
= sotoinpcb(so
);
5458 SODEFUNCTLOG("%s[%d, %s]: so 0x%llx "
5459 "[%s %s:%d -> %s:%d] is now marked "
5460 "as %seligible for "
5461 "defunct\n", __func__
, proc_selfpid(),
5462 proc_best_name(current_proc()),
5463 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
),
5464 (SOCK_TYPE(so
) == SOCK_STREAM
) ?
5465 "TCP" : "UDP", inet_ntop(SOCK_DOM(so
),
5466 ((SOCK_DOM(so
) == PF_INET
) ?
5467 (void *)&inp
->inp_laddr
.s_addr
:
5468 (void *)&inp
->in6p_laddr
), s
, sizeof(s
)),
5469 ntohs(inp
->in6p_lport
),
5470 inet_ntop(SOCK_DOM(so
),
5471 (SOCK_DOM(so
) == PF_INET
) ?
5472 (void *)&inp
->inp_faddr
.s_addr
:
5473 (void *)&inp
->in6p_faddr
, d
, sizeof(d
)),
5474 ntohs(inp
->in6p_fport
),
5475 (so
->so_flags
& SOF_NODEFUNCT
) ?
5478 SODEFUNCTLOG("%s[%d, %s]: so 0x%llx [%d,%d] "
5479 "is now marked as %seligible for "
5481 __func__
, proc_selfpid(),
5482 proc_best_name(current_proc()),
5483 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
),
5484 SOCK_DOM(so
), SOCK_TYPE(so
),
5485 (so
->so_flags
& SOF_NODEFUNCT
) ?
5491 /* This option is not settable */
5495 case SO_OPPORTUNISTIC
:
5496 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
5499 error
= so_set_opportunistic(so
, optval
);
5504 /* This option is handled by lower layer(s) */
5509 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
5512 error
= so_set_recv_anyif(so
, optval
);
5516 case SO_TRAFFIC_MGT_BACKGROUND
: {
5517 /* This option is handled by lower layer(s) */
5523 case SO_FLOW_DIVERT_TOKEN
:
5524 error
= flow_divert_token_set(so
, sopt
);
5526 #endif /* FLOW_DIVERT */
5530 if ((error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
5531 sizeof(optval
))) != 0) {
5535 error
= so_set_effective_pid(so
, optval
, sopt
->sopt_p
, true);
5538 case SO_DELEGATED_UUID
: {
5541 if ((error
= sooptcopyin(sopt
, &euuid
, sizeof(euuid
),
5542 sizeof(euuid
))) != 0) {
5546 error
= so_set_effective_uuid(so
, euuid
, sopt
->sopt_p
, true);
5551 case SO_NECP_ATTRIBUTES
:
5552 error
= necp_set_socket_attributes(so
, sopt
);
5555 case SO_NECP_CLIENTUUID
: {
5556 if (SOCK_DOM(so
) == PF_MULTIPATH
) {
5557 /* Handled by MPTCP itself */
5561 if (SOCK_DOM(so
) != PF_INET
&& SOCK_DOM(so
) != PF_INET6
) {
5566 struct inpcb
*inp
= sotoinpcb(so
);
5567 if (!uuid_is_null(inp
->necp_client_uuid
)) {
5568 // Clear out the old client UUID if present
5569 necp_inpcb_remove_cb(inp
);
5572 error
= sooptcopyin(sopt
, &inp
->necp_client_uuid
,
5573 sizeof(uuid_t
), sizeof(uuid_t
));
5578 if (uuid_is_null(inp
->necp_client_uuid
)) {
5583 pid_t current_pid
= proc_pid(current_proc());
5584 error
= necp_client_register_socket_flow(current_pid
,
5585 inp
->necp_client_uuid
, inp
);
5587 uuid_clear(inp
->necp_client_uuid
);
5591 if (inp
->inp_lport
!= 0) {
5592 // There is a bound local port, so this is not
5593 // a fresh socket. Assign to the client.
5594 necp_client_assign_from_socket(current_pid
, inp
->necp_client_uuid
, inp
);
5599 case SO_NECP_LISTENUUID
: {
5600 if (SOCK_DOM(so
) != PF_INET
&& SOCK_DOM(so
) != PF_INET6
) {
5605 struct inpcb
*inp
= sotoinpcb(so
);
5606 if (!uuid_is_null(inp
->necp_client_uuid
)) {
5611 error
= sooptcopyin(sopt
, &inp
->necp_client_uuid
,
5612 sizeof(uuid_t
), sizeof(uuid_t
));
5617 if (uuid_is_null(inp
->necp_client_uuid
)) {
5622 error
= necp_client_register_socket_listener(proc_pid(current_proc()),
5623 inp
->necp_client_uuid
, inp
);
5625 uuid_clear(inp
->necp_client_uuid
);
5629 // Mark that the port registration is held by NECP
5630 inp
->inp_flags2
|= INP2_EXTERNAL_PORT
;
5636 case SO_EXTENDED_BK_IDLE
:
5637 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
5640 error
= so_set_extended_bk_idle(so
, optval
);
5644 case SO_MARK_CELLFALLBACK
:
5645 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
5655 so
->so_flags1
&= ~SOF1_CELLFALLBACK
;
5657 so
->so_flags1
|= SOF1_CELLFALLBACK
;
5661 case SO_STATISTICS_EVENT
:
5662 error
= sooptcopyin(sopt
, &long_optval
,
5663 sizeof(long_optval
), sizeof(long_optval
));
5667 u_int64_t nstat_event
= 0;
5668 error
= so_statistics_event_to_nstat_event(
5669 &long_optval
, &nstat_event
);
5673 nstat_pcb_event(sotoinpcb(so
), nstat_event
);
5676 case SO_NET_SERVICE_TYPE
: {
5677 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
5682 error
= so_set_net_service_type(so
, optval
);
5686 case SO_QOSMARKING_POLICY_OVERRIDE
:
5687 error
= priv_check_cred(kauth_cred_get(),
5688 PRIV_NET_QOSMARKING_POLICY_OVERRIDE
, 0);
5692 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
5698 so
->so_flags1
&= ~SOF1_QOSMARKING_POLICY_OVERRIDE
;
5700 so
->so_flags1
|= SOF1_QOSMARKING_POLICY_OVERRIDE
;
5704 case SO_MPKL_SEND_INFO
: {
5705 struct so_mpkl_send_info so_mpkl_send_info
;
5707 error
= sooptcopyin(sopt
, &so_mpkl_send_info
,
5708 sizeof(struct so_mpkl_send_info
), sizeof(struct so_mpkl_send_info
));
5712 uuid_copy(so
->so_mpkl_send_uuid
, so_mpkl_send_info
.mpkl_uuid
);
5713 so
->so_mpkl_send_proto
= so_mpkl_send_info
.mpkl_proto
;
5715 if (uuid_is_null(so
->so_mpkl_send_uuid
) && so
->so_mpkl_send_proto
== 0) {
5716 so
->so_flags1
&= ~SOF1_MPKL_SEND_INFO
;
5718 so
->so_flags1
|= SOF1_MPKL_SEND_INFO
;
5723 error
= ENOPROTOOPT
;
5726 if (error
== 0 && so
->so_proto
!= NULL
&&
5727 so
->so_proto
->pr_ctloutput
!= NULL
) {
5728 (void) so
->so_proto
->pr_ctloutput(so
, sopt
);
5733 socket_unlock(so
, 1);
5738 /* Helper routines for getsockopt */
5740 sooptcopyout(struct sockopt
*sopt
, void *buf
, size_t len
)
5748 * Documented get behavior is that we always return a value,
5749 * possibly truncated to fit in the user's buffer.
5750 * Traditional behavior is that we always tell the user
5751 * precisely how much we copied, rather than something useful
5752 * like the total amount we had available for her.
5753 * Note that this interface is not idempotent; the entire answer must
5754 * generated ahead of time.
5756 valsize
= min(len
, sopt
->sopt_valsize
);
5757 sopt
->sopt_valsize
= valsize
;
5758 if (sopt
->sopt_val
!= USER_ADDR_NULL
) {
5759 if (sopt
->sopt_p
!= kernproc
) {
5760 error
= copyout(buf
, sopt
->sopt_val
, valsize
);
5762 bcopy(buf
, CAST_DOWN(caddr_t
, sopt
->sopt_val
), valsize
);
5769 sooptcopyout_timeval(struct sockopt
*sopt
, const struct timeval
*tv_p
)
5773 struct user64_timeval tv64
= {};
5774 struct user32_timeval tv32
= {};
5779 if (proc_is64bit(sopt
->sopt_p
)) {
5781 tv64
.tv_sec
= tv_p
->tv_sec
;
5782 tv64
.tv_usec
= tv_p
->tv_usec
;
5786 tv32
.tv_sec
= tv_p
->tv_sec
;
5787 tv32
.tv_usec
= tv_p
->tv_usec
;
5790 valsize
= min(len
, sopt
->sopt_valsize
);
5791 sopt
->sopt_valsize
= valsize
;
5792 if (sopt
->sopt_val
!= USER_ADDR_NULL
) {
5793 if (sopt
->sopt_p
!= kernproc
) {
5794 error
= copyout(val
, sopt
->sopt_val
, valsize
);
5796 bcopy(val
, CAST_DOWN(caddr_t
, sopt
->sopt_val
), valsize
);
5805 * <pr_ctloutput>:EOPNOTSUPP[AF_UNIX]
5806 * <pr_ctloutput>:???
5807 * <sf_getoption>:???
5810 sogetoptlock(struct socket
*so
, struct sockopt
*sopt
, int dolock
)
5815 #if CONFIG_MACF_SOCKET
5817 #endif /* MAC_SOCKET */
5819 if (sopt
->sopt_dir
!= SOPT_GET
) {
5820 sopt
->sopt_dir
= SOPT_GET
;
5827 error
= sflt_getsockopt(so
, sopt
);
5829 if (error
== EJUSTRETURN
) {
5835 if (sopt
->sopt_level
!= SOL_SOCKET
) {
5836 if (so
->so_proto
!= NULL
&&
5837 so
->so_proto
->pr_ctloutput
!= NULL
) {
5838 error
= (*so
->so_proto
->pr_ctloutput
)(so
, sopt
);
5841 error
= ENOPROTOOPT
;
5844 * Allow socket-level (SOL_SOCKET) options to be filtered by
5845 * the protocol layer, if needed. A zero value returned from
5846 * the handler means use default socket-level processing as
5847 * done by the rest of this routine. Otherwise, any other
5848 * return value indicates that the option is unsupported.
5850 if (so
->so_proto
!= NULL
&& (error
= so
->so_proto
->pr_usrreqs
->
5851 pru_socheckopt(so
, sopt
)) != 0) {
5856 switch (sopt
->sopt_name
) {
5859 l
.l_onoff
= ((so
->so_options
& SO_LINGER
) ? 1 : 0);
5860 l
.l_linger
= (sopt
->sopt_name
== SO_LINGER
) ?
5861 so
->so_linger
: so
->so_linger
/ hz
;
5862 error
= sooptcopyout(sopt
, &l
, sizeof(l
));
5865 case SO_USELOOPBACK
:
5874 case SO_TIMESTAMP_MONOTONIC
:
5875 case SO_TIMESTAMP_CONTINUOUS
:
5878 case SO_WANTOOBFLAG
:
5879 case SO_NOWAKEFROMSLEEP
:
5880 case SO_NOAPNFALLBK
:
5881 optval
= so
->so_options
& sopt
->sopt_name
;
5883 error
= sooptcopyout(sopt
, &optval
, sizeof(optval
));
5887 optval
= so
->so_type
;
5891 if (so
->so_proto
->pr_flags
& PR_ATOMIC
) {
5896 m1
= so
->so_rcv
.sb_mb
;
5897 while (m1
!= NULL
) {
5898 if (m1
->m_type
== MT_DATA
||
5899 m1
->m_type
== MT_HEADER
||
5900 m1
->m_type
== MT_OOBDATA
) {
5901 pkt_total
+= m1
->m_len
;
5907 optval
= so
->so_rcv
.sb_cc
- so
->so_rcv
.sb_ctl
;
5912 if (so
->so_proto
->pr_flags
& PR_ATOMIC
) {
5916 m1
= so
->so_rcv
.sb_mb
;
5917 while (m1
!= NULL
) {
5924 error
= ENOPROTOOPT
;
5929 optval
= so
->so_snd
.sb_cc
;
5933 optval
= so
->so_error
;
5938 u_int32_t hiwat
= so
->so_snd
.sb_hiwat
;
5940 if (so
->so_snd
.sb_flags
& SB_UNIX
) {
5942 (struct unpcb
*)(so
->so_pcb
);
5943 if (unp
!= NULL
&& unp
->unp_conn
!= NULL
) {
5944 hiwat
+= unp
->unp_conn
->unp_cc
;
5952 optval
= so
->so_rcv
.sb_hiwat
;
5956 optval
= so
->so_snd
.sb_lowat
;
5960 optval
= so
->so_rcv
.sb_lowat
;
5965 tv
= (sopt
->sopt_name
== SO_SNDTIMEO
?
5966 so
->so_snd
.sb_timeo
: so
->so_rcv
.sb_timeo
);
5968 error
= sooptcopyout_timeval(sopt
, &tv
);
5972 optval
= (so
->so_flags
& SOF_NOSIGPIPE
);
5976 optval
= (so
->so_flags
& SOF_NOADDRAVAIL
);
5979 case SO_REUSESHAREUID
:
5980 optval
= (so
->so_flags
& SOF_REUSESHAREUID
);
5984 case SO_NOTIFYCONFLICT
:
5985 optval
= (so
->so_flags
& SOF_NOTIFYCONFLICT
);
5988 case SO_RESTRICTIONS
:
5989 optval
= so_get_restrictions(so
);
5992 case SO_AWDL_UNRESTRICTED
:
5993 if (SOCK_DOM(so
) == PF_INET
||
5994 SOCK_DOM(so
) == PF_INET6
) {
5995 optval
= inp_get_awdl_unrestricted(
6003 case SO_INTCOPROC_ALLOW
:
6004 if (SOCK_DOM(so
) == PF_INET6
) {
6005 optval
= inp_get_intcoproc_allowed(
6014 #if CONFIG_MACF_SOCKET
6015 if ((error
= sooptcopyin(sopt
, &extmac
, sizeof(extmac
),
6016 sizeof(extmac
))) != 0 ||
6017 (error
= mac_socket_label_get(proc_ucred(
6018 sopt
->sopt_p
), so
, &extmac
)) != 0) {
6022 error
= sooptcopyout(sopt
, &extmac
, sizeof(extmac
));
6025 #endif /* MAC_SOCKET */
6029 #if CONFIG_MACF_SOCKET
6030 if ((error
= sooptcopyin(sopt
, &extmac
, sizeof(extmac
),
6031 sizeof(extmac
))) != 0 ||
6032 (error
= mac_socketpeer_label_get(proc_ucred(
6033 sopt
->sopt_p
), so
, &extmac
)) != 0) {
6037 error
= sooptcopyout(sopt
, &extmac
, sizeof(extmac
));
6040 #endif /* MAC_SOCKET */
6043 #ifdef __APPLE_API_PRIVATE
6044 case SO_UPCALLCLOSEWAIT
:
6045 optval
= (so
->so_flags
& SOF_UPCALLCLOSEWAIT
);
6049 optval
= (so
->so_flags
& SOF_BINDRANDOMPORT
);
6052 case SO_NP_EXTENSIONS
: {
6053 struct so_np_extensions sonpx
= {};
6055 sonpx
.npx_flags
= (so
->so_flags
& SOF_NPX_SETOPTSHUT
) ?
6056 SONPX_SETOPTSHUT
: 0;
6057 sonpx
.npx_mask
= SONPX_MASK_VALID
;
6059 error
= sooptcopyout(sopt
, &sonpx
,
6060 sizeof(struct so_np_extensions
));
6064 case SO_TRAFFIC_CLASS
:
6065 optval
= so
->so_traffic_class
;
6068 case SO_RECV_TRAFFIC_CLASS
:
6069 optval
= (so
->so_flags
& SOF_RECV_TRAFFIC_CLASS
);
6072 case SO_TRAFFIC_CLASS_STATS
:
6073 error
= sooptcopyout(sopt
, &so
->so_tc_stats
,
6074 sizeof(so
->so_tc_stats
));
6077 #if (DEVELOPMENT || DEBUG)
6078 case SO_TRAFFIC_CLASS_DBG
:
6079 error
= sogetopt_tcdbg(so
, sopt
);
6081 #endif /* (DEVELOPMENT || DEBUG) */
6083 case SO_PRIVILEGED_TRAFFIC_CLASS
:
6084 optval
= (so
->so_flags
& SOF_PRIVILEGED_TRAFFIC_CLASS
);
6088 optval
= !(so
->so_flags
& SOF_NODEFUNCT
);
6092 optval
= (so
->so_flags
& SOF_DEFUNCT
);
6095 case SO_OPPORTUNISTIC
:
6096 optval
= so_get_opportunistic(so
);
6100 /* This option is not gettable */
6105 optval
= so_get_recv_anyif(so
);
6108 case SO_TRAFFIC_MGT_BACKGROUND
:
6109 /* This option is handled by lower layer(s) */
6110 if (so
->so_proto
!= NULL
&&
6111 so
->so_proto
->pr_ctloutput
!= NULL
) {
6112 (void) so
->so_proto
->pr_ctloutput(so
, sopt
);
6117 case SO_FLOW_DIVERT_TOKEN
:
6118 error
= flow_divert_token_get(so
, sopt
);
6120 #endif /* FLOW_DIVERT */
6123 case SO_NECP_ATTRIBUTES
:
6124 error
= necp_get_socket_attributes(so
, sopt
);
6127 case SO_NECP_CLIENTUUID
: {
6130 if (SOCK_DOM(so
) == PF_MULTIPATH
) {
6131 ncu
= &mpsotomppcb(so
)->necp_client_uuid
;
6132 } else if (SOCK_DOM(so
) == PF_INET
|| SOCK_DOM(so
) == PF_INET6
) {
6133 ncu
= &sotoinpcb(so
)->necp_client_uuid
;
6139 error
= sooptcopyout(sopt
, ncu
, sizeof(uuid_t
));
6143 case SO_NECP_LISTENUUID
: {
6146 if (SOCK_DOM(so
) == PF_INET
|| SOCK_DOM(so
) == PF_INET6
) {
6147 if (sotoinpcb(so
)->inp_flags2
& INP2_EXTERNAL_PORT
) {
6148 nlu
= &sotoinpcb(so
)->necp_client_uuid
;
6158 error
= sooptcopyout(sopt
, nlu
, sizeof(uuid_t
));
6164 case SO_CFIL_SOCK_ID
: {
6165 cfil_sock_id_t sock_id
;
6167 sock_id
= cfil_sock_id_from_socket(so
);
6169 error
= sooptcopyout(sopt
, &sock_id
,
6170 sizeof(cfil_sock_id_t
));
6173 #endif /* CONTENT_FILTER */
6175 case SO_EXTENDED_BK_IDLE
:
6176 optval
= (so
->so_flags1
& SOF1_EXTEND_BK_IDLE_WANTED
);
6178 case SO_MARK_CELLFALLBACK
:
6179 optval
= ((so
->so_flags1
& SOF1_CELLFALLBACK
) > 0)
6182 case SO_NET_SERVICE_TYPE
: {
6183 if ((so
->so_flags1
& SOF1_TC_NET_SERV_TYPE
)) {
6184 optval
= so
->so_netsvctype
;
6186 optval
= NET_SERVICE_TYPE_BE
;
6190 case SO_NETSVC_MARKING_LEVEL
:
6191 optval
= so_get_netsvc_marking_level(so
);
6194 case SO_MPKL_SEND_INFO
: {
6195 struct so_mpkl_send_info so_mpkl_send_info
;
6197 uuid_copy(so_mpkl_send_info
.mpkl_uuid
, so
->so_mpkl_send_uuid
);
6198 so_mpkl_send_info
.mpkl_proto
= so
->so_mpkl_send_proto
;
6199 error
= sooptcopyout(sopt
, &so_mpkl_send_info
,
6200 sizeof(struct so_mpkl_send_info
));
6204 error
= ENOPROTOOPT
;
6210 socket_unlock(so
, 1);
6216 * The size limits on our soopt_getm is different from that on FreeBSD.
6217 * We limit the size of options to MCLBYTES. This will have to change
6218 * if we need to define options that need more space than MCLBYTES.
6221 soopt_getm(struct sockopt
*sopt
, struct mbuf
**mp
)
6223 struct mbuf
*m
, *m_prev
;
6224 int sopt_size
= sopt
->sopt_valsize
;
6227 if (sopt_size
<= 0 || sopt_size
> MCLBYTES
) {
6231 how
= sopt
->sopt_p
!= kernproc
? M_WAIT
: M_DONTWAIT
;
6232 MGET(m
, how
, MT_DATA
);
6236 if (sopt_size
> MLEN
) {
6238 if ((m
->m_flags
& M_EXT
) == 0) {
6242 m
->m_len
= min(MCLBYTES
, sopt_size
);
6244 m
->m_len
= min(MLEN
, sopt_size
);
6246 sopt_size
-= m
->m_len
;
6250 while (sopt_size
> 0) {
6251 MGET(m
, how
, MT_DATA
);
6256 if (sopt_size
> MLEN
) {
6258 if ((m
->m_flags
& M_EXT
) == 0) {
6263 m
->m_len
= min(MCLBYTES
, sopt_size
);
6265 m
->m_len
= min(MLEN
, sopt_size
);
6267 sopt_size
-= m
->m_len
;
6274 /* copyin sopt data into mbuf chain */
6276 soopt_mcopyin(struct sockopt
*sopt
, struct mbuf
*m
)
6278 struct mbuf
*m0
= m
;
6280 if (sopt
->sopt_val
== USER_ADDR_NULL
) {
6283 while (m
!= NULL
&& sopt
->sopt_valsize
>= m
->m_len
) {
6284 if (sopt
->sopt_p
!= kernproc
) {
6287 error
= copyin(sopt
->sopt_val
, mtod(m
, char *),
6294 bcopy(CAST_DOWN(caddr_t
, sopt
->sopt_val
),
6295 mtod(m
, char *), m
->m_len
);
6297 sopt
->sopt_valsize
-= m
->m_len
;
6298 sopt
->sopt_val
+= m
->m_len
;
6301 /* should be allocated enoughly at ip6_sooptmcopyin() */
6303 panic("soopt_mcopyin");
6309 /* copyout mbuf chain data into soopt */
6311 soopt_mcopyout(struct sockopt
*sopt
, struct mbuf
*m
)
6313 struct mbuf
*m0
= m
;
6316 if (sopt
->sopt_val
== USER_ADDR_NULL
) {
6319 while (m
!= NULL
&& sopt
->sopt_valsize
>= m
->m_len
) {
6320 if (sopt
->sopt_p
!= kernproc
) {
6323 error
= copyout(mtod(m
, char *), sopt
->sopt_val
,
6330 bcopy(mtod(m
, char *),
6331 CAST_DOWN(caddr_t
, sopt
->sopt_val
), m
->m_len
);
6333 sopt
->sopt_valsize
-= m
->m_len
;
6334 sopt
->sopt_val
+= m
->m_len
;
6335 valsize
+= m
->m_len
;
6339 /* enough soopt buffer should be given from user-land */
6343 sopt
->sopt_valsize
= valsize
;
6348 sohasoutofband(struct socket
*so
)
6350 if (so
->so_pgid
< 0) {
6351 gsignal(-so
->so_pgid
, SIGURG
);
6352 } else if (so
->so_pgid
> 0) {
6353 proc_signal(so
->so_pgid
, SIGURG
);
6355 selwakeup(&so
->so_rcv
.sb_sel
);
6356 if (so
->so_rcv
.sb_flags
& SB_KNOTE
) {
6357 KNOTE(&so
->so_rcv
.sb_sel
.si_note
,
6358 (NOTE_OOB
| SO_FILT_HINT_LOCKED
));
6363 sopoll(struct socket
*so
, int events
, kauth_cred_t cred
, void * wql
)
6365 #pragma unused(cred)
6366 struct proc
*p
= current_proc();
6370 so_update_last_owner_locked(so
, PROC_NULL
);
6371 so_update_policy(so
);
6373 if (events
& (POLLIN
| POLLRDNORM
)) {
6374 if (soreadable(so
)) {
6375 revents
|= events
& (POLLIN
| POLLRDNORM
);
6379 if (events
& (POLLOUT
| POLLWRNORM
)) {
6380 if (sowriteable(so
)) {
6381 revents
|= events
& (POLLOUT
| POLLWRNORM
);
6385 if (events
& (POLLPRI
| POLLRDBAND
)) {
6386 if (so
->so_oobmark
|| (so
->so_state
& SS_RCVATMARK
)) {
6387 revents
|= events
& (POLLPRI
| POLLRDBAND
);
6392 if (events
& (POLLIN
| POLLPRI
| POLLRDNORM
| POLLRDBAND
)) {
6394 * Darwin sets the flag first,
6395 * BSD calls selrecord first
6397 so
->so_rcv
.sb_flags
|= SB_SEL
;
6398 selrecord(p
, &so
->so_rcv
.sb_sel
, wql
);
6401 if (events
& (POLLOUT
| POLLWRNORM
)) {
6403 * Darwin sets the flag first,
6404 * BSD calls selrecord first
6406 so
->so_snd
.sb_flags
|= SB_SEL
;
6407 selrecord(p
, &so
->so_snd
.sb_sel
, wql
);
6411 socket_unlock(so
, 1);
6416 soo_kqfilter(struct fileproc
*fp
, struct knote
*kn
, struct kevent_qos_s
*kev
)
6418 struct socket
*so
= (struct socket
*)fp
->f_fglob
->fg_data
;
6422 so_update_last_owner_locked(so
, PROC_NULL
);
6423 so_update_policy(so
);
6425 #if CONFIG_MACF_SOCKET
6426 proc_t p
= knote_get_kq(kn
)->kq_p
;
6427 if (mac_socket_check_kqfilter(proc_ucred(p
), kn
, so
) != 0) {
6428 socket_unlock(so
, 1);
6429 knote_set_error(kn
, EPERM
);
6432 #endif /* MAC_SOCKET */
6434 switch (kn
->kn_filter
) {
6436 kn
->kn_filtid
= EVFILTID_SOREAD
;
6439 kn
->kn_filtid
= EVFILTID_SOWRITE
;
6442 kn
->kn_filtid
= EVFILTID_SCK
;
6445 kn
->kn_filtid
= EVFILTID_SOEXCEPT
;
6448 socket_unlock(so
, 1);
6449 knote_set_error(kn
, EINVAL
);
6454 * call the appropriate sub-filter attach
6455 * with the socket still locked
6457 result
= knote_fops(kn
)->f_attach(kn
, kev
);
6459 socket_unlock(so
, 1);
6465 filt_soread_common(struct knote
*kn
, struct kevent_qos_s
*kev
, struct socket
*so
)
6470 if (so
->so_options
& SO_ACCEPTCONN
) {
6472 * Radar 6615193 handle the listen case dynamically
6473 * for kqueue read filter. This allows to call listen()
6474 * after registering the kqueue EVFILT_READ.
6477 retval
= !TAILQ_EMPTY(&so
->so_comp
);
6482 /* socket isn't a listener */
6484 * NOTE_LOWAT specifies new low water mark in data, i.e.
6485 * the bytes of protocol data. We therefore exclude any
6488 data
= so
->so_rcv
.sb_cc
- so
->so_rcv
.sb_ctl
;
6490 if (kn
->kn_sfflags
& NOTE_OOB
) {
6491 if (so
->so_oobmark
|| (so
->so_state
& SS_RCVATMARK
)) {
6492 kn
->kn_fflags
|= NOTE_OOB
;
6493 data
-= so
->so_oobmark
;
6499 if ((so
->so_state
& SS_CANTRCVMORE
)
6501 && cfil_sock_data_pending(&so
->so_rcv
) == 0
6502 #endif /* CONTENT_FILTER */
6504 kn
->kn_flags
|= EV_EOF
;
6505 kn
->kn_fflags
= so
->so_error
;
6510 if (so
->so_error
) { /* temporary udp error */
6515 int64_t lowwat
= so
->so_rcv
.sb_lowat
;
6517 * Ensure that when NOTE_LOWAT is used, the derived
6518 * low water mark is bounded by socket's rcv buf's
6519 * high and low water mark values.
6521 if (kn
->kn_sfflags
& NOTE_LOWAT
) {
6522 if (kn
->kn_sdata
> so
->so_rcv
.sb_hiwat
) {
6523 lowwat
= so
->so_rcv
.sb_hiwat
;
6524 } else if (kn
->kn_sdata
> lowwat
) {
6525 lowwat
= kn
->kn_sdata
;
6529 retval
= (data
>= lowwat
);
6532 if (retval
&& kev
) {
6533 knote_fill_kevent(kn
, kev
, data
);
6539 filt_sorattach(struct knote
*kn
, __unused
struct kevent_qos_s
*kev
)
6541 struct socket
*so
= (struct socket
*)kn
->kn_fp
->f_fglob
->fg_data
;
6546 * If the caller explicitly asked for OOB results (e.g. poll())
6547 * from EVFILT_READ, then save that off in the hookid field
6548 * and reserve the kn_flags EV_OOBAND bit for output only.
6550 if (kn
->kn_filter
== EVFILT_READ
&&
6551 kn
->kn_flags
& EV_OOBAND
) {
6552 kn
->kn_flags
&= ~EV_OOBAND
;
6553 kn
->kn_hook32
= EV_OOBAND
;
6557 if (KNOTE_ATTACH(&so
->so_rcv
.sb_sel
.si_note
, kn
)) {
6558 so
->so_rcv
.sb_flags
|= SB_KNOTE
;
6561 /* indicate if event is already fired */
6562 return filt_soread_common(kn
, NULL
, so
);
6566 filt_sordetach(struct knote
*kn
)
6568 struct socket
*so
= (struct socket
*)kn
->kn_fp
->f_fglob
->fg_data
;
6571 if (so
->so_rcv
.sb_flags
& SB_KNOTE
) {
6572 if (KNOTE_DETACH(&so
->so_rcv
.sb_sel
.si_note
, kn
)) {
6573 so
->so_rcv
.sb_flags
&= ~SB_KNOTE
;
6576 socket_unlock(so
, 1);
6581 filt_soread(struct knote
*kn
, long hint
)
6583 struct socket
*so
= (struct socket
*)kn
->kn_fp
->f_fglob
->fg_data
;
6586 if ((hint
& SO_FILT_HINT_LOCKED
) == 0) {
6590 retval
= filt_soread_common(kn
, NULL
, so
);
6592 if ((hint
& SO_FILT_HINT_LOCKED
) == 0) {
6593 socket_unlock(so
, 1);
6600 filt_sortouch(struct knote
*kn
, struct kevent_qos_s
*kev
)
6602 struct socket
*so
= (struct socket
*)kn
->kn_fp
->f_fglob
->fg_data
;
6607 /* save off the new input fflags and data */
6608 kn
->kn_sfflags
= kev
->fflags
;
6609 kn
->kn_sdata
= kev
->data
;
6611 /* determine if changes result in fired events */
6612 retval
= filt_soread_common(kn
, NULL
, so
);
6614 socket_unlock(so
, 1);
6620 filt_sorprocess(struct knote
*kn
, struct kevent_qos_s
*kev
)
6622 struct socket
*so
= (struct socket
*)kn
->kn_fp
->f_fglob
->fg_data
;
6626 retval
= filt_soread_common(kn
, kev
, so
);
6627 socket_unlock(so
, 1);
6633 so_wait_for_if_feedback(struct socket
*so
)
6635 if ((SOCK_DOM(so
) == PF_INET
|| SOCK_DOM(so
) == PF_INET6
) &&
6636 (so
->so_state
& SS_ISCONNECTED
)) {
6637 struct inpcb
*inp
= sotoinpcb(so
);
6638 if (INP_WAIT_FOR_IF_FEEDBACK(inp
)) {
6646 filt_sowrite_common(struct knote
*kn
, struct kevent_qos_s
*kev
, struct socket
*so
)
6649 int64_t data
= sbspace(&so
->so_snd
);
6651 if (so
->so_state
& SS_CANTSENDMORE
) {
6652 kn
->kn_flags
|= EV_EOF
;
6653 kn
->kn_fflags
= so
->so_error
;
6658 if (so
->so_error
) { /* temporary udp error */
6663 if (!socanwrite(so
)) {
6668 if (so
->so_flags1
& SOF1_PRECONNECT_DATA
) {
6673 int64_t lowwat
= so
->so_snd
.sb_lowat
;
6675 if (kn
->kn_sfflags
& NOTE_LOWAT
) {
6676 if (kn
->kn_sdata
> so
->so_snd
.sb_hiwat
) {
6677 lowwat
= so
->so_snd
.sb_hiwat
;
6678 } else if (kn
->kn_sdata
> lowwat
) {
6679 lowwat
= kn
->kn_sdata
;
6683 if (data
>= lowwat
) {
6684 if ((so
->so_flags
& SOF_NOTSENT_LOWAT
)
6685 #if (DEBUG || DEVELOPMENT)
6686 && so_notsent_lowat_check
== 1
6687 #endif /* DEBUG || DEVELOPMENT */
6689 if ((SOCK_DOM(so
) == PF_INET
||
6690 SOCK_DOM(so
) == PF_INET6
) &&
6691 so
->so_type
== SOCK_STREAM
) {
6692 ret
= tcp_notsent_lowat_check(so
);
6695 else if ((SOCK_DOM(so
) == PF_MULTIPATH
) &&
6696 (SOCK_PROTO(so
) == IPPROTO_TCP
)) {
6697 ret
= mptcp_notsent_lowat_check(so
);
6708 if (so_wait_for_if_feedback(so
)) {
6714 knote_fill_kevent(kn
, kev
, data
);
6720 filt_sowattach(struct knote
*kn
, __unused
struct kevent_qos_s
*kev
)
6722 struct socket
*so
= (struct socket
*)kn
->kn_fp
->f_fglob
->fg_data
;
6725 if (KNOTE_ATTACH(&so
->so_snd
.sb_sel
.si_note
, kn
)) {
6726 so
->so_snd
.sb_flags
|= SB_KNOTE
;
6729 /* determine if its already fired */
6730 return filt_sowrite_common(kn
, NULL
, so
);
6734 filt_sowdetach(struct knote
*kn
)
6736 struct socket
*so
= (struct socket
*)kn
->kn_fp
->f_fglob
->fg_data
;
6739 if (so
->so_snd
.sb_flags
& SB_KNOTE
) {
6740 if (KNOTE_DETACH(&so
->so_snd
.sb_sel
.si_note
, kn
)) {
6741 so
->so_snd
.sb_flags
&= ~SB_KNOTE
;
6744 socket_unlock(so
, 1);
6749 filt_sowrite(struct knote
*kn
, long hint
)
6751 struct socket
*so
= (struct socket
*)kn
->kn_fp
->f_fglob
->fg_data
;
6754 if ((hint
& SO_FILT_HINT_LOCKED
) == 0) {
6758 ret
= filt_sowrite_common(kn
, NULL
, so
);
6760 if ((hint
& SO_FILT_HINT_LOCKED
) == 0) {
6761 socket_unlock(so
, 1);
6768 filt_sowtouch(struct knote
*kn
, struct kevent_qos_s
*kev
)
6770 struct socket
*so
= (struct socket
*)kn
->kn_fp
->f_fglob
->fg_data
;
6775 /*save off the new input fflags and data */
6776 kn
->kn_sfflags
= kev
->fflags
;
6777 kn
->kn_sdata
= kev
->data
;
6779 /* determine if these changes result in a triggered event */
6780 ret
= filt_sowrite_common(kn
, NULL
, so
);
6782 socket_unlock(so
, 1);
6788 filt_sowprocess(struct knote
*kn
, struct kevent_qos_s
*kev
)
6790 struct socket
*so
= (struct socket
*)kn
->kn_fp
->f_fglob
->fg_data
;
6794 ret
= filt_sowrite_common(kn
, kev
, so
);
6795 socket_unlock(so
, 1);
6801 filt_sockev_common(struct knote
*kn
, struct kevent_qos_s
*kev
,
6802 struct socket
*so
, long ev_hint
)
6806 uint32_t level_trigger
= 0;
6808 if (ev_hint
& SO_FILT_HINT_CONNRESET
) {
6809 kn
->kn_fflags
|= NOTE_CONNRESET
;
6811 if (ev_hint
& SO_FILT_HINT_TIMEOUT
) {
6812 kn
->kn_fflags
|= NOTE_TIMEOUT
;
6814 if (ev_hint
& SO_FILT_HINT_NOSRCADDR
) {
6815 kn
->kn_fflags
|= NOTE_NOSRCADDR
;
6817 if (ev_hint
& SO_FILT_HINT_IFDENIED
) {
6818 kn
->kn_fflags
|= NOTE_IFDENIED
;
6820 if (ev_hint
& SO_FILT_HINT_KEEPALIVE
) {
6821 kn
->kn_fflags
|= NOTE_KEEPALIVE
;
6823 if (ev_hint
& SO_FILT_HINT_ADAPTIVE_WTIMO
) {
6824 kn
->kn_fflags
|= NOTE_ADAPTIVE_WTIMO
;
6826 if (ev_hint
& SO_FILT_HINT_ADAPTIVE_RTIMO
) {
6827 kn
->kn_fflags
|= NOTE_ADAPTIVE_RTIMO
;
6829 if ((ev_hint
& SO_FILT_HINT_CONNECTED
) ||
6830 (so
->so_state
& SS_ISCONNECTED
)) {
6831 kn
->kn_fflags
|= NOTE_CONNECTED
;
6832 level_trigger
|= NOTE_CONNECTED
;
6834 if ((ev_hint
& SO_FILT_HINT_DISCONNECTED
) ||
6835 (so
->so_state
& SS_ISDISCONNECTED
)) {
6836 kn
->kn_fflags
|= NOTE_DISCONNECTED
;
6837 level_trigger
|= NOTE_DISCONNECTED
;
6839 if (ev_hint
& SO_FILT_HINT_CONNINFO_UPDATED
) {
6840 if (so
->so_proto
!= NULL
&&
6841 (so
->so_proto
->pr_flags
& PR_EVCONNINFO
)) {
6842 kn
->kn_fflags
|= NOTE_CONNINFO_UPDATED
;
6846 if ((ev_hint
& SO_FILT_HINT_NOTIFY_ACK
) ||
6847 tcp_notify_ack_active(so
)) {
6848 kn
->kn_fflags
|= NOTE_NOTIFY_ACK
;
6851 if ((so
->so_state
& SS_CANTRCVMORE
)
6853 && cfil_sock_data_pending(&so
->so_rcv
) == 0
6854 #endif /* CONTENT_FILTER */
6856 kn
->kn_fflags
|= NOTE_READCLOSED
;
6857 level_trigger
|= NOTE_READCLOSED
;
6860 if (so
->so_state
& SS_CANTSENDMORE
) {
6861 kn
->kn_fflags
|= NOTE_WRITECLOSED
;
6862 level_trigger
|= NOTE_WRITECLOSED
;
6865 if ((ev_hint
& SO_FILT_HINT_SUSPEND
) ||
6866 (so
->so_flags
& SOF_SUSPENDED
)) {
6867 kn
->kn_fflags
&= ~(NOTE_SUSPEND
| NOTE_RESUME
);
6869 /* If resume event was delivered before, reset it */
6870 kn
->kn_hook32
&= ~NOTE_RESUME
;
6872 kn
->kn_fflags
|= NOTE_SUSPEND
;
6873 level_trigger
|= NOTE_SUSPEND
;
6876 if ((ev_hint
& SO_FILT_HINT_RESUME
) ||
6877 (so
->so_flags
& SOF_SUSPENDED
) == 0) {
6878 kn
->kn_fflags
&= ~(NOTE_SUSPEND
| NOTE_RESUME
);
6880 /* If suspend event was delivered before, reset it */
6881 kn
->kn_hook32
&= ~NOTE_SUSPEND
;
6883 kn
->kn_fflags
|= NOTE_RESUME
;
6884 level_trigger
|= NOTE_RESUME
;
6887 if (so
->so_error
!= 0) {
6889 data
= so
->so_error
;
6890 kn
->kn_flags
|= EV_EOF
;
6893 get_sockev_state(so
, &data32
);
6897 /* Reset any events that are not requested on this knote */
6898 kn
->kn_fflags
&= (kn
->kn_sfflags
& EVFILT_SOCK_ALL_MASK
);
6899 level_trigger
&= (kn
->kn_sfflags
& EVFILT_SOCK_ALL_MASK
);
6901 /* Find the level triggerred events that are already delivered */
6902 level_trigger
&= kn
->kn_hook32
;
6903 level_trigger
&= EVFILT_SOCK_LEVEL_TRIGGER_MASK
;
6905 /* Do not deliver level triggerred events more than once */
6906 if ((kn
->kn_fflags
& ~level_trigger
) != 0) {
6912 * Store the state of the events being delivered. This
6913 * state can be used to deliver level triggered events
6914 * ateast once and still avoid waking up the application
6915 * multiple times as long as the event is active.
6917 if (kn
->kn_fflags
!= 0) {
6918 kn
->kn_hook32
|= (kn
->kn_fflags
&
6919 EVFILT_SOCK_LEVEL_TRIGGER_MASK
);
6923 * NOTE_RESUME and NOTE_SUSPEND are an exception, deliver
6924 * only one of them and remember the last one that was
6927 if (kn
->kn_fflags
& NOTE_SUSPEND
) {
6928 kn
->kn_hook32
&= ~NOTE_RESUME
;
6930 if (kn
->kn_fflags
& NOTE_RESUME
) {
6931 kn
->kn_hook32
&= ~NOTE_SUSPEND
;
6934 knote_fill_kevent(kn
, kev
, data
);
6940 filt_sockattach(struct knote
*kn
, __unused
struct kevent_qos_s
*kev
)
6942 struct socket
*so
= (struct socket
*)kn
->kn_fp
->f_fglob
->fg_data
;
6946 if (KNOTE_ATTACH(&so
->so_klist
, kn
)) {
6947 so
->so_flags
|= SOF_KNOTE
;
6950 /* determine if event already fired */
6951 return filt_sockev_common(kn
, NULL
, so
, 0);
6955 filt_sockdetach(struct knote
*kn
)
6957 struct socket
*so
= (struct socket
*)kn
->kn_fp
->f_fglob
->fg_data
;
6960 if ((so
->so_flags
& SOF_KNOTE
) != 0) {
6961 if (KNOTE_DETACH(&so
->so_klist
, kn
)) {
6962 so
->so_flags
&= ~SOF_KNOTE
;
6965 socket_unlock(so
, 1);
6969 filt_sockev(struct knote
*kn
, long hint
)
6971 int ret
= 0, locked
= 0;
6972 struct socket
*so
= (struct socket
*)kn
->kn_fp
->f_fglob
->fg_data
;
6973 long ev_hint
= (hint
& SO_FILT_HINT_EV
);
6975 if ((hint
& SO_FILT_HINT_LOCKED
) == 0) {
6980 ret
= filt_sockev_common(kn
, NULL
, so
, ev_hint
);
6983 socket_unlock(so
, 1);
6992 * filt_socktouch - update event state
6997 struct kevent_qos_s
*kev
)
6999 struct socket
*so
= (struct socket
*)kn
->kn_fp
->f_fglob
->fg_data
;
7000 uint32_t changed_flags
;
7005 /* save off the [result] data and fflags */
7006 changed_flags
= (kn
->kn_sfflags
^ kn
->kn_hook32
);
7008 /* save off the new input fflags and data */
7009 kn
->kn_sfflags
= kev
->fflags
;
7010 kn
->kn_sdata
= kev
->data
;
7012 /* restrict the current results to the (smaller?) set of new interest */
7014 * For compatibility with previous implementations, we leave kn_fflags
7015 * as they were before.
7017 //kn->kn_fflags &= kev->fflags;
7020 * Since we keep track of events that are already
7021 * delivered, if any of those events are not requested
7022 * anymore the state related to them can be reset
7024 kn
->kn_hook32
&= ~(changed_flags
& EVFILT_SOCK_LEVEL_TRIGGER_MASK
);
7026 /* determine if we have events to deliver */
7027 ret
= filt_sockev_common(kn
, NULL
, so
, 0);
7029 socket_unlock(so
, 1);
7035 * filt_sockprocess - query event fired state and return data
7038 filt_sockprocess(struct knote
*kn
, struct kevent_qos_s
*kev
)
7040 struct socket
*so
= (struct socket
*)kn
->kn_fp
->f_fglob
->fg_data
;
7045 ret
= filt_sockev_common(kn
, kev
, so
, 0);
7047 socket_unlock(so
, 1);
7053 get_sockev_state(struct socket
*so
, u_int32_t
*statep
)
7055 u_int32_t state
= *(statep
);
7058 * If the state variable is already used by a previous event,
7065 if (so
->so_state
& SS_ISCONNECTED
) {
7066 state
|= SOCKEV_CONNECTED
;
7068 state
&= ~(SOCKEV_CONNECTED
);
7070 state
|= ((so
->so_state
& SS_ISDISCONNECTED
) ? SOCKEV_DISCONNECTED
: 0);
7074 #define SO_LOCK_HISTORY_STR_LEN \
7075 (2 * SO_LCKDBG_MAX * (2 + (2 * sizeof (void *)) + 1) + 1)
7077 __private_extern__
const char *
7078 solockhistory_nr(struct socket
*so
)
7082 static char lock_history_str
[SO_LOCK_HISTORY_STR_LEN
];
7084 bzero(lock_history_str
, sizeof(lock_history_str
));
7085 for (i
= SO_LCKDBG_MAX
- 1; i
>= 0; i
--) {
7086 n
+= snprintf(lock_history_str
+ n
,
7087 SO_LOCK_HISTORY_STR_LEN
- n
, "%p:%p ",
7088 so
->lock_lr
[(so
->next_lock_lr
+ i
) % SO_LCKDBG_MAX
],
7089 so
->unlock_lr
[(so
->next_unlock_lr
+ i
) % SO_LCKDBG_MAX
]);
7091 return lock_history_str
;
7095 socket_getlock(struct socket
*so
, int flags
)
7097 if (so
->so_proto
->pr_getlock
!= NULL
) {
7098 return (*so
->so_proto
->pr_getlock
)(so
, flags
);
7100 return so
->so_proto
->pr_domain
->dom_mtx
;
7105 socket_lock(struct socket
*so
, int refcount
)
7109 lr_saved
= __builtin_return_address(0);
7111 if (so
->so_proto
->pr_lock
) {
7112 (*so
->so_proto
->pr_lock
)(so
, refcount
, lr_saved
);
7114 #ifdef MORE_LOCKING_DEBUG
7115 LCK_MTX_ASSERT(so
->so_proto
->pr_domain
->dom_mtx
,
7116 LCK_MTX_ASSERT_NOTOWNED
);
7118 lck_mtx_lock(so
->so_proto
->pr_domain
->dom_mtx
);
7122 so
->lock_lr
[so
->next_lock_lr
] = lr_saved
;
7123 so
->next_lock_lr
= (so
->next_lock_lr
+ 1) % SO_LCKDBG_MAX
;
7128 socket_lock_assert_owned(struct socket
*so
)
7130 lck_mtx_t
*mutex_held
;
7132 if (so
->so_proto
->pr_getlock
!= NULL
) {
7133 mutex_held
= (*so
->so_proto
->pr_getlock
)(so
, 0);
7135 mutex_held
= so
->so_proto
->pr_domain
->dom_mtx
;
7138 LCK_MTX_ASSERT(mutex_held
, LCK_MTX_ASSERT_OWNED
);
7142 socket_try_lock(struct socket
*so
)
7146 if (so
->so_proto
->pr_getlock
!= NULL
) {
7147 mtx
= (*so
->so_proto
->pr_getlock
)(so
, 0);
7149 mtx
= so
->so_proto
->pr_domain
->dom_mtx
;
7152 return lck_mtx_try_lock(mtx
);
7156 socket_unlock(struct socket
*so
, int refcount
)
7159 lck_mtx_t
*mutex_held
;
7161 lr_saved
= __builtin_return_address(0);
7163 if (so
== NULL
|| so
->so_proto
== NULL
) {
7164 panic("%s: null so_proto so=%p\n", __func__
, so
);
7168 if (so
->so_proto
->pr_unlock
) {
7169 (*so
->so_proto
->pr_unlock
)(so
, refcount
, lr_saved
);
7171 mutex_held
= so
->so_proto
->pr_domain
->dom_mtx
;
7172 #ifdef MORE_LOCKING_DEBUG
7173 LCK_MTX_ASSERT(mutex_held
, LCK_MTX_ASSERT_OWNED
);
7175 so
->unlock_lr
[so
->next_unlock_lr
] = lr_saved
;
7176 so
->next_unlock_lr
= (so
->next_unlock_lr
+ 1) % SO_LCKDBG_MAX
;
7179 if (so
->so_usecount
<= 0) {
7180 panic("%s: bad refcount=%d so=%p (%d, %d, %d) "
7181 "lrh=%s", __func__
, so
->so_usecount
, so
,
7182 SOCK_DOM(so
), so
->so_type
,
7183 SOCK_PROTO(so
), solockhistory_nr(so
));
7188 if (so
->so_usecount
== 0) {
7189 sofreelastref(so
, 1);
7192 lck_mtx_unlock(mutex_held
);
7196 /* Called with socket locked, will unlock socket */
7198 sofree(struct socket
*so
)
7200 lck_mtx_t
*mutex_held
;
7202 if (so
->so_proto
->pr_getlock
!= NULL
) {
7203 mutex_held
= (*so
->so_proto
->pr_getlock
)(so
, 0);
7205 mutex_held
= so
->so_proto
->pr_domain
->dom_mtx
;
7207 LCK_MTX_ASSERT(mutex_held
, LCK_MTX_ASSERT_OWNED
);
7209 sofreelastref(so
, 0);
7213 soreference(struct socket
*so
)
7215 socket_lock(so
, 1); /* locks & take one reference on socket */
7216 socket_unlock(so
, 0); /* unlock only */
7220 sodereference(struct socket
*so
)
7223 socket_unlock(so
, 1);
7227 * Set or clear SOF_MULTIPAGES on the socket to enable or disable the
7228 * possibility of using jumbo clusters. Caller must ensure to hold
7232 somultipages(struct socket
*so
, boolean_t set
)
7235 so
->so_flags
|= SOF_MULTIPAGES
;
7237 so
->so_flags
&= ~SOF_MULTIPAGES
;
7242 soif2kcl(struct socket
*so
, boolean_t set
)
7245 so
->so_flags1
|= SOF1_IF_2KCL
;
7247 so
->so_flags1
&= ~SOF1_IF_2KCL
;
7252 so_isdstlocal(struct socket
*so
)
7254 struct inpcb
*inp
= (struct inpcb
*)so
->so_pcb
;
7256 if (SOCK_DOM(so
) == PF_INET
) {
7257 return inaddr_local(inp
->inp_faddr
);
7258 } else if (SOCK_DOM(so
) == PF_INET6
) {
7259 return in6addr_local(&inp
->in6p_faddr
);
7266 sosetdefunct(struct proc
*p
, struct socket
*so
, int level
, boolean_t noforce
)
7268 struct sockbuf
*rcv
, *snd
;
7269 int err
= 0, defunct
;
7274 defunct
= (so
->so_flags
& SOF_DEFUNCT
);
7276 if (!(snd
->sb_flags
& rcv
->sb_flags
& SB_DROP
)) {
7277 panic("%s: SB_DROP not set", __func__
);
7283 if (so
->so_flags
& SOF_NODEFUNCT
) {
7286 if (p
!= PROC_NULL
) {
7287 SODEFUNCTLOG("%s[%d, %s]: (target pid %d "
7288 "name %s level %d) so 0x%llx [%d,%d] "
7289 "is not eligible for defunct "
7290 "(%d)\n", __func__
, proc_selfpid(),
7291 proc_best_name(current_proc()), proc_pid(p
),
7292 proc_best_name(p
), level
,
7293 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
),
7294 SOCK_DOM(so
), SOCK_TYPE(so
), err
);
7298 so
->so_flags
&= ~SOF_NODEFUNCT
;
7299 if (p
!= PROC_NULL
) {
7300 SODEFUNCTLOG("%s[%d, %s]: (target pid %d "
7301 "name %s level %d) so 0x%llx [%d,%d] "
7303 "(%d)\n", __func__
, proc_selfpid(),
7304 proc_best_name(current_proc()), proc_pid(p
),
7305 proc_best_name(p
), level
,
7306 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
),
7307 SOCK_DOM(so
), SOCK_TYPE(so
), err
);
7309 } else if (so
->so_flags1
& SOF1_EXTEND_BK_IDLE_WANTED
) {
7310 struct inpcb
*inp
= (struct inpcb
*)so
->so_pcb
;
7311 struct ifnet
*ifp
= inp
->inp_last_outifp
;
7313 if (ifp
&& IFNET_IS_CELLULAR(ifp
)) {
7314 OSIncrementAtomic(&soextbkidlestat
.so_xbkidle_nocell
);
7315 } else if (so
->so_flags
& SOF_DELEGATED
) {
7316 OSIncrementAtomic(&soextbkidlestat
.so_xbkidle_nodlgtd
);
7317 } else if (soextbkidlestat
.so_xbkidle_time
== 0) {
7318 OSIncrementAtomic(&soextbkidlestat
.so_xbkidle_notime
);
7319 } else if (noforce
&& p
!= PROC_NULL
) {
7320 OSIncrementAtomic(&soextbkidlestat
.so_xbkidle_active
);
7322 so
->so_flags1
|= SOF1_EXTEND_BK_IDLE_INPROG
;
7323 so
->so_extended_bk_start
= net_uptime();
7324 OSBitOrAtomic(P_LXBKIDLEINPROG
, &p
->p_ladvflag
);
7326 inpcb_timer_sched(inp
->inp_pcbinfo
, INPCB_TIMER_LAZY
);
7329 SODEFUNCTLOG("%s[%d, %s]: (target pid %d "
7330 "name %s level %d) so 0x%llx [%d,%d] "
7332 "(%d)\n", __func__
, proc_selfpid(),
7333 proc_best_name(current_proc()), proc_pid(p
),
7334 proc_best_name(p
), level
,
7335 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
),
7336 SOCK_DOM(so
), SOCK_TYPE(so
), err
);
7339 OSIncrementAtomic(&soextbkidlestat
.so_xbkidle_forced
);
7343 so
->so_flags
|= SOF_DEFUNCT
;
7345 /* Prevent further data from being appended to the socket buffers */
7346 snd
->sb_flags
|= SB_DROP
;
7347 rcv
->sb_flags
|= SB_DROP
;
7349 /* Flush any existing data in the socket buffers */
7350 if (rcv
->sb_cc
!= 0) {
7351 rcv
->sb_flags
&= ~SB_SEL
;
7352 selthreadclear(&rcv
->sb_sel
);
7355 if (snd
->sb_cc
!= 0) {
7356 snd
->sb_flags
&= ~SB_SEL
;
7357 selthreadclear(&snd
->sb_sel
);
7362 if (p
!= PROC_NULL
) {
7363 SODEFUNCTLOG("%s[%d, %s]: (target pid %d name %s level %d) "
7364 "so 0x%llx [%d,%d] %s defunct%s\n", __func__
,
7365 proc_selfpid(), proc_best_name(current_proc()),
7366 proc_pid(p
), proc_best_name(p
), level
,
7367 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
), SOCK_DOM(so
),
7368 SOCK_TYPE(so
), defunct
? "is already" : "marked as",
7369 (so
->so_flags1
& SOF1_EXTEND_BK_IDLE_WANTED
) ?
7376 sodefunct(struct proc
*p
, struct socket
*so
, int level
)
7378 struct sockbuf
*rcv
, *snd
;
7380 if (!(so
->so_flags
& SOF_DEFUNCT
)) {
7381 panic("%s improperly called", __func__
);
7384 if (so
->so_state
& SS_DEFUNCT
) {
7391 if (SOCK_DOM(so
) == PF_INET
|| SOCK_DOM(so
) == PF_INET6
) {
7392 char s
[MAX_IPv6_STR_LEN
];
7393 char d
[MAX_IPv6_STR_LEN
];
7394 struct inpcb
*inp
= sotoinpcb(so
);
7396 if (p
!= PROC_NULL
) {
7398 "%s[%d, %s]: (target pid %d name %s level %d) "
7399 "so 0x%llx [%s %s:%d -> %s:%d] is now defunct "
7400 "[rcv_si 0x%x, snd_si 0x%x, rcv_fl 0x%x, "
7401 " snd_fl 0x%x]\n", __func__
,
7402 proc_selfpid(), proc_best_name(current_proc()),
7403 proc_pid(p
), proc_best_name(p
), level
,
7404 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
),
7405 (SOCK_TYPE(so
) == SOCK_STREAM
) ? "TCP" : "UDP",
7406 inet_ntop(SOCK_DOM(so
), ((SOCK_DOM(so
) == PF_INET
) ?
7407 (void *)&inp
->inp_laddr
.s_addr
:
7408 (void *)&inp
->in6p_laddr
),
7409 s
, sizeof(s
)), ntohs(inp
->in6p_lport
),
7410 inet_ntop(SOCK_DOM(so
), (SOCK_DOM(so
) == PF_INET
) ?
7411 (void *)&inp
->inp_faddr
.s_addr
:
7412 (void *)&inp
->in6p_faddr
,
7413 d
, sizeof(d
)), ntohs(inp
->in6p_fport
),
7414 (uint32_t)rcv
->sb_sel
.si_flags
,
7415 (uint32_t)snd
->sb_sel
.si_flags
,
7416 rcv
->sb_flags
, snd
->sb_flags
);
7418 } else if (p
!= PROC_NULL
) {
7419 SODEFUNCTLOG("%s[%d, %s]: (target pid %d name %s level %d) "
7420 "so 0x%llx [%d,%d] is now defunct [rcv_si 0x%x, "
7421 "snd_si 0x%x, rcv_fl 0x%x, snd_fl 0x%x]\n", __func__
,
7422 proc_selfpid(), proc_best_name(current_proc()),
7423 proc_pid(p
), proc_best_name(p
), level
,
7424 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
),
7425 SOCK_DOM(so
), SOCK_TYPE(so
),
7426 (uint32_t)rcv
->sb_sel
.si_flags
,
7427 (uint32_t)snd
->sb_sel
.si_flags
, rcv
->sb_flags
,
7432 * Unwedge threads blocked on sbwait() and sb_lock().
7437 so
->so_flags1
|= SOF1_DEFUNCTINPROG
;
7438 if (rcv
->sb_flags
& SB_LOCK
) {
7439 sbunlock(rcv
, TRUE
); /* keep socket locked */
7441 if (snd
->sb_flags
& SB_LOCK
) {
7442 sbunlock(snd
, TRUE
); /* keep socket locked */
7445 * Flush the buffers and disconnect. We explicitly call shutdown
7446 * on both data directions to ensure that SS_CANT{RCV,SEND}MORE
7447 * states are set for the socket. This would also flush out data
7448 * hanging off the receive list of this socket.
7450 (void) soshutdownlock_final(so
, SHUT_RD
);
7451 (void) soshutdownlock_final(so
, SHUT_WR
);
7452 (void) sodisconnectlocked(so
);
7455 * Explicitly handle connectionless-protocol disconnection
7456 * and release any remaining data in the socket buffers.
7458 if (!(so
->so_state
& SS_ISDISCONNECTED
)) {
7459 (void) soisdisconnected(so
);
7462 if (so
->so_error
== 0) {
7463 so
->so_error
= EBADF
;
7466 if (rcv
->sb_cc
!= 0) {
7467 rcv
->sb_flags
&= ~SB_SEL
;
7468 selthreadclear(&rcv
->sb_sel
);
7471 if (snd
->sb_cc
!= 0) {
7472 snd
->sb_flags
&= ~SB_SEL
;
7473 selthreadclear(&snd
->sb_sel
);
7476 so
->so_state
|= SS_DEFUNCT
;
7477 OSIncrementAtomicLong((volatile long *)&sodefunct_calls
);
7484 soresume(struct proc
*p
, struct socket
*so
, int locked
)
7490 if (so
->so_flags1
& SOF1_EXTEND_BK_IDLE_INPROG
) {
7491 SODEFUNCTLOG("%s[%d, %s]: (target pid %d name %s) so 0x%llx "
7492 "[%d,%d] resumed from bk idle\n",
7493 __func__
, proc_selfpid(), proc_best_name(current_proc()),
7494 proc_pid(p
), proc_best_name(p
),
7495 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
),
7496 SOCK_DOM(so
), SOCK_TYPE(so
));
7498 so
->so_flags1
&= ~SOF1_EXTEND_BK_IDLE_INPROG
;
7499 so
->so_extended_bk_start
= 0;
7500 OSBitAndAtomic(~P_LXBKIDLEINPROG
, &p
->p_ladvflag
);
7502 OSIncrementAtomic(&soextbkidlestat
.so_xbkidle_resumed
);
7503 OSDecrementAtomic(&soextbkidlestat
.so_xbkidle_active
);
7504 VERIFY(soextbkidlestat
.so_xbkidle_active
>= 0);
7507 socket_unlock(so
, 1);
7514 * Does not attempt to account for sockets that are delegated from
7515 * the current process
7518 so_set_extended_bk_idle(struct socket
*so
, int optval
)
7522 if ((SOCK_DOM(so
) != PF_INET
&& SOCK_DOM(so
) != PF_INET6
) ||
7523 SOCK_PROTO(so
) != IPPROTO_TCP
) {
7524 OSDecrementAtomic(&soextbkidlestat
.so_xbkidle_notsupp
);
7526 } else if (optval
== 0) {
7527 so
->so_flags1
&= ~SOF1_EXTEND_BK_IDLE_WANTED
;
7529 soresume(current_proc(), so
, 1);
7531 struct proc
*p
= current_proc();
7533 struct filedesc
*fdp
;
7537 * Unlock socket to avoid lock ordering issue with
7538 * the proc fd table lock
7540 socket_unlock(so
, 0);
7545 for (i
= 0; i
< fdp
->fd_nfiles
; i
++) {
7546 struct fileproc
*fp
= fdp
->fd_ofiles
[i
];
7550 (fdp
->fd_ofileflags
[i
] & UF_RESERVED
) != 0 ||
7551 FILEGLOB_DTYPE(fp
->f_fglob
) != DTYPE_SOCKET
) {
7555 so2
= (struct socket
*)fp
->f_fglob
->fg_data
;
7557 so2
->so_flags1
& SOF1_EXTEND_BK_IDLE_WANTED
) {
7560 if (count
>= soextbkidlestat
.so_xbkidle_maxperproc
) {
7568 if (count
>= soextbkidlestat
.so_xbkidle_maxperproc
) {
7569 OSIncrementAtomic(&soextbkidlestat
.so_xbkidle_toomany
);
7571 } else if (so
->so_flags
& SOF_DELEGATED
) {
7572 OSIncrementAtomic(&soextbkidlestat
.so_xbkidle_nodlgtd
);
7575 so
->so_flags1
|= SOF1_EXTEND_BK_IDLE_WANTED
;
7576 OSIncrementAtomic(&soextbkidlestat
.so_xbkidle_wantok
);
7578 SODEFUNCTLOG("%s[%d, %s]: so 0x%llx [%d,%d] "
7579 "%s marked for extended bk idle\n",
7580 __func__
, proc_selfpid(), proc_best_name(current_proc()),
7581 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
),
7582 SOCK_DOM(so
), SOCK_TYPE(so
),
7583 (so
->so_flags1
& SOF1_EXTEND_BK_IDLE_WANTED
) ?
7591 so_stop_extended_bk_idle(struct socket
*so
)
7593 so
->so_flags1
&= ~SOF1_EXTEND_BK_IDLE_INPROG
;
7594 so
->so_extended_bk_start
= 0;
7596 OSDecrementAtomic(&soextbkidlestat
.so_xbkidle_active
);
7597 VERIFY(soextbkidlestat
.so_xbkidle_active
>= 0);
7601 sosetdefunct(current_proc(), so
,
7602 SHUTDOWN_SOCKET_LEVEL_DISCONNECT_INTERNAL
, FALSE
);
7603 if (so
->so_flags
& SOF_DEFUNCT
) {
7604 sodefunct(current_proc(), so
,
7605 SHUTDOWN_SOCKET_LEVEL_DISCONNECT_INTERNAL
);
7610 so_drain_extended_bk_idle(struct socket
*so
)
7612 if (so
&& (so
->so_flags1
& SOF1_EXTEND_BK_IDLE_INPROG
)) {
7614 * Only penalize sockets that have outstanding data
7616 if (so
->so_rcv
.sb_cc
|| so
->so_snd
.sb_cc
) {
7617 so_stop_extended_bk_idle(so
);
7619 OSIncrementAtomic(&soextbkidlestat
.so_xbkidle_drained
);
7625 * Return values tells if socket is still in extended background idle
7628 so_check_extended_bk_idle_time(struct socket
*so
)
7632 if ((so
->so_flags1
& SOF1_EXTEND_BK_IDLE_INPROG
)) {
7633 SODEFUNCTLOG("%s[%d, %s]: so 0x%llx [%d,%d]\n",
7634 __func__
, proc_selfpid(), proc_best_name(current_proc()),
7635 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
),
7636 SOCK_DOM(so
), SOCK_TYPE(so
));
7637 if (net_uptime() - so
->so_extended_bk_start
>
7638 soextbkidlestat
.so_xbkidle_time
) {
7639 so_stop_extended_bk_idle(so
);
7641 OSIncrementAtomic(&soextbkidlestat
.so_xbkidle_expired
);
7645 struct inpcb
*inp
= (struct inpcb
*)so
->so_pcb
;
7647 inpcb_timer_sched(inp
->inp_pcbinfo
, INPCB_TIMER_LAZY
);
7648 OSIncrementAtomic(&soextbkidlestat
.so_xbkidle_resched
);
7656 resume_proc_sockets(proc_t p
)
7658 if (p
->p_ladvflag
& P_LXBKIDLEINPROG
) {
7659 struct filedesc
*fdp
;
7664 for (i
= 0; i
< fdp
->fd_nfiles
; i
++) {
7665 struct fileproc
*fp
;
7668 fp
= fdp
->fd_ofiles
[i
];
7670 (fdp
->fd_ofileflags
[i
] & UF_RESERVED
) != 0 ||
7671 FILEGLOB_DTYPE(fp
->f_fglob
) != DTYPE_SOCKET
) {
7675 so
= (struct socket
*)fp
->f_fglob
->fg_data
;
7676 (void) soresume(p
, so
, 0);
7680 OSBitAndAtomic(~P_LXBKIDLEINPROG
, &p
->p_ladvflag
);
7684 __private_extern__
int
7685 so_set_recv_anyif(struct socket
*so
, int optval
)
7690 if (SOCK_DOM(so
) == PF_INET
|| SOCK_DOM(so
) == PF_INET6
) {
7692 if (SOCK_DOM(so
) == PF_INET
) {
7695 sotoinpcb(so
)->inp_flags
|= INP_RECV_ANYIF
;
7697 sotoinpcb(so
)->inp_flags
&= ~INP_RECV_ANYIF
;
7705 __private_extern__
int
7706 so_get_recv_anyif(struct socket
*so
)
7711 if (SOCK_DOM(so
) == PF_INET
|| SOCK_DOM(so
) == PF_INET6
) {
7713 if (SOCK_DOM(so
) == PF_INET
) {
7715 ret
= (sotoinpcb(so
)->inp_flags
& INP_RECV_ANYIF
) ? 1 : 0;
7722 so_set_restrictions(struct socket
*so
, uint32_t vals
)
7724 int nocell_old
, nocell_new
;
7725 int noexpensive_old
, noexpensive_new
;
7726 int noconstrained_old
, noconstrained_new
;
7729 * Deny-type restrictions are trapdoors; once set they cannot be
7730 * unset for the lifetime of the socket. This allows them to be
7731 * issued by a framework on behalf of the application without
7732 * having to worry that they can be undone.
7734 * Note here that socket-level restrictions overrides any protocol
7735 * level restrictions. For instance, SO_RESTRICT_DENY_CELLULAR
7736 * socket restriction issued on the socket has a higher precendence
7737 * than INP_NO_IFT_CELLULAR. The latter is affected by the UUID
7738 * policy PROC_UUID_NO_CELLULAR for unrestricted sockets only,
7739 * i.e. when SO_RESTRICT_DENY_CELLULAR has not been issued.
7741 nocell_old
= (so
->so_restrictions
& SO_RESTRICT_DENY_CELLULAR
);
7742 noexpensive_old
= (so
->so_restrictions
& SO_RESTRICT_DENY_EXPENSIVE
);
7743 noconstrained_old
= (so
->so_restrictions
& SO_RESTRICT_DENY_CONSTRAINED
);
7744 so
->so_restrictions
|= (vals
& (SO_RESTRICT_DENY_IN
|
7745 SO_RESTRICT_DENY_OUT
| SO_RESTRICT_DENY_CELLULAR
|
7746 SO_RESTRICT_DENY_EXPENSIVE
| SO_RESTRICT_DENY_CONSTRAINED
));
7747 nocell_new
= (so
->so_restrictions
& SO_RESTRICT_DENY_CELLULAR
);
7748 noexpensive_new
= (so
->so_restrictions
& SO_RESTRICT_DENY_EXPENSIVE
);
7749 noconstrained_new
= (so
->so_restrictions
& SO_RESTRICT_DENY_CONSTRAINED
);
7751 /* we can only set, not clear restrictions */
7752 if ((nocell_new
- nocell_old
) == 0 &&
7753 (noexpensive_new
- noexpensive_old
) == 0 &&
7754 (noconstrained_new
- noconstrained_old
) == 0) {
7758 if (SOCK_DOM(so
) == PF_INET
|| SOCK_DOM(so
) == PF_INET6
) {
7760 if (SOCK_DOM(so
) == PF_INET
) {
7762 if (nocell_new
- nocell_old
!= 0) {
7764 * if deny cellular is now set, do what's needed
7767 inp_set_nocellular(sotoinpcb(so
));
7769 if (noexpensive_new
- noexpensive_old
!= 0) {
7770 inp_set_noexpensive(sotoinpcb(so
));
7772 if (noconstrained_new
- noconstrained_old
!= 0) {
7773 inp_set_noconstrained(sotoinpcb(so
));
7777 if (SOCK_DOM(so
) == PF_MULTIPATH
) {
7778 mptcp_set_restrictions(so
);
7785 so_get_restrictions(struct socket
*so
)
7787 return so
->so_restrictions
& (SO_RESTRICT_DENY_IN
|
7788 SO_RESTRICT_DENY_OUT
|
7789 SO_RESTRICT_DENY_CELLULAR
| SO_RESTRICT_DENY_EXPENSIVE
);
7793 so_set_effective_pid(struct socket
*so
, int epid
, struct proc
*p
, boolean_t check_cred
)
7795 struct proc
*ep
= PROC_NULL
;
7798 /* pid 0 is reserved for kernel */
7805 * If this is an in-kernel socket, prevent its delegate
7806 * association from changing unless the socket option is
7807 * coming from within the kernel itself.
7809 if (so
->last_pid
== 0 && p
!= kernproc
) {
7815 * If this is issued by a process that's recorded as the
7816 * real owner of the socket, or if the pid is the same as
7817 * the process's own pid, then proceed. Otherwise ensure
7818 * that the issuing process has the necessary privileges.
7820 if (check_cred
&& (epid
!= so
->last_pid
|| epid
!= proc_pid(p
))) {
7821 if ((error
= priv_check_cred(kauth_cred_get(),
7822 PRIV_NET_PRIVILEGED_SOCKET_DELEGATE
, 0))) {
7828 /* Find the process that corresponds to the effective pid */
7829 if ((ep
= proc_find(epid
)) == PROC_NULL
) {
7835 * If a process tries to delegate the socket to itself, then
7836 * there's really nothing to do; treat it as a way for the
7837 * delegate association to be cleared. Note that we check
7838 * the passed-in proc rather than calling proc_selfpid(),
7839 * as we need to check the process issuing the socket option
7840 * which could be kernproc. Given that we don't allow 0 for
7841 * effective pid, it means that a delegated in-kernel socket
7842 * stays delegated during its lifetime (which is probably OK.)
7844 if (epid
== proc_pid(p
)) {
7845 so
->so_flags
&= ~SOF_DELEGATED
;
7848 uuid_clear(so
->e_uuid
);
7850 so
->so_flags
|= SOF_DELEGATED
;
7851 so
->e_upid
= proc_uniqueid(ep
);
7852 so
->e_pid
= proc_pid(ep
);
7853 proc_getexecutableuuid(ep
, so
->e_uuid
, sizeof(so
->e_uuid
));
7855 if (so
->so_proto
!= NULL
&& so
->so_proto
->pr_update_last_owner
!= NULL
) {
7856 (*so
->so_proto
->pr_update_last_owner
)(so
, NULL
, ep
);
7859 if (error
== 0 && net_io_policy_log
) {
7862 uuid_unparse(so
->e_uuid
, buf
);
7863 log(LOG_DEBUG
, "%s[%s,%d]: so 0x%llx [%d,%d] epid %d (%s) "
7864 "euuid %s%s\n", __func__
, proc_name_address(p
),
7865 proc_pid(p
), (uint64_t)DEBUG_KERNEL_ADDRPERM(so
),
7866 SOCK_DOM(so
), SOCK_TYPE(so
),
7867 so
->e_pid
, proc_name_address(ep
), buf
,
7868 ((so
->so_flags
& SOF_DELEGATED
) ? " [delegated]" : ""));
7869 } else if (error
!= 0 && net_io_policy_log
) {
7870 log(LOG_ERR
, "%s[%s,%d]: so 0x%llx [%d,%d] epid %d (%s) "
7871 "ERROR (%d)\n", __func__
, proc_name_address(p
),
7872 proc_pid(p
), (uint64_t)DEBUG_KERNEL_ADDRPERM(so
),
7873 SOCK_DOM(so
), SOCK_TYPE(so
),
7874 epid
, (ep
== PROC_NULL
) ? "PROC_NULL" :
7875 proc_name_address(ep
), error
);
7878 /* Update this socket's policy upon success */
7880 so
->so_policy_gencnt
*= -1;
7881 so_update_policy(so
);
7883 so_update_necp_policy(so
, NULL
, NULL
);
7887 if (ep
!= PROC_NULL
) {
7895 so_set_effective_uuid(struct socket
*so
, uuid_t euuid
, struct proc
*p
, boolean_t check_cred
)
7901 /* UUID must not be all-zeroes (reserved for kernel) */
7902 if (uuid_is_null(euuid
)) {
7908 * If this is an in-kernel socket, prevent its delegate
7909 * association from changing unless the socket option is
7910 * coming from within the kernel itself.
7912 if (so
->last_pid
== 0 && p
!= kernproc
) {
7917 /* Get the UUID of the issuing process */
7918 proc_getexecutableuuid(p
, uuid
, sizeof(uuid
));
7921 * If this is issued by a process that's recorded as the
7922 * real owner of the socket, or if the uuid is the same as
7923 * the process's own uuid, then proceed. Otherwise ensure
7924 * that the issuing process has the necessary privileges.
7927 (uuid_compare(euuid
, so
->last_uuid
) != 0 ||
7928 uuid_compare(euuid
, uuid
) != 0)) {
7929 if ((error
= priv_check_cred(kauth_cred_get(),
7930 PRIV_NET_PRIVILEGED_SOCKET_DELEGATE
, 0))) {
7937 * If a process tries to delegate the socket to itself, then
7938 * there's really nothing to do; treat it as a way for the
7939 * delegate association to be cleared. Note that we check
7940 * the uuid of the passed-in proc rather than that of the
7941 * current process, as we need to check the process issuing
7942 * the socket option which could be kernproc itself. Given
7943 * that we don't allow 0 for effective uuid, it means that
7944 * a delegated in-kernel socket stays delegated during its
7945 * lifetime (which is okay.)
7947 if (uuid_compare(euuid
, uuid
) == 0) {
7948 so
->so_flags
&= ~SOF_DELEGATED
;
7951 uuid_clear(so
->e_uuid
);
7953 so
->so_flags
|= SOF_DELEGATED
;
7955 * Unlike so_set_effective_pid(), we only have the UUID
7956 * here and the process ID is not known. Inherit the
7957 * real {pid,upid} of the socket.
7959 so
->e_upid
= so
->last_upid
;
7960 so
->e_pid
= so
->last_pid
;
7961 uuid_copy(so
->e_uuid
, euuid
);
7964 * The following will clear the effective process name as it's the same
7965 * as the real process
7967 if (so
->so_proto
!= NULL
&& so
->so_proto
->pr_update_last_owner
!= NULL
) {
7968 (*so
->so_proto
->pr_update_last_owner
)(so
, NULL
, NULL
);
7971 if (error
== 0 && net_io_policy_log
) {
7972 uuid_unparse(so
->e_uuid
, buf
);
7973 log(LOG_DEBUG
, "%s[%s,%d]: so 0x%llx [%d,%d] epid %d "
7974 "euuid %s%s\n", __func__
, proc_name_address(p
), proc_pid(p
),
7975 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
), SOCK_DOM(so
),
7976 SOCK_TYPE(so
), so
->e_pid
, buf
,
7977 ((so
->so_flags
& SOF_DELEGATED
) ? " [delegated]" : ""));
7978 } else if (error
!= 0 && net_io_policy_log
) {
7979 uuid_unparse(euuid
, buf
);
7980 log(LOG_DEBUG
, "%s[%s,%d]: so 0x%llx [%d,%d] euuid %s "
7981 "ERROR (%d)\n", __func__
, proc_name_address(p
), proc_pid(p
),
7982 (uint64_t)DEBUG_KERNEL_ADDRPERM(so
), SOCK_DOM(so
),
7983 SOCK_TYPE(so
), buf
, error
);
7986 /* Update this socket's policy upon success */
7988 so
->so_policy_gencnt
*= -1;
7989 so_update_policy(so
);
7991 so_update_necp_policy(so
, NULL
, NULL
);
7999 netpolicy_post_msg(uint32_t ev_code
, struct netpolicy_event_data
*ev_data
,
8000 uint32_t ev_datalen
)
8002 struct kev_msg ev_msg
;
8005 * A netpolicy event always starts with a netpolicy_event_data
8006 * structure, but the caller can provide for a longer event
8007 * structure to post, depending on the event code.
8009 VERIFY(ev_data
!= NULL
&& ev_datalen
>= sizeof(*ev_data
));
8011 bzero(&ev_msg
, sizeof(ev_msg
));
8012 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
8013 ev_msg
.kev_class
= KEV_NETWORK_CLASS
;
8014 ev_msg
.kev_subclass
= KEV_NETPOLICY_SUBCLASS
;
8015 ev_msg
.event_code
= ev_code
;
8017 ev_msg
.dv
[0].data_ptr
= ev_data
;
8018 ev_msg
.dv
[0].data_length
= ev_datalen
;
8020 kev_post_msg(&ev_msg
);
8024 socket_post_kev_msg(uint32_t ev_code
,
8025 struct kev_socket_event_data
*ev_data
,
8026 uint32_t ev_datalen
)
8028 struct kev_msg ev_msg
;
8030 bzero(&ev_msg
, sizeof(ev_msg
));
8031 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
8032 ev_msg
.kev_class
= KEV_NETWORK_CLASS
;
8033 ev_msg
.kev_subclass
= KEV_SOCKET_SUBCLASS
;
8034 ev_msg
.event_code
= ev_code
;
8036 ev_msg
.dv
[0].data_ptr
= ev_data
;
8037 ev_msg
.dv
[0].data_length
= ev_datalen
;
8039 kev_post_msg(&ev_msg
);
8043 socket_post_kev_msg_closed(struct socket
*so
)
8045 struct kev_socket_closed ev
;
8046 struct sockaddr
*socksa
= NULL
, *peersa
= NULL
;
8048 bzero(&ev
, sizeof(ev
));
8049 err
= (*so
->so_proto
->pr_usrreqs
->pru_sockaddr
)(so
, &socksa
);
8051 err
= (*so
->so_proto
->pr_usrreqs
->pru_peeraddr
)(so
,
8054 memcpy(&ev
.ev_data
.kev_sockname
, socksa
,
8056 sizeof(ev
.ev_data
.kev_sockname
)));
8057 memcpy(&ev
.ev_data
.kev_peername
, peersa
,
8059 sizeof(ev
.ev_data
.kev_peername
)));
8060 socket_post_kev_msg(KEV_SOCKET_CLOSED
,
8061 &ev
.ev_data
, sizeof(ev
));
8064 if (socksa
!= NULL
) {
8065 FREE(socksa
, M_SONAME
);
8067 if (peersa
!= NULL
) {
8068 FREE(peersa
, M_SONAME
);