]> git.saurik.com Git - apple/xnu.git/blob - bsd/nfs/nfs_gss.c
a9c78f1932f05bd9a7c2911d74c2399e24bd9401
[apple/xnu.git] / bsd / nfs / nfs_gss.c
1 /*
2 * Copyright (c) 2007-2015 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /*************
30 * These functions implement RPCSEC_GSS security for the NFS client and server.
31 * The code is specific to the use of Kerberos v5 and the use of DES MAC MD5
32 * protection as described in Internet RFC 2203 and 2623.
33 *
34 * In contrast to the original AUTH_SYS authentication, RPCSEC_GSS is stateful.
35 * It requires the client and server negotiate a secure connection as part of a
36 * security context. The context state is maintained in client and server structures.
37 * On the client side, each user of an NFS mount is assigned their own context,
38 * identified by UID, on their first use of the mount, and it persists until the
39 * unmount or until the context is renewed. Each user context has a corresponding
40 * server context which the server maintains until the client destroys it, or
41 * until the context expires.
42 *
43 * The client and server contexts are set up dynamically. When a user attempts
44 * to send an NFS request, if there is no context for the user, then one is
45 * set up via an exchange of NFS null procedure calls as described in RFC 2203.
46 * During this exchange, the client and server pass a security token that is
47 * forwarded via Mach upcall to the gssd, which invokes the GSS-API to authenticate
48 * the user to the server (and vice-versa). The client and server also receive
49 * a unique session key that can be used to digitally sign the credentials and
50 * verifier or optionally to provide data integrity and/or privacy.
51 *
52 * Once the context is complete, the client and server enter a normal data
53 * exchange phase - beginning with the NFS request that prompted the context
54 * creation. During this phase, the client's RPC header contains an RPCSEC_GSS
55 * credential and verifier, and the server returns a verifier as well.
56 * For simple authentication, the verifier contains a signed checksum of the
57 * RPC header, including the credential. The server's verifier has a signed
58 * checksum of the current sequence number.
59 *
60 * Each client call contains a sequence number that nominally increases by one
61 * on each request. The sequence number is intended to prevent replay attacks.
62 * Since the protocol can be used over UDP, there is some allowance for
63 * out-of-sequence requests, so the server checks whether the sequence numbers
64 * are within a sequence "window". If a sequence number is outside the lower
65 * bound of the window, the server silently drops the request. This has some
66 * implications for retransmission. If a request needs to be retransmitted, the
67 * client must bump the sequence number even if the request XID is unchanged.
68 *
69 * When the NFS mount is unmounted, the client sends a "destroy" credential
70 * to delete the server's context for each user of the mount. Since it's
71 * possible for the client to crash or disconnect without sending the destroy
72 * message, the server has a thread that reaps contexts that have been idle
73 * too long.
74 */
75
76 #include <stdint.h>
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80 #include <sys/kauth.h>
81 #include <sys/kernel.h>
82 #include <sys/mount_internal.h>
83 #include <sys/vnode.h>
84 #include <sys/ubc.h>
85 #include <sys/malloc.h>
86 #include <sys/kpi_mbuf.h>
87 #include <sys/ucred.h>
88
89 #include <kern/host.h>
90 #include <kern/task.h>
91 #include <libkern/libkern.h>
92
93 #include <mach/task.h>
94 #include <mach/host_special_ports.h>
95 #include <mach/host_priv.h>
96 #include <mach/thread_act.h>
97 #include <mach/mig_errors.h>
98 #include <mach/vm_map.h>
99 #include <vm/vm_map.h>
100 #include <vm/vm_kern.h>
101 #include <gssd/gssd_mach.h>
102
103 #include <nfs/rpcv2.h>
104 #include <nfs/nfsproto.h>
105 #include <nfs/nfs.h>
106 #include <nfs/nfsnode.h>
107 #include <nfs/nfs_gss.h>
108 #include <nfs/nfsmount.h>
109 #include <nfs/xdr_subs.h>
110 #include <nfs/nfsm_subs.h>
111 #include <nfs/nfs_gss.h>
112 #include <mach_assert.h>
113 #include <kern/assert.h>
114
115 #define ASSERT(EX) assert(EX)
116
117 #define NFS_GSS_MACH_MAX_RETRIES 3
118
119 #define NFS_GSS_DBG(...) NFS_DBG(NFS_FAC_GSS, 7, ## __VA_ARGS__)
120 #define NFS_GSS_ISDBG (NFS_DEBUG_FACILITY & NFS_FAC_GSS)
121
122
123 #if NFSSERVER
124 u_long nfs_gss_svc_ctx_hash;
125 struct nfs_gss_svc_ctx_hashhead *nfs_gss_svc_ctx_hashtbl;
126 lck_mtx_t *nfs_gss_svc_ctx_mutex;
127 lck_grp_t *nfs_gss_svc_grp;
128 uint32_t nfsrv_gss_context_ttl = GSS_CTX_EXPIRE;
129 #define GSS_SVC_CTX_TTL ((uint64_t)max(2*GSS_CTX_PEND, nfsrv_gss_context_ttl) * NSEC_PER_SEC)
130 #endif /* NFSSERVER */
131
132 #if NFSCLIENT
133 lck_grp_t *nfs_gss_clnt_grp;
134 #endif /* NFSCLIENT */
135
136 #define KRB5_MAX_MIC_SIZE 128
137 uint8_t krb5_mech_oid[11] = { 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x01, 0x02, 0x02 };
138 static uint8_t xdrpad[] = { 0x00, 0x00, 0x00, 0x00};
139
140 #if NFSCLIENT
141 static int nfs_gss_clnt_ctx_find(struct nfsreq *);
142 static int nfs_gss_clnt_ctx_init(struct nfsreq *, struct nfs_gss_clnt_ctx *);
143 static int nfs_gss_clnt_ctx_init_retry(struct nfsreq *, struct nfs_gss_clnt_ctx *);
144 static int nfs_gss_clnt_ctx_callserver(struct nfsreq *, struct nfs_gss_clnt_ctx *);
145 static uint8_t *nfs_gss_clnt_svcname(struct nfsmount *, gssd_nametype *, uint32_t *);
146 static int nfs_gss_clnt_gssd_upcall(struct nfsreq *, struct nfs_gss_clnt_ctx *, uint32_t);
147 void nfs_gss_clnt_ctx_neg_cache_reap(struct nfsmount *);
148 static void nfs_gss_clnt_ctx_clean(struct nfs_gss_clnt_ctx *);
149 static int nfs_gss_clnt_ctx_copy(struct nfs_gss_clnt_ctx *, struct nfs_gss_clnt_ctx **);
150 static void nfs_gss_clnt_ctx_destroy(struct nfs_gss_clnt_ctx *);
151 static void nfs_gss_clnt_log_error(struct nfsreq *, struct nfs_gss_clnt_ctx *, uint32_t, uint32_t);
152 #endif /* NFSCLIENT */
153
154 #if NFSSERVER
155 static struct nfs_gss_svc_ctx *nfs_gss_svc_ctx_find(uint32_t);
156 static void nfs_gss_svc_ctx_insert(struct nfs_gss_svc_ctx *);
157 static void nfs_gss_svc_ctx_timer(void *, void *);
158 static int nfs_gss_svc_gssd_upcall(struct nfs_gss_svc_ctx *);
159 static int nfs_gss_svc_seqnum_valid(struct nfs_gss_svc_ctx *, uint32_t);
160 #endif /* NFSSERVER */
161
162 static void host_release_special_port(mach_port_t);
163 static mach_port_t host_copy_special_port(mach_port_t);
164 static void nfs_gss_mach_alloc_buffer(u_char *, uint32_t, vm_map_copy_t *);
165 static int nfs_gss_mach_vmcopyout(vm_map_copy_t, uint32_t, u_char *);
166
167 static int nfs_gss_mchain_length(mbuf_t);
168 static int nfs_gss_append_chain(struct nfsm_chain *, mbuf_t);
169 static void nfs_gss_nfsm_chain(struct nfsm_chain *, mbuf_t);
170
171 #if NFSSERVER
172 thread_call_t nfs_gss_svc_ctx_timer_call;
173 int nfs_gss_timer_on = 0;
174 uint32_t nfs_gss_ctx_count = 0;
175 const uint32_t nfs_gss_ctx_max = GSS_SVC_MAXCONTEXTS;
176 #endif /* NFSSERVER */
177
178 /*
179 * Initialization when NFS starts
180 */
181 void
182 nfs_gss_init(void)
183 {
184 #if NFSCLIENT
185 nfs_gss_clnt_grp = lck_grp_alloc_init("rpcsec_gss_clnt", LCK_GRP_ATTR_NULL);
186 #endif /* NFSCLIENT */
187
188 #if NFSSERVER
189 nfs_gss_svc_grp = lck_grp_alloc_init("rpcsec_gss_svc", LCK_GRP_ATTR_NULL);
190
191 nfs_gss_svc_ctx_hashtbl = hashinit(SVC_CTX_HASHSZ, M_TEMP, &nfs_gss_svc_ctx_hash);
192 nfs_gss_svc_ctx_mutex = lck_mtx_alloc_init(nfs_gss_svc_grp, LCK_ATTR_NULL);
193
194 nfs_gss_svc_ctx_timer_call = thread_call_allocate(nfs_gss_svc_ctx_timer, NULL);
195 #endif /* NFSSERVER */
196 }
197
198 /*
199 * Common RPCSEC_GSS support routines
200 */
201
202 static errno_t
203 rpc_gss_prepend_32(mbuf_t *mb, uint32_t value)
204 {
205 int error;
206 uint32_t *data;
207
208 #if 0
209 data = mbuf_data(*mb);
210 /*
211 * If a wap token comes back and is not aligned
212 * get a new buffer (which should be aligned) to put the
213 * length in.
214 */
215 if ((uintptr_t)data & 0x3) {
216 mbuf_t nmb;
217
218 error = mbuf_get(MBUF_WAITOK, MBUF_TYPE_DATA, &nmb);
219 if (error)
220 return (error);
221 mbuf_setnext(nmb, *mb);
222 *mb = nmb;
223 }
224 #endif
225 error = mbuf_prepend(mb, sizeof(uint32_t), MBUF_WAITOK);
226 if (error)
227 return (error);
228
229 data = mbuf_data(*mb);
230 *data = txdr_unsigned(value);
231
232 return (0);
233 }
234
235 /*
236 * Prepend the sequence number to the xdr encode argumen or result
237 * Sequence number is prepended in its own mbuf.
238 *
239 * On successful return mbp_head will point to the old mbuf chain
240 * prepended with a new mbuf that has the sequence number.
241 */
242
243 static errno_t
244 rpc_gss_data_create(mbuf_t *mbp_head, uint32_t seqnum)
245 {
246 int error;
247 mbuf_t mb;
248 struct nfsm_chain nmc;
249 struct nfsm_chain *nmcp = &nmc;
250 uint8_t *data;
251
252 error = mbuf_get(MBUF_WAITOK, MBUF_TYPE_DATA, &mb);
253 if (error)
254 return (error);
255 data = mbuf_data(mb);
256 #if 0
257 /* Reserve space for prepending */
258 len = mbuf_maxlen(mb);
259 len = (len & ~0x3) - NFSX_UNSIGNED;
260 printf("%s: data = %p, len = %d\n", __func__, data, (int)len);
261 error = mbuf_setdata(mb, data + len, 0);
262 if (error || mbuf_trailingspace(mb))
263 printf("%s: data = %p trailingspace = %d error = %d\n", __func__, mbuf_data(mb), (int)mbuf_trailingspace(mb), error);
264 #endif
265 /* Reserve 16 words for prepending */
266 error = mbuf_setdata(mb, data + 16*sizeof(uint32_t), 0);
267 nfsm_chain_init(nmcp, mb);
268 nfsm_chain_add_32(error, nmcp, seqnum);
269 nfsm_chain_build_done(error, nmcp);
270 if (error)
271 return (EINVAL);
272 mbuf_setnext(nmcp->nmc_mcur, *mbp_head);
273 *mbp_head = nmcp->nmc_mhead;
274
275 return (0);
276 }
277
278 /*
279 * Create an rpc_gss_integ_data_t given an argument or result in mb_head.
280 * On successful return mb_head will point to the rpc_gss_integ_data_t of length len.
281 * Note mb_head will now point to a 4 byte sequence number. len does not include
282 * any extra xdr padding.
283 * Returns 0 on success, else an errno_t
284 */
285
286 static errno_t
287 rpc_gss_integ_data_create(gss_ctx_id_t ctx, mbuf_t *mb_head, uint32_t seqnum, uint32_t *len)
288 {
289 uint32_t error;
290 uint32_t major;
291 uint32_t length;
292 gss_buffer_desc mic;
293 struct nfsm_chain nmc;
294
295 /* Length of the argument or result */
296 length = nfs_gss_mchain_length(*mb_head);
297 if (len)
298 *len = length;
299 error = rpc_gss_data_create(mb_head, seqnum);
300 if (error)
301 return (error);
302
303 /*
304 * length is the length of the rpc_gss_data
305 */
306 length += NFSX_UNSIGNED; /* Add the sequence number to the length */
307 major = gss_krb5_get_mic_mbuf(&error, ctx, 0, *mb_head, 0, length, &mic);
308 if (major != GSS_S_COMPLETE) {
309 printf("gss_krb5_get_mic_mbuf failed %d\n", error);
310 return (error);
311 }
312
313 error = rpc_gss_prepend_32(mb_head, length);
314 if (error)
315 return (error);
316
317 nfsm_chain_dissect_init(error, &nmc, *mb_head);
318 /* Append GSS mic token by advancing rpc_gss_data_t length + NFSX_UNSIGNED (size of the length field) */
319 nfsm_chain_adv(error, &nmc, length + NFSX_UNSIGNED);
320 nfsm_chain_finish_mbuf(error, &nmc); // Force the mic into its own sub chain.
321 nfsm_chain_add_32(error, &nmc, mic.length);
322 nfsm_chain_add_opaque(error, &nmc, mic.value, mic.length);
323 nfsm_chain_build_done(error, &nmc);
324 gss_release_buffer(NULL, &mic);
325
326 // printmbuf("rpc_gss_integ_data_create done", *mb_head, 0, 0);
327 assert(nmc.nmc_mhead == *mb_head);
328
329 return (error);
330 }
331
332 /*
333 * Create an rpc_gss_priv_data_t out of the supplied raw arguments or results in mb_head.
334 * On successful return mb_head will point to a wrap token of lenght len.
335 * Note len does not include any xdr padding
336 * Returns 0 on success, else an errno_t
337 */
338 static errno_t
339 rpc_gss_priv_data_create(gss_ctx_id_t ctx, mbuf_t *mb_head, uint32_t seqnum, uint32_t *len)
340 {
341 uint32_t error;
342 uint32_t major;
343 struct nfsm_chain nmc;
344 uint32_t pad;
345 uint32_t length;
346
347 error = rpc_gss_data_create(mb_head, seqnum);
348 if (error)
349 return (error);
350
351 length = nfs_gss_mchain_length(*mb_head);
352 major = gss_krb5_wrap_mbuf(&error, ctx, 1, 0, mb_head, 0, length, NULL);
353 if (major != GSS_S_COMPLETE)
354 return (error);
355
356 length = nfs_gss_mchain_length(*mb_head);
357 if (len)
358 *len = length;
359 pad = nfsm_pad(length);
360
361 /* Prepend the opaque length of rep rpc_gss_priv_data */
362 error = rpc_gss_prepend_32(mb_head, length);
363
364 if (error)
365 return (error);
366 if (pad) {
367 nfsm_chain_dissect_init(error, &nmc, *mb_head);
368 /* Advance the opauque size of length and length data */
369 nfsm_chain_adv(error, &nmc, NFSX_UNSIGNED + length);
370 nfsm_chain_finish_mbuf(error, &nmc);
371 nfsm_chain_add_opaque_nopad(error, &nmc, xdrpad, pad);
372 nfsm_chain_build_done(error, &nmc);
373 }
374
375 return (error);
376 }
377
378 #if NFSCLIENT
379
380 /*
381 * Restore the argument or result from an rpc_gss_integ_data mbuf chain
382 * We have a four byte seqence number, len arguments, and an opaque
383 * encoded mic, possibly followed by some pad bytes. The mic and possible
384 * pad bytes are on their own sub mbuf chains.
385 *
386 * On successful return mb_head is the chain of the xdr args or results sans
387 * the sequence number and mic and return 0. Otherwise return an errno.
388 *
389 */
390 static errno_t
391 rpc_gss_integ_data_restore(gss_ctx_id_t ctx __unused, mbuf_t *mb_head, size_t len)
392 {
393 mbuf_t mb = *mb_head;
394 mbuf_t tail = NULL, next;
395
396 /* Chop of the opaque length and seq number */
397 mbuf_adj(mb, 2 * NFSX_UNSIGNED);
398
399 /* should only be one, ... but */
400 for (; mb; mb = next) {
401 next = mbuf_next(mb);
402 if (mbuf_len(mb) == 0)
403 mbuf_free(mb);
404 else
405 break;
406 }
407 *mb_head = mb;
408
409 for (; mb && len; mb = mbuf_next(mb)) {
410 tail = mb;
411 if (mbuf_len(mb) <= len)
412 len -= mbuf_len(mb);
413 else
414 return (EBADRPC);
415 }
416 /* drop the mic */
417 if (tail) {
418 mbuf_setnext(tail, NULL);
419 mbuf_freem(mb);
420 }
421
422 return (0);
423 }
424
425 /*
426 * Restore the argument or result rfom an rpc_gss_priv_data mbuf chain
427 * mb_head points to the wrap token of length len.
428 *
429 * On successful return mb_head is our original xdr arg or result an
430 * the return value is 0. Otherise return an errno
431 */
432 static errno_t
433 rpc_gss_priv_data_restore(gss_ctx_id_t ctx, mbuf_t *mb_head, size_t len)
434 {
435 uint32_t major, error;
436 mbuf_t mb = *mb_head, next;
437 uint32_t plen;
438 size_t length;
439 gss_qop_t qop = GSS_C_QOP_REVERSE;
440
441 /* Chop of the opaque length */
442 mbuf_adj(mb, NFSX_UNSIGNED);
443 /* If we have padding, drop it */
444 plen = nfsm_pad(len);
445 if (plen) {
446 mbuf_t tail = NULL;
447
448 for(length = 0; length < len && mb; mb = mbuf_next(mb)) {
449 tail = mb;
450 length += mbuf_len(mb);
451 }
452 if ((length != len) || (mb == NULL) || (tail == NULL))
453 return (EBADRPC);
454
455 mbuf_freem(mb);
456 mbuf_setnext(tail, NULL);
457 }
458
459 major = gss_krb5_unwrap_mbuf(&error, ctx, mb_head, 0, len, NULL, &qop);
460 if (major != GSS_S_COMPLETE) {
461 printf("gss_krb5_unwrap_mbuf failed. major = %d minor = %d\n", (int)major, error);
462 return (error);
463 }
464 mb = *mb_head;
465
466 /* Drop the seqence number */
467 mbuf_adj(mb, NFSX_UNSIGNED);
468 assert(mbuf_len(mb) == 0);
469
470 /* Chop of any empty mbufs */
471 for (mb = *mb_head; mb; mb = next) {
472 next = mbuf_next(mb);
473 if (mbuf_len(mb) == 0)
474 mbuf_free(mb);
475 else
476 break;
477 }
478 *mb_head = mb;
479
480 return (0);
481 }
482
483 /*
484 * Find the context for a particular user.
485 *
486 * If the context doesn't already exist
487 * then create a new context for this user.
488 *
489 * Note that the code allows superuser (uid == 0)
490 * to adopt the context of another user.
491 *
492 * We'll match on the audit session ids, since those
493 * processes will have acccess to the same credential cache.
494 */
495
496 #define kauth_cred_getasid(cred) ((cred)->cr_audit.as_aia_p->ai_asid)
497 #define kauth_cred_getauid(cred) ((cred)->cr_audit.as_aia_p->ai_auid)
498
499 #define SAFE_CAST_INTTYPE( type, intval ) \
500 ( (type)(intval)/(sizeof(type) < sizeof(intval) ? 0 : 1) )
501
502 uid_t
503 nfs_cred_getasid2uid(kauth_cred_t cred)
504 {
505 uid_t result = SAFE_CAST_INTTYPE(uid_t, kauth_cred_getasid(cred));
506 return (result);
507 }
508
509 /*
510 * Debugging
511 */
512 static void
513 nfs_gss_clnt_ctx_dump(struct nfsmount *nmp)
514 {
515 struct nfs_gss_clnt_ctx *cp;
516
517 lck_mtx_lock(&nmp->nm_lock);
518 NFS_GSS_DBG("Enter\n");
519 TAILQ_FOREACH(cp, &nmp->nm_gsscl, gss_clnt_entries) {
520 lck_mtx_lock(cp->gss_clnt_mtx);
521 printf("context %d/%d: refcnt = %d, flags = %x\n",
522 kauth_cred_getasid(cp->gss_clnt_cred),
523 kauth_cred_getauid(cp->gss_clnt_cred),
524 cp->gss_clnt_refcnt, cp->gss_clnt_flags);
525 lck_mtx_unlock(cp->gss_clnt_mtx);
526 }
527 NFS_GSS_DBG("Exit\n");
528 lck_mtx_unlock(&nmp->nm_lock);
529 }
530
531 static char *
532 nfs_gss_clnt_ctx_name(struct nfsmount *nmp, struct nfs_gss_clnt_ctx *cp, char *buf, int len)
533 {
534 char *np;
535 int nlen;
536 const char *server = "";
537
538 if (nmp && nmp->nm_mountp)
539 server = vfs_statfs(nmp->nm_mountp)->f_mntfromname;
540
541 if (cp == NULL) {
542 snprintf(buf, len, "[%s] NULL context", server);
543 return (buf);
544 }
545
546 if (cp->gss_clnt_principal && !cp->gss_clnt_display) {
547 np = (char *)cp->gss_clnt_principal;
548 nlen = cp->gss_clnt_prinlen;
549 } else {
550 np = cp->gss_clnt_display;
551 nlen = np ? strlen(cp->gss_clnt_display) : 0;
552 }
553 if (nlen)
554 snprintf(buf, len, "[%s] %.*s %d/%d %s", server, nlen, np,
555 kauth_cred_getasid(cp->gss_clnt_cred),
556 kauth_cred_getuid(cp->gss_clnt_cred),
557 cp->gss_clnt_principal ? "" : "[from default cred] ");
558 else
559 snprintf(buf, len, "[%s] using default %d/%d ", server,
560 kauth_cred_getasid(cp->gss_clnt_cred),
561 kauth_cred_getuid(cp->gss_clnt_cred));
562 return (buf);
563 }
564
565 #define NFS_CTXBUFSZ 80
566 #define NFS_GSS_CTX(req, cp) nfs_gss_clnt_ctx_name((req)->r_nmp, cp ? cp : (req)->r_gss_ctx, CTXBUF, sizeof(CTXBUF))
567
568 #define NFS_GSS_CLNT_CTX_DUMP(nmp) \
569 do { \
570 if (NFS_GSS_ISDBG && (NFS_DEBUG_FLAGS & 0x2)) \
571 nfs_gss_clnt_ctx_dump((nmp)); \
572 } while (0)
573
574 static int
575 nfs_gss_clnt_ctx_cred_match(kauth_cred_t cred1, kauth_cred_t cred2)
576 {
577 if (kauth_cred_getasid(cred1) == kauth_cred_getasid(cred2))
578 return (1);
579 return (0);
580 }
581
582 /*
583 * Busy the mount for each principal set on the mount
584 * so that the automounter will not unmount the file
585 * system underneath us. With out this, if an unmount
586 * occurs the principal that is set for an audit session
587 * will be lost and we may end up with a different identity.
588 *
589 * Note setting principals on the mount is a bad idea. This
590 * really should be handle by KIM (Kerberos Identity Management)
591 * so that defaults can be set by service identities.
592 */
593
594 static void
595 nfs_gss_clnt_mnt_ref(struct nfsmount *nmp)
596 {
597 int error;
598 vnode_t rvp;
599
600 if (nmp == NULL ||
601 !(vfs_flags(nmp->nm_mountp) & MNT_AUTOMOUNTED))
602 return;
603
604 error = VFS_ROOT(nmp->nm_mountp, &rvp, NULL);
605 if (!error) {
606 vnode_ref(rvp);
607 vnode_put(rvp);
608 }
609 }
610
611 /*
612 * Unbusy the mout. See above comment,
613 */
614
615 static void
616 nfs_gss_clnt_mnt_rele(struct nfsmount *nmp)
617 {
618 int error;
619 vnode_t rvp;
620
621 if (nmp == NULL ||
622 !(vfs_flags(nmp->nm_mountp) & MNT_AUTOMOUNTED))
623 return;
624
625 error = VFS_ROOT(nmp->nm_mountp, &rvp, NULL);
626 if (!error) {
627 vnode_rele(rvp);
628 vnode_put(rvp);
629 }
630 }
631
632 int nfs_root_steals_ctx = 0;
633
634 static int
635 nfs_gss_clnt_ctx_find_principal(struct nfsreq *req, uint8_t *principal, uint32_t plen, uint32_t nt)
636 {
637 struct nfsmount *nmp = req->r_nmp;
638 struct nfs_gss_clnt_ctx *cp;
639 struct nfsreq treq;
640 int error = 0;
641 struct timeval now;
642 char CTXBUF[NFS_CTXBUFSZ];
643
644 bzero(&treq, sizeof (struct nfsreq));
645 treq.r_nmp = nmp;
646
647 microuptime(&now);
648 lck_mtx_lock(&nmp->nm_lock);
649 TAILQ_FOREACH(cp, &nmp->nm_gsscl, gss_clnt_entries) {
650 lck_mtx_lock(cp->gss_clnt_mtx);
651 if (cp->gss_clnt_flags & GSS_CTX_DESTROY) {
652 NFS_GSS_DBG("Found destroyed context %s refcnt = %d continuing\n",
653 NFS_GSS_CTX(req, cp),
654 cp->gss_clnt_refcnt);
655 lck_mtx_unlock(cp->gss_clnt_mtx);
656 continue;
657 }
658 if (nfs_gss_clnt_ctx_cred_match(cp->gss_clnt_cred, req->r_cred)) {
659 if (nmp->nm_gsscl.tqh_first != cp) {
660 TAILQ_REMOVE(&nmp->nm_gsscl, cp, gss_clnt_entries);
661 TAILQ_INSERT_HEAD(&nmp->nm_gsscl, cp, gss_clnt_entries);
662 }
663 if (principal) {
664 /*
665 * If we have a principal, but it does not match the current cred
666 * mark it for removal
667 */
668 if (cp->gss_clnt_prinlen != plen || cp->gss_clnt_prinnt != nt ||
669 bcmp(cp->gss_clnt_principal, principal, plen) != 0) {
670 cp->gss_clnt_flags |= (GSS_CTX_INVAL | GSS_CTX_DESTROY);
671 cp->gss_clnt_refcnt++;
672 lck_mtx_unlock(cp->gss_clnt_mtx);
673 NFS_GSS_DBG("Marking %s for deletion because %s does not match\n",
674 NFS_GSS_CTX(req, cp), principal);
675 NFS_GSS_DBG("len = (%d,%d), nt = (%d,%d)\n", cp->gss_clnt_prinlen, plen,
676 cp->gss_clnt_prinnt, nt);
677 treq.r_gss_ctx = cp;
678 cp = NULL;
679 break;
680 }
681 }
682 if (cp->gss_clnt_flags & GSS_CTX_INVAL) {
683 /*
684 * If we're still being used and we're not expired
685 * just return and don't bother gssd again. Note if
686 * gss_clnt_nctime is zero it is about to be set to now.
687 */
688 if (cp->gss_clnt_nctime + GSS_NEG_CACHE_TO >= now.tv_sec || cp->gss_clnt_nctime == 0) {
689 NFS_GSS_DBG("Context %s (refcnt = %d) not expired returning EAUTH nctime = %ld now = %ld\n",
690 NFS_GSS_CTX(req, cp), cp->gss_clnt_refcnt, cp->gss_clnt_nctime, now.tv_sec);
691 lck_mtx_unlock(cp->gss_clnt_mtx);
692 lck_mtx_unlock(&nmp->nm_lock);
693 return (NFSERR_EAUTH);
694 }
695 if (cp->gss_clnt_refcnt) {
696 struct nfs_gss_clnt_ctx *ncp;
697 /*
698 * If this context has references, we can't use it so we mark if for
699 * destruction and create a new context based on this one in the
700 * same manner as renewing one.
701 */
702 cp->gss_clnt_flags |= GSS_CTX_DESTROY;
703 NFS_GSS_DBG("Context %s has expired but we still have %d references\n",
704 NFS_GSS_CTX(req, cp), cp->gss_clnt_refcnt);
705 error = nfs_gss_clnt_ctx_copy(cp, &ncp);
706 lck_mtx_unlock(cp->gss_clnt_mtx);
707 if (error) {
708 lck_mtx_unlock(&nmp->nm_lock);
709 return (error);
710 }
711 cp = ncp;
712 break;
713 } else {
714 if (cp->gss_clnt_nctime)
715 nmp->nm_ncentries--;
716 lck_mtx_unlock(cp->gss_clnt_mtx);
717 TAILQ_REMOVE(&nmp->nm_gsscl, cp, gss_clnt_entries);
718 break;
719 }
720 }
721 /* Found a valid context to return */
722 cp->gss_clnt_refcnt++;
723 req->r_gss_ctx = cp;
724 lck_mtx_unlock(cp->gss_clnt_mtx);
725 lck_mtx_unlock(&nmp->nm_lock);
726 return (0);
727 }
728 lck_mtx_unlock(cp->gss_clnt_mtx);
729 }
730
731 if (!cp && nfs_root_steals_ctx && principal == NULL && kauth_cred_getuid(req->r_cred) == 0) {
732 /*
733 * If superuser is trying to get access, then co-opt
734 * the first valid context in the list.
735 * XXX Ultimately, we need to allow superuser to
736 * go ahead and attempt to set up its own context
737 * in case one is set up for it.
738 */
739 TAILQ_FOREACH(cp, &nmp->nm_gsscl, gss_clnt_entries) {
740 if (!(cp->gss_clnt_flags & (GSS_CTX_INVAL|GSS_CTX_DESTROY))) {
741 nfs_gss_clnt_ctx_ref(req, cp);
742 lck_mtx_unlock(&nmp->nm_lock);
743 NFS_GSS_DBG("Root stole context %s\n", NFS_GSS_CTX(req, NULL));
744 return (0);
745 }
746 }
747 }
748
749 NFS_GSS_DBG("Context %s%sfound in Neg Cache @ %ld\n",
750 NFS_GSS_CTX(req, cp),
751 cp == NULL ? " not " : "",
752 cp == NULL ? 0L : cp->gss_clnt_nctime);
753
754 /*
755 * Not found - create a new context
756 */
757
758 if (cp == NULL) {
759 MALLOC(cp, struct nfs_gss_clnt_ctx *, sizeof(*cp), M_TEMP, M_WAITOK|M_ZERO);
760 if (cp == NULL) {
761 lck_mtx_unlock(&nmp->nm_lock);
762 return (ENOMEM);
763 }
764 cp->gss_clnt_cred = req->r_cred;
765 kauth_cred_ref(cp->gss_clnt_cred);
766 cp->gss_clnt_mtx = lck_mtx_alloc_init(nfs_gss_clnt_grp, LCK_ATTR_NULL);
767 cp->gss_clnt_ptime = now.tv_sec - GSS_PRINT_DELAY;
768 if (principal) {
769 MALLOC(cp->gss_clnt_principal, uint8_t *, plen+1, M_TEMP, M_WAITOK|M_ZERO);
770 memcpy(cp->gss_clnt_principal, principal, plen);
771 cp->gss_clnt_prinlen = plen;
772 cp->gss_clnt_prinnt = nt;
773 cp->gss_clnt_flags |= GSS_CTX_STICKY;
774 nfs_gss_clnt_mnt_ref(nmp);
775 }
776 } else {
777 nfs_gss_clnt_ctx_clean(cp);
778 if (principal) {
779 /*
780 * If we have a principal and we found a matching audit
781 * session, then to get here, the principal had to match.
782 * In walking the context list if it has a principal
783 * or the principal is not set then we mark the context
784 * for destruction and set cp to NULL and we fall to the
785 * if clause above. If the context still has references
786 * again we copy the context which will preserve the principal
787 * and we end up here with the correct principal set.
788 * If we don't have references the the principal must have
789 * match and we will fall through here.
790 */
791 cp->gss_clnt_flags |= GSS_CTX_STICKY;
792 }
793 }
794
795 cp->gss_clnt_thread = current_thread();
796 nfs_gss_clnt_ctx_ref(req, cp);
797 TAILQ_INSERT_HEAD(&nmp->nm_gsscl, cp, gss_clnt_entries);
798 lck_mtx_unlock(&nmp->nm_lock);
799
800 error = nfs_gss_clnt_ctx_init_retry(req, cp); // Initialize new context
801 if (error) {
802 NFS_GSS_DBG("nfs_gss_clnt_ctx_init_retry returned %d for %s\n", error, NFS_GSS_CTX(req, cp));
803 nfs_gss_clnt_ctx_unref(req);
804 }
805
806 /* Remove any old matching contex that had a different principal */
807 nfs_gss_clnt_ctx_unref(&treq);
808
809 return (error);
810 }
811
812 static int
813 nfs_gss_clnt_ctx_find(struct nfsreq *req)
814 {
815 return (nfs_gss_clnt_ctx_find_principal(req, NULL, 0, 0));
816 }
817
818 /*
819 * Inserts an RPCSEC_GSS credential into an RPC header.
820 * After the credential is inserted, the code continues
821 * to build the verifier which contains a signed checksum
822 * of the RPC header.
823 */
824
825 int
826 nfs_gss_clnt_cred_put(struct nfsreq *req, struct nfsm_chain *nmc, mbuf_t args)
827 {
828 struct nfs_gss_clnt_ctx *cp;
829 uint32_t seqnum = 0;
830 uint32_t major;
831 uint32_t error = 0;
832 int slpflag, recordmark = 0, offset;
833 struct gss_seq *gsp;
834 gss_buffer_desc mic;
835
836 slpflag = (PZERO-1);
837 if (req->r_nmp) {
838 slpflag |= (NMFLAG(req->r_nmp, INTR) && req->r_thread && !(req->r_flags & R_NOINTR)) ? PCATCH : 0;
839 recordmark = (req->r_nmp->nm_sotype == SOCK_STREAM);
840 }
841
842 retry:
843 if (req->r_gss_ctx == NULL) {
844 /*
845 * Find the context for this user.
846 * If no context is found, one will
847 * be created.
848 */
849 error = nfs_gss_clnt_ctx_find(req);
850 if (error)
851 return (error);
852 }
853 cp = req->r_gss_ctx;
854
855 /*
856 * If the context thread isn't null, then the context isn't
857 * yet complete and is for the exclusive use of the thread
858 * doing the context setup. Wait until the context thread
859 * is null.
860 */
861 lck_mtx_lock(cp->gss_clnt_mtx);
862 if (cp->gss_clnt_thread && cp->gss_clnt_thread != current_thread()) {
863 cp->gss_clnt_flags |= GSS_NEEDCTX;
864 msleep(cp, cp->gss_clnt_mtx, slpflag | PDROP, "ctxwait", NULL);
865 slpflag &= ~PCATCH;
866 if ((error = nfs_sigintr(req->r_nmp, req, req->r_thread, 0)))
867 return (error);
868 nfs_gss_clnt_ctx_unref(req);
869 goto retry;
870 }
871 lck_mtx_unlock(cp->gss_clnt_mtx);
872
873 if (cp->gss_clnt_flags & GSS_CTX_COMPLETE) {
874 /*
875 * Get a sequence number for this request.
876 * Check whether the oldest request in the window is complete.
877 * If it's still pending, then wait until it's done before
878 * we allocate a new sequence number and allow this request
879 * to proceed.
880 */
881 lck_mtx_lock(cp->gss_clnt_mtx);
882 while (win_getbit(cp->gss_clnt_seqbits,
883 ((cp->gss_clnt_seqnum - cp->gss_clnt_seqwin) + 1) % cp->gss_clnt_seqwin)) {
884 cp->gss_clnt_flags |= GSS_NEEDSEQ;
885 msleep(cp, cp->gss_clnt_mtx, slpflag | PDROP, "seqwin", NULL);
886 slpflag &= ~PCATCH;
887 if ((error = nfs_sigintr(req->r_nmp, req, req->r_thread, 0))) {
888 return (error);
889 }
890 lck_mtx_lock(cp->gss_clnt_mtx);
891 if (cp->gss_clnt_flags & GSS_CTX_INVAL) {
892 /* Renewed while while we were waiting */
893 lck_mtx_unlock(cp->gss_clnt_mtx);
894 nfs_gss_clnt_ctx_unref(req);
895 goto retry;
896 }
897 }
898 seqnum = ++cp->gss_clnt_seqnum;
899 win_setbit(cp->gss_clnt_seqbits, seqnum % cp->gss_clnt_seqwin);
900 lck_mtx_unlock(cp->gss_clnt_mtx);
901
902 MALLOC(gsp, struct gss_seq *, sizeof(*gsp), M_TEMP, M_WAITOK|M_ZERO);
903 if (gsp == NULL)
904 return (ENOMEM);
905 gsp->gss_seqnum = seqnum;
906 SLIST_INSERT_HEAD(&req->r_gss_seqlist, gsp, gss_seqnext);
907 }
908
909 /* Insert the credential */
910 nfsm_chain_add_32(error, nmc, RPCSEC_GSS);
911 nfsm_chain_add_32(error, nmc, 5 * NFSX_UNSIGNED + cp->gss_clnt_handle_len);
912 nfsm_chain_add_32(error, nmc, RPCSEC_GSS_VERS_1);
913 nfsm_chain_add_32(error, nmc, cp->gss_clnt_proc);
914 nfsm_chain_add_32(error, nmc, seqnum);
915 nfsm_chain_add_32(error, nmc, cp->gss_clnt_service);
916 nfsm_chain_add_32(error, nmc, cp->gss_clnt_handle_len);
917 if (cp->gss_clnt_handle_len > 0) {
918 if (cp->gss_clnt_handle == NULL)
919 return (EBADRPC);
920 nfsm_chain_add_opaque(error, nmc, cp->gss_clnt_handle, cp->gss_clnt_handle_len);
921 }
922 if (error)
923 return(error);
924 /*
925 * Now add the verifier
926 */
927 if (cp->gss_clnt_proc == RPCSEC_GSS_INIT ||
928 cp->gss_clnt_proc == RPCSEC_GSS_CONTINUE_INIT) {
929 /*
930 * If the context is still being created
931 * then use a null verifier.
932 */
933 nfsm_chain_add_32(error, nmc, RPCAUTH_NULL); // flavor
934 nfsm_chain_add_32(error, nmc, 0); // length
935 nfsm_chain_build_done(error, nmc);
936 if (!error)
937 nfs_gss_append_chain(nmc, args);
938 return (error);
939 }
940
941 offset = recordmark ? NFSX_UNSIGNED : 0; // record mark
942 nfsm_chain_build_done(error, nmc);
943
944 major = gss_krb5_get_mic_mbuf((uint32_t *)&error, cp->gss_clnt_ctx_id, 0, nmc->nmc_mhead, offset, 0, &mic);
945 if (major != GSS_S_COMPLETE) {
946 printf ("gss_krb5_get_mic_buf failed %d\n", error);
947 return (error);
948 }
949
950 nfsm_chain_add_32(error, nmc, RPCSEC_GSS); // flavor
951 nfsm_chain_add_32(error, nmc, mic.length); // length
952 nfsm_chain_add_opaque(error, nmc, mic.value, mic.length);
953 (void)gss_release_buffer(NULL, &mic);
954 nfsm_chain_build_done(error, nmc);
955 if (error)
956 return (error);
957
958 /*
959 * Now we may have to compute integrity or encrypt the call args
960 * per RFC 2203 Section 5.3.2
961 */
962 switch (cp->gss_clnt_service) {
963 case RPCSEC_GSS_SVC_NONE:
964 if (args)
965 nfs_gss_append_chain(nmc, args);
966 break;
967 case RPCSEC_GSS_SVC_INTEGRITY:
968 /*
969 * r_gss_arglen is the length of args mbuf going into the routine.
970 * Its used to find the mic if we need to restore the args.
971 */
972 /* Note the mbufs that were used in r_mrest are being encapsulated in the rpc_gss_integ_data_t */
973 assert(req->r_mrest == args);
974 nfsm_chain_finish_mbuf(error, nmc);
975 if (error)
976 return (error);
977 error = rpc_gss_integ_data_create(cp->gss_clnt_ctx_id, &args, seqnum, &req->r_gss_arglen);
978 if (error)
979 break;
980 req->r_mrest = args;
981 req->r_gss_argoff = nfsm_chain_offset(nmc);
982 nfs_gss_append_chain(nmc, args);
983 break;
984 case RPCSEC_GSS_SVC_PRIVACY:
985 /*
986 * r_gss_arglen is the length of the wrap token sans any padding length.
987 * Its used to find any XDR padding of the wrap token.
988 */
989 /* Note the mbufs that were used in r_mrest are being encapsulated in the rpc_gss_priv_data_t */
990 assert(req->r_mrest == args);
991 nfsm_chain_finish_mbuf(error, nmc);
992 if (error)
993 return (error);
994 error = rpc_gss_priv_data_create(cp->gss_clnt_ctx_id, &args, seqnum, &req->r_gss_arglen);
995 if (error)
996 break;
997 req->r_mrest = args;
998 req->r_gss_argoff = nfsm_chain_offset(nmc);
999 nfs_gss_append_chain(nmc, args);
1000 break;
1001 default:
1002 return (EINVAL);
1003 }
1004
1005 return (error);
1006 }
1007
1008 /*
1009 * When receiving a reply, the client checks the verifier
1010 * returned by the server. Check that the verifier is the
1011 * correct type, then extract the sequence number checksum
1012 * from the token in the credential and compare it with a
1013 * computed checksum of the sequence number in the request
1014 * that was sent.
1015 */
1016 int
1017 nfs_gss_clnt_verf_get(
1018 struct nfsreq *req,
1019 struct nfsm_chain *nmc,
1020 uint32_t verftype,
1021 uint32_t verflen,
1022 uint32_t *accepted_statusp)
1023 {
1024 gss_buffer_desc cksum;
1025 uint32_t seqnum = 0;
1026 uint32_t major;
1027 struct nfs_gss_clnt_ctx *cp = req->r_gss_ctx;
1028 struct nfsm_chain nmc_tmp;
1029 struct gss_seq *gsp;
1030 uint32_t reslen, offset;
1031 int error = 0;
1032 mbuf_t results_mbuf, prev_mbuf, pad_mbuf;
1033 size_t ressize;
1034
1035 reslen = 0;
1036 *accepted_statusp = 0;
1037
1038 if (cp == NULL)
1039 return (NFSERR_EAUTH);
1040 /*
1041 * If it's not an RPCSEC_GSS verifier, then it has to
1042 * be a null verifier that resulted from either
1043 * a CONTINUE_NEEDED reply during context setup or
1044 * from the reply to an AUTH_UNIX call from a dummy
1045 * context that resulted from a fallback to sec=sys.
1046 */
1047 if (verftype != RPCSEC_GSS) {
1048 if (verftype != RPCAUTH_NULL)
1049 return (NFSERR_EAUTH);
1050 if (cp->gss_clnt_flags & GSS_CTX_COMPLETE)
1051 return (NFSERR_EAUTH);
1052 if (verflen > 0)
1053 nfsm_chain_adv(error, nmc, nfsm_rndup(verflen));
1054 nfsm_chain_get_32(error, nmc, *accepted_statusp);
1055 return (error);
1056 }
1057
1058 /*
1059 * If we received an RPCSEC_GSS verifier but the
1060 * context isn't yet complete, then it must be
1061 * the context complete message from the server.
1062 * The verifier will contain an encrypted checksum
1063 * of the window but we don't have the session key
1064 * yet so we can't decrypt it. Stash the verifier
1065 * and check it later in nfs_gss_clnt_ctx_init() when
1066 * the context is complete.
1067 */
1068 if (!(cp->gss_clnt_flags & GSS_CTX_COMPLETE)) {
1069 if (verflen > KRB5_MAX_MIC_SIZE)
1070 return (EBADRPC);
1071 MALLOC(cp->gss_clnt_verf, u_char *, verflen, M_TEMP, M_WAITOK|M_ZERO);
1072 if (cp->gss_clnt_verf == NULL)
1073 return (ENOMEM);
1074 cp->gss_clnt_verflen = verflen;
1075 nfsm_chain_get_opaque(error, nmc, verflen, cp->gss_clnt_verf);
1076 nfsm_chain_get_32(error, nmc, *accepted_statusp);
1077 return (error);
1078 }
1079
1080 if (verflen > KRB5_MAX_MIC_SIZE)
1081 return (EBADRPC);
1082 cksum.length = verflen;
1083 MALLOC(cksum.value, void *, verflen, M_TEMP, M_WAITOK);
1084
1085 /*
1086 * Get the gss mic
1087 */
1088 nfsm_chain_get_opaque(error, nmc, verflen, cksum.value);
1089 if (error) {
1090 FREE(cksum.value, M_TEMP);
1091 goto nfsmout;
1092 }
1093
1094 /*
1095 * Search the request sequence numbers for this reply, starting
1096 * with the most recent, looking for a checksum that matches
1097 * the one in the verifier returned by the server.
1098 */
1099 SLIST_FOREACH(gsp, &req->r_gss_seqlist, gss_seqnext) {
1100 gss_buffer_desc seqnum_buf;
1101 uint32_t network_seqnum = htonl(gsp->gss_seqnum);
1102
1103 seqnum_buf.length = sizeof(network_seqnum);
1104 seqnum_buf.value = &network_seqnum;
1105 major = gss_krb5_verify_mic(NULL, cp->gss_clnt_ctx_id, &seqnum_buf, &cksum, NULL);
1106 if (major == GSS_S_COMPLETE)
1107 break;
1108 }
1109 FREE(cksum.value, M_TEMP);
1110 if (gsp == NULL)
1111 return (NFSERR_EAUTH);
1112
1113 /*
1114 * Get the RPC accepted status
1115 */
1116 nfsm_chain_get_32(error, nmc, *accepted_statusp);
1117 if (*accepted_statusp != RPC_SUCCESS)
1118 return (0);
1119
1120 /*
1121 * Now we may have to check integrity or decrypt the results
1122 * per RFC 2203 Section 5.3.2
1123 */
1124 switch (cp->gss_clnt_service) {
1125 case RPCSEC_GSS_SVC_NONE:
1126 /* nothing to do */
1127 break;
1128 case RPCSEC_GSS_SVC_INTEGRITY:
1129 /*
1130 * Here's what we expect in the integrity results from RFC 2203:
1131 *
1132 * - length of seq num + results (4 bytes)
1133 * - sequence number (4 bytes)
1134 * - results (variable bytes)
1135 * - length of checksum token
1136 * - checksum of seqnum + results
1137 */
1138
1139 nfsm_chain_get_32(error, nmc, reslen); // length of results
1140 if (reslen > NFS_MAXPACKET) {
1141 error = EBADRPC;
1142 goto nfsmout;
1143 }
1144
1145 /* Advance and fetch the mic */
1146 nmc_tmp = *nmc;
1147 nfsm_chain_adv(error, &nmc_tmp, reslen); // skip over the results
1148 nfsm_chain_get_32(error, &nmc_tmp, cksum.length);
1149 if (cksum.length > KRB5_MAX_MIC_SIZE) {
1150 error = EBADRPC;
1151 goto nfsmout;
1152 }
1153 MALLOC(cksum.value, void *, cksum.length, M_TEMP, M_WAITOK);
1154 nfsm_chain_get_opaque(error, &nmc_tmp, cksum.length, cksum.value);
1155 //XXX chop offf the cksum?
1156
1157 /* Call verify mic */
1158 offset = nfsm_chain_offset(nmc);
1159 major = gss_krb5_verify_mic_mbuf((uint32_t *)&error, cp->gss_clnt_ctx_id, nmc->nmc_mhead, offset, reslen, &cksum, NULL);
1160 FREE(cksum.value, M_TEMP);
1161 if (major != GSS_S_COMPLETE) {
1162 printf("client results: gss_krb5_verify_mic_mbuf failed %d\n", error);
1163 error = EBADRPC;
1164 goto nfsmout;
1165 }
1166
1167 /*
1168 * Get the sequence number prepended to the results
1169 * and compare it against the header.
1170 */
1171 nfsm_chain_get_32(error, nmc, seqnum);
1172 if (gsp->gss_seqnum != seqnum) {
1173 error = EBADRPC;
1174 goto nfsmout;
1175 }
1176 #if 0
1177 SLIST_FOREACH(gsp, &req->r_gss_seqlist, gss_seqnext) {
1178 if (seqnum == gsp->gss_seqnum)
1179 break;
1180 }
1181 if (gsp == NULL) {
1182 error = EBADRPC;
1183 goto nfsmout;
1184 }
1185 #endif
1186 break;
1187 case RPCSEC_GSS_SVC_PRIVACY:
1188 /*
1189 * Here's what we expect in the privacy results:
1190 *
1191 * opaque encodeing of the wrap token
1192 * - length of wrap token
1193 * - wrap token
1194 */
1195 prev_mbuf = nmc->nmc_mcur;
1196 nfsm_chain_get_32(error, nmc, reslen); // length of results
1197 if (reslen == 0 || reslen > NFS_MAXPACKET) {
1198 error = EBADRPC;
1199 goto nfsmout;
1200 }
1201
1202 /* Get the wrap token (current mbuf in the chain starting at the current offset) */
1203 offset = nmc->nmc_ptr - (caddr_t)mbuf_data(nmc->nmc_mcur);
1204
1205 /* split out the wrap token */
1206 ressize = reslen;
1207 error = gss_normalize_mbuf(nmc->nmc_mcur, offset, &ressize, &results_mbuf, &pad_mbuf, 0);
1208 if (error)
1209 goto nfsmout;
1210
1211 if (pad_mbuf) {
1212 assert(nfsm_pad(reslen) == mbuf_len(pad_mbuf));
1213 mbuf_free(pad_mbuf);
1214 }
1215
1216 major = gss_krb5_unwrap_mbuf((uint32_t *)&error, cp->gss_clnt_ctx_id, &results_mbuf, 0, ressize, NULL, NULL);
1217 if (major) {
1218 printf("%s unwraped failed %d\n", __func__, error);
1219 goto nfsmout;
1220 }
1221
1222 /* Now replace the wrapped arguments with the unwrapped ones */
1223 mbuf_setnext(prev_mbuf, results_mbuf);
1224 nmc->nmc_mcur = results_mbuf;
1225 nmc->nmc_ptr = mbuf_data(results_mbuf);
1226 nmc->nmc_left = mbuf_len(results_mbuf);
1227
1228 /*
1229 * Get the sequence number prepended to the results
1230 * and compare it against the header
1231 */
1232 nfsm_chain_get_32(error, nmc, seqnum);
1233 if (gsp->gss_seqnum != seqnum) {
1234 printf("%s bad seqnum\n", __func__);
1235 error = EBADRPC;
1236 goto nfsmout;
1237 }
1238 #if 0
1239 SLIST_FOREACH(gsp, &req->r_gss_seqlist, gss_seqnext) {
1240 if (seqnum == gsp->gss_seqnum)
1241 break;
1242 }
1243 if (gsp == NULL) {
1244 error = EBADRPC;
1245 goto nfsmout;
1246 }
1247 #endif
1248 break;
1249 }
1250 nfsmout:
1251 return (error);
1252 }
1253
1254 /*
1255 * An RPCSEC_GSS request with no integrity or privacy consists
1256 * of just the header mbufs followed by the arg mbufs.
1257 *
1258 * However, integrity or privacy the original mbufs have mbufs
1259 * prepended and appended to, which means we have to do some work to
1260 * restore the arg mbuf chain to its previous state in case we need to
1261 * retransmit.
1262 *
1263 * The location and length of the args is marked by two fields
1264 * in the request structure: r_gss_argoff and r_gss_arglen,
1265 * which are stashed when the NFS request is built.
1266 */
1267 int
1268 nfs_gss_clnt_args_restore(struct nfsreq *req)
1269 {
1270 struct nfs_gss_clnt_ctx *cp = req->r_gss_ctx;
1271 struct nfsm_chain mchain, *nmc = &mchain;
1272 int error = 0, merr;
1273
1274 if (cp == NULL)
1275 return (NFSERR_EAUTH);
1276
1277 if ((cp->gss_clnt_flags & GSS_CTX_COMPLETE) == 0)
1278 return (ENEEDAUTH);
1279
1280 /* Nothing to restore for SVC_NONE */
1281 if (cp->gss_clnt_service == RPCSEC_GSS_SVC_NONE)
1282 return (0);
1283
1284 nfsm_chain_dissect_init(error, nmc, req->r_mhead); // start at RPC header
1285 nfsm_chain_adv(error, nmc, req->r_gss_argoff); // advance to args
1286 if (error)
1287 return (error);
1288
1289 if (cp->gss_clnt_service == RPCSEC_GSS_SVC_INTEGRITY)
1290 error = rpc_gss_integ_data_restore(cp->gss_clnt_ctx_id, &req->r_mrest, req->r_gss_arglen);
1291 else
1292 error = rpc_gss_priv_data_restore(cp->gss_clnt_ctx_id, &req->r_mrest, req->r_gss_arglen);
1293
1294 merr = mbuf_setnext(nmc->nmc_mcur, req->r_mrest); /* Should always succeed */
1295 assert (merr == 0);
1296
1297 return (error ? error : merr);
1298 }
1299
1300 /*
1301 * This function sets up a new context on the client.
1302 * Context setup alternates upcalls to the gssd with NFS nullproc calls
1303 * to the server. Each of these calls exchanges an opaque token, obtained
1304 * via the gssd's calls into the GSS-API on either the client or the server.
1305 * This cycle of calls ends when the client's upcall to the gssd and the
1306 * server's response both return GSS_S_COMPLETE. At this point, the client
1307 * should have its session key and a handle that it can use to refer to its
1308 * new context on the server.
1309 */
1310 static int
1311 nfs_gss_clnt_ctx_init(struct nfsreq *req, struct nfs_gss_clnt_ctx *cp)
1312 {
1313 struct nfsmount *nmp = req->r_nmp;
1314 gss_buffer_desc cksum, window;
1315 uint32_t network_seqnum;
1316 int client_complete = 0;
1317 int server_complete = 0;
1318 int error = 0;
1319 int retrycnt = 0;
1320 uint32_t major;
1321
1322 /* Initialize a new client context */
1323
1324 if (cp->gss_clnt_svcname == NULL) {
1325 cp->gss_clnt_svcname = nfs_gss_clnt_svcname(nmp, &cp->gss_clnt_svcnt, &cp->gss_clnt_svcnamlen);
1326 if (cp->gss_clnt_svcname == NULL) {
1327 error = NFSERR_EAUTH;
1328 goto nfsmout;
1329 }
1330 }
1331
1332 cp->gss_clnt_proc = RPCSEC_GSS_INIT;
1333
1334 cp->gss_clnt_service =
1335 req->r_auth == RPCAUTH_KRB5 ? RPCSEC_GSS_SVC_NONE :
1336 req->r_auth == RPCAUTH_KRB5I ? RPCSEC_GSS_SVC_INTEGRITY :
1337 req->r_auth == RPCAUTH_KRB5P ? RPCSEC_GSS_SVC_PRIVACY : 0;
1338
1339 /*
1340 * Now loop around alternating gss_init_sec_context and
1341 * gss_accept_sec_context upcalls to the gssd on the client
1342 * and server side until the context is complete - or fails.
1343 */
1344 for (;;) {
1345 retry:
1346 /* Upcall to the gss_init_sec_context in the gssd */
1347 error = nfs_gss_clnt_gssd_upcall(req, cp, retrycnt);
1348 if (error)
1349 goto nfsmout;
1350
1351 if (cp->gss_clnt_major == GSS_S_COMPLETE) {
1352 client_complete = 1;
1353 NFS_GSS_DBG("Client complete\n");
1354 if (server_complete)
1355 break;
1356 } else if (cp->gss_clnt_major != GSS_S_CONTINUE_NEEDED) {
1357 /*
1358 * We may have gotten here because the accept sec context
1359 * from the server failed and sent back a GSS token that
1360 * encapsulates a kerberos error token per RFC 1964/4121
1361 * with a status of GSS_S_CONTINUE_NEEDED. That caused us
1362 * to loop to the above up call and received the now
1363 * decoded errors.
1364 */
1365 retrycnt++;
1366 cp->gss_clnt_gssd_flags |= GSSD_RESTART;
1367 NFS_GSS_DBG("Retrying major = %x minor = %d\n", cp->gss_clnt_major, (int)cp->gss_clnt_minor);
1368 goto retry;
1369 }
1370
1371 /*
1372 * Pass the token to the server.
1373 */
1374 error = nfs_gss_clnt_ctx_callserver(req, cp);
1375 if (error) {
1376 if (error == ENEEDAUTH &&
1377 (cp->gss_clnt_proc == RPCSEC_GSS_INIT ||
1378 cp->gss_clnt_proc == RPCSEC_GSS_CONTINUE_INIT)) {
1379 /*
1380 * We got here because the server had a problem
1381 * trying to establish a context and sent that there
1382 * was a context problem at the rpc sec layer. Perhaps
1383 * gss_accept_sec_context succeeded in user space,
1384 * but the kernel could not handle the etype
1385 * to generate the mic for the verifier of the rpc_sec
1386 * window size.
1387 */
1388 retrycnt++;
1389 cp->gss_clnt_gssd_flags |= GSSD_RESTART;
1390 NFS_GSS_DBG("Retrying major = %x minor = %d\n", cp->gss_clnt_major, (int)cp->gss_clnt_minor);
1391 goto retry;
1392 }
1393 goto nfsmout;
1394 }
1395 if (cp->gss_clnt_major == GSS_S_COMPLETE) {
1396 NFS_GSS_DBG("Server complete\n");
1397 server_complete = 1;
1398 if (client_complete)
1399 break;
1400 } else if (cp->gss_clnt_major == GSS_S_CONTINUE_NEEDED) {
1401 cp->gss_clnt_proc = RPCSEC_GSS_CONTINUE_INIT;
1402 } else {
1403 /* Server didn't like us. Try something else */
1404 retrycnt++;
1405 cp->gss_clnt_gssd_flags |= GSSD_RESTART;
1406 NFS_GSS_DBG("Retrying major = %x minor = %d\n", cp->gss_clnt_major, (int)cp->gss_clnt_minor);
1407 }
1408 }
1409
1410 /*
1411 * The context is apparently established successfully
1412 */
1413 lck_mtx_lock(cp->gss_clnt_mtx);
1414 cp->gss_clnt_flags |= GSS_CTX_COMPLETE;
1415 lck_mtx_unlock(cp->gss_clnt_mtx);
1416 cp->gss_clnt_proc = RPCSEC_GSS_DATA;
1417
1418 network_seqnum = htonl(cp->gss_clnt_seqwin);
1419 window.length = sizeof (cp->gss_clnt_seqwin);
1420 window.value = &network_seqnum;
1421 cksum.value = cp->gss_clnt_verf;
1422 cksum.length = cp->gss_clnt_verflen;
1423 major = gss_krb5_verify_mic((uint32_t *)&error, cp->gss_clnt_ctx_id, &window, &cksum, NULL);
1424 cp->gss_clnt_verflen = 0;
1425 FREE(cp->gss_clnt_verf, M_TEMP);
1426 cp->gss_clnt_verf = NULL;
1427 if (major != GSS_S_COMPLETE) {
1428 printf("%s: could not verify window\n", __func__);
1429 error = NFSERR_EAUTH;
1430 goto nfsmout;
1431 }
1432
1433 /*
1434 * Set an initial sequence number somewhat randomized.
1435 * Start small so we don't overflow GSS_MAXSEQ too quickly.
1436 * Add the size of the sequence window so seqbits arithmetic
1437 * doesn't go negative.
1438 */
1439 cp->gss_clnt_seqnum = (random() & 0xffff) + cp->gss_clnt_seqwin;
1440
1441 /*
1442 * Allocate a bitmap to keep track of which requests
1443 * are pending within the sequence number window.
1444 */
1445 MALLOC(cp->gss_clnt_seqbits, uint32_t *,
1446 nfsm_rndup((cp->gss_clnt_seqwin + 7) / 8), M_TEMP, M_WAITOK|M_ZERO);
1447 if (cp->gss_clnt_seqbits == NULL)
1448 error = NFSERR_EAUTH;
1449
1450 nfsmout:
1451 /*
1452 * If the error is ENEEDAUTH we're not done, so no need
1453 * to wake up other threads again. This thread will retry in
1454 * the find or renew routines.
1455 */
1456 if (error == ENEEDAUTH) {
1457 NFS_GSS_DBG("Returning ENEEDAUTH\n");
1458 return (error);
1459 }
1460
1461 /*
1462 * If there's an error, just mark it as invalid.
1463 * It will be removed when the reference count
1464 * drops to zero.
1465 */
1466 lck_mtx_lock(cp->gss_clnt_mtx);
1467 if (error)
1468 cp->gss_clnt_flags |= GSS_CTX_INVAL;
1469
1470 /*
1471 * Wake any threads waiting to use the context
1472 */
1473 cp->gss_clnt_thread = NULL;
1474 if (cp->gss_clnt_flags & GSS_NEEDCTX) {
1475 cp->gss_clnt_flags &= ~GSS_NEEDCTX;
1476 wakeup(cp);
1477 }
1478 lck_mtx_unlock(cp->gss_clnt_mtx);
1479
1480 NFS_GSS_DBG("Returning error = %d\n", error);
1481 return (error);
1482 }
1483
1484 /*
1485 * This function calls nfs_gss_clnt_ctx_init() to set up a new context.
1486 * But if there's a failure in trying to establish the context it keeps
1487 * retrying at progressively longer intervals in case the failure is
1488 * due to some transient condition. For instance, the server might be
1489 * failing the context setup because directory services is not coming
1490 * up in a timely fashion.
1491 */
1492 static int
1493 nfs_gss_clnt_ctx_init_retry(struct nfsreq *req, struct nfs_gss_clnt_ctx *cp)
1494 {
1495 struct nfsmount *nmp = req->r_nmp;
1496 struct timeval now;
1497 time_t waituntil;
1498 int error, slpflag;
1499 int retries = 0;
1500 int timeo = NFS_TRYLATERDEL;
1501
1502 if (nfs_mount_gone(nmp)) {
1503 error = ENXIO;
1504 goto bad;
1505 }
1506
1507 /* For an "intr" mount allow a signal to interrupt the retries */
1508 slpflag = (NMFLAG(nmp, INTR) && !(req->r_flags & R_NOINTR)) ? PCATCH : 0;
1509
1510 while ((error = nfs_gss_clnt_ctx_init(req, cp)) == ENEEDAUTH) {
1511 microuptime(&now);
1512 waituntil = now.tv_sec + timeo;
1513 while (now.tv_sec < waituntil) {
1514 tsleep(NULL, PSOCK | slpflag, "nfs_gss_clnt_ctx_init_retry", hz);
1515 slpflag = 0;
1516 error = nfs_sigintr(req->r_nmp, req, current_thread(), 0);
1517 if (error)
1518 goto bad;
1519 microuptime(&now);
1520 }
1521
1522 retries++;
1523 /* If it's a soft mount just give up after a while */
1524 if ((NMFLAG(nmp, SOFT) || (req->r_flags & R_SOFT)) && (retries > nmp->nm_retry)) {
1525 error = ETIMEDOUT;
1526 goto bad;
1527 }
1528 timeo *= 2;
1529 if (timeo > 60)
1530 timeo = 60;
1531 }
1532
1533 if (error == 0)
1534 return 0; // success
1535 bad:
1536 /*
1537 * Give up on this context
1538 */
1539 lck_mtx_lock(cp->gss_clnt_mtx);
1540 cp->gss_clnt_flags |= GSS_CTX_INVAL;
1541
1542 /*
1543 * Wake any threads waiting to use the context
1544 */
1545 cp->gss_clnt_thread = NULL;
1546 if (cp->gss_clnt_flags & GSS_NEEDCTX) {
1547 cp->gss_clnt_flags &= ~GSS_NEEDCTX;
1548 wakeup(cp);
1549 }
1550 lck_mtx_unlock(cp->gss_clnt_mtx);
1551
1552 return error;
1553 }
1554
1555 /*
1556 * Call the NFS server using a null procedure for context setup.
1557 * Even though it's a null procedure and nominally has no arguments
1558 * RFC 2203 requires that the GSS-API token be passed as an argument
1559 * and received as a reply.
1560 */
1561 static int
1562 nfs_gss_clnt_ctx_callserver(struct nfsreq *req, struct nfs_gss_clnt_ctx *cp)
1563 {
1564 struct nfsm_chain nmreq, nmrep;
1565 int error = 0, status;
1566 uint32_t major = cp->gss_clnt_major, minor = cp->gss_clnt_minor;
1567 int sz;
1568
1569 if (nfs_mount_gone(req->r_nmp))
1570 return (ENXIO);
1571 nfsm_chain_null(&nmreq);
1572 nfsm_chain_null(&nmrep);
1573 sz = NFSX_UNSIGNED + nfsm_rndup(cp->gss_clnt_tokenlen);
1574 nfsm_chain_build_alloc_init(error, &nmreq, sz);
1575 nfsm_chain_add_32(error, &nmreq, cp->gss_clnt_tokenlen);
1576 if (cp->gss_clnt_tokenlen > 0)
1577 nfsm_chain_add_opaque(error, &nmreq, cp->gss_clnt_token, cp->gss_clnt_tokenlen);
1578 nfsm_chain_build_done(error, &nmreq);
1579 if (error)
1580 goto nfsmout;
1581
1582 /* Call the server */
1583 error = nfs_request_gss(req->r_nmp->nm_mountp, &nmreq, req->r_thread, req->r_cred,
1584 (req->r_flags & R_OPTMASK), cp, &nmrep, &status);
1585 if (cp->gss_clnt_token != NULL) {
1586 FREE(cp->gss_clnt_token, M_TEMP);
1587 cp->gss_clnt_token = NULL;
1588 }
1589 if (!error)
1590 error = status;
1591 if (error)
1592 goto nfsmout;
1593
1594 /* Get the server's reply */
1595
1596 nfsm_chain_get_32(error, &nmrep, cp->gss_clnt_handle_len);
1597 if (cp->gss_clnt_handle != NULL) {
1598 FREE(cp->gss_clnt_handle, M_TEMP);
1599 cp->gss_clnt_handle = NULL;
1600 }
1601 if (cp->gss_clnt_handle_len > 0) {
1602 MALLOC(cp->gss_clnt_handle, u_char *, cp->gss_clnt_handle_len, M_TEMP, M_WAITOK);
1603 if (cp->gss_clnt_handle == NULL) {
1604 error = ENOMEM;
1605 goto nfsmout;
1606 }
1607 nfsm_chain_get_opaque(error, &nmrep, cp->gss_clnt_handle_len, cp->gss_clnt_handle);
1608 }
1609 nfsm_chain_get_32(error, &nmrep, cp->gss_clnt_major);
1610 nfsm_chain_get_32(error, &nmrep, cp->gss_clnt_minor);
1611 nfsm_chain_get_32(error, &nmrep, cp->gss_clnt_seqwin);
1612 nfsm_chain_get_32(error, &nmrep, cp->gss_clnt_tokenlen);
1613 if (error)
1614 goto nfsmout;
1615 if (cp->gss_clnt_tokenlen > 0) {
1616 MALLOC(cp->gss_clnt_token, u_char *, cp->gss_clnt_tokenlen, M_TEMP, M_WAITOK);
1617 if (cp->gss_clnt_token == NULL) {
1618 error = ENOMEM;
1619 goto nfsmout;
1620 }
1621 nfsm_chain_get_opaque(error, &nmrep, cp->gss_clnt_tokenlen, cp->gss_clnt_token);
1622 }
1623
1624 /*
1625 * Make sure any unusual errors are expanded and logged by gssd
1626 */
1627 if (cp->gss_clnt_major != GSS_S_COMPLETE &&
1628 cp->gss_clnt_major != GSS_S_CONTINUE_NEEDED) {
1629
1630 printf("nfs_gss_clnt_ctx_callserver: gss_clnt_major = %d\n", cp->gss_clnt_major);
1631 nfs_gss_clnt_log_error(req, cp, major, minor);
1632
1633 }
1634
1635 nfsmout:
1636 nfsm_chain_cleanup(&nmreq);
1637 nfsm_chain_cleanup(&nmrep);
1638
1639 return (error);
1640 }
1641
1642 /*
1643 * We construct the service principal as a gss hostbased service principal of
1644 * the form nfs@<server>, unless the servers principal was passed down in the
1645 * mount arguments. If the arguments don't specify the service principal, the
1646 * server name is extracted the location passed in the mount argument if
1647 * available. Otherwise assume a format of <server>:<path> in the
1648 * mntfromname. We don't currently support url's or other bizarre formats like
1649 * path@server. Mount_url will convert the nfs url into <server>:<path> when
1650 * calling mount, so this works out well in practice.
1651 *
1652 */
1653
1654 static uint8_t *
1655 nfs_gss_clnt_svcname(struct nfsmount *nmp, gssd_nametype *nt, uint32_t *len)
1656 {
1657 char *svcname, *d, *server;
1658 int lindx, sindx;
1659
1660 if (nfs_mount_gone(nmp))
1661 return (NULL);
1662
1663 if (nmp->nm_sprinc) {
1664 *len = strlen(nmp->nm_sprinc) + 1;
1665 MALLOC(svcname, char *, *len, M_TEMP, M_WAITOK);
1666 *nt = GSSD_HOSTBASED;
1667 if (svcname == NULL)
1668 return (NULL);
1669 strlcpy(svcname, nmp->nm_sprinc, *len);
1670
1671 return ((uint8_t *)svcname);
1672 }
1673
1674 *nt = GSSD_HOSTBASED;
1675 if (nmp->nm_locations.nl_numlocs && !(NFS_GSS_ISDBG && (NFS_DEBUG_FLAGS & 0x1))) {
1676 lindx = nmp->nm_locations.nl_current.nli_loc;
1677 sindx = nmp->nm_locations.nl_current.nli_serv;
1678 server = nmp->nm_locations.nl_locations[lindx]->nl_servers[sindx]->ns_name;
1679 *len = (uint32_t)strlen(server);
1680 } else {
1681 /* Older binaries using older mount args end up here */
1682 server = vfs_statfs(nmp->nm_mountp)->f_mntfromname;
1683 NFS_GSS_DBG("nfs getting gss svcname from %s\n", server);
1684 d = strchr(server, ':');
1685 *len = (uint32_t)(d ? (d - server) : strlen(server));
1686 }
1687
1688 *len += 5; /* "nfs@" plus null */
1689 MALLOC(svcname, char *, *len, M_TEMP, M_WAITOK);
1690 strlcpy(svcname, "nfs", *len);
1691 strlcat(svcname, "@", *len);
1692 strlcat(svcname, server, *len);
1693 NFS_GSS_DBG("nfs svcname = %s\n", svcname);
1694
1695 return ((uint8_t *)svcname);
1696 }
1697
1698 /*
1699 * Get a mach port to talk to gssd.
1700 * gssd lives in the root bootstrap, so we call gssd's lookup routine
1701 * to get a send right to talk to a new gssd instance that launchd has launched
1702 * based on the cred's uid and audit session id.
1703 */
1704
1705 static mach_port_t
1706 nfs_gss_clnt_get_upcall_port(kauth_cred_t credp)
1707 {
1708 mach_port_t gssd_host_port, uc_port = IPC_PORT_NULL;
1709 kern_return_t kr;
1710 au_asid_t asid;
1711 uid_t uid;
1712
1713 kr = host_get_gssd_port(host_priv_self(), &gssd_host_port);
1714 if (kr != KERN_SUCCESS) {
1715 printf("nfs_gss_get_upcall_port: can't get gssd port, status %x (%d)\n", kr, kr);
1716 return (IPC_PORT_NULL);
1717 }
1718 if (!IPC_PORT_VALID(gssd_host_port)) {
1719 printf("nfs_gss_get_upcall_port: gssd port not valid\n");
1720 return (IPC_PORT_NULL);
1721 }
1722
1723 asid = kauth_cred_getasid(credp);
1724 uid = kauth_cred_getauid(credp);
1725 if (uid == AU_DEFAUDITID)
1726 uid = kauth_cred_getuid(credp);
1727 kr = mach_gss_lookup(gssd_host_port, uid, asid, &uc_port);
1728 if (kr != KERN_SUCCESS)
1729 printf("nfs_gss_clnt_get_upcall_port: mach_gssd_lookup failed: status %x (%d)\n", kr, kr);
1730 host_release_special_port(gssd_host_port);
1731
1732 return (uc_port);
1733 }
1734
1735
1736 static void
1737 nfs_gss_clnt_log_error(struct nfsreq *req, struct nfs_gss_clnt_ctx *cp, uint32_t major, uint32_t minor)
1738 {
1739 #define GETMAJERROR(x) (((x) >> GSS_C_ROUTINE_ERROR_OFFSET) & GSS_C_ROUTINE_ERROR_MASK)
1740 struct nfsmount *nmp = req->r_nmp;
1741 char who[] = "client";
1742 uint32_t gss_error = GETMAJERROR(cp->gss_clnt_major);
1743 const char *procn = "unkown";
1744 proc_t proc;
1745 pid_t pid = -1;
1746 struct timeval now;
1747
1748 if (req->r_thread) {
1749 proc = (proc_t)get_bsdthreadtask_info(req->r_thread);
1750 if (proc != NULL && (proc->p_fd == NULL || (proc->p_lflag & P_LVFORK)))
1751 proc = NULL;
1752 if (proc) {
1753 if (*proc->p_comm)
1754 procn = proc->p_comm;
1755 pid = proc->p_pid;
1756 }
1757 } else {
1758 procn = "kernproc";
1759 pid = 0;
1760 }
1761
1762 microuptime(&now);
1763 if ((cp->gss_clnt_major != major || cp->gss_clnt_minor != minor ||
1764 cp->gss_clnt_ptime + GSS_PRINT_DELAY < now.tv_sec) &&
1765 (nmp->nm_state & NFSSTA_MOUNTED)) {
1766 /*
1767 * Will let gssd do some logging in hopes that it can translate
1768 * the minor code.
1769 */
1770 if (cp->gss_clnt_minor && cp->gss_clnt_minor != minor) {
1771 (void) mach_gss_log_error(
1772 cp->gss_clnt_mport,
1773 vfs_statfs(nmp->nm_mountp)->f_mntfromname,
1774 kauth_cred_getuid(cp->gss_clnt_cred),
1775 who,
1776 cp->gss_clnt_major,
1777 cp->gss_clnt_minor);
1778 }
1779 gss_error = gss_error ? gss_error : cp->gss_clnt_major;
1780
1781 /*
1782 *%%% It would be really nice to get the terminal from the proc or auditinfo_addr struct and print that here.
1783 */
1784 printf("NFS: gssd auth failure by %s on audit session %d uid %d proc %s/%d for mount %s. Error: major = %d minor = %d\n",
1785 cp->gss_clnt_display ? cp->gss_clnt_display : who, kauth_cred_getasid(req->r_cred), kauth_cred_getuid(req->r_cred),
1786 procn, pid, vfs_statfs(nmp->nm_mountp)->f_mntfromname, gss_error, (int32_t)cp->gss_clnt_minor);
1787 cp->gss_clnt_ptime = now.tv_sec;
1788 switch (gss_error) {
1789 case 7: printf("NFS: gssd does not have credentials for session %d/%d, (kinit)?\n",
1790 kauth_cred_getasid(req->r_cred), kauth_cred_getauid(req->r_cred));
1791 break;
1792 case 11: printf("NFS: gssd has expired credentals for session %d/%d, (kinit)?\n",
1793 kauth_cred_getasid(req->r_cred), kauth_cred_getauid(req->r_cred));
1794 break;
1795 }
1796 } else {
1797 NFS_GSS_DBG("NFS: gssd auth failure by %s on audit session %d uid %d proc %s/%d for mount %s. Error: major = %d minor = %d\n",
1798 cp->gss_clnt_display ? cp->gss_clnt_display : who, kauth_cred_getasid(req->r_cred), kauth_cred_getuid(req->r_cred),
1799 procn, pid, vfs_statfs(nmp->nm_mountp)->f_mntfromname, gss_error, (int32_t)cp->gss_clnt_minor);
1800 }
1801 }
1802
1803 /*
1804 * Make an upcall to the gssd using Mach RPC
1805 * The upcall is made using a host special port.
1806 * This allows launchd to fire up the gssd in the
1807 * user's session. This is important, since gssd
1808 * must have access to the user's credential cache.
1809 */
1810 static int
1811 nfs_gss_clnt_gssd_upcall(struct nfsreq *req, struct nfs_gss_clnt_ctx *cp, uint32_t retrycnt)
1812 {
1813 kern_return_t kr;
1814 gssd_byte_buffer octx = NULL;
1815 uint32_t lucidlen = 0;
1816 void *lucid_ctx_buffer;
1817 int retry_cnt = 0;
1818 vm_map_copy_t itoken = NULL;
1819 gssd_byte_buffer otoken = NULL;
1820 mach_msg_type_number_t otokenlen;
1821 int error = 0;
1822 uint8_t *principal = NULL;
1823 uint32_t plen = 0;
1824 int32_t nt = GSSD_STRING_NAME;
1825 vm_map_copy_t pname = NULL;
1826 vm_map_copy_t svcname = NULL;
1827 char display_name[MAX_DISPLAY_STR] = "";
1828 uint32_t ret_flags;
1829 struct nfsmount *nmp = req->r_nmp;
1830 uint32_t major = cp->gss_clnt_major, minor = cp->gss_clnt_minor;
1831 uint32_t selected = (uint32_t)-1;
1832 struct nfs_etype etype;
1833
1834 if (nmp == NULL || vfs_isforce(nmp->nm_mountp) || (nmp->nm_state & (NFSSTA_FORCE | NFSSTA_DEAD)))
1835 return (ENXIO);
1836
1837 if (cp->gss_clnt_gssd_flags & GSSD_RESTART) {
1838 if (cp->gss_clnt_token)
1839 FREE(cp->gss_clnt_token, M_TEMP);
1840 cp->gss_clnt_token = NULL;
1841 cp->gss_clnt_tokenlen = 0;
1842 cp->gss_clnt_proc = RPCSEC_GSS_INIT;
1843 /* Server's handle isn't valid. Don't reuse */
1844 cp->gss_clnt_handle_len = 0;
1845 if (cp->gss_clnt_handle != NULL) {
1846 FREE(cp->gss_clnt_handle, M_TEMP);
1847 cp->gss_clnt_handle = NULL;
1848 }
1849 }
1850
1851 NFS_GSS_DBG("Retrycnt = %d nm_etype.count = %d\n", retrycnt, nmp->nm_etype.count);
1852 if (retrycnt >= nmp->nm_etype.count)
1853 return (EACCES);
1854
1855 /* Copy the mount etypes to an order set of etypes to try */
1856 etype = nmp->nm_etype;
1857
1858 /*
1859 * If we've already selected an etype, lets put that first in our
1860 * array of etypes to try, since overwhelmingly, that is likely
1861 * to be the etype we want.
1862 */
1863 if (etype.selected < etype.count) {
1864 etype.etypes[0] = nmp->nm_etype.etypes[etype.selected];
1865 for (uint32_t i = 0; i < etype.selected; i++)
1866 etype.etypes[i+1] = nmp->nm_etype.etypes[i];
1867 for (uint32_t i = etype.selected + 1; i < etype.count; i++)
1868 etype.etypes[i] = nmp->nm_etype.etypes[i];
1869 }
1870
1871 /* Remove the ones we've already have tried */
1872 for (uint32_t i = retrycnt; i < etype.count; i++)
1873 etype.etypes[i - retrycnt] = etype.etypes[i];
1874 etype.count = etype.count - retrycnt;
1875
1876 NFS_GSS_DBG("etype count = %d preferred etype = %d\n", etype.count, etype.etypes[0]);
1877
1878 /*
1879 * NFS currently only supports default principals or
1880 * principals based on the uid of the caller, unless
1881 * the principal to use for the mounting cred was specified
1882 * in the mount argmuments. If the realm to use was specified
1883 * then will send that up as the principal since the realm is
1884 * preceed by an "@" gssd that will try and select the default
1885 * principal for that realm.
1886 */
1887
1888 if (cp->gss_clnt_principal && cp->gss_clnt_prinlen) {
1889 principal = cp->gss_clnt_principal;
1890 plen = cp->gss_clnt_prinlen;
1891 nt = cp->gss_clnt_prinnt;
1892 } else if (nmp->nm_principal && IS_VALID_CRED(nmp->nm_mcred) && req->r_cred == nmp->nm_mcred) {
1893 plen = (uint32_t)strlen(nmp->nm_principal);
1894 principal = (uint8_t *)nmp->nm_principal;
1895 cp->gss_clnt_prinnt = nt = GSSD_USER;
1896 }
1897 else if (nmp->nm_realm) {
1898 plen = (uint32_t)strlen(nmp->nm_realm);
1899 principal = (uint8_t *)nmp->nm_realm;
1900 nt = GSSD_USER;
1901 }
1902
1903 if (!IPC_PORT_VALID(cp->gss_clnt_mport)) {
1904 cp->gss_clnt_mport = nfs_gss_clnt_get_upcall_port(req->r_cred);
1905 if (cp->gss_clnt_mport == IPC_PORT_NULL)
1906 goto out;
1907 }
1908
1909 if (plen)
1910 nfs_gss_mach_alloc_buffer(principal, plen, &pname);
1911 if (cp->gss_clnt_svcnamlen)
1912 nfs_gss_mach_alloc_buffer(cp->gss_clnt_svcname, cp->gss_clnt_svcnamlen, &svcname);
1913 if (cp->gss_clnt_tokenlen)
1914 nfs_gss_mach_alloc_buffer(cp->gss_clnt_token, cp->gss_clnt_tokenlen, &itoken);
1915
1916 /* Always want to export the lucid context */
1917 cp->gss_clnt_gssd_flags |= GSSD_LUCID_CONTEXT;
1918
1919 retry:
1920 kr = mach_gss_init_sec_context_v3(
1921 cp->gss_clnt_mport,
1922 GSSD_KRB5_MECH,
1923 (gssd_byte_buffer) itoken, (mach_msg_type_number_t) cp->gss_clnt_tokenlen,
1924 kauth_cred_getuid(cp->gss_clnt_cred),
1925 nt,
1926 (gssd_byte_buffer)pname, (mach_msg_type_number_t) plen,
1927 cp->gss_clnt_svcnt,
1928 (gssd_byte_buffer)svcname, (mach_msg_type_number_t) cp->gss_clnt_svcnamlen,
1929 GSSD_MUTUAL_FLAG,
1930 (gssd_etype_list)etype.etypes, (mach_msg_type_number_t)etype.count,
1931 &cp->gss_clnt_gssd_flags,
1932 &cp->gss_clnt_context,
1933 &cp->gss_clnt_cred_handle,
1934 &ret_flags,
1935 &octx, (mach_msg_type_number_t *) &lucidlen,
1936 &otoken, &otokenlen,
1937 cp->gss_clnt_display ? NULL : display_name,
1938 &cp->gss_clnt_major,
1939 &cp->gss_clnt_minor);
1940
1941 /* Clear the RESTART flag */
1942 cp->gss_clnt_gssd_flags &= ~GSSD_RESTART;
1943 if (cp->gss_clnt_major != GSS_S_CONTINUE_NEEDED) {
1944 /* We're done with the gssd handles */
1945 cp->gss_clnt_context = 0;
1946 cp->gss_clnt_cred_handle = 0;
1947 }
1948
1949 if (kr != KERN_SUCCESS) {
1950 printf("nfs_gss_clnt_gssd_upcall: mach_gss_init_sec_context failed: %x (%d)\n", kr, kr);
1951 if (kr == MIG_SERVER_DIED && cp->gss_clnt_cred_handle == 0 &&
1952 retry_cnt++ < NFS_GSS_MACH_MAX_RETRIES &&
1953 !vfs_isforce(nmp->nm_mountp) && (nmp->nm_state & (NFSSTA_FORCE | NFSSTA_DEAD)) == 0) {
1954 if (plen)
1955 nfs_gss_mach_alloc_buffer(principal, plen, &pname);
1956 if (cp->gss_clnt_svcnamlen)
1957 nfs_gss_mach_alloc_buffer(cp->gss_clnt_svcname, cp->gss_clnt_svcnamlen, &svcname);
1958 if (cp->gss_clnt_tokenlen > 0)
1959 nfs_gss_mach_alloc_buffer(cp->gss_clnt_token, cp->gss_clnt_tokenlen, &itoken);
1960 goto retry;
1961 }
1962
1963 host_release_special_port(cp->gss_clnt_mport);
1964 cp->gss_clnt_mport = IPC_PORT_NULL;
1965 goto out;
1966 }
1967
1968 if (cp->gss_clnt_display == NULL && *display_name != '\0') {
1969 int dlen = strnlen(display_name, MAX_DISPLAY_STR) + 1; /* Add extra byte to include '\0' */
1970
1971 if (dlen < MAX_DISPLAY_STR) {
1972 MALLOC(cp->gss_clnt_display, char *, dlen, M_TEMP, M_WAITOK);
1973 if (cp->gss_clnt_display == NULL)
1974 goto skip;
1975 bcopy(display_name, cp->gss_clnt_display, dlen);
1976 } else {
1977 goto skip;
1978 }
1979 }
1980 skip:
1981 /*
1982 * Make sure any unusual errors are expanded and logged by gssd
1983 *
1984 * XXXX, we need to rethink this and just have gssd return a string for the major and minor codes.
1985 */
1986 if (cp->gss_clnt_major != GSS_S_COMPLETE &&
1987 cp->gss_clnt_major != GSS_S_CONTINUE_NEEDED) {
1988 NFS_GSS_DBG("Up call returned error\n");
1989 nfs_gss_clnt_log_error(req, cp, major, minor);
1990 /* Server's handle isn't valid. Don't reuse */
1991 cp->gss_clnt_handle_len = 0;
1992 if (cp->gss_clnt_handle != NULL) {
1993 FREE(cp->gss_clnt_handle, M_TEMP);
1994 cp->gss_clnt_handle = NULL;
1995 }
1996 }
1997
1998 if (lucidlen > 0) {
1999 if (lucidlen > MAX_LUCIDLEN) {
2000 printf("nfs_gss_clnt_gssd_upcall: bad context length (%d)\n", lucidlen);
2001 vm_map_copy_discard((vm_map_copy_t) octx);
2002 vm_map_copy_discard((vm_map_copy_t) otoken);
2003 goto out;
2004 }
2005 MALLOC(lucid_ctx_buffer, void *, lucidlen, M_TEMP, M_WAITOK | M_ZERO);
2006 error = nfs_gss_mach_vmcopyout((vm_map_copy_t) octx, lucidlen, lucid_ctx_buffer);
2007 if (error) {
2008 vm_map_copy_discard((vm_map_copy_t) otoken);
2009 goto out;
2010 }
2011
2012 if (cp->gss_clnt_ctx_id)
2013 gss_krb5_destroy_context(cp->gss_clnt_ctx_id);
2014 cp->gss_clnt_ctx_id = gss_krb5_make_context(lucid_ctx_buffer, lucidlen);
2015 if (cp->gss_clnt_ctx_id == NULL) {
2016 printf("Failed to make context from lucid_ctx_buffer\n");
2017 goto out;
2018 }
2019 for (uint32_t i = 0; i < nmp->nm_etype.count; i++) {
2020 if (nmp->nm_etype.etypes[i] == cp->gss_clnt_ctx_id->gss_cryptor.etype) {
2021 selected = i;
2022 break;
2023 }
2024 }
2025 }
2026
2027 /* Free context token used as input */
2028 if (cp->gss_clnt_token)
2029 FREE(cp->gss_clnt_token, M_TEMP);
2030 cp->gss_clnt_token = NULL;
2031 cp->gss_clnt_tokenlen = 0;
2032
2033 if (otokenlen > 0) {
2034 /* Set context token to gss output token */
2035 MALLOC(cp->gss_clnt_token, u_char *, otokenlen, M_TEMP, M_WAITOK);
2036 if (cp->gss_clnt_token == NULL) {
2037 printf("nfs_gss_clnt_gssd_upcall: could not allocate %d bytes\n", otokenlen);
2038 vm_map_copy_discard((vm_map_copy_t) otoken);
2039 return (ENOMEM);
2040 }
2041 error = nfs_gss_mach_vmcopyout((vm_map_copy_t) otoken, otokenlen, cp->gss_clnt_token);
2042 if (error) {
2043 printf("Could not copyout gss token\n");
2044 FREE(cp->gss_clnt_token, M_TEMP);
2045 cp->gss_clnt_token = NULL;
2046 return (NFSERR_EAUTH);
2047 }
2048 cp->gss_clnt_tokenlen = otokenlen;
2049 }
2050
2051 if (selected != (uint32_t)-1) {
2052 nmp->nm_etype.selected = selected;
2053 NFS_GSS_DBG("etype selected = %d\n", nmp->nm_etype.etypes[selected]);
2054 }
2055 NFS_GSS_DBG("Up call succeeded major = %d\n", cp->gss_clnt_major);
2056 return (0);
2057
2058 out:
2059 if (cp->gss_clnt_token)
2060 FREE(cp->gss_clnt_token, M_TEMP);
2061 cp->gss_clnt_token = NULL;
2062 cp->gss_clnt_tokenlen = 0;
2063 /* Server's handle isn't valid. Don't reuse */
2064 cp->gss_clnt_handle_len = 0;
2065 if (cp->gss_clnt_handle != NULL) {
2066 FREE(cp->gss_clnt_handle, M_TEMP);
2067 cp->gss_clnt_handle = NULL;
2068 }
2069
2070 NFS_GSS_DBG("Up call returned NFSERR_EAUTH");
2071 return (NFSERR_EAUTH);
2072 }
2073
2074 /*
2075 * Invoked at the completion of an RPC call that uses an RPCSEC_GSS
2076 * credential. The sequence number window that the server returns
2077 * at context setup indicates the maximum number of client calls that
2078 * can be outstanding on a context. The client maintains a bitmap that
2079 * represents the server's window. Each pending request has a bit set
2080 * in the window bitmap. When a reply comes in or times out, we reset
2081 * the bit in the bitmap and if there are any other threads waiting for
2082 * a context slot we notify the waiting thread(s).
2083 *
2084 * Note that if a request is retransmitted, it will have a single XID
2085 * but it may be associated with multiple sequence numbers. So we
2086 * may have to reset multiple sequence number bits in the window bitmap.
2087 */
2088 void
2089 nfs_gss_clnt_rpcdone(struct nfsreq *req)
2090 {
2091 struct nfs_gss_clnt_ctx *cp = req->r_gss_ctx;
2092 struct gss_seq *gsp, *ngsp;
2093 int i = 0;
2094
2095 if (cp == NULL || !(cp->gss_clnt_flags & GSS_CTX_COMPLETE))
2096 return; // no context - don't bother
2097 /*
2098 * Reset the bit for this request in the
2099 * sequence number window to indicate it's done.
2100 * We do this even if the request timed out.
2101 */
2102 lck_mtx_lock(cp->gss_clnt_mtx);
2103 gsp = SLIST_FIRST(&req->r_gss_seqlist);
2104 if (gsp && gsp->gss_seqnum > (cp->gss_clnt_seqnum - cp->gss_clnt_seqwin))
2105 win_resetbit(cp->gss_clnt_seqbits,
2106 gsp->gss_seqnum % cp->gss_clnt_seqwin);
2107
2108 /*
2109 * Limit the seqnum list to GSS_CLNT_SEQLISTMAX entries
2110 */
2111 SLIST_FOREACH_SAFE(gsp, &req->r_gss_seqlist, gss_seqnext, ngsp) {
2112 if (++i > GSS_CLNT_SEQLISTMAX) {
2113 SLIST_REMOVE(&req->r_gss_seqlist, gsp, gss_seq, gss_seqnext);
2114 FREE(gsp, M_TEMP);
2115 }
2116 }
2117
2118 /*
2119 * If there's a thread waiting for
2120 * the window to advance, wake it up.
2121 */
2122 if (cp->gss_clnt_flags & GSS_NEEDSEQ) {
2123 cp->gss_clnt_flags &= ~GSS_NEEDSEQ;
2124 wakeup(cp);
2125 }
2126 lck_mtx_unlock(cp->gss_clnt_mtx);
2127 }
2128
2129 /*
2130 * Create a reference to a context from a request
2131 * and bump the reference count
2132 */
2133 void
2134 nfs_gss_clnt_ctx_ref(struct nfsreq *req, struct nfs_gss_clnt_ctx *cp)
2135 {
2136 req->r_gss_ctx = cp;
2137
2138 lck_mtx_lock(cp->gss_clnt_mtx);
2139 cp->gss_clnt_refcnt++;
2140 lck_mtx_unlock(cp->gss_clnt_mtx);
2141 }
2142
2143 /*
2144 * Remove a context reference from a request
2145 * If the reference count drops to zero, and the
2146 * context is invalid, destroy the context
2147 */
2148 void
2149 nfs_gss_clnt_ctx_unref(struct nfsreq *req)
2150 {
2151 struct nfsmount *nmp = req->r_nmp;
2152 struct nfs_gss_clnt_ctx *cp = req->r_gss_ctx;
2153 int on_neg_cache = 0;
2154 int neg_cache = 0;
2155 int destroy = 0;
2156 struct timeval now;
2157 char CTXBUF[NFS_CTXBUFSZ];
2158
2159 if (cp == NULL)
2160 return;
2161
2162 req->r_gss_ctx = NULL;
2163
2164 lck_mtx_lock(cp->gss_clnt_mtx);
2165 if (--cp->gss_clnt_refcnt < 0)
2166 panic("Over release of gss context!\n");
2167
2168 if (cp->gss_clnt_refcnt == 0) {
2169 if ((cp->gss_clnt_flags & GSS_CTX_INVAL) &&
2170 cp->gss_clnt_ctx_id) {
2171 gss_krb5_destroy_context(cp->gss_clnt_ctx_id);
2172 cp->gss_clnt_ctx_id = NULL;
2173 }
2174 if (cp->gss_clnt_flags & GSS_CTX_DESTROY) {
2175 destroy = 1;
2176 if (cp->gss_clnt_flags & GSS_CTX_STICKY)
2177 nfs_gss_clnt_mnt_rele(nmp);
2178 if (cp->gss_clnt_nctime)
2179 on_neg_cache = 1;
2180 }
2181 }
2182 if (!destroy && cp->gss_clnt_nctime == 0 &&
2183 (cp->gss_clnt_flags & GSS_CTX_INVAL)) {
2184 microuptime(&now);
2185 cp->gss_clnt_nctime = now.tv_sec;
2186 neg_cache = 1;
2187 }
2188 lck_mtx_unlock(cp->gss_clnt_mtx);
2189 if (destroy) {
2190 NFS_GSS_DBG("Destroying context %s\n", NFS_GSS_CTX(req, cp));
2191 if (nmp) {
2192 lck_mtx_lock(&nmp->nm_lock);
2193 if (cp->gss_clnt_entries.tqe_next != NFSNOLIST) {
2194 TAILQ_REMOVE(&nmp->nm_gsscl, cp, gss_clnt_entries);
2195 }
2196 if (on_neg_cache) {
2197 nmp->nm_ncentries--;
2198 }
2199 lck_mtx_unlock(&nmp->nm_lock);
2200 }
2201 nfs_gss_clnt_ctx_destroy(cp);
2202 } else if (neg_cache) {
2203 NFS_GSS_DBG("Entering context %s into negative cache\n", NFS_GSS_CTX(req, cp));
2204 if (nmp) {
2205 lck_mtx_lock(&nmp->nm_lock);
2206 nmp->nm_ncentries++;
2207 nfs_gss_clnt_ctx_neg_cache_reap(nmp);
2208 lck_mtx_unlock(&nmp->nm_lock);
2209 }
2210 }
2211 NFS_GSS_CLNT_CTX_DUMP(nmp);
2212 }
2213
2214 /*
2215 * Try and reap any old negative cache entries.
2216 * cache queue.
2217 */
2218 void
2219 nfs_gss_clnt_ctx_neg_cache_reap(struct nfsmount *nmp)
2220 {
2221 struct nfs_gss_clnt_ctx *cp, *tcp;
2222 struct timeval now;
2223 int reaped = 0;
2224
2225 /* Try and reap old, unreferenced, expired contexts */
2226 microuptime(&now);
2227
2228 NFS_GSS_DBG("Reaping contexts ncentries = %d\n", nmp->nm_ncentries);
2229
2230 TAILQ_FOREACH_SAFE(cp, &nmp->nm_gsscl, gss_clnt_entries, tcp) {
2231 int destroy = 0;
2232
2233 /* Don't reap STICKY contexts */
2234 if ((cp->gss_clnt_flags & GSS_CTX_STICKY) ||
2235 !(cp->gss_clnt_flags & GSS_CTX_INVAL))
2236 continue;
2237 /* Keep up to GSS_MAX_NEG_CACHE_ENTRIES */
2238 if (nmp->nm_ncentries <= GSS_MAX_NEG_CACHE_ENTRIES)
2239 break;
2240 /* Contexts too young */
2241 if (cp->gss_clnt_nctime + GSS_NEG_CACHE_TO >= now.tv_sec)
2242 continue;
2243 /* Not referenced, remove it. */
2244 lck_mtx_lock(cp->gss_clnt_mtx);
2245 if (cp->gss_clnt_refcnt == 0) {
2246 cp->gss_clnt_flags |= GSS_CTX_DESTROY;
2247 destroy = 1;
2248 }
2249 lck_mtx_unlock(cp->gss_clnt_mtx);
2250 if (destroy) {
2251 TAILQ_REMOVE(&nmp->nm_gsscl, cp, gss_clnt_entries);
2252 nmp->nm_ncentries++;
2253 reaped++;
2254 nfs_gss_clnt_ctx_destroy(cp);
2255 }
2256 }
2257 NFS_GSS_DBG("Reaped %d contexts ncentries = %d\n", reaped, nmp->nm_ncentries);
2258 }
2259
2260 /*
2261 * Clean a context to be cached
2262 */
2263 static void
2264 nfs_gss_clnt_ctx_clean(struct nfs_gss_clnt_ctx *cp)
2265 {
2266 /* Preserve gss_clnt_mtx */
2267 assert(cp->gss_clnt_thread == NULL); /* Will be set to this thread */
2268 /* gss_clnt_entries we should not be on any list at this point */
2269 cp->gss_clnt_flags = 0;
2270 /* gss_clnt_refcnt should be zero */
2271 assert(cp->gss_clnt_refcnt == 0);
2272 /*
2273 * We are who we are preserve:
2274 * gss_clnt_cred
2275 * gss_clnt_principal
2276 * gss_clnt_prinlen
2277 * gss_clnt_prinnt
2278 * gss_clnt_desplay
2279 */
2280 /* gss_clnt_proc will be set in nfs_gss_clnt_ctx_init */
2281 cp->gss_clnt_seqnum = 0;
2282 /* Preserve gss_clnt_service, we're not changing flavors */
2283 if (cp->gss_clnt_handle) {
2284 FREE(cp->gss_clnt_handle, M_TEMP);
2285 cp->gss_clnt_handle = NULL;
2286 }
2287 cp->gss_clnt_handle_len = 0;
2288 cp->gss_clnt_nctime = 0;
2289 cp->gss_clnt_seqwin = 0;
2290 if (cp->gss_clnt_seqbits) {
2291 FREE(cp->gss_clnt_seqbits, M_TEMP);
2292 cp->gss_clnt_seqbits = NULL;
2293 }
2294 /* Preserve gss_clnt_mport. Still talking to the same gssd */
2295 if (cp->gss_clnt_verf) {
2296 FREE(cp->gss_clnt_verf, M_TEMP);
2297 cp->gss_clnt_verf = NULL;
2298 }
2299 /* Service name might change on failover, so reset it */
2300 if (cp->gss_clnt_svcname) {
2301 FREE(cp->gss_clnt_svcname, M_TEMP);
2302 cp->gss_clnt_svcname = NULL;
2303 cp->gss_clnt_svcnt = 0;
2304 }
2305 cp->gss_clnt_svcnamlen = 0;
2306 cp->gss_clnt_cred_handle = 0;
2307 cp->gss_clnt_context = 0;
2308 if (cp->gss_clnt_token) {
2309 FREE(cp->gss_clnt_token, M_TEMP);
2310 cp->gss_clnt_token = NULL;
2311 }
2312 cp->gss_clnt_tokenlen = 0;
2313 /* XXX gss_clnt_ctx_id ??? */
2314 /*
2315 * Preserve:
2316 * gss_clnt_gssd_flags
2317 * gss_clnt_major
2318 * gss_clnt_minor
2319 * gss_clnt_ptime
2320 */
2321 }
2322
2323 /*
2324 * Copy a source context to a new context. This is used to create a new context
2325 * with the identity of the old context for renewal. The old context is invalid
2326 * at this point but may have reference still to it, so it is not safe to use that
2327 * context.
2328 */
2329 static int
2330 nfs_gss_clnt_ctx_copy(struct nfs_gss_clnt_ctx *scp, struct nfs_gss_clnt_ctx **dcpp)
2331 {
2332 struct nfs_gss_clnt_ctx *dcp;
2333
2334 *dcpp = (struct nfs_gss_clnt_ctx *)NULL;
2335 MALLOC(dcp, struct nfs_gss_clnt_ctx *, sizeof (struct nfs_gss_clnt_ctx), M_TEMP, M_WAITOK);
2336 if (dcp == NULL)
2337 return (ENOMEM);
2338 bzero(dcp, sizeof (struct nfs_gss_clnt_ctx));
2339 dcp->gss_clnt_mtx = lck_mtx_alloc_init(nfs_gss_clnt_grp, LCK_ATTR_NULL);
2340 dcp->gss_clnt_cred = scp->gss_clnt_cred;
2341 kauth_cred_ref(dcp->gss_clnt_cred);
2342 dcp->gss_clnt_prinlen = scp->gss_clnt_prinlen;
2343 dcp->gss_clnt_prinnt = scp->gss_clnt_prinnt;
2344 if (scp->gss_clnt_principal) {
2345 MALLOC(dcp->gss_clnt_principal, uint8_t *, dcp->gss_clnt_prinlen, M_TEMP, M_WAITOK | M_ZERO);
2346 if (dcp->gss_clnt_principal == NULL) {
2347 FREE(dcp, M_TEMP);
2348 return (ENOMEM);
2349 }
2350 bcopy(scp->gss_clnt_principal, dcp->gss_clnt_principal, dcp->gss_clnt_prinlen);
2351 }
2352 /* Note we don't preserve the display name, that will be set by a successful up call */
2353 dcp->gss_clnt_service = scp->gss_clnt_service;
2354 dcp->gss_clnt_mport = host_copy_special_port(scp->gss_clnt_mport);
2355 dcp->gss_clnt_ctx_id = NULL; /* Will be set from successful upcall */
2356 dcp->gss_clnt_gssd_flags = scp->gss_clnt_gssd_flags;
2357 dcp->gss_clnt_major = scp->gss_clnt_major;
2358 dcp->gss_clnt_minor = scp->gss_clnt_minor;
2359 dcp->gss_clnt_ptime = scp->gss_clnt_ptime;
2360
2361 *dcpp = dcp;
2362
2363 return (0);
2364 }
2365
2366 /*
2367 * Remove a context
2368 */
2369 static void
2370 nfs_gss_clnt_ctx_destroy(struct nfs_gss_clnt_ctx *cp)
2371 {
2372 NFS_GSS_DBG("Destroying context %d/%d\n",
2373 kauth_cred_getasid(cp->gss_clnt_cred),
2374 kauth_cred_getauid(cp->gss_clnt_cred));
2375
2376 host_release_special_port(cp->gss_clnt_mport);
2377 cp->gss_clnt_mport = IPC_PORT_NULL;
2378
2379 if (cp->gss_clnt_mtx) {
2380 lck_mtx_destroy(cp->gss_clnt_mtx, nfs_gss_clnt_grp);
2381 cp->gss_clnt_mtx = (lck_mtx_t *)NULL;
2382 }
2383 if (IS_VALID_CRED(cp->gss_clnt_cred))
2384 kauth_cred_unref(&cp->gss_clnt_cred);
2385 cp->gss_clnt_entries.tqe_next = NFSNOLIST;
2386 cp->gss_clnt_entries.tqe_prev = NFSNOLIST;
2387 if (cp->gss_clnt_principal) {
2388 FREE(cp->gss_clnt_principal, M_TEMP);
2389 cp->gss_clnt_principal = NULL;
2390 }
2391 if (cp->gss_clnt_display) {
2392 FREE(cp->gss_clnt_display, M_TEMP);
2393 cp->gss_clnt_display = NULL;
2394 }
2395 if (cp->gss_clnt_ctx_id) {
2396 gss_krb5_destroy_context(cp->gss_clnt_ctx_id);
2397 cp->gss_clnt_ctx_id = NULL;
2398 }
2399
2400 nfs_gss_clnt_ctx_clean(cp);
2401
2402 FREE(cp, M_TEMP);
2403 }
2404
2405 /*
2406 * The context for a user is invalid.
2407 * Mark the context as invalid, then
2408 * create a new context.
2409 */
2410 int
2411 nfs_gss_clnt_ctx_renew(struct nfsreq *req)
2412 {
2413 struct nfs_gss_clnt_ctx *cp = req->r_gss_ctx;
2414 struct nfs_gss_clnt_ctx *ncp;
2415 struct nfsmount *nmp;
2416 int error = 0;
2417 char CTXBUF[NFS_CTXBUFSZ];
2418
2419 if (cp == NULL)
2420 return (0);
2421
2422 if (req->r_nmp == NULL)
2423 return (ENXIO);
2424 nmp = req->r_nmp;
2425
2426 lck_mtx_lock(cp->gss_clnt_mtx);
2427 if (cp->gss_clnt_flags & GSS_CTX_INVAL) {
2428 lck_mtx_unlock(cp->gss_clnt_mtx);
2429 nfs_gss_clnt_ctx_unref(req);
2430 return (0); // already being renewed
2431 }
2432
2433 cp->gss_clnt_flags |= (GSS_CTX_INVAL | GSS_CTX_DESTROY);
2434
2435 if (cp->gss_clnt_flags & (GSS_NEEDCTX | GSS_NEEDSEQ)) {
2436 cp->gss_clnt_flags &= ~GSS_NEEDSEQ;
2437 wakeup(cp);
2438 }
2439 lck_mtx_unlock(cp->gss_clnt_mtx);
2440
2441 if (cp->gss_clnt_proc == RPCSEC_GSS_DESTROY)
2442 return (EACCES); /* Destroying a context is best effort. Don't renew. */
2443 /*
2444 * If we're setting up a context let nfs_gss_clnt_ctx_init know this is not working
2445 * and to try some other etype.
2446 */
2447 if (cp->gss_clnt_proc != RPCSEC_GSS_DATA)
2448 return (ENEEDAUTH);
2449 error = nfs_gss_clnt_ctx_copy(cp, &ncp);
2450 NFS_GSS_DBG("Renewing context %s\n", NFS_GSS_CTX(req, ncp));
2451 nfs_gss_clnt_ctx_unref(req);
2452 if (error)
2453 return (error);
2454
2455 lck_mtx_lock(&nmp->nm_lock);
2456 /*
2457 * Note we don't bother taking the new context mutex as we're
2458 * not findable at the moment.
2459 */
2460 ncp->gss_clnt_thread = current_thread();
2461 nfs_gss_clnt_ctx_ref(req, ncp);
2462 TAILQ_INSERT_HEAD(&nmp->nm_gsscl, ncp, gss_clnt_entries);
2463 lck_mtx_unlock(&nmp->nm_lock);
2464
2465 error = nfs_gss_clnt_ctx_init_retry(req, ncp); // Initialize new context
2466 if (error)
2467 nfs_gss_clnt_ctx_unref(req);
2468
2469 return (error);
2470 }
2471
2472
2473 /*
2474 * Destroy all the contexts associated with a mount.
2475 * The contexts are also destroyed by the server.
2476 */
2477 void
2478 nfs_gss_clnt_ctx_unmount(struct nfsmount *nmp)
2479 {
2480 struct nfs_gss_clnt_ctx *cp;
2481 struct nfsm_chain nmreq, nmrep;
2482 int error, status;
2483 struct nfsreq req;
2484 req.r_nmp = nmp;
2485
2486 if (!nmp)
2487 return;
2488
2489
2490 lck_mtx_lock(&nmp->nm_lock);
2491 while((cp = TAILQ_FIRST(&nmp->nm_gsscl))) {
2492 TAILQ_REMOVE(&nmp->nm_gsscl, cp, gss_clnt_entries);
2493 cp->gss_clnt_entries.tqe_next = NFSNOLIST;
2494 lck_mtx_lock(cp->gss_clnt_mtx);
2495 if (cp->gss_clnt_flags & GSS_CTX_DESTROY) {
2496 lck_mtx_unlock(cp->gss_clnt_mtx);
2497 continue;
2498 }
2499 cp->gss_clnt_refcnt++;
2500 lck_mtx_unlock(cp->gss_clnt_mtx);
2501 req.r_gss_ctx = cp;
2502
2503 lck_mtx_unlock(&nmp->nm_lock);
2504 /*
2505 * Tell the server to destroy its context.
2506 * But don't bother if it's a forced unmount.
2507 */
2508 if (!nfs_mount_gone(nmp) &&
2509 (cp->gss_clnt_flags & (GSS_CTX_INVAL | GSS_CTX_DESTROY | GSS_CTX_COMPLETE)) == GSS_CTX_COMPLETE) {
2510 cp->gss_clnt_proc = RPCSEC_GSS_DESTROY;
2511
2512 error = 0;
2513 nfsm_chain_null(&nmreq);
2514 nfsm_chain_null(&nmrep);
2515 nfsm_chain_build_alloc_init(error, &nmreq, 0);
2516 nfsm_chain_build_done(error, &nmreq);
2517 if (!error)
2518 nfs_request_gss(nmp->nm_mountp, &nmreq,
2519 current_thread(), cp->gss_clnt_cred, 0, cp, &nmrep, &status);
2520 nfsm_chain_cleanup(&nmreq);
2521 nfsm_chain_cleanup(&nmrep);
2522 }
2523
2524 /*
2525 * Mark the context invalid then drop
2526 * the reference to remove it if its
2527 * refcount is zero.
2528 */
2529 lck_mtx_lock(cp->gss_clnt_mtx);
2530 cp->gss_clnt_flags |= (GSS_CTX_INVAL | GSS_CTX_DESTROY);
2531 lck_mtx_unlock(cp->gss_clnt_mtx);
2532 nfs_gss_clnt_ctx_unref(&req);
2533 lck_mtx_lock(&nmp->nm_lock);
2534 }
2535 lck_mtx_unlock(&nmp->nm_lock);
2536 assert(TAILQ_EMPTY(&nmp->nm_gsscl));
2537 }
2538
2539
2540 /*
2541 * Removes a mounts context for a credential
2542 */
2543 int
2544 nfs_gss_clnt_ctx_remove(struct nfsmount *nmp, kauth_cred_t cred)
2545 {
2546 struct nfs_gss_clnt_ctx *cp;
2547 struct nfsreq req;
2548
2549 req.r_nmp = nmp;
2550
2551 NFS_GSS_DBG("Enter\n");
2552 NFS_GSS_CLNT_CTX_DUMP(nmp);
2553 lck_mtx_lock(&nmp->nm_lock);
2554 TAILQ_FOREACH(cp, &nmp->nm_gsscl, gss_clnt_entries) {
2555 lck_mtx_lock(cp->gss_clnt_mtx);
2556 if (nfs_gss_clnt_ctx_cred_match(cp->gss_clnt_cred, cred)) {
2557 if (cp->gss_clnt_flags & GSS_CTX_DESTROY) {
2558 NFS_GSS_DBG("Found destroyed context %d/%d. refcnt = %d continuing\n",
2559 kauth_cred_getasid(cp->gss_clnt_cred),
2560 kauth_cred_getauid(cp->gss_clnt_cred),
2561 cp->gss_clnt_refcnt);
2562 lck_mtx_unlock(cp->gss_clnt_mtx);
2563 continue;
2564 }
2565 cp->gss_clnt_refcnt++;
2566 cp->gss_clnt_flags |= (GSS_CTX_INVAL | GSS_CTX_DESTROY);
2567 lck_mtx_unlock(cp->gss_clnt_mtx);
2568 req.r_gss_ctx = cp;
2569 lck_mtx_unlock(&nmp->nm_lock);
2570 /*
2571 * Drop the reference to remove it if its
2572 * refcount is zero.
2573 */
2574 NFS_GSS_DBG("Removed context %d/%d refcnt = %d\n",
2575 kauth_cred_getasid(cp->gss_clnt_cred),
2576 kauth_cred_getuid(cp->gss_clnt_cred),
2577 cp->gss_clnt_refcnt);
2578 nfs_gss_clnt_ctx_unref(&req);
2579 return (0);
2580 }
2581 lck_mtx_unlock(cp->gss_clnt_mtx);
2582 }
2583
2584 lck_mtx_unlock(&nmp->nm_lock);
2585
2586 NFS_GSS_DBG("Returning ENOENT\n");
2587 return (ENOENT);
2588 }
2589
2590 /*
2591 * Sets a mounts principal for a session associated with cred.
2592 */
2593 int
2594 nfs_gss_clnt_ctx_set_principal(struct nfsmount *nmp, vfs_context_t ctx,
2595 uint8_t *principal, uint32_t princlen, uint32_t nametype)
2596
2597 {
2598 struct nfsreq req;
2599 int error;
2600
2601 NFS_GSS_DBG("Enter:\n");
2602
2603 bzero(&req, sizeof(struct nfsreq));
2604 req.r_nmp = nmp;
2605 req.r_gss_ctx = NULL;
2606 req.r_auth = nmp->nm_auth;
2607 req.r_thread = vfs_context_thread(ctx);
2608 req.r_cred = vfs_context_ucred(ctx);
2609
2610 error = nfs_gss_clnt_ctx_find_principal(&req, principal, princlen, nametype);
2611 NFS_GSS_DBG("nfs_gss_clnt_ctx_find_principal returned %d\n", error);
2612 /*
2613 * We don't care about auth errors. Those would indicate that the context is in the
2614 * neagative cache and if and when the user has credentials for the principal
2615 * we should be good to go in that we will select those credentials for this principal.
2616 */
2617 if (error == EACCES || error == EAUTH || error == ENEEDAUTH)
2618 error = 0;
2619
2620 /* We're done with this request */
2621 nfs_gss_clnt_ctx_unref(&req);
2622
2623 return (error);
2624 }
2625
2626 /*
2627 * Gets a mounts principal from a session associated with cred
2628 */
2629 int
2630 nfs_gss_clnt_ctx_get_principal(struct nfsmount *nmp, vfs_context_t ctx,
2631 struct user_nfs_gss_principal *p)
2632 {
2633 struct nfsreq req;
2634 int error = 0;
2635 struct nfs_gss_clnt_ctx *cp;
2636 kauth_cred_t cred = vfs_context_ucred(ctx);
2637 const char *princ = NULL;
2638 char CTXBUF[NFS_CTXBUFSZ];
2639
2640 /* Make sure the the members of the struct user_nfs_gss_principal are initialized */
2641 p->nametype = GSSD_STRING_NAME;
2642 p->principal = USER_ADDR_NULL;
2643 p->princlen = 0;
2644 p->flags = 0;
2645
2646 req.r_nmp = nmp;
2647 lck_mtx_lock(&nmp->nm_lock);
2648 TAILQ_FOREACH(cp, &nmp->nm_gsscl, gss_clnt_entries) {
2649 lck_mtx_lock(cp->gss_clnt_mtx);
2650 if (cp->gss_clnt_flags & GSS_CTX_DESTROY) {
2651 NFS_GSS_DBG("Found destroyed context %s refcnt = %d continuing\n",
2652 NFS_GSS_CTX(&req, cp),
2653 cp->gss_clnt_refcnt);
2654 lck_mtx_unlock(cp->gss_clnt_mtx);
2655 continue;
2656 }
2657 if (nfs_gss_clnt_ctx_cred_match(cp->gss_clnt_cred, cred)) {
2658 cp->gss_clnt_refcnt++;
2659 lck_mtx_unlock(cp->gss_clnt_mtx);
2660 goto out;
2661 }
2662 lck_mtx_unlock(cp->gss_clnt_mtx);
2663 }
2664
2665 out:
2666 if (cp == NULL) {
2667 lck_mtx_unlock(&nmp->nm_lock);
2668 p->flags |= NFS_IOC_NO_CRED_FLAG; /* No credentials, valid or invalid on this mount */
2669 NFS_GSS_DBG("No context found for session %d by uid %d\n",
2670 kauth_cred_getasid(cred), kauth_cred_getuid(cred));
2671 return (0);
2672 }
2673
2674 /* Indicate if the cred is INVALID */
2675 if (cp->gss_clnt_flags & GSS_CTX_INVAL)
2676 p->flags |= NFS_IOC_INVALID_CRED_FLAG;
2677
2678 /* We have set a principal on the mount */
2679 if (cp->gss_clnt_principal) {
2680 princ = (char *)cp->gss_clnt_principal;
2681 p->princlen = cp->gss_clnt_prinlen;
2682 p->nametype = cp->gss_clnt_prinnt;
2683 } else if (cp->gss_clnt_display) {
2684 /* We have a successful use the the default credential */
2685 princ = cp->gss_clnt_display;
2686 p->princlen = strlen(cp->gss_clnt_display);
2687 }
2688
2689 /*
2690 * If neither of the above is true we have an invalid default credential
2691 * So from above p->principal is USER_ADDR_NULL and princ is NULL
2692 */
2693
2694 if (princ) {
2695 char *pp;
2696
2697 MALLOC(pp, char *, p->princlen, M_TEMP, M_WAITOK);
2698 bcopy(princ, pp, p->princlen);
2699 p->principal = CAST_USER_ADDR_T(pp);
2700 }
2701
2702 lck_mtx_unlock(&nmp->nm_lock);
2703
2704 req.r_gss_ctx = cp;
2705 NFS_GSS_DBG("Found context %s\n", NFS_GSS_CTX(&req, NULL));
2706 nfs_gss_clnt_ctx_unref(&req);
2707 return (error);
2708 }
2709 #endif /* NFSCLIENT */
2710
2711 /*************
2712 *
2713 * Server functions
2714 */
2715
2716 #if NFSSERVER
2717
2718 /*
2719 * Find a server context based on a handle value received
2720 * in an RPCSEC_GSS credential.
2721 */
2722 static struct nfs_gss_svc_ctx *
2723 nfs_gss_svc_ctx_find(uint32_t handle)
2724 {
2725 struct nfs_gss_svc_ctx_hashhead *head;
2726 struct nfs_gss_svc_ctx *cp;
2727 uint64_t timenow;
2728
2729 if (handle == 0)
2730 return (NULL);
2731
2732 head = &nfs_gss_svc_ctx_hashtbl[SVC_CTX_HASH(handle)];
2733 /*
2734 * Don't return a context that is going to expire in GSS_CTX_PEND seconds
2735 */
2736 clock_interval_to_deadline(GSS_CTX_PEND, NSEC_PER_SEC, &timenow);
2737
2738 lck_mtx_lock(nfs_gss_svc_ctx_mutex);
2739
2740 LIST_FOREACH(cp, head, gss_svc_entries) {
2741 if (cp->gss_svc_handle == handle) {
2742 if (timenow > cp->gss_svc_incarnation + GSS_SVC_CTX_TTL) {
2743 /*
2744 * Context has or is about to expire. Don't use.
2745 * We'll return null and the client will have to create
2746 * a new context.
2747 */
2748 cp->gss_svc_handle = 0;
2749 /*
2750 * Make sure though that we stay around for GSS_CTX_PEND seconds
2751 * for other threads that might be using the context.
2752 */
2753 cp->gss_svc_incarnation = timenow;
2754
2755 cp = NULL;
2756 break;
2757 }
2758 lck_mtx_lock(cp->gss_svc_mtx);
2759 cp->gss_svc_refcnt++;
2760 lck_mtx_unlock(cp->gss_svc_mtx);
2761 break;
2762 }
2763 }
2764
2765 lck_mtx_unlock(nfs_gss_svc_ctx_mutex);
2766
2767 return (cp);
2768 }
2769
2770 /*
2771 * Insert a new server context into the hash table
2772 * and start the context reap thread if necessary.
2773 */
2774 static void
2775 nfs_gss_svc_ctx_insert(struct nfs_gss_svc_ctx *cp)
2776 {
2777 struct nfs_gss_svc_ctx_hashhead *head;
2778 struct nfs_gss_svc_ctx *p;
2779
2780 lck_mtx_lock(nfs_gss_svc_ctx_mutex);
2781
2782 /*
2783 * Give the client a random handle so that if we reboot
2784 * it's unlikely the client will get a bad context match.
2785 * Make sure it's not zero or already assigned.
2786 */
2787 retry:
2788 cp->gss_svc_handle = random();
2789 if (cp->gss_svc_handle == 0)
2790 goto retry;
2791 head = &nfs_gss_svc_ctx_hashtbl[SVC_CTX_HASH(cp->gss_svc_handle)];
2792 LIST_FOREACH(p, head, gss_svc_entries)
2793 if (p->gss_svc_handle == cp->gss_svc_handle)
2794 goto retry;
2795
2796 clock_interval_to_deadline(GSS_CTX_PEND, NSEC_PER_SEC,
2797 &cp->gss_svc_incarnation);
2798 LIST_INSERT_HEAD(head, cp, gss_svc_entries);
2799 nfs_gss_ctx_count++;
2800
2801 if (!nfs_gss_timer_on) {
2802 nfs_gss_timer_on = 1;
2803
2804 nfs_interval_timer_start(nfs_gss_svc_ctx_timer_call,
2805 min(GSS_TIMER_PERIOD, max(GSS_CTX_TTL_MIN, nfsrv_gss_context_ttl)) * MSECS_PER_SEC);
2806 }
2807
2808 lck_mtx_unlock(nfs_gss_svc_ctx_mutex);
2809 }
2810
2811 /*
2812 * This function is called via the kernel's callout
2813 * mechanism. It runs only when there are
2814 * cached RPCSEC_GSS contexts.
2815 */
2816 void
2817 nfs_gss_svc_ctx_timer(__unused void *param1, __unused void *param2)
2818 {
2819 struct nfs_gss_svc_ctx *cp, *next;
2820 uint64_t timenow;
2821 int contexts = 0;
2822 int i;
2823
2824 lck_mtx_lock(nfs_gss_svc_ctx_mutex);
2825 clock_get_uptime(&timenow);
2826
2827 NFS_GSS_DBG("is running\n");
2828
2829 /*
2830 * Scan all the hash chains
2831 */
2832 for (i = 0; i < SVC_CTX_HASHSZ; i++) {
2833 /*
2834 * For each hash chain, look for entries
2835 * that haven't been used in a while.
2836 */
2837 LIST_FOREACH_SAFE(cp, &nfs_gss_svc_ctx_hashtbl[i], gss_svc_entries, next) {
2838 contexts++;
2839 if (timenow > cp->gss_svc_incarnation +
2840 (cp->gss_svc_handle ? GSS_SVC_CTX_TTL : 0)
2841 && cp->gss_svc_refcnt == 0) {
2842 /*
2843 * A stale context - remove it
2844 */
2845 LIST_REMOVE(cp, gss_svc_entries);
2846 NFS_GSS_DBG("Removing contex for %d\n", cp->gss_svc_uid);
2847 if (cp->gss_svc_seqbits)
2848 FREE(cp->gss_svc_seqbits, M_TEMP);
2849 lck_mtx_destroy(cp->gss_svc_mtx, nfs_gss_svc_grp);
2850 FREE(cp, M_TEMP);
2851 contexts--;
2852 }
2853 }
2854 }
2855
2856 nfs_gss_ctx_count = contexts;
2857
2858 /*
2859 * If there are still some cached contexts left,
2860 * set up another callout to check on them later.
2861 */
2862 nfs_gss_timer_on = nfs_gss_ctx_count > 0;
2863 if (nfs_gss_timer_on)
2864 nfs_interval_timer_start(nfs_gss_svc_ctx_timer_call,
2865 min(GSS_TIMER_PERIOD, max(GSS_CTX_TTL_MIN, nfsrv_gss_context_ttl)) * MSECS_PER_SEC);
2866
2867 lck_mtx_unlock(nfs_gss_svc_ctx_mutex);
2868 }
2869
2870 /*
2871 * Here the server receives an RPCSEC_GSS credential in an
2872 * RPC call header. First there's some checking to make sure
2873 * the credential is appropriate - whether the context is still
2874 * being set up, or is complete. Then we use the handle to find
2875 * the server's context and validate the verifier, which contains
2876 * a signed checksum of the RPC header. If the verifier checks
2877 * out, we extract the user's UID and groups from the context
2878 * and use it to set up a UNIX credential for the user's request.
2879 */
2880 int
2881 nfs_gss_svc_cred_get(struct nfsrv_descript *nd, struct nfsm_chain *nmc)
2882 {
2883 uint32_t vers, proc, seqnum, service;
2884 uint32_t handle, handle_len;
2885 uint32_t major;
2886 struct nfs_gss_svc_ctx *cp = NULL;
2887 uint32_t flavor = 0, header_len;
2888 int error = 0;
2889 uint32_t arglen, start;
2890 size_t argsize;
2891 gss_buffer_desc cksum;
2892 struct nfsm_chain nmc_tmp;
2893 mbuf_t reply_mbuf, prev_mbuf, pad_mbuf;
2894
2895 vers = proc = seqnum = service = handle_len = 0;
2896 arglen = 0;
2897
2898 nfsm_chain_get_32(error, nmc, vers);
2899 if (vers != RPCSEC_GSS_VERS_1) {
2900 error = NFSERR_AUTHERR | AUTH_REJECTCRED;
2901 goto nfsmout;
2902 }
2903
2904 nfsm_chain_get_32(error, nmc, proc);
2905 nfsm_chain_get_32(error, nmc, seqnum);
2906 nfsm_chain_get_32(error, nmc, service);
2907 nfsm_chain_get_32(error, nmc, handle_len);
2908 if (error)
2909 goto nfsmout;
2910
2911 /*
2912 * Make sure context setup/destroy is being done with a nullproc
2913 */
2914 if (proc != RPCSEC_GSS_DATA && nd->nd_procnum != NFSPROC_NULL) {
2915 error = NFSERR_AUTHERR | RPCSEC_GSS_CREDPROBLEM;
2916 goto nfsmout;
2917 }
2918
2919 /*
2920 * If the sequence number is greater than the max
2921 * allowable, reject and have the client init a
2922 * new context.
2923 */
2924 if (seqnum > GSS_MAXSEQ) {
2925 error = NFSERR_AUTHERR | RPCSEC_GSS_CTXPROBLEM;
2926 goto nfsmout;
2927 }
2928
2929 nd->nd_sec =
2930 service == RPCSEC_GSS_SVC_NONE ? RPCAUTH_KRB5 :
2931 service == RPCSEC_GSS_SVC_INTEGRITY ? RPCAUTH_KRB5I :
2932 service == RPCSEC_GSS_SVC_PRIVACY ? RPCAUTH_KRB5P : 0;
2933
2934 if (proc == RPCSEC_GSS_INIT) {
2935 /*
2936 * Limit the total number of contexts
2937 */
2938 if (nfs_gss_ctx_count > nfs_gss_ctx_max) {
2939 error = NFSERR_AUTHERR | RPCSEC_GSS_CTXPROBLEM;
2940 goto nfsmout;
2941 }
2942
2943 /*
2944 * Set up a new context
2945 */
2946 MALLOC(cp, struct nfs_gss_svc_ctx *, sizeof(*cp), M_TEMP, M_WAITOK|M_ZERO);
2947 if (cp == NULL) {
2948 error = ENOMEM;
2949 goto nfsmout;
2950 }
2951 cp->gss_svc_mtx = lck_mtx_alloc_init(nfs_gss_svc_grp, LCK_ATTR_NULL);
2952 cp->gss_svc_refcnt = 1;
2953 } else {
2954 /*
2955 * Use the handle to find the context
2956 */
2957 if (handle_len != sizeof(handle)) {
2958 error = NFSERR_AUTHERR | RPCSEC_GSS_CREDPROBLEM;
2959 goto nfsmout;
2960 }
2961 nfsm_chain_get_32(error, nmc, handle);
2962 if (error)
2963 goto nfsmout;
2964 cp = nfs_gss_svc_ctx_find(handle);
2965 if (cp == NULL) {
2966 error = NFSERR_AUTHERR | RPCSEC_GSS_CTXPROBLEM;
2967 goto nfsmout;
2968 }
2969 }
2970
2971 cp->gss_svc_proc = proc;
2972
2973 if (proc == RPCSEC_GSS_DATA || proc == RPCSEC_GSS_DESTROY) {
2974 struct posix_cred temp_pcred;
2975
2976 if (cp->gss_svc_seqwin == 0) {
2977 /*
2978 * Context isn't complete
2979 */
2980 error = NFSERR_AUTHERR | RPCSEC_GSS_CTXPROBLEM;
2981 goto nfsmout;
2982 }
2983
2984 if (!nfs_gss_svc_seqnum_valid(cp, seqnum)) {
2985 /*
2986 * Sequence number is bad
2987 */
2988 error = EINVAL; // drop the request
2989 goto nfsmout;
2990 }
2991
2992 /*
2993 * Validate the verifier.
2994 * The verifier contains an encrypted checksum
2995 * of the call header from the XID up to and
2996 * including the credential. We compute the
2997 * checksum and compare it with what came in
2998 * the verifier.
2999 */
3000 header_len = nfsm_chain_offset(nmc);
3001 nfsm_chain_get_32(error, nmc, flavor);
3002 nfsm_chain_get_32(error, nmc, cksum.length);
3003 if (error)
3004 goto nfsmout;
3005 if (flavor != RPCSEC_GSS || cksum.length > KRB5_MAX_MIC_SIZE)
3006 error = NFSERR_AUTHERR | AUTH_BADVERF;
3007 else {
3008 MALLOC(cksum.value, void *, cksum.length, M_TEMP, M_WAITOK);
3009 nfsm_chain_get_opaque(error, nmc, cksum.length, cksum.value);
3010 }
3011 if (error)
3012 goto nfsmout;
3013
3014 /* Now verify the client's call header checksum */
3015 major = gss_krb5_verify_mic_mbuf((uint32_t *)&error, cp->gss_svc_ctx_id, nmc->nmc_mhead, 0, header_len, &cksum, NULL);
3016 (void)gss_release_buffer(NULL, &cksum);
3017 if (major != GSS_S_COMPLETE) {
3018 printf("Server header: gss_krb5_verify_mic_mbuf failed %d\n", error);
3019 error = NFSERR_AUTHERR | RPCSEC_GSS_CTXPROBLEM;
3020 goto nfsmout;
3021 }
3022
3023 nd->nd_gss_seqnum = seqnum;
3024
3025 /*
3026 * Set up the user's cred
3027 */
3028 bzero(&temp_pcred, sizeof(temp_pcred));
3029 temp_pcred.cr_uid = cp->gss_svc_uid;
3030 bcopy(cp->gss_svc_gids, temp_pcred.cr_groups,
3031 sizeof(gid_t) * cp->gss_svc_ngroups);
3032 temp_pcred.cr_ngroups = cp->gss_svc_ngroups;
3033
3034 nd->nd_cr = posix_cred_create(&temp_pcred);
3035 if (nd->nd_cr == NULL) {
3036 error = ENOMEM;
3037 goto nfsmout;
3038 }
3039 clock_get_uptime(&cp->gss_svc_incarnation);
3040
3041 /*
3042 * If the call arguments are integrity or privacy protected
3043 * then we need to check them here.
3044 */
3045 switch (service) {
3046 case RPCSEC_GSS_SVC_NONE:
3047 /* nothing to do */
3048 break;
3049 case RPCSEC_GSS_SVC_INTEGRITY:
3050 /*
3051 * Here's what we expect in the integrity call args:
3052 *
3053 * - length of seq num + call args (4 bytes)
3054 * - sequence number (4 bytes)
3055 * - call args (variable bytes)
3056 * - length of checksum token
3057 * - checksum of seqnum + call args
3058 */
3059 nfsm_chain_get_32(error, nmc, arglen); // length of args
3060 if (arglen > NFS_MAXPACKET) {
3061 error = EBADRPC;
3062 goto nfsmout;
3063 }
3064
3065 nmc_tmp = *nmc;
3066 nfsm_chain_adv(error, &nmc_tmp, arglen);
3067 nfsm_chain_get_32(error, &nmc_tmp, cksum.length);
3068 MALLOC(cksum.value, void *, cksum.length, M_TEMP, M_WAITOK);
3069
3070 if (cksum.value == NULL) {
3071 error = EBADRPC;
3072 goto nfsmout;
3073 }
3074 nfsm_chain_get_opaque(error, &nmc_tmp, cksum.length, cksum.value);
3075
3076 /* Verify the checksum over the call args */
3077 start = nfsm_chain_offset(nmc);
3078
3079 major = gss_krb5_verify_mic_mbuf((uint32_t *)&error, cp->gss_svc_ctx_id,
3080 nmc->nmc_mhead, start, arglen, &cksum, NULL);
3081 FREE(cksum.value, M_TEMP);
3082 if (major != GSS_S_COMPLETE) {
3083 printf("Server args: gss_krb5_verify_mic_mbuf failed %d\n", error);
3084 error = EBADRPC;
3085 goto nfsmout;
3086 }
3087
3088 /*
3089 * Get the sequence number prepended to the args
3090 * and compare it against the one sent in the
3091 * call credential.
3092 */
3093 nfsm_chain_get_32(error, nmc, seqnum);
3094 if (seqnum != nd->nd_gss_seqnum) {
3095 error = EBADRPC; // returns as GARBAGEARGS
3096 goto nfsmout;
3097 }
3098 break;
3099 case RPCSEC_GSS_SVC_PRIVACY:
3100 /*
3101 * Here's what we expect in the privacy call args:
3102 *
3103 * - length of wrap token
3104 * - wrap token (37-40 bytes)
3105 */
3106 prev_mbuf = nmc->nmc_mcur;
3107 nfsm_chain_get_32(error, nmc, arglen); // length of args
3108 if (arglen > NFS_MAXPACKET) {
3109 error = EBADRPC;
3110 goto nfsmout;
3111 }
3112
3113 /* Get the wrap token (current mbuf in the chain starting at the current offset) */
3114 start = nmc->nmc_ptr - (caddr_t)mbuf_data(nmc->nmc_mcur);
3115
3116 /* split out the wrap token */
3117 argsize = arglen;
3118 error = gss_normalize_mbuf(nmc->nmc_mcur, start, &argsize, &reply_mbuf, &pad_mbuf, 0);
3119 if (error)
3120 goto nfsmout;
3121
3122 assert(argsize == arglen);
3123 if (pad_mbuf) {
3124 assert(nfsm_pad(arglen) == mbuf_len(pad_mbuf));
3125 mbuf_free(pad_mbuf);
3126 } else {
3127 assert(nfsm_pad(arglen) == 0);
3128 }
3129
3130 major = gss_krb5_unwrap_mbuf((uint32_t *)&error, cp->gss_svc_ctx_id, &reply_mbuf, 0, arglen, NULL, NULL);
3131 if (major != GSS_S_COMPLETE) {
3132 printf("%s: gss_krb5_unwrap_mbuf failes %d\n", __func__, error);
3133 goto nfsmout;
3134 }
3135
3136 /* Now replace the wrapped arguments with the unwrapped ones */
3137 mbuf_setnext(prev_mbuf, reply_mbuf);
3138 nmc->nmc_mcur = reply_mbuf;
3139 nmc->nmc_ptr = mbuf_data(reply_mbuf);
3140 nmc->nmc_left = mbuf_len(reply_mbuf);
3141
3142 /*
3143 * - sequence number (4 bytes)
3144 * - call args
3145 */
3146
3147 // nfsm_chain_reverse(nmc, nfsm_pad(toklen));
3148
3149 /*
3150 * Get the sequence number prepended to the args
3151 * and compare it against the one sent in the
3152 * call credential.
3153 */
3154 nfsm_chain_get_32(error, nmc, seqnum);
3155 if (seqnum != nd->nd_gss_seqnum) {
3156 printf("%s: Sequence number mismatch seqnum = %d nd->nd_gss_seqnum = %d\n",
3157 __func__, seqnum, nd->nd_gss_seqnum);
3158 printmbuf("reply_mbuf", nmc->nmc_mhead, 0, 0);
3159 printf("reply_mbuf %p nmc_head %p\n", reply_mbuf, nmc->nmc_mhead);
3160 error = EBADRPC; // returns as GARBAGEARGS
3161 goto nfsmout;
3162 }
3163 break;
3164 }
3165 } else {
3166 uint32_t verflen;
3167 /*
3168 * If the proc is RPCSEC_GSS_INIT or RPCSEC_GSS_CONTINUE_INIT
3169 * then we expect a null verifier.
3170 */
3171 nfsm_chain_get_32(error, nmc, flavor);
3172 nfsm_chain_get_32(error, nmc, verflen);
3173 if (error || flavor != RPCAUTH_NULL || verflen > 0)
3174 error = NFSERR_AUTHERR | RPCSEC_GSS_CREDPROBLEM;
3175 if (error) {
3176 if (proc == RPCSEC_GSS_INIT) {
3177 lck_mtx_destroy(cp->gss_svc_mtx, nfs_gss_svc_grp);
3178 FREE(cp, M_TEMP);
3179 cp = NULL;
3180 }
3181 goto nfsmout;
3182 }
3183 }
3184
3185 nd->nd_gss_context = cp;
3186 return 0;
3187 nfsmout:
3188 if (cp)
3189 nfs_gss_svc_ctx_deref(cp);
3190 return (error);
3191 }
3192
3193 /*
3194 * Insert the server's verifier into the RPC reply header.
3195 * It contains a signed checksum of the sequence number that
3196 * was received in the RPC call.
3197 * Then go on to add integrity or privacy if necessary.
3198 */
3199 int
3200 nfs_gss_svc_verf_put(struct nfsrv_descript *nd, struct nfsm_chain *nmc)
3201 {
3202 struct nfs_gss_svc_ctx *cp;
3203 int error = 0;
3204 gss_buffer_desc cksum, seqbuf;
3205 uint32_t network_seqnum;
3206 cp = nd->nd_gss_context;
3207 uint32_t major;
3208
3209 if (cp->gss_svc_major != GSS_S_COMPLETE) {
3210 /*
3211 * If the context isn't yet complete
3212 * then return a null verifier.
3213 */
3214 nfsm_chain_add_32(error, nmc, RPCAUTH_NULL);
3215 nfsm_chain_add_32(error, nmc, 0);
3216 return (error);
3217 }
3218
3219 /*
3220 * Compute checksum of the request seq number
3221 * If it's the final reply of context setup
3222 * then return the checksum of the context
3223 * window size.
3224 */
3225 seqbuf.length = NFSX_UNSIGNED;
3226 if (cp->gss_svc_proc == RPCSEC_GSS_INIT ||
3227 cp->gss_svc_proc == RPCSEC_GSS_CONTINUE_INIT)
3228 network_seqnum = htonl(cp->gss_svc_seqwin);
3229 else
3230 network_seqnum = htonl(nd->nd_gss_seqnum);
3231 seqbuf.value = &network_seqnum;
3232
3233 major = gss_krb5_get_mic((uint32_t *)&error, cp->gss_svc_ctx_id, 0, &seqbuf, &cksum);
3234 if (major != GSS_S_COMPLETE)
3235 return (error);
3236
3237 /*
3238 * Now wrap it in a token and add
3239 * the verifier to the reply.
3240 */
3241 nfsm_chain_add_32(error, nmc, RPCSEC_GSS);
3242 nfsm_chain_add_32(error, nmc, cksum.length);
3243 nfsm_chain_add_opaque(error, nmc, cksum.value, cksum.length);
3244 gss_release_buffer(NULL, &cksum);
3245
3246 return (error);
3247 }
3248
3249 /*
3250 * The results aren't available yet, but if they need to be
3251 * checksummed for integrity protection or encrypted, then
3252 * we can record the start offset here, insert a place-holder
3253 * for the results length, as well as the sequence number.
3254 * The rest of the work is done later by nfs_gss_svc_protect_reply()
3255 * when the results are available.
3256 */
3257 int
3258 nfs_gss_svc_prepare_reply(struct nfsrv_descript *nd, struct nfsm_chain *nmc)
3259 {
3260 struct nfs_gss_svc_ctx *cp = nd->nd_gss_context;
3261 int error = 0;
3262
3263 if (cp->gss_svc_proc == RPCSEC_GSS_INIT ||
3264 cp->gss_svc_proc == RPCSEC_GSS_CONTINUE_INIT)
3265 return (0);
3266
3267 switch (nd->nd_sec) {
3268 case RPCAUTH_KRB5:
3269 /* Nothing to do */
3270 break;
3271 case RPCAUTH_KRB5I:
3272 case RPCAUTH_KRB5P:
3273 nd->nd_gss_mb = nmc->nmc_mcur; // record current mbuf
3274 nfsm_chain_finish_mbuf(error, nmc); // split the chain here
3275 break;
3276 }
3277
3278 return (error);
3279 }
3280
3281 /*
3282 * The results are checksummed or encrypted for return to the client
3283 */
3284 int
3285 nfs_gss_svc_protect_reply(struct nfsrv_descript *nd, mbuf_t mrep __unused)
3286 {
3287 struct nfs_gss_svc_ctx *cp = nd->nd_gss_context;
3288 struct nfsm_chain nmrep_res, *nmc_res = &nmrep_res;
3289 mbuf_t mb, results;
3290 uint32_t reslen;
3291 int error = 0;
3292
3293 /* XXX
3294 * Using a reference to the mbuf where we previously split the reply
3295 * mbuf chain, we split the mbuf chain argument into two mbuf chains,
3296 * one that allows us to prepend a length field or token, (nmc_pre)
3297 * and the second which holds just the results that we're going to
3298 * checksum and/or encrypt. When we're done, we join the chains back
3299 * together.
3300 */
3301
3302 mb = nd->nd_gss_mb; // the mbuf where we split
3303 results = mbuf_next(mb); // first mbuf in the results
3304 error = mbuf_setnext(mb, NULL); // disconnect the chains
3305 if (error)
3306 return (error);
3307 nfs_gss_nfsm_chain(nmc_res, mb); // set up the prepend chain
3308 nfsm_chain_build_done(error, nmc_res);
3309 if (error)
3310 return (error);
3311
3312 if (nd->nd_sec == RPCAUTH_KRB5I) {
3313 error = rpc_gss_integ_data_create(cp->gss_svc_ctx_id, &results, nd->nd_gss_seqnum, &reslen);
3314 } else {
3315 /* RPCAUTH_KRB5P */
3316 error = rpc_gss_priv_data_create(cp->gss_svc_ctx_id, &results, nd->nd_gss_seqnum, &reslen);
3317 }
3318 nfs_gss_append_chain(nmc_res, results); // Append the results mbufs
3319 nfsm_chain_build_done(error, nmc_res);
3320
3321 return (error);
3322 }
3323
3324 /*
3325 * This function handles the context setup calls from the client.
3326 * Essentially, it implements the NFS null procedure calls when
3327 * an RPCSEC_GSS credential is used.
3328 * This is the context maintenance function. It creates and
3329 * destroys server contexts at the whim of the client.
3330 * During context creation, it receives GSS-API tokens from the
3331 * client, passes them up to gssd, and returns a received token
3332 * back to the client in the null procedure reply.
3333 */
3334 int
3335 nfs_gss_svc_ctx_init(struct nfsrv_descript *nd, struct nfsrv_sock *slp, mbuf_t *mrepp)
3336 {
3337 struct nfs_gss_svc_ctx *cp = NULL;
3338 int error = 0;
3339 int autherr = 0;
3340 struct nfsm_chain *nmreq, nmrep;
3341 int sz;
3342
3343 nmreq = &nd->nd_nmreq;
3344 nfsm_chain_null(&nmrep);
3345 *mrepp = NULL;
3346 cp = nd->nd_gss_context;
3347 nd->nd_repstat = 0;
3348
3349 switch (cp->gss_svc_proc) {
3350 case RPCSEC_GSS_INIT:
3351 nfs_gss_svc_ctx_insert(cp);
3352 /* FALLTHRU */
3353
3354 case RPCSEC_GSS_CONTINUE_INIT:
3355 /* Get the token from the request */
3356 nfsm_chain_get_32(error, nmreq, cp->gss_svc_tokenlen);
3357 if (cp->gss_svc_tokenlen == 0) {
3358 autherr = RPCSEC_GSS_CREDPROBLEM;
3359 break;
3360 }
3361 MALLOC(cp->gss_svc_token, u_char *, cp->gss_svc_tokenlen, M_TEMP, M_WAITOK);
3362 if (cp->gss_svc_token == NULL) {
3363 autherr = RPCSEC_GSS_CREDPROBLEM;
3364 break;
3365 }
3366 nfsm_chain_get_opaque(error, nmreq, cp->gss_svc_tokenlen, cp->gss_svc_token);
3367
3368 /* Use the token in a gss_accept_sec_context upcall */
3369 error = nfs_gss_svc_gssd_upcall(cp);
3370 if (error) {
3371 autherr = RPCSEC_GSS_CREDPROBLEM;
3372 if (error == NFSERR_EAUTH)
3373 error = 0;
3374 break;
3375 }
3376
3377 /*
3378 * If the context isn't complete, pass the new token
3379 * back to the client for another round.
3380 */
3381 if (cp->gss_svc_major != GSS_S_COMPLETE)
3382 break;
3383
3384 /*
3385 * Now the server context is complete.
3386 * Finish setup.
3387 */
3388 clock_get_uptime(&cp->gss_svc_incarnation);
3389
3390 cp->gss_svc_seqwin = GSS_SVC_SEQWINDOW;
3391 MALLOC(cp->gss_svc_seqbits, uint32_t *,
3392 nfsm_rndup((cp->gss_svc_seqwin + 7) / 8), M_TEMP, M_WAITOK|M_ZERO);
3393 if (cp->gss_svc_seqbits == NULL) {
3394 autherr = RPCSEC_GSS_CREDPROBLEM;
3395 break;
3396 }
3397 break;
3398
3399 case RPCSEC_GSS_DATA:
3400 /* Just a nullproc ping - do nothing */
3401 break;
3402
3403 case RPCSEC_GSS_DESTROY:
3404 /*
3405 * Don't destroy the context immediately because
3406 * other active requests might still be using it.
3407 * Instead, schedule it for destruction after
3408 * GSS_CTX_PEND time has elapsed.
3409 */
3410 cp = nfs_gss_svc_ctx_find(cp->gss_svc_handle);
3411 if (cp != NULL) {
3412 cp->gss_svc_handle = 0; // so it can't be found
3413 lck_mtx_lock(cp->gss_svc_mtx);
3414 clock_interval_to_deadline(GSS_CTX_PEND, NSEC_PER_SEC,
3415 &cp->gss_svc_incarnation);
3416 lck_mtx_unlock(cp->gss_svc_mtx);
3417 }
3418 break;
3419 default:
3420 autherr = RPCSEC_GSS_CREDPROBLEM;
3421 break;
3422 }
3423
3424 /* Now build the reply */
3425
3426 if (nd->nd_repstat == 0)
3427 nd->nd_repstat = autherr ? (NFSERR_AUTHERR | autherr) : NFSERR_RETVOID;
3428 sz = 7 * NFSX_UNSIGNED + nfsm_rndup(cp->gss_svc_tokenlen); // size of results
3429 error = nfsrv_rephead(nd, slp, &nmrep, sz);
3430 *mrepp = nmrep.nmc_mhead;
3431 if (error || autherr)
3432 goto nfsmout;
3433
3434 if (cp->gss_svc_proc == RPCSEC_GSS_INIT ||
3435 cp->gss_svc_proc == RPCSEC_GSS_CONTINUE_INIT) {
3436 nfsm_chain_add_32(error, &nmrep, sizeof(cp->gss_svc_handle));
3437 nfsm_chain_add_32(error, &nmrep, cp->gss_svc_handle);
3438
3439 nfsm_chain_add_32(error, &nmrep, cp->gss_svc_major);
3440 nfsm_chain_add_32(error, &nmrep, cp->gss_svc_minor);
3441 nfsm_chain_add_32(error, &nmrep, cp->gss_svc_seqwin);
3442
3443 nfsm_chain_add_32(error, &nmrep, cp->gss_svc_tokenlen);
3444 if (cp->gss_svc_token != NULL) {
3445 nfsm_chain_add_opaque(error, &nmrep, cp->gss_svc_token, cp->gss_svc_tokenlen);
3446 FREE(cp->gss_svc_token, M_TEMP);
3447 cp->gss_svc_token = NULL;
3448 }
3449 }
3450
3451 nfsmout:
3452 if (autherr != 0) {
3453 nd->nd_gss_context = NULL;
3454 LIST_REMOVE(cp, gss_svc_entries);
3455 if (cp->gss_svc_seqbits != NULL)
3456 FREE(cp->gss_svc_seqbits, M_TEMP);
3457 if (cp->gss_svc_token != NULL)
3458 FREE(cp->gss_svc_token, M_TEMP);
3459 lck_mtx_destroy(cp->gss_svc_mtx, nfs_gss_svc_grp);
3460 FREE(cp, M_TEMP);
3461 }
3462
3463 nfsm_chain_build_done(error, &nmrep);
3464 if (error) {
3465 nfsm_chain_cleanup(&nmrep);
3466 *mrepp = NULL;
3467 }
3468 return (error);
3469 }
3470
3471 /*
3472 * This is almost a mirror-image of the client side upcall.
3473 * It passes and receives a token, but invokes gss_accept_sec_context.
3474 * If it's the final call of the context setup, then gssd also returns
3475 * the session key and the user's UID.
3476 */
3477 static int
3478 nfs_gss_svc_gssd_upcall(struct nfs_gss_svc_ctx *cp)
3479 {
3480 kern_return_t kr;
3481 mach_port_t mp;
3482 int retry_cnt = 0;
3483 gssd_byte_buffer octx = NULL;
3484 uint32_t lucidlen = 0;
3485 void *lucid_ctx_buffer;
3486 uint32_t ret_flags;
3487 vm_map_copy_t itoken = NULL;
3488 gssd_byte_buffer otoken = NULL;
3489 mach_msg_type_number_t otokenlen;
3490 int error = 0;
3491 char svcname[] = "nfs";
3492
3493 kr = host_get_gssd_port(host_priv_self(), &mp);
3494 if (kr != KERN_SUCCESS) {
3495 printf("nfs_gss_svc_gssd_upcall: can't get gssd port, status %x (%d)\n", kr, kr);
3496 goto out;
3497 }
3498 if (!IPC_PORT_VALID(mp)) {
3499 printf("nfs_gss_svc_gssd_upcall: gssd port not valid\n");
3500 goto out;
3501 }
3502
3503 if (cp->gss_svc_tokenlen > 0)
3504 nfs_gss_mach_alloc_buffer(cp->gss_svc_token, cp->gss_svc_tokenlen, &itoken);
3505
3506 retry:
3507 printf("Calling mach_gss_accept_sec_context\n");
3508 kr = mach_gss_accept_sec_context(
3509 mp,
3510 (gssd_byte_buffer) itoken, (mach_msg_type_number_t) cp->gss_svc_tokenlen,
3511 svcname,
3512 0,
3513 &cp->gss_svc_context,
3514 &cp->gss_svc_cred_handle,
3515 &ret_flags,
3516 &cp->gss_svc_uid,
3517 cp->gss_svc_gids,
3518 &cp->gss_svc_ngroups,
3519 &octx, (mach_msg_type_number_t *) &lucidlen,
3520 &otoken, &otokenlen,
3521 &cp->gss_svc_major,
3522 &cp->gss_svc_minor);
3523
3524 printf("mach_gss_accept_sec_context returned %d\n", kr);
3525 if (kr != KERN_SUCCESS) {
3526 printf("nfs_gss_svc_gssd_upcall failed: %x (%d)\n", kr, kr);
3527 if (kr == MIG_SERVER_DIED && cp->gss_svc_context == 0 &&
3528 retry_cnt++ < NFS_GSS_MACH_MAX_RETRIES) {
3529 if (cp->gss_svc_tokenlen > 0)
3530 nfs_gss_mach_alloc_buffer(cp->gss_svc_token, cp->gss_svc_tokenlen, &itoken);
3531 goto retry;
3532 }
3533 host_release_special_port(mp);
3534 goto out;
3535 }
3536
3537 host_release_special_port(mp);
3538
3539 if (lucidlen > 0) {
3540 if (lucidlen > MAX_LUCIDLEN) {
3541 printf("nfs_gss_svc_gssd_upcall: bad context length (%d)\n", lucidlen);
3542 vm_map_copy_discard((vm_map_copy_t) octx);
3543 vm_map_copy_discard((vm_map_copy_t) otoken);
3544 goto out;
3545 }
3546 MALLOC(lucid_ctx_buffer, void *, lucidlen, M_TEMP, M_WAITOK | M_ZERO);
3547 error = nfs_gss_mach_vmcopyout((vm_map_copy_t) octx, lucidlen, lucid_ctx_buffer);
3548 if (error) {
3549 vm_map_copy_discard((vm_map_copy_t) otoken);
3550 FREE(lucid_ctx_buffer, M_TEMP);
3551 goto out;
3552 }
3553 if (cp->gss_svc_ctx_id)
3554 gss_krb5_destroy_context(cp->gss_svc_ctx_id);
3555 cp->gss_svc_ctx_id = gss_krb5_make_context(lucid_ctx_buffer, lucidlen);
3556 if (cp->gss_svc_ctx_id == NULL) {
3557 printf("Failed to make context from lucid_ctx_buffer\n");
3558 goto out;
3559 }
3560 }
3561
3562 /* Free context token used as input */
3563 if (cp->gss_svc_token)
3564 FREE(cp->gss_svc_token, M_TEMP);
3565 cp->gss_svc_token = NULL;
3566 cp->gss_svc_tokenlen = 0;
3567
3568 if (otokenlen > 0) {
3569 /* Set context token to gss output token */
3570 MALLOC(cp->gss_svc_token, u_char *, otokenlen, M_TEMP, M_WAITOK);
3571 if (cp->gss_svc_token == NULL) {
3572 printf("nfs_gss_svc_gssd_upcall: could not allocate %d bytes\n", otokenlen);
3573 vm_map_copy_discard((vm_map_copy_t) otoken);
3574 return (ENOMEM);
3575 }
3576 error = nfs_gss_mach_vmcopyout((vm_map_copy_t) otoken, otokenlen, cp->gss_svc_token);
3577 if (error) {
3578 FREE(cp->gss_svc_token, M_TEMP);
3579 cp->gss_svc_token = NULL;
3580 return (NFSERR_EAUTH);
3581 }
3582 cp->gss_svc_tokenlen = otokenlen;
3583 }
3584
3585 return (0);
3586
3587 out:
3588 FREE(cp->gss_svc_token, M_TEMP);
3589 cp->gss_svc_tokenlen = 0;
3590 cp->gss_svc_token = NULL;
3591
3592 return (NFSERR_EAUTH);
3593 }
3594
3595 /*
3596 * Validate the sequence number in the credential as described
3597 * in RFC 2203 Section 5.3.3.1
3598 *
3599 * Here the window of valid sequence numbers is represented by
3600 * a bitmap. As each sequence number is received, its bit is
3601 * set in the bitmap. An invalid sequence number lies below
3602 * the lower bound of the window, or is within the window but
3603 * has its bit already set.
3604 */
3605 static int
3606 nfs_gss_svc_seqnum_valid(struct nfs_gss_svc_ctx *cp, uint32_t seq)
3607 {
3608 uint32_t *bits = cp->gss_svc_seqbits;
3609 uint32_t win = cp->gss_svc_seqwin;
3610 uint32_t i;
3611
3612 lck_mtx_lock(cp->gss_svc_mtx);
3613
3614 /*
3615 * If greater than the window upper bound,
3616 * move the window up, and set the bit.
3617 */
3618 if (seq > cp->gss_svc_seqmax) {
3619 if (seq - cp->gss_svc_seqmax > win)
3620 bzero(bits, nfsm_rndup((win + 7) / 8));
3621 else
3622 for (i = cp->gss_svc_seqmax + 1; i < seq; i++)
3623 win_resetbit(bits, i % win);
3624 win_setbit(bits, seq % win);
3625 cp->gss_svc_seqmax = seq;
3626 lck_mtx_unlock(cp->gss_svc_mtx);
3627 return (1);
3628 }
3629
3630 /*
3631 * Invalid if below the lower bound of the window
3632 */
3633 if (seq <= cp->gss_svc_seqmax - win) {
3634 lck_mtx_unlock(cp->gss_svc_mtx);
3635 return (0);
3636 }
3637
3638 /*
3639 * In the window, invalid if the bit is already set
3640 */
3641 if (win_getbit(bits, seq % win)) {
3642 lck_mtx_unlock(cp->gss_svc_mtx);
3643 return (0);
3644 }
3645 win_setbit(bits, seq % win);
3646 lck_mtx_unlock(cp->gss_svc_mtx);
3647 return (1);
3648 }
3649
3650 /*
3651 * Drop a reference to a context
3652 *
3653 * Note that it's OK for the context to exist
3654 * with a refcount of zero. The refcount isn't
3655 * checked until we're about to reap an expired one.
3656 */
3657 void
3658 nfs_gss_svc_ctx_deref(struct nfs_gss_svc_ctx *cp)
3659 {
3660 lck_mtx_lock(cp->gss_svc_mtx);
3661 if (cp->gss_svc_refcnt > 0)
3662 cp->gss_svc_refcnt--;
3663 else
3664 printf("nfs_gss_ctx_deref: zero refcount\n");
3665 lck_mtx_unlock(cp->gss_svc_mtx);
3666 }
3667
3668 /*
3669 * Called at NFS server shutdown - destroy all contexts
3670 */
3671 void
3672 nfs_gss_svc_cleanup(void)
3673 {
3674 struct nfs_gss_svc_ctx_hashhead *head;
3675 struct nfs_gss_svc_ctx *cp, *ncp;
3676 int i;
3677
3678 lck_mtx_lock(nfs_gss_svc_ctx_mutex);
3679
3680 /*
3681 * Run through all the buckets
3682 */
3683 for (i = 0; i < SVC_CTX_HASHSZ; i++) {
3684 /*
3685 * Remove and free all entries in the bucket
3686 */
3687 head = &nfs_gss_svc_ctx_hashtbl[i];
3688 LIST_FOREACH_SAFE(cp, head, gss_svc_entries, ncp) {
3689 LIST_REMOVE(cp, gss_svc_entries);
3690 if (cp->gss_svc_seqbits)
3691 FREE(cp->gss_svc_seqbits, M_TEMP);
3692 lck_mtx_destroy(cp->gss_svc_mtx, nfs_gss_svc_grp);
3693 FREE(cp, M_TEMP);
3694 }
3695 }
3696
3697 lck_mtx_unlock(nfs_gss_svc_ctx_mutex);
3698 }
3699
3700 #endif /* NFSSERVER */
3701
3702
3703 /*************
3704 * The following functions are used by both client and server.
3705 */
3706
3707 /*
3708 * Release a host special port that was obtained by host_get_special_port
3709 * or one of its macros (host_get_gssd_port in this case).
3710 * This really should be in a public kpi.
3711 */
3712
3713 /* This should be in a public header if this routine is not */
3714 extern void ipc_port_release_send(ipc_port_t);
3715 extern ipc_port_t ipc_port_copy_send(ipc_port_t);
3716
3717 static void
3718 host_release_special_port(mach_port_t mp)
3719 {
3720 if (IPC_PORT_VALID(mp))
3721 ipc_port_release_send(mp);
3722 }
3723
3724 static mach_port_t
3725 host_copy_special_port(mach_port_t mp)
3726 {
3727 return (ipc_port_copy_send(mp));
3728 }
3729
3730 /*
3731 * The token that is sent and received in the gssd upcall
3732 * has unbounded variable length. Mach RPC does not pass
3733 * the token in-line. Instead it uses page mapping to handle
3734 * these parameters. This function allocates a VM buffer
3735 * to hold the token for an upcall and copies the token
3736 * (received from the client) into it. The VM buffer is
3737 * marked with a src_destroy flag so that the upcall will
3738 * automatically de-allocate the buffer when the upcall is
3739 * complete.
3740 */
3741 static void
3742 nfs_gss_mach_alloc_buffer(u_char *buf, uint32_t buflen, vm_map_copy_t *addr)
3743 {
3744 kern_return_t kr;
3745 vm_offset_t kmem_buf;
3746 vm_size_t tbuflen;
3747
3748 *addr = NULL;
3749 if (buf == NULL || buflen == 0)
3750 return;
3751
3752 tbuflen = vm_map_round_page(buflen,
3753 vm_map_page_mask(ipc_kernel_map));
3754 kr = vm_allocate_kernel(ipc_kernel_map, &kmem_buf, tbuflen, VM_FLAGS_ANYWHERE, VM_KERN_MEMORY_FILE);
3755 if (kr != 0) {
3756 printf("nfs_gss_mach_alloc_buffer: vm_allocate failed\n");
3757 return;
3758 }
3759
3760 kr = vm_map_wire_kernel(ipc_kernel_map,
3761 vm_map_trunc_page(kmem_buf,
3762 vm_map_page_mask(ipc_kernel_map)),
3763 vm_map_round_page(kmem_buf + tbuflen,
3764 vm_map_page_mask(ipc_kernel_map)),
3765 VM_PROT_READ|VM_PROT_WRITE, VM_KERN_MEMORY_FILE, FALSE);
3766 if (kr != 0) {
3767 printf("nfs_gss_mach_alloc_buffer: vm_map_wire failed\n");
3768 return;
3769 }
3770
3771 bcopy(buf, (void *) kmem_buf, buflen);
3772 // Shouldn't need to bzero below since vm_allocate returns zeroed pages
3773 // bzero(kmem_buf + buflen, tbuflen - buflen);
3774
3775 kr = vm_map_unwire(ipc_kernel_map,
3776 vm_map_trunc_page(kmem_buf,
3777 vm_map_page_mask(ipc_kernel_map)),
3778 vm_map_round_page(kmem_buf + tbuflen,
3779 vm_map_page_mask(ipc_kernel_map)),
3780 FALSE);
3781 if (kr != 0) {
3782 printf("nfs_gss_mach_alloc_buffer: vm_map_unwire failed\n");
3783 return;
3784 }
3785
3786 kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t) kmem_buf,
3787 (vm_map_size_t) buflen, TRUE, addr);
3788 if (kr != 0) {
3789 printf("nfs_gss_mach_alloc_buffer: vm_map_copyin failed\n");
3790 return;
3791 }
3792 }
3793
3794 /*
3795 * Here we handle a token received from the gssd via an upcall.
3796 * The received token resides in an allocate VM buffer.
3797 * We copy the token out of this buffer to a chunk of malloc'ed
3798 * memory of the right size, then de-allocate the VM buffer.
3799 */
3800 static int
3801 nfs_gss_mach_vmcopyout(vm_map_copy_t in, uint32_t len, u_char *out)
3802 {
3803 vm_map_offset_t map_data;
3804 vm_offset_t data;
3805 int error;
3806
3807 error = vm_map_copyout(ipc_kernel_map, &map_data, in);
3808 if (error)
3809 return (error);
3810
3811 data = CAST_DOWN(vm_offset_t, map_data);
3812 bcopy((void *) data, out, len);
3813 vm_deallocate(ipc_kernel_map, data, len);
3814
3815 return (0);
3816 }
3817
3818 /*
3819 * Return the number of bytes in an mbuf chain.
3820 */
3821 static int
3822 nfs_gss_mchain_length(mbuf_t mhead)
3823 {
3824 mbuf_t mb;
3825 int len = 0;
3826
3827 for (mb = mhead; mb; mb = mbuf_next(mb))
3828 len += mbuf_len(mb);
3829
3830 return (len);
3831 }
3832
3833 /*
3834 * Append an args or results mbuf chain to the header chain
3835 */
3836 static int
3837 nfs_gss_append_chain(struct nfsm_chain *nmc, mbuf_t mc)
3838 {
3839 int error = 0;
3840 mbuf_t mb, tail;
3841
3842 /* Connect the mbuf chains */
3843 error = mbuf_setnext(nmc->nmc_mcur, mc);
3844 if (error)
3845 return (error);
3846
3847 /* Find the last mbuf in the chain */
3848 tail = NULL;
3849 for (mb = mc; mb; mb = mbuf_next(mb))
3850 tail = mb;
3851
3852 nmc->nmc_mcur = tail;
3853 nmc->nmc_ptr = (caddr_t) mbuf_data(tail) + mbuf_len(tail);
3854 nmc->nmc_left = mbuf_trailingspace(tail);
3855
3856 return (0);
3857 }
3858
3859 /*
3860 * Convert an mbuf chain to an NFS mbuf chain
3861 */
3862 static void
3863 nfs_gss_nfsm_chain(struct nfsm_chain *nmc, mbuf_t mc)
3864 {
3865 mbuf_t mb, tail;
3866
3867 /* Find the last mbuf in the chain */
3868 tail = NULL;
3869 for (mb = mc; mb; mb = mbuf_next(mb))
3870 tail = mb;
3871
3872 nmc->nmc_mhead = mc;
3873 nmc->nmc_mcur = tail;
3874 nmc->nmc_ptr = (caddr_t) mbuf_data(tail) + mbuf_len(tail);
3875 nmc->nmc_left = mbuf_trailingspace(tail);
3876 nmc->nmc_flags = 0;
3877 }
3878
3879
3880
3881 #if 0
3882 #define DISPLAYLEN 16
3883 #define MAXDISPLAYLEN 256
3884
3885 static void
3886 hexdump(const char *msg, void *data, size_t len)
3887 {
3888 size_t i, j;
3889 u_char *d = data;
3890 char *p, disbuf[3*DISPLAYLEN+1];
3891
3892 printf("NFS DEBUG %s len=%d:\n", msg, (uint32_t)len);
3893 if (len > MAXDISPLAYLEN)
3894 len = MAXDISPLAYLEN;
3895
3896 for (i = 0; i < len; i += DISPLAYLEN) {
3897 for (p = disbuf, j = 0; (j + i) < len && j < DISPLAYLEN; j++, p += 3)
3898 snprintf(p, 4, "%02x ", d[i + j]);
3899 printf("\t%s\n", disbuf);
3900 }
3901 }
3902 #endif