]> git.saurik.com Git - apple/xnu.git/blob - osfmk/vm/vm_object.c
a16857ec00750e91161bdcf31d56b25669ad1ed4
[apple/xnu.git] / osfmk / vm / vm_object.c
1 /*
2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58 /*
59 * File: vm/vm_object.c
60 * Author: Avadis Tevanian, Jr., Michael Wayne Young
61 *
62 * Virtual memory object module.
63 */
64
65 #include <debug.h>
66 #include <mach_pagemap.h>
67 #include <task_swapper.h>
68
69 #include <mach/mach_types.h>
70 #include <mach/memory_object.h>
71 #include <mach/memory_object_default.h>
72 #include <mach/memory_object_control_server.h>
73 #include <mach/vm_param.h>
74
75 #include <mach/sdt.h>
76
77 #include <ipc/ipc_types.h>
78 #include <ipc/ipc_port.h>
79
80 #include <kern/kern_types.h>
81 #include <kern/assert.h>
82 #include <kern/lock.h>
83 #include <kern/queue.h>
84 #include <kern/xpr.h>
85 #include <kern/kalloc.h>
86 #include <kern/zalloc.h>
87 #include <kern/host.h>
88 #include <kern/host_statistics.h>
89 #include <kern/processor.h>
90 #include <kern/misc_protos.h>
91
92 #include <vm/memory_object.h>
93 #include <vm/vm_compressor_pager.h>
94 #include <vm/vm_fault.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_protos.h>
100 #include <vm/vm_purgeable_internal.h>
101
102 #include <vm/vm_compressor.h>
103
104 /*
105 * Virtual memory objects maintain the actual data
106 * associated with allocated virtual memory. A given
107 * page of memory exists within exactly one object.
108 *
109 * An object is only deallocated when all "references"
110 * are given up.
111 *
112 * Associated with each object is a list of all resident
113 * memory pages belonging to that object; this list is
114 * maintained by the "vm_page" module, but locked by the object's
115 * lock.
116 *
117 * Each object also records the memory object reference
118 * that is used by the kernel to request and write
119 * back data (the memory object, field "pager"), etc...
120 *
121 * Virtual memory objects are allocated to provide
122 * zero-filled memory (vm_allocate) or map a user-defined
123 * memory object into a virtual address space (vm_map).
124 *
125 * Virtual memory objects that refer to a user-defined
126 * memory object are called "permanent", because all changes
127 * made in virtual memory are reflected back to the
128 * memory manager, which may then store it permanently.
129 * Other virtual memory objects are called "temporary",
130 * meaning that changes need be written back only when
131 * necessary to reclaim pages, and that storage associated
132 * with the object can be discarded once it is no longer
133 * mapped.
134 *
135 * A permanent memory object may be mapped into more
136 * than one virtual address space. Moreover, two threads
137 * may attempt to make the first mapping of a memory
138 * object concurrently. Only one thread is allowed to
139 * complete this mapping; all others wait for the
140 * "pager_initialized" field is asserted, indicating
141 * that the first thread has initialized all of the
142 * necessary fields in the virtual memory object structure.
143 *
144 * The kernel relies on a *default memory manager* to
145 * provide backing storage for the zero-filled virtual
146 * memory objects. The pager memory objects associated
147 * with these temporary virtual memory objects are only
148 * requested from the default memory manager when it
149 * becomes necessary. Virtual memory objects
150 * that depend on the default memory manager are called
151 * "internal". The "pager_created" field is provided to
152 * indicate whether these ports have ever been allocated.
153 *
154 * The kernel may also create virtual memory objects to
155 * hold changed pages after a copy-on-write operation.
156 * In this case, the virtual memory object (and its
157 * backing storage -- its memory object) only contain
158 * those pages that have been changed. The "shadow"
159 * field refers to the virtual memory object that contains
160 * the remainder of the contents. The "shadow_offset"
161 * field indicates where in the "shadow" these contents begin.
162 * The "copy" field refers to a virtual memory object
163 * to which changed pages must be copied before changing
164 * this object, in order to implement another form
165 * of copy-on-write optimization.
166 *
167 * The virtual memory object structure also records
168 * the attributes associated with its memory object.
169 * The "pager_ready", "can_persist" and "copy_strategy"
170 * fields represent those attributes. The "cached_list"
171 * field is used in the implementation of the persistence
172 * attribute.
173 *
174 * ZZZ Continue this comment.
175 */
176
177 /* Forward declarations for internal functions. */
178 static kern_return_t vm_object_terminate(
179 vm_object_t object);
180
181 extern void vm_object_remove(
182 vm_object_t object);
183
184 static kern_return_t vm_object_copy_call(
185 vm_object_t src_object,
186 vm_object_offset_t src_offset,
187 vm_object_size_t size,
188 vm_object_t *_result_object);
189
190 static void vm_object_do_collapse(
191 vm_object_t object,
192 vm_object_t backing_object);
193
194 static void vm_object_do_bypass(
195 vm_object_t object,
196 vm_object_t backing_object);
197
198 static void vm_object_release_pager(
199 memory_object_t pager,
200 boolean_t hashed);
201
202 static zone_t vm_object_zone; /* vm backing store zone */
203
204 /*
205 * All wired-down kernel memory belongs to a single virtual
206 * memory object (kernel_object) to avoid wasting data structures.
207 */
208 static struct vm_object kernel_object_store;
209 vm_object_t kernel_object;
210
211 static struct vm_object compressor_object_store;
212 vm_object_t compressor_object = &compressor_object_store;
213
214 /*
215 * The submap object is used as a placeholder for vm_map_submap
216 * operations. The object is declared in vm_map.c because it
217 * is exported by the vm_map module. The storage is declared
218 * here because it must be initialized here.
219 */
220 static struct vm_object vm_submap_object_store;
221
222 /*
223 * Virtual memory objects are initialized from
224 * a template (see vm_object_allocate).
225 *
226 * When adding a new field to the virtual memory
227 * object structure, be sure to add initialization
228 * (see _vm_object_allocate()).
229 */
230 static struct vm_object vm_object_template;
231
232 unsigned int vm_page_purged_wired = 0;
233 unsigned int vm_page_purged_busy = 0;
234 unsigned int vm_page_purged_others = 0;
235
236 #if VM_OBJECT_CACHE
237 /*
238 * Virtual memory objects that are not referenced by
239 * any address maps, but that are allowed to persist
240 * (an attribute specified by the associated memory manager),
241 * are kept in a queue (vm_object_cached_list).
242 *
243 * When an object from this queue is referenced again,
244 * for example to make another address space mapping,
245 * it must be removed from the queue. That is, the
246 * queue contains *only* objects with zero references.
247 *
248 * The kernel may choose to terminate objects from this
249 * queue in order to reclaim storage. The current policy
250 * is to permit a fixed maximum number of unreferenced
251 * objects (vm_object_cached_max).
252 *
253 * A spin lock (accessed by routines
254 * vm_object_cache_{lock,lock_try,unlock}) governs the
255 * object cache. It must be held when objects are
256 * added to or removed from the cache (in vm_object_terminate).
257 * The routines that acquire a reference to a virtual
258 * memory object based on one of the memory object ports
259 * must also lock the cache.
260 *
261 * Ideally, the object cache should be more isolated
262 * from the reference mechanism, so that the lock need
263 * not be held to make simple references.
264 */
265 static vm_object_t vm_object_cache_trim(
266 boolean_t called_from_vm_object_deallocate);
267
268 static void vm_object_deactivate_all_pages(
269 vm_object_t object);
270
271 static int vm_object_cached_high; /* highest # cached objects */
272 static int vm_object_cached_max = 512; /* may be patched*/
273
274 #define vm_object_cache_lock() \
275 lck_mtx_lock(&vm_object_cached_lock_data)
276 #define vm_object_cache_lock_try() \
277 lck_mtx_try_lock(&vm_object_cached_lock_data)
278
279 #endif /* VM_OBJECT_CACHE */
280
281 static queue_head_t vm_object_cached_list;
282 static uint32_t vm_object_cache_pages_freed = 0;
283 static uint32_t vm_object_cache_pages_moved = 0;
284 static uint32_t vm_object_cache_pages_skipped = 0;
285 static uint32_t vm_object_cache_adds = 0;
286 static uint32_t vm_object_cached_count = 0;
287 static lck_mtx_t vm_object_cached_lock_data;
288 static lck_mtx_ext_t vm_object_cached_lock_data_ext;
289
290 static uint32_t vm_object_page_grab_failed = 0;
291 static uint32_t vm_object_page_grab_skipped = 0;
292 static uint32_t vm_object_page_grab_returned = 0;
293 static uint32_t vm_object_page_grab_pmapped = 0;
294 static uint32_t vm_object_page_grab_reactivations = 0;
295
296 #define vm_object_cache_lock_spin() \
297 lck_mtx_lock_spin(&vm_object_cached_lock_data)
298 #define vm_object_cache_unlock() \
299 lck_mtx_unlock(&vm_object_cached_lock_data)
300
301 static void vm_object_cache_remove_locked(vm_object_t);
302
303
304 #define VM_OBJECT_HASH_COUNT 1024
305 #define VM_OBJECT_HASH_LOCK_COUNT 512
306
307 static lck_mtx_t vm_object_hashed_lock_data[VM_OBJECT_HASH_LOCK_COUNT];
308 static lck_mtx_ext_t vm_object_hashed_lock_data_ext[VM_OBJECT_HASH_LOCK_COUNT];
309
310 static queue_head_t vm_object_hashtable[VM_OBJECT_HASH_COUNT];
311 static struct zone *vm_object_hash_zone;
312
313 struct vm_object_hash_entry {
314 queue_chain_t hash_link; /* hash chain link */
315 memory_object_t pager; /* pager we represent */
316 vm_object_t object; /* corresponding object */
317 boolean_t waiting; /* someone waiting for
318 * termination */
319 };
320
321 typedef struct vm_object_hash_entry *vm_object_hash_entry_t;
322 #define VM_OBJECT_HASH_ENTRY_NULL ((vm_object_hash_entry_t) 0)
323
324 #define VM_OBJECT_HASH_SHIFT 5
325 #define vm_object_hash(pager) \
326 ((int)((((uintptr_t)pager) >> VM_OBJECT_HASH_SHIFT) % VM_OBJECT_HASH_COUNT))
327
328 #define vm_object_lock_hash(pager) \
329 ((int)((((uintptr_t)pager) >> VM_OBJECT_HASH_SHIFT) % VM_OBJECT_HASH_LOCK_COUNT))
330
331 void vm_object_hash_entry_free(
332 vm_object_hash_entry_t entry);
333
334 static void vm_object_reap(vm_object_t object);
335 static void vm_object_reap_async(vm_object_t object);
336 static void vm_object_reaper_thread(void);
337
338 static lck_mtx_t vm_object_reaper_lock_data;
339 static lck_mtx_ext_t vm_object_reaper_lock_data_ext;
340
341 static queue_head_t vm_object_reaper_queue; /* protected by vm_object_reaper_lock() */
342 unsigned int vm_object_reap_count = 0;
343 unsigned int vm_object_reap_count_async = 0;
344
345 #define vm_object_reaper_lock() \
346 lck_mtx_lock(&vm_object_reaper_lock_data)
347 #define vm_object_reaper_lock_spin() \
348 lck_mtx_lock_spin(&vm_object_reaper_lock_data)
349 #define vm_object_reaper_unlock() \
350 lck_mtx_unlock(&vm_object_reaper_lock_data)
351
352 #if 0
353 #undef KERNEL_DEBUG
354 #define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT
355 #endif
356
357
358 static lck_mtx_t *
359 vm_object_hash_lock_spin(
360 memory_object_t pager)
361 {
362 int index;
363
364 index = vm_object_lock_hash(pager);
365
366 lck_mtx_lock_spin(&vm_object_hashed_lock_data[index]);
367
368 return (&vm_object_hashed_lock_data[index]);
369 }
370
371 static void
372 vm_object_hash_unlock(lck_mtx_t *lck)
373 {
374 lck_mtx_unlock(lck);
375 }
376
377
378 /*
379 * vm_object_hash_lookup looks up a pager in the hashtable
380 * and returns the corresponding entry, with optional removal.
381 */
382 static vm_object_hash_entry_t
383 vm_object_hash_lookup(
384 memory_object_t pager,
385 boolean_t remove_entry)
386 {
387 queue_t bucket;
388 vm_object_hash_entry_t entry;
389
390 bucket = &vm_object_hashtable[vm_object_hash(pager)];
391
392 entry = (vm_object_hash_entry_t)queue_first(bucket);
393 while (!queue_end(bucket, (queue_entry_t)entry)) {
394 if (entry->pager == pager) {
395 if (remove_entry) {
396 queue_remove(bucket, entry,
397 vm_object_hash_entry_t, hash_link);
398 }
399 return(entry);
400 }
401 entry = (vm_object_hash_entry_t)queue_next(&entry->hash_link);
402 }
403 return(VM_OBJECT_HASH_ENTRY_NULL);
404 }
405
406 /*
407 * vm_object_hash_enter enters the specified
408 * pager / cache object association in the hashtable.
409 */
410
411 static void
412 vm_object_hash_insert(
413 vm_object_hash_entry_t entry,
414 vm_object_t object)
415 {
416 queue_t bucket;
417
418 bucket = &vm_object_hashtable[vm_object_hash(entry->pager)];
419
420 queue_enter(bucket, entry, vm_object_hash_entry_t, hash_link);
421
422 entry->object = object;
423 object->hashed = TRUE;
424 }
425
426 static vm_object_hash_entry_t
427 vm_object_hash_entry_alloc(
428 memory_object_t pager)
429 {
430 vm_object_hash_entry_t entry;
431
432 entry = (vm_object_hash_entry_t)zalloc(vm_object_hash_zone);
433 entry->pager = pager;
434 entry->object = VM_OBJECT_NULL;
435 entry->waiting = FALSE;
436
437 return(entry);
438 }
439
440 void
441 vm_object_hash_entry_free(
442 vm_object_hash_entry_t entry)
443 {
444 zfree(vm_object_hash_zone, entry);
445 }
446
447 /*
448 * vm_object_allocate:
449 *
450 * Returns a new object with the given size.
451 */
452
453 __private_extern__ void
454 _vm_object_allocate(
455 vm_object_size_t size,
456 vm_object_t object)
457 {
458 XPR(XPR_VM_OBJECT,
459 "vm_object_allocate, object 0x%X size 0x%X\n",
460 object, size, 0,0,0);
461
462 *object = vm_object_template;
463 queue_init(&object->memq);
464 queue_init(&object->msr_q);
465 #if UPL_DEBUG
466 queue_init(&object->uplq);
467 #endif /* UPL_DEBUG */
468 vm_object_lock_init(object);
469 object->vo_size = size;
470 }
471
472 __private_extern__ vm_object_t
473 vm_object_allocate(
474 vm_object_size_t size)
475 {
476 register vm_object_t object;
477
478 object = (vm_object_t) zalloc(vm_object_zone);
479
480 // dbgLog(object, size, 0, 2); /* (TEST/DEBUG) */
481
482 if (object != VM_OBJECT_NULL)
483 _vm_object_allocate(size, object);
484
485 return object;
486 }
487
488
489 lck_grp_t vm_object_lck_grp;
490 lck_grp_t vm_object_cache_lck_grp;
491 lck_grp_attr_t vm_object_lck_grp_attr;
492 lck_attr_t vm_object_lck_attr;
493 lck_attr_t kernel_object_lck_attr;
494 lck_attr_t compressor_object_lck_attr;
495
496 /*
497 * vm_object_bootstrap:
498 *
499 * Initialize the VM objects module.
500 */
501 __private_extern__ void
502 vm_object_bootstrap(void)
503 {
504 register int i;
505
506 vm_object_zone = zinit((vm_size_t) sizeof(struct vm_object),
507 round_page(512*1024),
508 round_page(12*1024),
509 "vm objects");
510 zone_change(vm_object_zone, Z_CALLERACCT, FALSE); /* don't charge caller */
511 zone_change(vm_object_zone, Z_NOENCRYPT, TRUE);
512
513 vm_object_init_lck_grp();
514
515 queue_init(&vm_object_cached_list);
516
517 lck_mtx_init_ext(&vm_object_cached_lock_data,
518 &vm_object_cached_lock_data_ext,
519 &vm_object_cache_lck_grp,
520 &vm_object_lck_attr);
521
522 queue_init(&vm_object_reaper_queue);
523
524 for (i = 0; i < VM_OBJECT_HASH_LOCK_COUNT; i++) {
525 lck_mtx_init_ext(&vm_object_hashed_lock_data[i],
526 &vm_object_hashed_lock_data_ext[i],
527 &vm_object_lck_grp,
528 &vm_object_lck_attr);
529 }
530 lck_mtx_init_ext(&vm_object_reaper_lock_data,
531 &vm_object_reaper_lock_data_ext,
532 &vm_object_lck_grp,
533 &vm_object_lck_attr);
534
535 vm_object_hash_zone =
536 zinit((vm_size_t) sizeof (struct vm_object_hash_entry),
537 round_page(512*1024),
538 round_page(12*1024),
539 "vm object hash entries");
540 zone_change(vm_object_hash_zone, Z_CALLERACCT, FALSE);
541 zone_change(vm_object_hash_zone, Z_NOENCRYPT, TRUE);
542
543 for (i = 0; i < VM_OBJECT_HASH_COUNT; i++)
544 queue_init(&vm_object_hashtable[i]);
545
546
547 /*
548 * Fill in a template object, for quick initialization
549 */
550
551 /* memq; Lock; init after allocation */
552 vm_object_template.memq.prev = NULL;
553 vm_object_template.memq.next = NULL;
554 #if 0
555 /*
556 * We can't call vm_object_lock_init() here because that will
557 * allocate some memory and VM is not fully initialized yet.
558 * The lock will be initialized for each allocated object in
559 * _vm_object_allocate(), so we don't need to initialize it in
560 * the vm_object_template.
561 */
562 vm_object_lock_init(&vm_object_template);
563 #endif
564 vm_object_template.vo_size = 0;
565 vm_object_template.memq_hint = VM_PAGE_NULL;
566 vm_object_template.ref_count = 1;
567 #if TASK_SWAPPER
568 vm_object_template.res_count = 1;
569 #endif /* TASK_SWAPPER */
570 vm_object_template.resident_page_count = 0;
571 vm_object_template.wired_page_count = 0;
572 vm_object_template.reusable_page_count = 0;
573 vm_object_template.copy = VM_OBJECT_NULL;
574 vm_object_template.shadow = VM_OBJECT_NULL;
575 vm_object_template.vo_shadow_offset = (vm_object_offset_t) 0;
576 vm_object_template.pager = MEMORY_OBJECT_NULL;
577 vm_object_template.paging_offset = 0;
578 vm_object_template.pager_control = MEMORY_OBJECT_CONTROL_NULL;
579 vm_object_template.copy_strategy = MEMORY_OBJECT_COPY_SYMMETRIC;
580 vm_object_template.paging_in_progress = 0;
581 vm_object_template.activity_in_progress = 0;
582
583 /* Begin bitfields */
584 vm_object_template.all_wanted = 0; /* all bits FALSE */
585 vm_object_template.pager_created = FALSE;
586 vm_object_template.pager_initialized = FALSE;
587 vm_object_template.pager_ready = FALSE;
588 vm_object_template.pager_trusted = FALSE;
589 vm_object_template.can_persist = FALSE;
590 vm_object_template.internal = TRUE;
591 vm_object_template.temporary = TRUE;
592 vm_object_template.private = FALSE;
593 vm_object_template.pageout = FALSE;
594 vm_object_template.alive = TRUE;
595 vm_object_template.purgable = VM_PURGABLE_DENY;
596 vm_object_template.purgeable_when_ripe = FALSE;
597 vm_object_template.shadowed = FALSE;
598 vm_object_template.advisory_pageout = FALSE;
599 vm_object_template.true_share = FALSE;
600 vm_object_template.terminating = FALSE;
601 vm_object_template.named = FALSE;
602 vm_object_template.shadow_severed = FALSE;
603 vm_object_template.phys_contiguous = FALSE;
604 vm_object_template.nophyscache = FALSE;
605 /* End bitfields */
606
607 vm_object_template.cached_list.prev = NULL;
608 vm_object_template.cached_list.next = NULL;
609 vm_object_template.msr_q.prev = NULL;
610 vm_object_template.msr_q.next = NULL;
611
612 vm_object_template.last_alloc = (vm_object_offset_t) 0;
613 vm_object_template.sequential = (vm_object_offset_t) 0;
614 vm_object_template.pages_created = 0;
615 vm_object_template.pages_used = 0;
616 vm_object_template.scan_collisions = 0;
617
618 #if MACH_PAGEMAP
619 vm_object_template.existence_map = VM_EXTERNAL_NULL;
620 #endif /* MACH_PAGEMAP */
621 vm_object_template.cow_hint = ~(vm_offset_t)0;
622 #if MACH_ASSERT
623 vm_object_template.paging_object = VM_OBJECT_NULL;
624 #endif /* MACH_ASSERT */
625
626 /* cache bitfields */
627 vm_object_template.wimg_bits = VM_WIMG_USE_DEFAULT;
628 vm_object_template.set_cache_attr = FALSE;
629 vm_object_template.object_slid = FALSE;
630 vm_object_template.code_signed = FALSE;
631 vm_object_template.hashed = FALSE;
632 vm_object_template.transposed = FALSE;
633 vm_object_template.mapping_in_progress = FALSE;
634 vm_object_template.volatile_empty = FALSE;
635 vm_object_template.volatile_fault = FALSE;
636 vm_object_template.all_reusable = FALSE;
637 vm_object_template.blocked_access = FALSE;
638 vm_object_template.__object2_unused_bits = 0;
639 #if UPL_DEBUG
640 vm_object_template.uplq.prev = NULL;
641 vm_object_template.uplq.next = NULL;
642 #endif /* UPL_DEBUG */
643 #ifdef VM_PIP_DEBUG
644 bzero(&vm_object_template.pip_holders,
645 sizeof (vm_object_template.pip_holders));
646 #endif /* VM_PIP_DEBUG */
647
648 vm_object_template.objq.next=NULL;
649 vm_object_template.objq.prev=NULL;
650
651 vm_object_template.purgeable_queue_type = PURGEABLE_Q_TYPE_MAX;
652 vm_object_template.purgeable_queue_group = 0;
653
654 vm_object_template.vo_cache_ts = 0;
655
656 /*
657 * Initialize the "kernel object"
658 */
659
660 kernel_object = &kernel_object_store;
661
662 /*
663 * Note that in the following size specifications, we need to add 1 because
664 * VM_MAX_KERNEL_ADDRESS (vm_last_addr) is a maximum address, not a size.
665 */
666
667 #ifdef ppc
668 _vm_object_allocate(vm_last_addr + 1,
669 kernel_object);
670 #else
671 _vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1,
672 kernel_object);
673
674 _vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1,
675 compressor_object);
676 #endif
677 kernel_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
678 compressor_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
679
680 /*
681 * Initialize the "submap object". Make it as large as the
682 * kernel object so that no limit is imposed on submap sizes.
683 */
684
685 vm_submap_object = &vm_submap_object_store;
686 #ifdef ppc
687 _vm_object_allocate(vm_last_addr + 1,
688 vm_submap_object);
689 #else
690 _vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1,
691 vm_submap_object);
692 #endif
693 vm_submap_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
694
695 /*
696 * Create an "extra" reference to this object so that we never
697 * try to deallocate it; zfree doesn't like to be called with
698 * non-zone memory.
699 */
700 vm_object_reference(vm_submap_object);
701
702 #if MACH_PAGEMAP
703 vm_external_module_initialize();
704 #endif /* MACH_PAGEMAP */
705 }
706
707 void
708 vm_object_reaper_init(void)
709 {
710 kern_return_t kr;
711 thread_t thread;
712
713 kr = kernel_thread_start_priority(
714 (thread_continue_t) vm_object_reaper_thread,
715 NULL,
716 BASEPRI_PREEMPT - 1,
717 &thread);
718 if (kr != KERN_SUCCESS) {
719 panic("failed to launch vm_object_reaper_thread kr=0x%x", kr);
720 }
721 thread_deallocate(thread);
722 }
723
724 __private_extern__ void
725 vm_object_init(void)
726 {
727 /*
728 * Finish initializing the kernel object.
729 */
730 }
731
732
733 __private_extern__ void
734 vm_object_init_lck_grp(void)
735 {
736 /*
737 * initialze the vm_object lock world
738 */
739 lck_grp_attr_setdefault(&vm_object_lck_grp_attr);
740 lck_grp_init(&vm_object_lck_grp, "vm_object", &vm_object_lck_grp_attr);
741 lck_grp_init(&vm_object_cache_lck_grp, "vm_object_cache", &vm_object_lck_grp_attr);
742 lck_attr_setdefault(&vm_object_lck_attr);
743 lck_attr_setdefault(&kernel_object_lck_attr);
744 lck_attr_cleardebug(&kernel_object_lck_attr);
745 lck_attr_setdefault(&compressor_object_lck_attr);
746 lck_attr_cleardebug(&compressor_object_lck_attr);
747 }
748
749 #if VM_OBJECT_CACHE
750 #define MIGHT_NOT_CACHE_SHADOWS 1
751 #if MIGHT_NOT_CACHE_SHADOWS
752 static int cache_shadows = TRUE;
753 #endif /* MIGHT_NOT_CACHE_SHADOWS */
754 #endif
755
756 /*
757 * vm_object_deallocate:
758 *
759 * Release a reference to the specified object,
760 * gained either through a vm_object_allocate
761 * or a vm_object_reference call. When all references
762 * are gone, storage associated with this object
763 * may be relinquished.
764 *
765 * No object may be locked.
766 */
767 unsigned long vm_object_deallocate_shared_successes = 0;
768 unsigned long vm_object_deallocate_shared_failures = 0;
769 unsigned long vm_object_deallocate_shared_swap_failures = 0;
770 __private_extern__ void
771 vm_object_deallocate(
772 register vm_object_t object)
773 {
774 #if VM_OBJECT_CACHE
775 boolean_t retry_cache_trim = FALSE;
776 uint32_t try_failed_count = 0;
777 #endif
778 vm_object_t shadow = VM_OBJECT_NULL;
779
780 // if(object)dbgLog(object, object->ref_count, object->can_persist, 3); /* (TEST/DEBUG) */
781 // else dbgLog(object, 0, 0, 3); /* (TEST/DEBUG) */
782
783 if (object == VM_OBJECT_NULL)
784 return;
785
786 if (object == kernel_object || object == compressor_object) {
787 vm_object_lock_shared(object);
788
789 OSAddAtomic(-1, &object->ref_count);
790
791 if (object->ref_count == 0) {
792 if (object == kernel_object)
793 panic("vm_object_deallocate: losing kernel_object\n");
794 else
795 panic("vm_object_deallocate: losing compressor_object\n");
796 }
797 vm_object_unlock(object);
798 return;
799 }
800
801 if (object->ref_count > 2 ||
802 (!object->named && object->ref_count > 1)) {
803 UInt32 original_ref_count;
804 volatile UInt32 *ref_count_p;
805 Boolean atomic_swap;
806
807 /*
808 * The object currently looks like it is not being
809 * kept alive solely by the reference we're about to release.
810 * Let's try and release our reference without taking
811 * all the locks we would need if we had to terminate the
812 * object (cache lock + exclusive object lock).
813 * Lock the object "shared" to make sure we don't race with
814 * anyone holding it "exclusive".
815 */
816 vm_object_lock_shared(object);
817 ref_count_p = (volatile UInt32 *) &object->ref_count;
818 original_ref_count = object->ref_count;
819 /*
820 * Test again as "ref_count" could have changed.
821 * "named" shouldn't change.
822 */
823 if (original_ref_count > 2 ||
824 (!object->named && original_ref_count > 1)) {
825 atomic_swap = OSCompareAndSwap(
826 original_ref_count,
827 original_ref_count - 1,
828 (UInt32 *) &object->ref_count);
829 if (atomic_swap == FALSE) {
830 vm_object_deallocate_shared_swap_failures++;
831 }
832
833 } else {
834 atomic_swap = FALSE;
835 }
836 vm_object_unlock(object);
837
838 if (atomic_swap) {
839 /*
840 * ref_count was updated atomically !
841 */
842 vm_object_deallocate_shared_successes++;
843 return;
844 }
845
846 /*
847 * Someone else updated the ref_count at the same
848 * time and we lost the race. Fall back to the usual
849 * slow but safe path...
850 */
851 vm_object_deallocate_shared_failures++;
852 }
853
854 while (object != VM_OBJECT_NULL) {
855
856 vm_object_lock(object);
857
858 assert(object->ref_count > 0);
859
860 /*
861 * If the object has a named reference, and only
862 * that reference would remain, inform the pager
863 * about the last "mapping" reference going away.
864 */
865 if ((object->ref_count == 2) && (object->named)) {
866 memory_object_t pager = object->pager;
867
868 /* Notify the Pager that there are no */
869 /* more mappers for this object */
870
871 if (pager != MEMORY_OBJECT_NULL) {
872 vm_object_mapping_wait(object, THREAD_UNINT);
873 vm_object_mapping_begin(object);
874 vm_object_unlock(object);
875
876 memory_object_last_unmap(pager);
877
878 vm_object_lock(object);
879 vm_object_mapping_end(object);
880 }
881 assert(object->ref_count > 0);
882 }
883
884 /*
885 * Lose the reference. If other references
886 * remain, then we are done, unless we need
887 * to retry a cache trim.
888 * If it is the last reference, then keep it
889 * until any pending initialization is completed.
890 */
891
892 /* if the object is terminating, it cannot go into */
893 /* the cache and we obviously should not call */
894 /* terminate again. */
895
896 if ((object->ref_count > 1) || object->terminating) {
897 vm_object_lock_assert_exclusive(object);
898 object->ref_count--;
899 vm_object_res_deallocate(object);
900
901 if (object->ref_count == 1 &&
902 object->shadow != VM_OBJECT_NULL) {
903 /*
904 * There's only one reference left on this
905 * VM object. We can't tell if it's a valid
906 * one (from a mapping for example) or if this
907 * object is just part of a possibly stale and
908 * useless shadow chain.
909 * We would like to try and collapse it into
910 * its parent, but we don't have any pointers
911 * back to this parent object.
912 * But we can try and collapse this object with
913 * its own shadows, in case these are useless
914 * too...
915 * We can't bypass this object though, since we
916 * don't know if this last reference on it is
917 * meaningful or not.
918 */
919 vm_object_collapse(object, 0, FALSE);
920 }
921 vm_object_unlock(object);
922 #if VM_OBJECT_CACHE
923 if (retry_cache_trim &&
924 ((object = vm_object_cache_trim(TRUE)) !=
925 VM_OBJECT_NULL)) {
926 continue;
927 }
928 #endif
929 return;
930 }
931
932 /*
933 * We have to wait for initialization
934 * before destroying or caching the object.
935 */
936
937 if (object->pager_created && ! object->pager_initialized) {
938 assert(! object->can_persist);
939 vm_object_assert_wait(object,
940 VM_OBJECT_EVENT_INITIALIZED,
941 THREAD_UNINT);
942 vm_object_unlock(object);
943
944 thread_block(THREAD_CONTINUE_NULL);
945 continue;
946 }
947
948 #if VM_OBJECT_CACHE
949 /*
950 * If this object can persist, then enter it in
951 * the cache. Otherwise, terminate it.
952 *
953 * NOTE: Only permanent objects are cached, and
954 * permanent objects cannot have shadows. This
955 * affects the residence counting logic in a minor
956 * way (can do it in-line, mostly).
957 */
958
959 if ((object->can_persist) && (object->alive)) {
960 /*
961 * Now it is safe to decrement reference count,
962 * and to return if reference count is > 0.
963 */
964
965 vm_object_lock_assert_exclusive(object);
966 if (--object->ref_count > 0) {
967 vm_object_res_deallocate(object);
968 vm_object_unlock(object);
969
970 if (retry_cache_trim &&
971 ((object = vm_object_cache_trim(TRUE)) !=
972 VM_OBJECT_NULL)) {
973 continue;
974 }
975 return;
976 }
977
978 #if MIGHT_NOT_CACHE_SHADOWS
979 /*
980 * Remove shadow now if we don't
981 * want to cache shadows.
982 */
983 if (! cache_shadows) {
984 shadow = object->shadow;
985 object->shadow = VM_OBJECT_NULL;
986 }
987 #endif /* MIGHT_NOT_CACHE_SHADOWS */
988
989 /*
990 * Enter the object onto the queue of
991 * cached objects, and deactivate
992 * all of its pages.
993 */
994 assert(object->shadow == VM_OBJECT_NULL);
995 VM_OBJ_RES_DECR(object);
996 XPR(XPR_VM_OBJECT,
997 "vm_o_deallocate: adding %x to cache, queue = (%x, %x)\n",
998 object,
999 vm_object_cached_list.next,
1000 vm_object_cached_list.prev,0,0);
1001
1002
1003 vm_object_unlock(object);
1004
1005 try_failed_count = 0;
1006 for (;;) {
1007 vm_object_cache_lock();
1008
1009 /*
1010 * if we try to take a regular lock here
1011 * we risk deadlocking against someone
1012 * holding a lock on this object while
1013 * trying to vm_object_deallocate a different
1014 * object
1015 */
1016 if (vm_object_lock_try(object))
1017 break;
1018 vm_object_cache_unlock();
1019 try_failed_count++;
1020
1021 mutex_pause(try_failed_count); /* wait a bit */
1022 }
1023 vm_object_cached_count++;
1024 if (vm_object_cached_count > vm_object_cached_high)
1025 vm_object_cached_high = vm_object_cached_count;
1026 queue_enter(&vm_object_cached_list, object,
1027 vm_object_t, cached_list);
1028 vm_object_cache_unlock();
1029
1030 vm_object_deactivate_all_pages(object);
1031 vm_object_unlock(object);
1032
1033 #if MIGHT_NOT_CACHE_SHADOWS
1034 /*
1035 * If we have a shadow that we need
1036 * to deallocate, do so now, remembering
1037 * to trim the cache later.
1038 */
1039 if (! cache_shadows && shadow != VM_OBJECT_NULL) {
1040 object = shadow;
1041 retry_cache_trim = TRUE;
1042 continue;
1043 }
1044 #endif /* MIGHT_NOT_CACHE_SHADOWS */
1045
1046 /*
1047 * Trim the cache. If the cache trim
1048 * returns with a shadow for us to deallocate,
1049 * then remember to retry the cache trim
1050 * when we are done deallocating the shadow.
1051 * Otherwise, we are done.
1052 */
1053
1054 object = vm_object_cache_trim(TRUE);
1055 if (object == VM_OBJECT_NULL) {
1056 return;
1057 }
1058 retry_cache_trim = TRUE;
1059 } else
1060 #endif /* VM_OBJECT_CACHE */
1061 {
1062 /*
1063 * This object is not cachable; terminate it.
1064 */
1065 XPR(XPR_VM_OBJECT,
1066 "vm_o_deallocate: !cacheable 0x%X res %d paging_ops %d thread 0x%p ref %d\n",
1067 object, object->resident_page_count,
1068 object->paging_in_progress,
1069 (void *)current_thread(),object->ref_count);
1070
1071 VM_OBJ_RES_DECR(object); /* XXX ? */
1072 /*
1073 * Terminate this object. If it had a shadow,
1074 * then deallocate it; otherwise, if we need
1075 * to retry a cache trim, do so now; otherwise,
1076 * we are done. "pageout" objects have a shadow,
1077 * but maintain a "paging reference" rather than
1078 * a normal reference.
1079 */
1080 shadow = object->pageout?VM_OBJECT_NULL:object->shadow;
1081
1082 if (vm_object_terminate(object) != KERN_SUCCESS) {
1083 return;
1084 }
1085 if (shadow != VM_OBJECT_NULL) {
1086 object = shadow;
1087 continue;
1088 }
1089 #if VM_OBJECT_CACHE
1090 if (retry_cache_trim &&
1091 ((object = vm_object_cache_trim(TRUE)) !=
1092 VM_OBJECT_NULL)) {
1093 continue;
1094 }
1095 #endif
1096 return;
1097 }
1098 }
1099 #if VM_OBJECT_CACHE
1100 assert(! retry_cache_trim);
1101 #endif
1102 }
1103
1104
1105
1106 vm_page_t
1107 vm_object_page_grab(
1108 vm_object_t object)
1109 {
1110 vm_page_t p, next_p;
1111 int p_limit = 0;
1112 int p_skipped = 0;
1113
1114 vm_object_lock_assert_exclusive(object);
1115
1116 next_p = (vm_page_t)queue_first(&object->memq);
1117 p_limit = MIN(50, object->resident_page_count);
1118
1119 while (!queue_end(&object->memq, (queue_entry_t)next_p) && --p_limit > 0) {
1120
1121 p = next_p;
1122 next_p = (vm_page_t)queue_next(&next_p->listq);
1123
1124 if (VM_PAGE_WIRED(p) || p->busy || p->cleaning || p->laundry || p->fictitious)
1125 goto move_page_in_obj;
1126
1127 if (p->pmapped || p->dirty || p->precious) {
1128 vm_page_lockspin_queues();
1129
1130 if (p->pmapped) {
1131 int refmod_state;
1132
1133 vm_object_page_grab_pmapped++;
1134
1135 if (p->reference == FALSE || p->dirty == FALSE) {
1136
1137 refmod_state = pmap_get_refmod(p->phys_page);
1138
1139 if (refmod_state & VM_MEM_REFERENCED)
1140 p->reference = TRUE;
1141 if (refmod_state & VM_MEM_MODIFIED) {
1142 SET_PAGE_DIRTY(p, FALSE);
1143 }
1144 }
1145 if (p->dirty == FALSE && p->precious == FALSE) {
1146
1147 refmod_state = pmap_disconnect(p->phys_page);
1148
1149 if (refmod_state & VM_MEM_REFERENCED)
1150 p->reference = TRUE;
1151 if (refmod_state & VM_MEM_MODIFIED) {
1152 SET_PAGE_DIRTY(p, FALSE);
1153 }
1154
1155 if (p->dirty == FALSE)
1156 goto take_page;
1157 }
1158 }
1159 if (p->inactive && p->reference == TRUE) {
1160 vm_page_activate(p);
1161
1162 VM_STAT_INCR(reactivations);
1163 vm_object_page_grab_reactivations++;
1164 }
1165 vm_page_unlock_queues();
1166 move_page_in_obj:
1167 queue_remove(&object->memq, p, vm_page_t, listq);
1168 queue_enter(&object->memq, p, vm_page_t, listq);
1169
1170 p_skipped++;
1171 continue;
1172 }
1173 vm_page_lockspin_queues();
1174 take_page:
1175 vm_page_free_prepare_queues(p);
1176 vm_object_page_grab_returned++;
1177 vm_object_page_grab_skipped += p_skipped;
1178
1179 vm_page_unlock_queues();
1180
1181 vm_page_free_prepare_object(p, TRUE);
1182
1183 return (p);
1184 }
1185 vm_object_page_grab_skipped += p_skipped;
1186 vm_object_page_grab_failed++;
1187
1188 return (NULL);
1189 }
1190
1191
1192
1193 #define EVICT_PREPARE_LIMIT 64
1194 #define EVICT_AGE 10
1195
1196 static clock_sec_t vm_object_cache_aging_ts = 0;
1197
1198 static void
1199 vm_object_cache_remove_locked(
1200 vm_object_t object)
1201 {
1202 queue_remove(&vm_object_cached_list, object, vm_object_t, objq);
1203 object->objq.next = NULL;
1204 object->objq.prev = NULL;
1205
1206 vm_object_cached_count--;
1207 }
1208
1209 void
1210 vm_object_cache_remove(
1211 vm_object_t object)
1212 {
1213 vm_object_cache_lock_spin();
1214
1215 if (object->objq.next || object->objq.prev)
1216 vm_object_cache_remove_locked(object);
1217
1218 vm_object_cache_unlock();
1219 }
1220
1221 void
1222 vm_object_cache_add(
1223 vm_object_t object)
1224 {
1225 clock_sec_t sec;
1226 clock_nsec_t nsec;
1227
1228 if (object->resident_page_count == 0)
1229 return;
1230 clock_get_system_nanotime(&sec, &nsec);
1231
1232 vm_object_cache_lock_spin();
1233
1234 if (object->objq.next == NULL && object->objq.prev == NULL) {
1235 queue_enter(&vm_object_cached_list, object, vm_object_t, objq);
1236 object->vo_cache_ts = sec + EVICT_AGE;
1237 object->vo_cache_pages_to_scan = object->resident_page_count;
1238
1239 vm_object_cached_count++;
1240 vm_object_cache_adds++;
1241 }
1242 vm_object_cache_unlock();
1243 }
1244
1245 int
1246 vm_object_cache_evict(
1247 int num_to_evict,
1248 int max_objects_to_examine)
1249 {
1250 vm_object_t object = VM_OBJECT_NULL;
1251 vm_object_t next_obj = VM_OBJECT_NULL;
1252 vm_page_t local_free_q = VM_PAGE_NULL;
1253 vm_page_t p;
1254 vm_page_t next_p;
1255 int object_cnt = 0;
1256 vm_page_t ep_array[EVICT_PREPARE_LIMIT];
1257 int ep_count;
1258 int ep_limit;
1259 int ep_index;
1260 int ep_freed = 0;
1261 int ep_moved = 0;
1262 uint32_t ep_skipped = 0;
1263 clock_sec_t sec;
1264 clock_nsec_t nsec;
1265
1266 KERNEL_DEBUG(0x13001ec | DBG_FUNC_START, 0, 0, 0, 0, 0);
1267 /*
1268 * do a couple of quick checks to see if it's
1269 * worthwhile grabbing the lock
1270 */
1271 if (queue_empty(&vm_object_cached_list)) {
1272 KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, 0, 0, 0, 0, 0);
1273 return (0);
1274 }
1275 clock_get_system_nanotime(&sec, &nsec);
1276
1277 /*
1278 * the object on the head of the queue has not
1279 * yet sufficiently aged
1280 */
1281 if (sec < vm_object_cache_aging_ts) {
1282 KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, 0, 0, 0, 0, 0);
1283 return (0);
1284 }
1285 /*
1286 * don't need the queue lock to find
1287 * and lock an object on the cached list
1288 */
1289 vm_page_unlock_queues();
1290
1291 vm_object_cache_lock_spin();
1292
1293 for (;;) {
1294 next_obj = (vm_object_t)queue_first(&vm_object_cached_list);
1295
1296 while (!queue_end(&vm_object_cached_list, (queue_entry_t)next_obj) && object_cnt++ < max_objects_to_examine) {
1297
1298 object = next_obj;
1299 next_obj = (vm_object_t)queue_next(&next_obj->objq);
1300
1301 if (sec < object->vo_cache_ts) {
1302 KERNEL_DEBUG(0x130020c, object, object->resident_page_count, object->vo_cache_ts, sec, 0);
1303
1304 vm_object_cache_aging_ts = object->vo_cache_ts;
1305 object = VM_OBJECT_NULL;
1306 break;
1307 }
1308 if (!vm_object_lock_try_scan(object)) {
1309 /*
1310 * just skip over this guy for now... if we find
1311 * an object to steal pages from, we'll revist in a bit...
1312 * hopefully, the lock will have cleared
1313 */
1314 KERNEL_DEBUG(0x13001f8, object, object->resident_page_count, 0, 0, 0);
1315
1316 object = VM_OBJECT_NULL;
1317 continue;
1318 }
1319 if (queue_empty(&object->memq) || object->vo_cache_pages_to_scan == 0) {
1320 /*
1321 * this case really shouldn't happen, but it's not fatal
1322 * so deal with it... if we don't remove the object from
1323 * the list, we'll never move past it.
1324 */
1325 KERNEL_DEBUG(0x13001fc, object, object->resident_page_count, ep_freed, ep_moved, 0);
1326
1327 vm_object_cache_remove_locked(object);
1328 vm_object_unlock(object);
1329 object = VM_OBJECT_NULL;
1330 continue;
1331 }
1332 /*
1333 * we have a locked object with pages...
1334 * time to start harvesting
1335 */
1336 break;
1337 }
1338 vm_object_cache_unlock();
1339
1340 if (object == VM_OBJECT_NULL)
1341 break;
1342
1343 /*
1344 * object is locked at this point and
1345 * has resident pages
1346 */
1347 next_p = (vm_page_t)queue_first(&object->memq);
1348
1349 /*
1350 * break the page scan into 2 pieces to minimize the time spent
1351 * behind the page queue lock...
1352 * the list of pages on these unused objects is likely to be cold
1353 * w/r to the cpu cache which increases the time to scan the list
1354 * tenfold... and we may have a 'run' of pages we can't utilize that
1355 * needs to be skipped over...
1356 */
1357 if ((ep_limit = num_to_evict - (ep_freed + ep_moved)) > EVICT_PREPARE_LIMIT)
1358 ep_limit = EVICT_PREPARE_LIMIT;
1359 ep_count = 0;
1360
1361 while (!queue_end(&object->memq, (queue_entry_t)next_p) && object->vo_cache_pages_to_scan && ep_count < ep_limit) {
1362
1363 p = next_p;
1364 next_p = (vm_page_t)queue_next(&next_p->listq);
1365
1366 object->vo_cache_pages_to_scan--;
1367
1368 if (VM_PAGE_WIRED(p) || p->busy || p->cleaning || p->laundry) {
1369 queue_remove(&object->memq, p, vm_page_t, listq);
1370 queue_enter(&object->memq, p, vm_page_t, listq);
1371
1372 ep_skipped++;
1373 continue;
1374 }
1375 if (p->wpmapped || p->dirty || p->precious) {
1376 queue_remove(&object->memq, p, vm_page_t, listq);
1377 queue_enter(&object->memq, p, vm_page_t, listq);
1378
1379 pmap_clear_reference(p->phys_page);
1380 }
1381 ep_array[ep_count++] = p;
1382 }
1383 KERNEL_DEBUG(0x13001f4 | DBG_FUNC_START, object, object->resident_page_count, ep_freed, ep_moved, 0);
1384
1385 vm_page_lockspin_queues();
1386
1387 for (ep_index = 0; ep_index < ep_count; ep_index++) {
1388
1389 p = ep_array[ep_index];
1390
1391 if (p->wpmapped || p->dirty || p->precious) {
1392 p->reference = FALSE;
1393 p->no_cache = FALSE;
1394
1395 /*
1396 * we've already filtered out pages that are in the laundry
1397 * so if we get here, this page can't be on the pageout queue
1398 */
1399 assert(!p->pageout_queue);
1400
1401 VM_PAGE_QUEUES_REMOVE(p);
1402 VM_PAGE_ENQUEUE_INACTIVE(p, TRUE);
1403
1404 ep_moved++;
1405 } else {
1406 vm_page_free_prepare_queues(p);
1407
1408 assert(p->pageq.next == NULL && p->pageq.prev == NULL);
1409 /*
1410 * Add this page to our list of reclaimed pages,
1411 * to be freed later.
1412 */
1413 p->pageq.next = (queue_entry_t) local_free_q;
1414 local_free_q = p;
1415
1416 ep_freed++;
1417 }
1418 }
1419 vm_page_unlock_queues();
1420
1421 KERNEL_DEBUG(0x13001f4 | DBG_FUNC_END, object, object->resident_page_count, ep_freed, ep_moved, 0);
1422
1423 if (local_free_q) {
1424 vm_page_free_list(local_free_q, TRUE);
1425 local_free_q = VM_PAGE_NULL;
1426 }
1427 if (object->vo_cache_pages_to_scan == 0) {
1428 KERNEL_DEBUG(0x1300208, object, object->resident_page_count, ep_freed, ep_moved, 0);
1429
1430 vm_object_cache_remove(object);
1431
1432 KERNEL_DEBUG(0x13001fc, object, object->resident_page_count, ep_freed, ep_moved, 0);
1433 }
1434 /*
1435 * done with this object
1436 */
1437 vm_object_unlock(object);
1438 object = VM_OBJECT_NULL;
1439
1440 /*
1441 * at this point, we are not holding any locks
1442 */
1443 if ((ep_freed + ep_moved) >= num_to_evict) {
1444 /*
1445 * we've reached our target for the
1446 * number of pages to evict
1447 */
1448 break;
1449 }
1450 vm_object_cache_lock_spin();
1451 }
1452 /*
1453 * put the page queues lock back to the caller's
1454 * idea of it
1455 */
1456 vm_page_lock_queues();
1457
1458 vm_object_cache_pages_freed += ep_freed;
1459 vm_object_cache_pages_moved += ep_moved;
1460 vm_object_cache_pages_skipped += ep_skipped;
1461
1462 KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, ep_freed, 0, 0, 0, 0);
1463 return (ep_freed);
1464 }
1465
1466
1467 #if VM_OBJECT_CACHE
1468 /*
1469 * Check to see whether we really need to trim
1470 * down the cache. If so, remove an object from
1471 * the cache, terminate it, and repeat.
1472 *
1473 * Called with, and returns with, cache lock unlocked.
1474 */
1475 vm_object_t
1476 vm_object_cache_trim(
1477 boolean_t called_from_vm_object_deallocate)
1478 {
1479 register vm_object_t object = VM_OBJECT_NULL;
1480 vm_object_t shadow;
1481
1482 for (;;) {
1483
1484 /*
1485 * If we no longer need to trim the cache,
1486 * then we are done.
1487 */
1488 if (vm_object_cached_count <= vm_object_cached_max)
1489 return VM_OBJECT_NULL;
1490
1491 vm_object_cache_lock();
1492 if (vm_object_cached_count <= vm_object_cached_max) {
1493 vm_object_cache_unlock();
1494 return VM_OBJECT_NULL;
1495 }
1496
1497 /*
1498 * We must trim down the cache, so remove
1499 * the first object in the cache.
1500 */
1501 XPR(XPR_VM_OBJECT,
1502 "vm_object_cache_trim: removing from front of cache (%x, %x)\n",
1503 vm_object_cached_list.next,
1504 vm_object_cached_list.prev, 0, 0, 0);
1505
1506 object = (vm_object_t) queue_first(&vm_object_cached_list);
1507 if(object == (vm_object_t) &vm_object_cached_list) {
1508 /* something's wrong with the calling parameter or */
1509 /* the value of vm_object_cached_count, just fix */
1510 /* and return */
1511 if(vm_object_cached_max < 0)
1512 vm_object_cached_max = 0;
1513 vm_object_cached_count = 0;
1514 vm_object_cache_unlock();
1515 return VM_OBJECT_NULL;
1516 }
1517 vm_object_lock(object);
1518 queue_remove(&vm_object_cached_list, object, vm_object_t,
1519 cached_list);
1520 vm_object_cached_count--;
1521
1522 vm_object_cache_unlock();
1523 /*
1524 * Since this object is in the cache, we know
1525 * that it is initialized and has no references.
1526 * Take a reference to avoid recursive deallocations.
1527 */
1528
1529 assert(object->pager_initialized);
1530 assert(object->ref_count == 0);
1531 vm_object_lock_assert_exclusive(object);
1532 object->ref_count++;
1533
1534 /*
1535 * Terminate the object.
1536 * If the object had a shadow, we let vm_object_deallocate
1537 * deallocate it. "pageout" objects have a shadow, but
1538 * maintain a "paging reference" rather than a normal
1539 * reference.
1540 * (We are careful here to limit recursion.)
1541 */
1542 shadow = object->pageout?VM_OBJECT_NULL:object->shadow;
1543
1544 if(vm_object_terminate(object) != KERN_SUCCESS)
1545 continue;
1546
1547 if (shadow != VM_OBJECT_NULL) {
1548 if (called_from_vm_object_deallocate) {
1549 return shadow;
1550 } else {
1551 vm_object_deallocate(shadow);
1552 }
1553 }
1554 }
1555 }
1556 #endif
1557
1558
1559 /*
1560 * Routine: vm_object_terminate
1561 * Purpose:
1562 * Free all resources associated with a vm_object.
1563 * In/out conditions:
1564 * Upon entry, the object must be locked,
1565 * and the object must have exactly one reference.
1566 *
1567 * The shadow object reference is left alone.
1568 *
1569 * The object must be unlocked if its found that pages
1570 * must be flushed to a backing object. If someone
1571 * manages to map the object while it is being flushed
1572 * the object is returned unlocked and unchanged. Otherwise,
1573 * upon exit, the cache will be unlocked, and the
1574 * object will cease to exist.
1575 */
1576 static kern_return_t
1577 vm_object_terminate(
1578 vm_object_t object)
1579 {
1580 vm_object_t shadow_object;
1581
1582 XPR(XPR_VM_OBJECT, "vm_object_terminate, object 0x%X ref %d\n",
1583 object, object->ref_count, 0, 0, 0);
1584
1585 if (!object->pageout && (!object->temporary || object->can_persist) &&
1586 (object->pager != NULL || object->shadow_severed)) {
1587 /*
1588 * Clear pager_trusted bit so that the pages get yanked
1589 * out of the object instead of cleaned in place. This
1590 * prevents a deadlock in XMM and makes more sense anyway.
1591 */
1592 object->pager_trusted = FALSE;
1593
1594 vm_object_reap_pages(object, REAP_TERMINATE);
1595 }
1596 /*
1597 * Make sure the object isn't already being terminated
1598 */
1599 if (object->terminating) {
1600 vm_object_lock_assert_exclusive(object);
1601 object->ref_count--;
1602 assert(object->ref_count > 0);
1603 vm_object_unlock(object);
1604 return KERN_FAILURE;
1605 }
1606
1607 /*
1608 * Did somebody get a reference to the object while we were
1609 * cleaning it?
1610 */
1611 if (object->ref_count != 1) {
1612 vm_object_lock_assert_exclusive(object);
1613 object->ref_count--;
1614 assert(object->ref_count > 0);
1615 vm_object_res_deallocate(object);
1616 vm_object_unlock(object);
1617 return KERN_FAILURE;
1618 }
1619
1620 /*
1621 * Make sure no one can look us up now.
1622 */
1623
1624 object->terminating = TRUE;
1625 object->alive = FALSE;
1626
1627 if ( !object->internal && (object->objq.next || object->objq.prev))
1628 vm_object_cache_remove(object);
1629
1630 if (object->hashed) {
1631 lck_mtx_t *lck;
1632
1633 lck = vm_object_hash_lock_spin(object->pager);
1634 vm_object_remove(object);
1635 vm_object_hash_unlock(lck);
1636 }
1637 /*
1638 * Detach the object from its shadow if we are the shadow's
1639 * copy. The reference we hold on the shadow must be dropped
1640 * by our caller.
1641 */
1642 if (((shadow_object = object->shadow) != VM_OBJECT_NULL) &&
1643 !(object->pageout)) {
1644 vm_object_lock(shadow_object);
1645 if (shadow_object->copy == object)
1646 shadow_object->copy = VM_OBJECT_NULL;
1647 vm_object_unlock(shadow_object);
1648 }
1649
1650 if (object->paging_in_progress != 0 ||
1651 object->activity_in_progress != 0) {
1652 /*
1653 * There are still some paging_in_progress references
1654 * on this object, meaning that there are some paging
1655 * or other I/O operations in progress for this VM object.
1656 * Such operations take some paging_in_progress references
1657 * up front to ensure that the object doesn't go away, but
1658 * they may also need to acquire a reference on the VM object,
1659 * to map it in kernel space, for example. That means that
1660 * they may end up releasing the last reference on the VM
1661 * object, triggering its termination, while still holding
1662 * paging_in_progress references. Waiting for these
1663 * pending paging_in_progress references to go away here would
1664 * deadlock.
1665 *
1666 * To avoid deadlocking, we'll let the vm_object_reaper_thread
1667 * complete the VM object termination if it still holds
1668 * paging_in_progress references at this point.
1669 *
1670 * No new paging_in_progress should appear now that the
1671 * VM object is "terminating" and not "alive".
1672 */
1673 vm_object_reap_async(object);
1674 vm_object_unlock(object);
1675 /*
1676 * Return KERN_FAILURE to let the caller know that we
1677 * haven't completed the termination and it can't drop this
1678 * object's reference on its shadow object yet.
1679 * The reaper thread will take care of that once it has
1680 * completed this object's termination.
1681 */
1682 return KERN_FAILURE;
1683 }
1684 /*
1685 * complete the VM object termination
1686 */
1687 vm_object_reap(object);
1688 object = VM_OBJECT_NULL;
1689
1690 /*
1691 * the object lock was released by vm_object_reap()
1692 *
1693 * KERN_SUCCESS means that this object has been terminated
1694 * and no longer needs its shadow object but still holds a
1695 * reference on it.
1696 * The caller is responsible for dropping that reference.
1697 * We can't call vm_object_deallocate() here because that
1698 * would create a recursion.
1699 */
1700 return KERN_SUCCESS;
1701 }
1702
1703
1704 /*
1705 * vm_object_reap():
1706 *
1707 * Complete the termination of a VM object after it's been marked
1708 * as "terminating" and "!alive" by vm_object_terminate().
1709 *
1710 * The VM object must be locked by caller.
1711 * The lock will be released on return and the VM object is no longer valid.
1712 */
1713 void
1714 vm_object_reap(
1715 vm_object_t object)
1716 {
1717 memory_object_t pager;
1718
1719 vm_object_lock_assert_exclusive(object);
1720 assert(object->paging_in_progress == 0);
1721 assert(object->activity_in_progress == 0);
1722
1723 vm_object_reap_count++;
1724
1725 pager = object->pager;
1726 object->pager = MEMORY_OBJECT_NULL;
1727
1728 if (pager != MEMORY_OBJECT_NULL)
1729 memory_object_control_disable(object->pager_control);
1730
1731 object->ref_count--;
1732 #if TASK_SWAPPER
1733 assert(object->res_count == 0);
1734 #endif /* TASK_SWAPPER */
1735
1736 assert (object->ref_count == 0);
1737
1738 /*
1739 * remove from purgeable queue if it's on
1740 */
1741 if (object->internal && (object->objq.next || object->objq.prev)) {
1742 purgeable_q_t queue = vm_purgeable_object_remove(object);
1743 assert(queue);
1744
1745 if (object->purgeable_when_ripe) {
1746 /*
1747 * Must take page lock for this -
1748 * using it to protect token queue
1749 */
1750 vm_page_lock_queues();
1751 vm_purgeable_token_delete_first(queue);
1752
1753 assert(queue->debug_count_objects>=0);
1754 vm_page_unlock_queues();
1755 }
1756 }
1757
1758 /*
1759 * Clean or free the pages, as appropriate.
1760 * It is possible for us to find busy/absent pages,
1761 * if some faults on this object were aborted.
1762 */
1763 if (object->pageout) {
1764 assert(object->shadow != VM_OBJECT_NULL);
1765
1766 vm_pageout_object_terminate(object);
1767
1768 } else if (((object->temporary && !object->can_persist) || (pager == MEMORY_OBJECT_NULL))) {
1769
1770 vm_object_reap_pages(object, REAP_REAP);
1771 }
1772 assert(queue_empty(&object->memq));
1773 assert(object->paging_in_progress == 0);
1774 assert(object->activity_in_progress == 0);
1775 assert(object->ref_count == 0);
1776
1777 /*
1778 * If the pager has not already been released by
1779 * vm_object_destroy, we need to terminate it and
1780 * release our reference to it here.
1781 */
1782 if (pager != MEMORY_OBJECT_NULL) {
1783 vm_object_unlock(object);
1784 vm_object_release_pager(pager, object->hashed);
1785 vm_object_lock(object);
1786 }
1787
1788 /* kick off anyone waiting on terminating */
1789 object->terminating = FALSE;
1790 vm_object_paging_begin(object);
1791 vm_object_paging_end(object);
1792 vm_object_unlock(object);
1793
1794 #if MACH_PAGEMAP
1795 vm_external_destroy(object->existence_map, object->vo_size);
1796 #endif /* MACH_PAGEMAP */
1797
1798 object->shadow = VM_OBJECT_NULL;
1799
1800 vm_object_lock_destroy(object);
1801 /*
1802 * Free the space for the object.
1803 */
1804 zfree(vm_object_zone, object);
1805 object = VM_OBJECT_NULL;
1806 }
1807
1808
1809 unsigned int vm_max_batch = 256;
1810
1811 #define V_O_R_MAX_BATCH 128
1812
1813 #define BATCH_LIMIT(max) (vm_max_batch >= max ? max : vm_max_batch)
1814
1815
1816 #define VM_OBJ_REAP_FREELIST(_local_free_q, do_disconnect) \
1817 MACRO_BEGIN \
1818 if (_local_free_q) { \
1819 if (do_disconnect) { \
1820 vm_page_t m; \
1821 for (m = _local_free_q; \
1822 m != VM_PAGE_NULL; \
1823 m = (vm_page_t) m->pageq.next) { \
1824 if (m->pmapped) { \
1825 pmap_disconnect(m->phys_page); \
1826 } \
1827 } \
1828 } \
1829 vm_page_free_list(_local_free_q, TRUE); \
1830 _local_free_q = VM_PAGE_NULL; \
1831 } \
1832 MACRO_END
1833
1834
1835 void
1836 vm_object_reap_pages(
1837 vm_object_t object,
1838 int reap_type)
1839 {
1840 vm_page_t p;
1841 vm_page_t next;
1842 vm_page_t local_free_q = VM_PAGE_NULL;
1843 int loop_count;
1844 boolean_t disconnect_on_release;
1845 pmap_flush_context pmap_flush_context_storage;
1846
1847 if (reap_type == REAP_DATA_FLUSH) {
1848 /*
1849 * We need to disconnect pages from all pmaps before
1850 * releasing them to the free list
1851 */
1852 disconnect_on_release = TRUE;
1853 } else {
1854 /*
1855 * Either the caller has already disconnected the pages
1856 * from all pmaps, or we disconnect them here as we add
1857 * them to out local list of pages to be released.
1858 * No need to re-disconnect them when we release the pages
1859 * to the free list.
1860 */
1861 disconnect_on_release = FALSE;
1862 }
1863
1864 restart_after_sleep:
1865 if (queue_empty(&object->memq))
1866 return;
1867 loop_count = BATCH_LIMIT(V_O_R_MAX_BATCH);
1868
1869 if (reap_type == REAP_PURGEABLE)
1870 pmap_flush_context_init(&pmap_flush_context_storage);
1871
1872 vm_page_lockspin_queues();
1873
1874 next = (vm_page_t)queue_first(&object->memq);
1875
1876 while (!queue_end(&object->memq, (queue_entry_t)next)) {
1877
1878 p = next;
1879 next = (vm_page_t)queue_next(&next->listq);
1880
1881 if (--loop_count == 0) {
1882
1883 vm_page_unlock_queues();
1884
1885 if (local_free_q) {
1886
1887 if (reap_type == REAP_PURGEABLE) {
1888 pmap_flush(&pmap_flush_context_storage);
1889 pmap_flush_context_init(&pmap_flush_context_storage);
1890 }
1891 /*
1892 * Free the pages we reclaimed so far
1893 * and take a little break to avoid
1894 * hogging the page queue lock too long
1895 */
1896 VM_OBJ_REAP_FREELIST(local_free_q,
1897 disconnect_on_release);
1898 } else
1899 mutex_pause(0);
1900
1901 loop_count = BATCH_LIMIT(V_O_R_MAX_BATCH);
1902
1903 vm_page_lockspin_queues();
1904 }
1905 if (reap_type == REAP_DATA_FLUSH || reap_type == REAP_TERMINATE) {
1906
1907 if (p->busy || p->cleaning) {
1908
1909 vm_page_unlock_queues();
1910 /*
1911 * free the pages reclaimed so far
1912 */
1913 VM_OBJ_REAP_FREELIST(local_free_q,
1914 disconnect_on_release);
1915
1916 PAGE_SLEEP(object, p, THREAD_UNINT);
1917
1918 goto restart_after_sleep;
1919 }
1920 if (p->laundry) {
1921 p->pageout = FALSE;
1922
1923 vm_pageout_steal_laundry(p, TRUE);
1924 }
1925 }
1926 switch (reap_type) {
1927
1928 case REAP_DATA_FLUSH:
1929 if (VM_PAGE_WIRED(p)) {
1930 /*
1931 * this is an odd case... perhaps we should
1932 * zero-fill this page since we're conceptually
1933 * tossing its data at this point, but leaving
1934 * it on the object to honor the 'wire' contract
1935 */
1936 continue;
1937 }
1938 break;
1939
1940 case REAP_PURGEABLE:
1941 if (VM_PAGE_WIRED(p)) {
1942 /*
1943 * can't purge a wired page
1944 */
1945 vm_page_purged_wired++;
1946 continue;
1947 }
1948 if (p->laundry && !p->busy && !p->cleaning) {
1949 p->pageout = FALSE;
1950
1951 vm_pageout_steal_laundry(p, TRUE);
1952 }
1953 if (p->cleaning || p->laundry) {
1954 /*
1955 * page is being acted upon,
1956 * so don't mess with it
1957 */
1958 vm_page_purged_others++;
1959 continue;
1960 }
1961 if (p->busy) {
1962 /*
1963 * We can't reclaim a busy page but we can
1964 * make it more likely to be paged (it's not wired) to make
1965 * sure that it gets considered by
1966 * vm_pageout_scan() later.
1967 */
1968 vm_page_deactivate(p);
1969 vm_page_purged_busy++;
1970 continue;
1971 }
1972
1973 assert(p->object != kernel_object);
1974
1975 /*
1976 * we can discard this page...
1977 */
1978 if (p->pmapped == TRUE) {
1979 /*
1980 * unmap the page
1981 */
1982 pmap_disconnect_options(p->phys_page, PMAP_OPTIONS_NOFLUSH | PMAP_OPTIONS_NOREFMOD, (void *)&pmap_flush_context_storage);
1983 }
1984 vm_page_purged_count++;
1985
1986 break;
1987
1988 case REAP_TERMINATE:
1989 if (p->absent || p->private) {
1990 /*
1991 * For private pages, VM_PAGE_FREE just
1992 * leaves the page structure around for
1993 * its owner to clean up. For absent
1994 * pages, the structure is returned to
1995 * the appropriate pool.
1996 */
1997 break;
1998 }
1999 if (p->fictitious) {
2000 assert (p->phys_page == vm_page_guard_addr);
2001 break;
2002 }
2003 if (!p->dirty && p->wpmapped)
2004 p->dirty = pmap_is_modified(p->phys_page);
2005
2006 if ((p->dirty || p->precious) && !p->error && object->alive) {
2007
2008 if (!p->laundry) {
2009 VM_PAGE_QUEUES_REMOVE(p);
2010 /*
2011 * flush page... page will be freed
2012 * upon completion of I/O
2013 */
2014 vm_pageout_cluster(p, TRUE);
2015 }
2016 vm_page_unlock_queues();
2017 /*
2018 * free the pages reclaimed so far
2019 */
2020 VM_OBJ_REAP_FREELIST(local_free_q,
2021 disconnect_on_release);
2022
2023 vm_object_paging_wait(object, THREAD_UNINT);
2024
2025 goto restart_after_sleep;
2026 }
2027 break;
2028
2029 case REAP_REAP:
2030 break;
2031 }
2032 vm_page_free_prepare_queues(p);
2033 assert(p->pageq.next == NULL && p->pageq.prev == NULL);
2034 /*
2035 * Add this page to our list of reclaimed pages,
2036 * to be freed later.
2037 */
2038 p->pageq.next = (queue_entry_t) local_free_q;
2039 local_free_q = p;
2040 }
2041 vm_page_unlock_queues();
2042
2043 /*
2044 * Free the remaining reclaimed pages
2045 */
2046 if (reap_type == REAP_PURGEABLE)
2047 pmap_flush(&pmap_flush_context_storage);
2048
2049 VM_OBJ_REAP_FREELIST(local_free_q,
2050 disconnect_on_release);
2051 }
2052
2053
2054 void
2055 vm_object_reap_async(
2056 vm_object_t object)
2057 {
2058 vm_object_lock_assert_exclusive(object);
2059
2060 vm_object_reaper_lock_spin();
2061
2062 vm_object_reap_count_async++;
2063
2064 /* enqueue the VM object... */
2065 queue_enter(&vm_object_reaper_queue, object,
2066 vm_object_t, cached_list);
2067
2068 vm_object_reaper_unlock();
2069
2070 /* ... and wake up the reaper thread */
2071 thread_wakeup((event_t) &vm_object_reaper_queue);
2072 }
2073
2074
2075 void
2076 vm_object_reaper_thread(void)
2077 {
2078 vm_object_t object, shadow_object;
2079
2080 vm_object_reaper_lock_spin();
2081
2082 while (!queue_empty(&vm_object_reaper_queue)) {
2083 queue_remove_first(&vm_object_reaper_queue,
2084 object,
2085 vm_object_t,
2086 cached_list);
2087
2088 vm_object_reaper_unlock();
2089 vm_object_lock(object);
2090
2091 assert(object->terminating);
2092 assert(!object->alive);
2093
2094 /*
2095 * The pageout daemon might be playing with our pages.
2096 * Now that the object is dead, it won't touch any more
2097 * pages, but some pages might already be on their way out.
2098 * Hence, we wait until the active paging activities have
2099 * ceased before we break the association with the pager
2100 * itself.
2101 */
2102 while (object->paging_in_progress != 0 ||
2103 object->activity_in_progress != 0) {
2104 vm_object_wait(object,
2105 VM_OBJECT_EVENT_PAGING_IN_PROGRESS,
2106 THREAD_UNINT);
2107 vm_object_lock(object);
2108 }
2109
2110 shadow_object =
2111 object->pageout ? VM_OBJECT_NULL : object->shadow;
2112
2113 vm_object_reap(object);
2114 /* cache is unlocked and object is no longer valid */
2115 object = VM_OBJECT_NULL;
2116
2117 if (shadow_object != VM_OBJECT_NULL) {
2118 /*
2119 * Drop the reference "object" was holding on
2120 * its shadow object.
2121 */
2122 vm_object_deallocate(shadow_object);
2123 shadow_object = VM_OBJECT_NULL;
2124 }
2125 vm_object_reaper_lock_spin();
2126 }
2127
2128 /* wait for more work... */
2129 assert_wait((event_t) &vm_object_reaper_queue, THREAD_UNINT);
2130
2131 vm_object_reaper_unlock();
2132
2133 thread_block((thread_continue_t) vm_object_reaper_thread);
2134 /*NOTREACHED*/
2135 }
2136
2137 /*
2138 * Routine: vm_object_pager_wakeup
2139 * Purpose: Wake up anyone waiting for termination of a pager.
2140 */
2141
2142 static void
2143 vm_object_pager_wakeup(
2144 memory_object_t pager)
2145 {
2146 vm_object_hash_entry_t entry;
2147 boolean_t waiting = FALSE;
2148 lck_mtx_t *lck;
2149
2150 /*
2151 * If anyone was waiting for the memory_object_terminate
2152 * to be queued, wake them up now.
2153 */
2154 lck = vm_object_hash_lock_spin(pager);
2155 entry = vm_object_hash_lookup(pager, TRUE);
2156 if (entry != VM_OBJECT_HASH_ENTRY_NULL)
2157 waiting = entry->waiting;
2158 vm_object_hash_unlock(lck);
2159
2160 if (entry != VM_OBJECT_HASH_ENTRY_NULL) {
2161 if (waiting)
2162 thread_wakeup((event_t) pager);
2163 vm_object_hash_entry_free(entry);
2164 }
2165 }
2166
2167 /*
2168 * Routine: vm_object_release_pager
2169 * Purpose: Terminate the pager and, upon completion,
2170 * release our last reference to it.
2171 * just like memory_object_terminate, except
2172 * that we wake up anyone blocked in vm_object_enter
2173 * waiting for termination message to be queued
2174 * before calling memory_object_init.
2175 */
2176 static void
2177 vm_object_release_pager(
2178 memory_object_t pager,
2179 boolean_t hashed)
2180 {
2181
2182 /*
2183 * Terminate the pager.
2184 */
2185
2186 (void) memory_object_terminate(pager);
2187
2188 if (hashed == TRUE) {
2189 /*
2190 * Wakeup anyone waiting for this terminate
2191 * and remove the entry from the hash
2192 */
2193 vm_object_pager_wakeup(pager);
2194 }
2195 /*
2196 * Release reference to pager.
2197 */
2198 memory_object_deallocate(pager);
2199 }
2200
2201 /*
2202 * Routine: vm_object_destroy
2203 * Purpose:
2204 * Shut down a VM object, despite the
2205 * presence of address map (or other) references
2206 * to the vm_object.
2207 */
2208 kern_return_t
2209 vm_object_destroy(
2210 vm_object_t object,
2211 __unused kern_return_t reason)
2212 {
2213 memory_object_t old_pager;
2214
2215 if (object == VM_OBJECT_NULL)
2216 return(KERN_SUCCESS);
2217
2218 /*
2219 * Remove the pager association immediately.
2220 *
2221 * This will prevent the memory manager from further
2222 * meddling. [If it wanted to flush data or make
2223 * other changes, it should have done so before performing
2224 * the destroy call.]
2225 */
2226
2227 vm_object_lock(object);
2228 object->can_persist = FALSE;
2229 object->named = FALSE;
2230 object->alive = FALSE;
2231
2232 if (object->hashed) {
2233 lck_mtx_t *lck;
2234 /*
2235 * Rip out the pager from the vm_object now...
2236 */
2237 lck = vm_object_hash_lock_spin(object->pager);
2238 vm_object_remove(object);
2239 vm_object_hash_unlock(lck);
2240 }
2241 old_pager = object->pager;
2242 object->pager = MEMORY_OBJECT_NULL;
2243 if (old_pager != MEMORY_OBJECT_NULL)
2244 memory_object_control_disable(object->pager_control);
2245
2246 /*
2247 * Wait for the existing paging activity (that got
2248 * through before we nulled out the pager) to subside.
2249 */
2250
2251 vm_object_paging_wait(object, THREAD_UNINT);
2252 vm_object_unlock(object);
2253
2254 /*
2255 * Terminate the object now.
2256 */
2257 if (old_pager != MEMORY_OBJECT_NULL) {
2258 vm_object_release_pager(old_pager, object->hashed);
2259
2260 /*
2261 * JMM - Release the caller's reference. This assumes the
2262 * caller had a reference to release, which is a big (but
2263 * currently valid) assumption if this is driven from the
2264 * vnode pager (it is holding a named reference when making
2265 * this call)..
2266 */
2267 vm_object_deallocate(object);
2268
2269 }
2270 return(KERN_SUCCESS);
2271 }
2272
2273
2274 #if VM_OBJECT_CACHE
2275
2276 #define VM_OBJ_DEACT_ALL_STATS DEBUG
2277 #if VM_OBJ_DEACT_ALL_STATS
2278 uint32_t vm_object_deactivate_all_pages_batches = 0;
2279 uint32_t vm_object_deactivate_all_pages_pages = 0;
2280 #endif /* VM_OBJ_DEACT_ALL_STATS */
2281 /*
2282 * vm_object_deactivate_all_pages
2283 *
2284 * Deactivate all pages in the specified object. (Keep its pages
2285 * in memory even though it is no longer referenced.)
2286 *
2287 * The object must be locked.
2288 */
2289 static void
2290 vm_object_deactivate_all_pages(
2291 register vm_object_t object)
2292 {
2293 register vm_page_t p;
2294 int loop_count;
2295 #if VM_OBJ_DEACT_ALL_STATS
2296 int pages_count;
2297 #endif /* VM_OBJ_DEACT_ALL_STATS */
2298 #define V_O_D_A_P_MAX_BATCH 256
2299
2300 loop_count = BATCH_LIMIT(V_O_D_A_P_MAX_BATCH);
2301 #if VM_OBJ_DEACT_ALL_STATS
2302 pages_count = 0;
2303 #endif /* VM_OBJ_DEACT_ALL_STATS */
2304 vm_page_lock_queues();
2305 queue_iterate(&object->memq, p, vm_page_t, listq) {
2306 if (--loop_count == 0) {
2307 #if VM_OBJ_DEACT_ALL_STATS
2308 hw_atomic_add(&vm_object_deactivate_all_pages_batches,
2309 1);
2310 hw_atomic_add(&vm_object_deactivate_all_pages_pages,
2311 pages_count);
2312 pages_count = 0;
2313 #endif /* VM_OBJ_DEACT_ALL_STATS */
2314 lck_mtx_yield(&vm_page_queue_lock);
2315 loop_count = BATCH_LIMIT(V_O_D_A_P_MAX_BATCH);
2316 }
2317 if (!p->busy && !p->throttled) {
2318 #if VM_OBJ_DEACT_ALL_STATS
2319 pages_count++;
2320 #endif /* VM_OBJ_DEACT_ALL_STATS */
2321 vm_page_deactivate(p);
2322 }
2323 }
2324 #if VM_OBJ_DEACT_ALL_STATS
2325 if (pages_count) {
2326 hw_atomic_add(&vm_object_deactivate_all_pages_batches, 1);
2327 hw_atomic_add(&vm_object_deactivate_all_pages_pages,
2328 pages_count);
2329 pages_count = 0;
2330 }
2331 #endif /* VM_OBJ_DEACT_ALL_STATS */
2332 vm_page_unlock_queues();
2333 }
2334 #endif /* VM_OBJECT_CACHE */
2335
2336
2337
2338 /*
2339 * The "chunk" macros are used by routines below when looking for pages to deactivate. These
2340 * exist because of the need to handle shadow chains. When deactivating pages, we only
2341 * want to deactive the ones at the top most level in the object chain. In order to do
2342 * this efficiently, the specified address range is divided up into "chunks" and we use
2343 * a bit map to keep track of which pages have already been processed as we descend down
2344 * the shadow chain. These chunk macros hide the details of the bit map implementation
2345 * as much as we can.
2346 *
2347 * For convenience, we use a 64-bit data type as the bit map, and therefore a chunk is
2348 * set to 64 pages. The bit map is indexed from the low-order end, so that the lowest
2349 * order bit represents page 0 in the current range and highest order bit represents
2350 * page 63.
2351 *
2352 * For further convenience, we also use negative logic for the page state in the bit map.
2353 * The bit is set to 1 to indicate it has not yet been seen, and to 0 to indicate it has
2354 * been processed. This way we can simply test the 64-bit long word to see if it's zero
2355 * to easily tell if the whole range has been processed. Therefore, the bit map starts
2356 * out with all the bits set. The macros below hide all these details from the caller.
2357 */
2358
2359 #define PAGES_IN_A_CHUNK 64 /* The number of pages in the chunk must */
2360 /* be the same as the number of bits in */
2361 /* the chunk_state_t type. We use 64 */
2362 /* just for convenience. */
2363
2364 #define CHUNK_SIZE (PAGES_IN_A_CHUNK * PAGE_SIZE_64) /* Size of a chunk in bytes */
2365
2366 typedef uint64_t chunk_state_t;
2367
2368 /*
2369 * The bit map uses negative logic, so we start out with all 64 bits set to indicate
2370 * that no pages have been processed yet. Also, if len is less than the full CHUNK_SIZE,
2371 * then we mark pages beyond the len as having been "processed" so that we don't waste time
2372 * looking at pages in that range. This can save us from unnecessarily chasing down the
2373 * shadow chain.
2374 */
2375
2376 #define CHUNK_INIT(c, len) \
2377 MACRO_BEGIN \
2378 uint64_t p; \
2379 \
2380 (c) = 0xffffffffffffffffLL; \
2381 \
2382 for (p = (len) / PAGE_SIZE_64; p < PAGES_IN_A_CHUNK; p++) \
2383 MARK_PAGE_HANDLED(c, p); \
2384 MACRO_END
2385
2386
2387 /*
2388 * Return true if all pages in the chunk have not yet been processed.
2389 */
2390
2391 #define CHUNK_NOT_COMPLETE(c) ((c) != 0)
2392
2393 /*
2394 * Return true if the page at offset 'p' in the bit map has already been handled
2395 * while processing a higher level object in the shadow chain.
2396 */
2397
2398 #define PAGE_ALREADY_HANDLED(c, p) (((c) & (1LL << (p))) == 0)
2399
2400 /*
2401 * Mark the page at offset 'p' in the bit map as having been processed.
2402 */
2403
2404 #define MARK_PAGE_HANDLED(c, p) \
2405 MACRO_BEGIN \
2406 (c) = (c) & ~(1LL << (p)); \
2407 MACRO_END
2408
2409
2410 /*
2411 * Return true if the page at the given offset has been paged out. Object is
2412 * locked upon entry and returned locked.
2413 */
2414
2415 static boolean_t
2416 page_is_paged_out(
2417 vm_object_t object,
2418 vm_object_offset_t offset)
2419 {
2420 kern_return_t kr;
2421 memory_object_t pager;
2422
2423 /*
2424 * Check the existence map for the page if we have one, otherwise
2425 * ask the pager about this page.
2426 */
2427
2428 #if MACH_PAGEMAP
2429 if (object->existence_map) {
2430 if (vm_external_state_get(object->existence_map, offset)
2431 == VM_EXTERNAL_STATE_EXISTS) {
2432 /*
2433 * We found the page
2434 */
2435
2436 return TRUE;
2437 }
2438 } else
2439 #endif /* MACH_PAGEMAP */
2440 if (object->internal &&
2441 object->alive &&
2442 !object->terminating &&
2443 object->pager_ready) {
2444
2445 if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) {
2446 if (VM_COMPRESSOR_PAGER_STATE_GET(object, offset)
2447 == VM_EXTERNAL_STATE_EXISTS) {
2448 return TRUE;
2449 } else {
2450 return FALSE;
2451 }
2452 }
2453
2454 /*
2455 * We're already holding a "paging in progress" reference
2456 * so the object can't disappear when we release the lock.
2457 */
2458
2459 assert(object->paging_in_progress);
2460 pager = object->pager;
2461 vm_object_unlock(object);
2462
2463 kr = memory_object_data_request(
2464 pager,
2465 offset + object->paging_offset,
2466 0, /* just poke the pager */
2467 VM_PROT_READ,
2468 NULL);
2469
2470 vm_object_lock(object);
2471
2472 if (kr == KERN_SUCCESS) {
2473
2474 /*
2475 * We found the page
2476 */
2477
2478 return TRUE;
2479 }
2480 }
2481
2482 return FALSE;
2483 }
2484
2485
2486
2487 /*
2488 * madvise_free_debug
2489 *
2490 * To help debug madvise(MADV_FREE*) mis-usage, this triggers a
2491 * zero-fill as soon as a page is affected by a madvise(MADV_FREE*), to
2492 * simulate the loss of the page's contents as if the page had been
2493 * reclaimed and then re-faulted.
2494 */
2495 #if DEVELOPMENT || DEBUG
2496 int madvise_free_debug = 1;
2497 #else /* DEBUG */
2498 int madvise_free_debug = 0;
2499 #endif /* DEBUG */
2500
2501 /*
2502 * Deactivate the pages in the specified object and range. If kill_page is set, also discard any
2503 * page modified state from the pmap. Update the chunk_state as we go along. The caller must specify
2504 * a size that is less than or equal to the CHUNK_SIZE.
2505 */
2506
2507 static void
2508 deactivate_pages_in_object(
2509 vm_object_t object,
2510 vm_object_offset_t offset,
2511 vm_object_size_t size,
2512 boolean_t kill_page,
2513 boolean_t reusable_page,
2514 boolean_t all_reusable,
2515 chunk_state_t *chunk_state,
2516 pmap_flush_context *pfc)
2517 {
2518 vm_page_t m;
2519 int p;
2520 struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT];
2521 struct vm_page_delayed_work *dwp;
2522 int dw_count;
2523 int dw_limit;
2524 unsigned int reusable = 0;
2525
2526 /*
2527 * Examine each page in the chunk. The variable 'p' is the page number relative to the start of the
2528 * chunk. Since this routine is called once for each level in the shadow chain, the chunk_state may
2529 * have pages marked as having been processed already. We stop the loop early if we find we've handled
2530 * all the pages in the chunk.
2531 */
2532
2533 dwp = &dw_array[0];
2534 dw_count = 0;
2535 dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
2536
2537 for(p = 0; size && CHUNK_NOT_COMPLETE(*chunk_state); p++, size -= PAGE_SIZE_64, offset += PAGE_SIZE_64) {
2538
2539 /*
2540 * If this offset has already been found and handled in a higher level object, then don't
2541 * do anything with it in the current shadow object.
2542 */
2543
2544 if (PAGE_ALREADY_HANDLED(*chunk_state, p))
2545 continue;
2546
2547 /*
2548 * See if the page at this offset is around. First check to see if the page is resident,
2549 * then if not, check the existence map or with the pager.
2550 */
2551
2552 if ((m = vm_page_lookup(object, offset)) != VM_PAGE_NULL) {
2553
2554 /*
2555 * We found a page we were looking for. Mark it as "handled" now in the chunk_state
2556 * so that we won't bother looking for a page at this offset again if there are more
2557 * shadow objects. Then deactivate the page.
2558 */
2559
2560 MARK_PAGE_HANDLED(*chunk_state, p);
2561
2562 if (( !VM_PAGE_WIRED(m)) && (!m->private) && (!m->gobbled) && (!m->busy) && (!m->laundry)) {
2563 int clear_refmod;
2564
2565 dwp->dw_mask = 0;
2566
2567 clear_refmod = VM_MEM_REFERENCED;
2568 dwp->dw_mask |= DW_clear_reference;
2569
2570 if ((kill_page) && (object->internal)) {
2571 if (madvise_free_debug) {
2572 /*
2573 * zero-fill the page now
2574 * to simulate it being
2575 * reclaimed and re-faulted.
2576 */
2577 pmap_zero_page(m->phys_page);
2578 }
2579 m->precious = FALSE;
2580 m->dirty = FALSE;
2581
2582 clear_refmod |= VM_MEM_MODIFIED;
2583 if (m->throttled) {
2584 /*
2585 * This page is now clean and
2586 * reclaimable. Move it out
2587 * of the throttled queue, so
2588 * that vm_pageout_scan() can
2589 * find it.
2590 */
2591 dwp->dw_mask |= DW_move_page;
2592 }
2593 #if MACH_PAGEMAP
2594 vm_external_state_clr(object->existence_map, offset);
2595 #endif /* MACH_PAGEMAP */
2596 VM_COMPRESSOR_PAGER_STATE_CLR(object,
2597 offset);
2598
2599 if (reusable_page && !m->reusable) {
2600 assert(!all_reusable);
2601 assert(!object->all_reusable);
2602 m->reusable = TRUE;
2603 object->reusable_page_count++;
2604 assert(object->resident_page_count >= object->reusable_page_count);
2605 reusable++;
2606 }
2607 }
2608 pmap_clear_refmod_options(m->phys_page, clear_refmod, PMAP_OPTIONS_NOFLUSH, (void *)pfc);
2609
2610 if (!m->throttled && !(reusable_page || all_reusable))
2611 dwp->dw_mask |= DW_move_page;
2612
2613 if (dwp->dw_mask)
2614 VM_PAGE_ADD_DELAYED_WORK(dwp, m,
2615 dw_count);
2616
2617 if (dw_count >= dw_limit) {
2618 if (reusable) {
2619 OSAddAtomic(reusable,
2620 &vm_page_stats_reusable.reusable_count);
2621 vm_page_stats_reusable.reusable += reusable;
2622 reusable = 0;
2623 }
2624 vm_page_do_delayed_work(object, &dw_array[0], dw_count);
2625
2626 dwp = &dw_array[0];
2627 dw_count = 0;
2628 }
2629 }
2630
2631 } else {
2632
2633 /*
2634 * The page at this offset isn't memory resident, check to see if it's
2635 * been paged out. If so, mark it as handled so we don't bother looking
2636 * for it in the shadow chain.
2637 */
2638
2639 if (page_is_paged_out(object, offset)) {
2640 MARK_PAGE_HANDLED(*chunk_state, p);
2641
2642 /*
2643 * If we're killing a non-resident page, then clear the page in the existence
2644 * map so we don't bother paging it back in if it's touched again in the future.
2645 */
2646
2647 if ((kill_page) && (object->internal)) {
2648 #if MACH_PAGEMAP
2649 vm_external_state_clr(object->existence_map, offset);
2650 #endif /* MACH_PAGEMAP */
2651 VM_COMPRESSOR_PAGER_STATE_CLR(object,
2652 offset);
2653 }
2654 }
2655 }
2656 }
2657
2658 if (reusable) {
2659 OSAddAtomic(reusable, &vm_page_stats_reusable.reusable_count);
2660 vm_page_stats_reusable.reusable += reusable;
2661 reusable = 0;
2662 }
2663
2664 if (dw_count)
2665 vm_page_do_delayed_work(object, &dw_array[0], dw_count);
2666 }
2667
2668
2669 /*
2670 * Deactive a "chunk" of the given range of the object starting at offset. A "chunk"
2671 * will always be less than or equal to the given size. The total range is divided up
2672 * into chunks for efficiency and performance related to the locks and handling the shadow
2673 * chain. This routine returns how much of the given "size" it actually processed. It's
2674 * up to the caler to loop and keep calling this routine until the entire range they want
2675 * to process has been done.
2676 */
2677
2678 static vm_object_size_t
2679 deactivate_a_chunk(
2680 vm_object_t orig_object,
2681 vm_object_offset_t offset,
2682 vm_object_size_t size,
2683 boolean_t kill_page,
2684 boolean_t reusable_page,
2685 boolean_t all_reusable,
2686 pmap_flush_context *pfc)
2687 {
2688 vm_object_t object;
2689 vm_object_t tmp_object;
2690 vm_object_size_t length;
2691 chunk_state_t chunk_state;
2692
2693
2694 /*
2695 * Get set to do a chunk. We'll do up to CHUNK_SIZE, but no more than the
2696 * remaining size the caller asked for.
2697 */
2698
2699 length = MIN(size, CHUNK_SIZE);
2700
2701 /*
2702 * The chunk_state keeps track of which pages we've already processed if there's
2703 * a shadow chain on this object. At this point, we haven't done anything with this
2704 * range of pages yet, so initialize the state to indicate no pages processed yet.
2705 */
2706
2707 CHUNK_INIT(chunk_state, length);
2708 object = orig_object;
2709
2710 /*
2711 * Start at the top level object and iterate around the loop once for each object
2712 * in the shadow chain. We stop processing early if we've already found all the pages
2713 * in the range. Otherwise we stop when we run out of shadow objects.
2714 */
2715
2716 while (object && CHUNK_NOT_COMPLETE(chunk_state)) {
2717 vm_object_paging_begin(object);
2718
2719 deactivate_pages_in_object(object, offset, length, kill_page, reusable_page, all_reusable, &chunk_state, pfc);
2720
2721 vm_object_paging_end(object);
2722
2723 /*
2724 * We've finished with this object, see if there's a shadow object. If
2725 * there is, update the offset and lock the new object. We also turn off
2726 * kill_page at this point since we only kill pages in the top most object.
2727 */
2728
2729 tmp_object = object->shadow;
2730
2731 if (tmp_object) {
2732 kill_page = FALSE;
2733 reusable_page = FALSE;
2734 all_reusable = FALSE;
2735 offset += object->vo_shadow_offset;
2736 vm_object_lock(tmp_object);
2737 }
2738
2739 if (object != orig_object)
2740 vm_object_unlock(object);
2741
2742 object = tmp_object;
2743 }
2744
2745 if (object && object != orig_object)
2746 vm_object_unlock(object);
2747
2748 return length;
2749 }
2750
2751
2752
2753 /*
2754 * Move any resident pages in the specified range to the inactive queue. If kill_page is set,
2755 * we also clear the modified status of the page and "forget" any changes that have been made
2756 * to the page.
2757 */
2758
2759 __private_extern__ void
2760 vm_object_deactivate_pages(
2761 vm_object_t object,
2762 vm_object_offset_t offset,
2763 vm_object_size_t size,
2764 boolean_t kill_page,
2765 boolean_t reusable_page)
2766 {
2767 vm_object_size_t length;
2768 boolean_t all_reusable;
2769 pmap_flush_context pmap_flush_context_storage;
2770
2771 /*
2772 * We break the range up into chunks and do one chunk at a time. This is for
2773 * efficiency and performance while handling the shadow chains and the locks.
2774 * The deactivate_a_chunk() function returns how much of the range it processed.
2775 * We keep calling this routine until the given size is exhausted.
2776 */
2777
2778
2779 all_reusable = FALSE;
2780 if (reusable_page &&
2781 object->internal &&
2782 object->vo_size != 0 &&
2783 object->vo_size == size &&
2784 object->reusable_page_count == 0) {
2785 all_reusable = TRUE;
2786 reusable_page = FALSE;
2787 }
2788
2789 if ((reusable_page || all_reusable) && object->all_reusable) {
2790 /* This means MADV_FREE_REUSABLE has been called twice, which
2791 * is probably illegal. */
2792 return;
2793 }
2794
2795 pmap_flush_context_init(&pmap_flush_context_storage);
2796
2797 while (size) {
2798 length = deactivate_a_chunk(object, offset, size, kill_page, reusable_page, all_reusable, &pmap_flush_context_storage);
2799
2800 size -= length;
2801 offset += length;
2802 }
2803 pmap_flush(&pmap_flush_context_storage);
2804
2805 if (all_reusable) {
2806 if (!object->all_reusable) {
2807 unsigned int reusable;
2808
2809 object->all_reusable = TRUE;
2810 assert(object->reusable_page_count == 0);
2811 /* update global stats */
2812 reusable = object->resident_page_count;
2813 OSAddAtomic(reusable,
2814 &vm_page_stats_reusable.reusable_count);
2815 vm_page_stats_reusable.reusable += reusable;
2816 vm_page_stats_reusable.all_reusable_calls++;
2817 }
2818 } else if (reusable_page) {
2819 vm_page_stats_reusable.partial_reusable_calls++;
2820 }
2821 }
2822
2823 void
2824 vm_object_reuse_pages(
2825 vm_object_t object,
2826 vm_object_offset_t start_offset,
2827 vm_object_offset_t end_offset,
2828 boolean_t allow_partial_reuse)
2829 {
2830 vm_object_offset_t cur_offset;
2831 vm_page_t m;
2832 unsigned int reused, reusable;
2833
2834 #define VM_OBJECT_REUSE_PAGE(object, m, reused) \
2835 MACRO_BEGIN \
2836 if ((m) != VM_PAGE_NULL && \
2837 (m)->reusable) { \
2838 assert((object)->reusable_page_count <= \
2839 (object)->resident_page_count); \
2840 assert((object)->reusable_page_count > 0); \
2841 (object)->reusable_page_count--; \
2842 (m)->reusable = FALSE; \
2843 (reused)++; \
2844 } \
2845 MACRO_END
2846
2847 reused = 0;
2848 reusable = 0;
2849
2850 vm_object_lock_assert_exclusive(object);
2851
2852 if (object->all_reusable) {
2853 assert(object->reusable_page_count == 0);
2854 object->all_reusable = FALSE;
2855 if (end_offset - start_offset == object->vo_size ||
2856 !allow_partial_reuse) {
2857 vm_page_stats_reusable.all_reuse_calls++;
2858 reused = object->resident_page_count;
2859 } else {
2860 vm_page_stats_reusable.partial_reuse_calls++;
2861 queue_iterate(&object->memq, m, vm_page_t, listq) {
2862 if (m->offset < start_offset ||
2863 m->offset >= end_offset) {
2864 m->reusable = TRUE;
2865 object->reusable_page_count++;
2866 assert(object->resident_page_count >= object->reusable_page_count);
2867 continue;
2868 } else {
2869 assert(!m->reusable);
2870 reused++;
2871 }
2872 }
2873 }
2874 } else if (object->resident_page_count >
2875 ((end_offset - start_offset) >> PAGE_SHIFT)) {
2876 vm_page_stats_reusable.partial_reuse_calls++;
2877 for (cur_offset = start_offset;
2878 cur_offset < end_offset;
2879 cur_offset += PAGE_SIZE_64) {
2880 if (object->reusable_page_count == 0) {
2881 break;
2882 }
2883 m = vm_page_lookup(object, cur_offset);
2884 VM_OBJECT_REUSE_PAGE(object, m, reused);
2885 }
2886 } else {
2887 vm_page_stats_reusable.partial_reuse_calls++;
2888 queue_iterate(&object->memq, m, vm_page_t, listq) {
2889 if (object->reusable_page_count == 0) {
2890 break;
2891 }
2892 if (m->offset < start_offset ||
2893 m->offset >= end_offset) {
2894 continue;
2895 }
2896 VM_OBJECT_REUSE_PAGE(object, m, reused);
2897 }
2898 }
2899
2900 /* update global stats */
2901 OSAddAtomic(reusable-reused, &vm_page_stats_reusable.reusable_count);
2902 vm_page_stats_reusable.reused += reused;
2903 vm_page_stats_reusable.reusable += reusable;
2904 }
2905
2906 /*
2907 * Routine: vm_object_pmap_protect
2908 *
2909 * Purpose:
2910 * Reduces the permission for all physical
2911 * pages in the specified object range.
2912 *
2913 * If removing write permission only, it is
2914 * sufficient to protect only the pages in
2915 * the top-level object; only those pages may
2916 * have write permission.
2917 *
2918 * If removing all access, we must follow the
2919 * shadow chain from the top-level object to
2920 * remove access to all pages in shadowed objects.
2921 *
2922 * The object must *not* be locked. The object must
2923 * be temporary/internal.
2924 *
2925 * If pmap is not NULL, this routine assumes that
2926 * the only mappings for the pages are in that
2927 * pmap.
2928 */
2929
2930 __private_extern__ void
2931 vm_object_pmap_protect(
2932 register vm_object_t object,
2933 register vm_object_offset_t offset,
2934 vm_object_size_t size,
2935 pmap_t pmap,
2936 vm_map_offset_t pmap_start,
2937 vm_prot_t prot)
2938 {
2939 vm_object_pmap_protect_options(object, offset, size,
2940 pmap, pmap_start, prot, 0);
2941 }
2942
2943 __private_extern__ void
2944 vm_object_pmap_protect_options(
2945 register vm_object_t object,
2946 register vm_object_offset_t offset,
2947 vm_object_size_t size,
2948 pmap_t pmap,
2949 vm_map_offset_t pmap_start,
2950 vm_prot_t prot,
2951 int options)
2952 {
2953 pmap_flush_context pmap_flush_context_storage;
2954 boolean_t delayed_pmap_flush = FALSE;
2955
2956 if (object == VM_OBJECT_NULL)
2957 return;
2958 size = vm_object_round_page(size);
2959 offset = vm_object_trunc_page(offset);
2960
2961 vm_object_lock(object);
2962
2963 if (object->phys_contiguous) {
2964 if (pmap != NULL) {
2965 vm_object_unlock(object);
2966 pmap_protect_options(pmap,
2967 pmap_start,
2968 pmap_start + size,
2969 prot,
2970 options & ~PMAP_OPTIONS_NOFLUSH,
2971 NULL);
2972 } else {
2973 vm_object_offset_t phys_start, phys_end, phys_addr;
2974
2975 phys_start = object->vo_shadow_offset + offset;
2976 phys_end = phys_start + size;
2977 assert(phys_start <= phys_end);
2978 assert(phys_end <= object->vo_shadow_offset + object->vo_size);
2979 vm_object_unlock(object);
2980
2981 pmap_flush_context_init(&pmap_flush_context_storage);
2982 delayed_pmap_flush = FALSE;
2983
2984 for (phys_addr = phys_start;
2985 phys_addr < phys_end;
2986 phys_addr += PAGE_SIZE_64) {
2987 pmap_page_protect_options(
2988 (ppnum_t) (phys_addr >> PAGE_SHIFT),
2989 prot,
2990 options | PMAP_OPTIONS_NOFLUSH,
2991 (void *)&pmap_flush_context_storage);
2992 delayed_pmap_flush = TRUE;
2993 }
2994 if (delayed_pmap_flush == TRUE)
2995 pmap_flush(&pmap_flush_context_storage);
2996 }
2997 return;
2998 }
2999
3000 assert(object->internal);
3001
3002 while (TRUE) {
3003 if (ptoa_64(object->resident_page_count) > size/2 && pmap != PMAP_NULL) {
3004 vm_object_unlock(object);
3005 pmap_protect_options(pmap, pmap_start, pmap_start + size, prot,
3006 options & ~PMAP_OPTIONS_NOFLUSH, NULL);
3007 return;
3008 }
3009
3010 pmap_flush_context_init(&pmap_flush_context_storage);
3011 delayed_pmap_flush = FALSE;
3012
3013 /*
3014 * if we are doing large ranges with respect to resident
3015 * page count then we should interate over pages otherwise
3016 * inverse page look-up will be faster
3017 */
3018 if (ptoa_64(object->resident_page_count / 4) < size) {
3019 vm_page_t p;
3020 vm_object_offset_t end;
3021
3022 end = offset + size;
3023
3024 queue_iterate(&object->memq, p, vm_page_t, listq) {
3025 if (!p->fictitious && (offset <= p->offset) && (p->offset < end)) {
3026 vm_map_offset_t start;
3027
3028 start = pmap_start + p->offset - offset;
3029
3030 if (pmap != PMAP_NULL)
3031 pmap_protect_options(
3032 pmap,
3033 start,
3034 start + PAGE_SIZE_64,
3035 prot,
3036 options | PMAP_OPTIONS_NOFLUSH,
3037 &pmap_flush_context_storage);
3038 else
3039 pmap_page_protect_options(
3040 p->phys_page,
3041 prot,
3042 options | PMAP_OPTIONS_NOFLUSH,
3043 &pmap_flush_context_storage);
3044 delayed_pmap_flush = TRUE;
3045 }
3046 }
3047
3048 } else {
3049 vm_page_t p;
3050 vm_object_offset_t end;
3051 vm_object_offset_t target_off;
3052
3053 end = offset + size;
3054
3055 for (target_off = offset;
3056 target_off < end; target_off += PAGE_SIZE) {
3057
3058 p = vm_page_lookup(object, target_off);
3059
3060 if (p != VM_PAGE_NULL) {
3061 vm_object_offset_t start;
3062
3063 start = pmap_start + (p->offset - offset);
3064
3065 if (pmap != PMAP_NULL)
3066 pmap_protect_options(
3067 pmap,
3068 start,
3069 start + PAGE_SIZE_64,
3070 prot,
3071 options | PMAP_OPTIONS_NOFLUSH,
3072 &pmap_flush_context_storage);
3073 else
3074 pmap_page_protect_options(
3075 p->phys_page,
3076 prot,
3077 options | PMAP_OPTIONS_NOFLUSH,
3078 &pmap_flush_context_storage);
3079 delayed_pmap_flush = TRUE;
3080 }
3081 }
3082 }
3083 if (delayed_pmap_flush == TRUE)
3084 pmap_flush(&pmap_flush_context_storage);
3085
3086 if (prot == VM_PROT_NONE) {
3087 /*
3088 * Must follow shadow chain to remove access
3089 * to pages in shadowed objects.
3090 */
3091 register vm_object_t next_object;
3092
3093 next_object = object->shadow;
3094 if (next_object != VM_OBJECT_NULL) {
3095 offset += object->vo_shadow_offset;
3096 vm_object_lock(next_object);
3097 vm_object_unlock(object);
3098 object = next_object;
3099 }
3100 else {
3101 /*
3102 * End of chain - we are done.
3103 */
3104 break;
3105 }
3106 }
3107 else {
3108 /*
3109 * Pages in shadowed objects may never have
3110 * write permission - we may stop here.
3111 */
3112 break;
3113 }
3114 }
3115
3116 vm_object_unlock(object);
3117 }
3118
3119 /*
3120 * Routine: vm_object_copy_slowly
3121 *
3122 * Description:
3123 * Copy the specified range of the source
3124 * virtual memory object without using
3125 * protection-based optimizations (such
3126 * as copy-on-write). The pages in the
3127 * region are actually copied.
3128 *
3129 * In/out conditions:
3130 * The caller must hold a reference and a lock
3131 * for the source virtual memory object. The source
3132 * object will be returned *unlocked*.
3133 *
3134 * Results:
3135 * If the copy is completed successfully, KERN_SUCCESS is
3136 * returned. If the caller asserted the interruptible
3137 * argument, and an interruption occurred while waiting
3138 * for a user-generated event, MACH_SEND_INTERRUPTED is
3139 * returned. Other values may be returned to indicate
3140 * hard errors during the copy operation.
3141 *
3142 * A new virtual memory object is returned in a
3143 * parameter (_result_object). The contents of this
3144 * new object, starting at a zero offset, are a copy
3145 * of the source memory region. In the event of
3146 * an error, this parameter will contain the value
3147 * VM_OBJECT_NULL.
3148 */
3149 __private_extern__ kern_return_t
3150 vm_object_copy_slowly(
3151 register vm_object_t src_object,
3152 vm_object_offset_t src_offset,
3153 vm_object_size_t size,
3154 boolean_t interruptible,
3155 vm_object_t *_result_object) /* OUT */
3156 {
3157 vm_object_t new_object;
3158 vm_object_offset_t new_offset;
3159
3160 struct vm_object_fault_info fault_info;
3161
3162 XPR(XPR_VM_OBJECT, "v_o_c_slowly obj 0x%x off 0x%x size 0x%x\n",
3163 src_object, src_offset, size, 0, 0);
3164
3165 if (size == 0) {
3166 vm_object_unlock(src_object);
3167 *_result_object = VM_OBJECT_NULL;
3168 return(KERN_INVALID_ARGUMENT);
3169 }
3170
3171 /*
3172 * Prevent destruction of the source object while we copy.
3173 */
3174
3175 vm_object_reference_locked(src_object);
3176 vm_object_unlock(src_object);
3177
3178 /*
3179 * Create a new object to hold the copied pages.
3180 * A few notes:
3181 * We fill the new object starting at offset 0,
3182 * regardless of the input offset.
3183 * We don't bother to lock the new object within
3184 * this routine, since we have the only reference.
3185 */
3186
3187 new_object = vm_object_allocate(size);
3188 new_offset = 0;
3189
3190 assert(size == trunc_page_64(size)); /* Will the loop terminate? */
3191
3192 fault_info.interruptible = interruptible;
3193 fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL;
3194 fault_info.user_tag = 0;
3195 fault_info.lo_offset = src_offset;
3196 fault_info.hi_offset = src_offset + size;
3197 fault_info.no_cache = FALSE;
3198 fault_info.stealth = TRUE;
3199 fault_info.io_sync = FALSE;
3200 fault_info.cs_bypass = FALSE;
3201 fault_info.mark_zf_absent = FALSE;
3202 fault_info.batch_pmap_op = FALSE;
3203
3204 for ( ;
3205 size != 0 ;
3206 src_offset += PAGE_SIZE_64,
3207 new_offset += PAGE_SIZE_64, size -= PAGE_SIZE_64
3208 ) {
3209 vm_page_t new_page;
3210 vm_fault_return_t result;
3211
3212 vm_object_lock(new_object);
3213
3214 while ((new_page = vm_page_alloc(new_object, new_offset))
3215 == VM_PAGE_NULL) {
3216
3217 vm_object_unlock(new_object);
3218
3219 if (!vm_page_wait(interruptible)) {
3220 vm_object_deallocate(new_object);
3221 vm_object_deallocate(src_object);
3222 *_result_object = VM_OBJECT_NULL;
3223 return(MACH_SEND_INTERRUPTED);
3224 }
3225 vm_object_lock(new_object);
3226 }
3227 vm_object_unlock(new_object);
3228
3229 do {
3230 vm_prot_t prot = VM_PROT_READ;
3231 vm_page_t _result_page;
3232 vm_page_t top_page;
3233 register
3234 vm_page_t result_page;
3235 kern_return_t error_code;
3236
3237 vm_object_lock(src_object);
3238 vm_object_paging_begin(src_object);
3239
3240 if (size > (vm_size_t) -1) {
3241 /* 32-bit overflow */
3242 fault_info.cluster_size = (vm_size_t) (0 - PAGE_SIZE);
3243 } else {
3244 fault_info.cluster_size = (vm_size_t) size;
3245 assert(fault_info.cluster_size == size);
3246 }
3247
3248 XPR(XPR_VM_FAULT,"vm_object_copy_slowly -> vm_fault_page",0,0,0,0,0);
3249 _result_page = VM_PAGE_NULL;
3250 result = vm_fault_page(src_object, src_offset,
3251 VM_PROT_READ, FALSE,
3252 FALSE, /* page not looked up */
3253 &prot, &_result_page, &top_page,
3254 (int *)0,
3255 &error_code, FALSE, FALSE, &fault_info);
3256
3257 switch(result) {
3258 case VM_FAULT_SUCCESS:
3259 result_page = _result_page;
3260
3261 /*
3262 * Copy the page to the new object.
3263 *
3264 * POLICY DECISION:
3265 * If result_page is clean,
3266 * we could steal it instead
3267 * of copying.
3268 */
3269
3270 vm_page_copy(result_page, new_page);
3271 vm_object_unlock(result_page->object);
3272
3273 /*
3274 * Let go of both pages (make them
3275 * not busy, perform wakeup, activate).
3276 */
3277 vm_object_lock(new_object);
3278 SET_PAGE_DIRTY(new_page, FALSE);
3279 PAGE_WAKEUP_DONE(new_page);
3280 vm_object_unlock(new_object);
3281
3282 vm_object_lock(result_page->object);
3283 PAGE_WAKEUP_DONE(result_page);
3284
3285 vm_page_lockspin_queues();
3286 if (!result_page->active &&
3287 !result_page->inactive &&
3288 !result_page->throttled)
3289 vm_page_activate(result_page);
3290 vm_page_activate(new_page);
3291 vm_page_unlock_queues();
3292
3293 /*
3294 * Release paging references and
3295 * top-level placeholder page, if any.
3296 */
3297
3298 vm_fault_cleanup(result_page->object,
3299 top_page);
3300
3301 break;
3302
3303 case VM_FAULT_RETRY:
3304 break;
3305
3306 case VM_FAULT_MEMORY_SHORTAGE:
3307 if (vm_page_wait(interruptible))
3308 break;
3309 /* fall thru */
3310
3311 case VM_FAULT_INTERRUPTED:
3312 vm_object_lock(new_object);
3313 VM_PAGE_FREE(new_page);
3314 vm_object_unlock(new_object);
3315
3316 vm_object_deallocate(new_object);
3317 vm_object_deallocate(src_object);
3318 *_result_object = VM_OBJECT_NULL;
3319 return(MACH_SEND_INTERRUPTED);
3320
3321 case VM_FAULT_SUCCESS_NO_VM_PAGE:
3322 /* success but no VM page: fail */
3323 vm_object_paging_end(src_object);
3324 vm_object_unlock(src_object);
3325 /*FALLTHROUGH*/
3326 case VM_FAULT_MEMORY_ERROR:
3327 /*
3328 * A policy choice:
3329 * (a) ignore pages that we can't
3330 * copy
3331 * (b) return the null object if
3332 * any page fails [chosen]
3333 */
3334
3335 vm_object_lock(new_object);
3336 VM_PAGE_FREE(new_page);
3337 vm_object_unlock(new_object);
3338
3339 vm_object_deallocate(new_object);
3340 vm_object_deallocate(src_object);
3341 *_result_object = VM_OBJECT_NULL;
3342 return(error_code ? error_code:
3343 KERN_MEMORY_ERROR);
3344
3345 default:
3346 panic("vm_object_copy_slowly: unexpected error"
3347 " 0x%x from vm_fault_page()\n", result);
3348 }
3349 } while (result != VM_FAULT_SUCCESS);
3350 }
3351
3352 /*
3353 * Lose the extra reference, and return our object.
3354 */
3355 vm_object_deallocate(src_object);
3356 *_result_object = new_object;
3357 return(KERN_SUCCESS);
3358 }
3359
3360 /*
3361 * Routine: vm_object_copy_quickly
3362 *
3363 * Purpose:
3364 * Copy the specified range of the source virtual
3365 * memory object, if it can be done without waiting
3366 * for user-generated events.
3367 *
3368 * Results:
3369 * If the copy is successful, the copy is returned in
3370 * the arguments; otherwise, the arguments are not
3371 * affected.
3372 *
3373 * In/out conditions:
3374 * The object should be unlocked on entry and exit.
3375 */
3376
3377 /*ARGSUSED*/
3378 __private_extern__ boolean_t
3379 vm_object_copy_quickly(
3380 vm_object_t *_object, /* INOUT */
3381 __unused vm_object_offset_t offset, /* IN */
3382 __unused vm_object_size_t size, /* IN */
3383 boolean_t *_src_needs_copy, /* OUT */
3384 boolean_t *_dst_needs_copy) /* OUT */
3385 {
3386 vm_object_t object = *_object;
3387 memory_object_copy_strategy_t copy_strategy;
3388
3389 XPR(XPR_VM_OBJECT, "v_o_c_quickly obj 0x%x off 0x%x size 0x%x\n",
3390 *_object, offset, size, 0, 0);
3391 if (object == VM_OBJECT_NULL) {
3392 *_src_needs_copy = FALSE;
3393 *_dst_needs_copy = FALSE;
3394 return(TRUE);
3395 }
3396
3397 vm_object_lock(object);
3398
3399 copy_strategy = object->copy_strategy;
3400
3401 switch (copy_strategy) {
3402 case MEMORY_OBJECT_COPY_SYMMETRIC:
3403
3404 /*
3405 * Symmetric copy strategy.
3406 * Make another reference to the object.
3407 * Leave object/offset unchanged.
3408 */
3409
3410 vm_object_reference_locked(object);
3411 object->shadowed = TRUE;
3412 vm_object_unlock(object);
3413
3414 /*
3415 * Both source and destination must make
3416 * shadows, and the source must be made
3417 * read-only if not already.
3418 */
3419
3420 *_src_needs_copy = TRUE;
3421 *_dst_needs_copy = TRUE;
3422
3423 break;
3424
3425 case MEMORY_OBJECT_COPY_DELAY:
3426 vm_object_unlock(object);
3427 return(FALSE);
3428
3429 default:
3430 vm_object_unlock(object);
3431 return(FALSE);
3432 }
3433 return(TRUE);
3434 }
3435
3436 static int copy_call_count = 0;
3437 static int copy_call_sleep_count = 0;
3438 static int copy_call_restart_count = 0;
3439
3440 /*
3441 * Routine: vm_object_copy_call [internal]
3442 *
3443 * Description:
3444 * Copy the source object (src_object), using the
3445 * user-managed copy algorithm.
3446 *
3447 * In/out conditions:
3448 * The source object must be locked on entry. It
3449 * will be *unlocked* on exit.
3450 *
3451 * Results:
3452 * If the copy is successful, KERN_SUCCESS is returned.
3453 * A new object that represents the copied virtual
3454 * memory is returned in a parameter (*_result_object).
3455 * If the return value indicates an error, this parameter
3456 * is not valid.
3457 */
3458 static kern_return_t
3459 vm_object_copy_call(
3460 vm_object_t src_object,
3461 vm_object_offset_t src_offset,
3462 vm_object_size_t size,
3463 vm_object_t *_result_object) /* OUT */
3464 {
3465 kern_return_t kr;
3466 vm_object_t copy;
3467 boolean_t check_ready = FALSE;
3468 uint32_t try_failed_count = 0;
3469
3470 /*
3471 * If a copy is already in progress, wait and retry.
3472 *
3473 * XXX
3474 * Consider making this call interruptable, as Mike
3475 * intended it to be.
3476 *
3477 * XXXO
3478 * Need a counter or version or something to allow
3479 * us to use the copy that the currently requesting
3480 * thread is obtaining -- is it worth adding to the
3481 * vm object structure? Depends how common this case it.
3482 */
3483 copy_call_count++;
3484 while (vm_object_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL)) {
3485 vm_object_sleep(src_object, VM_OBJECT_EVENT_COPY_CALL,
3486 THREAD_UNINT);
3487 copy_call_restart_count++;
3488 }
3489
3490 /*
3491 * Indicate (for the benefit of memory_object_create_copy)
3492 * that we want a copy for src_object. (Note that we cannot
3493 * do a real assert_wait before calling memory_object_copy,
3494 * so we simply set the flag.)
3495 */
3496
3497 vm_object_set_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL);
3498 vm_object_unlock(src_object);
3499
3500 /*
3501 * Ask the memory manager to give us a memory object
3502 * which represents a copy of the src object.
3503 * The memory manager may give us a memory object
3504 * which we already have, or it may give us a
3505 * new memory object. This memory object will arrive
3506 * via memory_object_create_copy.
3507 */
3508
3509 kr = KERN_FAILURE; /* XXX need to change memory_object.defs */
3510 if (kr != KERN_SUCCESS) {
3511 return kr;
3512 }
3513
3514 /*
3515 * Wait for the copy to arrive.
3516 */
3517 vm_object_lock(src_object);
3518 while (vm_object_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL)) {
3519 vm_object_sleep(src_object, VM_OBJECT_EVENT_COPY_CALL,
3520 THREAD_UNINT);
3521 copy_call_sleep_count++;
3522 }
3523 Retry:
3524 assert(src_object->copy != VM_OBJECT_NULL);
3525 copy = src_object->copy;
3526 if (!vm_object_lock_try(copy)) {
3527 vm_object_unlock(src_object);
3528
3529 try_failed_count++;
3530 mutex_pause(try_failed_count); /* wait a bit */
3531
3532 vm_object_lock(src_object);
3533 goto Retry;
3534 }
3535 if (copy->vo_size < src_offset+size)
3536 copy->vo_size = src_offset+size;
3537
3538 if (!copy->pager_ready)
3539 check_ready = TRUE;
3540
3541 /*
3542 * Return the copy.
3543 */
3544 *_result_object = copy;
3545 vm_object_unlock(copy);
3546 vm_object_unlock(src_object);
3547
3548 /* Wait for the copy to be ready. */
3549 if (check_ready == TRUE) {
3550 vm_object_lock(copy);
3551 while (!copy->pager_ready) {
3552 vm_object_sleep(copy, VM_OBJECT_EVENT_PAGER_READY, THREAD_UNINT);
3553 }
3554 vm_object_unlock(copy);
3555 }
3556
3557 return KERN_SUCCESS;
3558 }
3559
3560 static int copy_delayed_lock_collisions = 0;
3561 static int copy_delayed_max_collisions = 0;
3562 static int copy_delayed_lock_contention = 0;
3563 static int copy_delayed_protect_iterate = 0;
3564
3565 /*
3566 * Routine: vm_object_copy_delayed [internal]
3567 *
3568 * Description:
3569 * Copy the specified virtual memory object, using
3570 * the asymmetric copy-on-write algorithm.
3571 *
3572 * In/out conditions:
3573 * The src_object must be locked on entry. It will be unlocked
3574 * on exit - so the caller must also hold a reference to it.
3575 *
3576 * This routine will not block waiting for user-generated
3577 * events. It is not interruptible.
3578 */
3579 __private_extern__ vm_object_t
3580 vm_object_copy_delayed(
3581 vm_object_t src_object,
3582 vm_object_offset_t src_offset,
3583 vm_object_size_t size,
3584 boolean_t src_object_shared)
3585 {
3586 vm_object_t new_copy = VM_OBJECT_NULL;
3587 vm_object_t old_copy;
3588 vm_page_t p;
3589 vm_object_size_t copy_size = src_offset + size;
3590 pmap_flush_context pmap_flush_context_storage;
3591 boolean_t delayed_pmap_flush = FALSE;
3592
3593
3594 int collisions = 0;
3595 /*
3596 * The user-level memory manager wants to see all of the changes
3597 * to this object, but it has promised not to make any changes on
3598 * its own.
3599 *
3600 * Perform an asymmetric copy-on-write, as follows:
3601 * Create a new object, called a "copy object" to hold
3602 * pages modified by the new mapping (i.e., the copy,
3603 * not the original mapping).
3604 * Record the original object as the backing object for
3605 * the copy object. If the original mapping does not
3606 * change a page, it may be used read-only by the copy.
3607 * Record the copy object in the original object.
3608 * When the original mapping causes a page to be modified,
3609 * it must be copied to a new page that is "pushed" to
3610 * the copy object.
3611 * Mark the new mapping (the copy object) copy-on-write.
3612 * This makes the copy object itself read-only, allowing
3613 * it to be reused if the original mapping makes no
3614 * changes, and simplifying the synchronization required
3615 * in the "push" operation described above.
3616 *
3617 * The copy-on-write is said to be assymetric because the original
3618 * object is *not* marked copy-on-write. A copied page is pushed
3619 * to the copy object, regardless which party attempted to modify
3620 * the page.
3621 *
3622 * Repeated asymmetric copy operations may be done. If the
3623 * original object has not been changed since the last copy, its
3624 * copy object can be reused. Otherwise, a new copy object can be
3625 * inserted between the original object and its previous copy
3626 * object. Since any copy object is read-only, this cannot affect
3627 * affect the contents of the previous copy object.
3628 *
3629 * Note that a copy object is higher in the object tree than the
3630 * original object; therefore, use of the copy object recorded in
3631 * the original object must be done carefully, to avoid deadlock.
3632 */
3633
3634 Retry:
3635
3636 /*
3637 * Wait for paging in progress.
3638 */
3639 if (!src_object->true_share &&
3640 (src_object->paging_in_progress != 0 ||
3641 src_object->activity_in_progress != 0)) {
3642 if (src_object_shared == TRUE) {
3643 vm_object_unlock(src_object);
3644 vm_object_lock(src_object);
3645 src_object_shared = FALSE;
3646 goto Retry;
3647 }
3648 vm_object_paging_wait(src_object, THREAD_UNINT);
3649 }
3650 /*
3651 * See whether we can reuse the result of a previous
3652 * copy operation.
3653 */
3654
3655 old_copy = src_object->copy;
3656 if (old_copy != VM_OBJECT_NULL) {
3657 int lock_granted;
3658
3659 /*
3660 * Try to get the locks (out of order)
3661 */
3662 if (src_object_shared == TRUE)
3663 lock_granted = vm_object_lock_try_shared(old_copy);
3664 else
3665 lock_granted = vm_object_lock_try(old_copy);
3666
3667 if (!lock_granted) {
3668 vm_object_unlock(src_object);
3669
3670 if (collisions++ == 0)
3671 copy_delayed_lock_contention++;
3672 mutex_pause(collisions);
3673
3674 /* Heisenberg Rules */
3675 copy_delayed_lock_collisions++;
3676
3677 if (collisions > copy_delayed_max_collisions)
3678 copy_delayed_max_collisions = collisions;
3679
3680 if (src_object_shared == TRUE)
3681 vm_object_lock_shared(src_object);
3682 else
3683 vm_object_lock(src_object);
3684
3685 goto Retry;
3686 }
3687
3688 /*
3689 * Determine whether the old copy object has
3690 * been modified.
3691 */
3692
3693 if (old_copy->resident_page_count == 0 &&
3694 !old_copy->pager_created) {
3695 /*
3696 * It has not been modified.
3697 *
3698 * Return another reference to
3699 * the existing copy-object if
3700 * we can safely grow it (if
3701 * needed).
3702 */
3703
3704 if (old_copy->vo_size < copy_size) {
3705 if (src_object_shared == TRUE) {
3706 vm_object_unlock(old_copy);
3707 vm_object_unlock(src_object);
3708
3709 vm_object_lock(src_object);
3710 src_object_shared = FALSE;
3711 goto Retry;
3712 }
3713 /*
3714 * We can't perform a delayed copy if any of the
3715 * pages in the extended range are wired (because
3716 * we can't safely take write permission away from
3717 * wired pages). If the pages aren't wired, then
3718 * go ahead and protect them.
3719 */
3720 copy_delayed_protect_iterate++;
3721
3722 pmap_flush_context_init(&pmap_flush_context_storage);
3723 delayed_pmap_flush = FALSE;
3724
3725 queue_iterate(&src_object->memq, p, vm_page_t, listq) {
3726 if (!p->fictitious &&
3727 p->offset >= old_copy->vo_size &&
3728 p->offset < copy_size) {
3729 if (VM_PAGE_WIRED(p)) {
3730 vm_object_unlock(old_copy);
3731 vm_object_unlock(src_object);
3732
3733 if (new_copy != VM_OBJECT_NULL) {
3734 vm_object_unlock(new_copy);
3735 vm_object_deallocate(new_copy);
3736 }
3737 if (delayed_pmap_flush == TRUE)
3738 pmap_flush(&pmap_flush_context_storage);
3739
3740 return VM_OBJECT_NULL;
3741 } else {
3742 pmap_page_protect_options(p->phys_page, (VM_PROT_ALL & ~VM_PROT_WRITE),
3743 PMAP_OPTIONS_NOFLUSH, (void *)&pmap_flush_context_storage);
3744 delayed_pmap_flush = TRUE;
3745 }
3746 }
3747 }
3748 if (delayed_pmap_flush == TRUE)
3749 pmap_flush(&pmap_flush_context_storage);
3750
3751 old_copy->vo_size = copy_size;
3752 }
3753 if (src_object_shared == TRUE)
3754 vm_object_reference_shared(old_copy);
3755 else
3756 vm_object_reference_locked(old_copy);
3757 vm_object_unlock(old_copy);
3758 vm_object_unlock(src_object);
3759
3760 if (new_copy != VM_OBJECT_NULL) {
3761 vm_object_unlock(new_copy);
3762 vm_object_deallocate(new_copy);
3763 }
3764 return(old_copy);
3765 }
3766
3767
3768
3769 /*
3770 * Adjust the size argument so that the newly-created
3771 * copy object will be large enough to back either the
3772 * old copy object or the new mapping.
3773 */
3774 if (old_copy->vo_size > copy_size)
3775 copy_size = old_copy->vo_size;
3776
3777 if (new_copy == VM_OBJECT_NULL) {
3778 vm_object_unlock(old_copy);
3779 vm_object_unlock(src_object);
3780 new_copy = vm_object_allocate(copy_size);
3781 vm_object_lock(src_object);
3782 vm_object_lock(new_copy);
3783
3784 src_object_shared = FALSE;
3785 goto Retry;
3786 }
3787 new_copy->vo_size = copy_size;
3788
3789 /*
3790 * The copy-object is always made large enough to
3791 * completely shadow the original object, since
3792 * it may have several users who want to shadow
3793 * the original object at different points.
3794 */
3795
3796 assert((old_copy->shadow == src_object) &&
3797 (old_copy->vo_shadow_offset == (vm_object_offset_t) 0));
3798
3799 } else if (new_copy == VM_OBJECT_NULL) {
3800 vm_object_unlock(src_object);
3801 new_copy = vm_object_allocate(copy_size);
3802 vm_object_lock(src_object);
3803 vm_object_lock(new_copy);
3804
3805 src_object_shared = FALSE;
3806 goto Retry;
3807 }
3808
3809 /*
3810 * We now have the src object locked, and the new copy object
3811 * allocated and locked (and potentially the old copy locked).
3812 * Before we go any further, make sure we can still perform
3813 * a delayed copy, as the situation may have changed.
3814 *
3815 * Specifically, we can't perform a delayed copy if any of the
3816 * pages in the range are wired (because we can't safely take
3817 * write permission away from wired pages). If the pages aren't
3818 * wired, then go ahead and protect them.
3819 */
3820 copy_delayed_protect_iterate++;
3821
3822 pmap_flush_context_init(&pmap_flush_context_storage);
3823 delayed_pmap_flush = FALSE;
3824
3825 queue_iterate(&src_object->memq, p, vm_page_t, listq) {
3826 if (!p->fictitious && p->offset < copy_size) {
3827 if (VM_PAGE_WIRED(p)) {
3828 if (old_copy)
3829 vm_object_unlock(old_copy);
3830 vm_object_unlock(src_object);
3831 vm_object_unlock(new_copy);
3832 vm_object_deallocate(new_copy);
3833
3834 if (delayed_pmap_flush == TRUE)
3835 pmap_flush(&pmap_flush_context_storage);
3836
3837 return VM_OBJECT_NULL;
3838 } else {
3839 pmap_page_protect_options(p->phys_page, (VM_PROT_ALL & ~VM_PROT_WRITE),
3840 PMAP_OPTIONS_NOFLUSH, (void *)&pmap_flush_context_storage);
3841 delayed_pmap_flush = TRUE;
3842 }
3843 }
3844 }
3845 if (delayed_pmap_flush == TRUE)
3846 pmap_flush(&pmap_flush_context_storage);
3847
3848 if (old_copy != VM_OBJECT_NULL) {
3849 /*
3850 * Make the old copy-object shadow the new one.
3851 * It will receive no more pages from the original
3852 * object.
3853 */
3854
3855 /* remove ref. from old_copy */
3856 vm_object_lock_assert_exclusive(src_object);
3857 src_object->ref_count--;
3858 assert(src_object->ref_count > 0);
3859 vm_object_lock_assert_exclusive(old_copy);
3860 old_copy->shadow = new_copy;
3861 vm_object_lock_assert_exclusive(new_copy);
3862 assert(new_copy->ref_count > 0);
3863 new_copy->ref_count++; /* for old_copy->shadow ref. */
3864
3865 #if TASK_SWAPPER
3866 if (old_copy->res_count) {
3867 VM_OBJ_RES_INCR(new_copy);
3868 VM_OBJ_RES_DECR(src_object);
3869 }
3870 #endif
3871
3872 vm_object_unlock(old_copy); /* done with old_copy */
3873 }
3874
3875 /*
3876 * Point the new copy at the existing object.
3877 */
3878 vm_object_lock_assert_exclusive(new_copy);
3879 new_copy->shadow = src_object;
3880 new_copy->vo_shadow_offset = 0;
3881 new_copy->shadowed = TRUE; /* caller must set needs_copy */
3882
3883 vm_object_lock_assert_exclusive(src_object);
3884 vm_object_reference_locked(src_object);
3885 src_object->copy = new_copy;
3886 vm_object_unlock(src_object);
3887 vm_object_unlock(new_copy);
3888
3889 XPR(XPR_VM_OBJECT,
3890 "vm_object_copy_delayed: used copy object %X for source %X\n",
3891 new_copy, src_object, 0, 0, 0);
3892
3893 return new_copy;
3894 }
3895
3896 /*
3897 * Routine: vm_object_copy_strategically
3898 *
3899 * Purpose:
3900 * Perform a copy according to the source object's
3901 * declared strategy. This operation may block,
3902 * and may be interrupted.
3903 */
3904 __private_extern__ kern_return_t
3905 vm_object_copy_strategically(
3906 register vm_object_t src_object,
3907 vm_object_offset_t src_offset,
3908 vm_object_size_t size,
3909 vm_object_t *dst_object, /* OUT */
3910 vm_object_offset_t *dst_offset, /* OUT */
3911 boolean_t *dst_needs_copy) /* OUT */
3912 {
3913 boolean_t result;
3914 boolean_t interruptible = THREAD_ABORTSAFE; /* XXX */
3915 boolean_t object_lock_shared = FALSE;
3916 memory_object_copy_strategy_t copy_strategy;
3917
3918 assert(src_object != VM_OBJECT_NULL);
3919
3920 copy_strategy = src_object->copy_strategy;
3921
3922 if (copy_strategy == MEMORY_OBJECT_COPY_DELAY) {
3923 vm_object_lock_shared(src_object);
3924 object_lock_shared = TRUE;
3925 } else
3926 vm_object_lock(src_object);
3927
3928 /*
3929 * The copy strategy is only valid if the memory manager
3930 * is "ready". Internal objects are always ready.
3931 */
3932
3933 while (!src_object->internal && !src_object->pager_ready) {
3934 wait_result_t wait_result;
3935
3936 if (object_lock_shared == TRUE) {
3937 vm_object_unlock(src_object);
3938 vm_object_lock(src_object);
3939 object_lock_shared = FALSE;
3940 continue;
3941 }
3942 wait_result = vm_object_sleep( src_object,
3943 VM_OBJECT_EVENT_PAGER_READY,
3944 interruptible);
3945 if (wait_result != THREAD_AWAKENED) {
3946 vm_object_unlock(src_object);
3947 *dst_object = VM_OBJECT_NULL;
3948 *dst_offset = 0;
3949 *dst_needs_copy = FALSE;
3950 return(MACH_SEND_INTERRUPTED);
3951 }
3952 }
3953
3954 /*
3955 * Use the appropriate copy strategy.
3956 */
3957
3958 switch (copy_strategy) {
3959 case MEMORY_OBJECT_COPY_DELAY:
3960 *dst_object = vm_object_copy_delayed(src_object,
3961 src_offset, size, object_lock_shared);
3962 if (*dst_object != VM_OBJECT_NULL) {
3963 *dst_offset = src_offset;
3964 *dst_needs_copy = TRUE;
3965 result = KERN_SUCCESS;
3966 break;
3967 }
3968 vm_object_lock(src_object);
3969 /* fall thru when delayed copy not allowed */
3970
3971 case MEMORY_OBJECT_COPY_NONE:
3972 result = vm_object_copy_slowly(src_object, src_offset, size,
3973 interruptible, dst_object);
3974 if (result == KERN_SUCCESS) {
3975 *dst_offset = 0;
3976 *dst_needs_copy = FALSE;
3977 }
3978 break;
3979
3980 case MEMORY_OBJECT_COPY_CALL:
3981 result = vm_object_copy_call(src_object, src_offset, size,
3982 dst_object);
3983 if (result == KERN_SUCCESS) {
3984 *dst_offset = src_offset;
3985 *dst_needs_copy = TRUE;
3986 }
3987 break;
3988
3989 case MEMORY_OBJECT_COPY_SYMMETRIC:
3990 XPR(XPR_VM_OBJECT, "v_o_c_strategically obj 0x%x off 0x%x size 0x%x\n", src_object, src_offset, size, 0, 0);
3991 vm_object_unlock(src_object);
3992 result = KERN_MEMORY_RESTART_COPY;
3993 break;
3994
3995 default:
3996 panic("copy_strategically: bad strategy");
3997 result = KERN_INVALID_ARGUMENT;
3998 }
3999 return(result);
4000 }
4001
4002 /*
4003 * vm_object_shadow:
4004 *
4005 * Create a new object which is backed by the
4006 * specified existing object range. The source
4007 * object reference is deallocated.
4008 *
4009 * The new object and offset into that object
4010 * are returned in the source parameters.
4011 */
4012 boolean_t vm_object_shadow_check = TRUE;
4013
4014 __private_extern__ boolean_t
4015 vm_object_shadow(
4016 vm_object_t *object, /* IN/OUT */
4017 vm_object_offset_t *offset, /* IN/OUT */
4018 vm_object_size_t length)
4019 {
4020 register vm_object_t source;
4021 register vm_object_t result;
4022
4023 source = *object;
4024 assert(source != VM_OBJECT_NULL);
4025 if (source == VM_OBJECT_NULL)
4026 return FALSE;
4027
4028 #if 0
4029 /*
4030 * XXX FBDP
4031 * This assertion is valid but it gets triggered by Rosetta for example
4032 * due to a combination of vm_remap() that changes a VM object's
4033 * copy_strategy from SYMMETRIC to DELAY and vm_protect(VM_PROT_COPY)
4034 * that then sets "needs_copy" on its map entry. This creates a
4035 * mapping situation that VM should never see and doesn't know how to
4036 * handle.
4037 * It's not clear if this can create any real problem but we should
4038 * look into fixing this, probably by having vm_protect(VM_PROT_COPY)
4039 * do more than just set "needs_copy" to handle the copy-on-write...
4040 * In the meantime, let's disable the assertion.
4041 */
4042 assert(source->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC);
4043 #endif
4044
4045 /*
4046 * Determine if we really need a shadow.
4047 *
4048 * If the source object is larger than what we are trying
4049 * to create, then force the shadow creation even if the
4050 * ref count is 1. This will allow us to [potentially]
4051 * collapse the underlying object away in the future
4052 * (freeing up the extra data it might contain and that
4053 * we don't need).
4054 */
4055 if (vm_object_shadow_check &&
4056 source->vo_size == length &&
4057 source->ref_count == 1 &&
4058 (source->shadow == VM_OBJECT_NULL ||
4059 source->shadow->copy == VM_OBJECT_NULL) )
4060 {
4061 source->shadowed = FALSE;
4062 return FALSE;
4063 }
4064
4065 /*
4066 * Allocate a new object with the given length
4067 */
4068
4069 if ((result = vm_object_allocate(length)) == VM_OBJECT_NULL)
4070 panic("vm_object_shadow: no object for shadowing");
4071
4072 /*
4073 * The new object shadows the source object, adding
4074 * a reference to it. Our caller changes his reference
4075 * to point to the new object, removing a reference to
4076 * the source object. Net result: no change of reference
4077 * count.
4078 */
4079 result->shadow = source;
4080
4081 /*
4082 * Store the offset into the source object,
4083 * and fix up the offset into the new object.
4084 */
4085
4086 result->vo_shadow_offset = *offset;
4087
4088 /*
4089 * Return the new things
4090 */
4091
4092 *offset = 0;
4093 *object = result;
4094 return TRUE;
4095 }
4096
4097 /*
4098 * The relationship between vm_object structures and
4099 * the memory_object requires careful synchronization.
4100 *
4101 * All associations are created by memory_object_create_named
4102 * for external pagers and vm_object_pager_create for internal
4103 * objects as follows:
4104 *
4105 * pager: the memory_object itself, supplied by
4106 * the user requesting a mapping (or the kernel,
4107 * when initializing internal objects); the
4108 * kernel simulates holding send rights by keeping
4109 * a port reference;
4110 *
4111 * pager_request:
4112 * the memory object control port,
4113 * created by the kernel; the kernel holds
4114 * receive (and ownership) rights to this
4115 * port, but no other references.
4116 *
4117 * When initialization is complete, the "initialized" field
4118 * is asserted. Other mappings using a particular memory object,
4119 * and any references to the vm_object gained through the
4120 * port association must wait for this initialization to occur.
4121 *
4122 * In order to allow the memory manager to set attributes before
4123 * requests (notably virtual copy operations, but also data or
4124 * unlock requests) are made, a "ready" attribute is made available.
4125 * Only the memory manager may affect the value of this attribute.
4126 * Its value does not affect critical kernel functions, such as
4127 * internal object initialization or destruction. [Furthermore,
4128 * memory objects created by the kernel are assumed to be ready
4129 * immediately; the default memory manager need not explicitly
4130 * set the "ready" attribute.]
4131 *
4132 * [Both the "initialized" and "ready" attribute wait conditions
4133 * use the "pager" field as the wait event.]
4134 *
4135 * The port associations can be broken down by any of the
4136 * following routines:
4137 * vm_object_terminate:
4138 * No references to the vm_object remain, and
4139 * the object cannot (or will not) be cached.
4140 * This is the normal case, and is done even
4141 * though one of the other cases has already been
4142 * done.
4143 * memory_object_destroy:
4144 * The memory manager has requested that the
4145 * kernel relinquish references to the memory
4146 * object. [The memory manager may not want to
4147 * destroy the memory object, but may wish to
4148 * refuse or tear down existing memory mappings.]
4149 *
4150 * Each routine that breaks an association must break all of
4151 * them at once. At some later time, that routine must clear
4152 * the pager field and release the memory object references.
4153 * [Furthermore, each routine must cope with the simultaneous
4154 * or previous operations of the others.]
4155 *
4156 * In addition to the lock on the object, the vm_object_hash_lock
4157 * governs the associations. References gained through the
4158 * association require use of the hash lock.
4159 *
4160 * Because the pager field may be cleared spontaneously, it
4161 * cannot be used to determine whether a memory object has
4162 * ever been associated with a particular vm_object. [This
4163 * knowledge is important to the shadow object mechanism.]
4164 * For this reason, an additional "created" attribute is
4165 * provided.
4166 *
4167 * During various paging operations, the pager reference found in the
4168 * vm_object must be valid. To prevent this from being released,
4169 * (other than being removed, i.e., made null), routines may use
4170 * the vm_object_paging_begin/end routines [actually, macros].
4171 * The implementation uses the "paging_in_progress" and "wanted" fields.
4172 * [Operations that alter the validity of the pager values include the
4173 * termination routines and vm_object_collapse.]
4174 */
4175
4176
4177 /*
4178 * Routine: vm_object_enter
4179 * Purpose:
4180 * Find a VM object corresponding to the given
4181 * pager; if no such object exists, create one,
4182 * and initialize the pager.
4183 */
4184 vm_object_t
4185 vm_object_enter(
4186 memory_object_t pager,
4187 vm_object_size_t size,
4188 boolean_t internal,
4189 boolean_t init,
4190 boolean_t named)
4191 {
4192 register vm_object_t object;
4193 vm_object_t new_object;
4194 boolean_t must_init;
4195 vm_object_hash_entry_t entry, new_entry;
4196 uint32_t try_failed_count = 0;
4197 lck_mtx_t *lck;
4198
4199 if (pager == MEMORY_OBJECT_NULL)
4200 return(vm_object_allocate(size));
4201
4202 new_object = VM_OBJECT_NULL;
4203 new_entry = VM_OBJECT_HASH_ENTRY_NULL;
4204 must_init = init;
4205
4206 /*
4207 * Look for an object associated with this port.
4208 */
4209 Retry:
4210 lck = vm_object_hash_lock_spin(pager);
4211 do {
4212 entry = vm_object_hash_lookup(pager, FALSE);
4213
4214 if (entry == VM_OBJECT_HASH_ENTRY_NULL) {
4215 if (new_object == VM_OBJECT_NULL) {
4216 /*
4217 * We must unlock to create a new object;
4218 * if we do so, we must try the lookup again.
4219 */
4220 vm_object_hash_unlock(lck);
4221 assert(new_entry == VM_OBJECT_HASH_ENTRY_NULL);
4222 new_entry = vm_object_hash_entry_alloc(pager);
4223 new_object = vm_object_allocate(size);
4224 lck = vm_object_hash_lock_spin(pager);
4225 } else {
4226 /*
4227 * Lookup failed twice, and we have something
4228 * to insert; set the object.
4229 */
4230 vm_object_hash_insert(new_entry, new_object);
4231 entry = new_entry;
4232 new_entry = VM_OBJECT_HASH_ENTRY_NULL;
4233 new_object = VM_OBJECT_NULL;
4234 must_init = TRUE;
4235 }
4236 } else if (entry->object == VM_OBJECT_NULL) {
4237 /*
4238 * If a previous object is being terminated,
4239 * we must wait for the termination message
4240 * to be queued (and lookup the entry again).
4241 */
4242 entry->waiting = TRUE;
4243 entry = VM_OBJECT_HASH_ENTRY_NULL;
4244 assert_wait((event_t) pager, THREAD_UNINT);
4245 vm_object_hash_unlock(lck);
4246
4247 thread_block(THREAD_CONTINUE_NULL);
4248 lck = vm_object_hash_lock_spin(pager);
4249 }
4250 } while (entry == VM_OBJECT_HASH_ENTRY_NULL);
4251
4252 object = entry->object;
4253 assert(object != VM_OBJECT_NULL);
4254
4255 if (!must_init) {
4256 if ( !vm_object_lock_try(object)) {
4257
4258 vm_object_hash_unlock(lck);
4259
4260 try_failed_count++;
4261 mutex_pause(try_failed_count); /* wait a bit */
4262 goto Retry;
4263 }
4264 assert(!internal || object->internal);
4265 #if VM_OBJECT_CACHE
4266 if (object->ref_count == 0) {
4267 if ( !vm_object_cache_lock_try()) {
4268
4269 vm_object_hash_unlock(lck);
4270 vm_object_unlock(object);
4271
4272 try_failed_count++;
4273 mutex_pause(try_failed_count); /* wait a bit */
4274 goto Retry;
4275 }
4276 XPR(XPR_VM_OBJECT_CACHE,
4277 "vm_object_enter: removing %x from cache, head (%x, %x)\n",
4278 object,
4279 vm_object_cached_list.next,
4280 vm_object_cached_list.prev, 0,0);
4281 queue_remove(&vm_object_cached_list, object,
4282 vm_object_t, cached_list);
4283 vm_object_cached_count--;
4284
4285 vm_object_cache_unlock();
4286 }
4287 #endif
4288 if (named) {
4289 assert(!object->named);
4290 object->named = TRUE;
4291 }
4292 vm_object_lock_assert_exclusive(object);
4293 object->ref_count++;
4294 vm_object_res_reference(object);
4295
4296 vm_object_hash_unlock(lck);
4297 vm_object_unlock(object);
4298
4299 VM_STAT_INCR(hits);
4300 } else
4301 vm_object_hash_unlock(lck);
4302
4303 assert(object->ref_count > 0);
4304
4305 VM_STAT_INCR(lookups);
4306
4307 XPR(XPR_VM_OBJECT,
4308 "vm_o_enter: pager 0x%x obj 0x%x must_init %d\n",
4309 pager, object, must_init, 0, 0);
4310
4311 /*
4312 * If we raced to create a vm_object but lost, let's
4313 * throw away ours.
4314 */
4315
4316 if (new_object != VM_OBJECT_NULL)
4317 vm_object_deallocate(new_object);
4318
4319 if (new_entry != VM_OBJECT_HASH_ENTRY_NULL)
4320 vm_object_hash_entry_free(new_entry);
4321
4322 if (must_init) {
4323 memory_object_control_t control;
4324
4325 /*
4326 * Allocate request port.
4327 */
4328
4329 control = memory_object_control_allocate(object);
4330 assert (control != MEMORY_OBJECT_CONTROL_NULL);
4331
4332 vm_object_lock(object);
4333 assert(object != kernel_object);
4334
4335 /*
4336 * Copy the reference we were given.
4337 */
4338
4339 memory_object_reference(pager);
4340 object->pager_created = TRUE;
4341 object->pager = pager;
4342 object->internal = internal;
4343 object->pager_trusted = internal;
4344 if (!internal) {
4345 /* copy strategy invalid until set by memory manager */
4346 object->copy_strategy = MEMORY_OBJECT_COPY_INVALID;
4347 }
4348 object->pager_control = control;
4349 object->pager_ready = FALSE;
4350
4351 vm_object_unlock(object);
4352
4353 /*
4354 * Let the pager know we're using it.
4355 */
4356
4357 (void) memory_object_init(pager,
4358 object->pager_control,
4359 PAGE_SIZE);
4360
4361 vm_object_lock(object);
4362 if (named)
4363 object->named = TRUE;
4364 if (internal) {
4365 object->pager_ready = TRUE;
4366 vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY);
4367 }
4368
4369 object->pager_initialized = TRUE;
4370 vm_object_wakeup(object, VM_OBJECT_EVENT_INITIALIZED);
4371 } else {
4372 vm_object_lock(object);
4373 }
4374
4375 /*
4376 * [At this point, the object must be locked]
4377 */
4378
4379 /*
4380 * Wait for the work above to be done by the first
4381 * thread to map this object.
4382 */
4383
4384 while (!object->pager_initialized) {
4385 vm_object_sleep(object,
4386 VM_OBJECT_EVENT_INITIALIZED,
4387 THREAD_UNINT);
4388 }
4389 vm_object_unlock(object);
4390
4391 XPR(XPR_VM_OBJECT,
4392 "vm_object_enter: vm_object %x, memory_object %x, internal %d\n",
4393 object, object->pager, internal, 0,0);
4394 return(object);
4395 }
4396
4397 /*
4398 * Routine: vm_object_pager_create
4399 * Purpose:
4400 * Create a memory object for an internal object.
4401 * In/out conditions:
4402 * The object is locked on entry and exit;
4403 * it may be unlocked within this call.
4404 * Limitations:
4405 * Only one thread may be performing a
4406 * vm_object_pager_create on an object at
4407 * a time. Presumably, only the pageout
4408 * daemon will be using this routine.
4409 */
4410
4411 void
4412 vm_object_pager_create(
4413 register vm_object_t object)
4414 {
4415 memory_object_t pager;
4416 vm_object_hash_entry_t entry;
4417 lck_mtx_t *lck;
4418 #if MACH_PAGEMAP
4419 vm_object_size_t size;
4420 vm_external_map_t map;
4421 #endif /* MACH_PAGEMAP */
4422
4423 XPR(XPR_VM_OBJECT, "vm_object_pager_create, object 0x%X\n",
4424 object, 0,0,0,0);
4425
4426 assert(object != kernel_object);
4427
4428 if (memory_manager_default_check() != KERN_SUCCESS)
4429 return;
4430
4431 /*
4432 * Prevent collapse or termination by holding a paging reference
4433 */
4434
4435 vm_object_paging_begin(object);
4436 if (object->pager_created) {
4437 /*
4438 * Someone else got to it first...
4439 * wait for them to finish initializing the ports
4440 */
4441 while (!object->pager_initialized) {
4442 vm_object_sleep(object,
4443 VM_OBJECT_EVENT_INITIALIZED,
4444 THREAD_UNINT);
4445 }
4446 vm_object_paging_end(object);
4447 return;
4448 }
4449
4450 /*
4451 * Indicate that a memory object has been assigned
4452 * before dropping the lock, to prevent a race.
4453 */
4454
4455 object->pager_created = TRUE;
4456 object->paging_offset = 0;
4457
4458 #if MACH_PAGEMAP
4459 size = object->vo_size;
4460 #endif /* MACH_PAGEMAP */
4461 vm_object_unlock(object);
4462
4463 #if MACH_PAGEMAP
4464 if (DEFAULT_PAGER_IS_ACTIVE) {
4465 map = vm_external_create(size);
4466 vm_object_lock(object);
4467 assert(object->vo_size == size);
4468 object->existence_map = map;
4469 vm_object_unlock(object);
4470 }
4471 #endif /* MACH_PAGEMAP */
4472
4473 if ((uint32_t) object->vo_size != object->vo_size) {
4474 panic("vm_object_pager_create(): object size 0x%llx >= 4GB\n",
4475 (uint64_t) object->vo_size);
4476 }
4477
4478 /*
4479 * Create the [internal] pager, and associate it with this object.
4480 *
4481 * We make the association here so that vm_object_enter()
4482 * can look up the object to complete initializing it. No
4483 * user will ever map this object.
4484 */
4485 {
4486 memory_object_default_t dmm;
4487
4488 /* acquire a reference for the default memory manager */
4489 dmm = memory_manager_default_reference();
4490
4491 assert(object->temporary);
4492
4493 /* create our new memory object */
4494 assert((vm_size_t) object->vo_size == object->vo_size);
4495 (void) memory_object_create(dmm, (vm_size_t) object->vo_size,
4496 &pager);
4497
4498 memory_object_default_deallocate(dmm);
4499 }
4500
4501 entry = vm_object_hash_entry_alloc(pager);
4502
4503 lck = vm_object_hash_lock_spin(pager);
4504 vm_object_hash_insert(entry, object);
4505 vm_object_hash_unlock(lck);
4506
4507 /*
4508 * A reference was returned by
4509 * memory_object_create(), and it is
4510 * copied by vm_object_enter().
4511 */
4512
4513 if (vm_object_enter(pager, object->vo_size, TRUE, TRUE, FALSE) != object)
4514 panic("vm_object_pager_create: mismatch");
4515
4516 /*
4517 * Drop the reference we were passed.
4518 */
4519 memory_object_deallocate(pager);
4520
4521 vm_object_lock(object);
4522
4523 /*
4524 * Release the paging reference
4525 */
4526 vm_object_paging_end(object);
4527 }
4528
4529 void
4530 vm_object_compressor_pager_create(
4531 register vm_object_t object)
4532 {
4533 memory_object_t pager;
4534 vm_object_hash_entry_t entry;
4535 lck_mtx_t *lck;
4536
4537 assert(object != kernel_object);
4538
4539 /*
4540 * Prevent collapse or termination by holding a paging reference
4541 */
4542
4543 vm_object_paging_begin(object);
4544 if (object->pager_created) {
4545 /*
4546 * Someone else got to it first...
4547 * wait for them to finish initializing the ports
4548 */
4549 while (!object->pager_initialized) {
4550 vm_object_sleep(object,
4551 VM_OBJECT_EVENT_INITIALIZED,
4552 THREAD_UNINT);
4553 }
4554 vm_object_paging_end(object);
4555 return;
4556 }
4557
4558 /*
4559 * Indicate that a memory object has been assigned
4560 * before dropping the lock, to prevent a race.
4561 */
4562
4563 object->pager_created = TRUE;
4564 object->paging_offset = 0;
4565
4566 vm_object_unlock(object);
4567
4568 if ((uint32_t) (object->vo_size/PAGE_SIZE) !=
4569 (object->vo_size/PAGE_SIZE)) {
4570 panic("vm_object_compressor_pager_create(%p): "
4571 "object size 0x%llx >= 0x%llx\n",
4572 object,
4573 (uint64_t) object->vo_size,
4574 0x0FFFFFFFFULL*PAGE_SIZE);
4575 }
4576
4577 /*
4578 * Create the [internal] pager, and associate it with this object.
4579 *
4580 * We make the association here so that vm_object_enter()
4581 * can look up the object to complete initializing it. No
4582 * user will ever map this object.
4583 */
4584 {
4585 assert(object->temporary);
4586
4587 /* create our new memory object */
4588 assert((uint32_t) (object->vo_size/PAGE_SIZE) ==
4589 (object->vo_size/PAGE_SIZE));
4590 (void) compressor_memory_object_create(
4591 (memory_object_size_t) object->vo_size,
4592 &pager);
4593 if (pager == NULL) {
4594 panic("vm_object_compressor_pager_create(): "
4595 "no pager for object %p size 0x%llx\n",
4596 object, (uint64_t) object->vo_size);
4597 }
4598 }
4599
4600 entry = vm_object_hash_entry_alloc(pager);
4601
4602 lck = vm_object_hash_lock_spin(pager);
4603 vm_object_hash_insert(entry, object);
4604 vm_object_hash_unlock(lck);
4605
4606 /*
4607 * A reference was returned by
4608 * memory_object_create(), and it is
4609 * copied by vm_object_enter().
4610 */
4611
4612 if (vm_object_enter(pager, object->vo_size, TRUE, TRUE, FALSE) != object)
4613 panic("vm_object_compressor_pager_create: mismatch");
4614
4615 /*
4616 * Drop the reference we were passed.
4617 */
4618 memory_object_deallocate(pager);
4619
4620 vm_object_lock(object);
4621
4622 /*
4623 * Release the paging reference
4624 */
4625 vm_object_paging_end(object);
4626 }
4627
4628 /*
4629 * Routine: vm_object_remove
4630 * Purpose:
4631 * Eliminate the pager/object association
4632 * for this pager.
4633 * Conditions:
4634 * The object cache must be locked.
4635 */
4636 __private_extern__ void
4637 vm_object_remove(
4638 vm_object_t object)
4639 {
4640 memory_object_t pager;
4641
4642 if ((pager = object->pager) != MEMORY_OBJECT_NULL) {
4643 vm_object_hash_entry_t entry;
4644
4645 entry = vm_object_hash_lookup(pager, FALSE);
4646 if (entry != VM_OBJECT_HASH_ENTRY_NULL)
4647 entry->object = VM_OBJECT_NULL;
4648 }
4649
4650 }
4651
4652 /*
4653 * Global variables for vm_object_collapse():
4654 *
4655 * Counts for normal collapses and bypasses.
4656 * Debugging variables, to watch or disable collapse.
4657 */
4658 static long object_collapses = 0;
4659 static long object_bypasses = 0;
4660
4661 static boolean_t vm_object_collapse_allowed = TRUE;
4662 static boolean_t vm_object_bypass_allowed = TRUE;
4663
4664 #if MACH_PAGEMAP
4665 static int vm_external_discarded;
4666 static int vm_external_collapsed;
4667 #endif
4668
4669 unsigned long vm_object_collapse_encrypted = 0;
4670
4671 /*
4672 * Routine: vm_object_do_collapse
4673 * Purpose:
4674 * Collapse an object with the object backing it.
4675 * Pages in the backing object are moved into the
4676 * parent, and the backing object is deallocated.
4677 * Conditions:
4678 * Both objects and the cache are locked; the page
4679 * queues are unlocked.
4680 *
4681 */
4682 static void
4683 vm_object_do_collapse(
4684 vm_object_t object,
4685 vm_object_t backing_object)
4686 {
4687 vm_page_t p, pp;
4688 vm_object_offset_t new_offset, backing_offset;
4689 vm_object_size_t size;
4690
4691 vm_object_lock_assert_exclusive(object);
4692 vm_object_lock_assert_exclusive(backing_object);
4693
4694 backing_offset = object->vo_shadow_offset;
4695 size = object->vo_size;
4696
4697 /*
4698 * Move all in-memory pages from backing_object
4699 * to the parent. Pages that have been paged out
4700 * will be overwritten by any of the parent's
4701 * pages that shadow them.
4702 */
4703
4704 while (!queue_empty(&backing_object->memq)) {
4705
4706 p = (vm_page_t) queue_first(&backing_object->memq);
4707
4708 new_offset = (p->offset - backing_offset);
4709
4710 assert(!p->busy || p->absent);
4711
4712 /*
4713 * If the parent has a page here, or if
4714 * this page falls outside the parent,
4715 * dispose of it.
4716 *
4717 * Otherwise, move it as planned.
4718 */
4719
4720 if (p->offset < backing_offset || new_offset >= size) {
4721 VM_PAGE_FREE(p);
4722 } else {
4723 /*
4724 * ENCRYPTED SWAP:
4725 * The encryption key includes the "pager" and the
4726 * "paging_offset". These will not change during the
4727 * object collapse, so we can just move an encrypted
4728 * page from one object to the other in this case.
4729 * We can't decrypt the page here, since we can't drop
4730 * the object lock.
4731 */
4732 if (p->encrypted) {
4733 vm_object_collapse_encrypted++;
4734 }
4735 pp = vm_page_lookup(object, new_offset);
4736 if (pp == VM_PAGE_NULL) {
4737
4738 /*
4739 * Parent now has no page.
4740 * Move the backing object's page up.
4741 */
4742
4743 vm_page_rename(p, object, new_offset, TRUE);
4744 #if MACH_PAGEMAP
4745 } else if (pp->absent) {
4746
4747 /*
4748 * Parent has an absent page...
4749 * it's not being paged in, so
4750 * it must really be missing from
4751 * the parent.
4752 *
4753 * Throw out the absent page...
4754 * any faults looking for that
4755 * page will restart with the new
4756 * one.
4757 */
4758
4759 VM_PAGE_FREE(pp);
4760 vm_page_rename(p, object, new_offset, TRUE);
4761 #endif /* MACH_PAGEMAP */
4762 } else {
4763 assert(! pp->absent);
4764
4765 /*
4766 * Parent object has a real page.
4767 * Throw away the backing object's
4768 * page.
4769 */
4770 VM_PAGE_FREE(p);
4771 }
4772 }
4773 }
4774
4775 #if !MACH_PAGEMAP
4776 assert((!object->pager_created && (object->pager == MEMORY_OBJECT_NULL))
4777 || (!backing_object->pager_created
4778 && (backing_object->pager == MEMORY_OBJECT_NULL)));
4779 #else
4780 assert(!object->pager_created && object->pager == MEMORY_OBJECT_NULL);
4781 #endif /* !MACH_PAGEMAP */
4782
4783 if (backing_object->pager != MEMORY_OBJECT_NULL) {
4784 vm_object_hash_entry_t entry;
4785
4786 #if 00
4787 if (COMPRESSED_PAGER_IS_ACTIVE) {
4788 panic("vm_object_do_collapse(%p,%p): "
4789 "backing_object has a compressor pager",
4790 object, backing_object);
4791 }
4792 #endif
4793
4794 /*
4795 * Move the pager from backing_object to object.
4796 *
4797 * XXX We're only using part of the paging space
4798 * for keeps now... we ought to discard the
4799 * unused portion.
4800 */
4801
4802 assert(!object->paging_in_progress);
4803 assert(!object->activity_in_progress);
4804 object->pager = backing_object->pager;
4805
4806 if (backing_object->hashed) {
4807 lck_mtx_t *lck;
4808
4809 lck = vm_object_hash_lock_spin(backing_object->pager);
4810 entry = vm_object_hash_lookup(object->pager, FALSE);
4811 assert(entry != VM_OBJECT_HASH_ENTRY_NULL);
4812 entry->object = object;
4813 vm_object_hash_unlock(lck);
4814
4815 object->hashed = TRUE;
4816 }
4817 object->pager_created = backing_object->pager_created;
4818 object->pager_control = backing_object->pager_control;
4819 object->pager_ready = backing_object->pager_ready;
4820 object->pager_initialized = backing_object->pager_initialized;
4821 object->paging_offset =
4822 backing_object->paging_offset + backing_offset;
4823 if (object->pager_control != MEMORY_OBJECT_CONTROL_NULL) {
4824 memory_object_control_collapse(object->pager_control,
4825 object);
4826 }
4827 }
4828
4829 #if MACH_PAGEMAP
4830 /*
4831 * If the shadow offset is 0, the use the existence map from
4832 * the backing object if there is one. If the shadow offset is
4833 * not zero, toss it.
4834 *
4835 * XXX - If the shadow offset is not 0 then a bit copy is needed
4836 * if the map is to be salvaged. For now, we just just toss the
4837 * old map, giving the collapsed object no map. This means that
4838 * the pager is invoked for zero fill pages. If analysis shows
4839 * that this happens frequently and is a performance hit, then
4840 * this code should be fixed to salvage the map.
4841 */
4842 assert(object->existence_map == VM_EXTERNAL_NULL);
4843 if (backing_offset || (size != backing_object->vo_size)) {
4844 vm_external_discarded++;
4845 vm_external_destroy(backing_object->existence_map,
4846 backing_object->vo_size);
4847 }
4848 else {
4849 vm_external_collapsed++;
4850 object->existence_map = backing_object->existence_map;
4851 }
4852 backing_object->existence_map = VM_EXTERNAL_NULL;
4853 #endif /* MACH_PAGEMAP */
4854
4855 /*
4856 * Object now shadows whatever backing_object did.
4857 * Note that the reference to backing_object->shadow
4858 * moves from within backing_object to within object.
4859 */
4860
4861 assert(!object->phys_contiguous);
4862 assert(!backing_object->phys_contiguous);
4863 object->shadow = backing_object->shadow;
4864 if (object->shadow) {
4865 object->vo_shadow_offset += backing_object->vo_shadow_offset;
4866 } else {
4867 /* no shadow, therefore no shadow offset... */
4868 object->vo_shadow_offset = 0;
4869 }
4870 assert((object->shadow == VM_OBJECT_NULL) ||
4871 (object->shadow->copy != backing_object));
4872
4873 /*
4874 * Discard backing_object.
4875 *
4876 * Since the backing object has no pages, no
4877 * pager left, and no object references within it,
4878 * all that is necessary is to dispose of it.
4879 */
4880
4881 assert((backing_object->ref_count == 1) &&
4882 (backing_object->resident_page_count == 0) &&
4883 (backing_object->paging_in_progress == 0) &&
4884 (backing_object->activity_in_progress == 0));
4885
4886 backing_object->alive = FALSE;
4887 vm_object_unlock(backing_object);
4888
4889 XPR(XPR_VM_OBJECT, "vm_object_collapse, collapsed 0x%X\n",
4890 backing_object, 0,0,0,0);
4891
4892 vm_object_lock_destroy(backing_object);
4893
4894 zfree(vm_object_zone, backing_object);
4895
4896 object_collapses++;
4897 }
4898
4899 static void
4900 vm_object_do_bypass(
4901 vm_object_t object,
4902 vm_object_t backing_object)
4903 {
4904 /*
4905 * Make the parent shadow the next object
4906 * in the chain.
4907 */
4908
4909 vm_object_lock_assert_exclusive(object);
4910 vm_object_lock_assert_exclusive(backing_object);
4911
4912 #if TASK_SWAPPER
4913 /*
4914 * Do object reference in-line to
4915 * conditionally increment shadow's
4916 * residence count. If object is not
4917 * resident, leave residence count
4918 * on shadow alone.
4919 */
4920 if (backing_object->shadow != VM_OBJECT_NULL) {
4921 vm_object_lock(backing_object->shadow);
4922 vm_object_lock_assert_exclusive(backing_object->shadow);
4923 backing_object->shadow->ref_count++;
4924 if (object->res_count != 0)
4925 vm_object_res_reference(backing_object->shadow);
4926 vm_object_unlock(backing_object->shadow);
4927 }
4928 #else /* TASK_SWAPPER */
4929 vm_object_reference(backing_object->shadow);
4930 #endif /* TASK_SWAPPER */
4931
4932 assert(!object->phys_contiguous);
4933 assert(!backing_object->phys_contiguous);
4934 object->shadow = backing_object->shadow;
4935 if (object->shadow) {
4936 object->vo_shadow_offset += backing_object->vo_shadow_offset;
4937 } else {
4938 /* no shadow, therefore no shadow offset... */
4939 object->vo_shadow_offset = 0;
4940 }
4941
4942 /*
4943 * Backing object might have had a copy pointer
4944 * to us. If it did, clear it.
4945 */
4946 if (backing_object->copy == object) {
4947 backing_object->copy = VM_OBJECT_NULL;
4948 }
4949
4950 /*
4951 * Drop the reference count on backing_object.
4952 #if TASK_SWAPPER
4953 * Since its ref_count was at least 2, it
4954 * will not vanish; so we don't need to call
4955 * vm_object_deallocate.
4956 * [with a caveat for "named" objects]
4957 *
4958 * The res_count on the backing object is
4959 * conditionally decremented. It's possible
4960 * (via vm_pageout_scan) to get here with
4961 * a "swapped" object, which has a 0 res_count,
4962 * in which case, the backing object res_count
4963 * is already down by one.
4964 #else
4965 * Don't call vm_object_deallocate unless
4966 * ref_count drops to zero.
4967 *
4968 * The ref_count can drop to zero here if the
4969 * backing object could be bypassed but not
4970 * collapsed, such as when the backing object
4971 * is temporary and cachable.
4972 #endif
4973 */
4974 if (backing_object->ref_count > 2 ||
4975 (!backing_object->named && backing_object->ref_count > 1)) {
4976 vm_object_lock_assert_exclusive(backing_object);
4977 backing_object->ref_count--;
4978 #if TASK_SWAPPER
4979 if (object->res_count != 0)
4980 vm_object_res_deallocate(backing_object);
4981 assert(backing_object->ref_count > 0);
4982 #endif /* TASK_SWAPPER */
4983 vm_object_unlock(backing_object);
4984 } else {
4985
4986 /*
4987 * Drop locks so that we can deallocate
4988 * the backing object.
4989 */
4990
4991 #if TASK_SWAPPER
4992 if (object->res_count == 0) {
4993 /* XXX get a reference for the deallocate below */
4994 vm_object_res_reference(backing_object);
4995 }
4996 #endif /* TASK_SWAPPER */
4997 /*
4998 * vm_object_collapse (the caller of this function) is
4999 * now called from contexts that may not guarantee that a
5000 * valid reference is held on the object... w/o a valid
5001 * reference, it is unsafe and unwise (you will definitely
5002 * regret it) to unlock the object and then retake the lock
5003 * since the object may be terminated and recycled in between.
5004 * The "activity_in_progress" reference will keep the object
5005 * 'stable'.
5006 */
5007 vm_object_activity_begin(object);
5008 vm_object_unlock(object);
5009
5010 vm_object_unlock(backing_object);
5011 vm_object_deallocate(backing_object);
5012
5013 /*
5014 * Relock object. We don't have to reverify
5015 * its state since vm_object_collapse will
5016 * do that for us as it starts at the
5017 * top of its loop.
5018 */
5019
5020 vm_object_lock(object);
5021 vm_object_activity_end(object);
5022 }
5023
5024 object_bypasses++;
5025 }
5026
5027
5028 /*
5029 * vm_object_collapse:
5030 *
5031 * Perform an object collapse or an object bypass if appropriate.
5032 * The real work of collapsing and bypassing is performed in
5033 * the routines vm_object_do_collapse and vm_object_do_bypass.
5034 *
5035 * Requires that the object be locked and the page queues be unlocked.
5036 *
5037 */
5038 static unsigned long vm_object_collapse_calls = 0;
5039 static unsigned long vm_object_collapse_objects = 0;
5040 static unsigned long vm_object_collapse_do_collapse = 0;
5041 static unsigned long vm_object_collapse_do_bypass = 0;
5042
5043 __private_extern__ void
5044 vm_object_collapse(
5045 register vm_object_t object,
5046 register vm_object_offset_t hint_offset,
5047 boolean_t can_bypass)
5048 {
5049 register vm_object_t backing_object;
5050 register unsigned int rcount;
5051 register unsigned int size;
5052 vm_object_t original_object;
5053 int object_lock_type;
5054 int backing_object_lock_type;
5055
5056 vm_object_collapse_calls++;
5057
5058 if (! vm_object_collapse_allowed &&
5059 ! (can_bypass && vm_object_bypass_allowed)) {
5060 return;
5061 }
5062
5063 XPR(XPR_VM_OBJECT, "vm_object_collapse, obj 0x%X\n",
5064 object, 0,0,0,0);
5065
5066 if (object == VM_OBJECT_NULL)
5067 return;
5068
5069 original_object = object;
5070
5071 /*
5072 * The top object was locked "exclusive" by the caller.
5073 * In the first pass, to determine if we can collapse the shadow chain,
5074 * take a "shared" lock on the shadow objects. If we can collapse,
5075 * we'll have to go down the chain again with exclusive locks.
5076 */
5077 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
5078 backing_object_lock_type = OBJECT_LOCK_SHARED;
5079
5080 retry:
5081 object = original_object;
5082 vm_object_lock_assert_exclusive(object);
5083
5084 while (TRUE) {
5085 vm_object_collapse_objects++;
5086 /*
5087 * Verify that the conditions are right for either
5088 * collapse or bypass:
5089 */
5090
5091 /*
5092 * There is a backing object, and
5093 */
5094
5095 backing_object = object->shadow;
5096 if (backing_object == VM_OBJECT_NULL) {
5097 if (object != original_object) {
5098 vm_object_unlock(object);
5099 }
5100 return;
5101 }
5102 if (backing_object_lock_type == OBJECT_LOCK_SHARED) {
5103 vm_object_lock_shared(backing_object);
5104 } else {
5105 vm_object_lock(backing_object);
5106 }
5107
5108 /*
5109 * No pages in the object are currently
5110 * being paged out, and
5111 */
5112 if (object->paging_in_progress != 0 ||
5113 object->activity_in_progress != 0) {
5114 /* try and collapse the rest of the shadow chain */
5115 if (object != original_object) {
5116 vm_object_unlock(object);
5117 }
5118 object = backing_object;
5119 object_lock_type = backing_object_lock_type;
5120 continue;
5121 }
5122
5123 /*
5124 * ...
5125 * The backing object is not read_only,
5126 * and no pages in the backing object are
5127 * currently being paged out.
5128 * The backing object is internal.
5129 *
5130 */
5131
5132 if (!backing_object->internal ||
5133 backing_object->paging_in_progress != 0 ||
5134 backing_object->activity_in_progress != 0) {
5135 /* try and collapse the rest of the shadow chain */
5136 if (object != original_object) {
5137 vm_object_unlock(object);
5138 }
5139 object = backing_object;
5140 object_lock_type = backing_object_lock_type;
5141 continue;
5142 }
5143
5144 /*
5145 * The backing object can't be a copy-object:
5146 * the shadow_offset for the copy-object must stay
5147 * as 0. Furthermore (for the 'we have all the
5148 * pages' case), if we bypass backing_object and
5149 * just shadow the next object in the chain, old
5150 * pages from that object would then have to be copied
5151 * BOTH into the (former) backing_object and into the
5152 * parent object.
5153 */
5154 if (backing_object->shadow != VM_OBJECT_NULL &&
5155 backing_object->shadow->copy == backing_object) {
5156 /* try and collapse the rest of the shadow chain */
5157 if (object != original_object) {
5158 vm_object_unlock(object);
5159 }
5160 object = backing_object;
5161 object_lock_type = backing_object_lock_type;
5162 continue;
5163 }
5164
5165 /*
5166 * We can now try to either collapse the backing
5167 * object (if the parent is the only reference to
5168 * it) or (perhaps) remove the parent's reference
5169 * to it.
5170 *
5171 * If there is exactly one reference to the backing
5172 * object, we may be able to collapse it into the
5173 * parent.
5174 *
5175 * If MACH_PAGEMAP is defined:
5176 * The parent must not have a pager created for it,
5177 * since collapsing a backing_object dumps new pages
5178 * into the parent that its pager doesn't know about
5179 * (and the collapse code can't merge the existence
5180 * maps).
5181 * Otherwise:
5182 * As long as one of the objects is still not known
5183 * to the pager, we can collapse them.
5184 */
5185 if (backing_object->ref_count == 1 &&
5186 (!object->pager_created
5187 #if !MACH_PAGEMAP
5188 || (!backing_object->pager_created)
5189 #endif /*!MACH_PAGEMAP */
5190 ) && vm_object_collapse_allowed) {
5191
5192 /*
5193 * We need the exclusive lock on the VM objects.
5194 */
5195 if (backing_object_lock_type != OBJECT_LOCK_EXCLUSIVE) {
5196 /*
5197 * We have an object and its shadow locked
5198 * "shared". We can't just upgrade the locks
5199 * to "exclusive", as some other thread might
5200 * also have these objects locked "shared" and
5201 * attempt to upgrade one or the other to
5202 * "exclusive". The upgrades would block
5203 * forever waiting for the other "shared" locks
5204 * to get released.
5205 * So we have to release the locks and go
5206 * down the shadow chain again (since it could
5207 * have changed) with "exclusive" locking.
5208 */
5209 vm_object_unlock(backing_object);
5210 if (object != original_object)
5211 vm_object_unlock(object);
5212 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
5213 backing_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
5214 goto retry;
5215 }
5216
5217 XPR(XPR_VM_OBJECT,
5218 "vm_object_collapse: %x to %x, pager %x, pager_control %x\n",
5219 backing_object, object,
5220 backing_object->pager,
5221 backing_object->pager_control, 0);
5222
5223 /*
5224 * Collapse the object with its backing
5225 * object, and try again with the object's
5226 * new backing object.
5227 */
5228
5229 vm_object_do_collapse(object, backing_object);
5230 vm_object_collapse_do_collapse++;
5231 continue;
5232 }
5233
5234 /*
5235 * Collapsing the backing object was not possible
5236 * or permitted, so let's try bypassing it.
5237 */
5238
5239 if (! (can_bypass && vm_object_bypass_allowed)) {
5240 /* try and collapse the rest of the shadow chain */
5241 if (object != original_object) {
5242 vm_object_unlock(object);
5243 }
5244 object = backing_object;
5245 object_lock_type = backing_object_lock_type;
5246 continue;
5247 }
5248
5249
5250 /*
5251 * If the object doesn't have all its pages present,
5252 * we have to make sure no pages in the backing object
5253 * "show through" before bypassing it.
5254 */
5255 size = (unsigned int)atop(object->vo_size);
5256 rcount = object->resident_page_count;
5257
5258 if (rcount != size) {
5259 vm_object_offset_t offset;
5260 vm_object_offset_t backing_offset;
5261 unsigned int backing_rcount;
5262
5263 /*
5264 * If the backing object has a pager but no pagemap,
5265 * then we cannot bypass it, because we don't know
5266 * what pages it has.
5267 */
5268 if (backing_object->pager_created
5269 #if MACH_PAGEMAP
5270 && (backing_object->existence_map == VM_EXTERNAL_NULL)
5271 #endif /* MACH_PAGEMAP */
5272 ) {
5273 /* try and collapse the rest of the shadow chain */
5274 if (object != original_object) {
5275 vm_object_unlock(object);
5276 }
5277 object = backing_object;
5278 object_lock_type = backing_object_lock_type;
5279 continue;
5280 }
5281
5282 /*
5283 * If the object has a pager but no pagemap,
5284 * then we cannot bypass it, because we don't know
5285 * what pages it has.
5286 */
5287 if (object->pager_created
5288 #if MACH_PAGEMAP
5289 && (object->existence_map == VM_EXTERNAL_NULL)
5290 #endif /* MACH_PAGEMAP */
5291 ) {
5292 /* try and collapse the rest of the shadow chain */
5293 if (object != original_object) {
5294 vm_object_unlock(object);
5295 }
5296 object = backing_object;
5297 object_lock_type = backing_object_lock_type;
5298 continue;
5299 }
5300
5301 backing_offset = object->vo_shadow_offset;
5302 backing_rcount = backing_object->resident_page_count;
5303
5304 if ( (int)backing_rcount - (int)(atop(backing_object->vo_size) - size) > (int)rcount) {
5305 /*
5306 * we have enough pages in the backing object to guarantee that
5307 * at least 1 of them must be 'uncovered' by a resident page
5308 * in the object we're evaluating, so move on and
5309 * try to collapse the rest of the shadow chain
5310 */
5311 if (object != original_object) {
5312 vm_object_unlock(object);
5313 }
5314 object = backing_object;
5315 object_lock_type = backing_object_lock_type;
5316 continue;
5317 }
5318
5319 /*
5320 * If all of the pages in the backing object are
5321 * shadowed by the parent object, the parent
5322 * object no longer has to shadow the backing
5323 * object; it can shadow the next one in the
5324 * chain.
5325 *
5326 * If the backing object has existence info,
5327 * we must check examine its existence info
5328 * as well.
5329 *
5330 */
5331
5332 #if MACH_PAGEMAP
5333 #define EXISTS_IN_OBJECT(obj, off, rc) \
5334 ((vm_external_state_get((obj)->existence_map, \
5335 (vm_offset_t)(off)) \
5336 == VM_EXTERNAL_STATE_EXISTS) || \
5337 (VM_COMPRESSOR_PAGER_STATE_GET((obj), (off)) \
5338 == VM_EXTERNAL_STATE_EXISTS) || \
5339 ((rc) && vm_page_lookup((obj), (off)) != VM_PAGE_NULL && (rc)--))
5340 #else /* MACH_PAGEMAP */
5341 #define EXISTS_IN_OBJECT(obj, off, rc) \
5342 ((VM_COMPRESSOR_PAGER_STATE_GET((obj), (off)) \
5343 == VM_EXTERNAL_STATE_EXISTS) || \
5344 ((rc) && vm_page_lookup((obj), (off)) != VM_PAGE_NULL && (rc)--))
5345 #endif /* MACH_PAGEMAP */
5346
5347 /*
5348 * Check the hint location first
5349 * (since it is often the quickest way out of here).
5350 */
5351 if (object->cow_hint != ~(vm_offset_t)0)
5352 hint_offset = (vm_object_offset_t)object->cow_hint;
5353 else
5354 hint_offset = (hint_offset > 8 * PAGE_SIZE_64) ?
5355 (hint_offset - 8 * PAGE_SIZE_64) : 0;
5356
5357 if (EXISTS_IN_OBJECT(backing_object, hint_offset +
5358 backing_offset, backing_rcount) &&
5359 !EXISTS_IN_OBJECT(object, hint_offset, rcount)) {
5360 /* dependency right at the hint */
5361 object->cow_hint = (vm_offset_t) hint_offset; /* atomic */
5362 /* try and collapse the rest of the shadow chain */
5363 if (object != original_object) {
5364 vm_object_unlock(object);
5365 }
5366 object = backing_object;
5367 object_lock_type = backing_object_lock_type;
5368 continue;
5369 }
5370
5371 /*
5372 * If the object's window onto the backing_object
5373 * is large compared to the number of resident
5374 * pages in the backing object, it makes sense to
5375 * walk the backing_object's resident pages first.
5376 *
5377 * NOTE: Pages may be in both the existence map and/or
5378 * resident, so if we don't find a dependency while
5379 * walking the backing object's resident page list
5380 * directly, and there is an existence map, we'll have
5381 * to run the offset based 2nd pass. Because we may
5382 * have to run both passes, we need to be careful
5383 * not to decrement 'rcount' in the 1st pass
5384 */
5385 if (backing_rcount && backing_rcount < (size / 8)) {
5386 unsigned int rc = rcount;
5387 vm_page_t p;
5388
5389 backing_rcount = backing_object->resident_page_count;
5390 p = (vm_page_t)queue_first(&backing_object->memq);
5391 do {
5392 offset = (p->offset - backing_offset);
5393
5394 if (offset < object->vo_size &&
5395 offset != hint_offset &&
5396 !EXISTS_IN_OBJECT(object, offset, rc)) {
5397 /* found a dependency */
5398 object->cow_hint = (vm_offset_t) offset; /* atomic */
5399
5400 break;
5401 }
5402 p = (vm_page_t) queue_next(&p->listq);
5403
5404 } while (--backing_rcount);
5405 if (backing_rcount != 0 ) {
5406 /* try and collapse the rest of the shadow chain */
5407 if (object != original_object) {
5408 vm_object_unlock(object);
5409 }
5410 object = backing_object;
5411 object_lock_type = backing_object_lock_type;
5412 continue;
5413 }
5414 }
5415
5416 /*
5417 * Walk through the offsets looking for pages in the
5418 * backing object that show through to the object.
5419 */
5420 if (backing_rcount
5421 #if MACH_PAGEMAP
5422 || backing_object->existence_map
5423 #endif /* MACH_PAGEMAP */
5424 ) {
5425 offset = hint_offset;
5426
5427 while((offset =
5428 (offset + PAGE_SIZE_64 < object->vo_size) ?
5429 (offset + PAGE_SIZE_64) : 0) != hint_offset) {
5430
5431 if (EXISTS_IN_OBJECT(backing_object, offset +
5432 backing_offset, backing_rcount) &&
5433 !EXISTS_IN_OBJECT(object, offset, rcount)) {
5434 /* found a dependency */
5435 object->cow_hint = (vm_offset_t) offset; /* atomic */
5436 break;
5437 }
5438 }
5439 if (offset != hint_offset) {
5440 /* try and collapse the rest of the shadow chain */
5441 if (object != original_object) {
5442 vm_object_unlock(object);
5443 }
5444 object = backing_object;
5445 object_lock_type = backing_object_lock_type;
5446 continue;
5447 }
5448 }
5449 }
5450
5451 /*
5452 * We need "exclusive" locks on the 2 VM objects.
5453 */
5454 if (backing_object_lock_type != OBJECT_LOCK_EXCLUSIVE) {
5455 vm_object_unlock(backing_object);
5456 if (object != original_object)
5457 vm_object_unlock(object);
5458 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
5459 backing_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
5460 goto retry;
5461 }
5462
5463 /* reset the offset hint for any objects deeper in the chain */
5464 object->cow_hint = (vm_offset_t)0;
5465
5466 /*
5467 * All interesting pages in the backing object
5468 * already live in the parent or its pager.
5469 * Thus we can bypass the backing object.
5470 */
5471
5472 vm_object_do_bypass(object, backing_object);
5473 vm_object_collapse_do_bypass++;
5474
5475 /*
5476 * Try again with this object's new backing object.
5477 */
5478
5479 continue;
5480 }
5481
5482 if (object != original_object) {
5483 vm_object_unlock(object);
5484 }
5485 }
5486
5487 /*
5488 * Routine: vm_object_page_remove: [internal]
5489 * Purpose:
5490 * Removes all physical pages in the specified
5491 * object range from the object's list of pages.
5492 *
5493 * In/out conditions:
5494 * The object must be locked.
5495 * The object must not have paging_in_progress, usually
5496 * guaranteed by not having a pager.
5497 */
5498 unsigned int vm_object_page_remove_lookup = 0;
5499 unsigned int vm_object_page_remove_iterate = 0;
5500
5501 __private_extern__ void
5502 vm_object_page_remove(
5503 register vm_object_t object,
5504 register vm_object_offset_t start,
5505 register vm_object_offset_t end)
5506 {
5507 register vm_page_t p, next;
5508
5509 /*
5510 * One and two page removals are most popular.
5511 * The factor of 16 here is somewhat arbitrary.
5512 * It balances vm_object_lookup vs iteration.
5513 */
5514
5515 if (atop_64(end - start) < (unsigned)object->resident_page_count/16) {
5516 vm_object_page_remove_lookup++;
5517
5518 for (; start < end; start += PAGE_SIZE_64) {
5519 p = vm_page_lookup(object, start);
5520 if (p != VM_PAGE_NULL) {
5521 assert(!p->cleaning && !p->pageout && !p->laundry);
5522 if (!p->fictitious && p->pmapped)
5523 pmap_disconnect(p->phys_page);
5524 VM_PAGE_FREE(p);
5525 }
5526 }
5527 } else {
5528 vm_object_page_remove_iterate++;
5529
5530 p = (vm_page_t) queue_first(&object->memq);
5531 while (!queue_end(&object->memq, (queue_entry_t) p)) {
5532 next = (vm_page_t) queue_next(&p->listq);
5533 if ((start <= p->offset) && (p->offset < end)) {
5534 assert(!p->cleaning && !p->pageout && !p->laundry);
5535 if (!p->fictitious && p->pmapped)
5536 pmap_disconnect(p->phys_page);
5537 VM_PAGE_FREE(p);
5538 }
5539 p = next;
5540 }
5541 }
5542 }
5543
5544
5545 /*
5546 * Routine: vm_object_coalesce
5547 * Function: Coalesces two objects backing up adjoining
5548 * regions of memory into a single object.
5549 *
5550 * returns TRUE if objects were combined.
5551 *
5552 * NOTE: Only works at the moment if the second object is NULL -
5553 * if it's not, which object do we lock first?
5554 *
5555 * Parameters:
5556 * prev_object First object to coalesce
5557 * prev_offset Offset into prev_object
5558 * next_object Second object into coalesce
5559 * next_offset Offset into next_object
5560 *
5561 * prev_size Size of reference to prev_object
5562 * next_size Size of reference to next_object
5563 *
5564 * Conditions:
5565 * The object(s) must *not* be locked. The map must be locked
5566 * to preserve the reference to the object(s).
5567 */
5568 static int vm_object_coalesce_count = 0;
5569
5570 __private_extern__ boolean_t
5571 vm_object_coalesce(
5572 register vm_object_t prev_object,
5573 vm_object_t next_object,
5574 vm_object_offset_t prev_offset,
5575 __unused vm_object_offset_t next_offset,
5576 vm_object_size_t prev_size,
5577 vm_object_size_t next_size)
5578 {
5579 vm_object_size_t newsize;
5580
5581 #ifdef lint
5582 next_offset++;
5583 #endif /* lint */
5584
5585 if (next_object != VM_OBJECT_NULL) {
5586 return(FALSE);
5587 }
5588
5589 if (prev_object == VM_OBJECT_NULL) {
5590 return(TRUE);
5591 }
5592
5593 XPR(XPR_VM_OBJECT,
5594 "vm_object_coalesce: 0x%X prev_off 0x%X prev_size 0x%X next_size 0x%X\n",
5595 prev_object, prev_offset, prev_size, next_size, 0);
5596
5597 vm_object_lock(prev_object);
5598
5599 /*
5600 * Try to collapse the object first
5601 */
5602 vm_object_collapse(prev_object, prev_offset, TRUE);
5603
5604 /*
5605 * Can't coalesce if pages not mapped to
5606 * prev_entry may be in use any way:
5607 * . more than one reference
5608 * . paged out
5609 * . shadows another object
5610 * . has a copy elsewhere
5611 * . is purgeable
5612 * . paging references (pages might be in page-list)
5613 */
5614
5615 if ((prev_object->ref_count > 1) ||
5616 prev_object->pager_created ||
5617 (prev_object->shadow != VM_OBJECT_NULL) ||
5618 (prev_object->copy != VM_OBJECT_NULL) ||
5619 (prev_object->true_share != FALSE) ||
5620 (prev_object->purgable != VM_PURGABLE_DENY) ||
5621 (prev_object->paging_in_progress != 0) ||
5622 (prev_object->activity_in_progress != 0)) {
5623 vm_object_unlock(prev_object);
5624 return(FALSE);
5625 }
5626
5627 vm_object_coalesce_count++;
5628
5629 /*
5630 * Remove any pages that may still be in the object from
5631 * a previous deallocation.
5632 */
5633 vm_object_page_remove(prev_object,
5634 prev_offset + prev_size,
5635 prev_offset + prev_size + next_size);
5636
5637 /*
5638 * Extend the object if necessary.
5639 */
5640 newsize = prev_offset + prev_size + next_size;
5641 if (newsize > prev_object->vo_size) {
5642 #if MACH_PAGEMAP
5643 /*
5644 * We cannot extend an object that has existence info,
5645 * since the existence info might then fail to cover
5646 * the entire object.
5647 *
5648 * This assertion must be true because the object
5649 * has no pager, and we only create existence info
5650 * for objects with pagers.
5651 */
5652 assert(prev_object->existence_map == VM_EXTERNAL_NULL);
5653 #endif /* MACH_PAGEMAP */
5654 prev_object->vo_size = newsize;
5655 }
5656
5657 vm_object_unlock(prev_object);
5658 return(TRUE);
5659 }
5660
5661 /*
5662 * Attach a set of physical pages to an object, so that they can
5663 * be mapped by mapping the object. Typically used to map IO memory.
5664 *
5665 * The mapping function and its private data are used to obtain the
5666 * physical addresses for each page to be mapped.
5667 */
5668 void
5669 vm_object_page_map(
5670 vm_object_t object,
5671 vm_object_offset_t offset,
5672 vm_object_size_t size,
5673 vm_object_offset_t (*map_fn)(void *map_fn_data,
5674 vm_object_offset_t offset),
5675 void *map_fn_data) /* private to map_fn */
5676 {
5677 int64_t num_pages;
5678 int i;
5679 vm_page_t m;
5680 vm_page_t old_page;
5681 vm_object_offset_t addr;
5682
5683 num_pages = atop_64(size);
5684
5685 for (i = 0; i < num_pages; i++, offset += PAGE_SIZE_64) {
5686
5687 addr = (*map_fn)(map_fn_data, offset);
5688
5689 while ((m = vm_page_grab_fictitious()) == VM_PAGE_NULL)
5690 vm_page_more_fictitious();
5691
5692 vm_object_lock(object);
5693 if ((old_page = vm_page_lookup(object, offset))
5694 != VM_PAGE_NULL)
5695 {
5696 VM_PAGE_FREE(old_page);
5697 }
5698
5699 assert((ppnum_t) addr == addr);
5700 vm_page_init(m, (ppnum_t) addr, FALSE);
5701 /*
5702 * private normally requires lock_queues but since we
5703 * are initializing the page, its not necessary here
5704 */
5705 m->private = TRUE; /* don`t free page */
5706 m->wire_count = 1;
5707 vm_page_insert(m, object, offset);
5708
5709 PAGE_WAKEUP_DONE(m);
5710 vm_object_unlock(object);
5711 }
5712 }
5713
5714 kern_return_t
5715 vm_object_populate_with_private(
5716 vm_object_t object,
5717 vm_object_offset_t offset,
5718 ppnum_t phys_page,
5719 vm_size_t size)
5720 {
5721 ppnum_t base_page;
5722 vm_object_offset_t base_offset;
5723
5724
5725 if (!object->private)
5726 return KERN_FAILURE;
5727
5728 base_page = phys_page;
5729
5730 vm_object_lock(object);
5731
5732 if (!object->phys_contiguous) {
5733 vm_page_t m;
5734
5735 if ((base_offset = trunc_page_64(offset)) != offset) {
5736 vm_object_unlock(object);
5737 return KERN_FAILURE;
5738 }
5739 base_offset += object->paging_offset;
5740
5741 while (size) {
5742 m = vm_page_lookup(object, base_offset);
5743
5744 if (m != VM_PAGE_NULL) {
5745 if (m->fictitious) {
5746 if (m->phys_page != vm_page_guard_addr) {
5747
5748 vm_page_lockspin_queues();
5749 m->private = TRUE;
5750 vm_page_unlock_queues();
5751
5752 m->fictitious = FALSE;
5753 m->phys_page = base_page;
5754 }
5755 } else if (m->phys_page != base_page) {
5756
5757 if ( !m->private) {
5758 /*
5759 * we'd leak a real page... that can't be right
5760 */
5761 panic("vm_object_populate_with_private - %p not private", m);
5762 }
5763 if (m->pmapped) {
5764 /*
5765 * pmap call to clear old mapping
5766 */
5767 pmap_disconnect(m->phys_page);
5768 }
5769 m->phys_page = base_page;
5770 }
5771 if (m->encrypted) {
5772 /*
5773 * we should never see this on a ficticious or private page
5774 */
5775 panic("vm_object_populate_with_private - %p encrypted", m);
5776 }
5777
5778 } else {
5779 while ((m = vm_page_grab_fictitious()) == VM_PAGE_NULL)
5780 vm_page_more_fictitious();
5781
5782 /*
5783 * private normally requires lock_queues but since we
5784 * are initializing the page, its not necessary here
5785 */
5786 m->private = TRUE;
5787 m->fictitious = FALSE;
5788 m->phys_page = base_page;
5789 m->unusual = TRUE;
5790 m->busy = FALSE;
5791
5792 vm_page_insert(m, object, base_offset);
5793 }
5794 base_page++; /* Go to the next physical page */
5795 base_offset += PAGE_SIZE;
5796 size -= PAGE_SIZE;
5797 }
5798 } else {
5799 /* NOTE: we should check the original settings here */
5800 /* if we have a size > zero a pmap call should be made */
5801 /* to disable the range */
5802
5803 /* pmap_? */
5804
5805 /* shadows on contiguous memory are not allowed */
5806 /* we therefore can use the offset field */
5807 object->vo_shadow_offset = (vm_object_offset_t)phys_page << PAGE_SHIFT;
5808 object->vo_size = size;
5809 }
5810 vm_object_unlock(object);
5811
5812 return KERN_SUCCESS;
5813 }
5814
5815 /*
5816 * memory_object_free_from_cache:
5817 *
5818 * Walk the vm_object cache list, removing and freeing vm_objects
5819 * which are backed by the pager identified by the caller, (pager_ops).
5820 * Remove up to "count" objects, if there are that may available
5821 * in the cache.
5822 *
5823 * Walk the list at most once, return the number of vm_objects
5824 * actually freed.
5825 */
5826
5827 __private_extern__ kern_return_t
5828 memory_object_free_from_cache(
5829 __unused host_t host,
5830 __unused memory_object_pager_ops_t pager_ops,
5831 int *count)
5832 {
5833 #if VM_OBJECT_CACHE
5834 int object_released = 0;
5835
5836 register vm_object_t object = VM_OBJECT_NULL;
5837 vm_object_t shadow;
5838
5839 /*
5840 if(host == HOST_NULL)
5841 return(KERN_INVALID_ARGUMENT);
5842 */
5843
5844 try_again:
5845 vm_object_cache_lock();
5846
5847 queue_iterate(&vm_object_cached_list, object,
5848 vm_object_t, cached_list) {
5849 if (object->pager &&
5850 (pager_ops == object->pager->mo_pager_ops)) {
5851 vm_object_lock(object);
5852 queue_remove(&vm_object_cached_list, object,
5853 vm_object_t, cached_list);
5854 vm_object_cached_count--;
5855
5856 vm_object_cache_unlock();
5857 /*
5858 * Since this object is in the cache, we know
5859 * that it is initialized and has only a pager's
5860 * (implicit) reference. Take a reference to avoid
5861 * recursive deallocations.
5862 */
5863
5864 assert(object->pager_initialized);
5865 assert(object->ref_count == 0);
5866 vm_object_lock_assert_exclusive(object);
5867 object->ref_count++;
5868
5869 /*
5870 * Terminate the object.
5871 * If the object had a shadow, we let
5872 * vm_object_deallocate deallocate it.
5873 * "pageout" objects have a shadow, but
5874 * maintain a "paging reference" rather
5875 * than a normal reference.
5876 * (We are careful here to limit recursion.)
5877 */
5878 shadow = object->pageout?VM_OBJECT_NULL:object->shadow;
5879
5880 if ((vm_object_terminate(object) == KERN_SUCCESS)
5881 && (shadow != VM_OBJECT_NULL)) {
5882 vm_object_deallocate(shadow);
5883 }
5884
5885 if(object_released++ == *count)
5886 return KERN_SUCCESS;
5887 goto try_again;
5888 }
5889 }
5890 vm_object_cache_unlock();
5891 *count = object_released;
5892 #else
5893 *count = 0;
5894 #endif
5895 return KERN_SUCCESS;
5896 }
5897
5898
5899
5900 kern_return_t
5901 memory_object_create_named(
5902 memory_object_t pager,
5903 memory_object_offset_t size,
5904 memory_object_control_t *control)
5905 {
5906 vm_object_t object;
5907 vm_object_hash_entry_t entry;
5908 lck_mtx_t *lck;
5909
5910 *control = MEMORY_OBJECT_CONTROL_NULL;
5911 if (pager == MEMORY_OBJECT_NULL)
5912 return KERN_INVALID_ARGUMENT;
5913
5914 lck = vm_object_hash_lock_spin(pager);
5915 entry = vm_object_hash_lookup(pager, FALSE);
5916
5917 if ((entry != VM_OBJECT_HASH_ENTRY_NULL) &&
5918 (entry->object != VM_OBJECT_NULL)) {
5919 if (entry->object->named == TRUE)
5920 panic("memory_object_create_named: caller already holds the right"); }
5921 vm_object_hash_unlock(lck);
5922
5923 if ((object = vm_object_enter(pager, size, FALSE, FALSE, TRUE)) == VM_OBJECT_NULL) {
5924 return(KERN_INVALID_OBJECT);
5925 }
5926
5927 /* wait for object (if any) to be ready */
5928 if (object != VM_OBJECT_NULL) {
5929 vm_object_lock(object);
5930 object->named = TRUE;
5931 while (!object->pager_ready) {
5932 vm_object_sleep(object,
5933 VM_OBJECT_EVENT_PAGER_READY,
5934 THREAD_UNINT);
5935 }
5936 *control = object->pager_control;
5937 vm_object_unlock(object);
5938 }
5939 return (KERN_SUCCESS);
5940 }
5941
5942
5943 /*
5944 * Routine: memory_object_recover_named [user interface]
5945 * Purpose:
5946 * Attempt to recover a named reference for a VM object.
5947 * VM will verify that the object has not already started
5948 * down the termination path, and if it has, will optionally
5949 * wait for that to finish.
5950 * Returns:
5951 * KERN_SUCCESS - we recovered a named reference on the object
5952 * KERN_FAILURE - we could not recover a reference (object dead)
5953 * KERN_INVALID_ARGUMENT - bad memory object control
5954 */
5955 kern_return_t
5956 memory_object_recover_named(
5957 memory_object_control_t control,
5958 boolean_t wait_on_terminating)
5959 {
5960 vm_object_t object;
5961
5962 object = memory_object_control_to_vm_object(control);
5963 if (object == VM_OBJECT_NULL) {
5964 return (KERN_INVALID_ARGUMENT);
5965 }
5966 restart:
5967 vm_object_lock(object);
5968
5969 if (object->terminating && wait_on_terminating) {
5970 vm_object_wait(object,
5971 VM_OBJECT_EVENT_PAGING_IN_PROGRESS,
5972 THREAD_UNINT);
5973 goto restart;
5974 }
5975
5976 if (!object->alive) {
5977 vm_object_unlock(object);
5978 return KERN_FAILURE;
5979 }
5980
5981 if (object->named == TRUE) {
5982 vm_object_unlock(object);
5983 return KERN_SUCCESS;
5984 }
5985 #if VM_OBJECT_CACHE
5986 if ((object->ref_count == 0) && (!object->terminating)) {
5987 if (!vm_object_cache_lock_try()) {
5988 vm_object_unlock(object);
5989 goto restart;
5990 }
5991 queue_remove(&vm_object_cached_list, object,
5992 vm_object_t, cached_list);
5993 vm_object_cached_count--;
5994 XPR(XPR_VM_OBJECT_CACHE,
5995 "memory_object_recover_named: removing %X, head (%X, %X)\n",
5996 object,
5997 vm_object_cached_list.next,
5998 vm_object_cached_list.prev, 0,0);
5999
6000 vm_object_cache_unlock();
6001 }
6002 #endif
6003 object->named = TRUE;
6004 vm_object_lock_assert_exclusive(object);
6005 object->ref_count++;
6006 vm_object_res_reference(object);
6007 while (!object->pager_ready) {
6008 vm_object_sleep(object,
6009 VM_OBJECT_EVENT_PAGER_READY,
6010 THREAD_UNINT);
6011 }
6012 vm_object_unlock(object);
6013 return (KERN_SUCCESS);
6014 }
6015
6016
6017 /*
6018 * vm_object_release_name:
6019 *
6020 * Enforces name semantic on memory_object reference count decrement
6021 * This routine should not be called unless the caller holds a name
6022 * reference gained through the memory_object_create_named.
6023 *
6024 * If the TERMINATE_IDLE flag is set, the call will return if the
6025 * reference count is not 1. i.e. idle with the only remaining reference
6026 * being the name.
6027 * If the decision is made to proceed the name field flag is set to
6028 * false and the reference count is decremented. If the RESPECT_CACHE
6029 * flag is set and the reference count has gone to zero, the
6030 * memory_object is checked to see if it is cacheable otherwise when
6031 * the reference count is zero, it is simply terminated.
6032 */
6033
6034 __private_extern__ kern_return_t
6035 vm_object_release_name(
6036 vm_object_t object,
6037 int flags)
6038 {
6039 vm_object_t shadow;
6040 boolean_t original_object = TRUE;
6041
6042 while (object != VM_OBJECT_NULL) {
6043
6044 vm_object_lock(object);
6045
6046 assert(object->alive);
6047 if (original_object)
6048 assert(object->named);
6049 assert(object->ref_count > 0);
6050
6051 /*
6052 * We have to wait for initialization before
6053 * destroying or caching the object.
6054 */
6055
6056 if (object->pager_created && !object->pager_initialized) {
6057 assert(!object->can_persist);
6058 vm_object_assert_wait(object,
6059 VM_OBJECT_EVENT_INITIALIZED,
6060 THREAD_UNINT);
6061 vm_object_unlock(object);
6062 thread_block(THREAD_CONTINUE_NULL);
6063 continue;
6064 }
6065
6066 if (((object->ref_count > 1)
6067 && (flags & MEMORY_OBJECT_TERMINATE_IDLE))
6068 || (object->terminating)) {
6069 vm_object_unlock(object);
6070 return KERN_FAILURE;
6071 } else {
6072 if (flags & MEMORY_OBJECT_RELEASE_NO_OP) {
6073 vm_object_unlock(object);
6074 return KERN_SUCCESS;
6075 }
6076 }
6077
6078 if ((flags & MEMORY_OBJECT_RESPECT_CACHE) &&
6079 (object->ref_count == 1)) {
6080 if (original_object)
6081 object->named = FALSE;
6082 vm_object_unlock(object);
6083 /* let vm_object_deallocate push this thing into */
6084 /* the cache, if that it is where it is bound */
6085 vm_object_deallocate(object);
6086 return KERN_SUCCESS;
6087 }
6088 VM_OBJ_RES_DECR(object);
6089 shadow = object->pageout?VM_OBJECT_NULL:object->shadow;
6090
6091 if (object->ref_count == 1) {
6092 if (vm_object_terminate(object) != KERN_SUCCESS) {
6093 if (original_object) {
6094 return KERN_FAILURE;
6095 } else {
6096 return KERN_SUCCESS;
6097 }
6098 }
6099 if (shadow != VM_OBJECT_NULL) {
6100 original_object = FALSE;
6101 object = shadow;
6102 continue;
6103 }
6104 return KERN_SUCCESS;
6105 } else {
6106 vm_object_lock_assert_exclusive(object);
6107 object->ref_count--;
6108 assert(object->ref_count > 0);
6109 if(original_object)
6110 object->named = FALSE;
6111 vm_object_unlock(object);
6112 return KERN_SUCCESS;
6113 }
6114 }
6115 /*NOTREACHED*/
6116 assert(0);
6117 return KERN_FAILURE;
6118 }
6119
6120
6121 __private_extern__ kern_return_t
6122 vm_object_lock_request(
6123 vm_object_t object,
6124 vm_object_offset_t offset,
6125 vm_object_size_t size,
6126 memory_object_return_t should_return,
6127 int flags,
6128 vm_prot_t prot)
6129 {
6130 __unused boolean_t should_flush;
6131
6132 should_flush = flags & MEMORY_OBJECT_DATA_FLUSH;
6133
6134 XPR(XPR_MEMORY_OBJECT,
6135 "vm_o_lock_request, obj 0x%X off 0x%X size 0x%X flags %X prot %X\n",
6136 object, offset, size,
6137 (((should_return&1)<<1)|should_flush), prot);
6138
6139 /*
6140 * Check for bogus arguments.
6141 */
6142 if (object == VM_OBJECT_NULL)
6143 return (KERN_INVALID_ARGUMENT);
6144
6145 if ((prot & ~VM_PROT_ALL) != 0 && prot != VM_PROT_NO_CHANGE)
6146 return (KERN_INVALID_ARGUMENT);
6147
6148 size = round_page_64(size);
6149
6150 /*
6151 * Lock the object, and acquire a paging reference to
6152 * prevent the memory_object reference from being released.
6153 */
6154 vm_object_lock(object);
6155 vm_object_paging_begin(object);
6156
6157 (void)vm_object_update(object,
6158 offset, size, NULL, NULL, should_return, flags, prot);
6159
6160 vm_object_paging_end(object);
6161 vm_object_unlock(object);
6162
6163 return (KERN_SUCCESS);
6164 }
6165
6166 /*
6167 * Empty a purgeable object by grabbing the physical pages assigned to it and
6168 * putting them on the free queue without writing them to backing store, etc.
6169 * When the pages are next touched they will be demand zero-fill pages. We
6170 * skip pages which are busy, being paged in/out, wired, etc. We do _not_
6171 * skip referenced/dirty pages, pages on the active queue, etc. We're more
6172 * than happy to grab these since this is a purgeable object. We mark the
6173 * object as "empty" after reaping its pages.
6174 *
6175 * On entry the object must be locked and it must be
6176 * purgeable with no delayed copies pending.
6177 */
6178 void
6179 vm_object_purge(vm_object_t object)
6180 {
6181 vm_object_lock_assert_exclusive(object);
6182
6183 if (object->purgable == VM_PURGABLE_DENY)
6184 return;
6185
6186 assert(object->copy == VM_OBJECT_NULL);
6187 assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE);
6188
6189 if(object->purgable == VM_PURGABLE_VOLATILE) {
6190 unsigned int delta;
6191 assert(object->resident_page_count >=
6192 object->wired_page_count);
6193 delta = (object->resident_page_count -
6194 object->wired_page_count);
6195 if (delta != 0) {
6196 assert(vm_page_purgeable_count >=
6197 delta);
6198 OSAddAtomic(-delta,
6199 (SInt32 *)&vm_page_purgeable_count);
6200 }
6201 if (object->wired_page_count != 0) {
6202 assert(vm_page_purgeable_wired_count >=
6203 object->wired_page_count);
6204 OSAddAtomic(-object->wired_page_count,
6205 (SInt32 *)&vm_page_purgeable_wired_count);
6206 }
6207 }
6208 object->purgable = VM_PURGABLE_EMPTY;
6209
6210 vm_object_reap_pages(object, REAP_PURGEABLE);
6211 }
6212
6213
6214 /*
6215 * vm_object_purgeable_control() allows the caller to control and investigate the
6216 * state of a purgeable object. A purgeable object is created via a call to
6217 * vm_allocate() with VM_FLAGS_PURGABLE specified. A purgeable object will
6218 * never be coalesced with any other object -- even other purgeable objects --
6219 * and will thus always remain a distinct object. A purgeable object has
6220 * special semantics when its reference count is exactly 1. If its reference
6221 * count is greater than 1, then a purgeable object will behave like a normal
6222 * object and attempts to use this interface will result in an error return
6223 * of KERN_INVALID_ARGUMENT.
6224 *
6225 * A purgeable object may be put into a "volatile" state which will make the
6226 * object's pages elligable for being reclaimed without paging to backing
6227 * store if the system runs low on memory. If the pages in a volatile
6228 * purgeable object are reclaimed, the purgeable object is said to have been
6229 * "emptied." When a purgeable object is emptied the system will reclaim as
6230 * many pages from the object as it can in a convenient manner (pages already
6231 * en route to backing store or busy for other reasons are left as is). When
6232 * a purgeable object is made volatile, its pages will generally be reclaimed
6233 * before other pages in the application's working set. This semantic is
6234 * generally used by applications which can recreate the data in the object
6235 * faster than it can be paged in. One such example might be media assets
6236 * which can be reread from a much faster RAID volume.
6237 *
6238 * A purgeable object may be designated as "non-volatile" which means it will
6239 * behave like all other objects in the system with pages being written to and
6240 * read from backing store as needed to satisfy system memory needs. If the
6241 * object was emptied before the object was made non-volatile, that fact will
6242 * be returned as the old state of the purgeable object (see
6243 * VM_PURGABLE_SET_STATE below). In this case, any pages of the object which
6244 * were reclaimed as part of emptying the object will be refaulted in as
6245 * zero-fill on demand. It is up to the application to note that an object
6246 * was emptied and recreate the objects contents if necessary. When a
6247 * purgeable object is made non-volatile, its pages will generally not be paged
6248 * out to backing store in the immediate future. A purgeable object may also
6249 * be manually emptied.
6250 *
6251 * Finally, the current state (non-volatile, volatile, volatile & empty) of a
6252 * volatile purgeable object may be queried at any time. This information may
6253 * be used as a control input to let the application know when the system is
6254 * experiencing memory pressure and is reclaiming memory.
6255 *
6256 * The specified address may be any address within the purgeable object. If
6257 * the specified address does not represent any object in the target task's
6258 * virtual address space, then KERN_INVALID_ADDRESS will be returned. If the
6259 * object containing the specified address is not a purgeable object, then
6260 * KERN_INVALID_ARGUMENT will be returned. Otherwise, KERN_SUCCESS will be
6261 * returned.
6262 *
6263 * The control parameter may be any one of VM_PURGABLE_SET_STATE or
6264 * VM_PURGABLE_GET_STATE. For VM_PURGABLE_SET_STATE, the in/out parameter
6265 * state is used to set the new state of the purgeable object and return its
6266 * old state. For VM_PURGABLE_GET_STATE, the current state of the purgeable
6267 * object is returned in the parameter state.
6268 *
6269 * The in/out parameter state may be one of VM_PURGABLE_NONVOLATILE,
6270 * VM_PURGABLE_VOLATILE or VM_PURGABLE_EMPTY. These, respectively, represent
6271 * the non-volatile, volatile and volatile/empty states described above.
6272 * Setting the state of a purgeable object to VM_PURGABLE_EMPTY will
6273 * immediately reclaim as many pages in the object as can be conveniently
6274 * collected (some may have already been written to backing store or be
6275 * otherwise busy).
6276 *
6277 * The process of making a purgeable object non-volatile and determining its
6278 * previous state is atomic. Thus, if a purgeable object is made
6279 * VM_PURGABLE_NONVOLATILE and the old state is returned as
6280 * VM_PURGABLE_VOLATILE, then the purgeable object's previous contents are
6281 * completely intact and will remain so until the object is made volatile
6282 * again. If the old state is returned as VM_PURGABLE_EMPTY then the object
6283 * was reclaimed while it was in a volatile state and its previous contents
6284 * have been lost.
6285 */
6286 /*
6287 * The object must be locked.
6288 */
6289 kern_return_t
6290 vm_object_purgable_control(
6291 vm_object_t object,
6292 vm_purgable_t control,
6293 int *state)
6294 {
6295 int old_state;
6296 int new_state;
6297
6298 if (object == VM_OBJECT_NULL) {
6299 /*
6300 * Object must already be present or it can't be purgeable.
6301 */
6302 return KERN_INVALID_ARGUMENT;
6303 }
6304
6305 /*
6306 * Get current state of the purgeable object.
6307 */
6308 old_state = object->purgable;
6309 if (old_state == VM_PURGABLE_DENY)
6310 return KERN_INVALID_ARGUMENT;
6311
6312 /* purgeable cant have delayed copies - now or in the future */
6313 assert(object->copy == VM_OBJECT_NULL);
6314 assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE);
6315
6316 /*
6317 * Execute the desired operation.
6318 */
6319 if (control == VM_PURGABLE_GET_STATE) {
6320 *state = old_state;
6321 return KERN_SUCCESS;
6322 }
6323
6324 if ((*state) & VM_PURGABLE_DEBUG_EMPTY) {
6325 object->volatile_empty = TRUE;
6326 }
6327 if ((*state) & VM_PURGABLE_DEBUG_FAULT) {
6328 object->volatile_fault = TRUE;
6329 }
6330
6331 new_state = *state & VM_PURGABLE_STATE_MASK;
6332 if (new_state == VM_PURGABLE_VOLATILE &&
6333 object->volatile_empty) {
6334 new_state = VM_PURGABLE_EMPTY;
6335 }
6336
6337 switch (new_state) {
6338 case VM_PURGABLE_DENY:
6339 case VM_PURGABLE_NONVOLATILE:
6340 object->purgable = new_state;
6341
6342 if (old_state == VM_PURGABLE_VOLATILE) {
6343 unsigned int delta;
6344
6345 assert(object->resident_page_count >=
6346 object->wired_page_count);
6347 delta = (object->resident_page_count -
6348 object->wired_page_count);
6349
6350 assert(vm_page_purgeable_count >= delta);
6351
6352 if (delta != 0) {
6353 OSAddAtomic(-delta,
6354 (SInt32 *)&vm_page_purgeable_count);
6355 }
6356 if (object->wired_page_count != 0) {
6357 assert(vm_page_purgeable_wired_count >=
6358 object->wired_page_count);
6359 OSAddAtomic(-object->wired_page_count,
6360 (SInt32 *)&vm_page_purgeable_wired_count);
6361 }
6362
6363 vm_page_lock_queues();
6364
6365 assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */
6366 purgeable_q_t queue = vm_purgeable_object_remove(object);
6367 assert(queue);
6368
6369 if (object->purgeable_when_ripe) {
6370 vm_purgeable_token_delete_last(queue);
6371 }
6372 assert(queue->debug_count_objects>=0);
6373
6374 vm_page_unlock_queues();
6375 }
6376 break;
6377
6378 case VM_PURGABLE_VOLATILE:
6379 if (object->volatile_fault) {
6380 vm_page_t p;
6381 int refmod;
6382
6383 queue_iterate(&object->memq, p, vm_page_t, listq) {
6384 if (p->busy ||
6385 VM_PAGE_WIRED(p) ||
6386 p->fictitious) {
6387 continue;
6388 }
6389 refmod = pmap_disconnect(p->phys_page);
6390 if ((refmod & VM_MEM_MODIFIED) &&
6391 !p->dirty) {
6392 SET_PAGE_DIRTY(p, FALSE);
6393 }
6394 }
6395 }
6396
6397 if (old_state == VM_PURGABLE_EMPTY &&
6398 object->resident_page_count == 0)
6399 break;
6400
6401 purgeable_q_t queue;
6402
6403 /* find the correct queue */
6404 if ((*state&VM_PURGABLE_ORDERING_MASK) == VM_PURGABLE_ORDERING_OBSOLETE)
6405 queue = &purgeable_queues[PURGEABLE_Q_TYPE_OBSOLETE];
6406 else {
6407 if ((*state&VM_PURGABLE_BEHAVIOR_MASK) == VM_PURGABLE_BEHAVIOR_FIFO)
6408 queue = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO];
6409 else
6410 queue = &purgeable_queues[PURGEABLE_Q_TYPE_LIFO];
6411 }
6412
6413 if (old_state == VM_PURGABLE_NONVOLATILE ||
6414 old_state == VM_PURGABLE_EMPTY) {
6415 unsigned int delta;
6416
6417 if ((*state & VM_PURGABLE_NO_AGING_MASK) ==
6418 VM_PURGABLE_NO_AGING) {
6419 object->purgeable_when_ripe = FALSE;
6420 } else {
6421 object->purgeable_when_ripe = TRUE;
6422 }
6423
6424 if (object->purgeable_when_ripe) {
6425 kern_return_t result;
6426
6427 /* try to add token... this can fail */
6428 vm_page_lock_queues();
6429
6430 result = vm_purgeable_token_add(queue);
6431 if (result != KERN_SUCCESS) {
6432 vm_page_unlock_queues();
6433 return result;
6434 }
6435 vm_page_unlock_queues();
6436 }
6437
6438 assert(object->resident_page_count >=
6439 object->wired_page_count);
6440 delta = (object->resident_page_count -
6441 object->wired_page_count);
6442
6443 if (delta != 0) {
6444 OSAddAtomic(delta,
6445 &vm_page_purgeable_count);
6446 }
6447 if (object->wired_page_count != 0) {
6448 OSAddAtomic(object->wired_page_count,
6449 &vm_page_purgeable_wired_count);
6450 }
6451
6452 object->purgable = new_state;
6453
6454 /* object should not be on a queue */
6455 assert(object->objq.next == NULL && object->objq.prev == NULL);
6456 }
6457 else if (old_state == VM_PURGABLE_VOLATILE) {
6458 purgeable_q_t old_queue;
6459 boolean_t purgeable_when_ripe;
6460
6461 /*
6462 * if reassigning priorities / purgeable groups, we don't change the
6463 * token queue. So moving priorities will not make pages stay around longer.
6464 * Reasoning is that the algorithm gives most priority to the most important
6465 * object. If a new token is added, the most important object' priority is boosted.
6466 * This biases the system already for purgeable queues that move a lot.
6467 * It doesn't seem more biasing is neccessary in this case, where no new object is added.
6468 */
6469 assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */
6470
6471 old_queue = vm_purgeable_object_remove(object);
6472 assert(old_queue);
6473
6474 if ((*state & VM_PURGABLE_NO_AGING_MASK) ==
6475 VM_PURGABLE_NO_AGING) {
6476 purgeable_when_ripe = FALSE;
6477 } else {
6478 purgeable_when_ripe = TRUE;
6479 }
6480
6481 if (old_queue != queue ||
6482 (purgeable_when_ripe !=
6483 object->purgeable_when_ripe)) {
6484 kern_return_t result;
6485
6486 /* Changing queue. Have to move token. */
6487 vm_page_lock_queues();
6488 if (object->purgeable_when_ripe) {
6489 vm_purgeable_token_delete_last(old_queue);
6490 }
6491 object->purgeable_when_ripe = purgeable_when_ripe;
6492 if (object->purgeable_when_ripe) {
6493 result = vm_purgeable_token_add(queue);
6494 assert(result==KERN_SUCCESS); /* this should never fail since we just freed a token */
6495 }
6496 vm_page_unlock_queues();
6497
6498 }
6499 };
6500 vm_purgeable_object_add(object, queue, (*state&VM_VOLATILE_GROUP_MASK)>>VM_VOLATILE_GROUP_SHIFT );
6501
6502 assert(queue->debug_count_objects>=0);
6503
6504 break;
6505
6506
6507 case VM_PURGABLE_EMPTY:
6508 if (object->volatile_fault) {
6509 vm_page_t p;
6510 int refmod;
6511
6512 queue_iterate(&object->memq, p, vm_page_t, listq) {
6513 if (p->busy ||
6514 VM_PAGE_WIRED(p) ||
6515 p->fictitious) {
6516 continue;
6517 }
6518 refmod = pmap_disconnect(p->phys_page);
6519 if ((refmod & VM_MEM_MODIFIED) &&
6520 !p->dirty) {
6521 SET_PAGE_DIRTY(p, FALSE);
6522 }
6523 }
6524 }
6525
6526 if (old_state != new_state) {
6527 assert(old_state == VM_PURGABLE_NONVOLATILE ||
6528 old_state == VM_PURGABLE_VOLATILE);
6529 if (old_state == VM_PURGABLE_VOLATILE) {
6530 purgeable_q_t old_queue;
6531
6532 /* object should be on a queue */
6533 assert(object->objq.next != NULL &&
6534 object->objq.prev != NULL);
6535 old_queue = vm_purgeable_object_remove(object);
6536 assert(old_queue);
6537 if (object->purgeable_when_ripe) {
6538 vm_page_lock_queues();
6539 vm_purgeable_token_delete_first(old_queue);
6540 vm_page_unlock_queues();
6541 }
6542 }
6543 (void) vm_object_purge(object);
6544 }
6545 break;
6546
6547 }
6548 *state = old_state;
6549
6550 return KERN_SUCCESS;
6551 }
6552
6553 kern_return_t
6554 vm_object_get_page_counts(
6555 vm_object_t object,
6556 vm_object_offset_t offset,
6557 vm_object_size_t size,
6558 unsigned int *resident_page_count,
6559 unsigned int *dirty_page_count)
6560 {
6561
6562 kern_return_t kr = KERN_SUCCESS;
6563 boolean_t count_dirty_pages = FALSE;
6564 vm_page_t p = VM_PAGE_NULL;
6565 unsigned int local_resident_count = 0;
6566 unsigned int local_dirty_count = 0;
6567 vm_object_offset_t cur_offset = 0;
6568 vm_object_offset_t end_offset = 0;
6569
6570 if (object == VM_OBJECT_NULL)
6571 return KERN_INVALID_ARGUMENT;
6572
6573
6574 cur_offset = offset;
6575
6576 end_offset = offset + size;
6577
6578 vm_object_lock_assert_exclusive(object);
6579
6580 if (dirty_page_count != NULL) {
6581
6582 count_dirty_pages = TRUE;
6583 }
6584
6585 if (resident_page_count != NULL && count_dirty_pages == FALSE) {
6586 /*
6587 * Fast path when:
6588 * - we only want the resident page count, and,
6589 * - the entire object is exactly covered by the request.
6590 */
6591 if (offset == 0 && (object->vo_size == size)) {
6592
6593 *resident_page_count = object->resident_page_count;
6594 goto out;
6595 }
6596 }
6597
6598 if (object->resident_page_count <= (size >> PAGE_SHIFT)) {
6599
6600 queue_iterate(&object->memq, p, vm_page_t, listq) {
6601
6602 if (p->offset >= cur_offset && p->offset < end_offset) {
6603
6604 local_resident_count++;
6605
6606 if (count_dirty_pages) {
6607
6608 if (p->dirty || (p->wpmapped && pmap_is_modified(p->phys_page))) {
6609
6610 local_dirty_count++;
6611 }
6612 }
6613 }
6614 }
6615 } else {
6616
6617 for (cur_offset = offset; cur_offset < end_offset; cur_offset += PAGE_SIZE_64) {
6618
6619 p = vm_page_lookup(object, cur_offset);
6620
6621 if (p != VM_PAGE_NULL) {
6622
6623 local_resident_count++;
6624
6625 if (count_dirty_pages) {
6626
6627 if (p->dirty || (p->wpmapped && pmap_is_modified(p->phys_page))) {
6628
6629 local_dirty_count++;
6630 }
6631 }
6632 }
6633 }
6634
6635 }
6636
6637 if (resident_page_count != NULL) {
6638 *resident_page_count = local_resident_count;
6639 }
6640
6641 if (dirty_page_count != NULL) {
6642 *dirty_page_count = local_dirty_count;
6643 }
6644
6645 out:
6646 return kr;
6647 }
6648
6649
6650 #if TASK_SWAPPER
6651 /*
6652 * vm_object_res_deallocate
6653 *
6654 * (recursively) decrement residence counts on vm objects and their shadows.
6655 * Called from vm_object_deallocate and when swapping out an object.
6656 *
6657 * The object is locked, and remains locked throughout the function,
6658 * even as we iterate down the shadow chain. Locks on intermediate objects
6659 * will be dropped, but not the original object.
6660 *
6661 * NOTE: this function used to use recursion, rather than iteration.
6662 */
6663
6664 __private_extern__ void
6665 vm_object_res_deallocate(
6666 vm_object_t object)
6667 {
6668 vm_object_t orig_object = object;
6669 /*
6670 * Object is locked so it can be called directly
6671 * from vm_object_deallocate. Original object is never
6672 * unlocked.
6673 */
6674 assert(object->res_count > 0);
6675 while (--object->res_count == 0) {
6676 assert(object->ref_count >= object->res_count);
6677 vm_object_deactivate_all_pages(object);
6678 /* iterate on shadow, if present */
6679 if (object->shadow != VM_OBJECT_NULL) {
6680 vm_object_t tmp_object = object->shadow;
6681 vm_object_lock(tmp_object);
6682 if (object != orig_object)
6683 vm_object_unlock(object);
6684 object = tmp_object;
6685 assert(object->res_count > 0);
6686 } else
6687 break;
6688 }
6689 if (object != orig_object)
6690 vm_object_unlock(object);
6691 }
6692
6693 /*
6694 * vm_object_res_reference
6695 *
6696 * Internal function to increment residence count on a vm object
6697 * and its shadows. It is called only from vm_object_reference, and
6698 * when swapping in a vm object, via vm_map_swap.
6699 *
6700 * The object is locked, and remains locked throughout the function,
6701 * even as we iterate down the shadow chain. Locks on intermediate objects
6702 * will be dropped, but not the original object.
6703 *
6704 * NOTE: this function used to use recursion, rather than iteration.
6705 */
6706
6707 __private_extern__ void
6708 vm_object_res_reference(
6709 vm_object_t object)
6710 {
6711 vm_object_t orig_object = object;
6712 /*
6713 * Object is locked, so this can be called directly
6714 * from vm_object_reference. This lock is never released.
6715 */
6716 while ((++object->res_count == 1) &&
6717 (object->shadow != VM_OBJECT_NULL)) {
6718 vm_object_t tmp_object = object->shadow;
6719
6720 assert(object->ref_count >= object->res_count);
6721 vm_object_lock(tmp_object);
6722 if (object != orig_object)
6723 vm_object_unlock(object);
6724 object = tmp_object;
6725 }
6726 if (object != orig_object)
6727 vm_object_unlock(object);
6728 assert(orig_object->ref_count >= orig_object->res_count);
6729 }
6730 #endif /* TASK_SWAPPER */
6731
6732 /*
6733 * vm_object_reference:
6734 *
6735 * Gets another reference to the given object.
6736 */
6737 #ifdef vm_object_reference
6738 #undef vm_object_reference
6739 #endif
6740 __private_extern__ void
6741 vm_object_reference(
6742 register vm_object_t object)
6743 {
6744 if (object == VM_OBJECT_NULL)
6745 return;
6746
6747 vm_object_lock(object);
6748 assert(object->ref_count > 0);
6749 vm_object_reference_locked(object);
6750 vm_object_unlock(object);
6751 }
6752
6753 #ifdef MACH_BSD
6754 /*
6755 * Scale the vm_object_cache
6756 * This is required to make sure that the vm_object_cache is big
6757 * enough to effectively cache the mapped file.
6758 * This is really important with UBC as all the regular file vnodes
6759 * have memory object associated with them. Havving this cache too
6760 * small results in rapid reclaim of vnodes and hurts performance a LOT!
6761 *
6762 * This is also needed as number of vnodes can be dynamically scaled.
6763 */
6764 kern_return_t
6765 adjust_vm_object_cache(
6766 __unused vm_size_t oval,
6767 __unused vm_size_t nval)
6768 {
6769 #if VM_OBJECT_CACHE
6770 vm_object_cached_max = nval;
6771 vm_object_cache_trim(FALSE);
6772 #endif
6773 return (KERN_SUCCESS);
6774 }
6775 #endif /* MACH_BSD */
6776
6777
6778 /*
6779 * vm_object_transpose
6780 *
6781 * This routine takes two VM objects of the same size and exchanges
6782 * their backing store.
6783 * The objects should be "quiesced" via a UPL operation with UPL_SET_IO_WIRE
6784 * and UPL_BLOCK_ACCESS if they are referenced anywhere.
6785 *
6786 * The VM objects must not be locked by caller.
6787 */
6788 unsigned int vm_object_transpose_count = 0;
6789 kern_return_t
6790 vm_object_transpose(
6791 vm_object_t object1,
6792 vm_object_t object2,
6793 vm_object_size_t transpose_size)
6794 {
6795 vm_object_t tmp_object;
6796 kern_return_t retval;
6797 boolean_t object1_locked, object2_locked;
6798 vm_page_t page;
6799 vm_object_offset_t page_offset;
6800 lck_mtx_t *hash_lck;
6801 vm_object_hash_entry_t hash_entry;
6802
6803 tmp_object = VM_OBJECT_NULL;
6804 object1_locked = FALSE; object2_locked = FALSE;
6805
6806 if (object1 == object2 ||
6807 object1 == VM_OBJECT_NULL ||
6808 object2 == VM_OBJECT_NULL) {
6809 /*
6810 * If the 2 VM objects are the same, there's
6811 * no point in exchanging their backing store.
6812 */
6813 retval = KERN_INVALID_VALUE;
6814 goto done;
6815 }
6816
6817 /*
6818 * Since we need to lock both objects at the same time,
6819 * make sure we always lock them in the same order to
6820 * avoid deadlocks.
6821 */
6822 if (object1 > object2) {
6823 tmp_object = object1;
6824 object1 = object2;
6825 object2 = tmp_object;
6826 }
6827
6828 /*
6829 * Allocate a temporary VM object to hold object1's contents
6830 * while we copy object2 to object1.
6831 */
6832 tmp_object = vm_object_allocate(transpose_size);
6833 vm_object_lock(tmp_object);
6834 tmp_object->can_persist = FALSE;
6835
6836
6837 /*
6838 * Grab control of the 1st VM object.
6839 */
6840 vm_object_lock(object1);
6841 object1_locked = TRUE;
6842 if (!object1->alive || object1->terminating ||
6843 object1->copy || object1->shadow || object1->shadowed ||
6844 object1->purgable != VM_PURGABLE_DENY) {
6845 /*
6846 * We don't deal with copy or shadow objects (yet).
6847 */
6848 retval = KERN_INVALID_VALUE;
6849 goto done;
6850 }
6851 /*
6852 * We're about to mess with the object's backing store and
6853 * taking a "paging_in_progress" reference wouldn't be enough
6854 * to prevent any paging activity on this object, so the caller should
6855 * have "quiesced" the objects beforehand, via a UPL operation with
6856 * UPL_SET_IO_WIRE (to make sure all the pages are there and wired)
6857 * and UPL_BLOCK_ACCESS (to mark the pages "busy").
6858 *
6859 * Wait for any paging operation to complete (but only paging, not
6860 * other kind of activities not linked to the pager). After we're
6861 * statisfied that there's no more paging in progress, we keep the
6862 * object locked, to guarantee that no one tries to access its pager.
6863 */
6864 vm_object_paging_only_wait(object1, THREAD_UNINT);
6865
6866 /*
6867 * Same as above for the 2nd object...
6868 */
6869 vm_object_lock(object2);
6870 object2_locked = TRUE;
6871 if (! object2->alive || object2->terminating ||
6872 object2->copy || object2->shadow || object2->shadowed ||
6873 object2->purgable != VM_PURGABLE_DENY) {
6874 retval = KERN_INVALID_VALUE;
6875 goto done;
6876 }
6877 vm_object_paging_only_wait(object2, THREAD_UNINT);
6878
6879
6880 if (object1->vo_size != object2->vo_size ||
6881 object1->vo_size != transpose_size) {
6882 /*
6883 * If the 2 objects don't have the same size, we can't
6884 * exchange their backing stores or one would overflow.
6885 * If their size doesn't match the caller's
6886 * "transpose_size", we can't do it either because the
6887 * transpose operation will affect the entire span of
6888 * the objects.
6889 */
6890 retval = KERN_INVALID_VALUE;
6891 goto done;
6892 }
6893
6894
6895 /*
6896 * Transpose the lists of resident pages.
6897 * This also updates the resident_page_count and the memq_hint.
6898 */
6899 if (object1->phys_contiguous || queue_empty(&object1->memq)) {
6900 /*
6901 * No pages in object1, just transfer pages
6902 * from object2 to object1. No need to go through
6903 * an intermediate object.
6904 */
6905 while (!queue_empty(&object2->memq)) {
6906 page = (vm_page_t) queue_first(&object2->memq);
6907 vm_page_rename(page, object1, page->offset, FALSE);
6908 }
6909 assert(queue_empty(&object2->memq));
6910 } else if (object2->phys_contiguous || queue_empty(&object2->memq)) {
6911 /*
6912 * No pages in object2, just transfer pages
6913 * from object1 to object2. No need to go through
6914 * an intermediate object.
6915 */
6916 while (!queue_empty(&object1->memq)) {
6917 page = (vm_page_t) queue_first(&object1->memq);
6918 vm_page_rename(page, object2, page->offset, FALSE);
6919 }
6920 assert(queue_empty(&object1->memq));
6921 } else {
6922 /* transfer object1's pages to tmp_object */
6923 while (!queue_empty(&object1->memq)) {
6924 page = (vm_page_t) queue_first(&object1->memq);
6925 page_offset = page->offset;
6926 vm_page_remove(page, TRUE);
6927 page->offset = page_offset;
6928 queue_enter(&tmp_object->memq, page, vm_page_t, listq);
6929 }
6930 assert(queue_empty(&object1->memq));
6931 /* transfer object2's pages to object1 */
6932 while (!queue_empty(&object2->memq)) {
6933 page = (vm_page_t) queue_first(&object2->memq);
6934 vm_page_rename(page, object1, page->offset, FALSE);
6935 }
6936 assert(queue_empty(&object2->memq));
6937 /* transfer tmp_object's pages to object1 */
6938 while (!queue_empty(&tmp_object->memq)) {
6939 page = (vm_page_t) queue_first(&tmp_object->memq);
6940 queue_remove(&tmp_object->memq, page,
6941 vm_page_t, listq);
6942 vm_page_insert(page, object2, page->offset);
6943 }
6944 assert(queue_empty(&tmp_object->memq));
6945 }
6946
6947 #define __TRANSPOSE_FIELD(field) \
6948 MACRO_BEGIN \
6949 tmp_object->field = object1->field; \
6950 object1->field = object2->field; \
6951 object2->field = tmp_object->field; \
6952 MACRO_END
6953
6954 /* "Lock" refers to the object not its contents */
6955 /* "size" should be identical */
6956 assert(object1->vo_size == object2->vo_size);
6957 /* "memq_hint" was updated above when transposing pages */
6958 /* "ref_count" refers to the object not its contents */
6959 #if TASK_SWAPPER
6960 /* "res_count" refers to the object not its contents */
6961 #endif
6962 /* "resident_page_count" was updated above when transposing pages */
6963 /* "wired_page_count" was updated above when transposing pages */
6964 /* "reusable_page_count" was updated above when transposing pages */
6965 /* there should be no "copy" */
6966 assert(!object1->copy);
6967 assert(!object2->copy);
6968 /* there should be no "shadow" */
6969 assert(!object1->shadow);
6970 assert(!object2->shadow);
6971 __TRANSPOSE_FIELD(vo_shadow_offset); /* used by phys_contiguous objects */
6972 __TRANSPOSE_FIELD(pager);
6973 __TRANSPOSE_FIELD(paging_offset);
6974 __TRANSPOSE_FIELD(pager_control);
6975 /* update the memory_objects' pointers back to the VM objects */
6976 if (object1->pager_control != MEMORY_OBJECT_CONTROL_NULL) {
6977 memory_object_control_collapse(object1->pager_control,
6978 object1);
6979 }
6980 if (object2->pager_control != MEMORY_OBJECT_CONTROL_NULL) {
6981 memory_object_control_collapse(object2->pager_control,
6982 object2);
6983 }
6984 __TRANSPOSE_FIELD(copy_strategy);
6985 /* "paging_in_progress" refers to the object not its contents */
6986 assert(!object1->paging_in_progress);
6987 assert(!object2->paging_in_progress);
6988 assert(object1->activity_in_progress);
6989 assert(object2->activity_in_progress);
6990 /* "all_wanted" refers to the object not its contents */
6991 __TRANSPOSE_FIELD(pager_created);
6992 __TRANSPOSE_FIELD(pager_initialized);
6993 __TRANSPOSE_FIELD(pager_ready);
6994 __TRANSPOSE_FIELD(pager_trusted);
6995 __TRANSPOSE_FIELD(can_persist);
6996 __TRANSPOSE_FIELD(internal);
6997 __TRANSPOSE_FIELD(temporary);
6998 __TRANSPOSE_FIELD(private);
6999 __TRANSPOSE_FIELD(pageout);
7000 /* "alive" should be set */
7001 assert(object1->alive);
7002 assert(object2->alive);
7003 /* "purgeable" should be non-purgeable */
7004 assert(object1->purgable == VM_PURGABLE_DENY);
7005 assert(object2->purgable == VM_PURGABLE_DENY);
7006 /* "shadowed" refers to the the object not its contents */
7007 __TRANSPOSE_FIELD(purgeable_when_ripe);
7008 __TRANSPOSE_FIELD(advisory_pageout);
7009 __TRANSPOSE_FIELD(true_share);
7010 /* "terminating" should not be set */
7011 assert(!object1->terminating);
7012 assert(!object2->terminating);
7013 __TRANSPOSE_FIELD(named);
7014 /* "shadow_severed" refers to the object not its contents */
7015 __TRANSPOSE_FIELD(phys_contiguous);
7016 __TRANSPOSE_FIELD(nophyscache);
7017 /* "cached_list.next" points to transposed object */
7018 object1->cached_list.next = (queue_entry_t) object2;
7019 object2->cached_list.next = (queue_entry_t) object1;
7020 /* "cached_list.prev" should be NULL */
7021 assert(object1->cached_list.prev == NULL);
7022 assert(object2->cached_list.prev == NULL);
7023 /* "msr_q" is linked to the object not its contents */
7024 assert(queue_empty(&object1->msr_q));
7025 assert(queue_empty(&object2->msr_q));
7026 __TRANSPOSE_FIELD(last_alloc);
7027 __TRANSPOSE_FIELD(sequential);
7028 __TRANSPOSE_FIELD(pages_created);
7029 __TRANSPOSE_FIELD(pages_used);
7030 __TRANSPOSE_FIELD(scan_collisions);
7031 #if MACH_PAGEMAP
7032 __TRANSPOSE_FIELD(existence_map);
7033 #endif
7034 __TRANSPOSE_FIELD(cow_hint);
7035 #if MACH_ASSERT
7036 __TRANSPOSE_FIELD(paging_object);
7037 #endif
7038 __TRANSPOSE_FIELD(wimg_bits);
7039 __TRANSPOSE_FIELD(set_cache_attr);
7040 __TRANSPOSE_FIELD(code_signed);
7041 if (object1->hashed) {
7042 hash_lck = vm_object_hash_lock_spin(object2->pager);
7043 hash_entry = vm_object_hash_lookup(object2->pager, FALSE);
7044 assert(hash_entry != VM_OBJECT_HASH_ENTRY_NULL);
7045 hash_entry->object = object2;
7046 vm_object_hash_unlock(hash_lck);
7047 }
7048 if (object2->hashed) {
7049 hash_lck = vm_object_hash_lock_spin(object1->pager);
7050 hash_entry = vm_object_hash_lookup(object1->pager, FALSE);
7051 assert(hash_entry != VM_OBJECT_HASH_ENTRY_NULL);
7052 hash_entry->object = object1;
7053 vm_object_hash_unlock(hash_lck);
7054 }
7055 __TRANSPOSE_FIELD(hashed);
7056 object1->transposed = TRUE;
7057 object2->transposed = TRUE;
7058 __TRANSPOSE_FIELD(mapping_in_progress);
7059 __TRANSPOSE_FIELD(volatile_empty);
7060 __TRANSPOSE_FIELD(volatile_fault);
7061 __TRANSPOSE_FIELD(all_reusable);
7062 assert(object1->blocked_access);
7063 assert(object2->blocked_access);
7064 assert(object1->__object2_unused_bits == 0);
7065 assert(object2->__object2_unused_bits == 0);
7066 #if UPL_DEBUG
7067 /* "uplq" refers to the object not its contents (see upl_transpose()) */
7068 #endif
7069 assert(object1->objq.next == NULL);
7070 assert(object1->objq.prev == NULL);
7071 assert(object2->objq.next == NULL);
7072 assert(object2->objq.prev == NULL);
7073
7074 #undef __TRANSPOSE_FIELD
7075
7076 retval = KERN_SUCCESS;
7077
7078 done:
7079 /*
7080 * Cleanup.
7081 */
7082 if (tmp_object != VM_OBJECT_NULL) {
7083 vm_object_unlock(tmp_object);
7084 /*
7085 * Re-initialize the temporary object to avoid
7086 * deallocating a real pager.
7087 */
7088 _vm_object_allocate(transpose_size, tmp_object);
7089 vm_object_deallocate(tmp_object);
7090 tmp_object = VM_OBJECT_NULL;
7091 }
7092
7093 if (object1_locked) {
7094 vm_object_unlock(object1);
7095 object1_locked = FALSE;
7096 }
7097 if (object2_locked) {
7098 vm_object_unlock(object2);
7099 object2_locked = FALSE;
7100 }
7101
7102 vm_object_transpose_count++;
7103
7104 return retval;
7105 }
7106
7107
7108 /*
7109 * vm_object_cluster_size
7110 *
7111 * Determine how big a cluster we should issue an I/O for...
7112 *
7113 * Inputs: *start == offset of page needed
7114 * *length == maximum cluster pager can handle
7115 * Outputs: *start == beginning offset of cluster
7116 * *length == length of cluster to try
7117 *
7118 * The original *start will be encompassed by the cluster
7119 *
7120 */
7121 extern int speculative_reads_disabled;
7122 extern int ignore_is_ssd;
7123
7124 unsigned int preheat_pages_max = MAX_UPL_TRANSFER;
7125 unsigned int preheat_pages_min = 8;
7126
7127 uint32_t pre_heat_scaling[MAX_UPL_TRANSFER + 1];
7128 uint32_t pre_heat_cluster[MAX_UPL_TRANSFER + 1];
7129
7130
7131 __private_extern__ void
7132 vm_object_cluster_size(vm_object_t object, vm_object_offset_t *start,
7133 vm_size_t *length, vm_object_fault_info_t fault_info, uint32_t *io_streaming)
7134 {
7135 vm_size_t pre_heat_size;
7136 vm_size_t tail_size;
7137 vm_size_t head_size;
7138 vm_size_t max_length;
7139 vm_size_t cluster_size;
7140 vm_object_offset_t object_size;
7141 vm_object_offset_t orig_start;
7142 vm_object_offset_t target_start;
7143 vm_object_offset_t offset;
7144 vm_behavior_t behavior;
7145 boolean_t look_behind = TRUE;
7146 boolean_t look_ahead = TRUE;
7147 boolean_t isSSD = FALSE;
7148 uint32_t throttle_limit;
7149 int sequential_run;
7150 int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
7151 unsigned int max_ph_size;
7152 unsigned int min_ph_size;
7153 unsigned int min_ph_size_in_bytes;
7154
7155 assert( !(*length & PAGE_MASK));
7156 assert( !(*start & PAGE_MASK_64));
7157
7158 /*
7159 * remember maxiumum length of run requested
7160 */
7161 max_length = *length;
7162 /*
7163 * we'll always return a cluster size of at least
7164 * 1 page, since the original fault must always
7165 * be processed
7166 */
7167 *length = PAGE_SIZE;
7168 *io_streaming = 0;
7169
7170 if (speculative_reads_disabled || fault_info == NULL) {
7171 /*
7172 * no cluster... just fault the page in
7173 */
7174 return;
7175 }
7176 orig_start = *start;
7177 target_start = orig_start;
7178 cluster_size = round_page(fault_info->cluster_size);
7179 behavior = fault_info->behavior;
7180
7181 vm_object_lock(object);
7182
7183 if (object->pager == MEMORY_OBJECT_NULL)
7184 goto out; /* pager is gone for this object, nothing more to do */
7185
7186 if (!ignore_is_ssd)
7187 vnode_pager_get_isSSD(object->pager, &isSSD);
7188
7189 min_ph_size = preheat_pages_min;
7190 max_ph_size = preheat_pages_max;
7191
7192 if (isSSD) {
7193 min_ph_size /= 2;
7194 max_ph_size /= 8;
7195 }
7196 if (min_ph_size < 1)
7197 min_ph_size = 1;
7198
7199 if (max_ph_size < 1)
7200 max_ph_size = 1;
7201 else if (max_ph_size > MAX_UPL_TRANSFER)
7202 max_ph_size = MAX_UPL_TRANSFER;
7203
7204 if (max_length > (max_ph_size * PAGE_SIZE))
7205 max_length = max_ph_size * PAGE_SIZE;
7206
7207 if (max_length <= PAGE_SIZE)
7208 goto out;
7209
7210 min_ph_size_in_bytes = min_ph_size * PAGE_SIZE;
7211
7212 if (object->internal)
7213 object_size = object->vo_size;
7214 else
7215 vnode_pager_get_object_size(object->pager, &object_size);
7216
7217 object_size = round_page_64(object_size);
7218
7219 if (orig_start >= object_size) {
7220 /*
7221 * fault occurred beyond the EOF...
7222 * we need to punt w/o changing the
7223 * starting offset
7224 */
7225 goto out;
7226 }
7227 if (object->pages_used > object->pages_created) {
7228 /*
7229 * must have wrapped our 32 bit counters
7230 * so reset
7231 */
7232 object->pages_used = object->pages_created = 0;
7233 }
7234 if ((sequential_run = object->sequential)) {
7235 if (sequential_run < 0) {
7236 sequential_behavior = VM_BEHAVIOR_RSEQNTL;
7237 sequential_run = 0 - sequential_run;
7238 } else {
7239 sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
7240 }
7241
7242 }
7243 switch (behavior) {
7244
7245 default:
7246 behavior = VM_BEHAVIOR_DEFAULT;
7247
7248 case VM_BEHAVIOR_DEFAULT:
7249 if (object->internal && fault_info->user_tag == VM_MEMORY_STACK)
7250 goto out;
7251
7252 if (sequential_run >= (3 * PAGE_SIZE)) {
7253 pre_heat_size = sequential_run + PAGE_SIZE;
7254
7255 if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL)
7256 look_behind = FALSE;
7257 else
7258 look_ahead = FALSE;
7259
7260 *io_streaming = 1;
7261 } else {
7262
7263 if (object->pages_created < (20 * min_ph_size)) {
7264 /*
7265 * prime the pump
7266 */
7267 pre_heat_size = min_ph_size_in_bytes;
7268 } else {
7269 /*
7270 * Linear growth in PH size: The maximum size is max_length...
7271 * this cacluation will result in a size that is neither a
7272 * power of 2 nor a multiple of PAGE_SIZE... so round
7273 * it up to the nearest PAGE_SIZE boundary
7274 */
7275 pre_heat_size = (max_length * object->pages_used) / object->pages_created;
7276
7277 if (pre_heat_size < min_ph_size_in_bytes)
7278 pre_heat_size = min_ph_size_in_bytes;
7279 else
7280 pre_heat_size = round_page(pre_heat_size);
7281 }
7282 }
7283 break;
7284
7285 case VM_BEHAVIOR_RANDOM:
7286 if ((pre_heat_size = cluster_size) <= PAGE_SIZE)
7287 goto out;
7288 break;
7289
7290 case VM_BEHAVIOR_SEQUENTIAL:
7291 if ((pre_heat_size = cluster_size) == 0)
7292 pre_heat_size = sequential_run + PAGE_SIZE;
7293 look_behind = FALSE;
7294 *io_streaming = 1;
7295
7296 break;
7297
7298 case VM_BEHAVIOR_RSEQNTL:
7299 if ((pre_heat_size = cluster_size) == 0)
7300 pre_heat_size = sequential_run + PAGE_SIZE;
7301 look_ahead = FALSE;
7302 *io_streaming = 1;
7303
7304 break;
7305
7306 }
7307 throttle_limit = (uint32_t) max_length;
7308 assert(throttle_limit == max_length);
7309
7310 if (vnode_pager_get_throttle_io_limit(object->pager, &throttle_limit) == KERN_SUCCESS) {
7311 if (max_length > throttle_limit)
7312 max_length = throttle_limit;
7313 }
7314 if (pre_heat_size > max_length)
7315 pre_heat_size = max_length;
7316
7317 if (behavior == VM_BEHAVIOR_DEFAULT && (pre_heat_size > min_ph_size_in_bytes)) {
7318
7319 unsigned int consider_free = vm_page_free_count + vm_page_cleaned_count;
7320
7321 if (consider_free < vm_page_throttle_limit) {
7322 pre_heat_size = trunc_page(pre_heat_size / 16);
7323 } else if (consider_free < vm_page_free_target) {
7324 pre_heat_size = trunc_page(pre_heat_size / 4);
7325 }
7326
7327 if (pre_heat_size < min_ph_size_in_bytes)
7328 pre_heat_size = min_ph_size_in_bytes;
7329 }
7330 if (look_ahead == TRUE) {
7331 if (look_behind == TRUE) {
7332 /*
7333 * if we get here its due to a random access...
7334 * so we want to center the original fault address
7335 * within the cluster we will issue... make sure
7336 * to calculate 'head_size' as a multiple of PAGE_SIZE...
7337 * 'pre_heat_size' is a multiple of PAGE_SIZE but not
7338 * necessarily an even number of pages so we need to truncate
7339 * the result to a PAGE_SIZE boundary
7340 */
7341 head_size = trunc_page(pre_heat_size / 2);
7342
7343 if (target_start > head_size)
7344 target_start -= head_size;
7345 else
7346 target_start = 0;
7347
7348 /*
7349 * 'target_start' at this point represents the beginning offset
7350 * of the cluster we are considering... 'orig_start' will be in
7351 * the center of this cluster if we didn't have to clip the start
7352 * due to running into the start of the file
7353 */
7354 }
7355 if ((target_start + pre_heat_size) > object_size)
7356 pre_heat_size = (vm_size_t)(round_page_64(object_size - target_start));
7357 /*
7358 * at this point caclulate the number of pages beyond the original fault
7359 * address that we want to consider... this is guaranteed not to extend beyond
7360 * the current EOF...
7361 */
7362 assert((vm_size_t)(orig_start - target_start) == (orig_start - target_start));
7363 tail_size = pre_heat_size - (vm_size_t)(orig_start - target_start) - PAGE_SIZE;
7364 } else {
7365 if (pre_heat_size > target_start) {
7366 /*
7367 * since pre_heat_size is always smaller then 2^32,
7368 * if it is larger then target_start (a 64 bit value)
7369 * it is safe to clip target_start to 32 bits
7370 */
7371 pre_heat_size = (vm_size_t) target_start;
7372 }
7373 tail_size = 0;
7374 }
7375 assert( !(target_start & PAGE_MASK_64));
7376 assert( !(pre_heat_size & PAGE_MASK));
7377
7378 pre_heat_scaling[pre_heat_size / PAGE_SIZE]++;
7379
7380 if (pre_heat_size <= PAGE_SIZE)
7381 goto out;
7382
7383 if (look_behind == TRUE) {
7384 /*
7385 * take a look at the pages before the original
7386 * faulting offset... recalculate this in case
7387 * we had to clip 'pre_heat_size' above to keep
7388 * from running past the EOF.
7389 */
7390 head_size = pre_heat_size - tail_size - PAGE_SIZE;
7391
7392 for (offset = orig_start - PAGE_SIZE_64; head_size; offset -= PAGE_SIZE_64, head_size -= PAGE_SIZE) {
7393 /*
7394 * don't poke below the lowest offset
7395 */
7396 if (offset < fault_info->lo_offset)
7397 break;
7398 /*
7399 * for external objects and internal objects w/o an existence map
7400 * vm_externl_state_get will return VM_EXTERNAL_STATE_UNKNOWN
7401 */
7402 #if MACH_PAGEMAP
7403 if (vm_external_state_get(object->existence_map, offset) == VM_EXTERNAL_STATE_ABSENT) {
7404 /*
7405 * we know for a fact that the pager can't provide the page
7406 * so don't include it or any pages beyond it in this cluster
7407 */
7408 break;
7409 }
7410 #endif /* MACH_PAGEMAP */
7411 if (VM_COMPRESSOR_PAGER_STATE_GET(object, offset)
7412 == VM_EXTERNAL_STATE_ABSENT) {
7413 break;
7414 }
7415 if (vm_page_lookup(object, offset) != VM_PAGE_NULL) {
7416 /*
7417 * don't bridge resident pages
7418 */
7419 break;
7420 }
7421 *start = offset;
7422 *length += PAGE_SIZE;
7423 }
7424 }
7425 if (look_ahead == TRUE) {
7426 for (offset = orig_start + PAGE_SIZE_64; tail_size; offset += PAGE_SIZE_64, tail_size -= PAGE_SIZE) {
7427 /*
7428 * don't poke above the highest offset
7429 */
7430 if (offset >= fault_info->hi_offset)
7431 break;
7432 assert(offset < object_size);
7433
7434 /*
7435 * for external objects and internal objects w/o an existence map
7436 * vm_externl_state_get will return VM_EXTERNAL_STATE_UNKNOWN
7437 */
7438 #if MACH_PAGEMAP
7439 if (vm_external_state_get(object->existence_map, offset) == VM_EXTERNAL_STATE_ABSENT) {
7440 /*
7441 * we know for a fact that the pager can't provide the page
7442 * so don't include it or any pages beyond it in this cluster
7443 */
7444 break;
7445 }
7446 #endif /* MACH_PAGEMAP */
7447 if (VM_COMPRESSOR_PAGER_STATE_GET(object, offset)
7448 == VM_EXTERNAL_STATE_ABSENT) {
7449 break;
7450 }
7451 if (vm_page_lookup(object, offset) != VM_PAGE_NULL) {
7452 /*
7453 * don't bridge resident pages
7454 */
7455 break;
7456 }
7457 *length += PAGE_SIZE;
7458 }
7459 }
7460 out:
7461 if (*length > max_length)
7462 *length = max_length;
7463
7464 pre_heat_cluster[*length / PAGE_SIZE]++;
7465
7466 vm_object_unlock(object);
7467
7468 DTRACE_VM1(clustersize, vm_size_t, *length);
7469 }
7470
7471
7472 /*
7473 * Allow manipulation of individual page state. This is actually part of
7474 * the UPL regimen but takes place on the VM object rather than on a UPL
7475 */
7476
7477 kern_return_t
7478 vm_object_page_op(
7479 vm_object_t object,
7480 vm_object_offset_t offset,
7481 int ops,
7482 ppnum_t *phys_entry,
7483 int *flags)
7484 {
7485 vm_page_t dst_page;
7486
7487 vm_object_lock(object);
7488
7489 if(ops & UPL_POP_PHYSICAL) {
7490 if(object->phys_contiguous) {
7491 if (phys_entry) {
7492 *phys_entry = (ppnum_t)
7493 (object->vo_shadow_offset >> PAGE_SHIFT);
7494 }
7495 vm_object_unlock(object);
7496 return KERN_SUCCESS;
7497 } else {
7498 vm_object_unlock(object);
7499 return KERN_INVALID_OBJECT;
7500 }
7501 }
7502 if(object->phys_contiguous) {
7503 vm_object_unlock(object);
7504 return KERN_INVALID_OBJECT;
7505 }
7506
7507 while(TRUE) {
7508 if((dst_page = vm_page_lookup(object,offset)) == VM_PAGE_NULL) {
7509 vm_object_unlock(object);
7510 return KERN_FAILURE;
7511 }
7512
7513 /* Sync up on getting the busy bit */
7514 if((dst_page->busy || dst_page->cleaning) &&
7515 (((ops & UPL_POP_SET) &&
7516 (ops & UPL_POP_BUSY)) || (ops & UPL_POP_DUMP))) {
7517 /* someone else is playing with the page, we will */
7518 /* have to wait */
7519 PAGE_SLEEP(object, dst_page, THREAD_UNINT);
7520 continue;
7521 }
7522
7523 if (ops & UPL_POP_DUMP) {
7524 if (dst_page->pmapped == TRUE)
7525 pmap_disconnect(dst_page->phys_page);
7526
7527 VM_PAGE_FREE(dst_page);
7528 break;
7529 }
7530
7531 if (flags) {
7532 *flags = 0;
7533
7534 /* Get the condition of flags before requested ops */
7535 /* are undertaken */
7536
7537 if(dst_page->dirty) *flags |= UPL_POP_DIRTY;
7538 if(dst_page->pageout) *flags |= UPL_POP_PAGEOUT;
7539 if(dst_page->precious) *flags |= UPL_POP_PRECIOUS;
7540 if(dst_page->absent) *flags |= UPL_POP_ABSENT;
7541 if(dst_page->busy) *flags |= UPL_POP_BUSY;
7542 }
7543
7544 /* The caller should have made a call either contingent with */
7545 /* or prior to this call to set UPL_POP_BUSY */
7546 if(ops & UPL_POP_SET) {
7547 /* The protection granted with this assert will */
7548 /* not be complete. If the caller violates the */
7549 /* convention and attempts to change page state */
7550 /* without first setting busy we may not see it */
7551 /* because the page may already be busy. However */
7552 /* if such violations occur we will assert sooner */
7553 /* or later. */
7554 assert(dst_page->busy || (ops & UPL_POP_BUSY));
7555 if (ops & UPL_POP_DIRTY) {
7556 SET_PAGE_DIRTY(dst_page, FALSE);
7557 }
7558 if (ops & UPL_POP_PAGEOUT) dst_page->pageout = TRUE;
7559 if (ops & UPL_POP_PRECIOUS) dst_page->precious = TRUE;
7560 if (ops & UPL_POP_ABSENT) dst_page->absent = TRUE;
7561 if (ops & UPL_POP_BUSY) dst_page->busy = TRUE;
7562 }
7563
7564 if(ops & UPL_POP_CLR) {
7565 assert(dst_page->busy);
7566 if (ops & UPL_POP_DIRTY) dst_page->dirty = FALSE;
7567 if (ops & UPL_POP_PAGEOUT) dst_page->pageout = FALSE;
7568 if (ops & UPL_POP_PRECIOUS) dst_page->precious = FALSE;
7569 if (ops & UPL_POP_ABSENT) dst_page->absent = FALSE;
7570 if (ops & UPL_POP_BUSY) {
7571 dst_page->busy = FALSE;
7572 PAGE_WAKEUP(dst_page);
7573 }
7574 }
7575
7576 if (dst_page->encrypted) {
7577 /*
7578 * ENCRYPTED SWAP:
7579 * We need to decrypt this encrypted page before the
7580 * caller can access its contents.
7581 * But if the caller really wants to access the page's
7582 * contents, they have to keep the page "busy".
7583 * Otherwise, the page could get recycled or re-encrypted
7584 * at any time.
7585 */
7586 if ((ops & UPL_POP_SET) && (ops & UPL_POP_BUSY) &&
7587 dst_page->busy) {
7588 /*
7589 * The page is stable enough to be accessed by
7590 * the caller, so make sure its contents are
7591 * not encrypted.
7592 */
7593 vm_page_decrypt(dst_page, 0);
7594 } else {
7595 /*
7596 * The page is not busy, so don't bother
7597 * decrypting it, since anything could
7598 * happen to it between now and when the
7599 * caller wants to access it.
7600 * We should not give the caller access
7601 * to this page.
7602 */
7603 assert(!phys_entry);
7604 }
7605 }
7606
7607 if (phys_entry) {
7608 /*
7609 * The physical page number will remain valid
7610 * only if the page is kept busy.
7611 * ENCRYPTED SWAP: make sure we don't let the
7612 * caller access an encrypted page.
7613 */
7614 assert(dst_page->busy);
7615 assert(!dst_page->encrypted);
7616 *phys_entry = dst_page->phys_page;
7617 }
7618
7619 break;
7620 }
7621
7622 vm_object_unlock(object);
7623 return KERN_SUCCESS;
7624
7625 }
7626
7627 /*
7628 * vm_object_range_op offers performance enhancement over
7629 * vm_object_page_op for page_op functions which do not require page
7630 * level state to be returned from the call. Page_op was created to provide
7631 * a low-cost alternative to page manipulation via UPLs when only a single
7632 * page was involved. The range_op call establishes the ability in the _op
7633 * family of functions to work on multiple pages where the lack of page level
7634 * state handling allows the caller to avoid the overhead of the upl structures.
7635 */
7636
7637 kern_return_t
7638 vm_object_range_op(
7639 vm_object_t object,
7640 vm_object_offset_t offset_beg,
7641 vm_object_offset_t offset_end,
7642 int ops,
7643 uint32_t *range)
7644 {
7645 vm_object_offset_t offset;
7646 vm_page_t dst_page;
7647
7648 if (offset_end - offset_beg > (uint32_t) -1) {
7649 /* range is too big and would overflow "*range" */
7650 return KERN_INVALID_ARGUMENT;
7651 }
7652 if (object->resident_page_count == 0) {
7653 if (range) {
7654 if (ops & UPL_ROP_PRESENT) {
7655 *range = 0;
7656 } else {
7657 *range = (uint32_t) (offset_end - offset_beg);
7658 assert(*range == (offset_end - offset_beg));
7659 }
7660 }
7661 return KERN_SUCCESS;
7662 }
7663 vm_object_lock(object);
7664
7665 if (object->phys_contiguous) {
7666 vm_object_unlock(object);
7667 return KERN_INVALID_OBJECT;
7668 }
7669
7670 offset = offset_beg & ~PAGE_MASK_64;
7671
7672 while (offset < offset_end) {
7673 dst_page = vm_page_lookup(object, offset);
7674 if (dst_page != VM_PAGE_NULL) {
7675 if (ops & UPL_ROP_DUMP) {
7676 if (dst_page->busy || dst_page->cleaning) {
7677 /*
7678 * someone else is playing with the
7679 * page, we will have to wait
7680 */
7681 PAGE_SLEEP(object, dst_page, THREAD_UNINT);
7682 /*
7683 * need to relook the page up since it's
7684 * state may have changed while we slept
7685 * it might even belong to a different object
7686 * at this point
7687 */
7688 continue;
7689 }
7690 if (dst_page->laundry) {
7691 dst_page->pageout = FALSE;
7692
7693 vm_pageout_steal_laundry(dst_page, FALSE);
7694 }
7695 if (dst_page->pmapped == TRUE)
7696 pmap_disconnect(dst_page->phys_page);
7697
7698 VM_PAGE_FREE(dst_page);
7699
7700 } else if ((ops & UPL_ROP_ABSENT) && !dst_page->absent)
7701 break;
7702 } else if (ops & UPL_ROP_PRESENT)
7703 break;
7704
7705 offset += PAGE_SIZE;
7706 }
7707 vm_object_unlock(object);
7708
7709 if (range) {
7710 if (offset > offset_end)
7711 offset = offset_end;
7712 if(offset > offset_beg) {
7713 *range = (uint32_t) (offset - offset_beg);
7714 assert(*range == (offset - offset_beg));
7715 } else {
7716 *range = 0;
7717 }
7718 }
7719 return KERN_SUCCESS;
7720 }
7721
7722 /*
7723 * Used to point a pager directly to a range of memory (when the pager may be associated
7724 * with a non-device vnode). Takes a virtual address, an offset, and a size. We currently
7725 * expect that the virtual address will denote the start of a range that is physically contiguous.
7726 */
7727 kern_return_t pager_map_to_phys_contiguous(
7728 memory_object_control_t object,
7729 memory_object_offset_t offset,
7730 addr64_t base_vaddr,
7731 vm_size_t size)
7732 {
7733 ppnum_t page_num;
7734 boolean_t clobbered_private;
7735 kern_return_t retval;
7736 vm_object_t pager_object;
7737
7738 page_num = pmap_find_phys(kernel_pmap, base_vaddr);
7739
7740 if (!page_num) {
7741 retval = KERN_FAILURE;
7742 goto out;
7743 }
7744
7745 pager_object = memory_object_control_to_vm_object(object);
7746
7747 if (!pager_object) {
7748 retval = KERN_FAILURE;
7749 goto out;
7750 }
7751
7752 clobbered_private = pager_object->private;
7753 pager_object->private = TRUE;
7754 retval = vm_object_populate_with_private(pager_object, offset, page_num, size);
7755
7756 if (retval != KERN_SUCCESS)
7757 pager_object->private = clobbered_private;
7758
7759 out:
7760 return retval;
7761 }
7762
7763 uint32_t scan_object_collision = 0;
7764
7765 void
7766 vm_object_lock(vm_object_t object)
7767 {
7768 if (object == vm_pageout_scan_wants_object) {
7769 scan_object_collision++;
7770 mutex_pause(2);
7771 }
7772 lck_rw_lock_exclusive(&object->Lock);
7773 }
7774
7775 boolean_t
7776 vm_object_lock_avoid(vm_object_t object)
7777 {
7778 if (object == vm_pageout_scan_wants_object) {
7779 scan_object_collision++;
7780 return TRUE;
7781 }
7782 return FALSE;
7783 }
7784
7785 boolean_t
7786 _vm_object_lock_try(vm_object_t object)
7787 {
7788 return (lck_rw_try_lock_exclusive(&object->Lock));
7789 }
7790
7791 boolean_t
7792 vm_object_lock_try(vm_object_t object)
7793 {
7794 /*
7795 * Called from hibernate path so check before blocking.
7796 */
7797 if (vm_object_lock_avoid(object) && ml_get_interrupts_enabled() && get_preemption_level()==0) {
7798 mutex_pause(2);
7799 }
7800 return _vm_object_lock_try(object);
7801 }
7802
7803 void
7804 vm_object_lock_shared(vm_object_t object)
7805 {
7806 if (vm_object_lock_avoid(object)) {
7807 mutex_pause(2);
7808 }
7809 lck_rw_lock_shared(&object->Lock);
7810 }
7811
7812 boolean_t
7813 vm_object_lock_try_shared(vm_object_t object)
7814 {
7815 if (vm_object_lock_avoid(object)) {
7816 mutex_pause(2);
7817 }
7818 return (lck_rw_try_lock_shared(&object->Lock));
7819 }
7820
7821
7822 unsigned int vm_object_change_wimg_mode_count = 0;
7823
7824 /*
7825 * The object must be locked
7826 */
7827 void
7828 vm_object_change_wimg_mode(vm_object_t object, unsigned int wimg_mode)
7829 {
7830 vm_page_t p;
7831
7832 vm_object_lock_assert_exclusive(object);
7833
7834 vm_object_paging_wait(object, THREAD_UNINT);
7835
7836 queue_iterate(&object->memq, p, vm_page_t, listq) {
7837
7838 if (!p->fictitious)
7839 pmap_set_cache_attributes(p->phys_page, wimg_mode);
7840 }
7841 if (wimg_mode == VM_WIMG_USE_DEFAULT)
7842 object->set_cache_attr = FALSE;
7843 else
7844 object->set_cache_attr = TRUE;
7845
7846 object->wimg_bits = wimg_mode;
7847
7848 vm_object_change_wimg_mode_count++;
7849 }
7850
7851 #if CONFIG_FREEZE
7852
7853 kern_return_t vm_object_pack(
7854 unsigned int *purgeable_count,
7855 unsigned int *wired_count,
7856 unsigned int *clean_count,
7857 unsigned int *dirty_count,
7858 unsigned int dirty_budget,
7859 boolean_t *shared,
7860 vm_object_t src_object,
7861 struct default_freezer_handle *df_handle)
7862 {
7863 kern_return_t kr = KERN_SUCCESS;
7864
7865 vm_object_lock(src_object);
7866
7867 *purgeable_count = *wired_count = *clean_count = *dirty_count = 0;
7868 *shared = FALSE;
7869
7870 if (!src_object->alive || src_object->terminating){
7871 kr = KERN_FAILURE;
7872 goto done;
7873 }
7874
7875 if (src_object->purgable == VM_PURGABLE_VOLATILE) {
7876 *purgeable_count = src_object->resident_page_count;
7877
7878 /* If the default freezer handle is null, we're just walking the pages to discover how many can be hibernated */
7879 if (df_handle != NULL) {
7880 purgeable_q_t queue;
7881 /* object should be on a queue */
7882 assert(src_object->objq.next != NULL &&
7883 src_object->objq.prev != NULL);
7884 queue = vm_purgeable_object_remove(src_object);
7885 assert(queue);
7886 if (src_object->purgeable_when_ripe) {
7887 vm_page_lock_queues();
7888 vm_purgeable_token_delete_first(queue);
7889 vm_page_unlock_queues();
7890 }
7891 vm_object_purge(src_object);
7892 }
7893 goto done;
7894 }
7895
7896 if (src_object->ref_count == 1) {
7897 vm_object_pack_pages(wired_count, clean_count, dirty_count, dirty_budget, src_object, df_handle);
7898 } else {
7899 if (src_object->internal) {
7900 *shared = TRUE;
7901 }
7902 }
7903 done:
7904 vm_object_unlock(src_object);
7905
7906 return kr;
7907 }
7908
7909
7910 void
7911 vm_object_pack_pages(
7912 unsigned int *wired_count,
7913 unsigned int *clean_count,
7914 unsigned int *dirty_count,
7915 unsigned int dirty_budget,
7916 vm_object_t src_object,
7917 struct default_freezer_handle *df_handle)
7918 {
7919 vm_page_t p, next;
7920
7921 next = (vm_page_t)queue_first(&src_object->memq);
7922
7923 while (!queue_end(&src_object->memq, (queue_entry_t)next)) {
7924 p = next;
7925 next = (vm_page_t)queue_next(&next->listq);
7926
7927 /* Finish up if we've hit our pageout limit */
7928 if (dirty_budget && (dirty_budget == *dirty_count)) {
7929 break;
7930 }
7931 assert(!p->laundry);
7932
7933 if (p->fictitious || p->busy )
7934 continue;
7935
7936 if (p->absent || p->unusual || p->error)
7937 continue;
7938
7939 if (VM_PAGE_WIRED(p)) {
7940 (*wired_count)++;
7941 continue;
7942 }
7943
7944 if (df_handle == NULL) {
7945 if (p->dirty || pmap_is_modified(p->phys_page)) {
7946 (*dirty_count)++;
7947 } else {
7948 (*clean_count)++;
7949 }
7950 continue;
7951 }
7952
7953 if (p->cleaning) {
7954 p->pageout = TRUE;
7955 continue;
7956 }
7957
7958 if (p->pmapped == TRUE) {
7959 int refmod_state;
7960 refmod_state = pmap_disconnect(p->phys_page);
7961 if (refmod_state & VM_MEM_MODIFIED) {
7962 SET_PAGE_DIRTY(p, FALSE);
7963 }
7964 }
7965
7966 if (p->dirty) {
7967 default_freezer_pack_page(p, df_handle);
7968 (*dirty_count)++;
7969 }
7970 else {
7971 VM_PAGE_FREE(p);
7972 (*clean_count)++;
7973 }
7974 }
7975 }
7976
7977 void
7978 vm_object_pageout(
7979 vm_object_t object)
7980 {
7981 vm_page_t p, next;
7982 struct vm_pageout_queue *iq;
7983
7984 iq = &vm_pageout_queue_internal;
7985
7986 assert(object != VM_OBJECT_NULL );
7987
7988 vm_object_lock(object);
7989
7990 if (DEFAULT_PAGER_IS_ACTIVE || DEFAULT_FREEZER_IS_ACTIVE) {
7991 if (!object->pager_initialized) {
7992 /*
7993 * If there is no memory object for the page, create
7994 * one and hand it to the default pager.
7995 */
7996 vm_object_pager_create(object);
7997 }
7998 }
7999
8000 ReScan:
8001 next = (vm_page_t)queue_first(&object->memq);
8002
8003 while (!queue_end(&object->memq, (queue_entry_t)next)) {
8004 p = next;
8005 next = (vm_page_t)queue_next(&next->listq);
8006
8007 /* Throw to the pageout queue */
8008 vm_page_lockspin_queues();
8009
8010 /*
8011 * see if page is already in the process of
8012 * being cleaned... if so, leave it alone
8013 */
8014 if (!p->laundry) {
8015
8016 if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) {
8017
8018 if (VM_PAGE_Q_THROTTLED(iq)) {
8019
8020 iq->pgo_draining = TRUE;
8021
8022 assert_wait((event_t) (&iq->pgo_laundry + 1), THREAD_INTERRUPTIBLE);
8023 vm_page_unlock_queues();
8024 vm_object_unlock(object);
8025
8026 thread_block(THREAD_CONTINUE_NULL);
8027
8028 vm_object_lock(object);
8029 goto ReScan;
8030 }
8031
8032 if (p->fictitious || p->busy ) {
8033 vm_page_unlock_queues();
8034 continue;
8035 }
8036
8037 if (p->absent || p->unusual || p->error || VM_PAGE_WIRED(p)) {
8038 vm_page_unlock_queues();
8039 continue;
8040 }
8041
8042 if (p->cleaning) {
8043 p->pageout = TRUE;
8044 vm_page_unlock_queues();
8045 continue;
8046 }
8047
8048 if (p->pmapped == TRUE) {
8049 int refmod_state;
8050 refmod_state = pmap_disconnect_options(p->phys_page, PMAP_OPTIONS_COMPRESSOR, NULL);
8051 if (refmod_state & VM_MEM_MODIFIED) {
8052 SET_PAGE_DIRTY(p, FALSE);
8053 }
8054 }
8055
8056 if (p->dirty == FALSE) {
8057 vm_page_unlock_queues();
8058 VM_PAGE_FREE(p);
8059 continue;
8060 }
8061 }
8062
8063 VM_PAGE_QUEUES_REMOVE(p);
8064 vm_pageout_cluster(p, TRUE);
8065 }
8066 vm_page_unlock_queues();
8067 }
8068
8069 vm_object_unlock(object);
8070 }
8071
8072 kern_return_t
8073 vm_object_pagein(
8074 vm_object_t object)
8075 {
8076 memory_object_t pager;
8077 kern_return_t kr;
8078
8079 vm_object_lock(object);
8080
8081 pager = object->pager;
8082
8083 if (!object->pager_ready || pager == MEMORY_OBJECT_NULL) {
8084 vm_object_unlock(object);
8085 return KERN_FAILURE;
8086 }
8087
8088 vm_object_paging_wait(object, THREAD_UNINT);
8089 vm_object_paging_begin(object);
8090
8091 object->blocked_access = TRUE;
8092 vm_object_unlock(object);
8093
8094 kr = memory_object_data_reclaim(pager, TRUE);
8095
8096 vm_object_lock(object);
8097
8098 object->blocked_access = FALSE;
8099 vm_object_paging_end(object);
8100
8101 vm_object_unlock(object);
8102
8103 return kr;
8104 }
8105 #endif /* CONFIG_FREEZE */