]> git.saurik.com Git - apple/xnu.git/blob - osfmk/vm/vm_kern.c
a0301085edc7436768386e2dab763c6173bdbcf4
[apple/xnu.git] / osfmk / vm / vm_kern.c
1 /*
2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58 /*
59 * File: vm/vm_kern.c
60 * Author: Avadis Tevanian, Jr., Michael Wayne Young
61 * Date: 1985
62 *
63 * Kernel memory management.
64 */
65
66 #include <mach/kern_return.h>
67 #include <mach/vm_param.h>
68 #include <kern/assert.h>
69 #include <kern/thread.h>
70 #include <vm/vm_kern.h>
71 #include <vm/vm_map.h>
72 #include <vm/vm_object.h>
73 #include <vm/vm_page.h>
74 #include <vm/vm_compressor.h>
75 #include <vm/vm_pageout.h>
76 #include <kern/misc_protos.h>
77 #include <vm/cpm.h>
78
79 #include <string.h>
80
81 #include <libkern/OSDebug.h>
82 #include <libkern/crypto/sha2.h>
83 #include <sys/kdebug.h>
84
85 #include <san/kasan.h>
86
87 /*
88 * Variables exported by this module.
89 */
90
91 vm_map_t kernel_map;
92 vm_map_t kernel_pageable_map;
93
94 extern boolean_t vm_kernel_ready;
95
96 /*
97 * Forward declarations for internal functions.
98 */
99 extern kern_return_t kmem_alloc_pages(
100 vm_object_t object,
101 vm_object_offset_t offset,
102 vm_object_size_t size);
103
104 kern_return_t
105 kmem_alloc_contig(
106 vm_map_t map,
107 vm_offset_t *addrp,
108 vm_size_t size,
109 vm_offset_t mask,
110 ppnum_t max_pnum,
111 ppnum_t pnum_mask,
112 int flags,
113 vm_tag_t tag)
114 {
115 vm_object_t object;
116 vm_object_offset_t offset;
117 vm_map_offset_t map_addr;
118 vm_map_offset_t map_mask;
119 vm_map_size_t map_size, i;
120 vm_map_entry_t entry;
121 vm_page_t m, pages;
122 kern_return_t kr;
123
124 assert(VM_KERN_MEMORY_NONE != tag);
125
126 if (map == VM_MAP_NULL || (flags & ~(KMA_KOBJECT | KMA_LOMEM | KMA_NOPAGEWAIT)))
127 return KERN_INVALID_ARGUMENT;
128
129 map_size = vm_map_round_page(size,
130 VM_MAP_PAGE_MASK(map));
131 map_mask = (vm_map_offset_t)mask;
132
133 /* Check for zero allocation size (either directly or via overflow) */
134 if (map_size == 0) {
135 *addrp = 0;
136 return KERN_INVALID_ARGUMENT;
137 }
138
139 /*
140 * Allocate a new object (if necessary) and the reference we
141 * will be donating to the map entry. We must do this before
142 * locking the map, or risk deadlock with the default pager.
143 */
144 if ((flags & KMA_KOBJECT) != 0) {
145 object = kernel_object;
146 vm_object_reference(object);
147 } else {
148 object = vm_object_allocate(map_size);
149 }
150
151 kr = vm_map_find_space(map, &map_addr, map_size, map_mask, 0,
152 VM_MAP_KERNEL_FLAGS_NONE, tag, &entry);
153 if (KERN_SUCCESS != kr) {
154 vm_object_deallocate(object);
155 return kr;
156 }
157
158 if (object == kernel_object) {
159 offset = map_addr;
160 } else {
161 offset = 0;
162 }
163 VME_OBJECT_SET(entry, object);
164 VME_OFFSET_SET(entry, offset);
165
166 /* Take an extra object ref in case the map entry gets deleted */
167 vm_object_reference(object);
168 vm_map_unlock(map);
169
170 kr = cpm_allocate(CAST_DOWN(vm_size_t, map_size), &pages, max_pnum, pnum_mask, FALSE, flags);
171
172 if (kr != KERN_SUCCESS) {
173 vm_map_remove(map,
174 vm_map_trunc_page(map_addr,
175 VM_MAP_PAGE_MASK(map)),
176 vm_map_round_page(map_addr + map_size,
177 VM_MAP_PAGE_MASK(map)),
178 0);
179 vm_object_deallocate(object);
180 *addrp = 0;
181 return kr;
182 }
183
184 vm_object_lock(object);
185 for (i = 0; i < map_size; i += PAGE_SIZE) {
186 m = pages;
187 pages = NEXT_PAGE(m);
188 *(NEXT_PAGE_PTR(m)) = VM_PAGE_NULL;
189 m->busy = FALSE;
190 vm_page_insert(m, object, offset + i);
191 }
192 vm_object_unlock(object);
193
194 kr = vm_map_wire_kernel(map,
195 vm_map_trunc_page(map_addr,
196 VM_MAP_PAGE_MASK(map)),
197 vm_map_round_page(map_addr + map_size,
198 VM_MAP_PAGE_MASK(map)),
199 VM_PROT_DEFAULT, tag,
200 FALSE);
201
202 if (kr != KERN_SUCCESS) {
203 if (object == kernel_object) {
204 vm_object_lock(object);
205 vm_object_page_remove(object, offset, offset + map_size);
206 vm_object_unlock(object);
207 }
208 vm_map_remove(map,
209 vm_map_trunc_page(map_addr,
210 VM_MAP_PAGE_MASK(map)),
211 vm_map_round_page(map_addr + map_size,
212 VM_MAP_PAGE_MASK(map)),
213 0);
214 vm_object_deallocate(object);
215 return kr;
216 }
217 vm_object_deallocate(object);
218
219 if (object == kernel_object) {
220 vm_map_simplify(map, map_addr);
221 vm_tag_update_size(tag, map_size);
222 }
223 *addrp = (vm_offset_t) map_addr;
224 assert((vm_map_offset_t) *addrp == map_addr);
225
226 return KERN_SUCCESS;
227 }
228
229 /*
230 * Master entry point for allocating kernel memory.
231 * NOTE: this routine is _never_ interrupt safe.
232 *
233 * map : map to allocate into
234 * addrp : pointer to start address of new memory
235 * size : size of memory requested
236 * flags : options
237 * KMA_HERE *addrp is base address, else "anywhere"
238 * KMA_NOPAGEWAIT don't wait for pages if unavailable
239 * KMA_KOBJECT use kernel_object
240 * KMA_LOMEM support for 32 bit devices in a 64 bit world
241 * if set and a lomemory pool is available
242 * grab pages from it... this also implies
243 * KMA_NOPAGEWAIT
244 */
245
246 kern_return_t
247 kernel_memory_allocate(
248 vm_map_t map,
249 vm_offset_t *addrp,
250 vm_size_t size,
251 vm_offset_t mask,
252 int flags,
253 vm_tag_t tag)
254 {
255 vm_object_t object;
256 vm_object_offset_t offset;
257 vm_object_offset_t pg_offset;
258 vm_map_entry_t entry = NULL;
259 vm_map_offset_t map_addr, fill_start;
260 vm_map_offset_t map_mask;
261 vm_map_size_t map_size, fill_size;
262 kern_return_t kr, pe_result;
263 vm_page_t mem;
264 vm_page_t guard_page_list = NULL;
265 vm_page_t wired_page_list = NULL;
266 int guard_page_count = 0;
267 int wired_page_count = 0;
268 int i;
269 int vm_alloc_flags;
270 vm_map_kernel_flags_t vmk_flags;
271 vm_prot_t kma_prot;
272
273 if (! vm_kernel_ready) {
274 panic("kernel_memory_allocate: VM is not ready");
275 }
276
277 map_size = vm_map_round_page(size,
278 VM_MAP_PAGE_MASK(map));
279 map_mask = (vm_map_offset_t) mask;
280
281 vm_alloc_flags = 0; //VM_MAKE_TAG(tag);
282 vmk_flags = VM_MAP_KERNEL_FLAGS_NONE;
283
284 /* Check for zero allocation size (either directly or via overflow) */
285 if (map_size == 0) {
286 *addrp = 0;
287 return KERN_INVALID_ARGUMENT;
288 }
289
290 /*
291 * limit the size of a single extent of wired memory
292 * to try and limit the damage to the system if
293 * too many pages get wired down
294 * limit raised to 2GB with 128GB max physical limit,
295 * but scaled by installed memory above this
296 */
297 if ( !(flags & KMA_VAONLY) && map_size > MAX(1ULL<<31, sane_size/64)) {
298 return KERN_RESOURCE_SHORTAGE;
299 }
300
301 /*
302 * Guard pages:
303 *
304 * Guard pages are implemented as ficticious pages. By placing guard pages
305 * on either end of a stack, they can help detect cases where a thread walks
306 * off either end of its stack. They are allocated and set up here and attempts
307 * to access those pages are trapped in vm_fault_page().
308 *
309 * The map_size we were passed may include extra space for
310 * guard pages. If those were requested, then back it out of fill_size
311 * since vm_map_find_space() takes just the actual size not including
312 * guard pages. Similarly, fill_start indicates where the actual pages
313 * will begin in the range.
314 */
315
316 fill_start = 0;
317 fill_size = map_size;
318
319 if (flags & KMA_GUARD_FIRST) {
320 vmk_flags.vmkf_guard_before = TRUE;
321 fill_start += PAGE_SIZE_64;
322 fill_size -= PAGE_SIZE_64;
323 if (map_size < fill_start + fill_size) {
324 /* no space for a guard page */
325 *addrp = 0;
326 return KERN_INVALID_ARGUMENT;
327 }
328 guard_page_count++;
329 }
330 if (flags & KMA_GUARD_LAST) {
331 vmk_flags.vmkf_guard_after = TRUE;
332 fill_size -= PAGE_SIZE_64;
333 if (map_size <= fill_start + fill_size) {
334 /* no space for a guard page */
335 *addrp = 0;
336 return KERN_INVALID_ARGUMENT;
337 }
338 guard_page_count++;
339 }
340 wired_page_count = (int) (fill_size / PAGE_SIZE_64);
341 assert(wired_page_count * PAGE_SIZE_64 == fill_size);
342
343 for (i = 0; i < guard_page_count; i++) {
344 for (;;) {
345 mem = vm_page_grab_guard();
346
347 if (mem != VM_PAGE_NULL)
348 break;
349 if (flags & KMA_NOPAGEWAIT) {
350 kr = KERN_RESOURCE_SHORTAGE;
351 goto out;
352 }
353 vm_page_more_fictitious();
354 }
355 mem->snext = guard_page_list;
356 guard_page_list = mem;
357 }
358
359 if (! (flags & KMA_VAONLY)) {
360 for (i = 0; i < wired_page_count; i++) {
361 uint64_t unavailable;
362
363 for (;;) {
364 if (flags & KMA_LOMEM)
365 mem = vm_page_grablo();
366 else
367 mem = vm_page_grab();
368
369 if (mem != VM_PAGE_NULL)
370 break;
371
372 if (flags & KMA_NOPAGEWAIT) {
373 kr = KERN_RESOURCE_SHORTAGE;
374 goto out;
375 }
376 if ((flags & KMA_LOMEM) && (vm_lopage_needed == TRUE)) {
377 kr = KERN_RESOURCE_SHORTAGE;
378 goto out;
379 }
380 unavailable = (vm_page_wire_count + vm_page_free_target) * PAGE_SIZE;
381
382 if (unavailable > max_mem || map_size > (max_mem - unavailable)) {
383 kr = KERN_RESOURCE_SHORTAGE;
384 goto out;
385 }
386 VM_PAGE_WAIT();
387 }
388 if (KMA_ZERO & flags) vm_page_zero_fill(mem);
389 mem->snext = wired_page_list;
390 wired_page_list = mem;
391 }
392 }
393
394 /*
395 * Allocate a new object (if necessary). We must do this before
396 * locking the map, or risk deadlock with the default pager.
397 */
398 if ((flags & KMA_KOBJECT) != 0) {
399 object = kernel_object;
400 vm_object_reference(object);
401 } else if ((flags & KMA_COMPRESSOR) != 0) {
402 object = compressor_object;
403 vm_object_reference(object);
404 } else {
405 object = vm_object_allocate(map_size);
406 }
407
408 if (flags & KMA_ATOMIC)
409 vmk_flags.vmkf_atomic_entry = TRUE;
410
411 kr = vm_map_find_space(map, &map_addr,
412 fill_size, map_mask,
413 vm_alloc_flags, vmk_flags, tag, &entry);
414 if (KERN_SUCCESS != kr) {
415 vm_object_deallocate(object);
416 goto out;
417 }
418
419 if (object == kernel_object || object == compressor_object) {
420 offset = map_addr;
421 } else {
422 offset = 0;
423 }
424 VME_OBJECT_SET(entry, object);
425 VME_OFFSET_SET(entry, offset);
426
427 if (object != compressor_object)
428 entry->wired_count++;
429
430 if (flags & KMA_PERMANENT)
431 entry->permanent = TRUE;
432
433 if (object != kernel_object && object != compressor_object)
434 vm_object_reference(object);
435
436 vm_object_lock(object);
437 vm_map_unlock(map);
438
439 pg_offset = 0;
440
441 if (fill_start) {
442 if (guard_page_list == NULL)
443 panic("kernel_memory_allocate: guard_page_list == NULL");
444
445 mem = guard_page_list;
446 guard_page_list = mem->snext;
447 mem->snext = NULL;
448
449 vm_page_insert(mem, object, offset + pg_offset);
450
451 mem->busy = FALSE;
452 pg_offset += PAGE_SIZE_64;
453 }
454
455 kma_prot = VM_PROT_READ | VM_PROT_WRITE;
456
457 #if KASAN
458 if (!(flags & KMA_VAONLY)) {
459 /* for VAONLY mappings we notify in populate only */
460 kasan_notify_address(map_addr, size);
461 }
462 #endif
463
464 if (flags & KMA_VAONLY) {
465 pg_offset = fill_start + fill_size;
466 } else {
467 for (pg_offset = fill_start; pg_offset < fill_start + fill_size; pg_offset += PAGE_SIZE_64) {
468 if (wired_page_list == NULL)
469 panic("kernel_memory_allocate: wired_page_list == NULL");
470
471 mem = wired_page_list;
472 wired_page_list = mem->snext;
473 mem->snext = NULL;
474
475 assert(mem->wire_count == 0);
476 assert(mem->vm_page_q_state == VM_PAGE_NOT_ON_Q);
477
478 mem->vm_page_q_state = VM_PAGE_IS_WIRED;
479 mem->wire_count++;
480 if (__improbable(mem->wire_count == 0)) {
481 panic("kernel_memory_allocate(%p): wire_count overflow",
482 mem);
483 }
484
485 vm_page_insert_wired(mem, object, offset + pg_offset, tag);
486
487 mem->busy = FALSE;
488 mem->pmapped = TRUE;
489 mem->wpmapped = TRUE;
490
491 PMAP_ENTER_OPTIONS(kernel_pmap, map_addr + pg_offset, mem,
492 kma_prot, VM_PROT_NONE, ((flags & KMA_KSTACK) ? VM_MEM_STACK : 0), TRUE,
493 PMAP_OPTIONS_NOWAIT, pe_result);
494
495 if (pe_result == KERN_RESOURCE_SHORTAGE) {
496 vm_object_unlock(object);
497
498 PMAP_ENTER(kernel_pmap, map_addr + pg_offset, mem,
499 kma_prot, VM_PROT_NONE, ((flags & KMA_KSTACK) ? VM_MEM_STACK : 0), TRUE,
500 pe_result);
501
502 vm_object_lock(object);
503 }
504
505 assert(pe_result == KERN_SUCCESS);
506
507 if (flags & KMA_NOENCRYPT) {
508 bzero(CAST_DOWN(void *, (map_addr + pg_offset)), PAGE_SIZE);
509
510 pmap_set_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem));
511 }
512 }
513 if (kernel_object == object) vm_tag_update_size(tag, fill_size);
514 }
515 if ((fill_start + fill_size) < map_size) {
516 if (guard_page_list == NULL)
517 panic("kernel_memory_allocate: guard_page_list == NULL");
518
519 mem = guard_page_list;
520 guard_page_list = mem->snext;
521 mem->snext = NULL;
522
523 vm_page_insert(mem, object, offset + pg_offset);
524
525 mem->busy = FALSE;
526 }
527 if (guard_page_list || wired_page_list)
528 panic("kernel_memory_allocate: non empty list\n");
529
530 if (! (flags & KMA_VAONLY)) {
531 vm_page_lockspin_queues();
532 vm_page_wire_count += wired_page_count;
533 vm_page_unlock_queues();
534 }
535
536 vm_object_unlock(object);
537
538 /*
539 * now that the pages are wired, we no longer have to fear coalesce
540 */
541 if (object == kernel_object || object == compressor_object)
542 vm_map_simplify(map, map_addr);
543 else
544 vm_object_deallocate(object);
545
546 /*
547 * Return the memory, not zeroed.
548 */
549 *addrp = CAST_DOWN(vm_offset_t, map_addr);
550 return KERN_SUCCESS;
551
552 out:
553 if (guard_page_list)
554 vm_page_free_list(guard_page_list, FALSE);
555
556 if (wired_page_list)
557 vm_page_free_list(wired_page_list, FALSE);
558
559 return kr;
560 }
561
562 kern_return_t
563 kernel_memory_populate(
564 vm_map_t map,
565 vm_offset_t addr,
566 vm_size_t size,
567 int flags,
568 vm_tag_t tag)
569 {
570 vm_object_t object;
571 vm_object_offset_t offset, pg_offset;
572 kern_return_t kr, pe_result;
573 vm_page_t mem;
574 vm_page_t page_list = NULL;
575 int page_count = 0;
576 int i;
577
578 page_count = (int) (size / PAGE_SIZE_64);
579
580 assert((flags & (KMA_COMPRESSOR|KMA_KOBJECT)) != (KMA_COMPRESSOR|KMA_KOBJECT));
581
582 if (flags & KMA_COMPRESSOR) {
583
584 pg_offset = page_count * PAGE_SIZE_64;
585
586 do {
587 for (;;) {
588 mem = vm_page_grab();
589
590 if (mem != VM_PAGE_NULL)
591 break;
592
593 VM_PAGE_WAIT();
594 }
595 if (KMA_ZERO & flags) vm_page_zero_fill(mem);
596 mem->snext = page_list;
597 page_list = mem;
598
599 pg_offset -= PAGE_SIZE_64;
600
601 kr = pmap_enter_options(kernel_pmap,
602 addr + pg_offset, VM_PAGE_GET_PHYS_PAGE(mem),
603 VM_PROT_READ | VM_PROT_WRITE, VM_PROT_NONE, 0, TRUE,
604 PMAP_OPTIONS_INTERNAL, NULL);
605 assert(kr == KERN_SUCCESS);
606
607 } while (pg_offset);
608
609 offset = addr;
610 object = compressor_object;
611
612 vm_object_lock(object);
613
614 for (pg_offset = 0;
615 pg_offset < size;
616 pg_offset += PAGE_SIZE_64) {
617
618 mem = page_list;
619 page_list = mem->snext;
620 mem->snext = NULL;
621
622 vm_page_insert(mem, object, offset + pg_offset);
623 assert(mem->busy);
624
625 mem->busy = FALSE;
626 mem->pmapped = TRUE;
627 mem->wpmapped = TRUE;
628 mem->vm_page_q_state = VM_PAGE_USED_BY_COMPRESSOR;
629 }
630 vm_object_unlock(object);
631
632 #if KASAN
633 if (map == compressor_map) {
634 kasan_notify_address_nopoison(addr, size);
635 } else {
636 kasan_notify_address(addr, size);
637 }
638 #endif
639 return KERN_SUCCESS;
640 }
641
642 for (i = 0; i < page_count; i++) {
643 for (;;) {
644 if (flags & KMA_LOMEM)
645 mem = vm_page_grablo();
646 else
647 mem = vm_page_grab();
648
649 if (mem != VM_PAGE_NULL)
650 break;
651
652 if (flags & KMA_NOPAGEWAIT) {
653 kr = KERN_RESOURCE_SHORTAGE;
654 goto out;
655 }
656 if ((flags & KMA_LOMEM) &&
657 (vm_lopage_needed == TRUE)) {
658 kr = KERN_RESOURCE_SHORTAGE;
659 goto out;
660 }
661 VM_PAGE_WAIT();
662 }
663 if (KMA_ZERO & flags) vm_page_zero_fill(mem);
664 mem->snext = page_list;
665 page_list = mem;
666 }
667 if (flags & KMA_KOBJECT) {
668 offset = addr;
669 object = kernel_object;
670
671 vm_object_lock(object);
672 } else {
673 /*
674 * If it's not the kernel object, we need to:
675 * lock map;
676 * lookup entry;
677 * lock object;
678 * take reference on object;
679 * unlock map;
680 */
681 panic("kernel_memory_populate(%p,0x%llx,0x%llx,0x%x): "
682 "!KMA_KOBJECT",
683 map, (uint64_t) addr, (uint64_t) size, flags);
684 }
685
686 for (pg_offset = 0;
687 pg_offset < size;
688 pg_offset += PAGE_SIZE_64) {
689
690 if (page_list == NULL)
691 panic("kernel_memory_populate: page_list == NULL");
692
693 mem = page_list;
694 page_list = mem->snext;
695 mem->snext = NULL;
696
697 assert(mem->vm_page_q_state == VM_PAGE_NOT_ON_Q);
698 mem->vm_page_q_state = VM_PAGE_IS_WIRED;
699 mem->wire_count++;
700 if (__improbable(mem->wire_count == 0)) {
701 panic("kernel_memory_populate(%p): wire_count overflow",
702 mem);
703 }
704
705 vm_page_insert_wired(mem, object, offset + pg_offset, tag);
706
707 mem->busy = FALSE;
708 mem->pmapped = TRUE;
709 mem->wpmapped = TRUE;
710
711 PMAP_ENTER_OPTIONS(kernel_pmap, addr + pg_offset, mem,
712 VM_PROT_READ | VM_PROT_WRITE, VM_PROT_NONE,
713 ((flags & KMA_KSTACK) ? VM_MEM_STACK : 0), TRUE,
714 PMAP_OPTIONS_NOWAIT, pe_result);
715
716 if (pe_result == KERN_RESOURCE_SHORTAGE) {
717
718 vm_object_unlock(object);
719
720 PMAP_ENTER(kernel_pmap, addr + pg_offset, mem,
721 VM_PROT_READ | VM_PROT_WRITE, VM_PROT_NONE,
722 ((flags & KMA_KSTACK) ? VM_MEM_STACK : 0), TRUE,
723 pe_result);
724
725 vm_object_lock(object);
726 }
727
728 assert(pe_result == KERN_SUCCESS);
729
730 if (flags & KMA_NOENCRYPT) {
731 bzero(CAST_DOWN(void *, (addr + pg_offset)), PAGE_SIZE);
732 pmap_set_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem));
733 }
734 }
735 vm_page_lock_queues();
736 vm_page_wire_count += page_count;
737 vm_page_unlock_queues();
738
739 if (kernel_object == object) vm_tag_update_size(tag, size);
740
741 vm_object_unlock(object);
742
743 #if KASAN
744 if (map == compressor_map) {
745 kasan_notify_address_nopoison(addr, size);
746 } else {
747 kasan_notify_address(addr, size);
748 }
749 #endif
750 return KERN_SUCCESS;
751
752 out:
753 if (page_list)
754 vm_page_free_list(page_list, FALSE);
755
756 return kr;
757 }
758
759
760 void
761 kernel_memory_depopulate(
762 vm_map_t map,
763 vm_offset_t addr,
764 vm_size_t size,
765 int flags)
766 {
767 vm_object_t object;
768 vm_object_offset_t offset, pg_offset;
769 vm_page_t mem;
770 vm_page_t local_freeq = NULL;
771
772 assert((flags & (KMA_COMPRESSOR|KMA_KOBJECT)) != (KMA_COMPRESSOR|KMA_KOBJECT));
773
774 if (flags & KMA_COMPRESSOR) {
775 offset = addr;
776 object = compressor_object;
777
778 vm_object_lock(object);
779 } else if (flags & KMA_KOBJECT) {
780 offset = addr;
781 object = kernel_object;
782 vm_object_lock(object);
783 } else {
784 offset = 0;
785 object = NULL;
786 /*
787 * If it's not the kernel object, we need to:
788 * lock map;
789 * lookup entry;
790 * lock object;
791 * unlock map;
792 */
793 panic("kernel_memory_depopulate(%p,0x%llx,0x%llx,0x%x): "
794 "!KMA_KOBJECT",
795 map, (uint64_t) addr, (uint64_t) size, flags);
796 }
797 pmap_protect(kernel_map->pmap, offset, offset + size, VM_PROT_NONE);
798
799 for (pg_offset = 0;
800 pg_offset < size;
801 pg_offset += PAGE_SIZE_64) {
802
803 mem = vm_page_lookup(object, offset + pg_offset);
804
805 assert(mem);
806
807 if (mem->vm_page_q_state != VM_PAGE_USED_BY_COMPRESSOR)
808 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(mem));
809
810 mem->busy = TRUE;
811
812 assert(mem->tabled);
813 vm_page_remove(mem, TRUE);
814 assert(mem->busy);
815
816 assert(mem->pageq.next == 0 && mem->pageq.prev == 0);
817 assert((mem->vm_page_q_state == VM_PAGE_USED_BY_COMPRESSOR) ||
818 (mem->vm_page_q_state == VM_PAGE_NOT_ON_Q));
819
820 mem->vm_page_q_state = VM_PAGE_NOT_ON_Q;
821 mem->snext = local_freeq;
822 local_freeq = mem;
823 }
824 vm_object_unlock(object);
825
826 if (local_freeq)
827 vm_page_free_list(local_freeq, TRUE);
828 }
829
830 /*
831 * kmem_alloc:
832 *
833 * Allocate wired-down memory in the kernel's address map
834 * or a submap. The memory is not zero-filled.
835 */
836
837 kern_return_t
838 kmem_alloc_external(
839 vm_map_t map,
840 vm_offset_t *addrp,
841 vm_size_t size)
842 {
843 return (kmem_alloc(map, addrp, size, vm_tag_bt()));
844 }
845
846
847 kern_return_t
848 kmem_alloc(
849 vm_map_t map,
850 vm_offset_t *addrp,
851 vm_size_t size,
852 vm_tag_t tag)
853 {
854 return kmem_alloc_flags(map, addrp, size, tag, 0);
855 }
856
857 kern_return_t
858 kmem_alloc_flags(
859 vm_map_t map,
860 vm_offset_t *addrp,
861 vm_size_t size,
862 vm_tag_t tag,
863 int flags)
864 {
865 kern_return_t kr = kernel_memory_allocate(map, addrp, size, 0, flags, tag);
866 TRACE_MACHLEAKS(KMEM_ALLOC_CODE, KMEM_ALLOC_CODE_2, size, *addrp);
867 return kr;
868 }
869
870 /*
871 * kmem_realloc:
872 *
873 * Reallocate wired-down memory in the kernel's address map
874 * or a submap. Newly allocated pages are not zeroed.
875 * This can only be used on regions allocated with kmem_alloc.
876 *
877 * If successful, the pages in the old region are mapped twice.
878 * The old region is unchanged. Use kmem_free to get rid of it.
879 */
880 kern_return_t
881 kmem_realloc(
882 vm_map_t map,
883 vm_offset_t oldaddr,
884 vm_size_t oldsize,
885 vm_offset_t *newaddrp,
886 vm_size_t newsize,
887 vm_tag_t tag)
888 {
889 vm_object_t object;
890 vm_object_offset_t offset;
891 vm_map_offset_t oldmapmin;
892 vm_map_offset_t oldmapmax;
893 vm_map_offset_t newmapaddr;
894 vm_map_size_t oldmapsize;
895 vm_map_size_t newmapsize;
896 vm_map_entry_t oldentry;
897 vm_map_entry_t newentry;
898 vm_page_t mem;
899 kern_return_t kr;
900
901 oldmapmin = vm_map_trunc_page(oldaddr,
902 VM_MAP_PAGE_MASK(map));
903 oldmapmax = vm_map_round_page(oldaddr + oldsize,
904 VM_MAP_PAGE_MASK(map));
905 oldmapsize = oldmapmax - oldmapmin;
906 newmapsize = vm_map_round_page(newsize,
907 VM_MAP_PAGE_MASK(map));
908
909
910 /*
911 * Find the VM object backing the old region.
912 */
913
914 vm_map_lock(map);
915
916 if (!vm_map_lookup_entry(map, oldmapmin, &oldentry))
917 panic("kmem_realloc");
918 object = VME_OBJECT(oldentry);
919
920 /*
921 * Increase the size of the object and
922 * fill in the new region.
923 */
924
925 vm_object_reference(object);
926 /* by grabbing the object lock before unlocking the map */
927 /* we guarantee that we will panic if more than one */
928 /* attempt is made to realloc a kmem_alloc'd area */
929 vm_object_lock(object);
930 vm_map_unlock(map);
931 if (object->vo_size != oldmapsize)
932 panic("kmem_realloc");
933 object->vo_size = newmapsize;
934 vm_object_unlock(object);
935
936 /* allocate the new pages while expanded portion of the */
937 /* object is still not mapped */
938 kmem_alloc_pages(object, vm_object_round_page(oldmapsize),
939 vm_object_round_page(newmapsize-oldmapsize));
940
941 /*
942 * Find space for the new region.
943 */
944
945 kr = vm_map_find_space(map, &newmapaddr, newmapsize,
946 (vm_map_offset_t) 0, 0,
947 VM_MAP_KERNEL_FLAGS_NONE,
948 tag,
949 &newentry);
950 if (kr != KERN_SUCCESS) {
951 vm_object_lock(object);
952 for(offset = oldmapsize;
953 offset < newmapsize; offset += PAGE_SIZE) {
954 if ((mem = vm_page_lookup(object, offset)) != VM_PAGE_NULL) {
955 VM_PAGE_FREE(mem);
956 }
957 }
958 object->vo_size = oldmapsize;
959 vm_object_unlock(object);
960 vm_object_deallocate(object);
961 return kr;
962 }
963 VME_OBJECT_SET(newentry, object);
964 VME_OFFSET_SET(newentry, 0);
965 assert(newentry->wired_count == 0);
966
967
968 /* add an extra reference in case we have someone doing an */
969 /* unexpected deallocate */
970 vm_object_reference(object);
971 vm_map_unlock(map);
972
973 kr = vm_map_wire_kernel(map, newmapaddr, newmapaddr + newmapsize,
974 VM_PROT_DEFAULT, tag, FALSE);
975 if (KERN_SUCCESS != kr) {
976 vm_map_remove(map, newmapaddr, newmapaddr + newmapsize, 0);
977 vm_object_lock(object);
978 for(offset = oldsize; offset < newmapsize; offset += PAGE_SIZE) {
979 if ((mem = vm_page_lookup(object, offset)) != VM_PAGE_NULL) {
980 VM_PAGE_FREE(mem);
981 }
982 }
983 object->vo_size = oldmapsize;
984 vm_object_unlock(object);
985 vm_object_deallocate(object);
986 return (kr);
987 }
988 vm_object_deallocate(object);
989
990 if (kernel_object == object) vm_tag_update_size(tag, newmapsize);
991
992 *newaddrp = CAST_DOWN(vm_offset_t, newmapaddr);
993 return KERN_SUCCESS;
994 }
995
996 /*
997 * kmem_alloc_kobject:
998 *
999 * Allocate wired-down memory in the kernel's address map
1000 * or a submap. The memory is not zero-filled.
1001 *
1002 * The memory is allocated in the kernel_object.
1003 * It may not be copied with vm_map_copy, and
1004 * it may not be reallocated with kmem_realloc.
1005 */
1006
1007 kern_return_t
1008 kmem_alloc_kobject_external(
1009 vm_map_t map,
1010 vm_offset_t *addrp,
1011 vm_size_t size)
1012 {
1013 return (kmem_alloc_kobject(map, addrp, size, vm_tag_bt()));
1014 }
1015
1016 kern_return_t
1017 kmem_alloc_kobject(
1018 vm_map_t map,
1019 vm_offset_t *addrp,
1020 vm_size_t size,
1021 vm_tag_t tag)
1022 {
1023 return kernel_memory_allocate(map, addrp, size, 0, KMA_KOBJECT, tag);
1024 }
1025
1026 /*
1027 * kmem_alloc_aligned:
1028 *
1029 * Like kmem_alloc_kobject, except that the memory is aligned.
1030 * The size should be a power-of-2.
1031 */
1032
1033 kern_return_t
1034 kmem_alloc_aligned(
1035 vm_map_t map,
1036 vm_offset_t *addrp,
1037 vm_size_t size,
1038 vm_tag_t tag)
1039 {
1040 if ((size & (size - 1)) != 0)
1041 panic("kmem_alloc_aligned: size not aligned");
1042 return kernel_memory_allocate(map, addrp, size, size - 1, KMA_KOBJECT, tag);
1043 }
1044
1045 /*
1046 * kmem_alloc_pageable:
1047 *
1048 * Allocate pageable memory in the kernel's address map.
1049 */
1050
1051 kern_return_t
1052 kmem_alloc_pageable_external(
1053 vm_map_t map,
1054 vm_offset_t *addrp,
1055 vm_size_t size)
1056 {
1057 return (kmem_alloc_pageable(map, addrp, size, vm_tag_bt()));
1058 }
1059
1060 kern_return_t
1061 kmem_alloc_pageable(
1062 vm_map_t map,
1063 vm_offset_t *addrp,
1064 vm_size_t size,
1065 vm_tag_t tag)
1066 {
1067 vm_map_offset_t map_addr;
1068 vm_map_size_t map_size;
1069 kern_return_t kr;
1070
1071 #ifndef normal
1072 map_addr = (vm_map_min(map)) + PAGE_SIZE;
1073 #else
1074 map_addr = vm_map_min(map);
1075 #endif
1076 map_size = vm_map_round_page(size,
1077 VM_MAP_PAGE_MASK(map));
1078
1079 kr = vm_map_enter(map, &map_addr, map_size,
1080 (vm_map_offset_t) 0,
1081 VM_FLAGS_ANYWHERE,
1082 VM_MAP_KERNEL_FLAGS_NONE,
1083 tag,
1084 VM_OBJECT_NULL, (vm_object_offset_t) 0, FALSE,
1085 VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT);
1086
1087 if (kr != KERN_SUCCESS)
1088 return kr;
1089
1090 #if KASAN
1091 kasan_notify_address(map_addr, map_size);
1092 #endif
1093 *addrp = CAST_DOWN(vm_offset_t, map_addr);
1094 return KERN_SUCCESS;
1095 }
1096
1097 /*
1098 * kmem_free:
1099 *
1100 * Release a region of kernel virtual memory allocated
1101 * with kmem_alloc, kmem_alloc_kobject, or kmem_alloc_pageable,
1102 * and return the physical pages associated with that region.
1103 */
1104
1105 void
1106 kmem_free(
1107 vm_map_t map,
1108 vm_offset_t addr,
1109 vm_size_t size)
1110 {
1111 kern_return_t kr;
1112
1113 assert(addr >= VM_MIN_KERNEL_AND_KEXT_ADDRESS);
1114
1115 TRACE_MACHLEAKS(KMEM_FREE_CODE, KMEM_FREE_CODE_2, size, addr);
1116
1117 if(size == 0) {
1118 #if MACH_ASSERT
1119 printf("kmem_free called with size==0 for map: %p with addr: 0x%llx\n",map,(uint64_t)addr);
1120 #endif
1121 return;
1122 }
1123
1124 kr = vm_map_remove(map,
1125 vm_map_trunc_page(addr,
1126 VM_MAP_PAGE_MASK(map)),
1127 vm_map_round_page(addr + size,
1128 VM_MAP_PAGE_MASK(map)),
1129 VM_MAP_REMOVE_KUNWIRE);
1130 if (kr != KERN_SUCCESS)
1131 panic("kmem_free");
1132 }
1133
1134 /*
1135 * Allocate new pages in an object.
1136 */
1137
1138 kern_return_t
1139 kmem_alloc_pages(
1140 vm_object_t object,
1141 vm_object_offset_t offset,
1142 vm_object_size_t size)
1143 {
1144 vm_object_size_t alloc_size;
1145
1146 alloc_size = vm_object_round_page(size);
1147 vm_object_lock(object);
1148 while (alloc_size) {
1149 vm_page_t mem;
1150
1151
1152 /*
1153 * Allocate a page
1154 */
1155 while (VM_PAGE_NULL ==
1156 (mem = vm_page_alloc(object, offset))) {
1157 vm_object_unlock(object);
1158 VM_PAGE_WAIT();
1159 vm_object_lock(object);
1160 }
1161 mem->busy = FALSE;
1162
1163 alloc_size -= PAGE_SIZE;
1164 offset += PAGE_SIZE;
1165 }
1166 vm_object_unlock(object);
1167 return KERN_SUCCESS;
1168 }
1169
1170 /*
1171 * kmem_suballoc:
1172 *
1173 * Allocates a map to manage a subrange
1174 * of the kernel virtual address space.
1175 *
1176 * Arguments are as follows:
1177 *
1178 * parent Map to take range from
1179 * addr Address of start of range (IN/OUT)
1180 * size Size of range to find
1181 * pageable Can region be paged
1182 * anywhere Can region be located anywhere in map
1183 * new_map Pointer to new submap
1184 */
1185 kern_return_t
1186 kmem_suballoc(
1187 vm_map_t parent,
1188 vm_offset_t *addr,
1189 vm_size_t size,
1190 boolean_t pageable,
1191 int flags,
1192 vm_map_kernel_flags_t vmk_flags,
1193 vm_tag_t tag,
1194 vm_map_t *new_map)
1195 {
1196 vm_map_t map;
1197 vm_map_offset_t map_addr;
1198 vm_map_size_t map_size;
1199 kern_return_t kr;
1200
1201 map_size = vm_map_round_page(size,
1202 VM_MAP_PAGE_MASK(parent));
1203
1204 /*
1205 * Need reference on submap object because it is internal
1206 * to the vm_system. vm_object_enter will never be called
1207 * on it (usual source of reference for vm_map_enter).
1208 */
1209 vm_object_reference(vm_submap_object);
1210
1211 map_addr = ((flags & VM_FLAGS_ANYWHERE)
1212 ? vm_map_min(parent)
1213 : vm_map_trunc_page(*addr,
1214 VM_MAP_PAGE_MASK(parent)));
1215
1216 kr = vm_map_enter(parent, &map_addr, map_size,
1217 (vm_map_offset_t) 0, flags, vmk_flags, tag,
1218 vm_submap_object, (vm_object_offset_t) 0, FALSE,
1219 VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT);
1220 if (kr != KERN_SUCCESS) {
1221 vm_object_deallocate(vm_submap_object);
1222 return (kr);
1223 }
1224
1225 pmap_reference(vm_map_pmap(parent));
1226 map = vm_map_create(vm_map_pmap(parent), map_addr, map_addr + map_size, pageable);
1227 if (map == VM_MAP_NULL)
1228 panic("kmem_suballoc: vm_map_create failed"); /* "can't happen" */
1229 /* inherit the parent map's page size */
1230 vm_map_set_page_shift(map, VM_MAP_PAGE_SHIFT(parent));
1231
1232 kr = vm_map_submap(parent, map_addr, map_addr + map_size, map, map_addr, FALSE);
1233 if (kr != KERN_SUCCESS) {
1234 /*
1235 * See comment preceding vm_map_submap().
1236 */
1237 vm_map_remove(parent, map_addr, map_addr + map_size, VM_MAP_NO_FLAGS);
1238 vm_map_deallocate(map); /* also removes ref to pmap */
1239 vm_object_deallocate(vm_submap_object);
1240 return (kr);
1241 }
1242 *addr = CAST_DOWN(vm_offset_t, map_addr);
1243 *new_map = map;
1244 return (KERN_SUCCESS);
1245 }
1246
1247 /*
1248 * kmem_init:
1249 *
1250 * Initialize the kernel's virtual memory map, taking
1251 * into account all memory allocated up to this time.
1252 */
1253 void
1254 kmem_init(
1255 vm_offset_t start,
1256 vm_offset_t end)
1257 {
1258 vm_map_offset_t map_start;
1259 vm_map_offset_t map_end;
1260 vm_map_kernel_flags_t vmk_flags;
1261
1262 vmk_flags = VM_MAP_KERNEL_FLAGS_NONE;
1263 vmk_flags.vmkf_permanent = TRUE;
1264 vmk_flags.vmkf_no_pmap_check = TRUE;
1265
1266 map_start = vm_map_trunc_page(start,
1267 VM_MAP_PAGE_MASK(kernel_map));
1268 map_end = vm_map_round_page(end,
1269 VM_MAP_PAGE_MASK(kernel_map));
1270
1271 #if defined(__arm__) || defined(__arm64__)
1272 kernel_map = vm_map_create(pmap_kernel(),VM_MIN_KERNEL_AND_KEXT_ADDRESS,
1273 VM_MAX_KERNEL_ADDRESS, FALSE);
1274 /*
1275 * Reserve virtual memory allocated up to this time.
1276 */
1277 {
1278 unsigned int region_select = 0;
1279 vm_map_offset_t region_start;
1280 vm_map_size_t region_size;
1281 vm_map_offset_t map_addr;
1282 kern_return_t kr;
1283
1284 while (pmap_virtual_region(region_select, &region_start, &region_size)) {
1285
1286 map_addr = region_start;
1287 kr = vm_map_enter(kernel_map, &map_addr,
1288 vm_map_round_page(region_size,
1289 VM_MAP_PAGE_MASK(kernel_map)),
1290 (vm_map_offset_t) 0,
1291 VM_FLAGS_FIXED,
1292 vmk_flags,
1293 VM_KERN_MEMORY_NONE,
1294 VM_OBJECT_NULL,
1295 (vm_object_offset_t) 0, FALSE, VM_PROT_NONE, VM_PROT_NONE,
1296 VM_INHERIT_DEFAULT);
1297
1298 if (kr != KERN_SUCCESS) {
1299 panic("kmem_init(0x%llx,0x%llx): vm_map_enter(0x%llx,0x%llx) error 0x%x\n",
1300 (uint64_t) start, (uint64_t) end, (uint64_t) region_start,
1301 (uint64_t) region_size, kr);
1302 }
1303
1304 region_select++;
1305 }
1306 }
1307 #else
1308 kernel_map = vm_map_create(pmap_kernel(),VM_MIN_KERNEL_AND_KEXT_ADDRESS,
1309 map_end, FALSE);
1310 /*
1311 * Reserve virtual memory allocated up to this time.
1312 */
1313 if (start != VM_MIN_KERNEL_AND_KEXT_ADDRESS) {
1314 vm_map_offset_t map_addr;
1315 kern_return_t kr;
1316
1317 vmk_flags = VM_MAP_KERNEL_FLAGS_NONE;
1318 vmk_flags.vmkf_no_pmap_check = TRUE;
1319
1320 map_addr = VM_MIN_KERNEL_AND_KEXT_ADDRESS;
1321 kr = vm_map_enter(kernel_map,
1322 &map_addr,
1323 (vm_map_size_t)(map_start - VM_MIN_KERNEL_AND_KEXT_ADDRESS),
1324 (vm_map_offset_t) 0,
1325 VM_FLAGS_FIXED,
1326 vmk_flags,
1327 VM_KERN_MEMORY_NONE,
1328 VM_OBJECT_NULL,
1329 (vm_object_offset_t) 0, FALSE,
1330 VM_PROT_NONE, VM_PROT_NONE,
1331 VM_INHERIT_DEFAULT);
1332
1333 if (kr != KERN_SUCCESS) {
1334 panic("kmem_init(0x%llx,0x%llx): vm_map_enter(0x%llx,0x%llx) error 0x%x\n",
1335 (uint64_t) start, (uint64_t) end,
1336 (uint64_t) VM_MIN_KERNEL_AND_KEXT_ADDRESS,
1337 (uint64_t) (map_start - VM_MIN_KERNEL_AND_KEXT_ADDRESS),
1338 kr);
1339 }
1340 }
1341 #endif
1342
1343 /*
1344 * Set the default global user wire limit which limits the amount of
1345 * memory that can be locked via mlock(). We set this to the total
1346 * amount of memory that are potentially usable by a user app (max_mem)
1347 * minus a certain amount. This can be overridden via a sysctl.
1348 */
1349 vm_global_no_user_wire_amount = MIN(max_mem*20/100,
1350 VM_NOT_USER_WIREABLE);
1351 vm_global_user_wire_limit = max_mem - vm_global_no_user_wire_amount;
1352
1353 /* the default per user limit is the same as the global limit */
1354 vm_user_wire_limit = vm_global_user_wire_limit;
1355 }
1356
1357
1358 /*
1359 * Routine: copyinmap
1360 * Purpose:
1361 * Like copyin, except that fromaddr is an address
1362 * in the specified VM map. This implementation
1363 * is incomplete; it handles the current user map
1364 * and the kernel map/submaps.
1365 */
1366 kern_return_t
1367 copyinmap(
1368 vm_map_t map,
1369 vm_map_offset_t fromaddr,
1370 void *todata,
1371 vm_size_t length)
1372 {
1373 kern_return_t kr = KERN_SUCCESS;
1374 vm_map_t oldmap;
1375
1376 if (vm_map_pmap(map) == pmap_kernel())
1377 {
1378 /* assume a correct copy */
1379 memcpy(todata, CAST_DOWN(void *, fromaddr), length);
1380 }
1381 else if (current_map() == map)
1382 {
1383 if (copyin(fromaddr, todata, length) != 0)
1384 kr = KERN_INVALID_ADDRESS;
1385 }
1386 else
1387 {
1388 vm_map_reference(map);
1389 oldmap = vm_map_switch(map);
1390 if (copyin(fromaddr, todata, length) != 0)
1391 kr = KERN_INVALID_ADDRESS;
1392 vm_map_switch(oldmap);
1393 vm_map_deallocate(map);
1394 }
1395 return kr;
1396 }
1397
1398 /*
1399 * Routine: copyoutmap
1400 * Purpose:
1401 * Like copyout, except that toaddr is an address
1402 * in the specified VM map. This implementation
1403 * is incomplete; it handles the current user map
1404 * and the kernel map/submaps.
1405 */
1406 kern_return_t
1407 copyoutmap(
1408 vm_map_t map,
1409 void *fromdata,
1410 vm_map_address_t toaddr,
1411 vm_size_t length)
1412 {
1413 if (vm_map_pmap(map) == pmap_kernel()) {
1414 /* assume a correct copy */
1415 memcpy(CAST_DOWN(void *, toaddr), fromdata, length);
1416 return KERN_SUCCESS;
1417 }
1418
1419 if (current_map() != map)
1420 return KERN_NOT_SUPPORTED;
1421
1422 if (copyout(fromdata, toaddr, length) != 0)
1423 return KERN_INVALID_ADDRESS;
1424
1425 return KERN_SUCCESS;
1426 }
1427
1428 /*
1429 *
1430 * The following two functions are to be used when exposing kernel
1431 * addresses to userspace via any of the various debug or info
1432 * facilities that exist. These are basically the same as VM_KERNEL_ADDRPERM()
1433 * and VM_KERNEL_UNSLIDE_OR_PERM() except they use a different random seed and
1434 * are exported to KEXTs.
1435 *
1436 * NOTE: USE THE MACRO VERSIONS OF THESE FUNCTIONS (in vm_param.h) FROM WITHIN THE KERNEL
1437 */
1438
1439 static void
1440 vm_kernel_addrhash_internal(
1441 vm_offset_t addr,
1442 vm_offset_t *hash_addr,
1443 uint64_t salt)
1444 {
1445 assert(salt != 0);
1446
1447 if (addr == 0) {
1448 *hash_addr = 0;
1449 return;
1450 }
1451
1452 if (VM_KERNEL_IS_SLID(addr)) {
1453 *hash_addr = VM_KERNEL_UNSLIDE(addr);
1454 return;
1455 }
1456
1457 vm_offset_t sha_digest[SHA256_DIGEST_LENGTH/sizeof(vm_offset_t)];
1458 SHA256_CTX sha_ctx;
1459
1460 SHA256_Init(&sha_ctx);
1461 SHA256_Update(&sha_ctx, &salt, sizeof(salt));
1462 SHA256_Update(&sha_ctx, &addr, sizeof(addr));
1463 SHA256_Final(sha_digest, &sha_ctx);
1464
1465 *hash_addr = sha_digest[0];
1466 }
1467
1468 void
1469 vm_kernel_addrhash_external(
1470 vm_offset_t addr,
1471 vm_offset_t *hash_addr)
1472 {
1473 return vm_kernel_addrhash_internal(addr, hash_addr, vm_kernel_addrhash_salt_ext);
1474 }
1475
1476 vm_offset_t
1477 vm_kernel_addrhash(vm_offset_t addr)
1478 {
1479 vm_offset_t hash_addr;
1480 vm_kernel_addrhash_internal(addr, &hash_addr, vm_kernel_addrhash_salt);
1481 return hash_addr;
1482 }
1483
1484 void
1485 vm_kernel_addrhide(
1486 vm_offset_t addr,
1487 vm_offset_t *hide_addr)
1488 {
1489 *hide_addr = VM_KERNEL_ADDRHIDE(addr);
1490 }
1491
1492 /*
1493 * vm_kernel_addrperm_external:
1494 * vm_kernel_unslide_or_perm_external:
1495 *
1496 * Use these macros when exposing an address to userspace that could come from
1497 * either kernel text/data *or* the heap.
1498 */
1499 void
1500 vm_kernel_addrperm_external(
1501 vm_offset_t addr,
1502 vm_offset_t *perm_addr)
1503 {
1504 if (VM_KERNEL_IS_SLID(addr)) {
1505 *perm_addr = VM_KERNEL_UNSLIDE(addr);
1506 } else if (VM_KERNEL_ADDRESS(addr)) {
1507 *perm_addr = addr + vm_kernel_addrperm_ext;
1508 } else {
1509 *perm_addr = addr;
1510 }
1511 }
1512
1513 void
1514 vm_kernel_unslide_or_perm_external(
1515 vm_offset_t addr,
1516 vm_offset_t *up_addr)
1517 {
1518 vm_kernel_addrperm_external(addr, up_addr);
1519 }