2 * Copyright (c) 1999-2014 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1991, 1993, 1994
30 * The Regents of the University of California. All rights reserved.
31 * (c) UNIX System Laboratories, Inc.
32 * All or some portions of this file are derived from material licensed
33 * to the University of California by American Telephone and Telegraph
34 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
35 * the permission of UNIX System Laboratories, Inc.
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * derived from @(#)ufs_vfsops.c 8.8 (Berkeley) 5/20/95
68 * (c) Copyright 1997-2002 Apple Computer, Inc. All rights reserved.
70 * hfs_vfsops.c -- VFS layer for loadable HFS file system.
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/kauth.h>
78 #include <sys/ubc_internal.h>
79 #include <sys/vnode_internal.h>
80 #include <sys/mount_internal.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
84 #include <sys/quota.h>
86 #include <sys/paths.h>
87 #include <sys/utfconv.h>
88 #include <sys/kdebug.h>
89 #include <sys/fslog.h>
91 #include <sys/buf_internal.h>
93 /* for parsing boot-args */
94 #include <pexpert/pexpert.h>
97 #include <kern/locks.h>
99 #include <vfs/vfs_journal.h>
101 #include <miscfs/specfs/specdev.h>
102 #include <hfs/hfs_mount.h>
104 #include <libkern/crypto/md5.h>
105 #include <uuid/uuid.h>
108 #include "hfs_catalog.h"
109 #include "hfs_cnode.h"
111 #include "hfs_endian.h"
112 #include "hfs_hotfiles.h"
113 #include "hfs_quota.h"
114 #include "hfs_btreeio.h"
115 #include "hfs_kdebug.h"
117 #include "hfscommon/headers/FileMgrInternal.h"
118 #include "hfscommon/headers/BTreesInternal.h"
121 #include <sys/cprotect.h>
124 #define HFS_MOUNT_DEBUG 1
131 /* Enable/disable debugging code for live volume resizing, defined in hfs_resize.c */
132 extern int hfs_resize_debug
;
134 lck_grp_attr_t
* hfs_group_attr
;
135 lck_attr_t
* hfs_lock_attr
;
136 lck_grp_t
* hfs_mutex_group
;
137 lck_grp_t
* hfs_rwlock_group
;
138 lck_grp_t
* hfs_spinlock_group
;
140 extern struct vnodeopv_desc hfs_vnodeop_opv_desc
;
143 extern struct vnodeopv_desc hfs_std_vnodeop_opv_desc
;
144 static int hfs_flushMDB(struct hfsmount
*hfsmp
, int waitfor
, int altflush
);
147 /* not static so we can re-use in hfs_readwrite.c for build_path calls */
148 int hfs_vfs_vget(struct mount
*mp
, ino64_t ino
, struct vnode
**vpp
, vfs_context_t context
);
150 static int hfs_changefs(struct mount
*mp
, struct hfs_mount_args
*args
);
151 static int hfs_fhtovp(struct mount
*mp
, int fhlen
, unsigned char *fhp
, struct vnode
**vpp
, vfs_context_t context
);
152 static int hfs_flushfiles(struct mount
*, int, struct proc
*);
153 static int hfs_getmountpoint(struct vnode
*vp
, struct hfsmount
**hfsmpp
);
154 static int hfs_init(struct vfsconf
*vfsp
);
155 static void hfs_locks_destroy(struct hfsmount
*hfsmp
);
156 static int hfs_vfs_root(struct mount
*mp
, struct vnode
**vpp
, vfs_context_t context
);
157 static int hfs_quotactl(struct mount
*, int, uid_t
, caddr_t
, vfs_context_t context
);
158 static int hfs_start(struct mount
*mp
, int flags
, vfs_context_t context
);
159 static int hfs_vptofh(struct vnode
*vp
, int *fhlenp
, unsigned char *fhp
, vfs_context_t context
);
160 static int hfs_journal_replay(vnode_t devvp
, vfs_context_t context
);
161 static void hfs_syncer_free(struct hfsmount
*hfsmp
);
163 void hfs_initialize_allocator (struct hfsmount
*hfsmp
);
164 int hfs_teardown_allocator (struct hfsmount
*hfsmp
);
166 int hfs_mount(struct mount
*mp
, vnode_t devvp
, user_addr_t data
, vfs_context_t context
);
167 int hfs_mountfs(struct vnode
*devvp
, struct mount
*mp
, struct hfs_mount_args
*args
, int journal_replay_only
, vfs_context_t context
);
168 int hfs_reload(struct mount
*mp
);
169 int hfs_statfs(struct mount
*mp
, register struct vfsstatfs
*sbp
, vfs_context_t context
);
170 int hfs_sync(struct mount
*mp
, int waitfor
, vfs_context_t context
);
171 int hfs_sysctl(int *name
, u_int namelen
, user_addr_t oldp
, size_t *oldlenp
,
172 user_addr_t newp
, size_t newlen
, vfs_context_t context
);
173 int hfs_unmount(struct mount
*mp
, int mntflags
, vfs_context_t context
);
176 * Called by vfs_mountroot when mounting HFS Plus as root.
180 hfs_mountroot(mount_t mp
, vnode_t rvp
, vfs_context_t context
)
182 struct hfsmount
*hfsmp
;
184 struct vfsstatfs
*vfsp
;
187 if ((error
= hfs_mountfs(rvp
, mp
, NULL
, 0, context
))) {
188 if (HFS_MOUNT_DEBUG
) {
189 printf("hfs_mountroot: hfs_mountfs returned %d, rvp (%p) name (%s) \n",
190 error
, rvp
, (rvp
->v_name
? rvp
->v_name
: "unknown device"));
196 hfsmp
= VFSTOHFS(mp
);
198 hfsmp
->hfs_uid
= UNKNOWNUID
;
199 hfsmp
->hfs_gid
= UNKNOWNGID
;
200 hfsmp
->hfs_dir_mask
= (S_IRWXU
| S_IRGRP
|S_IXGRP
| S_IROTH
|S_IXOTH
); /* 0755 */
201 hfsmp
->hfs_file_mask
= (S_IRWXU
| S_IRGRP
|S_IXGRP
| S_IROTH
|S_IXOTH
); /* 0755 */
203 /* Establish the free block reserve. */
204 vcb
= HFSTOVCB(hfsmp
);
205 vcb
->reserveBlocks
= ((u_int64_t
)vcb
->totalBlocks
* HFS_MINFREE
) / 100;
206 vcb
->reserveBlocks
= MIN(vcb
->reserveBlocks
, HFS_MAXRESERVE
/ vcb
->blockSize
);
208 vfsp
= vfs_statfs(mp
);
209 (void)hfs_statfs(mp
, vfsp
, NULL
);
211 /* Invoke ioctl that asks if the underlying device is Core Storage or not */
212 error
= VNOP_IOCTL(rvp
, _DKIOCCORESTORAGE
, NULL
, 0, context
);
214 hfsmp
->hfs_flags
|= HFS_CS
;
227 hfs_mount(struct mount
*mp
, vnode_t devvp
, user_addr_t data
, vfs_context_t context
)
229 struct proc
*p
= vfs_context_proc(context
);
230 struct hfsmount
*hfsmp
= NULL
;
231 struct hfs_mount_args args
;
235 if ((retval
= copyin(data
, (caddr_t
)&args
, sizeof(args
)))) {
236 if (HFS_MOUNT_DEBUG
) {
237 printf("hfs_mount: copyin returned %d for fs\n", retval
);
241 cmdflags
= (u_int32_t
)vfs_flags(mp
) & MNT_CMDFLAGS
;
242 if (cmdflags
& MNT_UPDATE
) {
243 hfsmp
= VFSTOHFS(mp
);
245 /* Reload incore data after an fsck. */
246 if (cmdflags
& MNT_RELOAD
) {
247 if (vfs_isrdonly(mp
)) {
248 int error
= hfs_reload(mp
);
249 if (error
&& HFS_MOUNT_DEBUG
) {
250 printf("hfs_mount: hfs_reload returned %d on %s \n", error
, hfsmp
->vcbVN
);
255 if (HFS_MOUNT_DEBUG
) {
256 printf("hfs_mount: MNT_RELOAD not supported on rdwr filesystem %s\n", hfsmp
->vcbVN
);
262 /* Change to a read-only file system. */
263 if (((hfsmp
->hfs_flags
& HFS_READ_ONLY
) == 0) &&
267 /* Set flag to indicate that a downgrade to read-only
268 * is in progress and therefore block any further
269 * modifications to the file system.
271 hfs_lock_global (hfsmp
, HFS_EXCLUSIVE_LOCK
);
272 hfsmp
->hfs_flags
|= HFS_RDONLY_DOWNGRADE
;
273 hfsmp
->hfs_downgrading_thread
= current_thread();
274 hfs_unlock_global (hfsmp
);
275 hfs_syncer_free(hfsmp
);
277 /* use VFS_SYNC to push out System (btree) files */
278 retval
= VFS_SYNC(mp
, MNT_WAIT
, context
);
279 if (retval
&& ((cmdflags
& MNT_FORCE
) == 0)) {
280 hfsmp
->hfs_flags
&= ~HFS_RDONLY_DOWNGRADE
;
281 hfsmp
->hfs_downgrading_thread
= NULL
;
282 if (HFS_MOUNT_DEBUG
) {
283 printf("hfs_mount: VFS_SYNC returned %d during b-tree sync of %s \n", retval
, hfsmp
->vcbVN
);
289 if (cmdflags
& MNT_FORCE
)
292 if ((retval
= hfs_flushfiles(mp
, flags
, p
))) {
293 hfsmp
->hfs_flags
&= ~HFS_RDONLY_DOWNGRADE
;
294 hfsmp
->hfs_downgrading_thread
= NULL
;
295 if (HFS_MOUNT_DEBUG
) {
296 printf("hfs_mount: hfs_flushfiles returned %d on %s \n", retval
, hfsmp
->vcbVN
);
301 /* mark the volume cleanly unmounted */
302 hfsmp
->vcbAtrb
|= kHFSVolumeUnmountedMask
;
303 retval
= hfs_flushvolumeheader(hfsmp
, MNT_WAIT
, 0);
304 hfsmp
->hfs_flags
|= HFS_READ_ONLY
;
307 * Close down the journal.
309 * NOTE: It is critically important to close down the journal
310 * and have it issue all pending I/O prior to calling VNOP_FSYNC below.
311 * In a journaled environment it is expected that the journal be
312 * the only actor permitted to issue I/O for metadata blocks in HFS.
313 * If we were to call VNOP_FSYNC prior to closing down the journal,
314 * we would inadvertantly issue (and wait for) the I/O we just
315 * initiated above as part of the flushvolumeheader call.
317 * To avoid this, we follow the same order of operations as in
318 * unmount and issue the journal_close prior to calling VNOP_FSYNC.
322 hfs_lock_global (hfsmp
, HFS_EXCLUSIVE_LOCK
);
324 journal_close(hfsmp
->jnl
);
327 // Note: we explicitly don't want to shutdown
328 // access to the jvp because we may need
329 // it later if we go back to being read-write.
331 hfs_unlock_global (hfsmp
);
333 vfs_clearflags(hfsmp
->hfs_mp
, MNT_JOURNALED
);
337 * Write out any pending I/O still outstanding against the device node
338 * now that the journal has been closed.
341 vnode_get(hfsmp
->hfs_devvp
);
342 retval
= VNOP_FSYNC(hfsmp
->hfs_devvp
, MNT_WAIT
, context
);
343 vnode_put(hfsmp
->hfs_devvp
);
347 if (HFS_MOUNT_DEBUG
) {
348 printf("hfs_mount: FSYNC on devvp returned %d for fs %s\n", retval
, hfsmp
->vcbVN
);
350 hfsmp
->hfs_flags
&= ~HFS_RDONLY_DOWNGRADE
;
351 hfsmp
->hfs_downgrading_thread
= NULL
;
352 hfsmp
->hfs_flags
&= ~HFS_READ_ONLY
;
356 if (hfsmp
->hfs_flags
& HFS_SUMMARY_TABLE
) {
357 if (hfsmp
->hfs_summary_table
) {
360 * Take the bitmap lock to serialize against a concurrent bitmap scan still in progress
362 if (hfsmp
->hfs_allocation_vp
) {
363 err
= hfs_lock (VTOC(hfsmp
->hfs_allocation_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
365 FREE (hfsmp
->hfs_summary_table
, M_TEMP
);
366 hfsmp
->hfs_summary_table
= NULL
;
367 hfsmp
->hfs_flags
&= ~HFS_SUMMARY_TABLE
;
368 if (err
== 0 && hfsmp
->hfs_allocation_vp
){
369 hfs_unlock (VTOC(hfsmp
->hfs_allocation_vp
));
374 hfsmp
->hfs_downgrading_thread
= NULL
;
377 /* Change to a writable file system. */
378 if (vfs_iswriteupgrade(mp
)) {
380 * On inconsistent disks, do not allow read-write mount
381 * unless it is the boot volume being mounted.
383 if (!(vfs_flags(mp
) & MNT_ROOTFS
) &&
384 (hfsmp
->vcbAtrb
& kHFSVolumeInconsistentMask
)) {
385 if (HFS_MOUNT_DEBUG
) {
386 printf("hfs_mount: attempting to mount inconsistent non-root volume %s\n", (hfsmp
->vcbVN
));
392 // If the journal was shut-down previously because we were
393 // asked to be read-only, let's start it back up again now
395 if ( (HFSTOVCB(hfsmp
)->vcbAtrb
& kHFSVolumeJournaledMask
)
396 && hfsmp
->jnl
== NULL
397 && hfsmp
->jvp
!= NULL
) {
400 if (hfsmp
->hfs_flags
& HFS_NEED_JNL_RESET
) {
401 jflags
= JOURNAL_RESET
;
406 hfs_lock_global (hfsmp
, HFS_EXCLUSIVE_LOCK
);
408 /* We provide the mount point twice here: The first is used as
409 * an opaque argument to be passed back when hfs_sync_metadata
410 * is called. The second is provided to the throttling code to
411 * indicate which mount's device should be used when accounting
412 * for metadata writes.
414 hfsmp
->jnl
= journal_open(hfsmp
->jvp
,
415 (hfsmp
->jnl_start
* HFSTOVCB(hfsmp
)->blockSize
) + (off_t
)HFSTOVCB(hfsmp
)->hfsPlusIOPosOffset
,
418 hfsmp
->hfs_logical_block_size
,
421 hfs_sync_metadata
, hfsmp
->hfs_mp
,
425 * Set up the trim callback function so that we can add
426 * recently freed extents to the free extent cache once
427 * the transaction that freed them is written to the
431 journal_trim_set_callback(hfsmp
->jnl
, hfs_trim_callback
, hfsmp
);
433 hfs_unlock_global (hfsmp
);
435 if (hfsmp
->jnl
== NULL
) {
436 if (HFS_MOUNT_DEBUG
) {
437 printf("hfs_mount: journal_open == NULL; couldn't be opened on %s \n", (hfsmp
->vcbVN
));
442 hfsmp
->hfs_flags
&= ~HFS_NEED_JNL_RESET
;
443 vfs_setflags(hfsmp
->hfs_mp
, MNT_JOURNALED
);
447 /* See if we need to erase unused Catalog nodes due to <rdar://problem/6947811>. */
448 retval
= hfs_erase_unused_nodes(hfsmp
);
449 if (retval
!= E_NONE
) {
450 if (HFS_MOUNT_DEBUG
) {
451 printf("hfs_mount: hfs_erase_unused_nodes returned %d for fs %s\n", retval
, hfsmp
->vcbVN
);
456 /* If this mount point was downgraded from read-write
457 * to read-only, clear that information as we are now
458 * moving back to read-write.
460 hfsmp
->hfs_flags
&= ~HFS_RDONLY_DOWNGRADE
;
461 hfsmp
->hfs_downgrading_thread
= NULL
;
463 /* mark the volume dirty (clear clean unmount bit) */
464 hfsmp
->vcbAtrb
&= ~kHFSVolumeUnmountedMask
;
466 retval
= hfs_flushvolumeheader(hfsmp
, MNT_WAIT
, 0);
467 if (retval
!= E_NONE
) {
468 if (HFS_MOUNT_DEBUG
) {
469 printf("hfs_mount: hfs_flushvolumeheader returned %d for fs %s\n", retval
, hfsmp
->vcbVN
);
474 /* Only clear HFS_READ_ONLY after a successful write */
475 hfsmp
->hfs_flags
&= ~HFS_READ_ONLY
;
478 if (!(hfsmp
->hfs_flags
& (HFS_READ_ONLY
| HFS_STANDARD
))) {
479 /* Setup private/hidden directories for hardlinks. */
480 hfs_privatedir_init(hfsmp
, FILE_HARDLINKS
);
481 hfs_privatedir_init(hfsmp
, DIR_HARDLINKS
);
483 hfs_remove_orphans(hfsmp
);
486 * Allow hot file clustering if conditions allow.
488 if ((hfsmp
->hfs_flags
& HFS_METADATA_ZONE
) &&
489 ((hfsmp
->hfs_mp
->mnt_kern_flag
& MNTK_SSD
) == 0)) {
490 (void) hfs_recording_init(hfsmp
);
492 /* Force ACLs on HFS+ file systems. */
493 if (vfs_extendedsecurity(HFSTOVFS(hfsmp
)) == 0) {
494 vfs_setextendedsecurity(HFSTOVFS(hfsmp
));
499 /* Update file system parameters. */
500 retval
= hfs_changefs(mp
, &args
);
501 if (retval
&& HFS_MOUNT_DEBUG
) {
502 printf("hfs_mount: hfs_changefs returned %d for %s\n", retval
, hfsmp
->vcbVN
);
505 } else /* not an update request */ {
507 /* Set the mount flag to indicate that we support volfs */
508 vfs_setflags(mp
, (u_int64_t
)((unsigned int)MNT_DOVOLFS
));
510 retval
= hfs_mountfs(devvp
, mp
, &args
, 0, context
);
512 const char *name
= vnode_getname(devvp
);
513 printf("hfs_mount: hfs_mountfs returned error=%d for device %s\n", retval
, (name
? name
: "unknown-dev"));
520 /* After hfs_mountfs succeeds, we should have valid hfsmp */
521 hfsmp
= VFSTOHFS(mp
);
524 * Check to see if the file system exists on CoreStorage.
526 * This must be done after examining the root folder's CP EA since
527 * hfs_vfs_root will create a vnode (which must not occur until after
528 * we've established the CP level of the FS).
532 /* Invoke ioctl that asks if the underlying device is Core Storage or not */
533 err
= VNOP_IOCTL(devvp
, _DKIOCCORESTORAGE
, NULL
, 0, context
);
535 hfsmp
->hfs_flags
|= HFS_CS
;
542 (void)hfs_statfs(mp
, vfs_statfs(mp
), context
);
548 struct hfs_changefs_cargs
{
549 struct hfsmount
*hfsmp
;
556 hfs_changefs_callback(struct vnode
*vp
, void *cargs
)
560 struct cat_desc cndesc
;
561 struct cat_attr cnattr
;
562 struct hfs_changefs_cargs
*args
;
566 args
= (struct hfs_changefs_cargs
*)cargs
;
569 vcb
= HFSTOVCB(args
->hfsmp
);
571 lockflags
= hfs_systemfile_lock(args
->hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
572 error
= cat_lookup(args
->hfsmp
, &cp
->c_desc
, 0, 0, &cndesc
, &cnattr
, NULL
, NULL
);
573 hfs_systemfile_unlock(args
->hfsmp
, lockflags
);
576 * If we couldn't find this guy skip to the next one
581 return (VNODE_RETURNED
);
584 * Get the real uid/gid and perm mask from disk.
586 if (args
->permswitch
|| args
->permfix
) {
587 cp
->c_uid
= cnattr
.ca_uid
;
588 cp
->c_gid
= cnattr
.ca_gid
;
589 cp
->c_mode
= cnattr
.ca_mode
;
592 * If we're switching name converters then...
593 * Remove the existing entry from the namei cache.
594 * Update name to one based on new encoder.
598 replace_desc(cp
, &cndesc
);
600 if (cndesc
.cd_cnid
== kHFSRootFolderID
) {
601 strlcpy((char *)vcb
->vcbVN
, (const char *)cp
->c_desc
.cd_nameptr
, NAME_MAX
+1);
602 cp
->c_desc
.cd_encoding
= args
->hfsmp
->hfs_encoding
;
605 cat_releasedesc(&cndesc
);
607 return (VNODE_RETURNED
);
610 /* Change fs mount parameters */
612 hfs_changefs(struct mount
*mp
, struct hfs_mount_args
*args
)
615 int namefix
, permfix
, permswitch
;
616 struct hfsmount
*hfsmp
;
618 struct hfs_changefs_cargs cargs
;
619 u_int32_t mount_flags
;
622 u_int32_t old_encoding
= 0;
623 hfs_to_unicode_func_t get_unicode_func
;
624 unicode_to_hfs_func_t get_hfsname_func
;
627 hfsmp
= VFSTOHFS(mp
);
628 vcb
= HFSTOVCB(hfsmp
);
629 mount_flags
= (unsigned int)vfs_flags(mp
);
631 hfsmp
->hfs_flags
|= HFS_IN_CHANGEFS
;
633 permswitch
= (((hfsmp
->hfs_flags
& HFS_UNKNOWN_PERMS
) &&
634 ((mount_flags
& MNT_UNKNOWNPERMISSIONS
) == 0)) ||
635 (((hfsmp
->hfs_flags
& HFS_UNKNOWN_PERMS
) == 0) &&
636 (mount_flags
& MNT_UNKNOWNPERMISSIONS
)));
638 /* The root filesystem must operate with actual permissions: */
639 if (permswitch
&& (mount_flags
& MNT_ROOTFS
) && (mount_flags
& MNT_UNKNOWNPERMISSIONS
)) {
640 vfs_clearflags(mp
, (u_int64_t
)((unsigned int)MNT_UNKNOWNPERMISSIONS
)); /* Just say "No". */
644 if (mount_flags
& MNT_UNKNOWNPERMISSIONS
)
645 hfsmp
->hfs_flags
|= HFS_UNKNOWN_PERMS
;
647 hfsmp
->hfs_flags
&= ~HFS_UNKNOWN_PERMS
;
649 namefix
= permfix
= 0;
652 * Tracking of hot files requires up-to-date access times. So if
653 * access time updates are disabled, we must also disable hot files.
655 if (mount_flags
& MNT_NOATIME
) {
656 (void) hfs_recording_suspend(hfsmp
);
659 /* Change the timezone (Note: this affects all hfs volumes and hfs+ volume create dates) */
660 if (args
->hfs_timezone
.tz_minuteswest
!= VNOVAL
) {
661 gTimeZone
= args
->hfs_timezone
;
664 /* Change the default uid, gid and/or mask */
665 if ((args
->hfs_uid
!= (uid_t
)VNOVAL
) && (hfsmp
->hfs_uid
!= args
->hfs_uid
)) {
666 hfsmp
->hfs_uid
= args
->hfs_uid
;
667 if (vcb
->vcbSigWord
== kHFSPlusSigWord
)
670 if ((args
->hfs_gid
!= (gid_t
)VNOVAL
) && (hfsmp
->hfs_gid
!= args
->hfs_gid
)) {
671 hfsmp
->hfs_gid
= args
->hfs_gid
;
672 if (vcb
->vcbSigWord
== kHFSPlusSigWord
)
675 if (args
->hfs_mask
!= (mode_t
)VNOVAL
) {
676 if (hfsmp
->hfs_dir_mask
!= (args
->hfs_mask
& ALLPERMS
)) {
677 hfsmp
->hfs_dir_mask
= args
->hfs_mask
& ALLPERMS
;
678 hfsmp
->hfs_file_mask
= args
->hfs_mask
& ALLPERMS
;
679 if ((args
->flags
!= VNOVAL
) && (args
->flags
& HFSFSMNT_NOXONFILES
))
680 hfsmp
->hfs_file_mask
= (args
->hfs_mask
& DEFFILEMODE
);
681 if (vcb
->vcbSigWord
== kHFSPlusSigWord
)
687 /* Change the hfs encoding value (hfs only) */
688 if ((vcb
->vcbSigWord
== kHFSSigWord
) &&
689 (args
->hfs_encoding
!= (u_int32_t
)VNOVAL
) &&
690 (hfsmp
->hfs_encoding
!= args
->hfs_encoding
)) {
692 retval
= hfs_getconverter(args
->hfs_encoding
, &get_unicode_func
, &get_hfsname_func
);
697 * Connect the new hfs_get_unicode converter but leave
698 * the old hfs_get_hfsname converter in place so that
699 * we can lookup existing vnodes to get their correctly
702 * When we're all finished, we can then connect the new
703 * hfs_get_hfsname converter and release our interest
704 * in the old converters.
706 hfsmp
->hfs_get_unicode
= get_unicode_func
;
707 old_encoding
= hfsmp
->hfs_encoding
;
708 hfsmp
->hfs_encoding
= args
->hfs_encoding
;
713 if (!(namefix
|| permfix
|| permswitch
))
716 /* XXX 3762912 hack to support HFS filesystem 'owner' */
719 hfsmp
->hfs_uid
== UNKNOWNUID
? KAUTH_UID_NONE
: hfsmp
->hfs_uid
,
720 hfsmp
->hfs_gid
== UNKNOWNGID
? KAUTH_GID_NONE
: hfsmp
->hfs_gid
);
723 * For each active vnode fix things that changed
725 * Note that we can visit a vnode more than once
726 * and we can race with fsync.
728 * hfs_changefs_callback will be called for each vnode
729 * hung off of this mount point
731 * The vnode will be properly referenced and unreferenced
732 * around the callback
735 cargs
.namefix
= namefix
;
736 cargs
.permfix
= permfix
;
737 cargs
.permswitch
= permswitch
;
739 vnode_iterate(mp
, 0, hfs_changefs_callback
, (void *)&cargs
);
743 * If we're switching name converters we can now
744 * connect the new hfs_get_hfsname converter and
745 * release our interest in the old converters.
748 /* HFS standard only */
749 hfsmp
->hfs_get_hfsname
= get_hfsname_func
;
750 vcb
->volumeNameEncodingHint
= args
->hfs_encoding
;
751 (void) hfs_relconverter(old_encoding
);
756 hfsmp
->hfs_flags
&= ~HFS_IN_CHANGEFS
;
761 struct hfs_reload_cargs
{
762 struct hfsmount
*hfsmp
;
767 hfs_reload_callback(struct vnode
*vp
, void *cargs
)
770 struct hfs_reload_cargs
*args
;
773 args
= (struct hfs_reload_cargs
*)cargs
;
775 * flush all the buffers associated with this node
777 (void) buf_invalidateblks(vp
, 0, 0, 0);
781 * Remove any directory hints
784 hfs_reldirhints(cp
, 0);
787 * Re-read cnode data for all active vnodes (non-metadata files).
789 if (!vnode_issystem(vp
) && !VNODE_IS_RSRC(vp
) && (cp
->c_fileid
>= kHFSFirstUserCatalogNodeID
)) {
790 struct cat_fork
*datafork
;
791 struct cat_desc desc
;
793 datafork
= cp
->c_datafork
? &cp
->c_datafork
->ff_data
: NULL
;
795 /* lookup by fileID since name could have changed */
796 lockflags
= hfs_systemfile_lock(args
->hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
797 args
->error
= cat_idlookup(args
->hfsmp
, cp
->c_fileid
, 0, 0, &desc
, &cp
->c_attr
, datafork
);
798 hfs_systemfile_unlock(args
->hfsmp
, lockflags
);
800 return (VNODE_RETURNED_DONE
);
803 /* update cnode's catalog descriptor */
804 (void) replace_desc(cp
, &desc
);
806 return (VNODE_RETURNED
);
810 * Reload all incore data for a filesystem (used after running fsck on
811 * the root filesystem and finding things to fix). The filesystem must
812 * be mounted read-only.
814 * Things to do to update the mount:
815 * invalidate all cached meta-data.
816 * invalidate all inactive vnodes.
817 * invalidate all cached file data.
818 * re-read volume header from disk.
819 * re-load meta-file info (extents, file size).
820 * re-load B-tree header data.
821 * re-read cnode data for all active vnodes.
824 hfs_reload(struct mount
*mountp
)
826 register struct vnode
*devvp
;
829 struct hfsmount
*hfsmp
;
830 struct HFSPlusVolumeHeader
*vhp
;
832 struct filefork
*forkp
;
833 struct cat_desc cndesc
;
834 struct hfs_reload_cargs args
;
835 daddr64_t priIDSector
;
837 hfsmp
= VFSTOHFS(mountp
);
838 vcb
= HFSTOVCB(hfsmp
);
840 if (vcb
->vcbSigWord
== kHFSSigWord
)
841 return (EINVAL
); /* rooting from HFS is not supported! */
844 * Invalidate all cached meta-data.
846 devvp
= hfsmp
->hfs_devvp
;
847 if (buf_invalidateblks(devvp
, 0, 0, 0))
848 panic("hfs_reload: dirty1");
853 * hfs_reload_callback will be called for each vnode
854 * hung off of this mount point that can't be recycled...
855 * vnode_iterate will recycle those that it can (the VNODE_RELOAD option)
856 * the vnode will be in an 'unbusy' state (VNODE_WAIT) and
857 * properly referenced and unreferenced around the callback
859 vnode_iterate(mountp
, VNODE_RELOAD
| VNODE_WAIT
, hfs_reload_callback
, (void *)&args
);
865 * Re-read VolumeHeader from disk.
867 priIDSector
= (daddr64_t
)((vcb
->hfsPlusIOPosOffset
/ hfsmp
->hfs_logical_block_size
) +
868 HFS_PRI_SECTOR(hfsmp
->hfs_logical_block_size
));
870 error
= (int)buf_meta_bread(hfsmp
->hfs_devvp
,
871 HFS_PHYSBLK_ROUNDDOWN(priIDSector
, hfsmp
->hfs_log_per_phys
),
872 hfsmp
->hfs_physical_block_size
, NOCRED
, &bp
);
879 vhp
= (HFSPlusVolumeHeader
*) (buf_dataptr(bp
) + HFS_PRI_OFFSET(hfsmp
->hfs_physical_block_size
));
881 /* Do a quick sanity check */
882 if ((SWAP_BE16(vhp
->signature
) != kHFSPlusSigWord
&&
883 SWAP_BE16(vhp
->signature
) != kHFSXSigWord
) ||
884 (SWAP_BE16(vhp
->version
) != kHFSPlusVersion
&&
885 SWAP_BE16(vhp
->version
) != kHFSXVersion
) ||
886 SWAP_BE32(vhp
->blockSize
) != vcb
->blockSize
) {
891 vcb
->vcbLsMod
= to_bsd_time(SWAP_BE32(vhp
->modifyDate
));
892 vcb
->vcbAtrb
= SWAP_BE32 (vhp
->attributes
);
893 vcb
->vcbJinfoBlock
= SWAP_BE32(vhp
->journalInfoBlock
);
894 vcb
->vcbClpSiz
= SWAP_BE32 (vhp
->rsrcClumpSize
);
895 vcb
->vcbNxtCNID
= SWAP_BE32 (vhp
->nextCatalogID
);
896 vcb
->vcbVolBkUp
= to_bsd_time(SWAP_BE32(vhp
->backupDate
));
897 vcb
->vcbWrCnt
= SWAP_BE32 (vhp
->writeCount
);
898 vcb
->vcbFilCnt
= SWAP_BE32 (vhp
->fileCount
);
899 vcb
->vcbDirCnt
= SWAP_BE32 (vhp
->folderCount
);
900 HFS_UPDATE_NEXT_ALLOCATION(vcb
, SWAP_BE32 (vhp
->nextAllocation
));
901 vcb
->totalBlocks
= SWAP_BE32 (vhp
->totalBlocks
);
902 vcb
->freeBlocks
= SWAP_BE32 (vhp
->freeBlocks
);
903 vcb
->encodingsBitmap
= SWAP_BE64 (vhp
->encodingsBitmap
);
904 bcopy(vhp
->finderInfo
, vcb
->vcbFndrInfo
, sizeof(vhp
->finderInfo
));
905 vcb
->localCreateDate
= SWAP_BE32 (vhp
->createDate
); /* hfs+ create date is in local time */
908 * Re-load meta-file vnode data (extent info, file size, etc).
910 forkp
= VTOF((struct vnode
*)vcb
->extentsRefNum
);
911 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
912 forkp
->ff_extents
[i
].startBlock
=
913 SWAP_BE32 (vhp
->extentsFile
.extents
[i
].startBlock
);
914 forkp
->ff_extents
[i
].blockCount
=
915 SWAP_BE32 (vhp
->extentsFile
.extents
[i
].blockCount
);
917 forkp
->ff_size
= SWAP_BE64 (vhp
->extentsFile
.logicalSize
);
918 forkp
->ff_blocks
= SWAP_BE32 (vhp
->extentsFile
.totalBlocks
);
919 forkp
->ff_clumpsize
= SWAP_BE32 (vhp
->extentsFile
.clumpSize
);
922 forkp
= VTOF((struct vnode
*)vcb
->catalogRefNum
);
923 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
924 forkp
->ff_extents
[i
].startBlock
=
925 SWAP_BE32 (vhp
->catalogFile
.extents
[i
].startBlock
);
926 forkp
->ff_extents
[i
].blockCount
=
927 SWAP_BE32 (vhp
->catalogFile
.extents
[i
].blockCount
);
929 forkp
->ff_size
= SWAP_BE64 (vhp
->catalogFile
.logicalSize
);
930 forkp
->ff_blocks
= SWAP_BE32 (vhp
->catalogFile
.totalBlocks
);
931 forkp
->ff_clumpsize
= SWAP_BE32 (vhp
->catalogFile
.clumpSize
);
933 if (hfsmp
->hfs_attribute_vp
) {
934 forkp
= VTOF(hfsmp
->hfs_attribute_vp
);
935 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
936 forkp
->ff_extents
[i
].startBlock
=
937 SWAP_BE32 (vhp
->attributesFile
.extents
[i
].startBlock
);
938 forkp
->ff_extents
[i
].blockCount
=
939 SWAP_BE32 (vhp
->attributesFile
.extents
[i
].blockCount
);
941 forkp
->ff_size
= SWAP_BE64 (vhp
->attributesFile
.logicalSize
);
942 forkp
->ff_blocks
= SWAP_BE32 (vhp
->attributesFile
.totalBlocks
);
943 forkp
->ff_clumpsize
= SWAP_BE32 (vhp
->attributesFile
.clumpSize
);
946 forkp
= VTOF((struct vnode
*)vcb
->allocationsRefNum
);
947 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
948 forkp
->ff_extents
[i
].startBlock
=
949 SWAP_BE32 (vhp
->allocationFile
.extents
[i
].startBlock
);
950 forkp
->ff_extents
[i
].blockCount
=
951 SWAP_BE32 (vhp
->allocationFile
.extents
[i
].blockCount
);
953 forkp
->ff_size
= SWAP_BE64 (vhp
->allocationFile
.logicalSize
);
954 forkp
->ff_blocks
= SWAP_BE32 (vhp
->allocationFile
.totalBlocks
);
955 forkp
->ff_clumpsize
= SWAP_BE32 (vhp
->allocationFile
.clumpSize
);
961 * Re-load B-tree header data
963 forkp
= VTOF((struct vnode
*)vcb
->extentsRefNum
);
964 if ( (error
= MacToVFSError( BTReloadData((FCB
*)forkp
) )) )
967 forkp
= VTOF((struct vnode
*)vcb
->catalogRefNum
);
968 if ( (error
= MacToVFSError( BTReloadData((FCB
*)forkp
) )) )
971 if (hfsmp
->hfs_attribute_vp
) {
972 forkp
= VTOF(hfsmp
->hfs_attribute_vp
);
973 if ( (error
= MacToVFSError( BTReloadData((FCB
*)forkp
) )) )
977 /* Reload the volume name */
978 if ((error
= cat_idlookup(hfsmp
, kHFSRootFolderID
, 0, 0, &cndesc
, NULL
, NULL
)))
980 vcb
->volumeNameEncodingHint
= cndesc
.cd_encoding
;
981 bcopy(cndesc
.cd_nameptr
, vcb
->vcbVN
, min(255, cndesc
.cd_namelen
));
982 cat_releasedesc(&cndesc
);
984 /* Re-establish private/hidden directories. */
985 hfs_privatedir_init(hfsmp
, FILE_HARDLINKS
);
986 hfs_privatedir_init(hfsmp
, DIR_HARDLINKS
);
988 /* In case any volume information changed to trigger a notification */
989 hfs_generate_volume_notifications(hfsmp
);
995 static uint64_t tv_to_usecs(struct timeval
*tv
)
997 return tv
->tv_sec
* 1000000ULL + tv
->tv_usec
;
1000 // Returns TRUE if b - a >= usecs
1001 static boolean_t
hfs_has_elapsed (const struct timeval
*a
,
1002 const struct timeval
*b
,
1005 struct timeval diff
;
1006 timersub(b
, a
, &diff
);
1007 return diff
.tv_sec
* 1000000ULL + diff
.tv_usec
>= usecs
;
1011 hfs_syncer(void *arg0
, void *unused
)
1013 #pragma unused(unused)
1015 struct hfsmount
*hfsmp
= arg0
;
1020 KERNEL_DEBUG_CONSTANT(HFSDBG_SYNCER
| DBG_FUNC_START
, hfsmp
,
1022 tv_to_usecs(&hfsmp
->hfs_mp
->mnt_last_write_completed_timestamp
),
1023 hfsmp
->hfs_mp
->mnt_pending_write_size
, 0);
1025 hfs_syncer_lock(hfsmp
);
1027 if (!hfsmp
->hfs_syncer
) {
1028 // hfs_unmount is waiting for us leave now and let it do the sync
1029 hfsmp
->hfs_sync_incomplete
= FALSE
;
1030 hfs_syncer_unlock(hfsmp
);
1031 hfs_syncer_wakeup(hfsmp
);
1035 /* Check to see whether we should flush now: either the oldest is
1036 > HFS_MAX_META_DELAY or HFS_META_DELAY has elapsed since the
1037 request and there are no pending writes. */
1039 boolean_t flush_now
= FALSE
;
1041 if (hfs_has_elapsed(&hfsmp
->hfs_sync_req_oldest
, &now
, HFS_MAX_META_DELAY
))
1043 else if (!hfsmp
->hfs_mp
->mnt_pending_write_size
) {
1044 /* N.B. accessing mnt_last_write_completed_timestamp is not thread safe, but
1045 it won't matter for what we're using it for. */
1046 if (hfs_has_elapsed(&hfsmp
->hfs_mp
->mnt_last_write_completed_timestamp
,
1054 thread_call_t syncer
= hfsmp
->hfs_syncer
;
1056 hfs_syncer_unlock(hfsmp
);
1058 hfs_syncer_queue(syncer
);
1063 timerclear(&hfsmp
->hfs_sync_req_oldest
);
1065 hfs_syncer_unlock(hfsmp
);
1067 KERNEL_DEBUG_CONSTANT(HFSDBG_SYNCER_TIMED
| DBG_FUNC_START
,
1069 tv_to_usecs(&hfsmp
->hfs_mp
->mnt_last_write_completed_timestamp
),
1070 tv_to_usecs(&hfsmp
->hfs_mp
->mnt_last_write_issued_timestamp
),
1071 hfsmp
->hfs_mp
->mnt_pending_write_size
, 0);
1073 if (hfsmp
->hfs_syncer_thread
) {
1074 printf("hfs: syncer already running!\n");
1078 hfsmp
->hfs_syncer_thread
= current_thread();
1080 if (hfs_start_transaction(hfsmp
) != 0) // so we hold off any new writes
1084 * We intentionally do a synchronous flush (of the journal or entire volume) here.
1085 * For journaled volumes, this means we wait until the metadata blocks are written
1086 * to both the journal and their final locations (in the B-trees, etc.).
1088 * This tends to avoid interleaving the metadata writes with other writes (for
1089 * example, user data, or to the journal when a later transaction notices that
1090 * an earlier transaction has finished its async writes, and then updates the
1091 * journal start in the journal header). Avoiding interleaving of writes is
1092 * very good for performance on simple flash devices like SD cards, thumb drives;
1093 * and on devices like floppies. Since removable devices tend to be this kind of
1094 * simple device, doing a synchronous flush actually improves performance in
1097 * NOTE: For non-journaled volumes, the call to hfs_sync will also cause dirty
1098 * user data to be written.
1101 hfs_journal_flush(hfsmp
, TRUE
);
1103 hfs_sync(hfsmp
->hfs_mp
, MNT_WAIT
, vfs_context_kernel());
1106 KERNEL_DEBUG_CONSTANT(HFSDBG_SYNCER_TIMED
| DBG_FUNC_END
,
1107 (microuptime(&now
), tv_to_usecs(&now
)),
1108 tv_to_usecs(&hfsmp
->hfs_mp
->mnt_last_write_completed_timestamp
),
1109 tv_to_usecs(&hfsmp
->hfs_mp
->mnt_last_write_issued_timestamp
),
1110 hfsmp
->hfs_mp
->mnt_pending_write_size
, 0);
1112 hfs_end_transaction(hfsmp
);
1116 hfsmp
->hfs_syncer_thread
= NULL
;
1118 hfs_syncer_lock(hfsmp
);
1120 // If hfs_unmount lets us and we missed a sync, schedule again
1121 if (hfsmp
->hfs_syncer
&& timerisset(&hfsmp
->hfs_sync_req_oldest
)) {
1122 thread_call_t syncer
= hfsmp
->hfs_syncer
;
1124 hfs_syncer_unlock(hfsmp
);
1126 hfs_syncer_queue(syncer
);
1128 hfsmp
->hfs_sync_incomplete
= FALSE
;
1129 hfs_syncer_unlock(hfsmp
);
1130 hfs_syncer_wakeup(hfsmp
);
1133 /* BE CAREFUL WHAT YOU ADD HERE: at this point hfs_unmount is free
1134 to continue and therefore hfsmp might be invalid. */
1136 KERNEL_DEBUG_CONSTANT(HFSDBG_SYNCER
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
1140 extern int IOBSDIsMediaEjectable( const char *cdev_name
);
1143 * Call into the allocator code and perform a full scan of the bitmap file.
1145 * This allows us to TRIM unallocated ranges if needed, and also to build up
1146 * an in-memory summary table of the state of the allocated blocks.
1148 void hfs_scan_blocks (struct hfsmount
*hfsmp
) {
1150 * Take the allocation file lock. Journal transactions will block until
1154 int flags
= hfs_systemfile_lock(hfsmp
, SFL_BITMAP
, HFS_EXCLUSIVE_LOCK
);
1157 * We serialize here with the HFS mount lock as we're mounting.
1159 * The mount can only proceed once this thread has acquired the bitmap
1160 * lock, since we absolutely do not want someone else racing in and
1161 * getting the bitmap lock, doing a read/write of the bitmap file,
1162 * then us getting the bitmap lock.
1164 * To prevent this, the mount thread takes the HFS mount mutex, starts us
1165 * up, then immediately msleeps on the scan_var variable in the mount
1166 * point as a condition variable. This serialization is safe since
1167 * if we race in and try to proceed while they're still holding the lock,
1168 * we'll block trying to acquire the global lock. Since the mount thread
1169 * acquires the HFS mutex before starting this function in a new thread,
1170 * any lock acquisition on our part must be linearizably AFTER the mount thread's.
1172 * Note that the HFS mount mutex is always taken last, and always for only
1173 * a short time. In this case, we just take it long enough to mark the
1174 * scan-in-flight bit.
1176 (void) hfs_lock_mount (hfsmp
);
1177 hfsmp
->scan_var
|= HFS_ALLOCATOR_SCAN_INFLIGHT
;
1178 wakeup((caddr_t
) &hfsmp
->scan_var
);
1179 hfs_unlock_mount (hfsmp
);
1181 /* Initialize the summary table */
1182 if (hfs_init_summary (hfsmp
)) {
1183 printf("hfs: could not initialize summary table for %s\n", hfsmp
->vcbVN
);
1187 * ScanUnmapBlocks assumes that the bitmap lock is held when you
1188 * call the function. We don't care if there were any errors issuing unmaps.
1190 * It will also attempt to build up the summary table for subsequent
1191 * allocator use, as configured.
1193 (void) ScanUnmapBlocks(hfsmp
);
1195 hfsmp
->scan_var
|= HFS_ALLOCATOR_SCAN_COMPLETED
;
1197 hfs_systemfile_unlock(hfsmp
, flags
);
1200 static int hfs_root_unmounted_cleanly
= 0;
1202 SYSCTL_DECL(_vfs_generic
);
1203 SYSCTL_INT(_vfs_generic
, OID_AUTO
, root_unmounted_cleanly
, CTLFLAG_RD
, &hfs_root_unmounted_cleanly
, 0, "Root filesystem was unmounted cleanly");
1206 * Common code for mount and mountroot
1209 hfs_mountfs(struct vnode
*devvp
, struct mount
*mp
, struct hfs_mount_args
*args
,
1210 int journal_replay_only
, vfs_context_t context
)
1212 struct proc
*p
= vfs_context_proc(context
);
1213 int retval
= E_NONE
;
1214 struct hfsmount
*hfsmp
= NULL
;
1217 HFSMasterDirectoryBlock
*mdbp
= NULL
;
1225 daddr64_t log_blkcnt
;
1226 u_int32_t log_blksize
;
1227 u_int32_t phys_blksize
;
1228 u_int32_t minblksize
;
1229 u_int32_t iswritable
;
1230 daddr64_t mdb_offset
;
1233 u_int32_t device_features
= 0;
1237 /* only hfs_mountroot passes us NULL as the 'args' argument */
1241 ronly
= vfs_isrdonly(mp
);
1242 dev
= vnode_specrdev(devvp
);
1243 cred
= p
? vfs_context_ucred(context
) : NOCRED
;
1249 minblksize
= kHFSBlockSize
;
1251 /* Advisory locking should be handled at the VFS layer */
1252 vfs_setlocklocal(mp
);
1254 /* Get the logical block size (treated as physical block size everywhere) */
1255 if (VNOP_IOCTL(devvp
, DKIOCGETBLOCKSIZE
, (caddr_t
)&log_blksize
, 0, context
)) {
1256 if (HFS_MOUNT_DEBUG
) {
1257 printf("hfs_mountfs: DKIOCGETBLOCKSIZE failed\n");
1262 if (log_blksize
== 0 || log_blksize
> 1024*1024*1024) {
1263 printf("hfs: logical block size 0x%x looks bad. Not mounting.\n", log_blksize
);
1268 /* Get the physical block size. */
1269 retval
= VNOP_IOCTL(devvp
, DKIOCGETPHYSICALBLOCKSIZE
, (caddr_t
)&phys_blksize
, 0, context
);
1271 if ((retval
!= ENOTSUP
) && (retval
!= ENOTTY
)) {
1272 if (HFS_MOUNT_DEBUG
) {
1273 printf("hfs_mountfs: DKIOCGETPHYSICALBLOCKSIZE failed\n");
1278 /* If device does not support this ioctl, assume that physical
1279 * block size is same as logical block size
1281 phys_blksize
= log_blksize
;
1283 if (phys_blksize
== 0 || phys_blksize
> MAXBSIZE
) {
1284 printf("hfs: physical block size 0x%x looks bad. Not mounting.\n", phys_blksize
);
1289 /* Switch to 512 byte sectors (temporarily) */
1290 if (log_blksize
> 512) {
1291 u_int32_t size512
= 512;
1293 if (VNOP_IOCTL(devvp
, DKIOCSETBLOCKSIZE
, (caddr_t
)&size512
, FWRITE
, context
)) {
1294 if (HFS_MOUNT_DEBUG
) {
1295 printf("hfs_mountfs: DKIOCSETBLOCKSIZE failed \n");
1301 /* Get the number of 512 byte physical blocks. */
1302 if (VNOP_IOCTL(devvp
, DKIOCGETBLOCKCOUNT
, (caddr_t
)&log_blkcnt
, 0, context
)) {
1303 /* resetting block size may fail if getting block count did */
1304 (void)VNOP_IOCTL(devvp
, DKIOCSETBLOCKSIZE
, (caddr_t
)&log_blksize
, FWRITE
, context
);
1305 if (HFS_MOUNT_DEBUG
) {
1306 printf("hfs_mountfs: DKIOCGETBLOCKCOUNT failed\n");
1311 /* Compute an accurate disk size (i.e. within 512 bytes) */
1312 disksize
= (u_int64_t
)log_blkcnt
* (u_int64_t
)512;
1315 * On Tiger it is not necessary to switch the device
1316 * block size to be 4k if there are more than 31-bits
1317 * worth of blocks but to insure compatibility with
1318 * pre-Tiger systems we have to do it.
1320 * If the device size is not a multiple of 4K (8 * 512), then
1321 * switching the logical block size isn't going to help because
1322 * we will be unable to write the alternate volume header.
1323 * In this case, just leave the logical block size unchanged.
1325 if (log_blkcnt
> 0x000000007fffffff && (log_blkcnt
& 7) == 0) {
1326 minblksize
= log_blksize
= 4096;
1327 if (phys_blksize
< log_blksize
)
1328 phys_blksize
= log_blksize
;
1332 * The cluster layer is not currently prepared to deal with a logical
1333 * block size larger than the system's page size. (It can handle
1334 * blocks per page, but not multiple pages per block.) So limit the
1335 * logical block size to the page size.
1337 if (log_blksize
> PAGE_SIZE
) {
1338 log_blksize
= PAGE_SIZE
;
1341 /* Now switch to our preferred physical block size. */
1342 if (log_blksize
> 512) {
1343 if (VNOP_IOCTL(devvp
, DKIOCSETBLOCKSIZE
, (caddr_t
)&log_blksize
, FWRITE
, context
)) {
1344 if (HFS_MOUNT_DEBUG
) {
1345 printf("hfs_mountfs: DKIOCSETBLOCKSIZE (2) failed\n");
1350 /* Get the count of physical blocks. */
1351 if (VNOP_IOCTL(devvp
, DKIOCGETBLOCKCOUNT
, (caddr_t
)&log_blkcnt
, 0, context
)) {
1352 if (HFS_MOUNT_DEBUG
) {
1353 printf("hfs_mountfs: DKIOCGETBLOCKCOUNT (2) failed\n");
1361 * minblksize is the minimum physical block size
1362 * log_blksize has our preferred physical block size
1363 * log_blkcnt has the total number of physical blocks
1366 mdb_offset
= (daddr64_t
)HFS_PRI_SECTOR(log_blksize
);
1367 if ((retval
= (int)buf_meta_bread(devvp
,
1368 HFS_PHYSBLK_ROUNDDOWN(mdb_offset
, (phys_blksize
/log_blksize
)),
1369 phys_blksize
, cred
, &bp
))) {
1370 if (HFS_MOUNT_DEBUG
) {
1371 printf("hfs_mountfs: buf_meta_bread failed with %d\n", retval
);
1375 MALLOC(mdbp
, HFSMasterDirectoryBlock
*, kMDBSize
, M_TEMP
, M_WAITOK
);
1378 if (HFS_MOUNT_DEBUG
) {
1379 printf("hfs_mountfs: MALLOC failed\n");
1383 bcopy((char *)buf_dataptr(bp
) + HFS_PRI_OFFSET(phys_blksize
), mdbp
, kMDBSize
);
1387 MALLOC(hfsmp
, struct hfsmount
*, sizeof(struct hfsmount
), M_HFSMNT
, M_WAITOK
);
1388 if (hfsmp
== NULL
) {
1389 if (HFS_MOUNT_DEBUG
) {
1390 printf("hfs_mountfs: MALLOC (2) failed\n");
1395 bzero(hfsmp
, sizeof(struct hfsmount
));
1397 hfs_chashinit_finish(hfsmp
);
1399 /* Init the ID lookup hashtable */
1400 hfs_idhash_init (hfsmp
);
1403 * See if the disk supports unmap (trim).
1405 * NOTE: vfs_init_io_attributes has not been called yet, so we can't use the io_flags field
1406 * returned by vfs_ioattr. We need to call VNOP_IOCTL ourselves.
1408 if (VNOP_IOCTL(devvp
, DKIOCGETFEATURES
, (caddr_t
)&device_features
, 0, context
) == 0) {
1409 if (device_features
& DK_FEATURE_UNMAP
) {
1410 hfsmp
->hfs_flags
|= HFS_UNMAP
;
1415 * See if the disk is a solid state device, too. We need this to decide what to do about
1418 if (VNOP_IOCTL(devvp
, DKIOCISSOLIDSTATE
, (caddr_t
)&isssd
, 0, context
) == 0) {
1420 hfsmp
->hfs_flags
|= HFS_SSD
;
1426 * Init the volume information structure
1429 lck_mtx_init(&hfsmp
->hfs_mutex
, hfs_mutex_group
, hfs_lock_attr
);
1430 lck_mtx_init(&hfsmp
->hfc_mutex
, hfs_mutex_group
, hfs_lock_attr
);
1431 lck_rw_init(&hfsmp
->hfs_global_lock
, hfs_rwlock_group
, hfs_lock_attr
);
1432 lck_spin_init(&hfsmp
->vcbFreeExtLock
, hfs_spinlock_group
, hfs_lock_attr
);
1434 vfs_setfsprivate(mp
, hfsmp
);
1435 hfsmp
->hfs_mp
= mp
; /* Make VFSTOHFS work */
1436 hfsmp
->hfs_raw_dev
= vnode_specrdev(devvp
);
1437 hfsmp
->hfs_devvp
= devvp
;
1438 vnode_ref(devvp
); /* Hold a ref on the device, dropped when hfsmp is freed. */
1439 hfsmp
->hfs_logical_block_size
= log_blksize
;
1440 hfsmp
->hfs_logical_block_count
= log_blkcnt
;
1441 hfsmp
->hfs_logical_bytes
= (uint64_t) log_blksize
* (uint64_t) log_blkcnt
;
1442 hfsmp
->hfs_physical_block_size
= phys_blksize
;
1443 hfsmp
->hfs_log_per_phys
= (phys_blksize
/ log_blksize
);
1444 hfsmp
->hfs_flags
|= HFS_WRITEABLE_MEDIA
;
1446 hfsmp
->hfs_flags
|= HFS_READ_ONLY
;
1447 if (((unsigned int)vfs_flags(mp
)) & MNT_UNKNOWNPERMISSIONS
)
1448 hfsmp
->hfs_flags
|= HFS_UNKNOWN_PERMS
;
1451 for (i
= 0; i
< MAXQUOTAS
; i
++)
1452 dqfileinit(&hfsmp
->hfs_qfiles
[i
]);
1456 hfsmp
->hfs_uid
= (args
->hfs_uid
== (uid_t
)VNOVAL
) ? UNKNOWNUID
: args
->hfs_uid
;
1457 if (hfsmp
->hfs_uid
== 0xfffffffd) hfsmp
->hfs_uid
= UNKNOWNUID
;
1458 hfsmp
->hfs_gid
= (args
->hfs_gid
== (gid_t
)VNOVAL
) ? UNKNOWNGID
: args
->hfs_gid
;
1459 if (hfsmp
->hfs_gid
== 0xfffffffd) hfsmp
->hfs_gid
= UNKNOWNGID
;
1460 vfs_setowner(mp
, hfsmp
->hfs_uid
, hfsmp
->hfs_gid
); /* tell the VFS */
1461 if (args
->hfs_mask
!= (mode_t
)VNOVAL
) {
1462 hfsmp
->hfs_dir_mask
= args
->hfs_mask
& ALLPERMS
;
1463 if (args
->flags
& HFSFSMNT_NOXONFILES
) {
1464 hfsmp
->hfs_file_mask
= (args
->hfs_mask
& DEFFILEMODE
);
1466 hfsmp
->hfs_file_mask
= args
->hfs_mask
& ALLPERMS
;
1469 hfsmp
->hfs_dir_mask
= UNKNOWNPERMISSIONS
& ALLPERMS
; /* 0777: rwx---rwx */
1470 hfsmp
->hfs_file_mask
= UNKNOWNPERMISSIONS
& DEFFILEMODE
; /* 0666: no --x by default? */
1472 if ((args
->flags
!= (int)VNOVAL
) && (args
->flags
& HFSFSMNT_WRAPPER
))
1475 /* Even w/o explicit mount arguments, MNT_UNKNOWNPERMISSIONS requires setting up uid, gid, and mask: */
1476 if (((unsigned int)vfs_flags(mp
)) & MNT_UNKNOWNPERMISSIONS
) {
1477 hfsmp
->hfs_uid
= UNKNOWNUID
;
1478 hfsmp
->hfs_gid
= UNKNOWNGID
;
1479 vfs_setowner(mp
, hfsmp
->hfs_uid
, hfsmp
->hfs_gid
); /* tell the VFS */
1480 hfsmp
->hfs_dir_mask
= UNKNOWNPERMISSIONS
& ALLPERMS
; /* 0777: rwx---rwx */
1481 hfsmp
->hfs_file_mask
= UNKNOWNPERMISSIONS
& DEFFILEMODE
; /* 0666: no --x by default? */
1485 /* Find out if disk media is writable. */
1486 if (VNOP_IOCTL(devvp
, DKIOCISWRITABLE
, (caddr_t
)&iswritable
, 0, context
) == 0) {
1488 hfsmp
->hfs_flags
|= HFS_WRITEABLE_MEDIA
;
1490 hfsmp
->hfs_flags
&= ~HFS_WRITEABLE_MEDIA
;
1493 // record the current time at which we're mounting this volume
1496 hfsmp
->hfs_mount_time
= tv
.tv_sec
;
1498 /* Mount a standard HFS disk */
1499 if ((SWAP_BE16(mdbp
->drSigWord
) == kHFSSigWord
) &&
1500 (mntwrapper
|| (SWAP_BE16(mdbp
->drEmbedSigWord
) != kHFSPlusSigWord
))) {
1502 /* On 10.6 and beyond, non read-only mounts for HFS standard vols get rejected */
1503 if (vfs_isrdwr(mp
)) {
1508 printf("hfs_mountfs: Mounting HFS Standard volumes was deprecated in Mac OS 10.7 \n");
1510 /* Treat it as if it's read-only and not writeable */
1511 hfsmp
->hfs_flags
|= HFS_READ_ONLY
;
1512 hfsmp
->hfs_flags
&= ~HFS_WRITEABLE_MEDIA
;
1514 /* If only journal replay is requested, exit immediately */
1515 if (journal_replay_only
) {
1520 if ((vfs_flags(mp
) & MNT_ROOTFS
)) {
1521 retval
= EINVAL
; /* Cannot root from HFS standard disks */
1524 /* HFS disks can only use 512 byte physical blocks */
1525 if (log_blksize
> kHFSBlockSize
) {
1526 log_blksize
= kHFSBlockSize
;
1527 if (VNOP_IOCTL(devvp
, DKIOCSETBLOCKSIZE
, (caddr_t
)&log_blksize
, FWRITE
, context
)) {
1531 if (VNOP_IOCTL(devvp
, DKIOCGETBLOCKCOUNT
, (caddr_t
)&log_blkcnt
, 0, context
)) {
1535 hfsmp
->hfs_logical_block_size
= log_blksize
;
1536 hfsmp
->hfs_logical_block_count
= log_blkcnt
;
1537 hfsmp
->hfs_logical_bytes
= (uint64_t) log_blksize
* (uint64_t) log_blkcnt
;
1538 hfsmp
->hfs_physical_block_size
= log_blksize
;
1539 hfsmp
->hfs_log_per_phys
= 1;
1542 hfsmp
->hfs_encoding
= args
->hfs_encoding
;
1543 HFSTOVCB(hfsmp
)->volumeNameEncodingHint
= args
->hfs_encoding
;
1545 /* establish the timezone */
1546 gTimeZone
= args
->hfs_timezone
;
1549 retval
= hfs_getconverter(hfsmp
->hfs_encoding
, &hfsmp
->hfs_get_unicode
,
1550 &hfsmp
->hfs_get_hfsname
);
1554 retval
= hfs_MountHFSVolume(hfsmp
, mdbp
, p
);
1556 (void) hfs_relconverter(hfsmp
->hfs_encoding
);
1558 /* On platforms where HFS Standard is not supported, deny the mount altogether */
1564 else { /* Mount an HFS Plus disk */
1565 HFSPlusVolumeHeader
*vhp
;
1566 off_t embeddedOffset
;
1567 int jnl_disable
= 0;
1569 /* Get the embedded Volume Header */
1570 if (SWAP_BE16(mdbp
->drEmbedSigWord
) == kHFSPlusSigWord
) {
1571 embeddedOffset
= SWAP_BE16(mdbp
->drAlBlSt
) * kHFSBlockSize
;
1572 embeddedOffset
+= (u_int64_t
)SWAP_BE16(mdbp
->drEmbedExtent
.startBlock
) *
1573 (u_int64_t
)SWAP_BE32(mdbp
->drAlBlkSiz
);
1576 * If the embedded volume doesn't start on a block
1577 * boundary, then switch the device to a 512-byte
1578 * block size so everything will line up on a block
1581 if ((embeddedOffset
% log_blksize
) != 0) {
1582 printf("hfs_mountfs: embedded volume offset not"
1583 " a multiple of physical block size (%d);"
1584 " switching to 512\n", log_blksize
);
1586 if (VNOP_IOCTL(devvp
, DKIOCSETBLOCKSIZE
,
1587 (caddr_t
)&log_blksize
, FWRITE
, context
)) {
1589 if (HFS_MOUNT_DEBUG
) {
1590 printf("hfs_mountfs: DKIOCSETBLOCKSIZE (3) failed\n");
1595 if (VNOP_IOCTL(devvp
, DKIOCGETBLOCKCOUNT
,
1596 (caddr_t
)&log_blkcnt
, 0, context
)) {
1597 if (HFS_MOUNT_DEBUG
) {
1598 printf("hfs_mountfs: DKIOCGETBLOCKCOUNT (3) failed\n");
1603 /* Note: relative block count adjustment */
1604 hfsmp
->hfs_logical_block_count
*=
1605 hfsmp
->hfs_logical_block_size
/ log_blksize
;
1607 /* Update logical /physical block size */
1608 hfsmp
->hfs_logical_block_size
= log_blksize
;
1609 hfsmp
->hfs_physical_block_size
= log_blksize
;
1611 phys_blksize
= log_blksize
;
1612 hfsmp
->hfs_log_per_phys
= 1;
1615 disksize
= (u_int64_t
)SWAP_BE16(mdbp
->drEmbedExtent
.blockCount
) *
1616 (u_int64_t
)SWAP_BE32(mdbp
->drAlBlkSiz
);
1618 hfsmp
->hfs_logical_block_count
= disksize
/ log_blksize
;
1620 hfsmp
->hfs_logical_bytes
= (uint64_t) hfsmp
->hfs_logical_block_count
* (uint64_t) hfsmp
->hfs_logical_block_size
;
1622 mdb_offset
= (daddr64_t
)((embeddedOffset
/ log_blksize
) + HFS_PRI_SECTOR(log_blksize
));
1625 buf_markinvalid(bp
);
1629 retval
= (int)buf_meta_bread(devvp
, HFS_PHYSBLK_ROUNDDOWN(mdb_offset
, hfsmp
->hfs_log_per_phys
),
1630 phys_blksize
, cred
, &bp
);
1632 if (HFS_MOUNT_DEBUG
) {
1633 printf("hfs_mountfs: buf_meta_bread (2) failed with %d\n", retval
);
1637 bcopy((char *)buf_dataptr(bp
) + HFS_PRI_OFFSET(phys_blksize
), mdbp
, 512);
1640 vhp
= (HFSPlusVolumeHeader
*) mdbp
;
1643 else { /* pure HFS+ */
1645 vhp
= (HFSPlusVolumeHeader
*) mdbp
;
1648 retval
= hfs_ValidateHFSPlusVolumeHeader(hfsmp
, vhp
);
1653 * If allocation block size is less than the physical block size,
1654 * invalidate the buffer read in using native physical block size
1655 * to ensure data consistency.
1657 * HFS Plus reserves one allocation block for the Volume Header.
1658 * If the physical size is larger, then when we read the volume header,
1659 * we will also end up reading in the next allocation block(s).
1660 * If those other allocation block(s) is/are modified, and then the volume
1661 * header is modified, the write of the volume header's buffer will write
1662 * out the old contents of the other allocation blocks.
1664 * We assume that the physical block size is same as logical block size.
1665 * The physical block size value is used to round down the offsets for
1666 * reading and writing the primary and alternate volume headers.
1668 * The same logic is also in hfs_MountHFSPlusVolume to ensure that
1669 * hfs_mountfs, hfs_MountHFSPlusVolume and later are doing the I/Os
1670 * using same block size.
1672 if (SWAP_BE32(vhp
->blockSize
) < hfsmp
->hfs_physical_block_size
) {
1673 phys_blksize
= hfsmp
->hfs_logical_block_size
;
1674 hfsmp
->hfs_physical_block_size
= hfsmp
->hfs_logical_block_size
;
1675 hfsmp
->hfs_log_per_phys
= 1;
1676 // There should be one bp associated with devvp in buffer cache.
1677 retval
= buf_invalidateblks(devvp
, 0, 0, 0);
1683 hfs_root_unmounted_cleanly
= ((SWAP_BE32(vhp
->attributes
) & kHFSVolumeUnmountedMask
) != 0);
1687 * On inconsistent disks, do not allow read-write mount
1688 * unless it is the boot volume being mounted. We also
1689 * always want to replay the journal if the journal_replay_only
1690 * flag is set because that will (most likely) get the
1691 * disk into a consistent state before fsck_hfs starts
1694 if ( !(vfs_flags(mp
) & MNT_ROOTFS
)
1695 && (SWAP_BE32(vhp
->attributes
) & kHFSVolumeInconsistentMask
)
1696 && !journal_replay_only
1697 && !(hfsmp
->hfs_flags
& HFS_READ_ONLY
)) {
1699 if (HFS_MOUNT_DEBUG
) {
1700 printf("hfs_mountfs: failed to mount non-root inconsistent disk\n");
1711 if (args
!= NULL
&& (args
->flags
& HFSFSMNT_EXTENDED_ARGS
) &&
1712 args
->journal_disable
) {
1717 // We only initialize the journal here if the last person
1718 // to mount this volume was journaling aware. Otherwise
1719 // we delay journal initialization until later at the end
1720 // of hfs_MountHFSPlusVolume() because the last person who
1721 // mounted it could have messed things up behind our back
1722 // (so we need to go find the .journal file, make sure it's
1723 // the right size, re-sync up if it was moved, etc).
1725 if ( (SWAP_BE32(vhp
->lastMountedVersion
) == kHFSJMountVersion
)
1726 && (SWAP_BE32(vhp
->attributes
) & kHFSVolumeJournaledMask
)
1729 // if we're able to init the journal, mark the mount
1730 // point as journaled.
1732 if ((retval
= hfs_early_journal_init(hfsmp
, vhp
, args
, embeddedOffset
, mdb_offset
, mdbp
, cred
)) == 0) {
1733 vfs_setflags(mp
, (u_int64_t
)((unsigned int)MNT_JOURNALED
));
1735 if (retval
== EROFS
) {
1736 // EROFS is a special error code that means the volume has an external
1737 // journal which we couldn't find. in that case we do not want to
1738 // rewrite the volume header - we'll just refuse to mount the volume.
1739 if (HFS_MOUNT_DEBUG
) {
1740 printf("hfs_mountfs: hfs_early_journal_init indicated external jnl \n");
1746 // if the journal failed to open, then set the lastMountedVersion
1747 // to be "FSK!" which fsck_hfs will see and force the fsck instead
1748 // of just bailing out because the volume is journaled.
1750 if (HFS_MOUNT_DEBUG
) {
1751 printf("hfs_mountfs: hfs_early_journal_init failed, setting to FSK \n");
1754 HFSPlusVolumeHeader
*jvhp
;
1756 hfsmp
->hfs_flags
|= HFS_NEED_JNL_RESET
;
1758 if (mdb_offset
== 0) {
1759 mdb_offset
= (daddr64_t
)((embeddedOffset
/ log_blksize
) + HFS_PRI_SECTOR(log_blksize
));
1763 retval
= (int)buf_meta_bread(devvp
,
1764 HFS_PHYSBLK_ROUNDDOWN(mdb_offset
, hfsmp
->hfs_log_per_phys
),
1765 phys_blksize
, cred
, &bp
);
1767 jvhp
= (HFSPlusVolumeHeader
*)(buf_dataptr(bp
) + HFS_PRI_OFFSET(phys_blksize
));
1769 if (SWAP_BE16(jvhp
->signature
) == kHFSPlusSigWord
|| SWAP_BE16(jvhp
->signature
) == kHFSXSigWord
) {
1770 printf ("hfs(1): Journal replay fail. Writing lastMountVersion as FSK!\n");
1771 jvhp
->lastMountedVersion
= SWAP_BE32(kFSKMountVersion
);
1779 // clear this so the error exit path won't try to use it
1784 // if this isn't the root device just bail out.
1785 // If it is the root device we just continue on
1786 // in the hopes that fsck_hfs will be able to
1787 // fix any damage that exists on the volume.
1788 if ( !(vfs_flags(mp
) & MNT_ROOTFS
)) {
1789 if (HFS_MOUNT_DEBUG
) {
1790 printf("hfs_mountfs: hfs_early_journal_init failed, erroring out \n");
1799 /* Either the journal is replayed successfully, or there
1800 * was nothing to replay, or no journal exists. In any case,
1803 if (journal_replay_only
) {
1808 (void) hfs_getconverter(0, &hfsmp
->hfs_get_unicode
, &hfsmp
->hfs_get_hfsname
);
1810 retval
= hfs_MountHFSPlusVolume(hfsmp
, vhp
, embeddedOffset
, disksize
, p
, args
, cred
);
1812 * If the backend didn't like our physical blocksize
1813 * then retry with physical blocksize of 512.
1815 if ((retval
== ENXIO
) && (log_blksize
> 512) && (log_blksize
!= minblksize
)) {
1816 printf("hfs_mountfs: could not use physical block size "
1817 "(%d) switching to 512\n", log_blksize
);
1819 if (VNOP_IOCTL(devvp
, DKIOCSETBLOCKSIZE
, (caddr_t
)&log_blksize
, FWRITE
, context
)) {
1820 if (HFS_MOUNT_DEBUG
) {
1821 printf("hfs_mountfs: DKIOCSETBLOCKSIZE (4) failed \n");
1826 if (VNOP_IOCTL(devvp
, DKIOCGETBLOCKCOUNT
, (caddr_t
)&log_blkcnt
, 0, context
)) {
1827 if (HFS_MOUNT_DEBUG
) {
1828 printf("hfs_mountfs: DKIOCGETBLOCKCOUNT (4) failed \n");
1833 devvp
->v_specsize
= log_blksize
;
1834 /* Note: relative block count adjustment (in case this is an embedded volume). */
1835 hfsmp
->hfs_logical_block_count
*= hfsmp
->hfs_logical_block_size
/ log_blksize
;
1836 hfsmp
->hfs_logical_block_size
= log_blksize
;
1837 hfsmp
->hfs_log_per_phys
= hfsmp
->hfs_physical_block_size
/ log_blksize
;
1839 hfsmp
->hfs_logical_bytes
= (uint64_t) hfsmp
->hfs_logical_block_count
* (uint64_t) hfsmp
->hfs_logical_block_size
;
1841 if (hfsmp
->jnl
&& hfsmp
->jvp
== devvp
) {
1842 // close and re-open this with the new block size
1843 journal_close(hfsmp
->jnl
);
1845 if (hfs_early_journal_init(hfsmp
, vhp
, args
, embeddedOffset
, mdb_offset
, mdbp
, cred
) == 0) {
1846 vfs_setflags(mp
, (u_int64_t
)((unsigned int)MNT_JOURNALED
));
1848 // if the journal failed to open, then set the lastMountedVersion
1849 // to be "FSK!" which fsck_hfs will see and force the fsck instead
1850 // of just bailing out because the volume is journaled.
1852 if (HFS_MOUNT_DEBUG
) {
1853 printf("hfs_mountfs: hfs_early_journal_init (2) resetting.. \n");
1855 HFSPlusVolumeHeader
*jvhp
;
1857 hfsmp
->hfs_flags
|= HFS_NEED_JNL_RESET
;
1859 if (mdb_offset
== 0) {
1860 mdb_offset
= (daddr64_t
)((embeddedOffset
/ log_blksize
) + HFS_PRI_SECTOR(log_blksize
));
1864 retval
= (int)buf_meta_bread(devvp
, HFS_PHYSBLK_ROUNDDOWN(mdb_offset
, hfsmp
->hfs_log_per_phys
),
1865 phys_blksize
, cred
, &bp
);
1867 jvhp
= (HFSPlusVolumeHeader
*)(buf_dataptr(bp
) + HFS_PRI_OFFSET(phys_blksize
));
1869 if (SWAP_BE16(jvhp
->signature
) == kHFSPlusSigWord
|| SWAP_BE16(jvhp
->signature
) == kHFSXSigWord
) {
1870 printf ("hfs(2): Journal replay fail. Writing lastMountVersion as FSK!\n");
1871 jvhp
->lastMountedVersion
= SWAP_BE32(kFSKMountVersion
);
1879 // clear this so the error exit path won't try to use it
1884 // if this isn't the root device just bail out.
1885 // If it is the root device we just continue on
1886 // in the hopes that fsck_hfs will be able to
1887 // fix any damage that exists on the volume.
1888 if ( !(vfs_flags(mp
) & MNT_ROOTFS
)) {
1889 if (HFS_MOUNT_DEBUG
) {
1890 printf("hfs_mountfs: hfs_early_journal_init (2) failed \n");
1898 /* Try again with a smaller block size... */
1899 retval
= hfs_MountHFSPlusVolume(hfsmp
, vhp
, embeddedOffset
, disksize
, p
, args
, cred
);
1900 if (retval
&& HFS_MOUNT_DEBUG
) {
1901 printf("hfs_MountHFSPlusVolume (late) returned %d\n",retval
);
1905 (void) hfs_relconverter(0);
1908 // save off a snapshot of the mtime from the previous mount
1910 hfsmp
->hfs_last_mounted_mtime
= hfsmp
->hfs_mtime
;
1913 if (HFS_MOUNT_DEBUG
) {
1914 printf("hfs_mountfs: encountered failure %d \n", retval
);
1919 mp
->mnt_vfsstat
.f_fsid
.val
[0] = dev
;
1920 mp
->mnt_vfsstat
.f_fsid
.val
[1] = vfs_typenum(mp
);
1921 vfs_setmaxsymlen(mp
, 0);
1923 mp
->mnt_vtable
->vfc_vfsflags
|= VFC_VFSNATIVEXATTR
;
1925 mp
->mnt_kern_flag
|= MNTK_NAMED_STREAMS
;
1927 if ((hfsmp
->hfs_flags
& HFS_STANDARD
) == 0 ) {
1928 /* Tell VFS that we support directory hard links. */
1929 mp
->mnt_vtable
->vfc_vfsflags
|= VFC_VFSDIRLINKS
;
1933 /* HFS standard doesn't support extended readdir! */
1934 mount_set_noreaddirext (mp
);
1940 * Set the free space warning levels for a non-root volume:
1942 * Set the "danger" limit to 1% of the volume size or 100MB, whichever
1943 * is less. Set the "warning" limit to 2% of the volume size or 150MB,
1944 * whichever is less. And last, set the "desired" freespace level to
1945 * to 3% of the volume size or 200MB, whichever is less.
1947 hfsmp
->hfs_freespace_notify_dangerlimit
=
1948 MIN(HFS_VERYLOWDISKTRIGGERLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1949 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_VERYLOWDISKTRIGGERFRACTION
);
1950 hfsmp
->hfs_freespace_notify_warninglimit
=
1951 MIN(HFS_LOWDISKTRIGGERLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1952 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_LOWDISKTRIGGERFRACTION
);
1953 hfsmp
->hfs_freespace_notify_desiredlevel
=
1954 MIN(HFS_LOWDISKSHUTOFFLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1955 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_LOWDISKSHUTOFFFRACTION
);
1958 * Set the free space warning levels for the root volume:
1960 * Set the "danger" limit to 5% of the volume size or 512MB, whichever
1961 * is less. Set the "warning" limit to 10% of the volume size or 1GB,
1962 * whichever is less. And last, set the "desired" freespace level to
1963 * to 11% of the volume size or 1.25GB, whichever is less.
1965 hfsmp
->hfs_freespace_notify_dangerlimit
=
1966 MIN(HFS_ROOTVERYLOWDISKTRIGGERLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1967 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_ROOTVERYLOWDISKTRIGGERFRACTION
);
1968 hfsmp
->hfs_freespace_notify_warninglimit
=
1969 MIN(HFS_ROOTLOWDISKTRIGGERLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1970 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_ROOTLOWDISKTRIGGERFRACTION
);
1971 hfsmp
->hfs_freespace_notify_desiredlevel
=
1972 MIN(HFS_ROOTLOWDISKSHUTOFFLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1973 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_ROOTLOWDISKSHUTOFFFRACTION
);
1976 /* Check if the file system exists on virtual device, like disk image */
1977 if (VNOP_IOCTL(devvp
, DKIOCISVIRTUAL
, (caddr_t
)&isvirtual
, 0, context
) == 0) {
1979 hfsmp
->hfs_flags
|= HFS_VIRTUAL_DEVICE
;
1983 /* do not allow ejectability checks on the root device */
1985 if ((hfsmp
->hfs_flags
& HFS_VIRTUAL_DEVICE
) == 0 &&
1986 IOBSDIsMediaEjectable(mp
->mnt_vfsstat
.f_mntfromname
)) {
1987 hfsmp
->hfs_syncer
= thread_call_allocate(hfs_syncer
, hfsmp
);
1988 if (hfsmp
->hfs_syncer
== NULL
) {
1989 printf("hfs: failed to allocate syncer thread callback for %s (%s)\n",
1990 mp
->mnt_vfsstat
.f_mntfromname
, mp
->mnt_vfsstat
.f_mntonname
);
1995 printf("hfs: mounted %s on device %s\n", (hfsmp
->vcbVN
? (const char*) hfsmp
->vcbVN
: "unknown"),
1996 (devvp
->v_name
? devvp
->v_name
: (isroot
? "root_device": "unknown device")));
1999 * Start looking for free space to drop below this level and generate a
2000 * warning immediately if needed:
2002 hfsmp
->hfs_notification_conditions
= 0;
2003 hfs_generate_volume_notifications(hfsmp
);
2006 (void) hfs_flushvolumeheader(hfsmp
, MNT_WAIT
, 0);
2017 if (hfsmp
&& hfsmp
->jvp
&& hfsmp
->jvp
!= hfsmp
->hfs_devvp
) {
2018 vnode_clearmountedon(hfsmp
->jvp
);
2019 (void)VNOP_CLOSE(hfsmp
->jvp
, ronly
? FREAD
: FREAD
|FWRITE
, vfs_context_kernel());
2023 if (hfsmp
->hfs_devvp
) {
2024 vnode_rele(hfsmp
->hfs_devvp
);
2026 hfs_locks_destroy(hfsmp
);
2027 hfs_delete_chash(hfsmp
);
2028 hfs_idhash_destroy (hfsmp
);
2030 FREE(hfsmp
, M_HFSMNT
);
2031 vfs_setfsprivate(mp
, NULL
);
2038 * Make a filesystem operational.
2039 * Nothing to do at the moment.
2043 hfs_start(__unused
struct mount
*mp
, __unused
int flags
, __unused vfs_context_t context
)
2050 * unmount system call
2053 hfs_unmount(struct mount
*mp
, int mntflags
, vfs_context_t context
)
2055 struct proc
*p
= vfs_context_proc(context
);
2056 struct hfsmount
*hfsmp
= VFSTOHFS(mp
);
2057 int retval
= E_NONE
;
2064 if (mntflags
& MNT_FORCE
) {
2065 flags
|= FORCECLOSE
;
2069 printf("hfs: unmount initiated on %s on device %s\n",
2070 (hfsmp
->vcbVN
? (const char*) hfsmp
->vcbVN
: "unknown"),
2071 (hfsmp
->hfs_devvp
? ((hfsmp
->hfs_devvp
->v_name
? hfsmp
->hfs_devvp
->v_name
: "unknown device")) : "unknown device"));
2073 if ((retval
= hfs_flushfiles(mp
, flags
, p
)) && !force
)
2076 if (hfsmp
->hfs_flags
& HFS_METADATA_ZONE
)
2077 (void) hfs_recording_suspend(hfsmp
);
2079 hfs_syncer_free(hfsmp
);
2081 if (hfsmp
->hfs_flags
& HFS_SUMMARY_TABLE
) {
2082 if (hfsmp
->hfs_summary_table
) {
2085 * Take the bitmap lock to serialize against a concurrent bitmap scan still in progress
2087 if (hfsmp
->hfs_allocation_vp
) {
2088 err
= hfs_lock (VTOC(hfsmp
->hfs_allocation_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2090 FREE (hfsmp
->hfs_summary_table
, M_TEMP
);
2091 hfsmp
->hfs_summary_table
= NULL
;
2092 hfsmp
->hfs_flags
&= ~HFS_SUMMARY_TABLE
;
2094 if (err
== 0 && hfsmp
->hfs_allocation_vp
){
2095 hfs_unlock (VTOC(hfsmp
->hfs_allocation_vp
));
2102 * Flush out the b-trees, volume bitmap and Volume Header
2104 if ((hfsmp
->hfs_flags
& HFS_READ_ONLY
) == 0) {
2105 retval
= hfs_start_transaction(hfsmp
);
2108 } else if (!force
) {
2112 if (hfsmp
->hfs_startup_vp
) {
2113 (void) hfs_lock(VTOC(hfsmp
->hfs_startup_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2114 retval
= hfs_fsync(hfsmp
->hfs_startup_vp
, MNT_WAIT
, 0, p
);
2115 hfs_unlock(VTOC(hfsmp
->hfs_startup_vp
));
2116 if (retval
&& !force
)
2120 if (hfsmp
->hfs_attribute_vp
) {
2121 (void) hfs_lock(VTOC(hfsmp
->hfs_attribute_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2122 retval
= hfs_fsync(hfsmp
->hfs_attribute_vp
, MNT_WAIT
, 0, p
);
2123 hfs_unlock(VTOC(hfsmp
->hfs_attribute_vp
));
2124 if (retval
&& !force
)
2128 (void) hfs_lock(VTOC(hfsmp
->hfs_catalog_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2129 retval
= hfs_fsync(hfsmp
->hfs_catalog_vp
, MNT_WAIT
, 0, p
);
2130 hfs_unlock(VTOC(hfsmp
->hfs_catalog_vp
));
2131 if (retval
&& !force
)
2134 (void) hfs_lock(VTOC(hfsmp
->hfs_extents_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2135 retval
= hfs_fsync(hfsmp
->hfs_extents_vp
, MNT_WAIT
, 0, p
);
2136 hfs_unlock(VTOC(hfsmp
->hfs_extents_vp
));
2137 if (retval
&& !force
)
2140 if (hfsmp
->hfs_allocation_vp
) {
2141 (void) hfs_lock(VTOC(hfsmp
->hfs_allocation_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2142 retval
= hfs_fsync(hfsmp
->hfs_allocation_vp
, MNT_WAIT
, 0, p
);
2143 hfs_unlock(VTOC(hfsmp
->hfs_allocation_vp
));
2144 if (retval
&& !force
)
2148 if (hfsmp
->hfc_filevp
&& vnode_issystem(hfsmp
->hfc_filevp
)) {
2149 retval
= hfs_fsync(hfsmp
->hfc_filevp
, MNT_WAIT
, 0, p
);
2150 if (retval
&& !force
)
2154 /* If runtime corruption was detected, indicate that the volume
2155 * was not unmounted cleanly.
2157 if (hfsmp
->vcbAtrb
& kHFSVolumeInconsistentMask
) {
2158 HFSTOVCB(hfsmp
)->vcbAtrb
&= ~kHFSVolumeUnmountedMask
;
2160 HFSTOVCB(hfsmp
)->vcbAtrb
|= kHFSVolumeUnmountedMask
;
2163 if (hfsmp
->hfs_flags
& HFS_HAS_SPARSE_DEVICE
) {
2165 u_int32_t min_start
= hfsmp
->totalBlocks
;
2167 // set the nextAllocation pointer to the smallest free block number
2168 // we've seen so on the next mount we won't rescan unnecessarily
2169 lck_spin_lock(&hfsmp
->vcbFreeExtLock
);
2170 for(i
=0; i
< (int)hfsmp
->vcbFreeExtCnt
; i
++) {
2171 if (hfsmp
->vcbFreeExt
[i
].startBlock
< min_start
) {
2172 min_start
= hfsmp
->vcbFreeExt
[i
].startBlock
;
2175 lck_spin_unlock(&hfsmp
->vcbFreeExtLock
);
2176 if (min_start
< hfsmp
->nextAllocation
) {
2177 hfsmp
->nextAllocation
= min_start
;
2181 retval
= hfs_flushvolumeheader(hfsmp
, MNT_WAIT
, 0);
2183 HFSTOVCB(hfsmp
)->vcbAtrb
&= ~kHFSVolumeUnmountedMask
;
2185 goto err_exit
; /* could not flush everything */
2189 hfs_end_transaction(hfsmp
);
2195 hfs_journal_flush(hfsmp
, FALSE
);
2199 * Invalidate our caches and release metadata vnodes
2201 (void) hfsUnmount(hfsmp
, p
);
2204 if (HFSTOVCB(hfsmp
)->vcbSigWord
== kHFSSigWord
) {
2205 (void) hfs_relconverter(hfsmp
->hfs_encoding
);
2211 journal_close(hfsmp
->jnl
);
2215 VNOP_FSYNC(hfsmp
->hfs_devvp
, MNT_WAIT
, context
);
2217 if (hfsmp
->jvp
&& hfsmp
->jvp
!= hfsmp
->hfs_devvp
) {
2218 vnode_clearmountedon(hfsmp
->jvp
);
2219 retval
= VNOP_CLOSE(hfsmp
->jvp
,
2220 hfsmp
->hfs_flags
& HFS_READ_ONLY
? FREAD
: FREAD
|FWRITE
,
2221 vfs_context_kernel());
2222 vnode_put(hfsmp
->jvp
);
2228 * Last chance to dump unreferenced system files.
2230 (void) vflush(mp
, NULLVP
, FORCECLOSE
);
2233 /* Drop our reference on the backing fs (if any). */
2234 if ((hfsmp
->hfs_flags
& HFS_HAS_SPARSE_DEVICE
) && hfsmp
->hfs_backingfs_rootvp
) {
2235 struct vnode
* tmpvp
;
2237 hfsmp
->hfs_flags
&= ~HFS_HAS_SPARSE_DEVICE
;
2238 tmpvp
= hfsmp
->hfs_backingfs_rootvp
;
2239 hfsmp
->hfs_backingfs_rootvp
= NULLVP
;
2242 #endif /* HFS_SPARSE_DEV */
2244 vnode_rele(hfsmp
->hfs_devvp
);
2246 hfs_locks_destroy(hfsmp
);
2247 hfs_delete_chash(hfsmp
);
2248 hfs_idhash_destroy(hfsmp
);
2249 FREE(hfsmp
, M_HFSMNT
);
2255 hfs_end_transaction(hfsmp
);
2262 * Return the root of a filesystem.
2265 hfs_vfs_root(struct mount
*mp
, struct vnode
**vpp
, __unused vfs_context_t context
)
2267 return hfs_vget(VFSTOHFS(mp
), (cnid_t
)kHFSRootFolderID
, vpp
, 1, 0);
2272 * Do operations associated with quotas
2276 hfs_quotactl(__unused
struct mount
*mp
, __unused
int cmds
, __unused uid_t uid
, __unused caddr_t datap
, __unused vfs_context_t context
)
2282 hfs_quotactl(struct mount
*mp
, int cmds
, uid_t uid
, caddr_t datap
, vfs_context_t context
)
2284 struct proc
*p
= vfs_context_proc(context
);
2285 int cmd
, type
, error
;
2288 uid
= kauth_cred_getuid(vfs_context_ucred(context
));
2289 cmd
= cmds
>> SUBCMDSHIFT
;
2296 if (uid
== kauth_cred_getuid(vfs_context_ucred(context
)))
2300 if ( (error
= vfs_context_suser(context
)) )
2304 type
= cmds
& SUBCMDMASK
;
2305 if ((u_int
)type
>= MAXQUOTAS
)
2307 if (vfs_busy(mp
, LK_NOWAIT
))
2313 error
= hfs_quotaon(p
, mp
, type
, datap
);
2317 error
= hfs_quotaoff(p
, mp
, type
);
2321 error
= hfs_setquota(mp
, uid
, type
, datap
);
2325 error
= hfs_setuse(mp
, uid
, type
, datap
);
2329 error
= hfs_getquota(mp
, uid
, type
, datap
);
2333 error
= hfs_qsync(mp
);
2337 error
= hfs_quotastat(mp
, type
, datap
);
2350 /* Subtype is composite of bits */
2351 #define HFS_SUBTYPE_JOURNALED 0x01
2352 #define HFS_SUBTYPE_CASESENSITIVE 0x02
2353 /* bits 2 - 6 reserved */
2354 #define HFS_SUBTYPE_STANDARDHFS 0x80
2357 * Get file system statistics.
2360 hfs_statfs(struct mount
*mp
, register struct vfsstatfs
*sbp
, __unused vfs_context_t context
)
2362 ExtendedVCB
*vcb
= VFSTOVCB(mp
);
2363 struct hfsmount
*hfsmp
= VFSTOHFS(mp
);
2364 u_int32_t freeCNIDs
;
2365 u_int16_t subtype
= 0;
2367 freeCNIDs
= (u_int32_t
)0xFFFFFFFF - (u_int32_t
)vcb
->vcbNxtCNID
;
2369 sbp
->f_bsize
= (u_int32_t
)vcb
->blockSize
;
2370 sbp
->f_iosize
= (size_t)cluster_max_io_size(mp
, 0);
2371 sbp
->f_blocks
= (u_int64_t
)((u_int32_t
)vcb
->totalBlocks
);
2372 sbp
->f_bfree
= (u_int64_t
)((u_int32_t
)hfs_freeblks(hfsmp
, 0));
2373 sbp
->f_bavail
= (u_int64_t
)((u_int32_t
)hfs_freeblks(hfsmp
, 1));
2374 sbp
->f_files
= (u_int64_t
)((u_int32_t
)(vcb
->totalBlocks
- 2)); /* max files is constrained by total blocks */
2375 sbp
->f_ffree
= (u_int64_t
)((u_int32_t
)(MIN(freeCNIDs
, sbp
->f_bavail
)));
2378 * Subtypes (flavors) for HFS
2379 * 0: Mac OS Extended
2380 * 1: Mac OS Extended (Journaled)
2381 * 2: Mac OS Extended (Case Sensitive)
2382 * 3: Mac OS Extended (Case Sensitive, Journaled)
2384 * 128: Mac OS Standard
2387 if ((hfsmp
->hfs_flags
& HFS_STANDARD
) == 0) {
2388 /* HFS+ & variants */
2390 subtype
|= HFS_SUBTYPE_JOURNALED
;
2392 if (hfsmp
->hfs_flags
& HFS_CASE_SENSITIVE
) {
2393 subtype
|= HFS_SUBTYPE_CASESENSITIVE
;
2399 subtype
= HFS_SUBTYPE_STANDARDHFS
;
2402 sbp
->f_fssubtype
= subtype
;
2409 // XXXdbg -- this is a callback to be used by the journal to
2410 // get meta data blocks flushed out to disk.
2412 // XXXdbg -- be smarter and don't flush *every* block on each
2413 // call. try to only flush some so we don't wind up
2414 // being too synchronous.
2418 hfs_sync_metadata(void *arg
)
2420 struct mount
*mp
= (struct mount
*)arg
;
2421 struct hfsmount
*hfsmp
;
2425 daddr64_t priIDSector
;
2426 hfsmp
= VFSTOHFS(mp
);
2427 vcb
= HFSTOVCB(hfsmp
);
2429 // now make sure the super block is flushed
2430 priIDSector
= (daddr64_t
)((vcb
->hfsPlusIOPosOffset
/ hfsmp
->hfs_logical_block_size
) +
2431 HFS_PRI_SECTOR(hfsmp
->hfs_logical_block_size
));
2433 retval
= (int)buf_meta_bread(hfsmp
->hfs_devvp
,
2434 HFS_PHYSBLK_ROUNDDOWN(priIDSector
, hfsmp
->hfs_log_per_phys
),
2435 hfsmp
->hfs_physical_block_size
, NOCRED
, &bp
);
2436 if ((retval
!= 0 ) && (retval
!= ENXIO
)) {
2437 printf("hfs_sync_metadata: can't read volume header at %d! (retval 0x%x)\n",
2438 (int)priIDSector
, retval
);
2441 if (retval
== 0 && ((buf_flags(bp
) & (B_DELWRI
| B_LOCKED
)) == B_DELWRI
)) {
2447 /* Note that these I/Os bypass the journal (no calls to journal_start_modify_block) */
2449 // the alternate super block...
2450 // XXXdbg - we probably don't need to do this each and every time.
2451 // hfs_btreeio.c:FlushAlternate() should flag when it was
2453 if (hfsmp
->hfs_partition_avh_sector
) {
2454 retval
= (int)buf_meta_bread(hfsmp
->hfs_devvp
,
2455 HFS_PHYSBLK_ROUNDDOWN(hfsmp
->hfs_partition_avh_sector
, hfsmp
->hfs_log_per_phys
),
2456 hfsmp
->hfs_physical_block_size
, NOCRED
, &bp
);
2457 if (retval
== 0 && ((buf_flags(bp
) & (B_DELWRI
| B_LOCKED
)) == B_DELWRI
)) {
2459 * note this I/O can fail if the partition shrank behind our backs!
2460 * So failure should be OK here.
2468 /* Is the FS's idea of the AVH different than the partition ? */
2469 if ((hfsmp
->hfs_fs_avh_sector
) && (hfsmp
->hfs_partition_avh_sector
!= hfsmp
->hfs_fs_avh_sector
)) {
2470 retval
= (int)buf_meta_bread(hfsmp
->hfs_devvp
,
2471 HFS_PHYSBLK_ROUNDDOWN(hfsmp
->hfs_fs_avh_sector
, hfsmp
->hfs_log_per_phys
),
2472 hfsmp
->hfs_physical_block_size
, NOCRED
, &bp
);
2473 if (retval
== 0 && ((buf_flags(bp
) & (B_DELWRI
| B_LOCKED
)) == B_DELWRI
)) {
2483 struct hfs_sync_cargs
{
2492 hfs_sync_callback(struct vnode
*vp
, void *cargs
)
2495 struct hfs_sync_cargs
*args
;
2498 args
= (struct hfs_sync_cargs
*)cargs
;
2500 if (hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
) != 0) {
2501 return (VNODE_RETURNED
);
2505 if ((cp
->c_flag
& C_MODIFIED
) ||
2506 (cp
->c_touch_acctime
| cp
->c_touch_chgtime
| cp
->c_touch_modtime
) ||
2507 vnode_hasdirtyblks(vp
)) {
2508 error
= hfs_fsync(vp
, args
->waitfor
, 0, args
->p
);
2511 args
->error
= error
;
2514 return (VNODE_RETURNED
);
2520 * Go through the disk queues to initiate sandbagged IO;
2521 * go through the inodes to write those that have been modified;
2522 * initiate the writing of the super block if it has been modified.
2524 * Note: we are always called with the filesystem marked `MPBUSY'.
2527 hfs_sync(struct mount
*mp
, int waitfor
, vfs_context_t context
)
2529 struct proc
*p
= vfs_context_proc(context
);
2531 struct hfsmount
*hfsmp
;
2533 struct vnode
*meta_vp
[4];
2535 int error
, allerror
= 0;
2536 struct hfs_sync_cargs args
;
2538 hfsmp
= VFSTOHFS(mp
);
2540 // Back off if hfs_changefs or a freeze is underway
2541 hfs_lock_mount(hfsmp
);
2542 if ((hfsmp
->hfs_flags
& HFS_IN_CHANGEFS
)
2543 || hfsmp
->hfs_freeze_state
!= HFS_THAWED
) {
2544 hfs_unlock_mount(hfsmp
);
2548 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2549 hfs_unlock_mount(hfsmp
);
2553 ++hfsmp
->hfs_syncers
;
2554 hfs_unlock_mount(hfsmp
);
2556 args
.cred
= kauth_cred_get();
2557 args
.waitfor
= waitfor
;
2561 * hfs_sync_callback will be called for each vnode
2562 * hung off of this mount point... the vnode will be
2563 * properly referenced and unreferenced around the callback
2565 vnode_iterate(mp
, 0, hfs_sync_callback
, (void *)&args
);
2568 allerror
= args
.error
;
2570 vcb
= HFSTOVCB(hfsmp
);
2572 meta_vp
[0] = vcb
->extentsRefNum
;
2573 meta_vp
[1] = vcb
->catalogRefNum
;
2574 meta_vp
[2] = vcb
->allocationsRefNum
; /* This is NULL for standard HFS */
2575 meta_vp
[3] = hfsmp
->hfs_attribute_vp
; /* Optional file */
2577 /* Now sync our three metadata files */
2578 for (i
= 0; i
< 4; ++i
) {
2582 if ((btvp
==0) || (vnode_mount(btvp
) != mp
))
2585 /* XXX use hfs_systemfile_lock instead ? */
2586 (void) hfs_lock(VTOC(btvp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2589 if (((cp
->c_flag
& C_MODIFIED
) == 0) &&
2590 (cp
->c_touch_acctime
== 0) &&
2591 (cp
->c_touch_chgtime
== 0) &&
2592 (cp
->c_touch_modtime
== 0) &&
2593 vnode_hasdirtyblks(btvp
) == 0) {
2594 hfs_unlock(VTOC(btvp
));
2597 error
= vnode_get(btvp
);
2599 hfs_unlock(VTOC(btvp
));
2602 if ((error
= hfs_fsync(btvp
, waitfor
, 0, p
)))
2612 * Force stale file system control information to be flushed.
2614 if (vcb
->vcbSigWord
== kHFSSigWord
) {
2615 if ((error
= VNOP_FSYNC(hfsmp
->hfs_devvp
, waitfor
, context
))) {
2625 hfs_hotfilesync(hfsmp
, vfs_context_kernel());
2628 * Write back modified superblock.
2630 if (IsVCBDirty(vcb
)) {
2631 error
= hfs_flushvolumeheader(hfsmp
, waitfor
, 0);
2637 hfs_journal_flush(hfsmp
, FALSE
);
2640 hfs_lock_mount(hfsmp
);
2641 boolean_t wake
= (!--hfsmp
->hfs_syncers
2642 && hfsmp
->hfs_freeze_state
== HFS_WANT_TO_FREEZE
);
2643 hfs_unlock_mount(hfsmp
);
2645 wakeup(&hfsmp
->hfs_freeze_state
);
2652 * File handle to vnode
2654 * Have to be really careful about stale file handles:
2655 * - check that the cnode id is valid
2656 * - call hfs_vget() to get the locked cnode
2657 * - check for an unallocated cnode (i_mode == 0)
2658 * - check that the given client host has export rights and return
2659 * those rights via. exflagsp and credanonp
2662 hfs_fhtovp(struct mount
*mp
, int fhlen
, unsigned char *fhp
, struct vnode
**vpp
, __unused vfs_context_t context
)
2664 struct hfsfid
*hfsfhp
;
2669 hfsfhp
= (struct hfsfid
*)fhp
;
2671 if (fhlen
< (int)sizeof(struct hfsfid
))
2674 result
= hfs_vget(VFSTOHFS(mp
), ntohl(hfsfhp
->hfsfid_cnid
), &nvp
, 0, 0);
2676 if (result
== ENOENT
)
2682 * We used to use the create time as the gen id of the file handle,
2683 * but it is not static enough because it can change at any point
2684 * via system calls. We still don't have another volume ID or other
2685 * unique identifier to use for a generation ID across reboots that
2686 * persists until the file is removed. Using only the CNID exposes
2687 * us to the potential wrap-around case, but as of 2/2008, it would take
2688 * over 2 months to wrap around if the machine did nothing but allocate
2689 * CNIDs. Using some kind of wrap counter would only be effective if
2690 * each file had the wrap counter associated with it. For now,
2691 * we use only the CNID to identify the file as it's good enough.
2696 hfs_unlock(VTOC(nvp
));
2702 * Vnode pointer to File handle
2706 hfs_vptofh(struct vnode
*vp
, int *fhlenp
, unsigned char *fhp
, __unused vfs_context_t context
)
2709 struct hfsfid
*hfsfhp
;
2711 if (ISHFS(VTOVCB(vp
)))
2712 return (ENOTSUP
); /* hfs standard is not exportable */
2714 if (*fhlenp
< (int)sizeof(struct hfsfid
))
2718 hfsfhp
= (struct hfsfid
*)fhp
;
2719 /* only the CNID is used to identify the file now */
2720 hfsfhp
->hfsfid_cnid
= htonl(cp
->c_fileid
);
2721 hfsfhp
->hfsfid_gen
= htonl(cp
->c_fileid
);
2722 *fhlenp
= sizeof(struct hfsfid
);
2729 * Initialize HFS filesystems, done only once per boot.
2731 * HFS is not a kext-based file system. This makes it difficult to find
2732 * out when the last HFS file system was unmounted and call hfs_uninit()
2733 * to deallocate data structures allocated in hfs_init(). Therefore we
2734 * never deallocate memory allocated by lock attribute and group initializations
2738 hfs_init(__unused
struct vfsconf
*vfsp
)
2740 static int done
= 0;
2746 hfs_converterinit();
2750 hfs_lock_attr
= lck_attr_alloc_init();
2751 hfs_group_attr
= lck_grp_attr_alloc_init();
2752 hfs_mutex_group
= lck_grp_alloc_init("hfs-mutex", hfs_group_attr
);
2753 hfs_rwlock_group
= lck_grp_alloc_init("hfs-rwlock", hfs_group_attr
);
2754 hfs_spinlock_group
= lck_grp_alloc_init("hfs-spinlock", hfs_group_attr
);
2765 * Destroy all locks, mutexes and spinlocks in hfsmp on unmount or failed mount
2768 hfs_locks_destroy(struct hfsmount
*hfsmp
)
2771 lck_mtx_destroy(&hfsmp
->hfs_mutex
, hfs_mutex_group
);
2772 lck_mtx_destroy(&hfsmp
->hfc_mutex
, hfs_mutex_group
);
2773 lck_rw_destroy(&hfsmp
->hfs_global_lock
, hfs_rwlock_group
);
2774 lck_spin_destroy(&hfsmp
->vcbFreeExtLock
, hfs_spinlock_group
);
2781 hfs_getmountpoint(struct vnode
*vp
, struct hfsmount
**hfsmpp
)
2783 struct hfsmount
* hfsmp
;
2784 char fstypename
[MFSNAMELEN
];
2789 if (!vnode_isvroot(vp
))
2792 vnode_vfsname(vp
, fstypename
);
2793 if (strncmp(fstypename
, "hfs", sizeof(fstypename
)) != 0)
2798 if (HFSTOVCB(hfsmp
)->vcbSigWord
== kHFSSigWord
)
2807 #include <sys/filedesc.h>
2810 * HFS filesystem related variables.
2813 hfs_sysctl(int *name
, __unused u_int namelen
, user_addr_t oldp
, size_t *oldlenp
,
2814 user_addr_t newp
, size_t newlen
, vfs_context_t context
)
2816 struct proc
*p
= vfs_context_proc(context
);
2818 struct hfsmount
*hfsmp
;
2820 /* all sysctl names at this level are terminal */
2822 if (name
[0] == HFS_ENCODINGBIAS
) {
2825 bias
= hfs_getencodingbias();
2826 error
= sysctl_int(oldp
, oldlenp
, newp
, newlen
, &bias
);
2827 if (error
== 0 && newp
)
2828 hfs_setencodingbias(bias
);
2831 } else if (name
[0] == HFS_EXTEND_FS
) {
2832 u_int64_t newsize
= 0;
2833 vnode_t vp
= vfs_context_cwd(context
);
2835 if (newp
== USER_ADDR_NULL
|| vp
== NULLVP
)
2837 if ((error
= hfs_getmountpoint(vp
, &hfsmp
)))
2840 /* Start with the 'size' set to the current number of bytes in the filesystem */
2841 newsize
= ((uint64_t)hfsmp
->totalBlocks
) * ((uint64_t)hfsmp
->blockSize
);
2843 /* now get the new size from userland and over-write our stored value */
2844 error
= sysctl_quad(oldp
, oldlenp
, newp
, newlen
, (quad_t
*)&newsize
);
2848 error
= hfs_extendfs(hfsmp
, newsize
, context
);
2851 } else if (name
[0] == HFS_ENCODINGHINT
) {
2855 u_int16_t
*unicode_name
= NULL
;
2856 char *filename
= NULL
;
2858 if ((newlen
<= 0) || (newlen
> MAXPATHLEN
))
2861 bufsize
= MAX(newlen
* 3, MAXPATHLEN
);
2862 MALLOC(filename
, char *, newlen
, M_TEMP
, M_WAITOK
);
2863 if (filename
== NULL
) {
2865 goto encodinghint_exit
;
2867 MALLOC(unicode_name
, u_int16_t
*, bufsize
, M_TEMP
, M_WAITOK
);
2868 if (unicode_name
== NULL
) {
2870 goto encodinghint_exit
;
2873 error
= copyin(newp
, (caddr_t
)filename
, newlen
);
2875 error
= utf8_decodestr((u_int8_t
*)filename
, newlen
- 1, unicode_name
,
2876 &bytes
, bufsize
, 0, UTF_DECOMPOSED
);
2878 hint
= hfs_pickencoding(unicode_name
, bytes
/ 2);
2879 error
= sysctl_int(oldp
, oldlenp
, USER_ADDR_NULL
, 0, (int32_t *)&hint
);
2885 FREE(unicode_name
, M_TEMP
);
2887 FREE(filename
, M_TEMP
);
2890 } else if (name
[0] == HFS_ENABLE_JOURNALING
) {
2891 // make the file system journaled...
2892 vnode_t vp
= vfs_context_cwd(context
);
2895 struct cat_attr jnl_attr
;
2896 struct cat_attr jinfo_attr
;
2897 struct cat_fork jnl_fork
;
2898 struct cat_fork jinfo_fork
;
2902 uint64_t journal_byte_offset
;
2903 uint64_t journal_size
;
2904 vnode_t jib_vp
= NULLVP
;
2905 struct JournalInfoBlock local_jib
;
2910 /* Only root can enable journaling */
2911 if (!kauth_cred_issuser(kauth_cred_get())) {
2918 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2921 if (HFSTOVCB(hfsmp
)->vcbSigWord
== kHFSSigWord
) {
2922 printf("hfs: can't make a plain hfs volume journaled.\n");
2927 printf("hfs: volume @ mp %p is already journaled!\n", vnode_mount(vp
));
2930 vcb
= HFSTOVCB(hfsmp
);
2932 /* Set up local copies of the initialization info */
2933 tmpblkno
= (uint32_t) name
[1];
2934 jib_blkno
= (uint64_t) tmpblkno
;
2935 journal_byte_offset
= (uint64_t) name
[2];
2936 journal_byte_offset
*= hfsmp
->blockSize
;
2937 journal_byte_offset
+= hfsmp
->hfsPlusIOPosOffset
;
2938 journal_size
= (uint64_t)((unsigned)name
[3]);
2940 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
| SFL_EXTENTS
, HFS_EXCLUSIVE_LOCK
);
2941 if (BTHasContiguousNodes(VTOF(vcb
->catalogRefNum
)) == 0 ||
2942 BTHasContiguousNodes(VTOF(vcb
->extentsRefNum
)) == 0) {
2944 printf("hfs: volume has a btree w/non-contiguous nodes. can not enable journaling.\n");
2945 hfs_systemfile_unlock(hfsmp
, lockflags
);
2948 hfs_systemfile_unlock(hfsmp
, lockflags
);
2950 // make sure these both exist!
2951 if ( GetFileInfo(vcb
, kHFSRootFolderID
, ".journal_info_block", &jinfo_attr
, &jinfo_fork
) == 0
2952 || GetFileInfo(vcb
, kHFSRootFolderID
, ".journal", &jnl_attr
, &jnl_fork
) == 0) {
2958 * At this point, we have a copy of the metadata that lives in the catalog for the
2959 * journal info block. Compare that the journal info block's single extent matches
2960 * that which was passed into this sysctl.
2962 * If it is different, deny the journal enable call.
2964 if (jinfo_fork
.cf_blocks
> 1) {
2965 /* too many blocks */
2969 if (jinfo_fork
.cf_extents
[0].startBlock
!= jib_blkno
) {
2975 * We want to immediately purge the vnode for the JIB.
2977 * Because it was written to from userland, there's probably
2978 * a vnode somewhere in the vnode cache (possibly with UBC backed blocks).
2979 * So we bring the vnode into core, then immediately do whatever
2980 * we can to flush/vclean it out. This is because those blocks will be
2981 * interpreted as user data, which may be treated separately on some platforms
2982 * than metadata. If the vnode is gone, then there cannot be backing blocks
2985 if (hfs_vget (hfsmp
, jinfo_attr
.ca_fileid
, &jib_vp
, 1, 0)) {
2989 * Now we have a vnode for the JIB. recycle it. Because we hold an iocount
2990 * on the vnode, we'll just mark it for termination when the last iocount
2991 * (hopefully ours), is dropped.
2993 vnode_recycle (jib_vp
);
2994 err
= vnode_put (jib_vp
);
2999 /* Initialize the local copy of the JIB (just like hfs.util) */
3000 memset (&local_jib
, 'Z', sizeof(struct JournalInfoBlock
));
3001 local_jib
.flags
= SWAP_BE32(kJIJournalInFSMask
);
3002 /* Note that the JIB's offset is in bytes */
3003 local_jib
.offset
= SWAP_BE64(journal_byte_offset
);
3004 local_jib
.size
= SWAP_BE64(journal_size
);
3007 * Now write out the local JIB. This essentially overwrites the userland
3008 * copy of the JIB. Read it as BLK_META to treat it as a metadata read/write.
3010 jib_buf
= buf_getblk (hfsmp
->hfs_devvp
,
3011 jib_blkno
* (hfsmp
->blockSize
/ hfsmp
->hfs_logical_block_size
),
3012 hfsmp
->blockSize
, 0, 0, BLK_META
);
3013 char* buf_ptr
= (char*) buf_dataptr (jib_buf
);
3015 /* Zero out the portion of the block that won't contain JIB data */
3016 memset (buf_ptr
, 0, hfsmp
->blockSize
);
3018 bcopy(&local_jib
, buf_ptr
, sizeof(local_jib
));
3019 if (buf_bwrite (jib_buf
)) {
3023 /* Force a flush track cache */
3024 (void) VNOP_IOCTL(hfsmp
->hfs_devvp
, DKIOCSYNCHRONIZECACHE
, NULL
, FWRITE
, context
);
3027 /* Now proceed with full volume sync */
3028 hfs_sync(hfsmp
->hfs_mp
, MNT_WAIT
, context
);
3030 printf("hfs: Initializing the journal (joffset 0x%llx sz 0x%llx)...\n",
3031 (off_t
)name
[2], (off_t
)name
[3]);
3034 // XXXdbg - note that currently (Sept, 08) hfs_util does not support
3035 // enabling the journal on a separate device so it is safe
3036 // to just copy hfs_devvp here. If hfs_util gets the ability
3037 // to dynamically enable the journal on a separate device then
3038 // we will have to do the same thing as hfs_early_journal_init()
3039 // to locate and open the journal device.
3041 jvp
= hfsmp
->hfs_devvp
;
3042 jnl
= journal_create(jvp
, journal_byte_offset
, journal_size
,
3044 hfsmp
->hfs_logical_block_size
,
3047 hfs_sync_metadata
, hfsmp
->hfs_mp
,
3051 * Set up the trim callback function so that we can add
3052 * recently freed extents to the free extent cache once
3053 * the transaction that freed them is written to the
3057 journal_trim_set_callback(jnl
, hfs_trim_callback
, hfsmp
);
3060 printf("hfs: FAILED to create the journal!\n");
3061 if (jvp
&& jvp
!= hfsmp
->hfs_devvp
) {
3062 vnode_clearmountedon(jvp
);
3063 VNOP_CLOSE(jvp
, hfsmp
->hfs_flags
& HFS_READ_ONLY
? FREAD
: FREAD
|FWRITE
, vfs_context_kernel());
3070 hfs_lock_global (hfsmp
, HFS_EXCLUSIVE_LOCK
);
3073 * Flush all dirty metadata buffers.
3075 buf_flushdirtyblks(hfsmp
->hfs_devvp
, TRUE
, 0, "hfs_sysctl");
3076 buf_flushdirtyblks(hfsmp
->hfs_extents_vp
, TRUE
, 0, "hfs_sysctl");
3077 buf_flushdirtyblks(hfsmp
->hfs_catalog_vp
, TRUE
, 0, "hfs_sysctl");
3078 buf_flushdirtyblks(hfsmp
->hfs_allocation_vp
, TRUE
, 0, "hfs_sysctl");
3079 if (hfsmp
->hfs_attribute_vp
)
3080 buf_flushdirtyblks(hfsmp
->hfs_attribute_vp
, TRUE
, 0, "hfs_sysctl");
3082 HFSTOVCB(hfsmp
)->vcbJinfoBlock
= name
[1];
3083 HFSTOVCB(hfsmp
)->vcbAtrb
|= kHFSVolumeJournaledMask
;
3087 // save this off for the hack-y check in hfs_remove()
3088 hfsmp
->jnl_start
= (u_int32_t
)name
[2];
3089 hfsmp
->jnl_size
= (off_t
)((unsigned)name
[3]);
3090 hfsmp
->hfs_jnlinfoblkid
= jinfo_attr
.ca_fileid
;
3091 hfsmp
->hfs_jnlfileid
= jnl_attr
.ca_fileid
;
3093 vfs_setflags(hfsmp
->hfs_mp
, (u_int64_t
)((unsigned int)MNT_JOURNALED
));
3095 hfs_unlock_global (hfsmp
);
3096 hfs_flushvolumeheader(hfsmp
, MNT_WAIT
, 1);
3101 fsid
.val
[0] = (int32_t)hfsmp
->hfs_raw_dev
;
3102 fsid
.val
[1] = (int32_t)vfs_typenum(HFSTOVFS(hfsmp
));
3103 vfs_event_signal(&fsid
, VQ_UPDATE
, (intptr_t)NULL
);
3106 } else if (name
[0] == HFS_DISABLE_JOURNALING
) {
3107 // clear the journaling bit
3108 vnode_t vp
= vfs_context_cwd(context
);
3110 /* Only root can disable journaling */
3111 if (!kauth_cred_issuser(kauth_cred_get())) {
3120 * Disabling journaling is disallowed on volumes with directory hard links
3121 * because we have not tested the relevant code path.
3123 if (hfsmp
->hfs_private_attr
[DIR_HARDLINKS
].ca_entries
!= 0){
3124 printf("hfs: cannot disable journaling on volumes with directory hardlinks\n");
3128 printf("hfs: disabling journaling for mount @ %p\n", vnode_mount(vp
));
3130 hfs_lock_global (hfsmp
, HFS_EXCLUSIVE_LOCK
);
3132 // Lights out for you buddy!
3133 journal_close(hfsmp
->jnl
);
3136 if (hfsmp
->jvp
&& hfsmp
->jvp
!= hfsmp
->hfs_devvp
) {
3137 vnode_clearmountedon(hfsmp
->jvp
);
3138 VNOP_CLOSE(hfsmp
->jvp
, hfsmp
->hfs_flags
& HFS_READ_ONLY
? FREAD
: FREAD
|FWRITE
, vfs_context_kernel());
3139 vnode_put(hfsmp
->jvp
);
3142 vfs_clearflags(hfsmp
->hfs_mp
, (u_int64_t
)((unsigned int)MNT_JOURNALED
));
3143 hfsmp
->jnl_start
= 0;
3144 hfsmp
->hfs_jnlinfoblkid
= 0;
3145 hfsmp
->hfs_jnlfileid
= 0;
3147 HFSTOVCB(hfsmp
)->vcbAtrb
&= ~kHFSVolumeJournaledMask
;
3149 hfs_unlock_global (hfsmp
);
3151 hfs_flushvolumeheader(hfsmp
, MNT_WAIT
, 1);
3156 fsid
.val
[0] = (int32_t)hfsmp
->hfs_raw_dev
;
3157 fsid
.val
[1] = (int32_t)vfs_typenum(HFSTOVFS(hfsmp
));
3158 vfs_event_signal(&fsid
, VQ_UPDATE
, (intptr_t)NULL
);
3161 } else if (name
[0] == HFS_GET_JOURNAL_INFO
) {
3162 vnode_t vp
= vfs_context_cwd(context
);
3163 off_t jnl_start
, jnl_size
;
3168 /* 64-bit processes won't work with this sysctl -- can't fit a pointer into an int! */
3169 if (proc_is64bit(current_proc()))
3173 if (hfsmp
->jnl
== NULL
) {
3177 jnl_start
= (off_t
)(hfsmp
->jnl_start
* HFSTOVCB(hfsmp
)->blockSize
) + (off_t
)HFSTOVCB(hfsmp
)->hfsPlusIOPosOffset
;
3178 jnl_size
= (off_t
)hfsmp
->jnl_size
;
3181 if ((error
= copyout((caddr_t
)&jnl_start
, CAST_USER_ADDR_T(name
[1]), sizeof(off_t
))) != 0) {
3184 if ((error
= copyout((caddr_t
)&jnl_size
, CAST_USER_ADDR_T(name
[2]), sizeof(off_t
))) != 0) {
3189 } else if (name
[0] == HFS_SET_PKG_EXTENSIONS
) {
3191 return set_package_extensions_table((user_addr_t
)((unsigned)name
[1]), name
[2], name
[3]);
3193 } else if (name
[0] == VFS_CTL_QUERY
) {
3194 struct sysctl_req
*req
;
3195 union union_vfsidctl vc
;
3199 req
= CAST_DOWN(struct sysctl_req
*, oldp
); /* we're new style vfs sysctl. */
3204 error
= SYSCTL_IN(req
, &vc
, proc_is64bit(p
)? sizeof(vc
.vc64
):sizeof(vc
.vc32
));
3205 if (error
) return (error
);
3207 mp
= vfs_getvfs(&vc
.vc32
.vc_fsid
); /* works for 32 and 64 */
3208 if (mp
== NULL
) return (ENOENT
);
3210 hfsmp
= VFSTOHFS(mp
);
3211 bzero(&vq
, sizeof(vq
));
3212 vq
.vq_flags
= hfsmp
->hfs_notification_conditions
;
3213 return SYSCTL_OUT(req
, &vq
, sizeof(vq
));;
3214 } else if (name
[0] == HFS_REPLAY_JOURNAL
) {
3215 vnode_t devvp
= NULL
;
3220 device_fd
= name
[1];
3221 error
= file_vnode(device_fd
, &devvp
);
3225 error
= vnode_getwithref(devvp
);
3227 file_drop(device_fd
);
3230 error
= hfs_journal_replay(devvp
, context
);
3231 file_drop(device_fd
);
3234 } else if (name
[0] == HFS_ENABLE_RESIZE_DEBUG
) {
3235 hfs_resize_debug
= 1;
3236 printf ("hfs_sysctl: Enabled volume resize debugging.\n");
3244 * hfs_vfs_vget is not static since it is used in hfs_readwrite.c to support
3245 * the build_path ioctl. We use it to leverage the code below that updates
3246 * the origin list cache if necessary
3250 hfs_vfs_vget(struct mount
*mp
, ino64_t ino
, struct vnode
**vpp
, __unused vfs_context_t context
)
3254 struct hfsmount
*hfsmp
;
3256 hfsmp
= VFSTOHFS(mp
);
3258 error
= hfs_vget(hfsmp
, (cnid_t
)ino
, vpp
, 1, 0);
3263 * ADLs may need to have their origin state updated
3264 * since build_path needs a valid parent. The same is true
3265 * for hardlinked files as well. There isn't a race window here
3266 * in re-acquiring the cnode lock since we aren't pulling any data
3267 * out of the cnode; instead, we're going to the catalog.
3269 if ((VTOC(*vpp
)->c_flag
& C_HARDLINK
) &&
3270 (hfs_lock(VTOC(*vpp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
) == 0)) {
3271 cnode_t
*cp
= VTOC(*vpp
);
3272 struct cat_desc cdesc
;
3274 if (!hfs_haslinkorigin(cp
)) {
3275 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
3276 error
= cat_findname(hfsmp
, (cnid_t
)ino
, &cdesc
);
3277 hfs_systemfile_unlock(hfsmp
, lockflags
);
3279 if ((cdesc
.cd_parentcnid
!= hfsmp
->hfs_private_desc
[DIR_HARDLINKS
].cd_cnid
) &&
3280 (cdesc
.cd_parentcnid
!= hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
)) {
3281 hfs_savelinkorigin(cp
, cdesc
.cd_parentcnid
);
3283 cat_releasedesc(&cdesc
);
3293 * Look up an HFS object by ID.
3295 * The object is returned with an iocount reference and the cnode locked.
3297 * If the object is a file then it will represent the data fork.
3300 hfs_vget(struct hfsmount
*hfsmp
, cnid_t cnid
, struct vnode
**vpp
, int skiplock
, int allow_deleted
)
3302 struct vnode
*vp
= NULLVP
;
3303 struct cat_desc cndesc
;
3304 struct cat_attr cnattr
;
3305 struct cat_fork cnfork
;
3306 u_int32_t linkref
= 0;
3309 /* Check for cnids that should't be exported. */
3310 if ((cnid
< kHFSFirstUserCatalogNodeID
) &&
3311 (cnid
!= kHFSRootFolderID
&& cnid
!= kHFSRootParentID
)) {
3314 /* Don't export our private directories. */
3315 if (cnid
== hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
||
3316 cnid
== hfsmp
->hfs_private_desc
[DIR_HARDLINKS
].cd_cnid
) {
3320 * Check the hash first
3322 vp
= hfs_chash_getvnode(hfsmp
, cnid
, 0, skiplock
, allow_deleted
);
3328 bzero(&cndesc
, sizeof(cndesc
));
3329 bzero(&cnattr
, sizeof(cnattr
));
3330 bzero(&cnfork
, sizeof(cnfork
));
3333 * Not in hash, lookup in catalog
3335 if (cnid
== kHFSRootParentID
) {
3336 static char hfs_rootname
[] = "/";
3338 cndesc
.cd_nameptr
= (const u_int8_t
*)&hfs_rootname
[0];
3339 cndesc
.cd_namelen
= 1;
3340 cndesc
.cd_parentcnid
= kHFSRootParentID
;
3341 cndesc
.cd_cnid
= kHFSRootFolderID
;
3342 cndesc
.cd_flags
= CD_ISDIR
;
3344 cnattr
.ca_fileid
= kHFSRootFolderID
;
3345 cnattr
.ca_linkcount
= 1;
3346 cnattr
.ca_entries
= 1;
3347 cnattr
.ca_dircount
= 1;
3348 cnattr
.ca_mode
= (S_IFDIR
| S_IRWXU
| S_IRWXG
| S_IRWXO
);
3352 const char *nameptr
;
3354 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
3355 error
= cat_idlookup(hfsmp
, cnid
, 0, 0, &cndesc
, &cnattr
, &cnfork
);
3356 hfs_systemfile_unlock(hfsmp
, lockflags
);
3364 * Check for a raw hardlink inode and save its linkref.
3366 pid
= cndesc
.cd_parentcnid
;
3367 nameptr
= (const char *)cndesc
.cd_nameptr
;
3369 if ((pid
== hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
) &&
3370 (bcmp(nameptr
, HFS_INODE_PREFIX
, HFS_INODE_PREFIX_LEN
) == 0)) {
3371 linkref
= strtoul(&nameptr
[HFS_INODE_PREFIX_LEN
], NULL
, 10);
3373 } else if ((pid
== hfsmp
->hfs_private_desc
[DIR_HARDLINKS
].cd_cnid
) &&
3374 (bcmp(nameptr
, HFS_DIRINODE_PREFIX
, HFS_DIRINODE_PREFIX_LEN
) == 0)) {
3375 linkref
= strtoul(&nameptr
[HFS_DIRINODE_PREFIX_LEN
], NULL
, 10);
3377 } else if ((pid
== hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
) &&
3378 (bcmp(nameptr
, HFS_DELETE_PREFIX
, HFS_DELETE_PREFIX_LEN
) == 0)) {
3380 cat_releasedesc(&cndesc
);
3381 return (ENOENT
); /* open unlinked file */
3386 * Finish initializing cnode descriptor for hardlinks.
3388 * We need a valid name and parent for reverse lookups.
3392 struct cat_desc linkdesc
;
3395 cnattr
.ca_linkref
= linkref
;
3396 bzero (&linkdesc
, sizeof (linkdesc
));
3399 * If the caller supplied the raw inode value, then we don't know exactly
3400 * which hardlink they wanted. It's likely that they acquired the raw inode
3401 * value BEFORE the item became a hardlink, in which case, they probably
3402 * want the oldest link. So request the oldest link from the catalog.
3404 * Unfortunately, this requires that we iterate through all N hardlinks. On the plus
3405 * side, since we know that we want the last linkID, we can also have this one
3406 * call give us back the name of the last ID, since it's going to have it in-hand...
3408 linkerr
= hfs_lookup_lastlink (hfsmp
, linkref
, &lastid
, &linkdesc
);
3409 if ((linkerr
== 0) && (lastid
!= 0)) {
3411 * Release any lingering buffers attached to our local descriptor.
3412 * Then copy the name and other business into the cndesc
3414 cat_releasedesc (&cndesc
);
3415 bcopy (&linkdesc
, &cndesc
, sizeof(linkdesc
));
3417 /* If it failed, the linkref code will just use whatever it had in-hand below. */
3421 int newvnode_flags
= 0;
3423 error
= hfs_getnewvnode(hfsmp
, NULL
, NULL
, &cndesc
, 0, &cnattr
,
3424 &cnfork
, &vp
, &newvnode_flags
);
3426 VTOC(vp
)->c_flag
|= C_HARDLINK
;
3427 vnode_setmultipath(vp
);
3430 struct componentname cn
;
3431 int newvnode_flags
= 0;
3433 /* Supply hfs_getnewvnode with a component name. */
3434 MALLOC_ZONE(cn
.cn_pnbuf
, caddr_t
, MAXPATHLEN
, M_NAMEI
, M_WAITOK
);
3435 cn
.cn_nameiop
= LOOKUP
;
3436 cn
.cn_flags
= ISLASTCN
| HASBUF
;
3437 cn
.cn_context
= NULL
;
3438 cn
.cn_pnlen
= MAXPATHLEN
;
3439 cn
.cn_nameptr
= cn
.cn_pnbuf
;
3440 cn
.cn_namelen
= cndesc
.cd_namelen
;
3443 bcopy(cndesc
.cd_nameptr
, cn
.cn_nameptr
, cndesc
.cd_namelen
+ 1);
3445 error
= hfs_getnewvnode(hfsmp
, NULLVP
, &cn
, &cndesc
, 0, &cnattr
,
3446 &cnfork
, &vp
, &newvnode_flags
);
3448 if (error
== 0 && (VTOC(vp
)->c_flag
& C_HARDLINK
)) {
3449 hfs_savelinkorigin(VTOC(vp
), cndesc
.cd_parentcnid
);
3451 FREE_ZONE(cn
.cn_pnbuf
, cn
.cn_pnlen
, M_NAMEI
);
3453 cat_releasedesc(&cndesc
);
3456 if (vp
&& skiplock
) {
3457 hfs_unlock(VTOC(vp
));
3464 * Flush out all the files in a filesystem.
3468 hfs_flushfiles(struct mount
*mp
, int flags
, struct proc
*p
)
3470 hfs_flushfiles(struct mount
*mp
, int flags
, __unused
struct proc
*p
)
3473 struct hfsmount
*hfsmp
;
3474 struct vnode
*skipvp
= NULLVP
;
3476 int accounted_root_usecounts
;
3481 hfsmp
= VFSTOHFS(mp
);
3483 accounted_root_usecounts
= 0;
3486 * The open quota files have an indirect reference on
3487 * the root directory vnode. We must account for this
3488 * extra reference when doing the intial vflush.
3490 if (((unsigned int)vfs_flags(mp
)) & MNT_QUOTA
) {
3491 /* Find out how many quota files we have open. */
3492 for (i
= 0; i
< MAXQUOTAS
; i
++) {
3493 if (hfsmp
->hfs_qfiles
[i
].qf_vp
!= NULLVP
)
3494 ++accounted_root_usecounts
;
3499 if (accounted_root_usecounts
> 0) {
3500 /* Obtain the root vnode so we can skip over it. */
3501 skipvp
= hfs_chash_getvnode(hfsmp
, kHFSRootFolderID
, 0, 0, 0);
3504 error
= vflush(mp
, skipvp
, SKIPSYSTEM
| SKIPSWAP
| flags
);
3508 error
= vflush(mp
, skipvp
, SKIPSYSTEM
| flags
);
3512 * See if there are additional references on the
3513 * root vp besides the ones obtained from the open
3514 * quota files and CoreStorage.
3517 (vnode_isinuse(skipvp
, accounted_root_usecounts
))) {
3518 error
= EBUSY
; /* root directory is still open */
3520 hfs_unlock(VTOC(skipvp
));
3521 /* release the iocount from the hfs_chash_getvnode call above. */
3524 if (error
&& (flags
& FORCECLOSE
) == 0)
3528 if (((unsigned int)vfs_flags(mp
)) & MNT_QUOTA
) {
3529 for (i
= 0; i
< MAXQUOTAS
; i
++) {
3530 if (hfsmp
->hfs_qfiles
[i
].qf_vp
== NULLVP
)
3532 hfs_quotaoff(p
, mp
, i
);
3538 error
= vflush(mp
, NULLVP
, SKIPSYSTEM
| flags
);
3545 * Update volume encoding bitmap (HFS Plus only)
3547 * Mark a legacy text encoding as in-use (as needed)
3548 * in the volume header of this HFS+ filesystem.
3552 hfs_setencodingbits(struct hfsmount
*hfsmp
, u_int32_t encoding
)
3554 #define kIndexMacUkrainian 48 /* MacUkrainian encoding is 152 */
3555 #define kIndexMacFarsi 49 /* MacFarsi encoding is 140 */
3560 case kTextEncodingMacUkrainian
:
3561 index
= kIndexMacUkrainian
;
3563 case kTextEncodingMacFarsi
:
3564 index
= kIndexMacFarsi
;
3571 /* Only mark the encoding as in-use if it wasn't already set */
3572 if (index
< 64 && (hfsmp
->encodingsBitmap
& (u_int64_t
)(1ULL << index
)) == 0) {
3573 hfs_lock_mount (hfsmp
);
3574 hfsmp
->encodingsBitmap
|= (u_int64_t
)(1ULL << index
);
3575 MarkVCBDirty(hfsmp
);
3576 hfs_unlock_mount(hfsmp
);
3581 * Update volume stats
3583 * On journal volumes this will cause a volume header flush
3586 hfs_volupdate(struct hfsmount
*hfsmp
, enum volop op
, int inroot
)
3592 hfs_lock_mount (hfsmp
);
3594 MarkVCBDirty(hfsmp
);
3595 hfsmp
->hfs_mtime
= tv
.tv_sec
;
3601 if (hfsmp
->hfs_dircount
!= 0xFFFFFFFF)
3602 ++hfsmp
->hfs_dircount
;
3603 if (inroot
&& hfsmp
->vcbNmRtDirs
!= 0xFFFF)
3604 ++hfsmp
->vcbNmRtDirs
;
3607 if (hfsmp
->hfs_dircount
!= 0)
3608 --hfsmp
->hfs_dircount
;
3609 if (inroot
&& hfsmp
->vcbNmRtDirs
!= 0xFFFF)
3610 --hfsmp
->vcbNmRtDirs
;
3613 if (hfsmp
->hfs_filecount
!= 0xFFFFFFFF)
3614 ++hfsmp
->hfs_filecount
;
3615 if (inroot
&& hfsmp
->vcbNmFls
!= 0xFFFF)
3619 if (hfsmp
->hfs_filecount
!= 0)
3620 --hfsmp
->hfs_filecount
;
3621 if (inroot
&& hfsmp
->vcbNmFls
!= 0xFFFF)
3626 hfs_unlock_mount (hfsmp
);
3629 hfs_flushvolumeheader(hfsmp
, 0, 0);
3637 /* HFS Standard MDB flush */
3639 hfs_flushMDB(struct hfsmount
*hfsmp
, int waitfor
, int altflush
)
3641 ExtendedVCB
*vcb
= HFSTOVCB(hfsmp
);
3642 struct filefork
*fp
;
3643 HFSMasterDirectoryBlock
*mdb
;
3644 struct buf
*bp
= NULL
;
3649 sector_size
= hfsmp
->hfs_logical_block_size
;
3650 retval
= (int)buf_bread(hfsmp
->hfs_devvp
, (daddr64_t
)HFS_PRI_SECTOR(sector_size
), sector_size
, NOCRED
, &bp
);
3657 hfs_lock_mount (hfsmp
);
3659 mdb
= (HFSMasterDirectoryBlock
*)(buf_dataptr(bp
) + HFS_PRI_OFFSET(sector_size
));
3661 mdb
->drCrDate
= SWAP_BE32 (UTCToLocal(to_hfs_time(vcb
->hfs_itime
)));
3662 mdb
->drLsMod
= SWAP_BE32 (UTCToLocal(to_hfs_time(vcb
->vcbLsMod
)));
3663 mdb
->drAtrb
= SWAP_BE16 (vcb
->vcbAtrb
);
3664 mdb
->drNmFls
= SWAP_BE16 (vcb
->vcbNmFls
);
3665 mdb
->drAllocPtr
= SWAP_BE16 (vcb
->nextAllocation
);
3666 mdb
->drClpSiz
= SWAP_BE32 (vcb
->vcbClpSiz
);
3667 mdb
->drNxtCNID
= SWAP_BE32 (vcb
->vcbNxtCNID
);
3668 mdb
->drFreeBks
= SWAP_BE16 (vcb
->freeBlocks
);
3670 namelen
= strlen((char *)vcb
->vcbVN
);
3671 retval
= utf8_to_hfs(vcb
, namelen
, vcb
->vcbVN
, mdb
->drVN
);
3672 /* Retry with MacRoman in case that's how it was exported. */
3674 retval
= utf8_to_mac_roman(namelen
, vcb
->vcbVN
, mdb
->drVN
);
3676 mdb
->drVolBkUp
= SWAP_BE32 (UTCToLocal(to_hfs_time(vcb
->vcbVolBkUp
)));
3677 mdb
->drWrCnt
= SWAP_BE32 (vcb
->vcbWrCnt
);
3678 mdb
->drNmRtDirs
= SWAP_BE16 (vcb
->vcbNmRtDirs
);
3679 mdb
->drFilCnt
= SWAP_BE32 (vcb
->vcbFilCnt
);
3680 mdb
->drDirCnt
= SWAP_BE32 (vcb
->vcbDirCnt
);
3682 bcopy(vcb
->vcbFndrInfo
, mdb
->drFndrInfo
, sizeof(mdb
->drFndrInfo
));
3684 fp
= VTOF(vcb
->extentsRefNum
);
3685 mdb
->drXTExtRec
[0].startBlock
= SWAP_BE16 (fp
->ff_extents
[0].startBlock
);
3686 mdb
->drXTExtRec
[0].blockCount
= SWAP_BE16 (fp
->ff_extents
[0].blockCount
);
3687 mdb
->drXTExtRec
[1].startBlock
= SWAP_BE16 (fp
->ff_extents
[1].startBlock
);
3688 mdb
->drXTExtRec
[1].blockCount
= SWAP_BE16 (fp
->ff_extents
[1].blockCount
);
3689 mdb
->drXTExtRec
[2].startBlock
= SWAP_BE16 (fp
->ff_extents
[2].startBlock
);
3690 mdb
->drXTExtRec
[2].blockCount
= SWAP_BE16 (fp
->ff_extents
[2].blockCount
);
3691 mdb
->drXTFlSize
= SWAP_BE32 (fp
->ff_blocks
* vcb
->blockSize
);
3692 mdb
->drXTClpSiz
= SWAP_BE32 (fp
->ff_clumpsize
);
3693 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
3695 fp
= VTOF(vcb
->catalogRefNum
);
3696 mdb
->drCTExtRec
[0].startBlock
= SWAP_BE16 (fp
->ff_extents
[0].startBlock
);
3697 mdb
->drCTExtRec
[0].blockCount
= SWAP_BE16 (fp
->ff_extents
[0].blockCount
);
3698 mdb
->drCTExtRec
[1].startBlock
= SWAP_BE16 (fp
->ff_extents
[1].startBlock
);
3699 mdb
->drCTExtRec
[1].blockCount
= SWAP_BE16 (fp
->ff_extents
[1].blockCount
);
3700 mdb
->drCTExtRec
[2].startBlock
= SWAP_BE16 (fp
->ff_extents
[2].startBlock
);
3701 mdb
->drCTExtRec
[2].blockCount
= SWAP_BE16 (fp
->ff_extents
[2].blockCount
);
3702 mdb
->drCTFlSize
= SWAP_BE32 (fp
->ff_blocks
* vcb
->blockSize
);
3703 mdb
->drCTClpSiz
= SWAP_BE32 (fp
->ff_clumpsize
);
3704 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
3706 MarkVCBClean( vcb
);
3708 hfs_unlock_mount (hfsmp
);
3710 /* If requested, flush out the alternate MDB */
3712 struct buf
*alt_bp
= NULL
;
3714 if (buf_meta_bread(hfsmp
->hfs_devvp
, hfsmp
->hfs_partition_avh_sector
, sector_size
, NOCRED
, &alt_bp
) == 0) {
3715 bcopy(mdb
, (char *)buf_dataptr(alt_bp
) + HFS_ALT_OFFSET(sector_size
), kMDBSize
);
3717 (void) VNOP_BWRITE(alt_bp
);
3722 if (waitfor
!= MNT_WAIT
)
3725 retval
= VNOP_BWRITE(bp
);
3732 * Flush any dirty in-memory mount data to the on-disk
3735 * Note: the on-disk volume signature is intentionally
3736 * not flushed since the on-disk "H+" and "HX" signatures
3737 * are always stored in-memory as "H+".
3740 hfs_flushvolumeheader(struct hfsmount
*hfsmp
, int waitfor
, int altflush
)
3742 ExtendedVCB
*vcb
= HFSTOVCB(hfsmp
);
3743 struct filefork
*fp
;
3744 HFSPlusVolumeHeader
*volumeHeader
, *altVH
;
3746 struct buf
*bp
, *alt_bp
;
3748 daddr64_t priIDSector
;
3750 u_int16_t signature
;
3751 u_int16_t hfsversion
;
3752 daddr64_t avh_sector
;
3754 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
3758 if (hfsmp
->hfs_flags
& HFS_STANDARD
) {
3759 return hfs_flushMDB(hfsmp
, waitfor
, altflush
);
3762 critical
= altflush
;
3763 priIDSector
= (daddr64_t
)((vcb
->hfsPlusIOPosOffset
/ hfsmp
->hfs_logical_block_size
) +
3764 HFS_PRI_SECTOR(hfsmp
->hfs_logical_block_size
));
3766 if (hfs_start_transaction(hfsmp
) != 0) {
3773 retval
= (int)buf_meta_bread(hfsmp
->hfs_devvp
,
3774 HFS_PHYSBLK_ROUNDDOWN(priIDSector
, hfsmp
->hfs_log_per_phys
),
3775 hfsmp
->hfs_physical_block_size
, NOCRED
, &bp
);
3777 printf("hfs: err %d reading VH blk (vol=%s)\n", retval
, vcb
->vcbVN
);
3781 volumeHeader
= (HFSPlusVolumeHeader
*)((char *)buf_dataptr(bp
) +
3782 HFS_PRI_OFFSET(hfsmp
->hfs_physical_block_size
));
3785 * Sanity check what we just read. If it's bad, try the alternate
3788 signature
= SWAP_BE16 (volumeHeader
->signature
);
3789 hfsversion
= SWAP_BE16 (volumeHeader
->version
);
3790 if ((signature
!= kHFSPlusSigWord
&& signature
!= kHFSXSigWord
) ||
3791 (hfsversion
< kHFSPlusVersion
) || (hfsversion
> 100) ||
3792 (SWAP_BE32 (volumeHeader
->blockSize
) != vcb
->blockSize
)) {
3793 printf("hfs: corrupt VH on %s, sig 0x%04x, ver %d, blksize %d\n",
3794 vcb
->vcbVN
, signature
, hfsversion
,
3795 SWAP_BE32 (volumeHeader
->blockSize
));
3796 hfs_mark_inconsistent(hfsmp
, HFS_INCONSISTENCY_DETECTED
);
3798 /* Almost always we read AVH relative to the partition size */
3799 avh_sector
= hfsmp
->hfs_partition_avh_sector
;
3801 if (hfsmp
->hfs_partition_avh_sector
!= hfsmp
->hfs_fs_avh_sector
) {
3803 * The two altVH offsets do not match --- which means that a smaller file
3804 * system exists in a larger partition. Verify that we have the correct
3805 * alternate volume header sector as per the current parititon size.
3806 * The GPT device that we are mounted on top could have changed sizes
3807 * without us knowing.
3809 * We're in a transaction, so it's safe to modify the partition_avh_sector
3810 * field if necessary.
3813 uint64_t sector_count
;
3815 /* Get underlying device block count */
3816 if ((retval
= VNOP_IOCTL(hfsmp
->hfs_devvp
, DKIOCGETBLOCKCOUNT
,
3817 (caddr_t
)§or_count
, 0, vfs_context_current()))) {
3818 printf("hfs_flushVH: err %d getting block count (%s) \n", retval
, vcb
->vcbVN
);
3823 /* Partition size was changed without our knowledge */
3824 if (sector_count
!= (uint64_t)hfsmp
->hfs_logical_block_count
) {
3825 hfsmp
->hfs_partition_avh_sector
= (hfsmp
->hfsPlusIOPosOffset
/ hfsmp
->hfs_logical_block_size
) +
3826 HFS_ALT_SECTOR(hfsmp
->hfs_logical_block_size
, sector_count
);
3827 /* Note: hfs_fs_avh_sector will remain unchanged */
3828 printf ("hfs_flushVH: partition size changed, partition_avh_sector=%qu, fs_avh_sector=%qu\n",
3829 hfsmp
->hfs_partition_avh_sector
, hfsmp
->hfs_fs_avh_sector
);
3832 * We just updated the offset for AVH relative to
3833 * the partition size, so the content of that AVH
3834 * will be invalid. But since we are also maintaining
3835 * a valid AVH relative to the file system size, we
3836 * can read it since primary VH and partition AVH
3839 avh_sector
= hfsmp
->hfs_fs_avh_sector
;
3843 printf ("hfs: trying alternate (for %s) avh_sector=%qu\n",
3844 (avh_sector
== hfsmp
->hfs_fs_avh_sector
) ? "file system" : "partition", avh_sector
);
3847 retval
= buf_meta_bread(hfsmp
->hfs_devvp
,
3848 HFS_PHYSBLK_ROUNDDOWN(avh_sector
, hfsmp
->hfs_log_per_phys
),
3849 hfsmp
->hfs_physical_block_size
, NOCRED
, &alt_bp
);
3851 printf("hfs: err %d reading alternate VH (%s)\n", retval
, vcb
->vcbVN
);
3855 altVH
= (HFSPlusVolumeHeader
*)((char *)buf_dataptr(alt_bp
) +
3856 HFS_ALT_OFFSET(hfsmp
->hfs_physical_block_size
));
3857 signature
= SWAP_BE16(altVH
->signature
);
3858 hfsversion
= SWAP_BE16(altVH
->version
);
3860 if ((signature
!= kHFSPlusSigWord
&& signature
!= kHFSXSigWord
) ||
3861 (hfsversion
< kHFSPlusVersion
) || (kHFSPlusVersion
> 100) ||
3862 (SWAP_BE32(altVH
->blockSize
) != vcb
->blockSize
)) {
3863 printf("hfs: corrupt alternate VH on %s, sig 0x%04x, ver %d, blksize %d\n",
3864 vcb
->vcbVN
, signature
, hfsversion
,
3865 SWAP_BE32(altVH
->blockSize
));
3870 /* The alternate is plausible, so use it. */
3871 bcopy(altVH
, volumeHeader
, kMDBSize
);
3875 /* No alternate VH, nothing more we can do. */
3882 journal_modify_block_start(hfsmp
->jnl
, bp
);
3886 * For embedded HFS+ volumes, update create date if it changed
3887 * (ie from a setattrlist call)
3889 if ((vcb
->hfsPlusIOPosOffset
!= 0) &&
3890 (SWAP_BE32 (volumeHeader
->createDate
) != vcb
->localCreateDate
)) {
3892 HFSMasterDirectoryBlock
*mdb
;
3894 retval
= (int)buf_meta_bread(hfsmp
->hfs_devvp
,
3895 HFS_PHYSBLK_ROUNDDOWN(HFS_PRI_SECTOR(hfsmp
->hfs_logical_block_size
), hfsmp
->hfs_log_per_phys
),
3896 hfsmp
->hfs_physical_block_size
, NOCRED
, &bp2
);
3902 mdb
= (HFSMasterDirectoryBlock
*)(buf_dataptr(bp2
) +
3903 HFS_PRI_OFFSET(hfsmp
->hfs_physical_block_size
));
3905 if ( SWAP_BE32 (mdb
->drCrDate
) != vcb
->localCreateDate
)
3908 journal_modify_block_start(hfsmp
->jnl
, bp2
);
3911 mdb
->drCrDate
= SWAP_BE32 (vcb
->localCreateDate
); /* pick up the new create date */
3914 journal_modify_block_end(hfsmp
->jnl
, bp2
, NULL
, NULL
);
3916 (void) VNOP_BWRITE(bp2
); /* write out the changes */
3921 buf_brelse(bp2
); /* just release it */
3926 hfs_lock_mount (hfsmp
);
3928 /* Note: only update the lower 16 bits worth of attributes */
3929 volumeHeader
->attributes
= SWAP_BE32 (vcb
->vcbAtrb
);
3930 volumeHeader
->journalInfoBlock
= SWAP_BE32 (vcb
->vcbJinfoBlock
);
3932 volumeHeader
->lastMountedVersion
= SWAP_BE32 (kHFSJMountVersion
);
3934 volumeHeader
->lastMountedVersion
= SWAP_BE32 (kHFSPlusMountVersion
);
3936 volumeHeader
->createDate
= SWAP_BE32 (vcb
->localCreateDate
); /* volume create date is in local time */
3937 volumeHeader
->modifyDate
= SWAP_BE32 (to_hfs_time(vcb
->vcbLsMod
));
3938 volumeHeader
->backupDate
= SWAP_BE32 (to_hfs_time(vcb
->vcbVolBkUp
));
3939 volumeHeader
->fileCount
= SWAP_BE32 (vcb
->vcbFilCnt
);
3940 volumeHeader
->folderCount
= SWAP_BE32 (vcb
->vcbDirCnt
);
3941 volumeHeader
->totalBlocks
= SWAP_BE32 (vcb
->totalBlocks
);
3942 volumeHeader
->freeBlocks
= SWAP_BE32 (vcb
->freeBlocks
);
3943 volumeHeader
->nextAllocation
= SWAP_BE32 (vcb
->nextAllocation
);
3944 volumeHeader
->rsrcClumpSize
= SWAP_BE32 (vcb
->vcbClpSiz
);
3945 volumeHeader
->dataClumpSize
= SWAP_BE32 (vcb
->vcbClpSiz
);
3946 volumeHeader
->nextCatalogID
= SWAP_BE32 (vcb
->vcbNxtCNID
);
3947 volumeHeader
->writeCount
= SWAP_BE32 (vcb
->vcbWrCnt
);
3948 volumeHeader
->encodingsBitmap
= SWAP_BE64 (vcb
->encodingsBitmap
);
3950 if (bcmp(vcb
->vcbFndrInfo
, volumeHeader
->finderInfo
, sizeof(volumeHeader
->finderInfo
)) != 0) {
3951 bcopy(vcb
->vcbFndrInfo
, volumeHeader
->finderInfo
, sizeof(volumeHeader
->finderInfo
));
3956 * System files are only dirty when altflush is set.
3958 if (altflush
== 0) {
3962 /* Sync Extents over-flow file meta data */
3963 fp
= VTOF(vcb
->extentsRefNum
);
3964 if (FTOC(fp
)->c_flag
& C_MODIFIED
) {
3965 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
3966 volumeHeader
->extentsFile
.extents
[i
].startBlock
=
3967 SWAP_BE32 (fp
->ff_extents
[i
].startBlock
);
3968 volumeHeader
->extentsFile
.extents
[i
].blockCount
=
3969 SWAP_BE32 (fp
->ff_extents
[i
].blockCount
);
3971 volumeHeader
->extentsFile
.logicalSize
= SWAP_BE64 (fp
->ff_size
);
3972 volumeHeader
->extentsFile
.totalBlocks
= SWAP_BE32 (fp
->ff_blocks
);
3973 volumeHeader
->extentsFile
.clumpSize
= SWAP_BE32 (fp
->ff_clumpsize
);
3974 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
3977 /* Sync Catalog file meta data */
3978 fp
= VTOF(vcb
->catalogRefNum
);
3979 if (FTOC(fp
)->c_flag
& C_MODIFIED
) {
3980 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
3981 volumeHeader
->catalogFile
.extents
[i
].startBlock
=
3982 SWAP_BE32 (fp
->ff_extents
[i
].startBlock
);
3983 volumeHeader
->catalogFile
.extents
[i
].blockCount
=
3984 SWAP_BE32 (fp
->ff_extents
[i
].blockCount
);
3986 volumeHeader
->catalogFile
.logicalSize
= SWAP_BE64 (fp
->ff_size
);
3987 volumeHeader
->catalogFile
.totalBlocks
= SWAP_BE32 (fp
->ff_blocks
);
3988 volumeHeader
->catalogFile
.clumpSize
= SWAP_BE32 (fp
->ff_clumpsize
);
3989 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
3992 /* Sync Allocation file meta data */
3993 fp
= VTOF(vcb
->allocationsRefNum
);
3994 if (FTOC(fp
)->c_flag
& C_MODIFIED
) {
3995 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
3996 volumeHeader
->allocationFile
.extents
[i
].startBlock
=
3997 SWAP_BE32 (fp
->ff_extents
[i
].startBlock
);
3998 volumeHeader
->allocationFile
.extents
[i
].blockCount
=
3999 SWAP_BE32 (fp
->ff_extents
[i
].blockCount
);
4001 volumeHeader
->allocationFile
.logicalSize
= SWAP_BE64 (fp
->ff_size
);
4002 volumeHeader
->allocationFile
.totalBlocks
= SWAP_BE32 (fp
->ff_blocks
);
4003 volumeHeader
->allocationFile
.clumpSize
= SWAP_BE32 (fp
->ff_clumpsize
);
4004 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
4007 /* Sync Attribute file meta data */
4008 if (hfsmp
->hfs_attribute_vp
) {
4009 fp
= VTOF(hfsmp
->hfs_attribute_vp
);
4010 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
4011 volumeHeader
->attributesFile
.extents
[i
].startBlock
=
4012 SWAP_BE32 (fp
->ff_extents
[i
].startBlock
);
4013 volumeHeader
->attributesFile
.extents
[i
].blockCount
=
4014 SWAP_BE32 (fp
->ff_extents
[i
].blockCount
);
4016 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
4017 volumeHeader
->attributesFile
.logicalSize
= SWAP_BE64 (fp
->ff_size
);
4018 volumeHeader
->attributesFile
.totalBlocks
= SWAP_BE32 (fp
->ff_blocks
);
4019 volumeHeader
->attributesFile
.clumpSize
= SWAP_BE32 (fp
->ff_clumpsize
);
4022 /* Sync Startup file meta data */
4023 if (hfsmp
->hfs_startup_vp
) {
4024 fp
= VTOF(hfsmp
->hfs_startup_vp
);
4025 if (FTOC(fp
)->c_flag
& C_MODIFIED
) {
4026 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
4027 volumeHeader
->startupFile
.extents
[i
].startBlock
=
4028 SWAP_BE32 (fp
->ff_extents
[i
].startBlock
);
4029 volumeHeader
->startupFile
.extents
[i
].blockCount
=
4030 SWAP_BE32 (fp
->ff_extents
[i
].blockCount
);
4032 volumeHeader
->startupFile
.logicalSize
= SWAP_BE64 (fp
->ff_size
);
4033 volumeHeader
->startupFile
.totalBlocks
= SWAP_BE32 (fp
->ff_blocks
);
4034 volumeHeader
->startupFile
.clumpSize
= SWAP_BE32 (fp
->ff_clumpsize
);
4035 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
4040 MarkVCBClean(hfsmp
);
4041 hfs_unlock_mount (hfsmp
);
4043 /* If requested, flush out the alternate volume header */
4046 * The two altVH offsets do not match --- which means that a smaller file
4047 * system exists in a larger partition. Verify that we have the correct
4048 * alternate volume header sector as per the current parititon size.
4049 * The GPT device that we are mounted on top could have changed sizes
4050 * without us knowning.
4052 * We're in a transaction, so it's safe to modify the partition_avh_sector
4053 * field if necessary.
4055 if (hfsmp
->hfs_partition_avh_sector
!= hfsmp
->hfs_fs_avh_sector
) {
4056 uint64_t sector_count
;
4058 /* Get underlying device block count */
4059 if ((retval
= VNOP_IOCTL(hfsmp
->hfs_devvp
, DKIOCGETBLOCKCOUNT
,
4060 (caddr_t
)§or_count
, 0, vfs_context_current()))) {
4061 printf("hfs_flushVH: err %d getting block count (%s) \n", retval
, vcb
->vcbVN
);
4066 /* Partition size was changed without our knowledge */
4067 if (sector_count
!= (uint64_t)hfsmp
->hfs_logical_block_count
) {
4068 hfsmp
->hfs_partition_avh_sector
= (hfsmp
->hfsPlusIOPosOffset
/ hfsmp
->hfs_logical_block_size
) +
4069 HFS_ALT_SECTOR(hfsmp
->hfs_logical_block_size
, sector_count
);
4070 /* Note: hfs_fs_avh_sector will remain unchanged */
4071 printf ("hfs_flushVH: altflush: partition size changed, partition_avh_sector=%qu, fs_avh_sector=%qu\n",
4072 hfsmp
->hfs_partition_avh_sector
, hfsmp
->hfs_fs_avh_sector
);
4077 * First see if we need to write I/O to the "secondary" AVH
4078 * located at FS Size - 1024 bytes, because this one will
4079 * always go into the journal. We put this AVH into the journal
4080 * because even if the filesystem size has shrunk, this LBA should be
4081 * reachable after the partition-size modification has occurred.
4082 * The one where we need to be careful is partitionsize-1024, since the
4083 * partition size should hopefully shrink.
4085 * Most of the time this block will not execute.
4087 if ((hfsmp
->hfs_fs_avh_sector
) &&
4088 (hfsmp
->hfs_partition_avh_sector
!= hfsmp
->hfs_fs_avh_sector
)) {
4089 if (buf_meta_bread(hfsmp
->hfs_devvp
,
4090 HFS_PHYSBLK_ROUNDDOWN(hfsmp
->hfs_fs_avh_sector
, hfsmp
->hfs_log_per_phys
),
4091 hfsmp
->hfs_physical_block_size
, NOCRED
, &alt_bp
) == 0) {
4093 journal_modify_block_start(hfsmp
->jnl
, alt_bp
);
4096 bcopy(volumeHeader
, (char *)buf_dataptr(alt_bp
) +
4097 HFS_ALT_OFFSET(hfsmp
->hfs_physical_block_size
),
4101 journal_modify_block_end(hfsmp
->jnl
, alt_bp
, NULL
, NULL
);
4103 (void) VNOP_BWRITE(alt_bp
);
4105 } else if (alt_bp
) {
4111 * Flush out alternate volume header located at 1024 bytes before
4112 * end of the partition as part of journal transaction. In
4113 * most cases, this will be the only alternate volume header
4114 * that we need to worry about because the file system size is
4115 * same as the partition size, therefore hfs_fs_avh_sector is
4116 * same as hfs_partition_avh_sector. This is the "priority" AVH.
4118 * However, do not always put this I/O into the journal. If we skipped the
4119 * FS-Size AVH write above, then we will put this I/O into the journal as
4120 * that indicates the two were in sync. However, if the FS size is
4121 * not the same as the partition size, we are tracking two. We don't
4122 * put it in the journal in that case, since if the partition
4123 * size changes between uptimes, and we need to replay the journal,
4124 * this I/O could generate an EIO if during replay it is now trying
4125 * to access blocks beyond the device EOF.
4127 if (hfsmp
->hfs_partition_avh_sector
) {
4128 if (buf_meta_bread(hfsmp
->hfs_devvp
,
4129 HFS_PHYSBLK_ROUNDDOWN(hfsmp
->hfs_partition_avh_sector
, hfsmp
->hfs_log_per_phys
),
4130 hfsmp
->hfs_physical_block_size
, NOCRED
, &alt_bp
) == 0) {
4132 /* only one AVH, put this I/O in the journal. */
4133 if ((hfsmp
->jnl
) && (hfsmp
->hfs_partition_avh_sector
== hfsmp
->hfs_fs_avh_sector
)) {
4134 journal_modify_block_start(hfsmp
->jnl
, alt_bp
);
4137 bcopy(volumeHeader
, (char *)buf_dataptr(alt_bp
) +
4138 HFS_ALT_OFFSET(hfsmp
->hfs_physical_block_size
),
4141 /* If journaled and we only have one AVH to track */
4142 if ((hfsmp
->jnl
) && (hfsmp
->hfs_partition_avh_sector
== hfsmp
->hfs_fs_avh_sector
)) {
4143 journal_modify_block_end (hfsmp
->jnl
, alt_bp
, NULL
, NULL
);
4146 * If we don't have a journal or there are two AVH's at the
4147 * moment, then this one doesn't go in the journal. Note that
4148 * this one may generate I/O errors, since the partition
4149 * can be resized behind our backs at any moment and this I/O
4150 * may now appear to be beyond the device EOF.
4152 (void) VNOP_BWRITE(alt_bp
);
4153 (void) VNOP_IOCTL(hfsmp
->hfs_devvp
, DKIOCSYNCHRONIZECACHE
,
4154 NULL
, FWRITE
, NULL
);
4156 } else if (alt_bp
) {
4162 /* Finish modifying the block for the primary VH */
4164 journal_modify_block_end(hfsmp
->jnl
, bp
, NULL
, NULL
);
4166 if (waitfor
!= MNT_WAIT
) {
4169 retval
= VNOP_BWRITE(bp
);
4170 /* When critical data changes, flush the device cache */
4171 if (critical
&& (retval
== 0)) {
4172 (void) VNOP_IOCTL(hfsmp
->hfs_devvp
, DKIOCSYNCHRONIZECACHE
,
4173 NULL
, FWRITE
, NULL
);
4177 hfs_end_transaction(hfsmp
);
4186 hfs_end_transaction(hfsmp
);
4192 * Creates a UUID from a unique "name" in the HFS UUID Name space.
4193 * See version 3 UUID.
4196 hfs_getvoluuid(struct hfsmount
*hfsmp
, uuid_t result
)
4201 ((uint32_t *)rawUUID
)[0] = hfsmp
->vcbFndrInfo
[6];
4202 ((uint32_t *)rawUUID
)[1] = hfsmp
->vcbFndrInfo
[7];
4205 MD5Update( &md5c
, HFS_UUID_NAMESPACE_ID
, sizeof( uuid_t
) );
4206 MD5Update( &md5c
, rawUUID
, sizeof (rawUUID
) );
4207 MD5Final( result
, &md5c
);
4209 result
[6] = 0x30 | ( result
[6] & 0x0F );
4210 result
[8] = 0x80 | ( result
[8] & 0x3F );
4214 * Get file system attributes.
4217 hfs_vfs_getattr(struct mount
*mp
, struct vfs_attr
*fsap
, __unused vfs_context_t context
)
4219 #define HFS_ATTR_CMN_VALIDMASK ATTR_CMN_VALIDMASK
4220 #define HFS_ATTR_FILE_VALIDMASK (ATTR_FILE_VALIDMASK & ~(ATTR_FILE_FILETYPE | ATTR_FILE_FORKCOUNT | ATTR_FILE_FORKLIST))
4221 #define HFS_ATTR_CMN_VOL_VALIDMASK (ATTR_CMN_VALIDMASK & ~(ATTR_CMN_ACCTIME))
4223 ExtendedVCB
*vcb
= VFSTOVCB(mp
);
4224 struct hfsmount
*hfsmp
= VFSTOHFS(mp
);
4225 u_int32_t freeCNIDs
;
4227 int searchfs_on
= 0;
4228 int exchangedata_on
= 1;
4235 if (cp_fs_protected(mp
)) {
4236 exchangedata_on
= 0;
4240 freeCNIDs
= (u_int32_t
)0xFFFFFFFF - (u_int32_t
)hfsmp
->vcbNxtCNID
;
4242 VFSATTR_RETURN(fsap
, f_objcount
, (u_int64_t
)hfsmp
->vcbFilCnt
+ (u_int64_t
)hfsmp
->vcbDirCnt
);
4243 VFSATTR_RETURN(fsap
, f_filecount
, (u_int64_t
)hfsmp
->vcbFilCnt
);
4244 VFSATTR_RETURN(fsap
, f_dircount
, (u_int64_t
)hfsmp
->vcbDirCnt
);
4245 VFSATTR_RETURN(fsap
, f_maxobjcount
, (u_int64_t
)0xFFFFFFFF);
4246 VFSATTR_RETURN(fsap
, f_iosize
, (size_t)cluster_max_io_size(mp
, 0));
4247 VFSATTR_RETURN(fsap
, f_blocks
, (u_int64_t
)hfsmp
->totalBlocks
);
4248 VFSATTR_RETURN(fsap
, f_bfree
, (u_int64_t
)hfs_freeblks(hfsmp
, 0));
4249 VFSATTR_RETURN(fsap
, f_bavail
, (u_int64_t
)hfs_freeblks(hfsmp
, 1));
4250 VFSATTR_RETURN(fsap
, f_bsize
, (u_int32_t
)vcb
->blockSize
);
4251 /* XXX needs clarification */
4252 VFSATTR_RETURN(fsap
, f_bused
, hfsmp
->totalBlocks
- hfs_freeblks(hfsmp
, 1));
4253 /* Maximum files is constrained by total blocks. */
4254 VFSATTR_RETURN(fsap
, f_files
, (u_int64_t
)(hfsmp
->totalBlocks
- 2));
4255 VFSATTR_RETURN(fsap
, f_ffree
, MIN((u_int64_t
)freeCNIDs
, (u_int64_t
)hfs_freeblks(hfsmp
, 1)));
4257 fsap
->f_fsid
.val
[0] = hfsmp
->hfs_raw_dev
;
4258 fsap
->f_fsid
.val
[1] = vfs_typenum(mp
);
4259 VFSATTR_SET_SUPPORTED(fsap
, f_fsid
);
4261 VFSATTR_RETURN(fsap
, f_signature
, vcb
->vcbSigWord
);
4262 VFSATTR_RETURN(fsap
, f_carbon_fsid
, 0);
4264 if (VFSATTR_IS_ACTIVE(fsap
, f_capabilities
)) {
4265 vol_capabilities_attr_t
*cap
;
4267 cap
= &fsap
->f_capabilities
;
4269 if ((hfsmp
->hfs_flags
& HFS_STANDARD
) == 0) {
4270 /* HFS+ & variants */
4271 cap
->capabilities
[VOL_CAPABILITIES_FORMAT
] =
4272 VOL_CAP_FMT_PERSISTENTOBJECTIDS
|
4273 VOL_CAP_FMT_SYMBOLICLINKS
|
4274 VOL_CAP_FMT_HARDLINKS
|
4275 VOL_CAP_FMT_JOURNAL
|
4276 VOL_CAP_FMT_ZERO_RUNS
|
4277 (hfsmp
->jnl
? VOL_CAP_FMT_JOURNAL_ACTIVE
: 0) |
4278 (hfsmp
->hfs_flags
& HFS_CASE_SENSITIVE
? VOL_CAP_FMT_CASE_SENSITIVE
: 0) |
4279 VOL_CAP_FMT_CASE_PRESERVING
|
4280 VOL_CAP_FMT_FAST_STATFS
|
4281 VOL_CAP_FMT_2TB_FILESIZE
|
4282 VOL_CAP_FMT_HIDDEN_FILES
|
4284 VOL_CAP_FMT_PATH_FROM_ID
|
4285 VOL_CAP_FMT_DECMPFS_COMPRESSION
;
4287 VOL_CAP_FMT_PATH_FROM_ID
;
4293 cap
->capabilities
[VOL_CAPABILITIES_FORMAT
] =
4294 VOL_CAP_FMT_PERSISTENTOBJECTIDS
|
4295 VOL_CAP_FMT_CASE_PRESERVING
|
4296 VOL_CAP_FMT_FAST_STATFS
|
4297 VOL_CAP_FMT_HIDDEN_FILES
|
4298 VOL_CAP_FMT_PATH_FROM_ID
;
4303 * The capabilities word in 'cap' tell you whether or not
4304 * this particular filesystem instance has feature X enabled.
4307 cap
->capabilities
[VOL_CAPABILITIES_INTERFACES
] =
4308 VOL_CAP_INT_ATTRLIST
|
4309 VOL_CAP_INT_NFSEXPORT
|
4310 VOL_CAP_INT_READDIRATTR
|
4311 VOL_CAP_INT_ALLOCATE
|
4312 VOL_CAP_INT_VOL_RENAME
|
4313 VOL_CAP_INT_ADVLOCK
|
4316 VOL_CAP_INT_EXTENDED_ATTR
|
4317 VOL_CAP_INT_NAMEDSTREAMS
;
4319 VOL_CAP_INT_EXTENDED_ATTR
;
4322 /* HFS may conditionally support searchfs and exchangedata depending on the runtime */
4325 cap
->capabilities
[VOL_CAPABILITIES_INTERFACES
] |= VOL_CAP_INT_SEARCHFS
;
4327 if (exchangedata_on
) {
4328 cap
->capabilities
[VOL_CAPABILITIES_INTERFACES
] |= VOL_CAP_INT_EXCHANGEDATA
;
4331 cap
->capabilities
[VOL_CAPABILITIES_RESERVED1
] = 0;
4332 cap
->capabilities
[VOL_CAPABILITIES_RESERVED2
] = 0;
4334 cap
->valid
[VOL_CAPABILITIES_FORMAT
] =
4335 VOL_CAP_FMT_PERSISTENTOBJECTIDS
|
4336 VOL_CAP_FMT_SYMBOLICLINKS
|
4337 VOL_CAP_FMT_HARDLINKS
|
4338 VOL_CAP_FMT_JOURNAL
|
4339 VOL_CAP_FMT_JOURNAL_ACTIVE
|
4340 VOL_CAP_FMT_NO_ROOT_TIMES
|
4341 VOL_CAP_FMT_SPARSE_FILES
|
4342 VOL_CAP_FMT_ZERO_RUNS
|
4343 VOL_CAP_FMT_CASE_SENSITIVE
|
4344 VOL_CAP_FMT_CASE_PRESERVING
|
4345 VOL_CAP_FMT_FAST_STATFS
|
4346 VOL_CAP_FMT_2TB_FILESIZE
|
4347 VOL_CAP_FMT_OPENDENYMODES
|
4348 VOL_CAP_FMT_HIDDEN_FILES
|
4350 VOL_CAP_FMT_PATH_FROM_ID
|
4351 VOL_CAP_FMT_DECMPFS_COMPRESSION
;
4353 VOL_CAP_FMT_PATH_FROM_ID
;
4357 * Bits in the "valid" field tell you whether or not the on-disk
4358 * format supports feature X.
4361 cap
->valid
[VOL_CAPABILITIES_INTERFACES
] =
4362 VOL_CAP_INT_ATTRLIST
|
4363 VOL_CAP_INT_NFSEXPORT
|
4364 VOL_CAP_INT_READDIRATTR
|
4365 VOL_CAP_INT_COPYFILE
|
4366 VOL_CAP_INT_ALLOCATE
|
4367 VOL_CAP_INT_VOL_RENAME
|
4368 VOL_CAP_INT_ADVLOCK
|
4370 VOL_CAP_INT_MANLOCK
|
4372 VOL_CAP_INT_EXTENDED_ATTR
|
4373 VOL_CAP_INT_NAMEDSTREAMS
;
4375 VOL_CAP_INT_EXTENDED_ATTR
;
4378 /* HFS always supports exchangedata and searchfs in the on-disk format natively */
4379 cap
->valid
[VOL_CAPABILITIES_INTERFACES
] |= (VOL_CAP_INT_SEARCHFS
| VOL_CAP_INT_EXCHANGEDATA
);
4382 cap
->valid
[VOL_CAPABILITIES_RESERVED1
] = 0;
4383 cap
->valid
[VOL_CAPABILITIES_RESERVED2
] = 0;
4384 VFSATTR_SET_SUPPORTED(fsap
, f_capabilities
);
4386 if (VFSATTR_IS_ACTIVE(fsap
, f_attributes
)) {
4387 vol_attributes_attr_t
*attrp
= &fsap
->f_attributes
;
4389 attrp
->validattr
.commonattr
= HFS_ATTR_CMN_VOL_VALIDMASK
;
4390 attrp
->validattr
.volattr
= ATTR_VOL_VALIDMASK
& ~ATTR_VOL_INFO
;
4391 attrp
->validattr
.dirattr
= ATTR_DIR_VALIDMASK
;
4392 attrp
->validattr
.fileattr
= HFS_ATTR_FILE_VALIDMASK
;
4393 attrp
->validattr
.forkattr
= 0;
4395 attrp
->nativeattr
.commonattr
= HFS_ATTR_CMN_VOL_VALIDMASK
;
4396 attrp
->nativeattr
.volattr
= ATTR_VOL_VALIDMASK
& ~ATTR_VOL_INFO
;
4397 attrp
->nativeattr
.dirattr
= ATTR_DIR_VALIDMASK
;
4398 attrp
->nativeattr
.fileattr
= HFS_ATTR_FILE_VALIDMASK
;
4399 attrp
->nativeattr
.forkattr
= 0;
4400 VFSATTR_SET_SUPPORTED(fsap
, f_attributes
);
4402 fsap
->f_create_time
.tv_sec
= hfsmp
->hfs_itime
;
4403 fsap
->f_create_time
.tv_nsec
= 0;
4404 VFSATTR_SET_SUPPORTED(fsap
, f_create_time
);
4405 fsap
->f_modify_time
.tv_sec
= hfsmp
->vcbLsMod
;
4406 fsap
->f_modify_time
.tv_nsec
= 0;
4407 VFSATTR_SET_SUPPORTED(fsap
, f_modify_time
);
4409 fsap
->f_backup_time
.tv_sec
= hfsmp
->vcbVolBkUp
;
4410 fsap
->f_backup_time
.tv_nsec
= 0;
4411 VFSATTR_SET_SUPPORTED(fsap
, f_backup_time
);
4412 if (VFSATTR_IS_ACTIVE(fsap
, f_fssubtype
)) {
4413 u_int16_t subtype
= 0;
4416 * Subtypes (flavors) for HFS
4417 * 0: Mac OS Extended
4418 * 1: Mac OS Extended (Journaled)
4419 * 2: Mac OS Extended (Case Sensitive)
4420 * 3: Mac OS Extended (Case Sensitive, Journaled)
4422 * 128: Mac OS Standard
4425 if ((hfsmp
->hfs_flags
& HFS_STANDARD
) == 0) {
4427 subtype
|= HFS_SUBTYPE_JOURNALED
;
4429 if (hfsmp
->hfs_flags
& HFS_CASE_SENSITIVE
) {
4430 subtype
|= HFS_SUBTYPE_CASESENSITIVE
;
4435 subtype
= HFS_SUBTYPE_STANDARDHFS
;
4438 fsap
->f_fssubtype
= subtype
;
4439 VFSATTR_SET_SUPPORTED(fsap
, f_fssubtype
);
4442 if (VFSATTR_IS_ACTIVE(fsap
, f_vol_name
)) {
4443 strlcpy(fsap
->f_vol_name
, (char *) hfsmp
->vcbVN
, MAXPATHLEN
);
4444 VFSATTR_SET_SUPPORTED(fsap
, f_vol_name
);
4446 if (VFSATTR_IS_ACTIVE(fsap
, f_uuid
)) {
4447 hfs_getvoluuid(hfsmp
, fsap
->f_uuid
);
4448 VFSATTR_SET_SUPPORTED(fsap
, f_uuid
);
4454 * Perform a volume rename. Requires the FS' root vp.
4457 hfs_rename_volume(struct vnode
*vp
, const char *name
, proc_t p
)
4459 ExtendedVCB
*vcb
= VTOVCB(vp
);
4460 struct cnode
*cp
= VTOC(vp
);
4461 struct hfsmount
*hfsmp
= VTOHFS(vp
);
4462 struct cat_desc to_desc
;
4463 struct cat_desc todir_desc
;
4464 struct cat_desc new_desc
;
4465 cat_cookie_t cookie
;
4468 char converted_volname
[256];
4469 size_t volname_length
= 0;
4470 size_t conv_volname_length
= 0;
4474 * Ignore attempts to rename a volume to a zero-length name.
4479 bzero(&to_desc
, sizeof(to_desc
));
4480 bzero(&todir_desc
, sizeof(todir_desc
));
4481 bzero(&new_desc
, sizeof(new_desc
));
4482 bzero(&cookie
, sizeof(cookie
));
4484 todir_desc
.cd_parentcnid
= kHFSRootParentID
;
4485 todir_desc
.cd_cnid
= kHFSRootFolderID
;
4486 todir_desc
.cd_flags
= CD_ISDIR
;
4488 to_desc
.cd_nameptr
= (const u_int8_t
*)name
;
4489 to_desc
.cd_namelen
= strlen(name
);
4490 to_desc
.cd_parentcnid
= kHFSRootParentID
;
4491 to_desc
.cd_cnid
= cp
->c_cnid
;
4492 to_desc
.cd_flags
= CD_ISDIR
;
4494 if ((error
= hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
)) == 0) {
4495 if ((error
= hfs_start_transaction(hfsmp
)) == 0) {
4496 if ((error
= cat_preflight(hfsmp
, CAT_RENAME
, &cookie
, p
)) == 0) {
4497 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_EXCLUSIVE_LOCK
);
4499 error
= cat_rename(hfsmp
, &cp
->c_desc
, &todir_desc
, &to_desc
, &new_desc
);
4502 * If successful, update the name in the VCB, ensure it's terminated.
4505 strlcpy((char *)vcb
->vcbVN
, name
, sizeof(vcb
->vcbVN
));
4507 volname_length
= strlen ((const char*)vcb
->vcbVN
);
4508 #define DKIOCCSSETLVNAME _IOW('d', 198, char[256])
4509 /* Send the volume name down to CoreStorage if necessary */
4510 error
= utf8_normalizestr(vcb
->vcbVN
, volname_length
, (u_int8_t
*)converted_volname
, &conv_volname_length
, 256, UTF_PRECOMPOSED
);
4512 (void) VNOP_IOCTL (hfsmp
->hfs_devvp
, DKIOCCSSETLVNAME
, converted_volname
, 0, vfs_context_current());
4517 hfs_systemfile_unlock(hfsmp
, lockflags
);
4518 cat_postflight(hfsmp
, &cookie
, p
);
4522 (void) hfs_flushvolumeheader(hfsmp
, MNT_WAIT
, 0);
4524 hfs_end_transaction(hfsmp
);
4527 /* Release old allocated name buffer */
4528 if (cp
->c_desc
.cd_flags
& CD_HASBUF
) {
4529 const char *tmp_name
= (const char *)cp
->c_desc
.cd_nameptr
;
4531 cp
->c_desc
.cd_nameptr
= 0;
4532 cp
->c_desc
.cd_namelen
= 0;
4533 cp
->c_desc
.cd_flags
&= ~CD_HASBUF
;
4534 vfs_removename(tmp_name
);
4536 /* Update cnode's catalog descriptor */
4537 replace_desc(cp
, &new_desc
);
4538 vcb
->volumeNameEncodingHint
= new_desc
.cd_encoding
;
4539 cp
->c_touch_chgtime
= TRUE
;
4549 * Get file system attributes.
4552 hfs_vfs_setattr(struct mount
*mp
, struct vfs_attr
*fsap
, __unused vfs_context_t context
)
4554 kauth_cred_t cred
= vfs_context_ucred(context
);
4558 * Must be superuser or owner of filesystem to change volume attributes
4560 if (!kauth_cred_issuser(cred
) && (kauth_cred_getuid(cred
) != vfs_statfs(mp
)->f_owner
))
4563 if (VFSATTR_IS_ACTIVE(fsap
, f_vol_name
)) {
4566 error
= hfs_vfs_root(mp
, &root_vp
, context
);
4570 error
= hfs_rename_volume(root_vp
, fsap
->f_vol_name
, vfs_context_proc(context
));
4571 (void) vnode_put(root_vp
);
4575 VFSATTR_SET_SUPPORTED(fsap
, f_vol_name
);
4582 /* If a runtime corruption is detected, set the volume inconsistent
4583 * bit in the volume attributes. The volume inconsistent bit is a persistent
4584 * bit which represents that the volume is corrupt and needs repair.
4585 * The volume inconsistent bit can be set from the kernel when it detects
4586 * runtime corruption or from file system repair utilities like fsck_hfs when
4587 * a repair operation fails. The bit should be cleared only from file system
4588 * verify/repair utility like fsck_hfs when a verify/repair succeeds.
4591 void hfs_mark_inconsistent(struct hfsmount
*hfsmp
,
4592 hfs_inconsistency_reason_t reason
)
4594 hfs_lock_mount (hfsmp
);
4595 if ((hfsmp
->vcbAtrb
& kHFSVolumeInconsistentMask
) == 0) {
4596 hfsmp
->vcbAtrb
|= kHFSVolumeInconsistentMask
;
4597 MarkVCBDirty(hfsmp
);
4599 if ((hfsmp
->hfs_flags
& HFS_READ_ONLY
)==0) {
4601 case HFS_INCONSISTENCY_DETECTED
:
4602 printf("hfs_mark_inconsistent: Runtime corruption detected on %s, fsck will be forced on next mount.\n",
4605 case HFS_ROLLBACK_FAILED
:
4606 printf("hfs_mark_inconsistent: Failed to roll back; volume `%s' might be inconsistent; fsck will be forced on next mount.\n",
4609 case HFS_OP_INCOMPLETE
:
4610 printf("hfs_mark_inconsistent: Failed to complete operation; volume `%s' might be inconsistent; fsck will be forced on next mount.\n",
4613 case HFS_FSCK_FORCED
:
4614 printf("hfs_mark_inconsistent: fsck requested for `%s'; fsck will be forced on next mount.\n",
4619 hfs_unlock_mount (hfsmp
);
4622 /* Replay the journal on the device node provided. Returns zero if
4623 * journal replay succeeded or no journal was supposed to be replayed.
4625 static int hfs_journal_replay(vnode_t devvp
, vfs_context_t context
)
4629 struct mount
*mp
= NULL
;
4630 struct hfs_mount_args
*args
= NULL
;
4632 /* Replay allowed only on raw devices */
4633 if (!vnode_ischr(devvp
) && !vnode_isblk(devvp
)) {
4638 /* Create dummy mount structures */
4639 MALLOC(mp
, struct mount
*, sizeof(struct mount
), M_TEMP
, M_WAITOK
);
4644 bzero(mp
, sizeof(struct mount
));
4645 mount_lock_init(mp
);
4647 MALLOC(args
, struct hfs_mount_args
*, sizeof(struct hfs_mount_args
), M_TEMP
, M_WAITOK
);
4652 bzero(args
, sizeof(struct hfs_mount_args
));
4654 retval
= hfs_mountfs(devvp
, mp
, args
, 1, context
);
4655 buf_flushdirtyblks(devvp
, TRUE
, 0, "hfs_journal_replay");
4657 /* FSYNC the devnode to be sure all data has been flushed */
4658 error
= VNOP_FSYNC(devvp
, MNT_WAIT
, context
);
4665 mount_lock_destroy(mp
);
4679 hfs_syncer_free(struct hfsmount
*hfsmp
)
4681 if (hfsmp
&& hfsmp
->hfs_syncer
) {
4682 hfs_syncer_lock(hfsmp
);
4685 * First, make sure everything else knows we don't want any more
4688 thread_call_t syncer
= hfsmp
->hfs_syncer
;
4689 hfsmp
->hfs_syncer
= NULL
;
4691 hfs_syncer_unlock(hfsmp
);
4693 // Now deal with requests that are outstanding
4694 if (hfsmp
->hfs_sync_incomplete
) {
4695 if (thread_call_cancel(syncer
)) {
4696 // We managed to cancel the timer so we're done
4697 hfsmp
->hfs_sync_incomplete
= FALSE
;
4699 // Syncer must be running right now so we have to wait
4700 hfs_syncer_lock(hfsmp
);
4701 while (hfsmp
->hfs_sync_incomplete
)
4702 hfs_syncer_wait(hfsmp
);
4703 hfs_syncer_unlock(hfsmp
);
4707 // Now we're safe to free the syncer
4708 thread_call_free(syncer
);
4713 * hfs vfs operations.
4715 struct vfsops hfs_vfsops
= {
4721 hfs_vfs_getattr
, /* was hfs_statfs */