2 * Copyright (c) 2010 Apple Computer, Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 #include <kern/kern_types.h>
33 #include <kern/ledger.h>
34 #include <kern/kalloc.h>
35 #include <kern/task.h>
37 #include <kern/processor.h>
38 #include <kern/machine.h>
39 #include <kern/queue.h>
40 #include <sys/errno.h>
42 #include <libkern/OSAtomic.h>
43 #include <mach/mach_types.h>
46 * Ledger entry flags. Bits in second nibble (masked by 0xF0) are used for
47 * ledger actions (LEDGER_ACTION_BLOCK, etc).
49 #define LF_ENTRY_ACTIVE 0x0001 /* entry is active if set */
50 #define LF_WAKE_NEEDED 0x0100 /* one or more threads are asleep */
51 #define LF_WAKE_INPROGRESS 0x0200 /* the wait queue is being processed */
52 #define LF_REFILL_SCHEDULED 0x0400 /* a refill timer has been set */
53 #define LF_REFILL_INPROGRESS 0x0800 /* the ledger is being refilled */
54 #define LF_CALLED_BACK 0x1000 /* callback was called for balance in deficit */
55 #define LF_WARNED 0x2000 /* callback was called for balance warning */
56 #define LF_TRACKING_MAX 0x4000 /* track max balance over user-specfied time */
57 #define LF_PANIC_ON_NEGATIVE 0x8000 /* panic if it goes negative */
59 /* Determine whether a ledger entry exists and has been initialized and active */
60 #define ENTRY_VALID(l, e) \
61 (((l) != NULL) && ((e) >= 0) && ((e) < (l)->l_size) && \
62 (((l)->l_entries[e].le_flags & LF_ENTRY_ACTIVE) == LF_ENTRY_ACTIVE))
64 #define ASSERT(a) assert(a)
69 #define lprintf(a) if (ledger_debug) { \
70 printf("%lld ", abstime_to_nsecs(mach_absolute_time() / 1000000)); \
77 struct ledger_callback
{
78 ledger_callback_t lc_func
;
79 const void *lc_param0
;
80 const void *lc_param1
;
83 struct entry_template
{
84 char et_key
[LEDGER_NAME_MAX
];
85 char et_group
[LEDGER_NAME_MAX
];
86 char et_units
[LEDGER_NAME_MAX
];
88 struct ledger_callback
*et_callback
;
91 lck_grp_t ledger_lck_grp
;
94 * Modifying the reference count, table size, or table contents requires
95 * holding the lt_lock. Modfying the table address requires both lt_lock
96 * and setting the inuse bit. This means that the lt_entries field can be
97 * safely dereferenced if you hold either the lock or the inuse bit. The
98 * inuse bit exists solely to allow us to swap in a new, larger entries
99 * table without requiring a full lock to be acquired on each lookup.
100 * Accordingly, the inuse bit should never be held for longer than it takes
101 * to extract a value from the table - i.e., 2 or 3 memory references.
103 struct ledger_template
{
108 volatile uint32_t lt_inuse
;
110 struct entry_template
*lt_entries
;
113 #define template_lock(template) lck_mtx_lock(&(template)->lt_lock)
114 #define template_unlock(template) lck_mtx_unlock(&(template)->lt_lock)
116 #define TEMPLATE_INUSE(s, t) { \
118 while (OSCompareAndSwap(0, 1, &((t)->lt_inuse))) \
122 #define TEMPLATE_IDLE(s, t) { \
128 * Use 2 "tocks" to track the rolling maximum balance of a ledger entry.
132 * The explicit alignment is to ensure that atomic operations don't panic
135 struct ledger_entry
{
136 volatile uint32_t le_flags
;
137 ledger_amount_t le_limit
;
138 ledger_amount_t le_warn_level
;
139 volatile ledger_amount_t le_credit
__attribute__((aligned(8)));
140 volatile ledger_amount_t le_debit
__attribute__((aligned(8)));
144 * XXX - the following two fields can go away if we move all of
145 * the refill logic into process policy
147 uint64_t le_refill_period
;
148 uint64_t le_last_refill
;
151 uint32_t le_max
; /* Lower 32-bits of observed max balance */
152 uint32_t le_time
; /* time when this peak was observed */
155 } __attribute__((aligned(8)));
159 struct ledger_template
*l_template
;
162 struct ledger_entry
*l_entries
;
165 static int ledger_cnt
= 0;
166 /* ledger ast helper functions */
167 static uint32_t ledger_check_needblock(ledger_t l
, uint64_t now
);
168 static kern_return_t
ledger_perform_blocking(ledger_t l
);
169 static uint32_t flag_set(volatile uint32_t *flags
, uint32_t bit
);
170 static uint32_t flag_clear(volatile uint32_t *flags
, uint32_t bit
);
174 debug_callback(const void *p0
, __unused
const void *p1
)
176 printf("ledger: resource exhausted [%s] for task %p\n",
177 (const char *)p0
, p1
);
181 /************************************/
184 abstime_to_nsecs(uint64_t abstime
)
188 absolutetime_to_nanoseconds(abstime
, &nsecs
);
193 nsecs_to_abstime(uint64_t nsecs
)
197 nanoseconds_to_absolutetime(nsecs
, &abstime
);
204 lck_grp_init(&ledger_lck_grp
, "ledger", LCK_GRP_ATTR_NULL
);
208 ledger_template_create(const char *name
)
210 ledger_template_t
template;
212 template = (ledger_template_t
)kalloc(sizeof (*template));
213 if (template == NULL
)
216 template->lt_name
= name
;
217 template->lt_refs
= 1;
218 template->lt_cnt
= 0;
219 template->lt_table_size
= 1;
220 template->lt_inuse
= 0;
221 lck_mtx_init(&template->lt_lock
, &ledger_lck_grp
, LCK_ATTR_NULL
);
223 template->lt_entries
= (struct entry_template
*)
224 kalloc(sizeof (struct entry_template
) * template->lt_table_size
);
225 if (template->lt_entries
== NULL
) {
226 kfree(template, sizeof (*template));
234 ledger_template_dereference(ledger_template_t
template)
236 template_lock(template);
238 template_unlock(template);
240 if (template->lt_refs
== 0)
241 kfree(template, sizeof (*template));
245 * Add a new entry to the list of entries in a ledger template. There is
246 * currently no mechanism to remove an entry. Implementing such a mechanism
247 * would require us to maintain per-entry reference counts, which we would
248 * prefer to avoid if possible.
251 ledger_entry_add(ledger_template_t
template, const char *key
,
252 const char *group
, const char *units
)
255 struct entry_template
*et
;
257 if ((key
== NULL
) || (strlen(key
) >= LEDGER_NAME_MAX
))
260 template_lock(template);
262 /* If the table is full, attempt to double its size */
263 if (template->lt_cnt
== template->lt_table_size
) {
264 struct entry_template
*new_entries
, *old_entries
;
268 old_cnt
= template->lt_table_size
;
269 old_sz
= (int)(old_cnt
* sizeof (struct entry_template
));
270 new_entries
= kalloc(old_sz
* 2);
271 if (new_entries
== NULL
) {
272 template_unlock(template);
275 memcpy(new_entries
, template->lt_entries
, old_sz
);
276 memset(((char *)new_entries
) + old_sz
, 0, old_sz
);
277 template->lt_table_size
= old_cnt
* 2;
279 old_entries
= template->lt_entries
;
281 TEMPLATE_INUSE(s
, template);
282 template->lt_entries
= new_entries
;
283 TEMPLATE_IDLE(s
, template);
285 kfree(old_entries
, old_sz
);
288 et
= &template->lt_entries
[template->lt_cnt
];
289 strlcpy(et
->et_key
, key
, LEDGER_NAME_MAX
);
290 strlcpy(et
->et_group
, group
, LEDGER_NAME_MAX
);
291 strlcpy(et
->et_units
, units
, LEDGER_NAME_MAX
);
292 et
->et_flags
= LF_ENTRY_ACTIVE
;
293 et
->et_callback
= NULL
;
295 idx
= template->lt_cnt
++;
296 template_unlock(template);
303 ledger_entry_setactive(ledger_t ledger
, int entry
)
305 struct ledger_entry
*le
;
307 if ((ledger
== NULL
) || (entry
< 0) || (entry
>= ledger
->l_size
))
308 return (KERN_INVALID_ARGUMENT
);
310 le
= &ledger
->l_entries
[entry
];
311 if ((le
->le_flags
& LF_ENTRY_ACTIVE
) == 0) {
312 flag_set(&le
->le_flags
, LF_ENTRY_ACTIVE
);
314 return (KERN_SUCCESS
);
319 ledger_key_lookup(ledger_template_t
template, const char *key
)
323 template_lock(template);
324 for (idx
= 0; idx
< template->lt_cnt
; idx
++)
325 if (template->lt_entries
[idx
].et_key
&&
326 (strcmp(key
, template->lt_entries
[idx
].et_key
) == 0))
329 if (idx
>= template->lt_cnt
)
331 template_unlock(template);
337 * Create a new ledger based on the specified template. As part of the
338 * ledger creation we need to allocate space for a table of ledger entries.
339 * The size of the table is based on the size of the template at the time
340 * the ledger is created. If additional entries are added to the template
341 * after the ledger is created, they will not be tracked in this ledger.
344 ledger_instantiate(ledger_template_t
template, int entry_type
)
350 ledger
= (ledger_t
)kalloc(sizeof (struct ledger
));
352 return (LEDGER_NULL
);
354 ledger
->l_template
= template;
355 ledger
->l_id
= ledger_cnt
++;
358 template_lock(template);
360 ledger
->l_size
= template->lt_cnt
;
361 template_unlock(template);
363 sz
= ledger
->l_size
* sizeof (struct ledger_entry
);
364 ledger
->l_entries
= kalloc(sz
);
365 if (sz
&& (ledger
->l_entries
== NULL
)) {
366 ledger_template_dereference(template);
367 kfree(ledger
, sizeof(struct ledger
));
368 return (LEDGER_NULL
);
371 template_lock(template);
372 assert(ledger
->l_size
<= template->lt_cnt
);
373 for (i
= 0; i
< ledger
->l_size
; i
++) {
374 struct ledger_entry
*le
= &ledger
->l_entries
[i
];
375 struct entry_template
*et
= &template->lt_entries
[i
];
377 le
->le_flags
= et
->et_flags
;
378 /* make entry inactive by removing active bit */
379 if (entry_type
== LEDGER_CREATE_INACTIVE_ENTRIES
)
380 flag_clear(&le
->le_flags
, LF_ENTRY_ACTIVE
);
382 * If template has a callback, this entry is opted-in,
385 if (et
->et_callback
!= NULL
)
386 flag_set(&le
->le_flags
, LEDGER_ACTION_CALLBACK
);
389 le
->le_limit
= LEDGER_LIMIT_INFINITY
;
390 le
->le_warn_level
= LEDGER_LIMIT_INFINITY
;
391 le
->_le
.le_refill
.le_refill_period
= 0;
392 le
->_le
.le_refill
.le_last_refill
= 0;
394 template_unlock(template);
400 flag_set(volatile uint32_t *flags
, uint32_t bit
)
402 return (OSBitOrAtomic(bit
, flags
));
406 flag_clear(volatile uint32_t *flags
, uint32_t bit
)
408 return (OSBitAndAtomic(~bit
, flags
));
412 * Take a reference on a ledger
415 ledger_reference(ledger_t ledger
)
417 if (!LEDGER_VALID(ledger
))
418 return (KERN_INVALID_ARGUMENT
);
419 OSIncrementAtomic(&ledger
->l_refs
);
420 return (KERN_SUCCESS
);
424 ledger_reference_count(ledger_t ledger
)
426 if (!LEDGER_VALID(ledger
))
429 return (ledger
->l_refs
);
433 * Remove a reference on a ledger. If this is the last reference,
434 * deallocate the unused ledger.
437 ledger_dereference(ledger_t ledger
)
441 if (!LEDGER_VALID(ledger
))
442 return (KERN_INVALID_ARGUMENT
);
444 v
= OSDecrementAtomic(&ledger
->l_refs
);
447 /* Just released the last reference. Free it. */
449 kfree(ledger
->l_entries
,
450 ledger
->l_size
* sizeof (struct ledger_entry
));
451 kfree(ledger
, sizeof (*ledger
));
454 return (KERN_SUCCESS
);
458 * Determine whether an entry has exceeded its warning level.
461 warn_level_exceeded(struct ledger_entry
*le
)
463 ledger_amount_t balance
;
465 assert((le
->le_credit
>= 0) && (le
->le_debit
>= 0));
468 * XXX - Currently, we only support warnings for ledgers which
469 * use positive limits.
471 balance
= le
->le_credit
- le
->le_debit
;
472 if ((le
->le_warn_level
!= LEDGER_LIMIT_INFINITY
) && (balance
> le
->le_warn_level
))
478 * Determine whether an entry has exceeded its limit.
481 limit_exceeded(struct ledger_entry
*le
)
483 ledger_amount_t balance
;
485 assert((le
->le_credit
>= 0) && (le
->le_debit
>= 0));
487 balance
= le
->le_credit
- le
->le_debit
;
488 if ((le
->le_limit
<= 0) && (balance
< le
->le_limit
))
491 if ((le
->le_limit
> 0) && (balance
> le
->le_limit
))
496 static inline struct ledger_callback
*
497 entry_get_callback(ledger_t ledger
, int entry
)
499 struct ledger_callback
*callback
;
502 TEMPLATE_INUSE(s
, ledger
->l_template
);
503 callback
= ledger
->l_template
->lt_entries
[entry
].et_callback
;
504 TEMPLATE_IDLE(s
, ledger
->l_template
);
510 * If the ledger value is positive, wake up anybody waiting on it.
513 ledger_limit_entry_wakeup(struct ledger_entry
*le
)
517 if (!limit_exceeded(le
)) {
518 flags
= flag_clear(&le
->le_flags
, LF_CALLED_BACK
);
520 while (le
->le_flags
& LF_WAKE_NEEDED
) {
521 flag_clear(&le
->le_flags
, LF_WAKE_NEEDED
);
522 thread_wakeup((event_t
)le
);
528 * Refill the coffers.
531 ledger_refill(uint64_t now
, ledger_t ledger
, int entry
)
533 uint64_t elapsed
, period
, periods
;
534 struct ledger_entry
*le
;
535 ledger_amount_t balance
, due
;
537 le
= &ledger
->l_entries
[entry
];
539 assert(le
->le_limit
!= LEDGER_LIMIT_INFINITY
);
542 * If another thread is handling the refill already, we're not
545 if (flag_set(&le
->le_flags
, LF_REFILL_INPROGRESS
) & LF_REFILL_INPROGRESS
) {
550 * If the timestamp we're about to use to refill is older than the
551 * last refill, then someone else has already refilled this ledger
552 * and there's nothing for us to do here.
554 if (now
<= le
->_le
.le_refill
.le_last_refill
) {
555 flag_clear(&le
->le_flags
, LF_REFILL_INPROGRESS
);
560 * See how many refill periods have passed since we last
563 period
= le
->_le
.le_refill
.le_refill_period
;
564 elapsed
= now
- le
->_le
.le_refill
.le_last_refill
;
565 if ((period
== 0) || (elapsed
< period
)) {
566 flag_clear(&le
->le_flags
, LF_REFILL_INPROGRESS
);
571 * Optimize for the most common case of only one or two
575 while ((periods
< 2) && (elapsed
> 0)) {
581 * OK, it's been a long time. Do a divide to figure out
585 periods
= (now
- le
->_le
.le_refill
.le_last_refill
) / period
;
587 balance
= le
->le_credit
- le
->le_debit
;
588 due
= periods
* le
->le_limit
;
589 if (balance
- due
< 0)
594 OSAddAtomic64(due
, &le
->le_debit
);
596 assert(le
->le_debit
>= 0);
599 * If we've completely refilled the pool, set the refill time to now.
600 * Otherwise set it to the time at which it last should have been
604 le
->_le
.le_refill
.le_last_refill
= now
;
606 le
->_le
.le_refill
.le_last_refill
+= (le
->_le
.le_refill
.le_refill_period
* periods
);
608 flag_clear(&le
->le_flags
, LF_REFILL_INPROGRESS
);
610 lprintf(("Refill %lld %lld->%lld\n", periods
, balance
, balance
- due
));
611 if (!limit_exceeded(le
))
612 ledger_limit_entry_wakeup(le
);
616 * In tenths of a second, the length of one lookback period (a "tock") for
617 * ledger rolling maximum calculations. The effective lookback window will be this times
620 * Use a tock length of 2.5 seconds to get a total lookback period of 5 seconds.
622 * XXX Could make this caller-definable, at the point that rolling max tracking
623 * is enabled for the entry.
628 * How many sched_tick's are there in one tock (one of our lookback periods)?
630 * X sched_ticks 2.5 sec N sched_ticks
631 * --------------- = ---------- * -------------
634 * where N sched_ticks/sec is calculated via 1 << SCHED_TICK_SHIFT (see sched_prim.h)
636 * This should give us 20 sched_tick's in one 2.5 second-long tock.
638 #define SCHED_TICKS_PER_TOCK ((TOCKLEN * (1 << SCHED_TICK_SHIFT)) / 10)
641 * Rolling max timestamps use their own unit (let's call this a "tock"). One tock is the
642 * length of one lookback period that we use for our rolling max calculation.
644 * Calculate the current time in tocks from sched_tick (which runs at a some
647 #define CURRENT_TOCKSTAMP() (sched_tick / SCHED_TICKS_PER_TOCK)
650 * Does the given tockstamp fall in either the current or the previous tocks?
652 #define TOCKSTAMP_IS_STALE(now, tock) ((((now) - (tock)) < NTOCKS) ? FALSE : TRUE)
655 ledger_check_new_balance(ledger_t ledger
, int entry
)
657 struct ledger_entry
*le
;
659 le
= &ledger
->l_entries
[entry
];
661 if (le
->le_flags
& LF_TRACKING_MAX
) {
662 ledger_amount_t balance
= le
->le_credit
- le
->le_debit
;
663 uint32_t now
= CURRENT_TOCKSTAMP();
664 struct _le_peak
*p
= &le
->_le
.le_peaks
[now
% NTOCKS
];
666 if (!TOCKSTAMP_IS_STALE(now
, p
->le_time
) || (balance
> p
->le_max
)) {
668 * The current balance is greater than the previously
669 * observed peak for the current time block, *or* we
670 * haven't yet recorded a peak for the current time block --
671 * so this is our new peak.
673 * (We only track the lower 32-bits of a balance for rolling
676 p
->le_max
= (uint32_t)balance
;
681 /* Check to see whether we're due a refill */
682 if (le
->le_flags
& LF_REFILL_SCHEDULED
) {
683 uint64_t now
= mach_absolute_time();
684 if ((now
- le
->_le
.le_refill
.le_last_refill
) > le
->_le
.le_refill
.le_refill_period
)
685 ledger_refill(now
, ledger
, entry
);
688 if (limit_exceeded(le
)) {
690 * We've exceeded the limit for this entry. There
691 * are several possible ways to handle it. We can block,
692 * we can execute a callback, or we can ignore it. In
693 * either of the first two cases, we want to set the AST
694 * flag so we can take the appropriate action just before
695 * leaving the kernel. The one caveat is that if we have
696 * already called the callback, we don't want to do it
697 * again until it gets rearmed.
699 if ((le
->le_flags
& LEDGER_ACTION_BLOCK
) ||
700 (!(le
->le_flags
& LF_CALLED_BACK
) &&
701 entry_get_callback(ledger
, entry
))) {
702 set_astledger(current_thread());
706 * The balance on the account is below the limit.
708 * If there are any threads blocked on this entry, now would
709 * be a good time to wake them up.
711 if (le
->le_flags
& LF_WAKE_NEEDED
)
712 ledger_limit_entry_wakeup(le
);
714 if (le
->le_flags
& LEDGER_ACTION_CALLBACK
) {
716 * Client has requested that a callback be invoked whenever
717 * the ledger's balance crosses into or out of the warning
720 if (warn_level_exceeded(le
)) {
722 * This ledger's balance is above the warning level.
724 if ((le
->le_flags
& LF_WARNED
) == 0) {
726 * If we are above the warning level and
727 * have not yet invoked the callback,
728 * set the AST so it can be done before returning
731 set_astledger(current_thread());
735 * This ledger's balance is below the warning level.
737 if (le
->le_flags
& LF_WARNED
) {
739 * If we are below the warning level and
740 * the LF_WARNED flag is still set, we need
741 * to invoke the callback to let the client
742 * know the ledger balance is now back below
745 set_astledger(current_thread());
751 if ((le
->le_flags
& LF_PANIC_ON_NEGATIVE
) &&
752 (le
->le_credit
< le
->le_debit
)) {
753 panic("ledger_check_new_balance(%p,%d): negative ledger %p balance:%lld\n",
754 ledger
, entry
, le
, le
->le_credit
- le
->le_debit
);
759 * Add value to an entry in a ledger.
762 ledger_credit(ledger_t ledger
, int entry
, ledger_amount_t amount
)
764 ledger_amount_t old
, new;
765 struct ledger_entry
*le
;
767 if (!ENTRY_VALID(ledger
, entry
) || (amount
< 0))
768 return (KERN_INVALID_VALUE
);
771 return (KERN_SUCCESS
);
773 le
= &ledger
->l_entries
[entry
];
775 old
= OSAddAtomic64(amount
, &le
->le_credit
);
777 lprintf(("%p Credit %lld->%lld\n", current_thread(), old
, new));
778 ledger_check_new_balance(ledger
, entry
);
780 return (KERN_SUCCESS
);
783 /* Add all of one ledger's values into another.
784 * They must have been created from the same template.
785 * This is not done atomically. Another thread (if not otherwise synchronized)
786 * may see bogus values when comparing one entry to another.
787 * As each entry's credit & debit are modified one at a time, the warning/limit
788 * may spuriously trip, or spuriously fail to trip, or another thread (if not
789 * otherwise synchronized) may see a bogus balance.
792 ledger_rollup(ledger_t to_ledger
, ledger_t from_ledger
)
795 struct ledger_entry
*from_le
, *to_le
;
797 assert(to_ledger
->l_template
== from_ledger
->l_template
);
799 for (i
= 0; i
< to_ledger
->l_size
; i
++) {
800 if (ENTRY_VALID(from_ledger
, i
) && ENTRY_VALID(to_ledger
, i
)) {
801 from_le
= &from_ledger
->l_entries
[i
];
802 to_le
= &to_ledger
->l_entries
[i
];
803 OSAddAtomic64(from_le
->le_credit
, &to_le
->le_credit
);
804 OSAddAtomic64(from_le
->le_debit
, &to_le
->le_debit
);
808 return (KERN_SUCCESS
);
812 * Zero the balance of a ledger by adding to its credit or debit, whichever is smaller.
813 * Note that some clients of ledgers (notably, task wakeup statistics) require that
814 * le_credit only ever increase as a function of ledger_credit().
817 ledger_zero_balance(ledger_t ledger
, int entry
)
819 struct ledger_entry
*le
;
821 if (!ENTRY_VALID(ledger
, entry
))
822 return (KERN_INVALID_VALUE
);
824 le
= &ledger
->l_entries
[entry
];
827 if (le
->le_credit
> le
->le_debit
) {
828 if (!OSCompareAndSwap64(le
->le_debit
, le
->le_credit
, &le
->le_debit
))
830 lprintf(("%p zeroed %lld->%lld\n", current_thread(), le
->le_debit
, le
->le_credit
));
831 } else if (le
->le_credit
< le
->le_debit
) {
832 if (!OSCompareAndSwap64(le
->le_credit
, le
->le_debit
, &le
->le_credit
))
834 lprintf(("%p zeroed %lld->%lld\n", current_thread(), le
->le_credit
, le
->le_debit
));
837 return (KERN_SUCCESS
);
841 ledger_get_limit(ledger_t ledger
, int entry
, ledger_amount_t
*limit
)
843 struct ledger_entry
*le
;
845 if (!ENTRY_VALID(ledger
, entry
))
846 return (KERN_INVALID_VALUE
);
848 le
= &ledger
->l_entries
[entry
];
849 *limit
= le
->le_limit
;
851 lprintf(("ledger_get_limit: %lld\n", *limit
));
853 return (KERN_SUCCESS
);
857 * Adjust the limit of a limited resource. This does not affect the
858 * current balance, so the change doesn't affect the thread until the
861 * warn_level: If non-zero, causes the callback to be invoked when
862 * the balance exceeds this level. Specified as a percentage [of the limit].
865 ledger_set_limit(ledger_t ledger
, int entry
, ledger_amount_t limit
,
866 uint8_t warn_level_percentage
)
868 struct ledger_entry
*le
;
870 if (!ENTRY_VALID(ledger
, entry
))
871 return (KERN_INVALID_VALUE
);
873 lprintf(("ledger_set_limit: %lld\n", limit
));
874 le
= &ledger
->l_entries
[entry
];
876 if (limit
== LEDGER_LIMIT_INFINITY
) {
878 * Caller wishes to disable the limit. This will implicitly
879 * disable automatic refill, as refills implicitly depend
882 ledger_disable_refill(ledger
, entry
);
885 le
->le_limit
= limit
;
886 le
->_le
.le_refill
.le_last_refill
= 0;
887 flag_clear(&le
->le_flags
, LF_CALLED_BACK
);
888 flag_clear(&le
->le_flags
, LF_WARNED
);
889 ledger_limit_entry_wakeup(le
);
891 if (warn_level_percentage
!= 0) {
892 assert(warn_level_percentage
<= 100);
893 assert(limit
> 0); /* no negative limit support for warnings */
894 assert(limit
!= LEDGER_LIMIT_INFINITY
); /* warn % without limit makes no sense */
895 le
->le_warn_level
= (le
->le_limit
* warn_level_percentage
) / 100;
897 le
->le_warn_level
= LEDGER_LIMIT_INFINITY
;
900 return (KERN_SUCCESS
);
904 ledger_get_maximum(ledger_t ledger
, int entry
,
905 ledger_amount_t
*max_observed_balance
)
907 struct ledger_entry
*le
;
908 uint32_t now
= CURRENT_TOCKSTAMP();
911 le
= &ledger
->l_entries
[entry
];
913 if (!ENTRY_VALID(ledger
, entry
) || !(le
->le_flags
& LF_TRACKING_MAX
)) {
914 return (KERN_INVALID_VALUE
);
918 * Start with the current balance; if neither of the recorded peaks are
919 * within recent history, we use this.
921 *max_observed_balance
= le
->le_credit
- le
->le_debit
;
923 for (i
= 0; i
< NTOCKS
; i
++) {
924 if (!TOCKSTAMP_IS_STALE(now
, le
->_le
.le_peaks
[i
].le_time
) &&
925 (le
->_le
.le_peaks
[i
].le_max
> *max_observed_balance
)) {
927 * The peak for this time block isn't stale, and it
928 * is greater than the current balance -- so use it.
930 *max_observed_balance
= le
->_le
.le_peaks
[i
].le_max
;
934 lprintf(("ledger_get_maximum: %lld\n", *max_observed_balance
));
936 return (KERN_SUCCESS
);
940 * Enable tracking of periodic maximums for this ledger entry.
943 ledger_track_maximum(ledger_template_t
template, int entry
,
944 __unused
int period_in_secs
)
946 template_lock(template);
948 if ((entry
< 0) || (entry
>= template->lt_cnt
)) {
949 template_unlock(template);
950 return (KERN_INVALID_VALUE
);
953 template->lt_entries
[entry
].et_flags
|= LF_TRACKING_MAX
;
954 template_unlock(template);
956 return (KERN_SUCCESS
);
960 ledger_panic_on_negative(ledger_template_t
template, int entry
)
962 template_lock(template);
964 if ((entry
< 0) || (entry
>= template->lt_cnt
)) {
965 template_unlock(template);
966 return (KERN_INVALID_VALUE
);
969 template->lt_entries
[entry
].et_flags
|= LF_PANIC_ON_NEGATIVE
;
971 template_unlock(template);
973 return (KERN_SUCCESS
);
976 * Add a callback to be executed when the resource goes into deficit.
979 ledger_set_callback(ledger_template_t
template, int entry
,
980 ledger_callback_t func
, const void *param0
, const void *param1
)
982 struct entry_template
*et
;
983 struct ledger_callback
*old_cb
, *new_cb
;
985 if ((entry
< 0) || (entry
>= template->lt_cnt
))
986 return (KERN_INVALID_VALUE
);
989 new_cb
= (struct ledger_callback
*)kalloc(sizeof (*new_cb
));
990 new_cb
->lc_func
= func
;
991 new_cb
->lc_param0
= param0
;
992 new_cb
->lc_param1
= param1
;
997 template_lock(template);
998 et
= &template->lt_entries
[entry
];
999 old_cb
= et
->et_callback
;
1000 et
->et_callback
= new_cb
;
1001 template_unlock(template);
1003 kfree(old_cb
, sizeof (*old_cb
));
1005 return (KERN_SUCCESS
);
1009 * Disable callback notification for a specific ledger entry.
1011 * Otherwise, if using a ledger template which specified a
1012 * callback function (ledger_set_callback()), it will be invoked when
1013 * the resource goes into deficit.
1016 ledger_disable_callback(ledger_t ledger
, int entry
)
1018 if (!ENTRY_VALID(ledger
, entry
))
1019 return (KERN_INVALID_VALUE
);
1022 * le_warn_level is used to indicate *if* this ledger has a warning configured,
1023 * in addition to what that warning level is set to.
1024 * This means a side-effect of ledger_disable_callback() is that the
1025 * warning level is forgotten.
1027 ledger
->l_entries
[entry
].le_warn_level
= LEDGER_LIMIT_INFINITY
;
1028 flag_clear(&ledger
->l_entries
[entry
].le_flags
, LEDGER_ACTION_CALLBACK
);
1029 return (KERN_SUCCESS
);
1033 * Enable callback notification for a specific ledger entry.
1035 * This is only needed if ledger_disable_callback() has previously
1036 * been invoked against an entry; there must already be a callback
1040 ledger_enable_callback(ledger_t ledger
, int entry
)
1042 if (!ENTRY_VALID(ledger
, entry
))
1043 return (KERN_INVALID_VALUE
);
1045 assert(entry_get_callback(ledger
, entry
) != NULL
);
1047 flag_set(&ledger
->l_entries
[entry
].le_flags
, LEDGER_ACTION_CALLBACK
);
1048 return (KERN_SUCCESS
);
1052 * Query the automatic refill period for this ledger entry.
1054 * A period of 0 means this entry has none configured.
1057 ledger_get_period(ledger_t ledger
, int entry
, uint64_t *period
)
1059 struct ledger_entry
*le
;
1061 if (!ENTRY_VALID(ledger
, entry
))
1062 return (KERN_INVALID_VALUE
);
1064 le
= &ledger
->l_entries
[entry
];
1065 *period
= abstime_to_nsecs(le
->_le
.le_refill
.le_refill_period
);
1066 lprintf(("ledger_get_period: %llx\n", *period
));
1067 return (KERN_SUCCESS
);
1071 * Adjust the automatic refill period.
1074 ledger_set_period(ledger_t ledger
, int entry
, uint64_t period
)
1076 struct ledger_entry
*le
;
1078 lprintf(("ledger_set_period: %llx\n", period
));
1079 if (!ENTRY_VALID(ledger
, entry
))
1080 return (KERN_INVALID_VALUE
);
1082 le
= &ledger
->l_entries
[entry
];
1085 * A refill period refills the ledger in multiples of the limit,
1086 * so if you haven't set one yet, you need a lesson on ledgers.
1088 assert(le
->le_limit
!= LEDGER_LIMIT_INFINITY
);
1090 if (le
->le_flags
& LF_TRACKING_MAX
) {
1092 * Refill is incompatible with rolling max tracking.
1094 return (KERN_INVALID_VALUE
);
1097 le
->_le
.le_refill
.le_refill_period
= nsecs_to_abstime(period
);
1100 * Set the 'starting time' for the next refill to now. Since
1101 * we're resetting the balance to zero here, we consider this
1102 * moment the starting time for accumulating a balance that
1103 * counts towards the limit.
1105 le
->_le
.le_refill
.le_last_refill
= mach_absolute_time();
1106 ledger_zero_balance(ledger
, entry
);
1108 flag_set(&le
->le_flags
, LF_REFILL_SCHEDULED
);
1110 return (KERN_SUCCESS
);
1114 * Disable automatic refill.
1117 ledger_disable_refill(ledger_t ledger
, int entry
)
1119 struct ledger_entry
*le
;
1121 if (!ENTRY_VALID(ledger
, entry
))
1122 return (KERN_INVALID_VALUE
);
1124 le
= &ledger
->l_entries
[entry
];
1126 flag_clear(&le
->le_flags
, LF_REFILL_SCHEDULED
);
1128 return (KERN_SUCCESS
);
1132 ledger_get_actions(ledger_t ledger
, int entry
, int *actions
)
1134 if (!ENTRY_VALID(ledger
, entry
))
1135 return (KERN_INVALID_VALUE
);
1137 *actions
= ledger
->l_entries
[entry
].le_flags
& LEDGER_ACTION_MASK
;
1138 lprintf(("ledger_get_actions: %#x\n", *actions
));
1139 return (KERN_SUCCESS
);
1143 ledger_set_action(ledger_t ledger
, int entry
, int action
)
1145 lprintf(("ledger_set_action: %#x\n", action
));
1146 if (!ENTRY_VALID(ledger
, entry
))
1147 return (KERN_INVALID_VALUE
);
1149 flag_set(&ledger
->l_entries
[entry
].le_flags
, action
);
1150 return (KERN_SUCCESS
);
1154 set_astledger(thread_t thread
)
1156 spl_t s
= splsched();
1158 if (thread
== current_thread()) {
1159 thread_ast_set(thread
, AST_LEDGER
);
1160 ast_propagate(thread
->ast
);
1164 thread_lock(thread
);
1165 thread_ast_set(thread
, AST_LEDGER
);
1166 p
= thread
->last_processor
;
1167 if ((p
!= PROCESSOR_NULL
) && (p
->state
== PROCESSOR_RUNNING
) &&
1168 (p
->active_thread
== thread
))
1170 thread_unlock(thread
);
1177 ledger_debit(ledger_t ledger
, int entry
, ledger_amount_t amount
)
1179 struct ledger_entry
*le
;
1180 ledger_amount_t old
, new;
1182 if (!ENTRY_VALID(ledger
, entry
) || (amount
< 0))
1183 return (KERN_INVALID_ARGUMENT
);
1186 return (KERN_SUCCESS
);
1188 le
= &ledger
->l_entries
[entry
];
1190 old
= OSAddAtomic64(amount
, &le
->le_debit
);
1193 lprintf(("%p Debit %lld->%lld\n", thread
, old
, new));
1194 ledger_check_new_balance(ledger
, entry
);
1195 return (KERN_SUCCESS
);
1200 ledger_ast(thread_t thread
)
1202 struct ledger
*l
= thread
->t_ledger
;
1207 uint8_t task_percentage
;
1208 uint64_t task_interval
;
1211 task_t task
= thread
->task
;
1213 lprintf(("Ledger AST for %p\n", thread
));
1215 ASSERT(task
!= NULL
);
1216 ASSERT(thread
== current_thread());
1220 * Take a self-consistent snapshot of the CPU usage monitor parameters. The task
1221 * can change them at any point (with the task locked).
1224 task_flags
= task
->rusage_cpu_flags
;
1225 task_percentage
= task
->rusage_cpu_perthr_percentage
;
1226 task_interval
= task
->rusage_cpu_perthr_interval
;
1230 * Make sure this thread is up to date with regards to any task-wide per-thread
1231 * CPU limit, but only if it doesn't have a thread-private blocking CPU limit.
1233 if (((task_flags
& TASK_RUSECPU_FLAGS_PERTHR_LIMIT
) != 0) &&
1234 ((thread
->options
& TH_OPT_PRVT_CPULIMIT
) == 0)) {
1239 thread_get_cpulimit(&action
, &percentage
, &interval
);
1242 * If the thread's CPU limits no longer match the task's, or the
1243 * task has a limit but the thread doesn't, update the limit.
1245 if (((thread
->options
& TH_OPT_PROC_CPULIMIT
) == 0) ||
1246 (interval
!= task_interval
) || (percentage
!= task_percentage
)) {
1247 thread_set_cpulimit(THREAD_CPULIMIT_EXCEPTION
, task_percentage
, task_interval
);
1248 assert((thread
->options
& TH_OPT_PROC_CPULIMIT
) != 0);
1250 } else if (((task_flags
& TASK_RUSECPU_FLAGS_PERTHR_LIMIT
) == 0) &&
1251 (thread
->options
& TH_OPT_PROC_CPULIMIT
)) {
1252 assert((thread
->options
& TH_OPT_PRVT_CPULIMIT
) == 0);
1255 * Task no longer has a per-thread CPU limit; remove this thread's
1256 * corresponding CPU limit.
1258 thread_set_cpulimit(THREAD_CPULIMIT_DISABLE
, 0, 0);
1259 assert((thread
->options
& TH_OPT_PROC_CPULIMIT
) == 0);
1263 * If the task or thread is being terminated, let's just get on with it
1265 if ((l
== NULL
) || !task
->active
|| task
->halting
|| !thread
->active
)
1269 * Examine all entries in deficit to see which might be eligble for
1270 * an automatic refill, which require callbacks to be issued, and
1271 * which require blocking.
1274 now
= mach_absolute_time();
1277 * Note that thread->t_threadledger may have been changed by the
1278 * thread_set_cpulimit() call above - so don't examine it until afterwards.
1280 thl
= thread
->t_threadledger
;
1281 if (LEDGER_VALID(thl
)) {
1282 block
|= ledger_check_needblock(thl
, now
);
1284 block
|= ledger_check_needblock(l
, now
);
1287 * If we are supposed to block on the availability of one or more
1288 * resources, find the first entry in deficit for which we should wait.
1289 * Schedule a refill if necessary and then sleep until the resource
1290 * becomes available.
1293 if (LEDGER_VALID(thl
)) {
1294 ret
= ledger_perform_blocking(thl
);
1295 if (ret
!= KERN_SUCCESS
)
1298 ret
= ledger_perform_blocking(l
);
1299 if (ret
!= KERN_SUCCESS
)
1305 ledger_check_needblock(ledger_t l
, uint64_t now
)
1308 uint32_t flags
, block
= 0;
1309 struct ledger_entry
*le
;
1310 struct ledger_callback
*lc
;
1313 for (i
= 0; i
< l
->l_size
; i
++) {
1314 le
= &l
->l_entries
[i
];
1316 lc
= entry_get_callback(l
, i
);
1318 if (limit_exceeded(le
) == FALSE
) {
1319 if (le
->le_flags
& LEDGER_ACTION_CALLBACK
) {
1321 * If needed, invoke the callback as a warning.
1322 * This needs to happen both when the balance rises above
1323 * the warning level, and also when it dips back below it.
1327 * See comments for matching logic in ledger_check_new_balance().
1329 if (warn_level_exceeded(le
)) {
1330 flags
= flag_set(&le
->le_flags
, LF_WARNED
);
1331 if ((flags
& LF_WARNED
) == 0) {
1332 lc
->lc_func(LEDGER_WARNING_ROSE_ABOVE
, lc
->lc_param0
, lc
->lc_param1
);
1335 flags
= flag_clear(&le
->le_flags
, LF_WARNED
);
1336 if (flags
& LF_WARNED
) {
1337 lc
->lc_func(LEDGER_WARNING_DIPPED_BELOW
, lc
->lc_param0
, lc
->lc_param1
);
1345 /* We're over the limit, so refill if we are eligible and past due. */
1346 if (le
->le_flags
& LF_REFILL_SCHEDULED
) {
1347 if ((le
->_le
.le_refill
.le_last_refill
+ le
->_le
.le_refill
.le_refill_period
) > now
) {
1348 ledger_refill(now
, l
, i
);
1349 if (limit_exceeded(le
) == FALSE
)
1354 if (le
->le_flags
& LEDGER_ACTION_BLOCK
)
1356 if ((le
->le_flags
& LEDGER_ACTION_CALLBACK
) == 0)
1360 * If the LEDGER_ACTION_CALLBACK flag is on, we expect there to
1361 * be a registered callback.
1364 flags
= flag_set(&le
->le_flags
, LF_CALLED_BACK
);
1365 /* Callback has already been called */
1366 if (flags
& LF_CALLED_BACK
)
1368 lc
->lc_func(FALSE
, lc
->lc_param0
, lc
->lc_param1
);
1374 /* return KERN_SUCCESS to continue, KERN_FAILURE to restart */
1375 static kern_return_t
1376 ledger_perform_blocking(ledger_t l
)
1380 struct ledger_entry
*le
;
1382 for (i
= 0; i
< l
->l_size
; i
++) {
1383 le
= &l
->l_entries
[i
];
1384 if ((!limit_exceeded(le
)) ||
1385 ((le
->le_flags
& LEDGER_ACTION_BLOCK
) == 0))
1388 /* Prepare to sleep until the resource is refilled */
1389 ret
= assert_wait_deadline(le
, TRUE
,
1390 le
->_le
.le_refill
.le_last_refill
+ le
->_le
.le_refill
.le_refill_period
);
1391 if (ret
!= THREAD_WAITING
)
1392 return(KERN_SUCCESS
);
1394 /* Mark that somebody is waiting on this entry */
1395 flag_set(&le
->le_flags
, LF_WAKE_NEEDED
);
1397 ret
= thread_block_reason(THREAD_CONTINUE_NULL
, NULL
,
1399 if (ret
!= THREAD_AWAKENED
)
1400 return(KERN_SUCCESS
);
1403 * The world may have changed while we were asleep.
1404 * Some other resource we need may have gone into
1405 * deficit. Or maybe we're supposed to die now.
1406 * Go back to the top and reevaluate.
1408 return(KERN_FAILURE
);
1410 return(KERN_SUCCESS
);
1415 ledger_get_entries(ledger_t ledger
, int entry
, ledger_amount_t
*credit
,
1416 ledger_amount_t
*debit
)
1418 struct ledger_entry
*le
;
1420 if (!ENTRY_VALID(ledger
, entry
))
1421 return (KERN_INVALID_ARGUMENT
);
1423 le
= &ledger
->l_entries
[entry
];
1425 *credit
= le
->le_credit
;
1426 *debit
= le
->le_debit
;
1428 return (KERN_SUCCESS
);
1432 ledger_reset_callback_state(ledger_t ledger
, int entry
)
1434 struct ledger_entry
*le
;
1436 if (!ENTRY_VALID(ledger
, entry
))
1437 return (KERN_INVALID_ARGUMENT
);
1439 le
= &ledger
->l_entries
[entry
];
1441 flag_clear(&le
->le_flags
, LF_CALLED_BACK
);
1443 return (KERN_SUCCESS
);
1447 ledger_disable_panic_on_negative(ledger_t ledger
, int entry
)
1449 struct ledger_entry
*le
;
1451 if (!ENTRY_VALID(ledger
, entry
))
1452 return (KERN_INVALID_ARGUMENT
);
1454 le
= &ledger
->l_entries
[entry
];
1456 flag_clear(&le
->le_flags
, LF_PANIC_ON_NEGATIVE
);
1458 return (KERN_SUCCESS
);
1462 ledger_get_balance(ledger_t ledger
, int entry
, ledger_amount_t
*balance
)
1464 struct ledger_entry
*le
;
1466 if (!ENTRY_VALID(ledger
, entry
))
1467 return (KERN_INVALID_ARGUMENT
);
1469 le
= &ledger
->l_entries
[entry
];
1471 assert((le
->le_credit
>= 0) && (le
->le_debit
>= 0));
1473 *balance
= le
->le_credit
- le
->le_debit
;
1475 return (KERN_SUCCESS
);
1479 ledger_template_info(void **buf
, int *len
)
1481 struct ledger_template_info
*lti
;
1482 struct entry_template
*et
;
1487 * Since all tasks share a ledger template, we'll just use the
1488 * caller's as the source.
1490 l
= current_task()->ledger
;
1491 if ((*len
< 0) || (l
== NULL
))
1494 if (*len
> l
->l_size
)
1496 lti
= kalloc((*len
) * sizeof (struct ledger_template_info
));
1501 template_lock(l
->l_template
);
1502 et
= l
->l_template
->lt_entries
;
1504 for (i
= 0; i
< *len
; i
++) {
1505 memset(lti
, 0, sizeof (*lti
));
1506 strlcpy(lti
->lti_name
, et
->et_key
, LEDGER_NAME_MAX
);
1507 strlcpy(lti
->lti_group
, et
->et_group
, LEDGER_NAME_MAX
);
1508 strlcpy(lti
->lti_units
, et
->et_units
, LEDGER_NAME_MAX
);
1512 template_unlock(l
->l_template
);
1518 ledger_fill_entry_info(struct ledger_entry
*le
,
1519 struct ledger_entry_info
*lei
,
1523 assert(lei
!= NULL
);
1525 memset(lei
, 0, sizeof (*lei
));
1527 lei
->lei_limit
= le
->le_limit
;
1528 lei
->lei_credit
= le
->le_credit
;
1529 lei
->lei_debit
= le
->le_debit
;
1530 lei
->lei_balance
= lei
->lei_credit
- lei
->lei_debit
;
1531 lei
->lei_refill_period
= (le
->le_flags
& LF_REFILL_SCHEDULED
) ?
1532 abstime_to_nsecs(le
->_le
.le_refill
.le_refill_period
) : 0;
1533 lei
->lei_last_refill
= abstime_to_nsecs(now
- le
->_le
.le_refill
.le_last_refill
);
1537 ledger_get_task_entry_info_multiple(task_t task
, void **buf
, int *len
)
1539 struct ledger_entry_info
*lei
;
1540 struct ledger_entry
*le
;
1541 uint64_t now
= mach_absolute_time();
1545 if ((*len
< 0) || ((l
= task
->ledger
) == NULL
))
1548 if (*len
> l
->l_size
)
1550 lei
= kalloc((*len
) * sizeof (struct ledger_entry_info
));
1557 for (i
= 0; i
< *len
; i
++) {
1558 ledger_fill_entry_info(le
, lei
, now
);
1567 ledger_get_entry_info(ledger_t ledger
,
1569 struct ledger_entry_info
*lei
)
1571 uint64_t now
= mach_absolute_time();
1573 assert(ledger
!= NULL
);
1574 assert(lei
!= NULL
);
1575 assert(entry
< ledger
->l_size
);
1577 struct ledger_entry
*le
= &ledger
->l_entries
[entry
];
1579 ledger_fill_entry_info(le
, lei
, now
);
1583 ledger_info(task_t task
, struct ledger_info
*info
)
1587 if ((l
= task
->ledger
) == NULL
)
1590 memset(info
, 0, sizeof (*info
));
1592 strlcpy(info
->li_name
, l
->l_template
->lt_name
, LEDGER_NAME_MAX
);
1593 info
->li_id
= l
->l_id
;
1594 info
->li_entries
= l
->l_size
;
1600 ledger_limit(task_t task
, struct ledger_limit_args
*args
)
1606 if ((l
= task
->ledger
) == NULL
)
1609 idx
= ledger_key_lookup(l
->l_template
, args
->lla_name
);
1610 if ((idx
< 0) || (idx
>= l
->l_size
))
1614 * XXX - this doesn't really seem like the right place to have
1615 * a context-sensitive conversion of userspace units into kernel
1616 * units. For now I'll handwave and say that the ledger() system
1617 * call isn't meant for civilians to use - they should be using
1618 * the process policy interfaces.
1620 if (idx
== task_ledgers
.cpu_time
) {
1623 if (args
->lla_refill_period
) {
1625 * If a refill is scheduled, then the limit is
1626 * specified as a percentage of one CPU. The
1627 * syscall specifies the refill period in terms of
1628 * milliseconds, so we need to convert to nsecs.
1630 args
->lla_refill_period
*= 1000000;
1631 nsecs
= args
->lla_limit
*
1632 (args
->lla_refill_period
/ 100);
1633 lprintf(("CPU limited to %lld nsecs per second\n",
1637 * If no refill is scheduled, then this is a
1638 * fixed amount of CPU time (in nsecs) that can
1641 nsecs
= args
->lla_limit
;
1642 lprintf(("CPU limited to %lld nsecs\n", nsecs
));
1644 limit
= nsecs_to_abstime(nsecs
);
1646 limit
= args
->lla_limit
;
1647 lprintf(("%s limited to %lld\n", args
->lla_name
, limit
));
1650 if (args
->lla_refill_period
> 0)
1651 ledger_set_period(l
, idx
, args
->lla_refill_period
);
1653 ledger_set_limit(l
, idx
, limit
);
1654 flag_set(&l
->l_entries
[idx
].le_flags
, LEDGER_ACTION_BLOCK
);