2 * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include "vm_compressor_backing_store.h"
30 #include <vm/vm_pageout.h>
31 #include <vm/vm_protos.h>
33 #include <IOKit/IOHibernatePrivate.h>
35 #include <kern/policy_internal.h>
37 boolean_t compressor_store_stop_compaction
= FALSE
;
38 boolean_t vm_swapfile_create_needed
= FALSE
;
39 boolean_t vm_swapfile_gc_needed
= FALSE
;
41 int vm_swapper_throttle
= -1;
42 uint64_t vm_swapout_thread_id
;
44 uint64_t vm_swap_put_failures
= 0; /* Likely failed I/O. Data is still in memory. */
45 uint64_t vm_swap_get_failures
= 0; /* Fatal */
46 uint64_t vm_swap_put_failures_no_swap_file
= 0; /* Possibly not fatal because we might just need a new swapfile. */
47 int vm_num_swap_files_config
= 0;
48 int vm_num_swap_files
= 0;
49 int vm_num_pinned_swap_files
= 0;
50 int vm_swapout_thread_processed_segments
= 0;
51 int vm_swapout_thread_awakened
= 0;
52 int vm_swapfile_create_thread_awakened
= 0;
53 int vm_swapfile_create_thread_running
= 0;
54 int vm_swapfile_gc_thread_awakened
= 0;
55 int vm_swapfile_gc_thread_running
= 0;
57 int64_t vm_swappin_avail
= 0;
58 boolean_t vm_swappin_enabled
= FALSE
;
59 unsigned int vm_swapfile_total_segs_alloced
= 0;
60 unsigned int vm_swapfile_total_segs_used
= 0;
62 char swapfilename
[MAX_SWAPFILENAME_LEN
+ 1] = SWAP_FILE_NAME
;
64 extern vm_map_t compressor_map
;
67 #define SWAP_READY 0x1 /* Swap file is ready to be used */
68 #define SWAP_RECLAIM 0x2 /* Swap file is marked to be reclaimed */
69 #define SWAP_WANTED 0x4 /* Swap file has waiters */
70 #define SWAP_REUSE 0x8 /* Swap file is on the Q and has a name. Reuse after init-ing.*/
71 #define SWAP_PINNED 0x10 /* Swap file is pinned (FusionDrive) */
75 queue_head_t swp_queue
; /* list of swap files */
76 char *swp_path
; /* saved pathname of swap file */
77 struct vnode
*swp_vp
; /* backing vnode */
78 uint64_t swp_size
; /* size of this swap file */
79 uint8_t *swp_bitmap
; /* bitmap showing the alloced/freed slots in the swap file */
80 unsigned int swp_pathlen
; /* length of pathname */
81 unsigned int swp_nsegs
; /* #segments we can use */
82 unsigned int swp_nseginuse
; /* #segments in use */
83 unsigned int swp_index
; /* index of this swap file */
84 unsigned int swp_flags
; /* state of swap file */
85 unsigned int swp_free_hint
; /* offset of 1st free chunk */
86 unsigned int swp_io_count
; /* count of outstanding I/Os */
87 c_segment_t
*swp_csegs
; /* back pointers to the c_segments. Used during swap reclaim. */
89 struct trim_list
*swp_delayed_trim_list_head
;
90 unsigned int swp_delayed_trim_count
;
93 queue_head_t swf_global_queue
;
94 boolean_t swp_trim_supported
= FALSE
;
96 extern clock_sec_t dont_trim_until_ts
;
97 clock_sec_t vm_swapfile_last_failed_to_create_ts
= 0;
98 clock_sec_t vm_swapfile_last_successful_create_ts
= 0;
99 int vm_swapfile_can_be_created
= FALSE
;
100 boolean_t delayed_trim_handling_in_progress
= FALSE
;
102 boolean_t hibernate_in_progress_with_pinned_swap
= FALSE
;
104 static void vm_swapout_thread_throttle_adjust(void);
105 static void vm_swap_free_now(struct swapfile
*swf
, uint64_t f_offset
);
106 static void vm_swapout_thread(void);
107 static void vm_swapfile_create_thread(void);
108 static void vm_swapfile_gc_thread(void);
109 static void vm_swap_defragment(void);
110 static void vm_swap_handle_delayed_trims(boolean_t
);
111 static void vm_swap_do_delayed_trim(struct swapfile
*);
112 static void vm_swap_wait_on_trim_handling_in_progress(void);
115 boolean_t vm_swap_force_defrag
= FALSE
, vm_swap_force_reclaim
= FALSE
;
119 #if DEVELOPMENT || DEBUG
120 #define VM_MAX_SWAP_FILE_NUM 100
121 #else /* DEVELOPMENT || DEBUG */
122 #define VM_MAX_SWAP_FILE_NUM 5
123 #endif /* DEVELOPMENT || DEBUG */
125 #define VM_SWAPFILE_DELAYED_TRIM_MAX 4
127 #define VM_SWAP_SHOULD_DEFRAGMENT() (((vm_swap_force_defrag == TRUE) || (c_swappedout_sparse_count > (vm_swapfile_total_segs_used / 16))) ? 1 : 0)
128 #define VM_SWAP_SHOULD_PIN(_size) FALSE
129 #define VM_SWAP_SHOULD_CREATE(cur_ts) ((vm_num_swap_files < vm_num_swap_files_config) && ((vm_swapfile_total_segs_alloced - vm_swapfile_total_segs_used) < (unsigned int)VM_SWAPFILE_HIWATER_SEGS) && \
130 ((cur_ts - vm_swapfile_last_failed_to_create_ts) > VM_SWAPFILE_DELAYED_CREATE) ? 1 : 0)
131 #define VM_SWAP_SHOULD_TRIM(swf) ((swf->swp_delayed_trim_count >= VM_SWAPFILE_DELAYED_TRIM_MAX) ? 1 : 0)
133 #else /* CONFIG_EMBEDDED */
135 #define VM_MAX_SWAP_FILE_NUM 100
136 #define VM_SWAPFILE_DELAYED_TRIM_MAX 128
138 #define VM_SWAP_SHOULD_DEFRAGMENT() (((vm_swap_force_defrag == TRUE) || (c_swappedout_sparse_count > (vm_swapfile_total_segs_used / 4))) ? 1 : 0)
139 #define VM_SWAP_SHOULD_PIN(_size) (vm_swappin_avail > 0 && vm_swappin_avail >= (int64_t)(_size))
140 #define VM_SWAP_SHOULD_CREATE(cur_ts) ((vm_num_swap_files < vm_num_swap_files_config) && ((vm_swapfile_total_segs_alloced - vm_swapfile_total_segs_used) < (unsigned int)VM_SWAPFILE_HIWATER_SEGS) && \
141 ((cur_ts - vm_swapfile_last_failed_to_create_ts) > VM_SWAPFILE_DELAYED_CREATE) ? 1 : 0)
142 #define VM_SWAP_SHOULD_TRIM(swf) ((swf->swp_delayed_trim_count >= VM_SWAPFILE_DELAYED_TRIM_MAX) ? 1 : 0)
144 #endif /* CONFIG_EMBEDDED */
146 #define VM_SWAP_SHOULD_RECLAIM() (((vm_swap_force_reclaim == TRUE) || ((vm_swapfile_total_segs_alloced - vm_swapfile_total_segs_used) >= SWAPFILE_RECLAIM_THRESHOLD_SEGS)) ? 1 : 0)
147 #define VM_SWAP_SHOULD_ABORT_RECLAIM() (((vm_swap_force_reclaim == FALSE) && ((vm_swapfile_total_segs_alloced - vm_swapfile_total_segs_used) <= SWAPFILE_RECLAIM_MINIMUM_SEGS)) ? 1 : 0)
148 #define VM_SWAPFILE_DELAYED_CREATE 15
150 #define VM_SWAP_BUSY() ((c_swapout_count && (vm_swapper_throttle == THROTTLE_LEVEL_COMPRESSOR_TIER0)) ? 1 : 0)
153 #if CHECKSUM_THE_SWAP
154 extern unsigned int hash_string(char *cp
, int len
);
157 #if RECORD_THE_COMPRESSED_DATA
158 boolean_t c_compressed_record_init_done
= FALSE
;
159 int c_compressed_record_write_error
= 0;
160 struct vnode
*c_compressed_record_vp
= NULL
;
161 uint64_t c_compressed_record_file_offset
= 0;
162 void c_compressed_record_init(void);
163 void c_compressed_record_write(char *, int);
166 extern void vm_pageout_io_throttle(void);
168 static struct swapfile
*vm_swapfile_for_handle(uint64_t);
171 * Called with the vm_swap_data_lock held.
174 static struct swapfile
*
175 vm_swapfile_for_handle(uint64_t f_offset
)
177 uint64_t file_offset
= 0;
178 unsigned int swapfile_index
= 0;
179 struct swapfile
* swf
= NULL
;
181 file_offset
= (f_offset
& SWAP_SLOT_MASK
);
182 swapfile_index
= (f_offset
>> SWAP_DEVICE_SHIFT
);
184 swf
= (struct swapfile
*) queue_first(&swf_global_queue
);
186 while (queue_end(&swf_global_queue
, (queue_entry_t
)swf
) == FALSE
) {
187 if (swapfile_index
== swf
->swp_index
) {
191 swf
= (struct swapfile
*) queue_next(&swf
->swp_queue
);
194 if (queue_end(&swf_global_queue
, (queue_entry_t
) swf
)) {
203 #include <libkern/crypto/aesxts.h>
205 extern int cc_rand_generate(void *, size_t); /* from libkern/cyrpto/rand.h> */
207 boolean_t swap_crypt_initialized
;
208 void swap_crypt_initialize(void);
210 symmetric_xts xts_modectx
;
211 uint32_t swap_crypt_key1
[8]; /* big enough for a 256 bit random key */
212 uint32_t swap_crypt_key2
[8]; /* big enough for a 256 bit random key */
214 #if DEVELOPMENT || DEBUG
215 boolean_t swap_crypt_xts_tested
= FALSE
;
216 unsigned char swap_crypt_test_page_ref
[4096] __attribute__((aligned(4096)));
217 unsigned char swap_crypt_test_page_encrypt
[4096] __attribute__((aligned(4096)));
218 unsigned char swap_crypt_test_page_decrypt
[4096] __attribute__((aligned(4096)));
219 #endif /* DEVELOPMENT || DEBUG */
221 unsigned long vm_page_encrypt_counter
;
222 unsigned long vm_page_decrypt_counter
;
226 swap_crypt_initialize(void)
228 uint8_t *enckey1
, *enckey2
;
229 int keylen1
, keylen2
;
232 assert(swap_crypt_initialized
== FALSE
);
234 keylen1
= sizeof(swap_crypt_key1
);
235 enckey1
= (uint8_t *)&swap_crypt_key1
;
236 keylen2
= sizeof(swap_crypt_key2
);
237 enckey2
= (uint8_t *)&swap_crypt_key2
;
239 error
= cc_rand_generate((void *)enckey1
, keylen1
);
242 error
= cc_rand_generate((void *)enckey2
, keylen2
);
245 error
= xts_start(0, NULL
, enckey1
, keylen1
, enckey2
, keylen2
, 0, 0, &xts_modectx
);
248 swap_crypt_initialized
= TRUE
;
250 #if DEVELOPMENT || DEBUG
260 assert(swap_crypt_xts_tested
== FALSE
);
263 * Validate the encryption algorithms.
265 * First initialize the test data.
267 for (i
= 0; i
< 4096; i
++) {
268 swap_crypt_test_page_ref
[i
] = (char) i
;
270 ivnum
[0] = (uint64_t)0xaa;
272 iv
= (uint8_t *)ivnum
;
274 refptr
= (uint8_t *)swap_crypt_test_page_ref
;
275 encptr
= (uint8_t *)swap_crypt_test_page_encrypt
;
276 decptr
= (uint8_t *)swap_crypt_test_page_decrypt
;
280 rc
= xts_encrypt(refptr
, size
, encptr
, iv
, &xts_modectx
);
283 /* compare result with original - should NOT match */
284 for (i
= 0; i
< 4096; i
++) {
285 if (swap_crypt_test_page_encrypt
[i
] !=
286 swap_crypt_test_page_ref
[i
]) {
293 rc
= xts_decrypt(encptr
, size
, decptr
, iv
, &xts_modectx
);
296 /* compare result with original */
297 for (i
= 0; i
< 4096; i
++) {
298 if (swap_crypt_test_page_decrypt
[i
] !=
299 swap_crypt_test_page_ref
[i
]) {
300 panic("encryption test failed");
303 /* encrypt in place */
304 rc
= xts_encrypt(decptr
, size
, decptr
, iv
, &xts_modectx
);
307 /* decrypt in place */
308 rc
= xts_decrypt(decptr
, size
, decptr
, iv
, &xts_modectx
);
311 for (i
= 0; i
< 4096; i
++) {
312 if (swap_crypt_test_page_decrypt
[i
] !=
313 swap_crypt_test_page_ref
[i
]) {
314 panic("in place encryption test failed");
317 swap_crypt_xts_tested
= TRUE
;
318 #endif /* DEVELOPMENT || DEBUG */
323 vm_swap_encrypt(c_segment_t c_seg
)
331 if (swap_crypt_initialized
== FALSE
) {
332 swap_crypt_initialize();
335 #if DEVELOPMENT || DEBUG
336 C_SEG_MAKE_WRITEABLE(c_seg
);
338 ptr
= (uint8_t *)c_seg
->c_store
.c_buffer
;
339 size
= round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg
->c_populated_offset
));
341 ivnum
[0] = (uint64_t)c_seg
;
343 iv
= (uint8_t *)ivnum
;
345 rc
= xts_encrypt(ptr
, size
, ptr
, iv
, &xts_modectx
);
348 vm_page_encrypt_counter
+= (size
/ PAGE_SIZE_64
);
350 #if DEVELOPMENT || DEBUG
351 C_SEG_WRITE_PROTECT(c_seg
);
356 vm_swap_decrypt(c_segment_t c_seg
)
364 assert(swap_crypt_initialized
);
366 #if DEVELOPMENT || DEBUG
367 C_SEG_MAKE_WRITEABLE(c_seg
);
369 ptr
= (uint8_t *)c_seg
->c_store
.c_buffer
;
370 size
= round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg
->c_populated_offset
));
372 ivnum
[0] = (uint64_t)c_seg
;
374 iv
= (uint8_t *)ivnum
;
376 rc
= xts_decrypt(ptr
, size
, ptr
, iv
, &xts_modectx
);
379 vm_page_decrypt_counter
+= (size
/ PAGE_SIZE_64
);
381 #if DEVELOPMENT || DEBUG
382 C_SEG_WRITE_PROTECT(c_seg
);
385 #endif /* ENCRYPTED_SWAP */
389 vm_compressor_swap_init()
391 thread_t thread
= NULL
;
393 lck_grp_attr_setdefault(&vm_swap_data_lock_grp_attr
);
394 lck_grp_init(&vm_swap_data_lock_grp
,
396 &vm_swap_data_lock_grp_attr
);
397 lck_attr_setdefault(&vm_swap_data_lock_attr
);
398 lck_mtx_init_ext(&vm_swap_data_lock
,
399 &vm_swap_data_lock_ext
,
400 &vm_swap_data_lock_grp
,
401 &vm_swap_data_lock_attr
);
403 queue_init(&swf_global_queue
);
406 if (kernel_thread_start_priority((thread_continue_t
)vm_swapout_thread
, NULL
,
407 BASEPRI_VM
, &thread
) != KERN_SUCCESS
) {
408 panic("vm_swapout_thread: create failed");
410 thread_set_thread_name(thread
, "VM_swapout");
411 vm_swapout_thread_id
= thread
->thread_id
;
413 thread_deallocate(thread
);
415 if (kernel_thread_start_priority((thread_continue_t
)vm_swapfile_create_thread
, NULL
,
416 BASEPRI_VM
, &thread
) != KERN_SUCCESS
) {
417 panic("vm_swapfile_create_thread: create failed");
420 thread_set_thread_name(thread
, "VM_swapfile_create");
421 thread_deallocate(thread
);
423 if (kernel_thread_start_priority((thread_continue_t
)vm_swapfile_gc_thread
, NULL
,
424 BASEPRI_VM
, &thread
) != KERN_SUCCESS
) {
425 panic("vm_swapfile_gc_thread: create failed");
427 thread_set_thread_name(thread
, "VM_swapfile_gc");
428 thread_deallocate(thread
);
430 proc_set_thread_policy_with_tid(kernel_task
, thread
->thread_id
,
431 TASK_POLICY_INTERNAL
, TASK_POLICY_IO
, THROTTLE_LEVEL_COMPRESSOR_TIER2
);
432 proc_set_thread_policy_with_tid(kernel_task
, thread
->thread_id
,
433 TASK_POLICY_INTERNAL
, TASK_POLICY_PASSIVE_IO
, TASK_POLICY_ENABLE
);
437 * dummy value until the swap file gets created
438 * when we drive the first c_segment_t to the
439 * swapout queue... at that time we will
440 * know the true size we have to work with
442 c_overage_swapped_limit
= 16;
445 vm_num_swap_files_config
= VM_MAX_SWAP_FILE_NUM
;
447 printf("VM Swap Subsystem is ON\n");
451 #if RECORD_THE_COMPRESSED_DATA
454 c_compressed_record_init()
456 if (c_compressed_record_init_done
== FALSE
) {
457 vm_swapfile_open("/tmp/compressed_data", &c_compressed_record_vp
);
458 c_compressed_record_init_done
= TRUE
;
463 c_compressed_record_write(char *buf
, int size
)
465 if (c_compressed_record_write_error
== 0) {
466 c_compressed_record_write_error
= vm_record_file_write(c_compressed_record_vp
, c_compressed_record_file_offset
, buf
, size
);
467 c_compressed_record_file_offset
+= size
;
473 int compaction_swapper_inited
= 0;
476 vm_compaction_swapper_do_init(void)
482 if (compaction_swapper_inited
) {
486 if (vm_compressor_mode
!= VM_PAGER_COMPRESSOR_WITH_SWAP
) {
487 compaction_swapper_inited
= 1;
490 lck_mtx_lock(&vm_swap_data_lock
);
492 if (!compaction_swapper_inited
) {
493 namelen
= (int)strlen(swapfilename
) + SWAPFILENAME_INDEX_LEN
+ 1;
494 pathname
= (char*)kalloc(namelen
);
495 memset(pathname
, 0, namelen
);
496 snprintf(pathname
, namelen
, "%s%d", swapfilename
, 0);
498 vm_swapfile_open(pathname
, &vp
);
501 if (vnode_pager_isSSD(vp
) == FALSE
) {
503 * swap files live on an HDD, so let's make sure to start swapping
504 * much earlier since we're not worried about SSD write-wear and
505 * we have so little write bandwidth to work with
506 * these values were derived expermentially by running the performance
507 * teams stock test for evaluating HDD performance against various
508 * combinations and looking and comparing overall results.
509 * Note that the > relationship between these 4 values must be maintained
511 if (vm_compressor_minorcompact_threshold_divisor_overridden
== 0) {
512 vm_compressor_minorcompact_threshold_divisor
= 15;
514 if (vm_compressor_majorcompact_threshold_divisor_overridden
== 0) {
515 vm_compressor_majorcompact_threshold_divisor
= 18;
517 if (vm_compressor_unthrottle_threshold_divisor_overridden
== 0) {
518 vm_compressor_unthrottle_threshold_divisor
= 24;
520 if (vm_compressor_catchup_threshold_divisor_overridden
== 0) {
521 vm_compressor_catchup_threshold_divisor
= 30;
525 vnode_setswapmount(vp
);
526 vm_swappin_avail
= vnode_getswappin_avail(vp
);
528 if (vm_swappin_avail
) {
529 vm_swappin_enabled
= TRUE
;
532 vm_swapfile_close((uint64_t)pathname
, vp
);
534 kfree(pathname
, namelen
);
536 compaction_swapper_inited
= 1;
538 lck_mtx_unlock(&vm_swap_data_lock
);
543 vm_swap_consider_defragmenting(int flags
)
545 boolean_t force_defrag
= (flags
& VM_SWAP_FLAGS_FORCE_DEFRAG
);
546 boolean_t force_reclaim
= (flags
& VM_SWAP_FLAGS_FORCE_RECLAIM
);
548 if (compressor_store_stop_compaction
== FALSE
&& !VM_SWAP_BUSY() &&
549 (force_defrag
|| force_reclaim
|| VM_SWAP_SHOULD_DEFRAGMENT() || VM_SWAP_SHOULD_RECLAIM())) {
550 if (!vm_swapfile_gc_thread_running
|| force_defrag
|| force_reclaim
) {
551 lck_mtx_lock(&vm_swap_data_lock
);
554 vm_swap_force_defrag
= TRUE
;
558 vm_swap_force_reclaim
= TRUE
;
561 if (!vm_swapfile_gc_thread_running
) {
562 thread_wakeup((event_t
) &vm_swapfile_gc_needed
);
565 lck_mtx_unlock(&vm_swap_data_lock
);
571 int vm_swap_defragment_yielded
= 0;
572 int vm_swap_defragment_swapin
= 0;
573 int vm_swap_defragment_free
= 0;
574 int vm_swap_defragment_busy
= 0;
583 * have to grab the master lock w/o holding
584 * any locks in spin mode
586 PAGE_REPLACEMENT_DISALLOWED(TRUE
);
588 lck_mtx_lock_spin_always(c_list_lock
);
590 while (!queue_empty(&c_swappedout_sparse_list_head
)) {
591 if (compressor_store_stop_compaction
== TRUE
|| VM_SWAP_BUSY()) {
592 vm_swap_defragment_yielded
++;
595 c_seg
= (c_segment_t
)queue_first(&c_swappedout_sparse_list_head
);
597 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
599 assert(c_seg
->c_state
== C_ON_SWAPPEDOUTSPARSE_Q
);
602 lck_mtx_unlock_always(c_list_lock
);
604 PAGE_REPLACEMENT_DISALLOWED(FALSE
);
606 * c_seg_wait_on_busy consumes c_seg->c_lock
608 c_seg_wait_on_busy(c_seg
);
610 PAGE_REPLACEMENT_DISALLOWED(TRUE
);
612 lck_mtx_lock_spin_always(c_list_lock
);
614 vm_swap_defragment_busy
++;
617 if (c_seg
->c_bytes_used
== 0) {
619 * c_seg_free_locked consumes the c_list_lock
623 c_seg_free_locked(c_seg
);
625 vm_swap_defragment_free
++;
627 lck_mtx_unlock_always(c_list_lock
);
629 if (c_seg_swapin(c_seg
, TRUE
, FALSE
) == 0) {
630 lck_mtx_unlock_always(&c_seg
->c_lock
);
633 vm_swap_defragment_swapin
++;
635 PAGE_REPLACEMENT_DISALLOWED(FALSE
);
637 vm_pageout_io_throttle();
640 * because write waiters have privilege over readers,
641 * dropping and immediately retaking the master lock will
642 * still allow any thread waiting to acquire the
643 * master lock exclusively an opportunity to take it
645 PAGE_REPLACEMENT_DISALLOWED(TRUE
);
647 lck_mtx_lock_spin_always(c_list_lock
);
649 lck_mtx_unlock_always(c_list_lock
);
651 PAGE_REPLACEMENT_DISALLOWED(FALSE
);
657 vm_swapfile_create_thread(void)
662 current_thread()->options
|= TH_OPT_VMPRIV
;
664 vm_swapfile_create_thread_awakened
++;
665 vm_swapfile_create_thread_running
= 1;
669 * walk through the list of swap files
670 * and do the delayed frees/trims for
671 * any swap file whose count of delayed
672 * frees is above the batch limit
674 vm_swap_handle_delayed_trims(FALSE
);
676 lck_mtx_lock(&vm_swap_data_lock
);
678 if (hibernate_in_progress_with_pinned_swap
== TRUE
) {
682 clock_get_system_nanotime(&sec
, &nsec
);
684 if (VM_SWAP_SHOULD_CREATE(sec
) == 0) {
688 lck_mtx_unlock(&vm_swap_data_lock
);
690 if (vm_swap_create_file() == FALSE
) {
691 vm_swapfile_last_failed_to_create_ts
= sec
;
692 HIBLOG("vm_swap_create_file failed @ %lu secs\n", (unsigned long)sec
);
694 vm_swapfile_last_successful_create_ts
= sec
;
697 vm_swapfile_create_thread_running
= 0;
699 if (hibernate_in_progress_with_pinned_swap
== TRUE
) {
700 thread_wakeup((event_t
)&hibernate_in_progress_with_pinned_swap
);
703 assert_wait((event_t
)&vm_swapfile_create_needed
, THREAD_UNINT
);
705 lck_mtx_unlock(&vm_swap_data_lock
);
707 thread_block((thread_continue_t
)vm_swapfile_create_thread
);
716 hibernate_pin_swap(boolean_t start
)
718 vm_compaction_swapper_do_init();
720 if (start
== FALSE
) {
721 lck_mtx_lock(&vm_swap_data_lock
);
722 hibernate_in_progress_with_pinned_swap
= FALSE
;
723 lck_mtx_unlock(&vm_swap_data_lock
);
727 if (vm_swappin_enabled
== FALSE
) {
731 lck_mtx_lock(&vm_swap_data_lock
);
733 hibernate_in_progress_with_pinned_swap
= TRUE
;
735 while (vm_swapfile_create_thread_running
|| vm_swapfile_gc_thread_running
) {
736 assert_wait((event_t
)&hibernate_in_progress_with_pinned_swap
, THREAD_UNINT
);
738 lck_mtx_unlock(&vm_swap_data_lock
);
740 thread_block(THREAD_CONTINUE_NULL
);
742 lck_mtx_lock(&vm_swap_data_lock
);
744 if (vm_num_swap_files
> vm_num_pinned_swap_files
) {
745 hibernate_in_progress_with_pinned_swap
= FALSE
;
746 lck_mtx_unlock(&vm_swap_data_lock
);
748 HIBLOG("hibernate_pin_swap failed - vm_num_swap_files = %d, vm_num_pinned_swap_files = %d\n",
749 vm_num_swap_files
, vm_num_pinned_swap_files
);
752 lck_mtx_unlock(&vm_swap_data_lock
);
754 while (VM_SWAP_SHOULD_PIN(MAX_SWAP_FILE_SIZE
)) {
755 if (vm_swap_create_file() == FALSE
) {
764 vm_swapfile_gc_thread(void)
766 boolean_t need_defragment
;
767 boolean_t need_reclaim
;
769 vm_swapfile_gc_thread_awakened
++;
770 vm_swapfile_gc_thread_running
= 1;
773 lck_mtx_lock(&vm_swap_data_lock
);
775 if (hibernate_in_progress_with_pinned_swap
== TRUE
) {
779 if (VM_SWAP_BUSY() || compressor_store_stop_compaction
== TRUE
) {
783 need_defragment
= FALSE
;
784 need_reclaim
= FALSE
;
786 if (VM_SWAP_SHOULD_DEFRAGMENT()) {
787 need_defragment
= TRUE
;
790 if (VM_SWAP_SHOULD_RECLAIM()) {
791 need_defragment
= TRUE
;
794 if (need_defragment
== FALSE
&& need_reclaim
== FALSE
) {
798 vm_swap_force_defrag
= FALSE
;
799 vm_swap_force_reclaim
= FALSE
;
801 lck_mtx_unlock(&vm_swap_data_lock
);
803 if (need_defragment
== TRUE
) {
804 vm_swap_defragment();
806 if (need_reclaim
== TRUE
) {
810 vm_swapfile_gc_thread_running
= 0;
812 if (hibernate_in_progress_with_pinned_swap
== TRUE
) {
813 thread_wakeup((event_t
)&hibernate_in_progress_with_pinned_swap
);
816 assert_wait((event_t
)&vm_swapfile_gc_needed
, THREAD_UNINT
);
818 lck_mtx_unlock(&vm_swap_data_lock
);
820 thread_block((thread_continue_t
)vm_swapfile_gc_thread
);
827 #define VM_SWAPOUT_LIMIT_T2P 4
828 #define VM_SWAPOUT_LIMIT_T1P 4
829 #define VM_SWAPOUT_LIMIT_T0P 6
830 #define VM_SWAPOUT_LIMIT_T0 8
831 #define VM_SWAPOUT_LIMIT_MAX 8
833 #define VM_SWAPOUT_START 0
834 #define VM_SWAPOUT_T2_PASSIVE 1
835 #define VM_SWAPOUT_T1_PASSIVE 2
836 #define VM_SWAPOUT_T0_PASSIVE 3
837 #define VM_SWAPOUT_T0 4
839 int vm_swapout_state
= VM_SWAPOUT_START
;
840 int vm_swapout_limit
= 1;
842 int vm_swapper_entered_T0
= 0;
843 int vm_swapper_entered_T0P
= 0;
844 int vm_swapper_entered_T1P
= 0;
845 int vm_swapper_entered_T2P
= 0;
849 vm_swapout_thread_throttle_adjust(void)
851 switch (vm_swapout_state
) {
852 case VM_SWAPOUT_START
:
854 vm_swapper_throttle
= THROTTLE_LEVEL_COMPRESSOR_TIER2
;
855 vm_swapper_entered_T2P
++;
857 proc_set_thread_policy_with_tid(kernel_task
, vm_swapout_thread_id
,
858 TASK_POLICY_INTERNAL
, TASK_POLICY_IO
, vm_swapper_throttle
);
859 proc_set_thread_policy_with_tid(kernel_task
, vm_swapout_thread_id
,
860 TASK_POLICY_INTERNAL
, TASK_POLICY_PASSIVE_IO
, TASK_POLICY_ENABLE
);
861 vm_swapout_limit
= VM_SWAPOUT_LIMIT_T2P
;
862 vm_swapout_state
= VM_SWAPOUT_T2_PASSIVE
;
866 case VM_SWAPOUT_T2_PASSIVE
:
868 if (SWAPPER_NEEDS_TO_UNTHROTTLE()) {
869 vm_swapper_throttle
= THROTTLE_LEVEL_COMPRESSOR_TIER0
;
870 vm_swapper_entered_T0P
++;
872 proc_set_thread_policy_with_tid(kernel_task
, vm_swapout_thread_id
,
873 TASK_POLICY_INTERNAL
, TASK_POLICY_IO
, vm_swapper_throttle
);
874 proc_set_thread_policy_with_tid(kernel_task
, vm_swapout_thread_id
,
875 TASK_POLICY_INTERNAL
, TASK_POLICY_PASSIVE_IO
, TASK_POLICY_ENABLE
);
876 vm_swapout_limit
= VM_SWAPOUT_LIMIT_T0P
;
877 vm_swapout_state
= VM_SWAPOUT_T0_PASSIVE
;
881 if (swapout_target_age
|| hibernate_flushing
== TRUE
) {
882 vm_swapper_throttle
= THROTTLE_LEVEL_COMPRESSOR_TIER1
;
883 vm_swapper_entered_T1P
++;
885 proc_set_thread_policy_with_tid(kernel_task
, vm_swapout_thread_id
,
886 TASK_POLICY_INTERNAL
, TASK_POLICY_IO
, vm_swapper_throttle
);
887 proc_set_thread_policy_with_tid(kernel_task
, vm_swapout_thread_id
,
888 TASK_POLICY_INTERNAL
, TASK_POLICY_PASSIVE_IO
, TASK_POLICY_ENABLE
);
889 vm_swapout_limit
= VM_SWAPOUT_LIMIT_T1P
;
890 vm_swapout_state
= VM_SWAPOUT_T1_PASSIVE
;
894 case VM_SWAPOUT_T1_PASSIVE
:
896 if (SWAPPER_NEEDS_TO_UNTHROTTLE()) {
897 vm_swapper_throttle
= THROTTLE_LEVEL_COMPRESSOR_TIER0
;
898 vm_swapper_entered_T0P
++;
900 proc_set_thread_policy_with_tid(kernel_task
, vm_swapout_thread_id
,
901 TASK_POLICY_INTERNAL
, TASK_POLICY_IO
, vm_swapper_throttle
);
902 proc_set_thread_policy_with_tid(kernel_task
, vm_swapout_thread_id
,
903 TASK_POLICY_INTERNAL
, TASK_POLICY_PASSIVE_IO
, TASK_POLICY_ENABLE
);
904 vm_swapout_limit
= VM_SWAPOUT_LIMIT_T0P
;
905 vm_swapout_state
= VM_SWAPOUT_T0_PASSIVE
;
909 if (swapout_target_age
== 0 && hibernate_flushing
== FALSE
) {
910 vm_swapper_throttle
= THROTTLE_LEVEL_COMPRESSOR_TIER2
;
911 vm_swapper_entered_T2P
++;
913 proc_set_thread_policy_with_tid(kernel_task
, vm_swapout_thread_id
,
914 TASK_POLICY_INTERNAL
, TASK_POLICY_IO
, vm_swapper_throttle
);
915 proc_set_thread_policy_with_tid(kernel_task
, vm_swapout_thread_id
,
916 TASK_POLICY_INTERNAL
, TASK_POLICY_PASSIVE_IO
, TASK_POLICY_ENABLE
);
917 vm_swapout_limit
= VM_SWAPOUT_LIMIT_T2P
;
918 vm_swapout_state
= VM_SWAPOUT_T2_PASSIVE
;
922 case VM_SWAPOUT_T0_PASSIVE
:
924 if (SWAPPER_NEEDS_TO_RETHROTTLE()) {
925 vm_swapper_throttle
= THROTTLE_LEVEL_COMPRESSOR_TIER2
;
926 vm_swapper_entered_T2P
++;
928 proc_set_thread_policy_with_tid(kernel_task
, vm_swapout_thread_id
,
929 TASK_POLICY_INTERNAL
, TASK_POLICY_IO
, vm_swapper_throttle
);
930 proc_set_thread_policy_with_tid(kernel_task
, vm_swapout_thread_id
,
931 TASK_POLICY_INTERNAL
, TASK_POLICY_PASSIVE_IO
, TASK_POLICY_ENABLE
);
932 vm_swapout_limit
= VM_SWAPOUT_LIMIT_T2P
;
933 vm_swapout_state
= VM_SWAPOUT_T2_PASSIVE
;
937 if (SWAPPER_NEEDS_TO_CATCHUP()) {
938 vm_swapper_entered_T0
++;
940 proc_set_thread_policy_with_tid(kernel_task
, vm_swapout_thread_id
,
941 TASK_POLICY_INTERNAL
, TASK_POLICY_PASSIVE_IO
, TASK_POLICY_DISABLE
);
942 vm_swapout_limit
= VM_SWAPOUT_LIMIT_T0
;
943 vm_swapout_state
= VM_SWAPOUT_T0
;
949 if (SWAPPER_HAS_CAUGHTUP()) {
950 vm_swapper_entered_T0P
++;
952 proc_set_thread_policy_with_tid(kernel_task
, vm_swapout_thread_id
,
953 TASK_POLICY_INTERNAL
, TASK_POLICY_PASSIVE_IO
, TASK_POLICY_ENABLE
);
954 vm_swapout_limit
= VM_SWAPOUT_LIMIT_T0P
;
955 vm_swapout_state
= VM_SWAPOUT_T0_PASSIVE
;
961 int vm_swapout_found_empty
= 0;
963 struct swapout_io_completion vm_swapout_ctx
[VM_SWAPOUT_LIMIT_MAX
];
965 int vm_swapout_soc_busy
= 0;
966 int vm_swapout_soc_done
= 0;
969 static struct swapout_io_completion
*
970 vm_swapout_find_free_soc(void)
974 for (i
= 0; i
< VM_SWAPOUT_LIMIT_MAX
; i
++) {
975 if (vm_swapout_ctx
[i
].swp_io_busy
== 0) {
976 return &vm_swapout_ctx
[i
];
979 assert(vm_swapout_soc_busy
== VM_SWAPOUT_LIMIT_MAX
);
984 static struct swapout_io_completion
*
985 vm_swapout_find_done_soc(void)
989 if (vm_swapout_soc_done
) {
990 for (i
= 0; i
< VM_SWAPOUT_LIMIT_MAX
; i
++) {
991 if (vm_swapout_ctx
[i
].swp_io_done
) {
992 return &vm_swapout_ctx
[i
];
1000 vm_swapout_complete_soc(struct swapout_io_completion
*soc
)
1004 if (soc
->swp_io_error
) {
1010 lck_mtx_unlock_always(c_list_lock
);
1012 vm_swap_put_finish(soc
->swp_swf
, &soc
->swp_f_offset
, soc
->swp_io_error
);
1013 vm_swapout_finish(soc
->swp_c_seg
, soc
->swp_f_offset
, soc
->swp_c_size
, kr
);
1015 lck_mtx_lock_spin_always(c_list_lock
);
1017 soc
->swp_io_done
= 0;
1018 soc
->swp_io_busy
= 0;
1020 vm_swapout_soc_busy
--;
1021 vm_swapout_soc_done
--;
1026 vm_swapout_thread(void)
1029 c_segment_t c_seg
= NULL
;
1030 kern_return_t kr
= KERN_SUCCESS
;
1031 struct swapout_io_completion
*soc
;
1033 current_thread()->options
|= TH_OPT_VMPRIV
;
1035 vm_swapout_thread_awakened
++;
1037 lck_mtx_lock_spin_always(c_list_lock
);
1039 while (!queue_empty(&c_swapout_list_head
) && vm_swapout_soc_busy
< vm_swapout_limit
) {
1040 c_seg
= (c_segment_t
)queue_first(&c_swapout_list_head
);
1042 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
1044 assert(c_seg
->c_state
== C_ON_SWAPOUT_Q
);
1046 if (c_seg
->c_busy
) {
1047 lck_mtx_unlock_always(c_list_lock
);
1049 c_seg_wait_on_busy(c_seg
);
1051 lck_mtx_lock_spin_always(c_list_lock
);
1055 vm_swapout_thread_processed_segments
++;
1057 size
= round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg
->c_populated_offset
));
1060 assert(c_seg
->c_bytes_used
== 0);
1062 if (!c_seg
->c_on_minorcompact_q
) {
1063 c_seg_need_delayed_compaction(c_seg
, TRUE
);
1066 c_seg_switch_state(c_seg
, C_IS_EMPTY
, FALSE
);
1067 lck_mtx_unlock_always(&c_seg
->c_lock
);
1068 lck_mtx_unlock_always(c_list_lock
);
1070 vm_swapout_found_empty
++;
1071 goto c_seg_is_empty
;
1074 c_seg
->c_busy_swapping
= 1;
1076 c_seg_switch_state(c_seg
, C_ON_SWAPIO_Q
, FALSE
);
1078 lck_mtx_unlock_always(c_list_lock
);
1079 lck_mtx_unlock_always(&c_seg
->c_lock
);
1081 #if CHECKSUM_THE_SWAP
1082 c_seg
->cseg_hash
= hash_string((char *)c_seg
->c_store
.c_buffer
, (int)size
);
1083 c_seg
->cseg_swap_size
= size
;
1084 #endif /* CHECKSUM_THE_SWAP */
1087 vm_swap_encrypt(c_seg
);
1088 #endif /* ENCRYPTED_SWAP */
1090 soc
= vm_swapout_find_free_soc();
1093 soc
->swp_upl_ctx
.io_context
= (void *)soc
;
1094 soc
->swp_upl_ctx
.io_done
= (void *)vm_swapout_iodone
;
1095 soc
->swp_upl_ctx
.io_error
= 0;
1097 kr
= vm_swap_put((vm_offset_t
)c_seg
->c_store
.c_buffer
, &soc
->swp_f_offset
, size
, c_seg
, soc
);
1099 if (kr
!= KERN_SUCCESS
) {
1100 if (soc
->swp_io_done
) {
1101 lck_mtx_lock_spin_always(c_list_lock
);
1103 soc
->swp_io_done
= 0;
1104 vm_swapout_soc_done
--;
1106 lck_mtx_unlock_always(c_list_lock
);
1108 vm_swapout_finish(c_seg
, soc
->swp_f_offset
, size
, kr
);
1110 soc
->swp_io_busy
= 1;
1111 vm_swapout_soc_busy
++;
1113 vm_swapout_thread_throttle_adjust();
1114 vm_pageout_io_throttle();
1117 if (c_swapout_count
== 0) {
1118 vm_swap_consider_defragmenting(VM_SWAP_FLAGS_NONE
);
1121 lck_mtx_lock_spin_always(c_list_lock
);
1123 if ((soc
= vm_swapout_find_done_soc())) {
1124 vm_swapout_complete_soc(soc
);
1127 if ((soc
= vm_swapout_find_done_soc())) {
1128 vm_swapout_complete_soc(soc
);
1131 assert_wait((event_t
)&c_swapout_list_head
, THREAD_UNINT
);
1133 lck_mtx_unlock_always(c_list_lock
);
1135 thread_block((thread_continue_t
)vm_swapout_thread
);
1142 vm_swapout_iodone(void *io_context
, int error
)
1144 struct swapout_io_completion
*soc
;
1146 soc
= (struct swapout_io_completion
*)io_context
;
1148 lck_mtx_lock_spin_always(c_list_lock
);
1150 soc
->swp_io_done
= 1;
1151 soc
->swp_io_error
= error
;
1152 vm_swapout_soc_done
++;
1154 thread_wakeup((event_t
)&c_swapout_list_head
);
1156 lck_mtx_unlock_always(c_list_lock
);
1161 vm_swapout_finish(c_segment_t c_seg
, uint64_t f_offset
, uint32_t size
, kern_return_t kr
)
1163 PAGE_REPLACEMENT_DISALLOWED(TRUE
);
1165 if (kr
== KERN_SUCCESS
) {
1166 kernel_memory_depopulate(compressor_map
, (vm_offset_t
)c_seg
->c_store
.c_buffer
, size
, KMA_COMPRESSOR
);
1170 vm_swap_decrypt(c_seg
);
1172 #endif /* ENCRYPTED_SWAP */
1173 lck_mtx_lock_spin_always(c_list_lock
);
1174 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
1176 if (kr
== KERN_SUCCESS
) {
1177 int new_state
= C_ON_SWAPPEDOUT_Q
;
1178 boolean_t insert_head
= FALSE
;
1180 if (hibernate_flushing
== TRUE
) {
1181 if (c_seg
->c_generation_id
>= first_c_segment_to_warm_generation_id
&&
1182 c_seg
->c_generation_id
<= last_c_segment_to_warm_generation_id
) {
1185 } else if (C_SEG_ONDISK_IS_SPARSE(c_seg
)) {
1186 new_state
= C_ON_SWAPPEDOUTSPARSE_Q
;
1189 c_seg_switch_state(c_seg
, new_state
, insert_head
);
1191 c_seg
->c_store
.c_swap_handle
= f_offset
;
1193 VM_STAT_INCR_BY(swapouts
, size
>> PAGE_SHIFT
);
1195 if (c_seg
->c_bytes_used
) {
1196 OSAddAtomic64(-c_seg
->c_bytes_used
, &compressor_bytes_used
);
1199 if (c_seg
->c_overage_swap
== TRUE
) {
1200 c_seg
->c_overage_swap
= FALSE
;
1201 c_overage_swapped_count
--;
1203 c_seg_switch_state(c_seg
, C_ON_AGE_Q
, FALSE
);
1205 if (!c_seg
->c_on_minorcompact_q
&& C_SEG_UNUSED_BYTES(c_seg
) >= PAGE_SIZE
) {
1206 c_seg_need_delayed_compaction(c_seg
, TRUE
);
1209 assert(c_seg
->c_busy_swapping
);
1210 assert(c_seg
->c_busy
);
1212 c_seg
->c_busy_swapping
= 0;
1213 lck_mtx_unlock_always(c_list_lock
);
1215 C_SEG_WAKEUP_DONE(c_seg
);
1216 lck_mtx_unlock_always(&c_seg
->c_lock
);
1218 PAGE_REPLACEMENT_DISALLOWED(FALSE
);
1223 vm_swap_create_file()
1227 boolean_t swap_file_created
= FALSE
;
1228 boolean_t swap_file_reuse
= FALSE
;
1229 boolean_t swap_file_pin
= FALSE
;
1230 struct swapfile
*swf
= NULL
;
1233 * make sure we've got all the info we need
1234 * to potentially pin a swap file... we could
1235 * be swapping out due to hibernation w/o ever
1236 * having run vm_pageout_scan, which is normally
1237 * the trigger to do the init
1239 vm_compaction_swapper_do_init();
1242 * Any swapfile structure ready for re-use?
1245 lck_mtx_lock(&vm_swap_data_lock
);
1247 swf
= (struct swapfile
*) queue_first(&swf_global_queue
);
1249 while (queue_end(&swf_global_queue
, (queue_entry_t
)swf
) == FALSE
) {
1250 if (swf
->swp_flags
== SWAP_REUSE
) {
1251 swap_file_reuse
= TRUE
;
1254 swf
= (struct swapfile
*) queue_next(&swf
->swp_queue
);
1257 lck_mtx_unlock(&vm_swap_data_lock
);
1259 if (swap_file_reuse
== FALSE
) {
1260 namelen
= (int)strlen(swapfilename
) + SWAPFILENAME_INDEX_LEN
+ 1;
1262 swf
= (struct swapfile
*) kalloc(sizeof *swf
);
1263 memset(swf
, 0, sizeof(*swf
));
1265 swf
->swp_index
= vm_num_swap_files
+ 1;
1266 swf
->swp_pathlen
= namelen
;
1267 swf
->swp_path
= (char*)kalloc(swf
->swp_pathlen
);
1269 memset(swf
->swp_path
, 0, namelen
);
1271 snprintf(swf
->swp_path
, namelen
, "%s%d", swapfilename
, vm_num_swap_files
);
1274 vm_swapfile_open(swf
->swp_path
, &swf
->swp_vp
);
1276 if (swf
->swp_vp
== NULL
) {
1277 if (swap_file_reuse
== FALSE
) {
1278 kfree(swf
->swp_path
, swf
->swp_pathlen
);
1279 kfree(swf
, sizeof *swf
);
1283 vm_swapfile_can_be_created
= TRUE
;
1285 size
= MAX_SWAP_FILE_SIZE
;
1287 while (size
>= MIN_SWAP_FILE_SIZE
) {
1288 swap_file_pin
= VM_SWAP_SHOULD_PIN(size
);
1290 if (vm_swapfile_preallocate(swf
->swp_vp
, &size
, &swap_file_pin
) == 0) {
1291 int num_bytes_for_bitmap
= 0;
1293 swap_file_created
= TRUE
;
1295 swf
->swp_size
= size
;
1296 swf
->swp_nsegs
= (unsigned int) (size
/ COMPRESSED_SWAP_CHUNK_SIZE
);
1297 swf
->swp_nseginuse
= 0;
1298 swf
->swp_free_hint
= 0;
1300 num_bytes_for_bitmap
= MAX((swf
->swp_nsegs
>> 3), 1);
1302 * Allocate a bitmap that describes the
1303 * number of segments held by this swapfile.
1305 swf
->swp_bitmap
= (uint8_t*)kalloc(num_bytes_for_bitmap
);
1306 memset(swf
->swp_bitmap
, 0, num_bytes_for_bitmap
);
1308 swf
->swp_csegs
= (c_segment_t
*) kalloc(swf
->swp_nsegs
* sizeof(c_segment_t
));
1309 memset(swf
->swp_csegs
, 0, (swf
->swp_nsegs
* sizeof(c_segment_t
)));
1312 * passing a NULL trim_list into vnode_trim_list
1313 * will return ENOTSUP if trim isn't supported
1316 if (vnode_trim_list(swf
->swp_vp
, NULL
, FALSE
) == 0) {
1317 swp_trim_supported
= TRUE
;
1320 lck_mtx_lock(&vm_swap_data_lock
);
1322 swf
->swp_flags
= SWAP_READY
;
1324 if (swap_file_reuse
== FALSE
) {
1325 queue_enter(&swf_global_queue
, swf
, struct swapfile
*, swp_queue
);
1328 vm_num_swap_files
++;
1330 vm_swapfile_total_segs_alloced
+= swf
->swp_nsegs
;
1332 if (swap_file_pin
== TRUE
) {
1333 vm_num_pinned_swap_files
++;
1334 swf
->swp_flags
|= SWAP_PINNED
;
1335 vm_swappin_avail
-= swf
->swp_size
;
1338 lck_mtx_unlock(&vm_swap_data_lock
);
1340 thread_wakeup((event_t
) &vm_num_swap_files
);
1342 if (vm_num_swap_files
== 1) {
1343 c_overage_swapped_limit
= (uint32_t)size
/ C_SEG_BUFSIZE
;
1345 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
1346 c_overage_swapped_limit
/= 2;
1355 if (swap_file_created
== FALSE
) {
1356 vm_swapfile_close((uint64_t)(swf
->swp_path
), swf
->swp_vp
);
1360 if (swap_file_reuse
== FALSE
) {
1361 kfree(swf
->swp_path
, swf
->swp_pathlen
);
1362 kfree(swf
, sizeof *swf
);
1365 return swap_file_created
;
1370 vm_swap_get(c_segment_t c_seg
, uint64_t f_offset
, uint64_t size
)
1372 struct swapfile
*swf
= NULL
;
1373 uint64_t file_offset
= 0;
1376 assert(c_seg
->c_store
.c_buffer
);
1378 lck_mtx_lock(&vm_swap_data_lock
);
1380 swf
= vm_swapfile_for_handle(f_offset
);
1382 if (swf
== NULL
|| (!(swf
->swp_flags
& SWAP_READY
) && !(swf
->swp_flags
& SWAP_RECLAIM
))) {
1383 vm_swap_get_failures
++;
1387 swf
->swp_io_count
++;
1389 lck_mtx_unlock(&vm_swap_data_lock
);
1391 #if DEVELOPMENT || DEBUG
1392 C_SEG_MAKE_WRITEABLE(c_seg
);
1394 file_offset
= (f_offset
& SWAP_SLOT_MASK
);
1395 retval
= vm_swapfile_io(swf
->swp_vp
, file_offset
, (uint64_t)c_seg
->c_store
.c_buffer
, (int)(size
/ PAGE_SIZE_64
), SWAP_READ
, NULL
);
1397 #if DEVELOPMENT || DEBUG
1398 C_SEG_WRITE_PROTECT(c_seg
);
1401 VM_STAT_INCR_BY(swapins
, size
>> PAGE_SHIFT
);
1403 vm_swap_get_failures
++;
1407 * Free this slot in the swap structure.
1409 vm_swap_free(f_offset
);
1411 lck_mtx_lock(&vm_swap_data_lock
);
1412 swf
->swp_io_count
--;
1414 if ((swf
->swp_flags
& SWAP_WANTED
) && swf
->swp_io_count
== 0) {
1415 swf
->swp_flags
&= ~SWAP_WANTED
;
1416 thread_wakeup((event_t
) &swf
->swp_flags
);
1419 lck_mtx_unlock(&vm_swap_data_lock
);
1422 return KERN_SUCCESS
;
1424 return KERN_FAILURE
;
1429 vm_swap_put(vm_offset_t addr
, uint64_t *f_offset
, uint32_t size
, c_segment_t c_seg
, struct swapout_io_completion
*soc
)
1431 unsigned int segidx
= 0;
1432 struct swapfile
*swf
= NULL
;
1433 uint64_t file_offset
= 0;
1434 uint64_t swapfile_index
= 0;
1435 unsigned int byte_for_segidx
= 0;
1436 unsigned int offset_within_byte
= 0;
1437 boolean_t swf_eligible
= FALSE
;
1438 boolean_t waiting
= FALSE
;
1439 boolean_t retried
= FALSE
;
1443 void *upl_ctx
= NULL
;
1445 if (addr
== 0 || f_offset
== NULL
) {
1446 return KERN_FAILURE
;
1449 lck_mtx_lock(&vm_swap_data_lock
);
1451 swf
= (struct swapfile
*) queue_first(&swf_global_queue
);
1453 while (queue_end(&swf_global_queue
, (queue_entry_t
)swf
) == FALSE
) {
1454 segidx
= swf
->swp_free_hint
;
1456 swf_eligible
= (swf
->swp_flags
& SWAP_READY
) && (swf
->swp_nseginuse
< swf
->swp_nsegs
);
1459 while (segidx
< swf
->swp_nsegs
) {
1460 byte_for_segidx
= segidx
>> 3;
1461 offset_within_byte
= segidx
% 8;
1463 if ((swf
->swp_bitmap
)[byte_for_segidx
] & (1 << offset_within_byte
)) {
1468 (swf
->swp_bitmap
)[byte_for_segidx
] |= (1 << offset_within_byte
);
1470 file_offset
= segidx
* COMPRESSED_SWAP_CHUNK_SIZE
;
1471 swf
->swp_nseginuse
++;
1472 swf
->swp_io_count
++;
1473 swf
->swp_csegs
[segidx
] = c_seg
;
1475 swapfile_index
= swf
->swp_index
;
1476 vm_swapfile_total_segs_used
++;
1478 clock_get_system_nanotime(&sec
, &nsec
);
1480 if (VM_SWAP_SHOULD_CREATE(sec
) && !vm_swapfile_create_thread_running
) {
1481 thread_wakeup((event_t
) &vm_swapfile_create_needed
);
1484 lck_mtx_unlock(&vm_swap_data_lock
);
1489 swf
= (struct swapfile
*) queue_next(&swf
->swp_queue
);
1491 assert(queue_end(&swf_global_queue
, (queue_entry_t
) swf
));
1494 * we've run out of swap segments, but may not
1495 * be in a position to immediately create a new swap
1496 * file if we've recently failed to create due to a lack
1497 * of free space in the root filesystem... we'll try
1498 * to kick that create off, but in any event we're going
1499 * to take a breather (up to 1 second) so that we're not caught in a tight
1500 * loop back in "vm_compressor_compact_and_swap" trying to stuff
1501 * segments into swap files only to have them immediately put back
1502 * on the c_age queue due to vm_swap_put failing.
1504 * if we're doing these puts due to a hibernation flush,
1505 * no need to block... setting hibernate_no_swapspace to TRUE,
1506 * will cause "vm_compressor_compact_and_swap" to immediately abort
1508 clock_get_system_nanotime(&sec
, &nsec
);
1510 if (VM_SWAP_SHOULD_CREATE(sec
) && !vm_swapfile_create_thread_running
) {
1511 thread_wakeup((event_t
) &vm_swapfile_create_needed
);
1514 if (hibernate_flushing
== FALSE
|| VM_SWAP_SHOULD_CREATE(sec
)) {
1516 assert_wait_timeout((event_t
) &vm_num_swap_files
, THREAD_INTERRUPTIBLE
, 1000, 1000 * NSEC_PER_USEC
);
1518 hibernate_no_swapspace
= TRUE
;
1521 lck_mtx_unlock(&vm_swap_data_lock
);
1523 if (waiting
== TRUE
) {
1524 thread_block(THREAD_CONTINUE_NULL
);
1526 if (retried
== FALSE
&& hibernate_flushing
== TRUE
) {
1531 vm_swap_put_failures_no_swap_file
++;
1533 return KERN_FAILURE
;
1536 assert(c_seg
->c_busy_swapping
);
1537 assert(c_seg
->c_busy
);
1538 assert(!c_seg
->c_on_minorcompact_q
);
1540 *f_offset
= (swapfile_index
<< SWAP_DEVICE_SHIFT
) | file_offset
;
1543 soc
->swp_c_seg
= c_seg
;
1544 soc
->swp_c_size
= size
;
1548 soc
->swp_io_error
= 0;
1549 soc
->swp_io_done
= 0;
1551 upl_ctx
= (void *)&soc
->swp_upl_ctx
;
1553 error
= vm_swapfile_io(swf
->swp_vp
, file_offset
, addr
, (int) (size
/ PAGE_SIZE_64
), SWAP_WRITE
, upl_ctx
);
1555 if (error
|| upl_ctx
== NULL
) {
1556 return vm_swap_put_finish(swf
, f_offset
, error
);
1559 return KERN_SUCCESS
;
1563 vm_swap_put_finish(struct swapfile
*swf
, uint64_t *f_offset
, int error
)
1565 lck_mtx_lock(&vm_swap_data_lock
);
1567 swf
->swp_io_count
--;
1569 if ((swf
->swp_flags
& SWAP_WANTED
) && swf
->swp_io_count
== 0) {
1570 swf
->swp_flags
&= ~SWAP_WANTED
;
1571 thread_wakeup((event_t
) &swf
->swp_flags
);
1573 lck_mtx_unlock(&vm_swap_data_lock
);
1576 vm_swap_free(*f_offset
);
1577 vm_swap_put_failures
++;
1579 return KERN_FAILURE
;
1581 return KERN_SUCCESS
;
1586 vm_swap_free_now(struct swapfile
*swf
, uint64_t f_offset
)
1588 uint64_t file_offset
= 0;
1589 unsigned int segidx
= 0;
1592 if ((swf
->swp_flags
& SWAP_READY
) || (swf
->swp_flags
& SWAP_RECLAIM
)) {
1593 unsigned int byte_for_segidx
= 0;
1594 unsigned int offset_within_byte
= 0;
1596 file_offset
= (f_offset
& SWAP_SLOT_MASK
);
1597 segidx
= (unsigned int) (file_offset
/ COMPRESSED_SWAP_CHUNK_SIZE
);
1599 byte_for_segidx
= segidx
>> 3;
1600 offset_within_byte
= segidx
% 8;
1602 if ((swf
->swp_bitmap
)[byte_for_segidx
] & (1 << offset_within_byte
)) {
1603 (swf
->swp_bitmap
)[byte_for_segidx
] &= ~(1 << offset_within_byte
);
1605 swf
->swp_csegs
[segidx
] = NULL
;
1607 swf
->swp_nseginuse
--;
1608 vm_swapfile_total_segs_used
--;
1610 if (segidx
< swf
->swp_free_hint
) {
1611 swf
->swp_free_hint
= segidx
;
1614 if (VM_SWAP_SHOULD_RECLAIM() && !vm_swapfile_gc_thread_running
) {
1615 thread_wakeup((event_t
) &vm_swapfile_gc_needed
);
1621 uint32_t vm_swap_free_now_count
= 0;
1622 uint32_t vm_swap_free_delayed_count
= 0;
1626 vm_swap_free(uint64_t f_offset
)
1628 struct swapfile
*swf
= NULL
;
1629 struct trim_list
*tl
= NULL
;
1633 if (swp_trim_supported
== TRUE
) {
1634 tl
= kalloc(sizeof(struct trim_list
));
1637 lck_mtx_lock(&vm_swap_data_lock
);
1639 swf
= vm_swapfile_for_handle(f_offset
);
1641 if (swf
&& (swf
->swp_flags
& (SWAP_READY
| SWAP_RECLAIM
))) {
1642 if (swp_trim_supported
== FALSE
|| (swf
->swp_flags
& SWAP_RECLAIM
)) {
1644 * don't delay the free if the underlying disk doesn't support
1645 * trim, or we're in the midst of reclaiming this swap file since
1646 * we don't want to move segments that are technically free
1647 * but not yet handled by the delayed free mechanism
1649 vm_swap_free_now(swf
, f_offset
);
1651 vm_swap_free_now_count
++;
1654 tl
->tl_offset
= f_offset
& SWAP_SLOT_MASK
;
1655 tl
->tl_length
= COMPRESSED_SWAP_CHUNK_SIZE
;
1657 tl
->tl_next
= swf
->swp_delayed_trim_list_head
;
1658 swf
->swp_delayed_trim_list_head
= tl
;
1659 swf
->swp_delayed_trim_count
++;
1662 if (VM_SWAP_SHOULD_TRIM(swf
) && !vm_swapfile_create_thread_running
) {
1663 clock_get_system_nanotime(&sec
, &nsec
);
1665 if (sec
> dont_trim_until_ts
) {
1666 thread_wakeup((event_t
) &vm_swapfile_create_needed
);
1669 vm_swap_free_delayed_count
++;
1672 lck_mtx_unlock(&vm_swap_data_lock
);
1675 kfree(tl
, sizeof(struct trim_list
));
1681 vm_swap_wait_on_trim_handling_in_progress()
1683 while (delayed_trim_handling_in_progress
== TRUE
) {
1684 assert_wait((event_t
) &delayed_trim_handling_in_progress
, THREAD_UNINT
);
1685 lck_mtx_unlock(&vm_swap_data_lock
);
1687 thread_block(THREAD_CONTINUE_NULL
);
1689 lck_mtx_lock(&vm_swap_data_lock
);
1695 vm_swap_handle_delayed_trims(boolean_t force_now
)
1697 struct swapfile
*swf
= NULL
;
1700 * serialize the race between us and vm_swap_reclaim...
1701 * if vm_swap_reclaim wins it will turn off SWAP_READY
1702 * on the victim it has chosen... we can just skip over
1703 * that file since vm_swap_reclaim will first process
1704 * all of the delayed trims associated with it
1706 lck_mtx_lock(&vm_swap_data_lock
);
1708 delayed_trim_handling_in_progress
= TRUE
;
1710 lck_mtx_unlock(&vm_swap_data_lock
);
1713 * no need to hold the lock to walk the swf list since
1714 * vm_swap_create (the only place where we add to this list)
1715 * is run on the same thread as this function
1716 * and vm_swap_reclaim doesn't remove items from this list
1717 * instead marking them with SWAP_REUSE for future re-use
1719 swf
= (struct swapfile
*) queue_first(&swf_global_queue
);
1721 while (queue_end(&swf_global_queue
, (queue_entry_t
)swf
) == FALSE
) {
1722 if ((swf
->swp_flags
& SWAP_READY
) && (force_now
== TRUE
|| VM_SWAP_SHOULD_TRIM(swf
))) {
1723 assert(!(swf
->swp_flags
& SWAP_RECLAIM
));
1724 vm_swap_do_delayed_trim(swf
);
1726 swf
= (struct swapfile
*) queue_next(&swf
->swp_queue
);
1728 lck_mtx_lock(&vm_swap_data_lock
);
1730 delayed_trim_handling_in_progress
= FALSE
;
1731 thread_wakeup((event_t
) &delayed_trim_handling_in_progress
);
1733 if (VM_SWAP_SHOULD_RECLAIM() && !vm_swapfile_gc_thread_running
) {
1734 thread_wakeup((event_t
) &vm_swapfile_gc_needed
);
1737 lck_mtx_unlock(&vm_swap_data_lock
);
1741 vm_swap_do_delayed_trim(struct swapfile
*swf
)
1743 struct trim_list
*tl
, *tl_head
;
1745 lck_mtx_lock(&vm_swap_data_lock
);
1747 tl_head
= swf
->swp_delayed_trim_list_head
;
1748 swf
->swp_delayed_trim_list_head
= NULL
;
1749 swf
->swp_delayed_trim_count
= 0;
1751 lck_mtx_unlock(&vm_swap_data_lock
);
1753 vnode_trim_list(swf
->swp_vp
, tl_head
, TRUE
);
1755 while ((tl
= tl_head
) != NULL
) {
1756 unsigned int segidx
= 0;
1757 unsigned int byte_for_segidx
= 0;
1758 unsigned int offset_within_byte
= 0;
1760 lck_mtx_lock(&vm_swap_data_lock
);
1762 segidx
= (unsigned int) (tl
->tl_offset
/ COMPRESSED_SWAP_CHUNK_SIZE
);
1764 byte_for_segidx
= segidx
>> 3;
1765 offset_within_byte
= segidx
% 8;
1767 if ((swf
->swp_bitmap
)[byte_for_segidx
] & (1 << offset_within_byte
)) {
1768 (swf
->swp_bitmap
)[byte_for_segidx
] &= ~(1 << offset_within_byte
);
1770 swf
->swp_csegs
[segidx
] = NULL
;
1772 swf
->swp_nseginuse
--;
1773 vm_swapfile_total_segs_used
--;
1775 if (segidx
< swf
->swp_free_hint
) {
1776 swf
->swp_free_hint
= segidx
;
1779 lck_mtx_unlock(&vm_swap_data_lock
);
1781 tl_head
= tl
->tl_next
;
1783 kfree(tl
, sizeof(struct trim_list
));
1794 int vm_swap_reclaim_yielded
= 0;
1797 vm_swap_reclaim(void)
1799 vm_offset_t addr
= 0;
1800 unsigned int segidx
= 0;
1801 uint64_t f_offset
= 0;
1802 struct swapfile
*swf
= NULL
;
1803 struct swapfile
*smallest_swf
= NULL
;
1804 unsigned int min_nsegs
= 0;
1805 unsigned int byte_for_segidx
= 0;
1806 unsigned int offset_within_byte
= 0;
1807 uint32_t c_size
= 0;
1809 c_segment_t c_seg
= NULL
;
1811 if (kernel_memory_allocate(compressor_map
, (vm_offset_t
*)(&addr
), C_SEG_BUFSIZE
, 0, KMA_KOBJECT
, VM_KERN_MEMORY_COMPRESSOR
) != KERN_SUCCESS
) {
1812 panic("vm_swap_reclaim: kernel_memory_allocate failed\n");
1815 lck_mtx_lock(&vm_swap_data_lock
);
1818 * if we're running the swapfile list looking for
1819 * candidates with delayed trims, we need to
1820 * wait before making our decision concerning
1821 * the swapfile we want to reclaim
1823 vm_swap_wait_on_trim_handling_in_progress();
1826 * from here until we knock down the SWAP_READY bit,
1827 * we need to remain behind the vm_swap_data_lock...
1828 * once that bit has been turned off, "vm_swap_handle_delayed_trims"
1829 * will not consider this swapfile for processing
1831 swf
= (struct swapfile
*) queue_first(&swf_global_queue
);
1832 min_nsegs
= MAX_SWAP_FILE_SIZE
/ COMPRESSED_SWAP_CHUNK_SIZE
;
1833 smallest_swf
= NULL
;
1835 while (queue_end(&swf_global_queue
, (queue_entry_t
)swf
) == FALSE
) {
1836 if ((swf
->swp_flags
& SWAP_READY
) && (swf
->swp_nseginuse
<= min_nsegs
)) {
1838 min_nsegs
= swf
->swp_nseginuse
;
1840 swf
= (struct swapfile
*) queue_next(&swf
->swp_queue
);
1843 if (smallest_swf
== NULL
) {
1850 swf
->swp_flags
&= ~SWAP_READY
;
1851 swf
->swp_flags
|= SWAP_RECLAIM
;
1853 if (swf
->swp_delayed_trim_count
) {
1854 lck_mtx_unlock(&vm_swap_data_lock
);
1856 vm_swap_do_delayed_trim(swf
);
1858 lck_mtx_lock(&vm_swap_data_lock
);
1862 while (segidx
< swf
->swp_nsegs
) {
1865 * Wait for outgoing I/Os.
1867 while (swf
->swp_io_count
) {
1868 swf
->swp_flags
|= SWAP_WANTED
;
1870 assert_wait((event_t
) &swf
->swp_flags
, THREAD_UNINT
);
1871 lck_mtx_unlock(&vm_swap_data_lock
);
1873 thread_block(THREAD_CONTINUE_NULL
);
1875 lck_mtx_lock(&vm_swap_data_lock
);
1877 if (compressor_store_stop_compaction
== TRUE
|| VM_SWAP_SHOULD_ABORT_RECLAIM() || VM_SWAP_BUSY()) {
1878 vm_swap_reclaim_yielded
++;
1882 byte_for_segidx
= segidx
>> 3;
1883 offset_within_byte
= segidx
% 8;
1885 if (((swf
->swp_bitmap
)[byte_for_segidx
] & (1 << offset_within_byte
)) == 0) {
1890 c_seg
= swf
->swp_csegs
[segidx
];
1893 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
1895 if (c_seg
->c_busy
) {
1897 * a swapped out c_segment in the process of being freed will remain in the
1898 * busy state until after the vm_swap_free is called on it... vm_swap_free
1899 * takes the vm_swap_data_lock, so can't change the swap state until after
1900 * we drop the vm_swap_data_lock... once we do, vm_swap_free will complete
1901 * which will allow c_seg_free_locked to clear busy and wake up this thread...
1902 * at that point, we re-look up the swap state which will now indicate that
1903 * this c_segment no longer exists.
1905 c_seg
->c_wanted
= 1;
1907 assert_wait((event_t
) (c_seg
), THREAD_UNINT
);
1908 lck_mtx_unlock_always(&c_seg
->c_lock
);
1910 lck_mtx_unlock(&vm_swap_data_lock
);
1912 thread_block(THREAD_CONTINUE_NULL
);
1914 lck_mtx_lock(&vm_swap_data_lock
);
1916 goto ReTry_for_cseg
;
1918 (swf
->swp_bitmap
)[byte_for_segidx
] &= ~(1 << offset_within_byte
);
1920 f_offset
= segidx
* COMPRESSED_SWAP_CHUNK_SIZE
;
1922 assert(c_seg
== swf
->swp_csegs
[segidx
]);
1923 swf
->swp_csegs
[segidx
] = NULL
;
1924 swf
->swp_nseginuse
--;
1926 vm_swapfile_total_segs_used
--;
1928 lck_mtx_unlock(&vm_swap_data_lock
);
1930 assert(C_SEG_IS_ONDISK(c_seg
));
1933 c_seg
->c_busy_swapping
= 1;
1934 #if !CHECKSUM_THE_SWAP
1935 c_seg_trim_tail(c_seg
);
1937 c_size
= round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg
->c_populated_offset
));
1939 assert(c_size
<= C_SEG_BUFSIZE
&& c_size
);
1941 lck_mtx_unlock_always(&c_seg
->c_lock
);
1943 if (vm_swapfile_io(swf
->swp_vp
, f_offset
, addr
, (int)(c_size
/ PAGE_SIZE_64
), SWAP_READ
, NULL
)) {
1945 * reading the data back in failed, so convert c_seg
1946 * to a swapped in c_segment that contains no data
1948 c_seg_swapin_requeue(c_seg
, FALSE
, TRUE
, FALSE
);
1950 * returns with c_busy_swapping cleared
1953 vm_swap_get_failures
++;
1954 goto swap_io_failed
;
1956 VM_STAT_INCR_BY(swapins
, c_size
>> PAGE_SHIFT
);
1958 if (vm_swap_put(addr
, &f_offset
, c_size
, c_seg
, NULL
)) {
1959 vm_offset_t c_buffer
;
1962 * the put failed, so convert c_seg to a fully swapped in c_segment
1965 c_buffer
= (vm_offset_t
)C_SEG_BUFFER_ADDRESS(c_seg
->c_mysegno
);
1967 kernel_memory_populate(compressor_map
, c_buffer
, c_size
, KMA_COMPRESSOR
, VM_KERN_MEMORY_COMPRESSOR
);
1969 memcpy((char *)c_buffer
, (char *)addr
, c_size
);
1971 c_seg
->c_store
.c_buffer
= (int32_t *)c_buffer
;
1973 vm_swap_decrypt(c_seg
);
1974 #endif /* ENCRYPTED_SWAP */
1975 c_seg_swapin_requeue(c_seg
, TRUE
, TRUE
, FALSE
);
1977 * returns with c_busy_swapping cleared
1979 OSAddAtomic64(c_seg
->c_bytes_used
, &compressor_bytes_used
);
1981 goto swap_io_failed
;
1983 VM_STAT_INCR_BY(swapouts
, c_size
>> PAGE_SHIFT
);
1985 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
1987 assert(C_SEG_IS_ONDISK(c_seg
));
1989 * The c_seg will now know about the new location on disk.
1991 c_seg
->c_store
.c_swap_handle
= f_offset
;
1993 assert(c_seg
->c_busy_swapping
);
1994 c_seg
->c_busy_swapping
= 0;
1996 assert(c_seg
->c_busy
);
1997 C_SEG_WAKEUP_DONE(c_seg
);
1999 lck_mtx_unlock_always(&c_seg
->c_lock
);
2000 lck_mtx_lock(&vm_swap_data_lock
);
2003 if (swf
->swp_nseginuse
) {
2004 swf
->swp_flags
&= ~SWAP_RECLAIM
;
2005 swf
->swp_flags
|= SWAP_READY
;
2010 * We don't remove this inactive swf from the queue.
2011 * That way, we can re-use it when needed again and
2012 * preserve the namespace. The delayed_trim processing
2013 * is also dependent on us not removing swfs from the queue.
2015 //queue_remove(&swf_global_queue, swf, struct swapfile*, swp_queue);
2017 vm_swapfile_total_segs_alloced
-= swf
->swp_nsegs
;
2019 lck_mtx_unlock(&vm_swap_data_lock
);
2021 vm_swapfile_close((uint64_t)(swf
->swp_path
), swf
->swp_vp
);
2023 kfree(swf
->swp_csegs
, swf
->swp_nsegs
* sizeof(c_segment_t
));
2024 kfree(swf
->swp_bitmap
, MAX((swf
->swp_nsegs
>> 3), 1));
2026 lck_mtx_lock(&vm_swap_data_lock
);
2028 if (swf
->swp_flags
& SWAP_PINNED
) {
2029 vm_num_pinned_swap_files
--;
2030 vm_swappin_avail
+= swf
->swp_size
;
2035 swf
->swp_free_hint
= 0;
2037 swf
->swp_flags
= SWAP_REUSE
;
2039 vm_num_swap_files
--;
2042 thread_wakeup((event_t
) &swf
->swp_flags
);
2043 lck_mtx_unlock(&vm_swap_data_lock
);
2045 kmem_free(compressor_map
, (vm_offset_t
) addr
, C_SEG_BUFSIZE
);
2050 vm_swap_get_total_space(void)
2052 uint64_t total_space
= 0;
2054 total_space
= (uint64_t)vm_swapfile_total_segs_alloced
* COMPRESSED_SWAP_CHUNK_SIZE
;
2060 vm_swap_get_used_space(void)
2062 uint64_t used_space
= 0;
2064 used_space
= (uint64_t)vm_swapfile_total_segs_used
* COMPRESSED_SWAP_CHUNK_SIZE
;
2070 vm_swap_get_free_space(void)
2072 return vm_swap_get_total_space() - vm_swap_get_used_space();
2077 vm_swap_low_on_space(void)
2079 if (vm_num_swap_files
== 0 && vm_swapfile_can_be_created
== FALSE
) {
2083 if (((vm_swapfile_total_segs_alloced
- vm_swapfile_total_segs_used
) < ((unsigned int)VM_SWAPFILE_HIWATER_SEGS
) / 8)) {
2084 if (vm_num_swap_files
== 0 && !SWAPPER_NEEDS_TO_UNTHROTTLE()) {
2088 if (vm_swapfile_last_failed_to_create_ts
>= vm_swapfile_last_successful_create_ts
) {
2096 vm_swap_files_pinned(void)
2100 if (vm_swappin_enabled
== FALSE
) {
2104 result
= (vm_num_pinned_swap_files
== vm_num_swap_files
);
2111 vm_swap_max_budget(uint64_t *freeze_daily_budget
)
2113 boolean_t use_device_value
= FALSE
;
2114 struct swapfile
*swf
= NULL
;
2116 if (vm_num_swap_files
) {
2117 lck_mtx_lock(&vm_swap_data_lock
);
2119 swf
= (struct swapfile
*) queue_first(&swf_global_queue
);
2122 while (queue_end(&swf_global_queue
, (queue_entry_t
)swf
) == FALSE
) {
2123 if (swf
->swp_flags
== SWAP_READY
) {
2124 assert(swf
->swp_vp
);
2126 if (vm_swap_vol_get_budget(swf
->swp_vp
, freeze_daily_budget
) == 0) {
2127 use_device_value
= TRUE
;
2131 swf
= (struct swapfile
*) queue_next(&swf
->swp_queue
);
2135 lck_mtx_unlock(&vm_swap_data_lock
);
2138 * This block is used for the initial budget value before any swap files
2139 * are created. We create a temp swap file to get the budget.
2142 struct vnode
*temp_vp
= NULL
;
2144 vm_swapfile_open(swapfilename
, &temp_vp
);
2147 if (vm_swap_vol_get_budget(temp_vp
, freeze_daily_budget
) == 0) {
2148 use_device_value
= TRUE
;
2151 vm_swapfile_close((uint64_t)&swapfilename
, temp_vp
);
2154 *freeze_daily_budget
= 0;
2158 return use_device_value
;
2160 #endif /* CONFIG_FREEZE */