]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/commpage/commpage.c
8bc648ca8ca84e21a59aa7f5443339b98ad49fdb
[apple/xnu.git] / osfmk / i386 / commpage / commpage.c
1 /*
2 * Copyright (c) 2003-2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /*
30 * Here's what to do if you want to add a new routine to the comm page:
31 *
32 * 1. Add a definition for it's address in osfmk/i386/cpu_capabilities.h,
33 * being careful to reserve room for future expansion.
34 *
35 * 2. Write one or more versions of the routine, each with it's own
36 * commpage_descriptor. The tricky part is getting the "special",
37 * "musthave", and "canthave" fields right, so that exactly one
38 * version of the routine is selected for every machine.
39 * The source files should be in osfmk/i386/commpage/.
40 *
41 * 3. Add a ptr to your new commpage_descriptor(s) in the "routines"
42 * array in osfmk/i386/commpage/commpage_asm.s. There are two
43 * arrays, one for the 32-bit and one for the 64-bit commpage.
44 *
45 * 4. Write the code in Libc to use the new routine.
46 */
47
48 #include <mach/mach_types.h>
49 #include <mach/machine.h>
50 #include <mach/vm_map.h>
51 #include <mach/mach_vm.h>
52 #include <mach/machine.h>
53 #include <i386/cpuid.h>
54 #include <i386/tsc.h>
55 #include <i386/rtclock_protos.h>
56 #include <i386/cpu_data.h>
57 #include <i386/machine_routines.h>
58 #include <i386/misc_protos.h>
59 #include <i386/cpuid.h>
60 #include <machine/cpu_capabilities.h>
61 #include <machine/commpage.h>
62 #include <machine/pmap.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_map.h>
65
66 #include <ipc/ipc_port.h>
67
68 #include <kern/page_decrypt.h>
69 #include <kern/processor.h>
70
71 #include <sys/kdebug.h>
72
73 #if CONFIG_ATM
74 #include <atm/atm_internal.h>
75 #endif
76
77 /* the lists of commpage routines are in commpage_asm.s */
78 extern commpage_descriptor* commpage_32_routines[];
79 extern commpage_descriptor* commpage_64_routines[];
80
81 extern vm_map_t commpage32_map; // the shared submap, set up in vm init
82 extern vm_map_t commpage64_map; // the shared submap, set up in vm init
83 extern vm_map_t commpage_text32_map; // the shared submap, set up in vm init
84 extern vm_map_t commpage_text64_map; // the shared submap, set up in vm init
85
86
87 char *commPagePtr32 = NULL; // virtual addr in kernel map of 32-bit commpage
88 char *commPagePtr64 = NULL; // ...and of 64-bit commpage
89 char *commPageTextPtr32 = NULL; // virtual addr in kernel map of 32-bit commpage
90 char *commPageTextPtr64 = NULL; // ...and of 64-bit commpage
91
92 uint64_t _cpu_capabilities = 0; // define the capability vector
93
94 typedef uint32_t commpage_address_t;
95
96 static commpage_address_t next; // next available address in comm page
97
98 static char *commPagePtr; // virtual addr in kernel map of commpage we are working on
99 static commpage_address_t commPageBaseOffset; // subtract from 32-bit runtime address to get offset in virtual commpage in kernel map
100
101 static commpage_time_data *time_data32 = NULL;
102 static commpage_time_data *time_data64 = NULL;
103
104 decl_simple_lock_data(static,commpage_active_cpus_lock);
105
106 /* Allocate the commpage and add to the shared submap created by vm:
107 * 1. allocate a page in the kernel map (RW)
108 * 2. wire it down
109 * 3. make a memory entry out of it
110 * 4. map that entry into the shared comm region map (R-only)
111 */
112
113 static void*
114 commpage_allocate(
115 vm_map_t submap, // commpage32_map or commpage_map64
116 size_t area_used, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
117 vm_prot_t uperm)
118 {
119 vm_offset_t kernel_addr = 0; // address of commpage in kernel map
120 vm_offset_t zero = 0;
121 vm_size_t size = area_used; // size actually populated
122 vm_map_entry_t entry;
123 ipc_port_t handle;
124 kern_return_t kr;
125
126 if (submap == NULL)
127 panic("commpage submap is null");
128
129 if ((kr = vm_map(kernel_map,
130 &kernel_addr,
131 area_used,
132 0,
133 VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_KERN_MEMORY_OSFMK),
134 NULL,
135 0,
136 FALSE,
137 VM_PROT_ALL,
138 VM_PROT_ALL,
139 VM_INHERIT_NONE)))
140 panic("cannot allocate commpage %d", kr);
141
142 if ((kr = vm_map_wire(kernel_map,
143 kernel_addr,
144 kernel_addr+area_used,
145 VM_PROT_DEFAULT|VM_PROT_MEMORY_TAG_MAKE(VM_KERN_MEMORY_OSFMK),
146 FALSE)))
147 panic("cannot wire commpage: %d", kr);
148
149 /*
150 * Now that the object is created and wired into the kernel map, mark it so that no delay
151 * copy-on-write will ever be performed on it as a result of mapping it into user-space.
152 * If such a delayed copy ever occurred, we could remove the kernel's wired mapping - and
153 * that would be a real disaster.
154 *
155 * JMM - What we really need is a way to create it like this in the first place.
156 */
157 if (!(kr = vm_map_lookup_entry( kernel_map, vm_map_trunc_page(kernel_addr, VM_MAP_PAGE_MASK(kernel_map)), &entry) || entry->is_sub_map))
158 panic("cannot find commpage entry %d", kr);
159 VME_OBJECT(entry)->copy_strategy = MEMORY_OBJECT_COPY_NONE;
160
161 if ((kr = mach_make_memory_entry( kernel_map, // target map
162 &size, // size
163 kernel_addr, // offset (address in kernel map)
164 uperm, // protections as specified
165 &handle, // this is the object handle we get
166 NULL ))) // parent_entry (what is this?)
167 panic("cannot make entry for commpage %d", kr);
168
169 if ((kr = vm_map_64( submap, // target map (shared submap)
170 &zero, // address (map into 1st page in submap)
171 area_used, // size
172 0, // mask
173 VM_FLAGS_FIXED, // flags (it must be 1st page in submap)
174 handle, // port is the memory entry we just made
175 0, // offset (map 1st page in memory entry)
176 FALSE, // copy
177 uperm, // cur_protection (R-only in user map)
178 uperm, // max_protection
179 VM_INHERIT_SHARE ))) // inheritance
180 panic("cannot map commpage %d", kr);
181
182 ipc_port_release(handle);
183 /* Make the kernel mapping non-executable. This cannot be done
184 * at the time of map entry creation as mach_make_memory_entry
185 * cannot handle disjoint permissions at this time.
186 */
187 kr = vm_protect(kernel_map, kernel_addr, area_used, FALSE, VM_PROT_READ | VM_PROT_WRITE);
188 assert (kr == KERN_SUCCESS);
189
190 return (void*)(intptr_t)kernel_addr; // return address in kernel map
191 }
192
193 /* Get address (in kernel map) of a commpage field. */
194
195 static void*
196 commpage_addr_of(
197 commpage_address_t addr_at_runtime )
198 {
199 return (void*) ((uintptr_t)commPagePtr + (addr_at_runtime - commPageBaseOffset));
200 }
201
202 /* Determine number of CPUs on this system. We cannot rely on
203 * machine_info.max_cpus this early in the boot.
204 */
205 static int
206 commpage_cpus( void )
207 {
208 int cpus;
209
210 cpus = ml_get_max_cpus(); // NB: this call can block
211
212 if (cpus == 0)
213 panic("commpage cpus==0");
214 if (cpus > 0xFF)
215 cpus = 0xFF;
216
217 return cpus;
218 }
219
220 /* Initialize kernel version of _cpu_capabilities vector (used by KEXTs.) */
221
222 static void
223 commpage_init_cpu_capabilities( void )
224 {
225 uint64_t bits;
226 int cpus;
227 ml_cpu_info_t cpu_info;
228
229 bits = 0;
230 ml_cpu_get_info(&cpu_info);
231
232 switch (cpu_info.vector_unit) {
233 case 9:
234 bits |= kHasAVX1_0;
235 /* fall thru */
236 case 8:
237 bits |= kHasSSE4_2;
238 /* fall thru */
239 case 7:
240 bits |= kHasSSE4_1;
241 /* fall thru */
242 case 6:
243 bits |= kHasSupplementalSSE3;
244 /* fall thru */
245 case 5:
246 bits |= kHasSSE3;
247 /* fall thru */
248 case 4:
249 bits |= kHasSSE2;
250 /* fall thru */
251 case 3:
252 bits |= kHasSSE;
253 /* fall thru */
254 case 2:
255 bits |= kHasMMX;
256 default:
257 break;
258 }
259 switch (cpu_info.cache_line_size) {
260 case 128:
261 bits |= kCache128;
262 break;
263 case 64:
264 bits |= kCache64;
265 break;
266 case 32:
267 bits |= kCache32;
268 break;
269 default:
270 break;
271 }
272 cpus = commpage_cpus(); // how many CPUs do we have
273
274 bits |= (cpus << kNumCPUsShift);
275
276 bits |= kFastThreadLocalStorage; // we use %gs for TLS
277
278 #define setif(_bits, _bit, _condition) \
279 if (_condition) _bits |= _bit
280
281 setif(bits, kUP, cpus == 1);
282 setif(bits, k64Bit, cpu_mode_is64bit());
283 setif(bits, kSlow, tscFreq <= SLOW_TSC_THRESHOLD);
284
285 setif(bits, kHasAES, cpuid_features() &
286 CPUID_FEATURE_AES);
287 setif(bits, kHasF16C, cpuid_features() &
288 CPUID_FEATURE_F16C);
289 setif(bits, kHasRDRAND, cpuid_features() &
290 CPUID_FEATURE_RDRAND);
291 setif(bits, kHasFMA, cpuid_features() &
292 CPUID_FEATURE_FMA);
293
294 setif(bits, kHasBMI1, cpuid_leaf7_features() &
295 CPUID_LEAF7_FEATURE_BMI1);
296 setif(bits, kHasBMI2, cpuid_leaf7_features() &
297 CPUID_LEAF7_FEATURE_BMI2);
298 setif(bits, kHasRTM, cpuid_leaf7_features() &
299 CPUID_LEAF7_FEATURE_RTM);
300 setif(bits, kHasHLE, cpuid_leaf7_features() &
301 CPUID_LEAF7_FEATURE_HLE);
302 setif(bits, kHasAVX2_0, cpuid_leaf7_features() &
303 CPUID_LEAF7_FEATURE_AVX2);
304 setif(bits, kHasRDSEED, cpuid_features() &
305 CPUID_LEAF7_FEATURE_RDSEED);
306 setif(bits, kHasADX, cpuid_features() &
307 CPUID_LEAF7_FEATURE_ADX);
308
309 setif(bits, kHasMPX, cpuid_leaf7_features() &
310 CPUID_LEAF7_FEATURE_MPX);
311 setif(bits, kHasSGX, cpuid_leaf7_features() &
312 CPUID_LEAF7_FEATURE_SGX);
313
314 uint64_t misc_enable = rdmsr64(MSR_IA32_MISC_ENABLE);
315 setif(bits, kHasENFSTRG, (misc_enable & 1ULL) &&
316 (cpuid_leaf7_features() &
317 CPUID_LEAF7_FEATURE_ERMS));
318
319 _cpu_capabilities = bits; // set kernel version for use by drivers etc
320 }
321
322 /* initialize the approx_time_supported flag and set the approx time to 0.
323 * Called during initial commpage population.
324 */
325 static void
326 commpage_mach_approximate_time_init(void)
327 {
328 char *cp = commPagePtr32;
329 uint8_t supported;
330
331 #ifdef CONFIG_MACH_APPROXIMATE_TIME
332 supported = 1;
333 #else
334 supported = 0;
335 #endif
336 if ( cp ) {
337 cp += (_COMM_PAGE_APPROX_TIME_SUPPORTED - _COMM_PAGE32_BASE_ADDRESS);
338 *(boolean_t *)cp = supported;
339 }
340 cp = commPagePtr64;
341 if ( cp ) {
342 cp += (_COMM_PAGE_APPROX_TIME_SUPPORTED - _COMM_PAGE32_START_ADDRESS);
343 *(boolean_t *)cp = supported;
344 }
345 commpage_update_mach_approximate_time(0);
346 }
347
348
349 uint64_t
350 _get_cpu_capabilities(void)
351 {
352 return _cpu_capabilities;
353 }
354
355 /* Copy data into commpage. */
356
357 static void
358 commpage_stuff(
359 commpage_address_t address,
360 const void *source,
361 int length )
362 {
363 void *dest = commpage_addr_of(address);
364
365 if (address < next)
366 panic("commpage overlap at address 0x%p, 0x%x < 0x%x", dest, address, next);
367
368 bcopy(source,dest,length);
369
370 next = address + length;
371 }
372
373 /* Copy a routine into comm page if it matches running machine.
374 */
375 static void
376 commpage_stuff_routine(
377 commpage_descriptor *rd )
378 {
379 commpage_stuff(rd->commpage_address,rd->code_address,rd->code_length);
380 }
381
382 /* Fill in the 32- or 64-bit commpage. Called once for each.
383 */
384
385 static void
386 commpage_populate_one(
387 vm_map_t submap, // commpage32_map or compage64_map
388 char ** kernAddressPtr, // &commPagePtr32 or &commPagePtr64
389 size_t area_used, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
390 commpage_address_t base_offset, // will become commPageBaseOffset
391 commpage_time_data** time_data, // &time_data32 or &time_data64
392 const char* signature, // "commpage 32-bit" or "commpage 64-bit"
393 vm_prot_t uperm)
394 {
395 uint8_t c1;
396 uint16_t c2;
397 int c4;
398 uint64_t c8;
399 uint32_t cfamily;
400 short version = _COMM_PAGE_THIS_VERSION;
401
402 next = 0;
403 commPagePtr = (char *)commpage_allocate( submap, (vm_size_t) area_used, uperm );
404 *kernAddressPtr = commPagePtr; // save address either in commPagePtr32 or 64
405 commPageBaseOffset = base_offset;
406
407 *time_data = commpage_addr_of( _COMM_PAGE_TIME_DATA_START );
408
409 /* Stuff in the constants. We move things into the comm page in strictly
410 * ascending order, so we can check for overlap and panic if so.
411 * Note: the 32-bit cpu_capabilities vector is retained in addition to
412 * the expanded 64-bit vector.
413 */
414 commpage_stuff(_COMM_PAGE_SIGNATURE,signature,(int)MIN(_COMM_PAGE_SIGNATURELEN, strlen(signature)));
415 commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES64,&_cpu_capabilities,sizeof(_cpu_capabilities));
416 commpage_stuff(_COMM_PAGE_VERSION,&version,sizeof(short));
417 commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES,&_cpu_capabilities,sizeof(uint32_t));
418
419 c2 = 32; // default
420 if (_cpu_capabilities & kCache64)
421 c2 = 64;
422 else if (_cpu_capabilities & kCache128)
423 c2 = 128;
424 commpage_stuff(_COMM_PAGE_CACHE_LINESIZE,&c2,2);
425
426 c4 = MP_SPIN_TRIES;
427 commpage_stuff(_COMM_PAGE_SPIN_COUNT,&c4,4);
428
429 /* machine_info valid after ml_get_max_cpus() */
430 c1 = machine_info.physical_cpu_max;
431 commpage_stuff(_COMM_PAGE_PHYSICAL_CPUS,&c1,1);
432 c1 = machine_info.logical_cpu_max;
433 commpage_stuff(_COMM_PAGE_LOGICAL_CPUS,&c1,1);
434
435 c8 = ml_cpu_cache_size(0);
436 commpage_stuff(_COMM_PAGE_MEMORY_SIZE, &c8, 8);
437
438 cfamily = cpuid_info()->cpuid_cpufamily;
439 commpage_stuff(_COMM_PAGE_CPUFAMILY, &cfamily, 4);
440
441 if (next > _COMM_PAGE_END)
442 panic("commpage overflow: next = 0x%08x, commPagePtr = 0x%p", next, commPagePtr);
443
444 }
445
446
447 /* Fill in commpages: called once, during kernel initialization, from the
448 * startup thread before user-mode code is running.
449 *
450 * See the top of this file for a list of what you have to do to add
451 * a new routine to the commpage.
452 */
453
454 void
455 commpage_populate( void )
456 {
457 commpage_init_cpu_capabilities();
458
459 commpage_populate_one( commpage32_map,
460 &commPagePtr32,
461 _COMM_PAGE32_AREA_USED,
462 _COMM_PAGE32_BASE_ADDRESS,
463 &time_data32,
464 "commpage 32-bit",
465 VM_PROT_READ);
466 #ifndef __LP64__
467 pmap_commpage32_init((vm_offset_t) commPagePtr32, _COMM_PAGE32_BASE_ADDRESS,
468 _COMM_PAGE32_AREA_USED/INTEL_PGBYTES);
469 #endif
470 time_data64 = time_data32; /* if no 64-bit commpage, point to 32-bit */
471
472 if (_cpu_capabilities & k64Bit) {
473 commpage_populate_one( commpage64_map,
474 &commPagePtr64,
475 _COMM_PAGE64_AREA_USED,
476 _COMM_PAGE32_START_ADDRESS, /* commpage address are relative to 32-bit commpage placement */
477 &time_data64,
478 "commpage 64-bit",
479 VM_PROT_READ);
480 #ifndef __LP64__
481 pmap_commpage64_init((vm_offset_t) commPagePtr64, _COMM_PAGE64_BASE_ADDRESS,
482 _COMM_PAGE64_AREA_USED/INTEL_PGBYTES);
483 #endif
484 }
485
486 simple_lock_init(&commpage_active_cpus_lock, 0);
487
488 commpage_update_active_cpus();
489 commpage_mach_approximate_time_init();
490 rtc_nanotime_init_commpage();
491 commpage_update_kdebug_enable();
492 #if CONFIG_ATM
493 commpage_update_atm_diagnostic_config(atm_get_diagnostic_config());
494 #endif
495 }
496
497 /* Fill in the common routines during kernel initialization.
498 * This is called before user-mode code is running.
499 */
500 void commpage_text_populate( void ){
501 commpage_descriptor **rd;
502
503 next = 0;
504 commPagePtr = (char *) commpage_allocate(commpage_text32_map, (vm_size_t) _COMM_PAGE_TEXT_AREA_USED, VM_PROT_READ | VM_PROT_EXECUTE);
505 commPageTextPtr32 = commPagePtr;
506
507 char *cptr = commPagePtr;
508 int i=0;
509 for(; i< _COMM_PAGE_TEXT_AREA_USED; i++){
510 cptr[i]=0xCC;
511 }
512
513 commPageBaseOffset = _COMM_PAGE_TEXT_START;
514 for (rd = commpage_32_routines; *rd != NULL; rd++) {
515 commpage_stuff_routine(*rd);
516 }
517
518 #ifndef __LP64__
519 pmap_commpage32_init((vm_offset_t) commPageTextPtr32, _COMM_PAGE_TEXT_START,
520 _COMM_PAGE_TEXT_AREA_USED/INTEL_PGBYTES);
521 #endif
522
523 if (_cpu_capabilities & k64Bit) {
524 next = 0;
525 commPagePtr = (char *) commpage_allocate(commpage_text64_map, (vm_size_t) _COMM_PAGE_TEXT_AREA_USED, VM_PROT_READ | VM_PROT_EXECUTE);
526 commPageTextPtr64 = commPagePtr;
527
528 cptr=commPagePtr;
529 for(i=0; i<_COMM_PAGE_TEXT_AREA_USED; i++){
530 cptr[i]=0xCC;
531 }
532
533 for (rd = commpage_64_routines; *rd !=NULL; rd++) {
534 commpage_stuff_routine(*rd);
535 }
536
537 #ifndef __LP64__
538 pmap_commpage64_init((vm_offset_t) commPageTextPtr64, _COMM_PAGE_TEXT_START,
539 _COMM_PAGE_TEXT_AREA_USED/INTEL_PGBYTES);
540 #endif
541 }
542
543 if (next > _COMM_PAGE_TEXT_END)
544 panic("commpage text overflow: next=0x%08x, commPagePtr=%p", next, commPagePtr);
545
546 }
547
548 /* Update commpage nanotime information.
549 *
550 * This routine must be serialized by some external means, ie a lock.
551 */
552
553 void
554 commpage_set_nanotime(
555 uint64_t tsc_base,
556 uint64_t ns_base,
557 uint32_t scale,
558 uint32_t shift )
559 {
560 commpage_time_data *p32 = time_data32;
561 commpage_time_data *p64 = time_data64;
562 static uint32_t generation = 0;
563 uint32_t next_gen;
564
565 if (p32 == NULL) /* have commpages been allocated yet? */
566 return;
567
568 if ( generation != p32->nt_generation )
569 panic("nanotime trouble 1"); /* possibly not serialized */
570 if ( ns_base < p32->nt_ns_base )
571 panic("nanotime trouble 2");
572 if ((shift != 0) && ((_cpu_capabilities & kSlow)==0) )
573 panic("nanotime trouble 3");
574
575 next_gen = ++generation;
576 if (next_gen == 0)
577 next_gen = ++generation;
578
579 p32->nt_generation = 0; /* mark invalid, so commpage won't try to use it */
580 p64->nt_generation = 0;
581
582 p32->nt_tsc_base = tsc_base;
583 p64->nt_tsc_base = tsc_base;
584
585 p32->nt_ns_base = ns_base;
586 p64->nt_ns_base = ns_base;
587
588 p32->nt_scale = scale;
589 p64->nt_scale = scale;
590
591 p32->nt_shift = shift;
592 p64->nt_shift = shift;
593
594 p32->nt_generation = next_gen; /* mark data as valid */
595 p64->nt_generation = next_gen;
596 }
597
598
599 /* Disable commpage gettimeofday(), forcing commpage to call through to the kernel. */
600
601 void
602 commpage_disable_timestamp( void )
603 {
604 time_data32->gtod_generation = 0;
605 time_data64->gtod_generation = 0;
606 }
607
608
609 /* Update commpage gettimeofday() information. As with nanotime(), we interleave
610 * updates to the 32- and 64-bit commpage, in order to keep time more nearly in sync
611 * between the two environments.
612 *
613 * This routine must be serializeed by some external means, ie a lock.
614 */
615
616 void
617 commpage_set_timestamp(
618 uint64_t abstime,
619 uint64_t secs )
620 {
621 commpage_time_data *p32 = time_data32;
622 commpage_time_data *p64 = time_data64;
623 static uint32_t generation = 0;
624 uint32_t next_gen;
625
626 next_gen = ++generation;
627 if (next_gen == 0)
628 next_gen = ++generation;
629
630 p32->gtod_generation = 0; /* mark invalid, so commpage won't try to use it */
631 p64->gtod_generation = 0;
632
633 p32->gtod_ns_base = abstime;
634 p64->gtod_ns_base = abstime;
635
636 p32->gtod_sec_base = secs;
637 p64->gtod_sec_base = secs;
638
639 p32->gtod_generation = next_gen; /* mark data as valid */
640 p64->gtod_generation = next_gen;
641 }
642
643
644 /* Update _COMM_PAGE_MEMORY_PRESSURE. Called periodically from vm's compute_memory_pressure() */
645
646 void
647 commpage_set_memory_pressure(
648 unsigned int pressure )
649 {
650 char *cp;
651 uint32_t *ip;
652
653 cp = commPagePtr32;
654 if ( cp ) {
655 cp += (_COMM_PAGE_MEMORY_PRESSURE - _COMM_PAGE32_BASE_ADDRESS);
656 ip = (uint32_t*) (void *) cp;
657 *ip = (uint32_t) pressure;
658 }
659
660 cp = commPagePtr64;
661 if ( cp ) {
662 cp += (_COMM_PAGE_MEMORY_PRESSURE - _COMM_PAGE32_START_ADDRESS);
663 ip = (uint32_t*) (void *) cp;
664 *ip = (uint32_t) pressure;
665 }
666
667 }
668
669
670 /* Update _COMM_PAGE_SPIN_COUNT. We might want to reduce when running on a battery, etc. */
671
672 void
673 commpage_set_spin_count(
674 unsigned int count )
675 {
676 char *cp;
677 uint32_t *ip;
678
679 if (count == 0) /* we test for 0 after decrement, not before */
680 count = 1;
681
682 cp = commPagePtr32;
683 if ( cp ) {
684 cp += (_COMM_PAGE_SPIN_COUNT - _COMM_PAGE32_BASE_ADDRESS);
685 ip = (uint32_t*) (void *) cp;
686 *ip = (uint32_t) count;
687 }
688
689 cp = commPagePtr64;
690 if ( cp ) {
691 cp += (_COMM_PAGE_SPIN_COUNT - _COMM_PAGE32_START_ADDRESS);
692 ip = (uint32_t*) (void *) cp;
693 *ip = (uint32_t) count;
694 }
695
696 }
697
698 /* Updated every time a logical CPU goes offline/online */
699 void
700 commpage_update_active_cpus(void)
701 {
702 char *cp;
703 volatile uint8_t *ip;
704
705 /* At least 32-bit commpage must be initialized */
706 if (!commPagePtr32)
707 return;
708
709 simple_lock(&commpage_active_cpus_lock);
710
711 cp = commPagePtr32;
712 cp += (_COMM_PAGE_ACTIVE_CPUS - _COMM_PAGE32_BASE_ADDRESS);
713 ip = (volatile uint8_t*) cp;
714 *ip = (uint8_t) processor_avail_count;
715
716 cp = commPagePtr64;
717 if ( cp ) {
718 cp += (_COMM_PAGE_ACTIVE_CPUS - _COMM_PAGE32_START_ADDRESS);
719 ip = (volatile uint8_t*) cp;
720 *ip = (uint8_t) processor_avail_count;
721 }
722
723 simple_unlock(&commpage_active_cpus_lock);
724 }
725
726 /*
727 * Update the commpage data with the value of the "kdebug_enable"
728 * global so that userspace can avoid trapping into the kernel
729 * for kdebug_trace() calls. Serialization is handled
730 * by the caller in bsd/kern/kdebug.c.
731 */
732 void
733 commpage_update_kdebug_enable(void)
734 {
735 volatile uint32_t *saved_data_ptr;
736 char *cp;
737
738 cp = commPagePtr32;
739 if (cp) {
740 cp += (_COMM_PAGE_KDEBUG_ENABLE - _COMM_PAGE32_BASE_ADDRESS);
741 saved_data_ptr = (volatile uint32_t *)cp;
742 *saved_data_ptr = kdebug_enable;
743 }
744
745 cp = commPagePtr64;
746 if ( cp ) {
747 cp += (_COMM_PAGE_KDEBUG_ENABLE - _COMM_PAGE32_START_ADDRESS);
748 saved_data_ptr = (volatile uint32_t *)cp;
749 *saved_data_ptr = kdebug_enable;
750 }
751 }
752
753 /* Ditto for atm_diagnostic_config */
754 void
755 commpage_update_atm_diagnostic_config(uint32_t diagnostic_config)
756 {
757 volatile uint32_t *saved_data_ptr;
758 char *cp;
759
760 cp = commPagePtr32;
761 if (cp) {
762 cp += (_COMM_PAGE_ATM_DIAGNOSTIC_CONFIG - _COMM_PAGE32_BASE_ADDRESS);
763 saved_data_ptr = (volatile uint32_t *)cp;
764 *saved_data_ptr = diagnostic_config;
765 }
766
767 cp = commPagePtr64;
768 if ( cp ) {
769 cp += (_COMM_PAGE_ATM_DIAGNOSTIC_CONFIG - _COMM_PAGE32_START_ADDRESS);
770 saved_data_ptr = (volatile uint32_t *)cp;
771 *saved_data_ptr = diagnostic_config;
772 }
773 }
774
775 /*
776 * update the commpage data for last known value of mach_absolute_time()
777 */
778
779 void
780 commpage_update_mach_approximate_time(uint64_t abstime)
781 {
782 #ifdef CONFIG_MACH_APPROXIMATE_TIME
783 uint64_t saved_data;
784 char *cp;
785
786 cp = commPagePtr32;
787 if ( cp ) {
788 cp += (_COMM_PAGE_APPROX_TIME - _COMM_PAGE32_BASE_ADDRESS);
789 saved_data = *(uint64_t *)cp;
790 if (saved_data < abstime) {
791 /* ignoring the success/fail return value assuming that
792 * if the value has been updated since we last read it,
793 * "someone" has a newer timestamp than us and ours is
794 * now invalid. */
795 OSCompareAndSwap64(saved_data, abstime, (uint64_t *)cp);
796 }
797 }
798 cp = commPagePtr64;
799 if ( cp ) {
800 cp += (_COMM_PAGE_APPROX_TIME - _COMM_PAGE32_START_ADDRESS);
801 saved_data = *(uint64_t *)cp;
802 if (saved_data < abstime) {
803 /* ignoring the success/fail return value assuming that
804 * if the value has been updated since we last read it,
805 * "someone" has a newer timestamp than us and ours is
806 * now invalid. */
807 OSCompareAndSwap64(saved_data, abstime, (uint64_t *)cp);
808 }
809 }
810 #else
811 #pragma unused (abstime)
812 #endif
813 }
814
815
816 extern user32_addr_t commpage_text32_location;
817 extern user64_addr_t commpage_text64_location;
818
819 /* Check to see if a given address is in the Preemption Free Zone (PFZ) */
820
821 uint32_t
822 commpage_is_in_pfz32(uint32_t addr32)
823 {
824 if ( (addr32 >= (commpage_text32_location + _COMM_TEXT_PFZ_START_OFFSET))
825 && (addr32 < (commpage_text32_location+_COMM_TEXT_PFZ_END_OFFSET))) {
826 return 1;
827 }
828 else
829 return 0;
830 }
831
832 uint32_t
833 commpage_is_in_pfz64(addr64_t addr64)
834 {
835 if ( (addr64 >= (commpage_text64_location + _COMM_TEXT_PFZ_START_OFFSET))
836 && (addr64 < (commpage_text64_location + _COMM_TEXT_PFZ_END_OFFSET))) {
837 return 1;
838 }
839 else
840 return 0;
841 }
842