2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
4 * @APPLE_LICENSE_HEADER_START@
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
20 * @APPLE_LICENSE_HEADER_END@
23 * This file is derived from various .h and .c files from the zlib-1.0.4
24 * distribution by Jean-loup Gailly and Mark Adler, with some additions
25 * by Paul Mackerras to aid in implementing Deflate compression and
26 * decompression for PPP packets. See zlib.h for conditions of
27 * distribution and use.
29 * Changes that have been made include:
30 * - added Z_PACKET_FLUSH (see zlib.h for details)
31 * - added inflateIncomp and deflateOutputPending
32 * - allow strm->next_out to be NULL, meaning discard the output
37 * ==FILEVERSION 971210==
39 * This marker is used by the Linux installation script to determine
40 * whether an up-to-date version of this file is already installed.
47 #if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL))
48 #define inflate inflate_ppp /* FreeBSD already has an inflate :-( */
53 /* zutil.h -- internal interface and configuration of the compression library
54 * Copyright (C) 1995-1996 Jean-loup Gailly.
55 * For conditions of distribution and use, see copyright notice in zlib.h
58 /* WARNING: this file should *not* be used by applications. It is
59 part of the implementation of the compression library and is
60 subject to change. Applications should only use zlib.h.
63 /* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */
73 /* Assume this is a *BSD or SVR4 kernel */
74 //#include <sys/types.h>
76 //#include <sys/systm.h>
78 # define memcpy(d, s, n) bcopy((s), (d), (n))
79 # define memset(d, v, n) bzero((d), (n))
83 //# include <string.h>
84 //# include <stdlib.h>
87 #endif /* _KERNEL || KERNEL */
92 /* compile with -Dlocal if your debugger can't find static symbols */
94 typedef unsigned char uch
;
96 typedef unsigned short ush
;
98 typedef unsigned long ulg
;
100 extern const char *z_errmsg
[10]; /* indexed by 2-zlib_error */
101 /* (size given to avoid silly warnings with Visual C++) */
103 #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
105 #define ERR_RETURN(strm,err) \
106 return (strm->msg = (char*)ERR_MSG(err), (err))
107 /* To be used only when the state is known to be valid */
109 /* common constants */
112 # define DEF_WBITS MAX_WBITS
114 /* default windowBits for decompression. MAX_WBITS is for compression only */
116 #if MAX_MEM_LEVEL >= 8
117 # define DEF_MEM_LEVEL 8
119 # define DEF_MEM_LEVEL MAX_MEM_LEVEL
121 /* default memLevel */
123 #define STORED_BLOCK 0
124 #define STATIC_TREES 1
126 /* The three kinds of block type */
129 #define MAX_MATCH 258
130 /* The minimum and maximum match lengths */
132 #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
134 /* target dependencies */
137 # define OS_CODE 0x00
140 # else /* MSC or DJGPP */
146 # define OS_CODE 0x06
149 #ifdef WIN32 /* Window 95 & Windows NT */
150 # define OS_CODE 0x0b
153 #if defined(VAXC) || defined(VMS)
154 # define OS_CODE 0x02
155 # define FOPEN(name, mode) \
156 fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
160 # define OS_CODE 0x01
163 #if defined(ATARI) || defined(atarist)
164 # define OS_CODE 0x05
168 # define OS_CODE 0x07
171 #ifdef __50SERIES /* Prime/PRIMOS */
172 # define OS_CODE 0x0F
176 # define OS_CODE 0x0a
179 #if defined(_BEOS_) || defined(RISCOS)
180 # define fdopen(fd,mode) NULL /* No fdopen() */
183 /* Common defaults */
186 # define OS_CODE 0x03 /* assume Unix */
190 # define FOPEN(name, mode) fopen((name), (mode))
196 extern char *strerror
OF((int));
197 # define zstrerror(errnum) strerror(errnum)
199 # define zstrerror(errnum) ""
205 #if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER)
206 /* Use our own functions for small and medium model with MSC <= 5.0.
207 * You may have to use the same strategy for Borland C (untested).
211 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
215 # ifdef SMALL_MEDIUM /* MSDOS small or medium model */
216 # define zmemcpy _fmemcpy
217 # define zmemcmp _fmemcmp
218 # define zmemzero(dest, len) _fmemset(dest, 0, len)
220 # define zmemcpy memcpy
221 # define zmemcmp memcmp
222 # define zmemzero(dest, len) memset(dest, 0, len)
225 extern void zmemcpy
OF((Bytef
* dest
, Bytef
* source
, uInt len
));
226 extern int zmemcmp
OF((Bytef
* s1
, Bytef
* s2
, uInt len
));
227 extern void zmemzero
OF((Bytef
* dest
, uInt len
));
230 /* Diagnostic functions */
236 extern void z_error
OF((char *m
));
237 # define Assert(cond,msg) {if(!(cond)) z_error(msg);}
238 # define Trace(x) fprintf x
239 # define Tracev(x) {if (verbose) fprintf x ;}
240 # define Tracevv(x) {if (verbose>1) fprintf x ;}
241 # define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
242 # define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
244 # define Assert(cond,msg)
249 # define Tracecv(c,x)
253 typedef uLong (*check_func
) OF((uLong check
, const Bytef
*buf
, uInt len
));
255 voidpf zcalloc
OF((voidpf opaque
, unsigned items
, unsigned size
));
256 void zcfree
OF((voidpf opaque
, voidpf ptr
));
258 #define ZALLOC(strm, items, size) \
259 (*((strm)->zalloc))((strm)->opaque, (items), (size))
260 #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
261 #define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
263 #endif /* _Z_UTIL_H */
267 /* deflate.h -- internal compression state
268 * Copyright (C) 1995-1996 Jean-loup Gailly
269 * For conditions of distribution and use, see copyright notice in zlib.h
272 /* WARNING: this file should *not* be used by applications. It is
273 part of the implementation of the compression library and is
274 subject to change. Applications should only use zlib.h.
277 /* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */
282 /* #include "zutil.h" */
284 /* ===========================================================================
285 * Internal compression state.
288 #define LENGTH_CODES 29
289 /* number of length codes, not counting the special END_BLOCK code */
292 /* number of literal bytes 0..255 */
294 #define L_CODES (LITERALS+1+LENGTH_CODES)
295 /* number of Literal or Length codes, including the END_BLOCK code */
298 /* number of distance codes */
301 /* number of codes used to transfer the bit lengths */
303 #define HEAP_SIZE (2*L_CODES+1)
304 /* maximum heap size */
307 /* All codes must not exceed MAX_BITS bits */
309 #define INIT_STATE 42
310 #define BUSY_STATE 113
311 #define FINISH_STATE 666
315 /* Data structure describing a single value and its code string. */
316 typedef struct ct_data_s
{
318 ush freq
; /* frequency count */
319 ush code
; /* bit string */
322 ush dad
; /* father node in Huffman tree */
323 ush len
; /* length of bit string */
332 typedef struct static_tree_desc_s static_tree_desc
;
334 typedef struct tree_desc_s
{
335 ct_data
*dyn_tree
; /* the dynamic tree */
336 int max_code
; /* largest code with non zero frequency */
337 static_tree_desc
*stat_desc
; /* the corresponding static tree */
341 typedef Pos FAR Posf
;
342 typedef unsigned IPos
;
344 /* A Pos is an index in the character window. We use short instead of int to
345 * save space in the various tables. IPos is used only for parameter passing.
348 typedef struct deflate_state
{
349 z_streamp strm
; /* pointer back to this zlib stream */
350 int status
; /* as the name implies */
351 Bytef
*pending_buf
; /* output still pending */
352 ulg pending_buf_size
; /* size of pending_buf */
353 Bytef
*pending_out
; /* next pending byte to output to the stream */
354 int pending
; /* nb of bytes in the pending buffer */
355 int noheader
; /* suppress zlib header and adler32 */
356 Byte data_type
; /* UNKNOWN, BINARY or ASCII */
357 Byte method
; /* STORED (for zip only) or DEFLATED */
358 int last_flush
; /* value of flush param for previous deflate call */
360 /* used by deflate.c: */
362 uInt w_size
; /* LZ77 window size (32K by default) */
363 uInt w_bits
; /* log2(w_size) (8..16) */
364 uInt w_mask
; /* w_size - 1 */
367 /* Sliding window. Input bytes are read into the second half of the window,
368 * and move to the first half later to keep a dictionary of at least wSize
369 * bytes. With this organization, matches are limited to a distance of
370 * wSize-MAX_MATCH bytes, but this ensures that IO is always
371 * performed with a length multiple of the block size. Also, it limits
372 * the window size to 64K, which is quite useful on MSDOS.
373 * To do: use the user input buffer as sliding window.
377 /* Actual size of window: 2*wSize, except when the user input buffer
378 * is directly used as sliding window.
382 /* Link to older string with same hash index. To limit the size of this
383 * array to 64K, this link is maintained only for the last 32K strings.
384 * An index in this array is thus a window index modulo 32K.
387 Posf
*head
; /* Heads of the hash chains or NIL. */
389 uInt ins_h
; /* hash index of string to be inserted */
390 uInt hash_size
; /* number of elements in hash table */
391 uInt hash_bits
; /* log2(hash_size) */
392 uInt hash_mask
; /* hash_size-1 */
395 /* Number of bits by which ins_h must be shifted at each input
396 * step. It must be such that after MIN_MATCH steps, the oldest
397 * byte no longer takes part in the hash key, that is:
398 * hash_shift * MIN_MATCH >= hash_bits
402 /* Window position at the beginning of the current output block. Gets
403 * negative when the window is moved backwards.
406 uInt match_length
; /* length of best match */
407 IPos prev_match
; /* previous match */
408 int match_available
; /* set if previous match exists */
409 uInt strstart
; /* start of string to insert */
410 uInt match_start
; /* start of matching string */
411 uInt lookahead
; /* number of valid bytes ahead in window */
414 /* Length of the best match at previous step. Matches not greater than this
415 * are discarded. This is used in the lazy match evaluation.
418 uInt max_chain_length
;
419 /* To speed up deflation, hash chains are never searched beyond this
420 * length. A higher limit improves compression ratio but degrades the
425 /* Attempt to find a better match only when the current match is strictly
426 * smaller than this value. This mechanism is used only for compression
429 # define max_insert_length max_lazy_match
430 /* Insert new strings in the hash table only if the match length is not
431 * greater than this length. This saves time but degrades compression.
432 * max_insert_length is used only for compression levels <= 3.
435 int level
; /* compression level (1..9) */
436 int strategy
; /* favor or force Huffman coding*/
439 /* Use a faster search when the previous match is longer than this */
441 int nice_match
; /* Stop searching when current match exceeds this */
443 /* used by trees.c: */
444 /* Didn't use ct_data typedef below to supress compiler warning */
445 struct ct_data_s dyn_ltree
[HEAP_SIZE
]; /* literal and length tree */
446 struct ct_data_s dyn_dtree
[2*D_CODES
+1]; /* distance tree */
447 struct ct_data_s bl_tree
[2*BL_CODES
+1]; /* Huffman tree for bit lengths */
449 struct tree_desc_s l_desc
; /* desc. for literal tree */
450 struct tree_desc_s d_desc
; /* desc. for distance tree */
451 struct tree_desc_s bl_desc
; /* desc. for bit length tree */
453 ush bl_count
[MAX_BITS
+1];
454 /* number of codes at each bit length for an optimal tree */
456 int heap
[2*L_CODES
+1]; /* heap used to build the Huffman trees */
457 int heap_len
; /* number of elements in the heap */
458 int heap_max
; /* element of largest frequency */
459 /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
460 * The same heap array is used to build all trees.
463 uch depth
[2*L_CODES
+1];
464 /* Depth of each subtree used as tie breaker for trees of equal frequency
467 uchf
*l_buf
; /* buffer for literals or lengths */
470 /* Size of match buffer for literals/lengths. There are 4 reasons for
471 * limiting lit_bufsize to 64K:
472 * - frequencies can be kept in 16 bit counters
473 * - if compression is not successful for the first block, all input
474 * data is still in the window so we can still emit a stored block even
475 * when input comes from standard input. (This can also be done for
476 * all blocks if lit_bufsize is not greater than 32K.)
477 * - if compression is not successful for a file smaller than 64K, we can
478 * even emit a stored file instead of a stored block (saving 5 bytes).
479 * This is applicable only for zip (not gzip or zlib).
480 * - creating new Huffman trees less frequently may not provide fast
481 * adaptation to changes in the input data statistics. (Take for
482 * example a binary file with poorly compressible code followed by
483 * a highly compressible string table.) Smaller buffer sizes give
484 * fast adaptation but have of course the overhead of transmitting
485 * trees more frequently.
486 * - I can't count above 4
489 uInt last_lit
; /* running index in l_buf */
492 /* Buffer for distances. To simplify the code, d_buf and l_buf have
493 * the same number of elements. To use different lengths, an extra flag
494 * array would be necessary.
497 ulg opt_len
; /* bit length of current block with optimal trees */
498 ulg static_len
; /* bit length of current block with static trees */
499 ulg compressed_len
; /* total bit length of compressed file */
500 uInt matches
; /* number of string matches in current block */
501 int last_eob_len
; /* bit length of EOB code for last block */
504 ulg bits_sent
; /* bit length of the compressed data */
508 /* Output buffer. bits are inserted starting at the bottom (least
512 /* Number of valid bits in bi_buf. All bits above the last valid bit
518 /* Output a byte on the stream.
519 * IN assertion: there is enough room in pending_buf.
521 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
524 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
525 /* Minimum amount of lookahead, except at the end of the input file.
526 * See deflate.c for comments about the MIN_MATCH+1.
529 #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD)
530 /* In order to simplify the code, particularly on 16 bit machines, match
531 * distances are limited to MAX_DIST instead of WSIZE.
535 void _tr_init
OF((deflate_state
*s
));
536 int _tr_tally
OF((deflate_state
*s
, unsigned dist
, unsigned lc
));
537 ulg _tr_flush_block
OF((deflate_state
*s
, charf
*buf
, ulg stored_len
,
539 void _tr_align
OF((deflate_state
*s
));
540 void _tr_stored_block
OF((deflate_state
*s
, charf
*buf
, ulg stored_len
,
542 void _tr_stored_type_only
OF((deflate_state
*));
548 /* deflate.c -- compress data using the deflation algorithm
549 * Copyright (C) 1995-1996 Jean-loup Gailly.
550 * For conditions of distribution and use, see copyright notice in zlib.h
556 * The "deflation" process depends on being able to identify portions
557 * of the input text which are identical to earlier input (within a
558 * sliding window trailing behind the input currently being processed).
560 * The most straightforward technique turns out to be the fastest for
561 * most input files: try all possible matches and select the longest.
562 * The key feature of this algorithm is that insertions into the string
563 * dictionary are very simple and thus fast, and deletions are avoided
564 * completely. Insertions are performed at each input character, whereas
565 * string matches are performed only when the previous match ends. So it
566 * is preferable to spend more time in matches to allow very fast string
567 * insertions and avoid deletions. The matching algorithm for small
568 * strings is inspired from that of Rabin & Karp. A brute force approach
569 * is used to find longer strings when a small match has been found.
570 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
571 * (by Leonid Broukhis).
572 * A previous version of this file used a more sophisticated algorithm
573 * (by Fiala and Greene) which is guaranteed to run in linear amortized
574 * time, but has a larger average cost, uses more memory and is patented.
575 * However the F&G algorithm may be faster for some highly redundant
576 * files if the parameter max_chain_length (described below) is too large.
580 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
581 * I found it in 'freeze' written by Leonid Broukhis.
582 * Thanks to many people for bug reports and testing.
586 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
587 * Available in ftp://ds.internic.net/rfc/rfc1951.txt
589 * A description of the Rabin and Karp algorithm is given in the book
590 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
592 * Fiala,E.R., and Greene,D.H.
593 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
597 /* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */
599 /* #include "deflate.h" */
601 char deflate_copyright
[] = " deflate 1.0.4 Copyright 1995-1996 Jean-loup Gailly ";
603 If you use the zlib library in a product, an acknowledgment is welcome
604 in the documentation of your product. If for some reason you cannot
605 include such an acknowledgment, I would appreciate that you keep this
606 copyright string in the executable of your product.
609 /* ===========================================================================
610 * Function prototypes.
613 need_more
, /* block not completed, need more input or more output */
614 block_done
, /* block flush performed */
615 finish_started
, /* finish started, need only more output at next deflate */
616 finish_done
/* finish done, accept no more input or output */
619 typedef block_state (*compress_func
) OF((deflate_state
*s
, int flush
));
620 /* Compression function. Returns the block state after the call. */
622 local
void fill_window
OF((deflate_state
*s
));
623 local block_state deflate_stored
OF((deflate_state
*s
, int flush
));
624 local block_state deflate_fast
OF((deflate_state
*s
, int flush
));
625 local block_state deflate_slow
OF((deflate_state
*s
, int flush
));
626 local
void lm_init
OF((deflate_state
*s
));
627 local
void putShortMSB
OF((deflate_state
*s
, uInt b
));
628 local
void flush_pending
OF((z_streamp strm
));
629 local
int read_buf
OF((z_streamp strm
, charf
*buf
, unsigned size
));
631 void match_init
OF((void)); /* asm code initialization */
632 uInt longest_match
OF((deflate_state
*s
, IPos cur_match
));
634 local uInt longest_match
OF((deflate_state
*s
, IPos cur_match
));
638 local
void check_match
OF((deflate_state
*s
, IPos start
, IPos match
,
642 /* ===========================================================================
647 /* Tail of hash chains */
650 # define TOO_FAR 4096
652 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
654 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
655 /* Minimum amount of lookahead, except at the end of the input file.
656 * See deflate.c for comments about the MIN_MATCH+1.
659 /* Values for max_lazy_match, good_match and max_chain_length, depending on
660 * the desired pack level (0..9). The values given below have been tuned to
661 * exclude worst case performance for pathological files. Better values may be
662 * found for specific files.
664 typedef struct config_s
{
665 ush good_length
; /* reduce lazy search above this match length */
666 ush max_lazy
; /* do not perform lazy search above this match length */
667 ush nice_length
; /* quit search above this match length */
672 local config configuration_table
[10] = {
673 /* good lazy nice chain */
674 /* 0 */ {0, 0, 0, 0, deflate_stored
}, /* store only */
675 /* 1 */ {4, 4, 8, 4, deflate_fast
}, /* maximum speed, no lazy matches */
676 /* 2 */ {4, 5, 16, 8, deflate_fast
},
677 /* 3 */ {4, 6, 32, 32, deflate_fast
},
679 /* 4 */ {4, 4, 16, 16, deflate_slow
}, /* lazy matches */
680 /* 5 */ {8, 16, 32, 32, deflate_slow
},
681 /* 6 */ {8, 16, 128, 128, deflate_slow
},
682 /* 7 */ {8, 32, 128, 256, deflate_slow
},
683 /* 8 */ {32, 128, 258, 1024, deflate_slow
},
684 /* 9 */ {32, 258, 258, 4096, deflate_slow
}}; /* maximum compression */
686 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
687 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
692 /* result of memcmp for equal strings */
694 #ifndef NO_DUMMY_DECL
695 struct static_tree_desc_s
{int dummy
;}; /* for buggy compilers */
698 /* ===========================================================================
699 * Update a hash value with the given input byte
700 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
701 * input characters, so that a running hash key can be computed from the
702 * previous key instead of complete recalculation each time.
704 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
707 /* ===========================================================================
708 * Insert string str in the dictionary and set match_head to the previous head
709 * of the hash chain (the most recent string with same hash key). Return
710 * the previous length of the hash chain.
711 * IN assertion: all calls to to INSERT_STRING are made with consecutive
712 * input characters and the first MIN_MATCH bytes of str are valid
713 * (except for the last MIN_MATCH-1 bytes of the input file).
715 #define INSERT_STRING(s, str, match_head) \
716 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
717 s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
718 s->head[s->ins_h] = (Pos)(str))
720 /* ===========================================================================
721 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
722 * prev[] will be initialized on the fly.
724 #define CLEAR_HASH(s) \
725 s->head[s->hash_size-1] = NIL; \
726 zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
728 /* ========================================================================= */
729 int deflateInit_(strm
, level
, version
, stream_size
)
735 return deflateInit2_(strm
, level
, Z_DEFLATED
, MAX_WBITS
, DEF_MEM_LEVEL
,
736 Z_DEFAULT_STRATEGY
, version
, stream_size
);
737 /* To do: ignore strm->next_in if we use it as window */
740 /* ========================================================================= */
741 int deflateInit2_(strm
, level
, method
, windowBits
, memLevel
, strategy
,
742 version
, stream_size
)
754 static char* my_version
= ZLIB_VERSION
;
757 /* We overlay pending_buf and d_buf+l_buf. This works since the average
758 * output size for (length,distance) codes is <= 24 bits.
761 if (version
== Z_NULL
|| version
[0] != my_version
[0] ||
762 stream_size
!= sizeof(z_stream
)) {
763 return Z_VERSION_ERROR
;
765 if (strm
== Z_NULL
) return Z_STREAM_ERROR
;
769 if (strm
->zalloc
== Z_NULL
) {
770 strm
->zalloc
= zcalloc
;
771 strm
->opaque
= (voidpf
)0;
773 if (strm
->zfree
== Z_NULL
) strm
->zfree
= zcfree
;
776 if (level
== Z_DEFAULT_COMPRESSION
) level
= 6;
778 if (windowBits
< 0) { /* undocumented feature: suppress zlib header */
780 windowBits
= -windowBits
;
782 if (memLevel
< 1 || memLevel
> MAX_MEM_LEVEL
|| method
!= Z_DEFLATED
||
783 windowBits
< 8 || windowBits
> 15 || level
< 0 || level
> 9 ||
784 strategy
< 0 || strategy
> Z_HUFFMAN_ONLY
) {
785 return Z_STREAM_ERROR
;
787 s
= (deflate_state
*) ZALLOC(strm
, 1, sizeof(deflate_state
));
788 if (s
== Z_NULL
) return Z_MEM_ERROR
;
789 strm
->state
= (struct internal_state FAR
*)s
;
792 s
->noheader
= noheader
;
793 s
->w_bits
= windowBits
;
794 s
->w_size
= 1 << s
->w_bits
;
795 s
->w_mask
= s
->w_size
- 1;
797 s
->hash_bits
= memLevel
+ 7;
798 s
->hash_size
= 1 << s
->hash_bits
;
799 s
->hash_mask
= s
->hash_size
- 1;
800 s
->hash_shift
= ((s
->hash_bits
+MIN_MATCH
-1)/MIN_MATCH
);
802 s
->window
= (Bytef
*) ZALLOC(strm
, s
->w_size
, 2*sizeof(Byte
));
803 s
->prev
= (Posf
*) ZALLOC(strm
, s
->w_size
, sizeof(Pos
));
804 s
->head
= (Posf
*) ZALLOC(strm
, s
->hash_size
, sizeof(Pos
));
806 s
->lit_bufsize
= 1 << (memLevel
+ 6); /* 16K elements by default */
808 overlay
= (ushf
*) ZALLOC(strm
, s
->lit_bufsize
, sizeof(ush
)+2);
809 s
->pending_buf
= (uchf
*) overlay
;
810 s
->pending_buf_size
= (ulg
)s
->lit_bufsize
* (sizeof(ush
)+2L);
812 if (s
->window
== Z_NULL
|| s
->prev
== Z_NULL
|| s
->head
== Z_NULL
||
813 s
->pending_buf
== Z_NULL
) {
814 strm
->msg
= (char*)ERR_MSG(Z_MEM_ERROR
);
818 s
->d_buf
= overlay
+ s
->lit_bufsize
/sizeof(ush
);
819 s
->l_buf
= s
->pending_buf
+ (1+sizeof(ush
))*s
->lit_bufsize
;
822 s
->strategy
= strategy
;
823 s
->method
= (Byte
)method
;
825 return deflateReset(strm
);
828 /* ========================================================================= */
829 int deflateSetDictionary (strm
, dictionary
, dictLength
)
831 const Bytef
*dictionary
;
835 uInt length
= dictLength
;
839 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
|| dictionary
== Z_NULL
)
840 return Z_STREAM_ERROR
;
842 s
= (deflate_state
*) strm
->state
;
843 if (s
->status
!= INIT_STATE
) return Z_STREAM_ERROR
;
845 strm
->adler
= adler32(strm
->adler
, dictionary
, dictLength
);
847 if (length
< MIN_MATCH
) return Z_OK
;
848 if (length
> MAX_DIST(s
)) {
849 length
= MAX_DIST(s
);
850 #ifndef USE_DICT_HEAD
851 dictionary
+= dictLength
- length
; /* use the tail of the dictionary */
854 zmemcpy((charf
*)s
->window
, dictionary
, length
);
855 s
->strstart
= length
;
856 s
->block_start
= (long)length
;
858 /* Insert all strings in the hash table (except for the last two bytes).
859 * s->lookahead stays null, so s->ins_h will be recomputed at the next
860 * call of fill_window.
862 s
->ins_h
= s
->window
[0];
863 UPDATE_HASH(s
, s
->ins_h
, s
->window
[1]);
864 for (n
= 0; n
<= length
- MIN_MATCH
; n
++) {
865 INSERT_STRING(s
, n
, hash_head
);
867 if (hash_head
) hash_head
= 0; /* to make compiler happy */
871 /* ========================================================================= */
872 int deflateReset (strm
)
877 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
||
878 strm
->zalloc
== Z_NULL
|| strm
->zfree
== Z_NULL
) return Z_STREAM_ERROR
;
880 strm
->total_in
= strm
->total_out
= 0;
881 strm
->msg
= Z_NULL
; /* use zfree if we ever allocate msg dynamically */
882 strm
->data_type
= Z_UNKNOWN
;
884 s
= (deflate_state
*)strm
->state
;
886 s
->pending_out
= s
->pending_buf
;
888 if (s
->noheader
< 0) {
889 s
->noheader
= 0; /* was set to -1 by deflate(..., Z_FINISH); */
891 s
->status
= s
->noheader
? BUSY_STATE
: INIT_STATE
;
893 s
->last_flush
= Z_NO_FLUSH
;
901 /* ========================================================================= */
902 int deflateParams(strm
, level
, strategy
)
911 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
) return Z_STREAM_ERROR
;
912 s
= (deflate_state
*) strm
->state
;
914 if (level
== Z_DEFAULT_COMPRESSION
) {
917 if (level
< 0 || level
> 9 || strategy
< 0 || strategy
> Z_HUFFMAN_ONLY
) {
918 return Z_STREAM_ERROR
;
920 func
= configuration_table
[s
->level
].func
;
922 if (func
!= configuration_table
[level
].func
&& strm
->total_in
!= 0) {
923 /* Flush the last buffer: */
924 err
= deflate(strm
, Z_PARTIAL_FLUSH
);
926 if (s
->level
!= level
) {
928 s
->max_lazy_match
= configuration_table
[level
].max_lazy
;
929 s
->good_match
= configuration_table
[level
].good_length
;
930 s
->nice_match
= configuration_table
[level
].nice_length
;
931 s
->max_chain_length
= configuration_table
[level
].max_chain
;
933 s
->strategy
= strategy
;
937 /* =========================================================================
938 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
939 * IN assertion: the stream state is correct and there is enough room in
942 local
void putShortMSB (s
, b
)
946 put_byte(s
, (Byte
)(b
>> 8));
947 put_byte(s
, (Byte
)(b
& 0xff));
950 /* =========================================================================
951 * Flush as much pending output as possible. All deflate() output goes
952 * through this function so some applications may wish to modify it
953 * to avoid allocating a large strm->next_out buffer and copying into it.
954 * (See also read_buf()).
956 local
void flush_pending(strm
)
959 deflate_state
*s
= (deflate_state
*) strm
->state
;
960 unsigned len
= s
->pending
;
962 if (len
> strm
->avail_out
) len
= strm
->avail_out
;
963 if (len
== 0) return;
965 if (strm
->next_out
!= Z_NULL
) {
966 zmemcpy(strm
->next_out
, s
->pending_out
, len
);
967 strm
->next_out
+= len
;
969 s
->pending_out
+= len
;
970 strm
->total_out
+= len
;
971 strm
->avail_out
-= len
;
973 if (s
->pending
== 0) {
974 s
->pending_out
= s
->pending_buf
;
978 /* ========================================================================= */
979 int deflate (strm
, flush
)
983 int old_flush
; /* value of flush param for previous deflate call */
986 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
||
987 flush
> Z_FINISH
|| flush
< 0) {
988 return Z_STREAM_ERROR
;
990 s
= (deflate_state
*) strm
->state
;
992 if ((strm
->next_in
== Z_NULL
&& strm
->avail_in
!= 0) ||
993 (s
->status
== FINISH_STATE
&& flush
!= Z_FINISH
)) {
994 ERR_RETURN(strm
, Z_STREAM_ERROR
);
996 if (strm
->avail_out
== 0) ERR_RETURN(strm
, Z_BUF_ERROR
);
998 s
->strm
= strm
; /* just in case */
999 old_flush
= s
->last_flush
;
1000 s
->last_flush
= flush
;
1002 /* Write the zlib header */
1003 if (s
->status
== INIT_STATE
) {
1005 uInt header
= (Z_DEFLATED
+ ((s
->w_bits
-8)<<4)) << 8;
1006 uInt level_flags
= (s
->level
-1) >> 1;
1008 if (level_flags
> 3) level_flags
= 3;
1009 header
|= (level_flags
<< 6);
1010 if (s
->strstart
!= 0) header
|= PRESET_DICT
;
1011 header
+= 31 - (header
% 31);
1013 s
->status
= BUSY_STATE
;
1014 putShortMSB(s
, header
);
1016 /* Save the adler32 of the preset dictionary: */
1017 if (s
->strstart
!= 0) {
1018 putShortMSB(s
, (uInt
)(strm
->adler
>> 16));
1019 putShortMSB(s
, (uInt
)(strm
->adler
& 0xffff));
1024 /* Flush as much pending output as possible */
1025 if (s
->pending
!= 0) {
1026 flush_pending(strm
);
1027 if (strm
->avail_out
== 0) {
1028 /* Since avail_out is 0, deflate will be called again with
1029 * more output space, but possibly with both pending and
1030 * avail_in equal to zero. There won't be anything to do,
1031 * but this is not an error situation so make sure we
1032 * return OK instead of BUF_ERROR at next call of deflate:
1038 /* Make sure there is something to do and avoid duplicate consecutive
1039 * flushes. For repeated and useless calls with Z_FINISH, we keep
1040 * returning Z_STREAM_END instead of Z_BUFF_ERROR.
1042 } else if (strm
->avail_in
== 0 && flush
<= old_flush
&&
1043 flush
!= Z_FINISH
) {
1044 ERR_RETURN(strm
, Z_BUF_ERROR
);
1047 /* User must not provide more input after the first FINISH: */
1048 if (s
->status
== FINISH_STATE
&& strm
->avail_in
!= 0) {
1049 ERR_RETURN(strm
, Z_BUF_ERROR
);
1052 /* Start a new block or continue the current one.
1054 if (strm
->avail_in
!= 0 || s
->lookahead
!= 0 ||
1055 (flush
!= Z_NO_FLUSH
&& s
->status
!= FINISH_STATE
)) {
1058 bstate
= (*(configuration_table
[s
->level
].func
))(s
, flush
);
1060 if (bstate
== finish_started
|| bstate
== finish_done
) {
1061 s
->status
= FINISH_STATE
;
1063 if (bstate
== need_more
|| bstate
== finish_started
) {
1064 if (strm
->avail_out
== 0) {
1065 s
->last_flush
= -1; /* avoid BUF_ERROR next call, see above */
1068 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1069 * of deflate should use the same flush parameter to make sure
1070 * that the flush is complete. So we don't have to output an
1071 * empty block here, this will be done at next call. This also
1072 * ensures that for a very small output buffer, we emit at most
1076 if (bstate
== block_done
) {
1077 if (flush
== Z_PARTIAL_FLUSH
) {
1079 } else if (flush
== Z_PACKET_FLUSH
) {
1080 /* Output just the 3-bit `stored' block type value,
1081 but not a zero length. */
1082 _tr_stored_type_only(s
);
1083 } else { /* FULL_FLUSH or SYNC_FLUSH */
1084 _tr_stored_block(s
, (char*)0, 0L, 0);
1085 /* For a full flush, this empty block will be recognized
1086 * as a special marker by inflate_sync().
1088 if (flush
== Z_FULL_FLUSH
) {
1089 CLEAR_HASH(s
); /* forget history */
1092 flush_pending(strm
);
1093 if (strm
->avail_out
== 0) {
1094 s
->last_flush
= -1; /* avoid BUF_ERROR at next call, see above */
1099 Assert(strm
->avail_out
> 0, "bug2");
1101 if (flush
!= Z_FINISH
) return Z_OK
;
1102 if (s
->noheader
) return Z_STREAM_END
;
1104 /* Write the zlib trailer (adler32) */
1105 putShortMSB(s
, (uInt
)(strm
->adler
>> 16));
1106 putShortMSB(s
, (uInt
)(strm
->adler
& 0xffff));
1107 flush_pending(strm
);
1108 /* If avail_out is zero, the application will call deflate again
1109 * to flush the rest.
1111 s
->noheader
= -1; /* write the trailer only once! */
1112 return s
->pending
!= 0 ? Z_OK
: Z_STREAM_END
;
1115 /* ========================================================================= */
1116 int deflateEnd (strm
)
1122 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
) return Z_STREAM_ERROR
;
1123 s
= (deflate_state
*) strm
->state
;
1126 if (status
!= INIT_STATE
&& status
!= BUSY_STATE
&&
1127 status
!= FINISH_STATE
) {
1128 return Z_STREAM_ERROR
;
1131 /* Deallocate in reverse order of allocations: */
1132 TRY_FREE(strm
, s
->pending_buf
);
1133 TRY_FREE(strm
, s
->head
);
1134 TRY_FREE(strm
, s
->prev
);
1135 TRY_FREE(strm
, s
->window
);
1138 strm
->state
= Z_NULL
;
1140 return status
== BUSY_STATE
? Z_DATA_ERROR
: Z_OK
;
1143 /* =========================================================================
1144 * Copy the source state to the destination state.
1146 int deflateCopy (dest
, source
)
1154 if (source
== Z_NULL
|| dest
== Z_NULL
|| source
->state
== Z_NULL
)
1155 return Z_STREAM_ERROR
;
1156 ss
= (deflate_state
*) source
->state
;
1158 zmemcpy(dest
, source
, sizeof(*dest
));
1160 ds
= (deflate_state
*) ZALLOC(dest
, 1, sizeof(deflate_state
));
1161 if (ds
== Z_NULL
) return Z_MEM_ERROR
;
1162 dest
->state
= (struct internal_state FAR
*) ds
;
1163 zmemcpy(ds
, ss
, sizeof(*ds
));
1166 ds
->window
= (Bytef
*) ZALLOC(dest
, ds
->w_size
, 2*sizeof(Byte
));
1167 ds
->prev
= (Posf
*) ZALLOC(dest
, ds
->w_size
, sizeof(Pos
));
1168 ds
->head
= (Posf
*) ZALLOC(dest
, ds
->hash_size
, sizeof(Pos
));
1169 overlay
= (ushf
*) ZALLOC(dest
, ds
->lit_bufsize
, sizeof(ush
)+2);
1170 ds
->pending_buf
= (uchf
*) overlay
;
1172 if (ds
->window
== Z_NULL
|| ds
->prev
== Z_NULL
|| ds
->head
== Z_NULL
||
1173 ds
->pending_buf
== Z_NULL
) {
1177 /* ??? following zmemcpy doesn't work for 16-bit MSDOS */
1178 zmemcpy(ds
->window
, ss
->window
, ds
->w_size
* 2 * sizeof(Byte
));
1179 zmemcpy(ds
->prev
, ss
->prev
, ds
->w_size
* sizeof(Pos
));
1180 zmemcpy(ds
->head
, ss
->head
, ds
->hash_size
* sizeof(Pos
));
1181 zmemcpy(ds
->pending_buf
, ss
->pending_buf
, (uInt
)ds
->pending_buf_size
);
1183 ds
->pending_out
= ds
->pending_buf
+ (ss
->pending_out
- ss
->pending_buf
);
1184 ds
->d_buf
= overlay
+ ds
->lit_bufsize
/sizeof(ush
);
1185 ds
->l_buf
= ds
->pending_buf
+ (1+sizeof(ush
))*ds
->lit_bufsize
;
1187 ds
->l_desc
.dyn_tree
= ds
->dyn_ltree
;
1188 ds
->d_desc
.dyn_tree
= ds
->dyn_dtree
;
1189 ds
->bl_desc
.dyn_tree
= ds
->bl_tree
;
1194 /* ===========================================================================
1195 * Return the number of bytes of output which are immediately available
1196 * for output from the decompressor.
1198 int deflateOutputPending (strm
)
1201 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
) return 0;
1203 return ((deflate_state
*)(strm
->state
))->pending
;
1206 /* ===========================================================================
1207 * Read a new buffer from the current input stream, update the adler32
1208 * and total number of bytes read. All deflate() input goes through
1209 * this function so some applications may wish to modify it to avoid
1210 * allocating a large strm->next_in buffer and copying from it.
1211 * (See also flush_pending()).
1213 local
int read_buf(strm
, buf
, size
)
1218 unsigned len
= strm
->avail_in
;
1220 if (len
> size
) len
= size
;
1221 if (len
== 0) return 0;
1223 strm
->avail_in
-= len
;
1225 if (!((deflate_state
*)(strm
->state
))->noheader
) {
1226 strm
->adler
= adler32(strm
->adler
, strm
->next_in
, len
);
1228 zmemcpy(buf
, strm
->next_in
, len
);
1229 strm
->next_in
+= len
;
1230 strm
->total_in
+= len
;
1235 /* ===========================================================================
1236 * Initialize the "longest match" routines for a new zlib stream
1238 local
void lm_init (s
)
1241 s
->window_size
= (ulg
)2L*s
->w_size
;
1245 /* Set the default configuration parameters:
1247 s
->max_lazy_match
= configuration_table
[s
->level
].max_lazy
;
1248 s
->good_match
= configuration_table
[s
->level
].good_length
;
1249 s
->nice_match
= configuration_table
[s
->level
].nice_length
;
1250 s
->max_chain_length
= configuration_table
[s
->level
].max_chain
;
1253 s
->block_start
= 0L;
1255 s
->match_length
= s
->prev_length
= MIN_MATCH
-1;
1256 s
->match_available
= 0;
1259 match_init(); /* initialize the asm code */
1263 /* ===========================================================================
1264 * Set match_start to the longest match starting at the given string and
1265 * return its length. Matches shorter or equal to prev_length are discarded,
1266 * in which case the result is equal to prev_length and match_start is
1268 * IN assertions: cur_match is the head of the hash chain for the current
1269 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1270 * OUT assertion: the match length is not greater than s->lookahead.
1273 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1274 * match.S. The code will be functionally equivalent.
1276 local uInt
longest_match(s
, cur_match
)
1278 IPos cur_match
; /* current match */
1280 unsigned chain_length
= s
->max_chain_length
;/* max hash chain length */
1281 register Bytef
*scan
= s
->window
+ s
->strstart
; /* current string */
1282 register Bytef
*match
; /* matched string */
1283 register int len
; /* length of current match */
1284 int best_len
= s
->prev_length
; /* best match length so far */
1285 int nice_match
= s
->nice_match
; /* stop if match long enough */
1286 IPos limit
= s
->strstart
> (IPos
)MAX_DIST(s
) ?
1287 s
->strstart
- (IPos
)MAX_DIST(s
) : NIL
;
1288 /* Stop when cur_match becomes <= limit. To simplify the code,
1289 * we prevent matches with the string of window index 0.
1291 Posf
*prev
= s
->prev
;
1292 uInt wmask
= s
->w_mask
;
1295 /* Compare two bytes at a time. Note: this is not always beneficial.
1296 * Try with and without -DUNALIGNED_OK to check.
1298 register Bytef
*strend
= s
->window
+ s
->strstart
+ MAX_MATCH
- 1;
1299 register ush scan_start
= *(ushf
*)scan
;
1300 register ush scan_end
= *(ushf
*)(scan
+best_len
-1);
1302 register Bytef
*strend
= s
->window
+ s
->strstart
+ MAX_MATCH
;
1303 register Byte scan_end1
= scan
[best_len
-1];
1304 register Byte scan_end
= scan
[best_len
];
1307 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1308 * It is easy to get rid of this optimization if necessary.
1310 Assert(s
->hash_bits
>= 8 && MAX_MATCH
== 258, "Code too clever");
1312 /* Do not waste too much time if we already have a good match: */
1313 if (s
->prev_length
>= s
->good_match
) {
1316 /* Do not look for matches beyond the end of the input. This is necessary
1317 * to make deflate deterministic.
1319 if ((uInt
)nice_match
> s
->lookahead
) nice_match
= s
->lookahead
;
1321 Assert((ulg
)s
->strstart
<= s
->window_size
-MIN_LOOKAHEAD
, "need lookahead");
1324 Assert(cur_match
< s
->strstart
, "no future");
1325 match
= s
->window
+ cur_match
;
1327 /* Skip to next match if the match length cannot increase
1328 * or if the match length is less than 2:
1330 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1331 /* This code assumes sizeof(unsigned short) == 2. Do not use
1332 * UNALIGNED_OK if your compiler uses a different size.
1334 if (*(ushf
*)(match
+best_len
-1) != scan_end
||
1335 *(ushf
*)match
!= scan_start
) continue;
1337 /* It is not necessary to compare scan[2] and match[2] since they are
1338 * always equal when the other bytes match, given that the hash keys
1339 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1340 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1341 * lookahead only every 4th comparison; the 128th check will be made
1342 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1343 * necessary to put more guard bytes at the end of the window, or
1344 * to check more often for insufficient lookahead.
1346 Assert(scan
[2] == match
[2], "scan[2]?");
1349 } while (*(ushf
*)(scan
+=2) == *(ushf
*)(match
+=2) &&
1350 *(ushf
*)(scan
+=2) == *(ushf
*)(match
+=2) &&
1351 *(ushf
*)(scan
+=2) == *(ushf
*)(match
+=2) &&
1352 *(ushf
*)(scan
+=2) == *(ushf
*)(match
+=2) &&
1354 /* The funny "do {}" generates better code on most compilers */
1356 /* Here, scan <= window+strstart+257 */
1357 Assert(scan
<= s
->window
+(unsigned)(s
->window_size
-1), "wild scan");
1358 if (*scan
== *match
) scan
++;
1360 len
= (MAX_MATCH
- 1) - (int)(strend
-scan
);
1361 scan
= strend
- (MAX_MATCH
-1);
1363 #else /* UNALIGNED_OK */
1365 if (match
[best_len
] != scan_end
||
1366 match
[best_len
-1] != scan_end1
||
1368 *++match
!= scan
[1]) continue;
1370 /* The check at best_len-1 can be removed because it will be made
1371 * again later. (This heuristic is not always a win.)
1372 * It is not necessary to compare scan[2] and match[2] since they
1373 * are always equal when the other bytes match, given that
1374 * the hash keys are equal and that HASH_BITS >= 8.
1377 Assert(*scan
== *match
, "match[2]?");
1379 /* We check for insufficient lookahead only every 8th comparison;
1380 * the 256th check will be made at strstart+258.
1383 } while (*++scan
== *++match
&& *++scan
== *++match
&&
1384 *++scan
== *++match
&& *++scan
== *++match
&&
1385 *++scan
== *++match
&& *++scan
== *++match
&&
1386 *++scan
== *++match
&& *++scan
== *++match
&&
1389 Assert(scan
<= s
->window
+(unsigned)(s
->window_size
-1), "wild scan");
1391 len
= MAX_MATCH
- (int)(strend
- scan
);
1392 scan
= strend
- MAX_MATCH
;
1394 #endif /* UNALIGNED_OK */
1396 if (len
> best_len
) {
1397 s
->match_start
= cur_match
;
1399 if (len
>= nice_match
) break;
1401 scan_end
= *(ushf
*)(scan
+best_len
-1);
1403 scan_end1
= scan
[best_len
-1];
1404 scan_end
= scan
[best_len
];
1407 } while ((cur_match
= prev
[cur_match
& wmask
]) > limit
1408 && --chain_length
!= 0);
1410 if ((uInt
)best_len
<= s
->lookahead
) return best_len
;
1411 return s
->lookahead
;
1416 /* ===========================================================================
1417 * Check that the match at match_start is indeed a match.
1419 local
void check_match(s
, start
, match
, length
)
1424 /* check that the match is indeed a match */
1425 if (zmemcmp((charf
*)s
->window
+ match
,
1426 (charf
*)s
->window
+ start
, length
) != EQUAL
) {
1427 fprintf(stderr
, " start %u, match %u, length %d\n",
1428 start
, match
, length
);
1430 fprintf(stderr
, "%c%c", s
->window
[match
++], s
->window
[start
++]);
1431 } while (--length
!= 0);
1432 z_error("invalid match");
1434 if (z_verbose
> 1) {
1435 fprintf(stderr
,"\\[%d,%d]", start
-match
, length
);
1436 do { putc(s
->window
[start
++], stderr
); } while (--length
!= 0);
1440 # define check_match(s, start, match, length)
1443 /* ===========================================================================
1444 * Fill the window when the lookahead becomes insufficient.
1445 * Updates strstart and lookahead.
1447 * IN assertion: lookahead < MIN_LOOKAHEAD
1448 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1449 * At least one byte has been read, or avail_in == 0; reads are
1450 * performed for at least two bytes (required for the zip translate_eol
1451 * option -- not supported here).
1453 local
void fill_window(s
)
1456 register unsigned n
, m
;
1458 unsigned more
; /* Amount of free space at the end of the window. */
1459 uInt wsize
= s
->w_size
;
1462 more
= (unsigned)(s
->window_size
-(ulg
)s
->lookahead
-(ulg
)s
->strstart
);
1464 /* Deal with !@#$% 64K limit: */
1465 if (more
== 0 && s
->strstart
== 0 && s
->lookahead
== 0) {
1468 } else if (more
== (unsigned)(-1)) {
1469 /* Very unlikely, but possible on 16 bit machine if strstart == 0
1470 * and lookahead == 1 (input done one byte at time)
1474 /* If the window is almost full and there is insufficient lookahead,
1475 * move the upper half to the lower one to make room in the upper half.
1477 } else if (s
->strstart
>= wsize
+MAX_DIST(s
)) {
1479 zmemcpy((charf
*)s
->window
, (charf
*)s
->window
+wsize
,
1481 s
->match_start
-= wsize
;
1482 s
->strstart
-= wsize
; /* we now have strstart >= MAX_DIST */
1483 s
->block_start
-= (long) wsize
;
1485 /* Slide the hash table (could be avoided with 32 bit values
1486 at the expense of memory usage). We slide even when level == 0
1487 to keep the hash table consistent if we switch back to level > 0
1488 later. (Using level 0 permanently is not an optimal usage of
1489 zlib, so we don't care about this pathological case.)
1495 *p
= (Pos
)(m
>= wsize
? m
-wsize
: NIL
);
1502 *p
= (Pos
)(m
>= wsize
? m
-wsize
: NIL
);
1503 /* If n is not on any hash chain, prev[n] is garbage but
1504 * its value will never be used.
1509 if (s
->strm
->avail_in
== 0) return;
1511 /* If there was no sliding:
1512 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1513 * more == window_size - lookahead - strstart
1514 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1515 * => more >= window_size - 2*WSIZE + 2
1516 * In the BIG_MEM or MMAP case (not yet supported),
1517 * window_size == input_size + MIN_LOOKAHEAD &&
1518 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1519 * Otherwise, window_size == 2*WSIZE so more >= 2.
1520 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1522 Assert(more
>= 2, "more < 2");
1524 n
= read_buf(s
->strm
, (charf
*)s
->window
+ s
->strstart
+ s
->lookahead
,
1528 /* Initialize the hash value now that we have some input: */
1529 if (s
->lookahead
>= MIN_MATCH
) {
1530 s
->ins_h
= s
->window
[s
->strstart
];
1531 UPDATE_HASH(s
, s
->ins_h
, s
->window
[s
->strstart
+1]);
1533 Call
UPDATE_HASH() MIN_MATCH
-3 more times
1536 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1537 * but this is not important since only literal bytes will be emitted.
1540 } while (s
->lookahead
< MIN_LOOKAHEAD
&& s
->strm
->avail_in
!= 0);
1543 /* ===========================================================================
1544 * Flush the current block, with given end-of-file flag.
1545 * IN assertion: strstart is set to the end of the current match.
1547 #define FLUSH_BLOCK_ONLY(s, eof) { \
1548 _tr_flush_block(s, (s->block_start >= 0L ? \
1549 (charf *)&s->window[(unsigned)s->block_start] : \
1551 (ulg)((long)s->strstart - s->block_start), \
1553 s->block_start = s->strstart; \
1554 flush_pending(s->strm); \
1555 Tracev((stderr,"[FLUSH]")); \
1558 /* Same but force premature exit if necessary. */
1559 #define FLUSH_BLOCK(s, eof) { \
1560 FLUSH_BLOCK_ONLY(s, eof); \
1561 if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1564 /* ===========================================================================
1565 * Copy without compression as much as possible from the input stream, return
1566 * the current block state.
1567 * This function does not insert new strings in the dictionary since
1568 * uncompressible data is probably not useful. This function is used
1569 * only for the level=0 compression option.
1570 * NOTE: this function should be optimized to avoid extra copying from
1571 * window to pending_buf.
1573 local block_state
deflate_stored(s
, flush
)
1577 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1578 * to pending_buf_size, and each stored block has a 5 byte header:
1580 ulg max_block_size
= 0xffff;
1583 if (max_block_size
> s
->pending_buf_size
- 5) {
1584 max_block_size
= s
->pending_buf_size
- 5;
1587 /* Copy as much as possible from input to output: */
1589 /* Fill the window as much as possible: */
1590 if (s
->lookahead
<= 1) {
1592 Assert(s
->strstart
< s
->w_size
+MAX_DIST(s
) ||
1593 s
->block_start
>= (long)s
->w_size
, "slide too late");
1596 if (s
->lookahead
== 0 && flush
== Z_NO_FLUSH
) return need_more
;
1598 if (s
->lookahead
== 0) break; /* flush the current block */
1600 Assert(s
->block_start
>= 0L, "block gone");
1602 s
->strstart
+= s
->lookahead
;
1605 /* Emit a stored block if pending_buf will be full: */
1606 max_start
= s
->block_start
+ max_block_size
;
1607 if (s
->strstart
== 0 || (ulg
)s
->strstart
>= max_start
) {
1608 /* strstart == 0 is possible when wraparound on 16-bit machine */
1609 s
->lookahead
= (uInt
)(s
->strstart
- max_start
);
1610 s
->strstart
= (uInt
)max_start
;
1613 /* Flush if we may have to slide, otherwise block_start may become
1614 * negative and the data will be gone:
1616 if (s
->strstart
- (uInt
)s
->block_start
>= MAX_DIST(s
)) {
1620 FLUSH_BLOCK(s
, flush
== Z_FINISH
);
1621 return flush
== Z_FINISH
? finish_done
: block_done
;
1624 /* ===========================================================================
1625 * Compress as much as possible from the input stream, return the current
1627 * This function does not perform lazy evaluation of matches and inserts
1628 * new strings in the dictionary only for unmatched strings or for short
1629 * matches. It is used only for the fast compression options.
1631 local block_state
deflate_fast(s
, flush
)
1635 IPos hash_head
= NIL
; /* head of the hash chain */
1636 int bflush
; /* set if current block must be flushed */
1639 /* Make sure that we always have enough lookahead, except
1640 * at the end of the input file. We need MAX_MATCH bytes
1641 * for the next match, plus MIN_MATCH bytes to insert the
1642 * string following the next match.
1644 if (s
->lookahead
< MIN_LOOKAHEAD
) {
1646 if (s
->lookahead
< MIN_LOOKAHEAD
&& flush
== Z_NO_FLUSH
) {
1649 if (s
->lookahead
== 0) break; /* flush the current block */
1652 /* Insert the string window[strstart .. strstart+2] in the
1653 * dictionary, and set hash_head to the head of the hash chain:
1655 if (s
->lookahead
>= MIN_MATCH
) {
1656 INSERT_STRING(s
, s
->strstart
, hash_head
);
1659 /* Find the longest match, discarding those <= prev_length.
1660 * At this point we have always match_length < MIN_MATCH
1662 if (hash_head
!= NIL
&& s
->strstart
- hash_head
<= MAX_DIST(s
)) {
1663 /* To simplify the code, we prevent matches with the string
1664 * of window index 0 (in particular we have to avoid a match
1665 * of the string with itself at the start of the input file).
1667 if (s
->strategy
!= Z_HUFFMAN_ONLY
) {
1668 s
->match_length
= longest_match (s
, hash_head
);
1670 /* longest_match() sets match_start */
1672 if (s
->match_length
>= MIN_MATCH
) {
1673 check_match(s
, s
->strstart
, s
->match_start
, s
->match_length
);
1675 bflush
= _tr_tally(s
, s
->strstart
- s
->match_start
,
1676 s
->match_length
- MIN_MATCH
);
1678 s
->lookahead
-= s
->match_length
;
1680 /* Insert new strings in the hash table only if the match length
1681 * is not too large. This saves time but degrades compression.
1683 if (s
->match_length
<= s
->max_insert_length
&&
1684 s
->lookahead
>= MIN_MATCH
) {
1685 s
->match_length
--; /* string at strstart already in hash table */
1688 INSERT_STRING(s
, s
->strstart
, hash_head
);
1689 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1690 * always MIN_MATCH bytes ahead.
1692 } while (--s
->match_length
!= 0);
1695 s
->strstart
+= s
->match_length
;
1696 s
->match_length
= 0;
1697 s
->ins_h
= s
->window
[s
->strstart
];
1698 UPDATE_HASH(s
, s
->ins_h
, s
->window
[s
->strstart
+1]);
1700 Call
UPDATE_HASH() MIN_MATCH
-3 more times
1702 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1703 * matter since it will be recomputed at next deflate call.
1707 /* No match, output a literal byte */
1708 Tracevv((stderr
,"%c", s
->window
[s
->strstart
]));
1709 bflush
= _tr_tally (s
, 0, s
->window
[s
->strstart
]);
1713 if (bflush
) FLUSH_BLOCK(s
, 0);
1715 FLUSH_BLOCK(s
, flush
== Z_FINISH
);
1716 return flush
== Z_FINISH
? finish_done
: block_done
;
1719 /* ===========================================================================
1720 * Same as above, but achieves better compression. We use a lazy
1721 * evaluation for matches: a match is finally adopted only if there is
1722 * no better match at the next window position.
1724 local block_state
deflate_slow(s
, flush
)
1728 IPos hash_head
= NIL
; /* head of hash chain */
1729 int bflush
; /* set if current block must be flushed */
1731 /* Process the input block. */
1733 /* Make sure that we always have enough lookahead, except
1734 * at the end of the input file. We need MAX_MATCH bytes
1735 * for the next match, plus MIN_MATCH bytes to insert the
1736 * string following the next match.
1738 if (s
->lookahead
< MIN_LOOKAHEAD
) {
1740 if (s
->lookahead
< MIN_LOOKAHEAD
&& flush
== Z_NO_FLUSH
) {
1743 if (s
->lookahead
== 0) break; /* flush the current block */
1746 /* Insert the string window[strstart .. strstart+2] in the
1747 * dictionary, and set hash_head to the head of the hash chain:
1749 if (s
->lookahead
>= MIN_MATCH
) {
1750 INSERT_STRING(s
, s
->strstart
, hash_head
);
1753 /* Find the longest match, discarding those <= prev_length.
1755 s
->prev_length
= s
->match_length
, s
->prev_match
= s
->match_start
;
1756 s
->match_length
= MIN_MATCH
-1;
1758 if (hash_head
!= NIL
&& s
->prev_length
< s
->max_lazy_match
&&
1759 s
->strstart
- hash_head
<= MAX_DIST(s
)) {
1760 /* To simplify the code, we prevent matches with the string
1761 * of window index 0 (in particular we have to avoid a match
1762 * of the string with itself at the start of the input file).
1764 if (s
->strategy
!= Z_HUFFMAN_ONLY
) {
1765 s
->match_length
= longest_match (s
, hash_head
);
1767 /* longest_match() sets match_start */
1769 if (s
->match_length
<= 5 && (s
->strategy
== Z_FILTERED
||
1770 (s
->match_length
== MIN_MATCH
&&
1771 s
->strstart
- s
->match_start
> TOO_FAR
))) {
1773 /* If prev_match is also MIN_MATCH, match_start is garbage
1774 * but we will ignore the current match anyway.
1776 s
->match_length
= MIN_MATCH
-1;
1779 /* If there was a match at the previous step and the current
1780 * match is not better, output the previous match:
1782 if (s
->prev_length
>= MIN_MATCH
&& s
->match_length
<= s
->prev_length
) {
1783 uInt max_insert
= s
->strstart
+ s
->lookahead
- MIN_MATCH
;
1784 /* Do not insert strings in hash table beyond this. */
1786 check_match(s
, s
->strstart
-1, s
->prev_match
, s
->prev_length
);
1788 bflush
= _tr_tally(s
, s
->strstart
-1 - s
->prev_match
,
1789 s
->prev_length
- MIN_MATCH
);
1791 /* Insert in hash table all strings up to the end of the match.
1792 * strstart-1 and strstart are already inserted. If there is not
1793 * enough lookahead, the last two strings are not inserted in
1796 s
->lookahead
-= s
->prev_length
-1;
1797 s
->prev_length
-= 2;
1799 if (++s
->strstart
<= max_insert
) {
1800 INSERT_STRING(s
, s
->strstart
, hash_head
);
1802 } while (--s
->prev_length
!= 0);
1803 s
->match_available
= 0;
1804 s
->match_length
= MIN_MATCH
-1;
1807 if (bflush
) FLUSH_BLOCK(s
, 0);
1809 } else if (s
->match_available
) {
1810 /* If there was no match at the previous position, output a
1811 * single literal. If there was a match but the current match
1812 * is longer, truncate the previous match to a single literal.
1814 Tracevv((stderr
,"%c", s
->window
[s
->strstart
-1]));
1815 if (_tr_tally (s
, 0, s
->window
[s
->strstart
-1])) {
1816 FLUSH_BLOCK_ONLY(s
, 0);
1820 if (s
->strm
->avail_out
== 0) return need_more
;
1822 /* There is no previous match to compare with, wait for
1823 * the next step to decide.
1825 s
->match_available
= 1;
1830 Assert (flush
!= Z_NO_FLUSH
, "no flush?");
1831 if (s
->match_available
) {
1832 Tracevv((stderr
,"%c", s
->window
[s
->strstart
-1]));
1833 _tr_tally (s
, 0, s
->window
[s
->strstart
-1]);
1834 s
->match_available
= 0;
1836 FLUSH_BLOCK(s
, flush
== Z_FINISH
);
1837 return flush
== Z_FINISH
? finish_done
: block_done
;
1842 /* trees.c -- output deflated data using Huffman coding
1843 * Copyright (C) 1995-1996 Jean-loup Gailly
1844 * For conditions of distribution and use, see copyright notice in zlib.h
1850 * The "deflation" process uses several Huffman trees. The more
1851 * common source values are represented by shorter bit sequences.
1853 * Each code tree is stored in a compressed form which is itself
1854 * a Huffman encoding of the lengths of all the code strings (in
1855 * ascending order by source values). The actual code strings are
1856 * reconstructed from the lengths in the inflate process, as described
1857 * in the deflate specification.
1861 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1862 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1865 * Data Compression: Methods and Theory, pp. 49-50.
1866 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
1870 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
1873 /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
1875 /* #include "deflate.h" */
1881 /* ===========================================================================
1885 #define MAX_BL_BITS 7
1886 /* Bit length codes must not exceed MAX_BL_BITS bits */
1888 #define END_BLOCK 256
1889 /* end of block literal code */
1892 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
1894 #define REPZ_3_10 17
1895 /* repeat a zero length 3-10 times (3 bits of repeat count) */
1897 #define REPZ_11_138 18
1898 /* repeat a zero length 11-138 times (7 bits of repeat count) */
1900 local
int extra_lbits
[LENGTH_CODES
] /* extra bits for each length code */
1901 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1903 local
int extra_dbits
[D_CODES
] /* extra bits for each distance code */
1904 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1906 local
int extra_blbits
[BL_CODES
]/* extra bits for each bit length code */
1907 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1909 local uch bl_order
[BL_CODES
]
1910 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1911 /* The lengths of the bit length codes are sent in order of decreasing
1912 * probability, to avoid transmitting the lengths for unused bit length codes.
1915 #define Buf_size (8 * 2*sizeof(char))
1916 /* Number of bits used within bi_buf. (bi_buf might be implemented on
1917 * more than 16 bits on some systems.)
1920 /* ===========================================================================
1921 * Local data. These are initialized only once.
1924 local ct_data static_ltree
[L_CODES
+2];
1925 /* The static literal tree. Since the bit lengths are imposed, there is no
1926 * need for the L_CODES extra codes used during heap construction. However
1927 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
1931 local ct_data static_dtree
[D_CODES
];
1932 /* The static distance tree. (Actually a trivial tree since all codes use
1936 local uch dist_code
[512];
1937 /* distance codes. The first 256 values correspond to the distances
1938 * 3 .. 258, the last 256 values correspond to the top 8 bits of
1939 * the 15 bit distances.
1942 local uch length_code
[MAX_MATCH
-MIN_MATCH
+1];
1943 /* length code for each normalized match length (0 == MIN_MATCH) */
1945 local
int base_length
[LENGTH_CODES
];
1946 /* First normalized length for each code (0 = MIN_MATCH) */
1948 local
int base_dist
[D_CODES
];
1949 /* First normalized distance for each code (0 = distance of 1) */
1951 struct static_tree_desc_s
{
1952 ct_data
*static_tree
; /* static tree or NULL */
1953 intf
*extra_bits
; /* extra bits for each code or NULL */
1954 int extra_base
; /* base index for extra_bits */
1955 int elems
; /* max number of elements in the tree */
1956 int max_length
; /* max bit length for the codes */
1959 local static_tree_desc static_l_desc
=
1960 {static_ltree
, extra_lbits
, LITERALS
+1, L_CODES
, MAX_BITS
};
1962 local static_tree_desc static_d_desc
=
1963 {static_dtree
, extra_dbits
, 0, D_CODES
, MAX_BITS
};
1965 local static_tree_desc static_bl_desc
=
1966 {(ct_data
*)0, extra_blbits
, 0, BL_CODES
, MAX_BL_BITS
};
1968 /* ===========================================================================
1969 * Local (static) routines in this file.
1972 local
void tr_static_init
OF((void));
1973 local
void init_block
OF((deflate_state
*s
));
1974 local
void pqdownheap
OF((deflate_state
*s
, ct_data
*tree
, int k
));
1975 local
void gen_bitlen
OF((deflate_state
*s
, tree_desc
*desc
));
1976 local
void gen_codes
OF((ct_data
*tree
, int max_code
, ushf
*bl_count
));
1977 local
void build_tree
OF((deflate_state
*s
, tree_desc
*desc
));
1978 local
void scan_tree
OF((deflate_state
*s
, ct_data
*tree
, int max_code
));
1979 local
void send_tree
OF((deflate_state
*s
, ct_data
*tree
, int max_code
));
1980 local
int build_bl_tree
OF((deflate_state
*s
));
1981 local
void send_all_trees
OF((deflate_state
*s
, int lcodes
, int dcodes
,
1983 local
void compress_block
OF((deflate_state
*s
, ct_data
*ltree
,
1985 local
void set_data_type
OF((deflate_state
*s
));
1986 local
unsigned bi_reverse
OF((unsigned value
, int length
));
1987 local
void bi_windup
OF((deflate_state
*s
));
1988 local
void bi_flush
OF((deflate_state
*s
));
1989 local
void copy_block
OF((deflate_state
*s
, charf
*buf
, unsigned len
,
1993 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1994 /* Send a code of the given tree. c and tree must not have side effects */
1996 #else /* DEBUG_ZLIB */
1997 # define send_code(s, c, tree) \
1998 { if (verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
1999 send_bits(s, tree[c].Code, tree[c].Len); }
2002 #define d_code(dist) \
2003 ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
2004 /* Mapping from a distance to a distance code. dist is the distance - 1 and
2005 * must not have side effects. dist_code[256] and dist_code[257] are never
2009 /* ===========================================================================
2010 * Output a short LSB first on the stream.
2011 * IN assertion: there is enough room in pendingBuf.
2013 #define put_short(s, w) { \
2014 put_byte(s, (uch)((w) & 0xff)); \
2015 put_byte(s, (uch)((ush)(w) >> 8)); \
2018 /* ===========================================================================
2019 * Send a value on a given number of bits.
2020 * IN assertion: length <= 16 and value fits in length bits.
2023 local
void send_bits
OF((deflate_state
*s
, int value
, int length
));
2025 local
void send_bits(s
, value
, length
)
2027 int value
; /* value to send */
2028 int length
; /* number of bits */
2030 Tracevv((stderr
," l %2d v %4x ", length
, value
));
2031 Assert(length
> 0 && length
<= 15, "invalid length");
2032 s
->bits_sent
+= (ulg
)length
;
2034 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
2035 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
2036 * unused bits in value.
2038 if (s
->bi_valid
> (int)Buf_size
- length
) {
2039 s
->bi_buf
|= (value
<< s
->bi_valid
);
2040 put_short(s
, s
->bi_buf
);
2041 s
->bi_buf
= (ush
)value
>> (Buf_size
- s
->bi_valid
);
2042 s
->bi_valid
+= length
- Buf_size
;
2044 s
->bi_buf
|= value
<< s
->bi_valid
;
2045 s
->bi_valid
+= length
;
2048 #else /* !DEBUG_ZLIB */
2050 #define send_bits(s, value, length) \
2051 { int len = length;\
2052 if (s->bi_valid > (int)Buf_size - len) {\
2054 s->bi_buf |= (val << s->bi_valid);\
2055 put_short(s, s->bi_buf);\
2056 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
2057 s->bi_valid += len - Buf_size;\
2059 s->bi_buf |= (value) << s->bi_valid;\
2060 s->bi_valid += len;\
2063 #endif /* DEBUG_ZLIB */
2066 #define MAX(a,b) (a >= b ? a : b)
2067 /* the arguments must not have side effects */
2069 /* ===========================================================================
2070 * Initialize the various 'constant' tables. In a multi-threaded environment,
2071 * this function may be called by two threads concurrently, but this is
2072 * harmless since both invocations do exactly the same thing.
2074 local
void tr_static_init()
2076 static int static_init_done
= 0;
2077 int n
; /* iterates over tree elements */
2078 int bits
; /* bit counter */
2079 int length
; /* length value */
2080 int code
; /* code value */
2081 int dist
; /* distance index */
2082 ush bl_count
[MAX_BITS
+1];
2083 /* number of codes at each bit length for an optimal tree */
2085 if (static_init_done
) return;
2087 /* Initialize the mapping length (0..255) -> length code (0..28) */
2089 for (code
= 0; code
< LENGTH_CODES
-1; code
++) {
2090 base_length
[code
] = length
;
2091 for (n
= 0; n
< (1<<extra_lbits
[code
]); n
++) {
2092 length_code
[length
++] = (uch
)code
;
2095 Assert (length
== 256, "tr_static_init: length != 256");
2096 /* Note that the length 255 (match length 258) can be represented
2097 * in two different ways: code 284 + 5 bits or code 285, so we
2098 * overwrite length_code[255] to use the best encoding:
2100 length_code
[length
-1] = (uch
)code
;
2102 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2104 for (code
= 0 ; code
< 16; code
++) {
2105 base_dist
[code
] = dist
;
2106 for (n
= 0; n
< (1<<extra_dbits
[code
]); n
++) {
2107 dist_code
[dist
++] = (uch
)code
;
2110 Assert (dist
== 256, "tr_static_init: dist != 256");
2111 dist
>>= 7; /* from now on, all distances are divided by 128 */
2112 for ( ; code
< D_CODES
; code
++) {
2113 base_dist
[code
] = dist
<< 7;
2114 for (n
= 0; n
< (1<<(extra_dbits
[code
]-7)); n
++) {
2115 dist_code
[256 + dist
++] = (uch
)code
;
2118 Assert (dist
== 256, "tr_static_init: 256+dist != 512");
2120 /* Construct the codes of the static literal tree */
2121 for (bits
= 0; bits
<= MAX_BITS
; bits
++) bl_count
[bits
] = 0;
2123 while (n
<= 143) static_ltree
[n
++].Len
= 8, bl_count
[8]++;
2124 while (n
<= 255) static_ltree
[n
++].Len
= 9, bl_count
[9]++;
2125 while (n
<= 279) static_ltree
[n
++].Len
= 7, bl_count
[7]++;
2126 while (n
<= 287) static_ltree
[n
++].Len
= 8, bl_count
[8]++;
2127 /* Codes 286 and 287 do not exist, but we must include them in the
2128 * tree construction to get a canonical Huffman tree (longest code
2131 gen_codes((ct_data
*)static_ltree
, L_CODES
+1, bl_count
);
2133 /* The static distance tree is trivial: */
2134 for (n
= 0; n
< D_CODES
; n
++) {
2135 static_dtree
[n
].Len
= 5;
2136 static_dtree
[n
].Code
= bi_reverse((unsigned)n
, 5);
2138 static_init_done
= 1;
2141 /* ===========================================================================
2142 * Initialize the tree data structures for a new zlib stream.
2149 s
->compressed_len
= 0L;
2151 s
->l_desc
.dyn_tree
= s
->dyn_ltree
;
2152 s
->l_desc
.stat_desc
= &static_l_desc
;
2154 s
->d_desc
.dyn_tree
= s
->dyn_dtree
;
2155 s
->d_desc
.stat_desc
= &static_d_desc
;
2157 s
->bl_desc
.dyn_tree
= s
->bl_tree
;
2158 s
->bl_desc
.stat_desc
= &static_bl_desc
;
2162 s
->last_eob_len
= 8; /* enough lookahead for inflate */
2167 /* Initialize the first block of the first file: */
2171 /* ===========================================================================
2172 * Initialize a new block.
2174 local
void init_block(s
)
2177 int n
; /* iterates over tree elements */
2179 /* Initialize the trees. */
2180 for (n
= 0; n
< L_CODES
; n
++) s
->dyn_ltree
[n
].Freq
= 0;
2181 for (n
= 0; n
< D_CODES
; n
++) s
->dyn_dtree
[n
].Freq
= 0;
2182 for (n
= 0; n
< BL_CODES
; n
++) s
->bl_tree
[n
].Freq
= 0;
2184 s
->dyn_ltree
[END_BLOCK
].Freq
= 1;
2185 s
->opt_len
= s
->static_len
= 0L;
2186 s
->last_lit
= s
->matches
= 0;
2190 /* Index within the heap array of least frequent node in the Huffman tree */
2193 /* ===========================================================================
2194 * Remove the smallest element from the heap and recreate the heap with
2195 * one less element. Updates heap and heap_len.
2197 #define pqremove(s, tree, top) \
2199 top = s->heap[SMALLEST]; \
2200 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2201 pqdownheap(s, tree, SMALLEST); \
2204 /* ===========================================================================
2205 * Compares to subtrees, using the tree depth as tie breaker when
2206 * the subtrees have equal frequency. This minimizes the worst case length.
2208 #define smaller(tree, n, m, depth) \
2209 (tree[n].Freq < tree[m].Freq || \
2210 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2212 /* ===========================================================================
2213 * Restore the heap property by moving down the tree starting at node k,
2214 * exchanging a node with the smallest of its two sons if necessary, stopping
2215 * when the heap property is re-established (each father smaller than its
2218 local
void pqdownheap(s
, tree
, k
)
2220 ct_data
*tree
; /* the tree to restore */
2221 int k
; /* node to move down */
2224 int j
= k
<< 1; /* left son of k */
2225 while (j
<= s
->heap_len
) {
2226 /* Set j to the smallest of the two sons: */
2227 if (j
< s
->heap_len
&&
2228 smaller(tree
, s
->heap
[j
+1], s
->heap
[j
], s
->depth
)) {
2231 /* Exit if v is smaller than both sons */
2232 if (smaller(tree
, v
, s
->heap
[j
], s
->depth
)) break;
2234 /* Exchange v with the smallest son */
2235 s
->heap
[k
] = s
->heap
[j
]; k
= j
;
2237 /* And continue down the tree, setting j to the left son of k */
2243 /* ===========================================================================
2244 * Compute the optimal bit lengths for a tree and update the total bit length
2245 * for the current block.
2246 * IN assertion: the fields freq and dad are set, heap[heap_max] and
2247 * above are the tree nodes sorted by increasing frequency.
2248 * OUT assertions: the field len is set to the optimal bit length, the
2249 * array bl_count contains the frequencies for each bit length.
2250 * The length opt_len is updated; static_len is also updated if stree is
2253 local
void gen_bitlen(s
, desc
)
2255 tree_desc
*desc
; /* the tree descriptor */
2257 ct_data
*tree
= desc
->dyn_tree
;
2258 int max_code
= desc
->max_code
;
2259 ct_data
*stree
= desc
->stat_desc
->static_tree
;
2260 intf
*extra
= desc
->stat_desc
->extra_bits
;
2261 int base
= desc
->stat_desc
->extra_base
;
2262 int max_length
= desc
->stat_desc
->max_length
;
2263 int h
; /* heap index */
2264 int n
, m
; /* iterate over the tree elements */
2265 int bits
; /* bit length */
2266 int xbits
; /* extra bits */
2267 ush f
; /* frequency */
2268 int overflow
= 0; /* number of elements with bit length too large */
2270 for (bits
= 0; bits
<= MAX_BITS
; bits
++) s
->bl_count
[bits
] = 0;
2272 /* In a first pass, compute the optimal bit lengths (which may
2273 * overflow in the case of the bit length tree).
2275 tree
[s
->heap
[s
->heap_max
]].Len
= 0; /* root of the heap */
2277 for (h
= s
->heap_max
+1; h
< HEAP_SIZE
; h
++) {
2279 bits
= tree
[tree
[n
].Dad
].Len
+ 1;
2280 if (bits
> max_length
) bits
= max_length
, overflow
++;
2281 tree
[n
].Len
= (ush
)bits
;
2282 /* We overwrite tree[n].Dad which is no longer needed */
2284 if (n
> max_code
) continue; /* not a leaf node */
2286 s
->bl_count
[bits
]++;
2288 if (n
>= base
) xbits
= extra
[n
-base
];
2290 s
->opt_len
+= (ulg
)f
* (bits
+ xbits
);
2291 if (stree
) s
->static_len
+= (ulg
)f
* (stree
[n
].Len
+ xbits
);
2293 if (overflow
== 0) return;
2295 Trace((stderr
,"\nbit length overflow\n"));
2296 /* This happens for example on obj2 and pic of the Calgary corpus */
2298 /* Find the first bit length which could increase: */
2300 bits
= max_length
-1;
2301 while (s
->bl_count
[bits
] == 0) bits
--;
2302 s
->bl_count
[bits
]--; /* move one leaf down the tree */
2303 s
->bl_count
[bits
+1] += 2; /* move one overflow item as its brother */
2304 s
->bl_count
[max_length
]--;
2305 /* The brother of the overflow item also moves one step up,
2306 * but this does not affect bl_count[max_length]
2309 } while (overflow
> 0);
2311 /* Now recompute all bit lengths, scanning in increasing frequency.
2312 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
2313 * lengths instead of fixing only the wrong ones. This idea is taken
2314 * from 'ar' written by Haruhiko Okumura.)
2316 for (bits
= max_length
; bits
!= 0; bits
--) {
2317 n
= s
->bl_count
[bits
];
2320 if (m
> max_code
) continue;
2321 if (tree
[m
].Len
!= (unsigned) bits
) {
2322 Trace((stderr
,"code %d bits %d->%d\n", m
, tree
[m
].Len
, bits
));
2323 s
->opt_len
+= ((long)bits
- (long)tree
[m
].Len
)
2324 *(long)tree
[m
].Freq
;
2325 tree
[m
].Len
= (ush
)bits
;
2332 /* ===========================================================================
2333 * Generate the codes for a given tree and bit counts (which need not be
2335 * IN assertion: the array bl_count contains the bit length statistics for
2336 * the given tree and the field len is set for all tree elements.
2337 * OUT assertion: the field code is set for all tree elements of non
2340 local
void gen_codes (tree
, max_code
, bl_count
)
2341 ct_data
*tree
; /* the tree to decorate */
2342 int max_code
; /* largest code with non zero frequency */
2343 ushf
*bl_count
; /* number of codes at each bit length */
2345 ush next_code
[MAX_BITS
+1]; /* next code value for each bit length */
2346 ush code
= 0; /* running code value */
2347 int bits
; /* bit index */
2348 int n
; /* code index */
2350 /* The distribution counts are first used to generate the code values
2351 * without bit reversal.
2353 for (bits
= 1; bits
<= MAX_BITS
; bits
++) {
2354 next_code
[bits
] = code
= (code
+ bl_count
[bits
-1]) << 1;
2356 /* Check that the bit counts in bl_count are consistent. The last code
2359 Assert (code
+ bl_count
[MAX_BITS
]-1 == (1<<MAX_BITS
)-1,
2360 "inconsistent bit counts");
2361 Tracev((stderr
,"\ngen_codes: max_code %d ", max_code
));
2363 for (n
= 0; n
<= max_code
; n
++) {
2364 int len
= tree
[n
].Len
;
2365 if (len
== 0) continue;
2366 /* Now reverse the bits */
2367 tree
[n
].Code
= bi_reverse(next_code
[len
]++, len
);
2369 Tracecv(tree
!= static_ltree
, (stderr
,"\nn %3d %c l %2d c %4x (%x) ",
2370 n
, (isgraph(n
) ? n
: ' '), len
, tree
[n
].Code
, next_code
[len
]-1));
2374 /* ===========================================================================
2375 * Construct one Huffman tree and assigns the code bit strings and lengths.
2376 * Update the total bit length for the current block.
2377 * IN assertion: the field freq is set for all tree elements.
2378 * OUT assertions: the fields len and code are set to the optimal bit length
2379 * and corresponding code. The length opt_len is updated; static_len is
2380 * also updated if stree is not null. The field max_code is set.
2382 local
void build_tree(s
, desc
)
2384 tree_desc
*desc
; /* the tree descriptor */
2386 ct_data
*tree
= desc
->dyn_tree
;
2387 ct_data
*stree
= desc
->stat_desc
->static_tree
;
2388 int elems
= desc
->stat_desc
->elems
;
2389 int n
, m
; /* iterate over heap elements */
2390 int max_code
= -1; /* largest code with non zero frequency */
2391 int node
; /* new node being created */
2393 /* Construct the initial heap, with least frequent element in
2394 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2395 * heap[0] is not used.
2397 s
->heap_len
= 0, s
->heap_max
= HEAP_SIZE
;
2399 for (n
= 0; n
< elems
; n
++) {
2400 if (tree
[n
].Freq
!= 0) {
2401 s
->heap
[++(s
->heap_len
)] = max_code
= n
;
2408 /* The pkzip format requires that at least one distance code exists,
2409 * and that at least one bit should be sent even if there is only one
2410 * possible code. So to avoid special checks later on we force at least
2411 * two codes of non zero frequency.
2413 while (s
->heap_len
< 2) {
2414 node
= s
->heap
[++(s
->heap_len
)] = (max_code
< 2 ? ++max_code
: 0);
2415 tree
[node
].Freq
= 1;
2417 s
->opt_len
--; if (stree
) s
->static_len
-= stree
[node
].Len
;
2418 /* node is 0 or 1 so it does not have extra bits */
2420 desc
->max_code
= max_code
;
2422 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2423 * establish sub-heaps of increasing lengths:
2425 for (n
= s
->heap_len
/2; n
>= 1; n
--) pqdownheap(s
, tree
, n
);
2427 /* Construct the Huffman tree by repeatedly combining the least two
2430 node
= elems
; /* next internal node of the tree */
2432 pqremove(s
, tree
, n
); /* n = node of least frequency */
2433 m
= s
->heap
[SMALLEST
]; /* m = node of next least frequency */
2435 s
->heap
[--(s
->heap_max
)] = n
; /* keep the nodes sorted by frequency */
2436 s
->heap
[--(s
->heap_max
)] = m
;
2438 /* Create a new node father of n and m */
2439 tree
[node
].Freq
= tree
[n
].Freq
+ tree
[m
].Freq
;
2440 s
->depth
[node
] = (uch
) (MAX(s
->depth
[n
], s
->depth
[m
]) + 1);
2441 tree
[n
].Dad
= tree
[m
].Dad
= (ush
)node
;
2443 if (tree
== s
->bl_tree
) {
2444 fprintf(stderr
,"\nnode %d(%d), sons %d(%d) %d(%d)",
2445 node
, tree
[node
].Freq
, n
, tree
[n
].Freq
, m
, tree
[m
].Freq
);
2448 /* and insert the new node in the heap */
2449 s
->heap
[SMALLEST
] = node
++;
2450 pqdownheap(s
, tree
, SMALLEST
);
2452 } while (s
->heap_len
>= 2);
2454 s
->heap
[--(s
->heap_max
)] = s
->heap
[SMALLEST
];
2456 /* At this point, the fields freq and dad are set. We can now
2457 * generate the bit lengths.
2459 gen_bitlen(s
, (tree_desc
*)desc
);
2461 /* The field len is now set, we can generate the bit codes */
2462 gen_codes ((ct_data
*)tree
, max_code
, s
->bl_count
);
2465 /* ===========================================================================
2466 * Scan a literal or distance tree to determine the frequencies of the codes
2467 * in the bit length tree.
2469 local
void scan_tree (s
, tree
, max_code
)
2471 ct_data
*tree
; /* the tree to be scanned */
2472 int max_code
; /* and its largest code of non zero frequency */
2474 int n
; /* iterates over all tree elements */
2475 int prevlen
= -1; /* last emitted length */
2476 int curlen
; /* length of current code */
2477 int nextlen
= tree
[0].Len
; /* length of next code */
2478 int count
= 0; /* repeat count of the current code */
2479 int max_count
= 7; /* max repeat count */
2480 int min_count
= 4; /* min repeat count */
2482 if (nextlen
== 0) max_count
= 138, min_count
= 3;
2483 tree
[max_code
+1].Len
= (ush
)0xffff; /* guard */
2485 for (n
= 0; n
<= max_code
; n
++) {
2486 curlen
= nextlen
; nextlen
= tree
[n
+1].Len
;
2487 if (++count
< max_count
&& curlen
== nextlen
) {
2489 } else if (count
< min_count
) {
2490 s
->bl_tree
[curlen
].Freq
+= count
;
2491 } else if (curlen
!= 0) {
2492 if (curlen
!= prevlen
) s
->bl_tree
[curlen
].Freq
++;
2493 s
->bl_tree
[REP_3_6
].Freq
++;
2494 } else if (count
<= 10) {
2495 s
->bl_tree
[REPZ_3_10
].Freq
++;
2497 s
->bl_tree
[REPZ_11_138
].Freq
++;
2499 count
= 0; prevlen
= curlen
;
2501 max_count
= 138, min_count
= 3;
2502 } else if (curlen
== nextlen
) {
2503 max_count
= 6, min_count
= 3;
2505 max_count
= 7, min_count
= 4;
2510 /* ===========================================================================
2511 * Send a literal or distance tree in compressed form, using the codes in
2514 local
void send_tree (s
, tree
, max_code
)
2516 ct_data
*tree
; /* the tree to be scanned */
2517 int max_code
; /* and its largest code of non zero frequency */
2519 int n
; /* iterates over all tree elements */
2520 int prevlen
= -1; /* last emitted length */
2521 int curlen
; /* length of current code */
2522 int nextlen
= tree
[0].Len
; /* length of next code */
2523 int count
= 0; /* repeat count of the current code */
2524 int max_count
= 7; /* max repeat count */
2525 int min_count
= 4; /* min repeat count */
2527 /* tree[max_code+1].Len = -1; */ /* guard already set */
2528 if (nextlen
== 0) max_count
= 138, min_count
= 3;
2530 for (n
= 0; n
<= max_code
; n
++) {
2531 curlen
= nextlen
; nextlen
= tree
[n
+1].Len
;
2532 if (++count
< max_count
&& curlen
== nextlen
) {
2534 } else if (count
< min_count
) {
2535 do { send_code(s
, curlen
, s
->bl_tree
); } while (--count
!= 0);
2537 } else if (curlen
!= 0) {
2538 if (curlen
!= prevlen
) {
2539 send_code(s
, curlen
, s
->bl_tree
); count
--;
2541 Assert(count
>= 3 && count
<= 6, " 3_6?");
2542 send_code(s
, REP_3_6
, s
->bl_tree
); send_bits(s
, count
-3, 2);
2544 } else if (count
<= 10) {
2545 send_code(s
, REPZ_3_10
, s
->bl_tree
); send_bits(s
, count
-3, 3);
2548 send_code(s
, REPZ_11_138
, s
->bl_tree
); send_bits(s
, count
-11, 7);
2550 count
= 0; prevlen
= curlen
;
2552 max_count
= 138, min_count
= 3;
2553 } else if (curlen
== nextlen
) {
2554 max_count
= 6, min_count
= 3;
2556 max_count
= 7, min_count
= 4;
2561 /* ===========================================================================
2562 * Construct the Huffman tree for the bit lengths and return the index in
2563 * bl_order of the last bit length code to send.
2565 local
int build_bl_tree(s
)
2568 int max_blindex
; /* index of last bit length code of non zero freq */
2570 /* Determine the bit length frequencies for literal and distance trees */
2571 scan_tree(s
, (ct_data
*)s
->dyn_ltree
, s
->l_desc
.max_code
);
2572 scan_tree(s
, (ct_data
*)s
->dyn_dtree
, s
->d_desc
.max_code
);
2574 /* Build the bit length tree: */
2575 build_tree(s
, (tree_desc
*)(&(s
->bl_desc
)));
2576 /* opt_len now includes the length of the tree representations, except
2577 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2580 /* Determine the number of bit length codes to send. The pkzip format
2581 * requires that at least 4 bit length codes be sent. (appnote.txt says
2582 * 3 but the actual value used is 4.)
2584 for (max_blindex
= BL_CODES
-1; max_blindex
>= 3; max_blindex
--) {
2585 if (s
->bl_tree
[bl_order
[max_blindex
]].Len
!= 0) break;
2587 /* Update opt_len to include the bit length tree and counts */
2588 s
->opt_len
+= 3*(max_blindex
+1) + 5+5+4;
2589 Tracev((stderr
, "\ndyn trees: dyn %ld, stat %ld",
2590 s
->opt_len
, s
->static_len
));
2595 /* ===========================================================================
2596 * Send the header for a block using dynamic Huffman trees: the counts, the
2597 * lengths of the bit length codes, the literal tree and the distance tree.
2598 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2600 local
void send_all_trees(s
, lcodes
, dcodes
, blcodes
)
2602 int lcodes
, dcodes
, blcodes
; /* number of codes for each tree */
2604 int rank
; /* index in bl_order */
2606 Assert (lcodes
>= 257 && dcodes
>= 1 && blcodes
>= 4, "not enough codes");
2607 Assert (lcodes
<= L_CODES
&& dcodes
<= D_CODES
&& blcodes
<= BL_CODES
,
2609 Tracev((stderr
, "\nbl counts: "));
2610 send_bits(s
, lcodes
-257, 5); /* not +255 as stated in appnote.txt */
2611 send_bits(s
, dcodes
-1, 5);
2612 send_bits(s
, blcodes
-4, 4); /* not -3 as stated in appnote.txt */
2613 for (rank
= 0; rank
< blcodes
; rank
++) {
2614 Tracev((stderr
, "\nbl code %2d ", bl_order
[rank
]));
2615 send_bits(s
, s
->bl_tree
[bl_order
[rank
]].Len
, 3);
2617 Tracev((stderr
, "\nbl tree: sent %ld", s
->bits_sent
));
2619 send_tree(s
, (ct_data
*)s
->dyn_ltree
, lcodes
-1); /* literal tree */
2620 Tracev((stderr
, "\nlit tree: sent %ld", s
->bits_sent
));
2622 send_tree(s
, (ct_data
*)s
->dyn_dtree
, dcodes
-1); /* distance tree */
2623 Tracev((stderr
, "\ndist tree: sent %ld", s
->bits_sent
));
2626 /* ===========================================================================
2627 * Send a stored block
2629 void _tr_stored_block(s
, buf
, stored_len
, eof
)
2631 charf
*buf
; /* input block */
2632 ulg stored_len
; /* length of input block */
2633 int eof
; /* true if this is the last block for a file */
2635 send_bits(s
, (STORED_BLOCK
<<1)+eof
, 3); /* send block type */
2636 s
->compressed_len
= (s
->compressed_len
+ 3 + 7) & (ulg
)~7L;
2637 s
->compressed_len
+= (stored_len
+ 4) << 3;
2639 copy_block(s
, buf
, (unsigned)stored_len
, 1); /* with header */
2642 /* Send just the `stored block' type code without any length bytes or data.
2644 void _tr_stored_type_only(s
)
2647 send_bits(s
, (STORED_BLOCK
<< 1), 3);
2649 s
->compressed_len
= (s
->compressed_len
+ 3) & ~7L;
2653 /* ===========================================================================
2654 * Send one empty static block to give enough lookahead for inflate.
2655 * This takes 10 bits, of which 7 may remain in the bit buffer.
2656 * The current inflate code requires 9 bits of lookahead. If the
2657 * last two codes for the previous block (real code plus EOB) were coded
2658 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
2659 * the last real code. In this case we send two empty static blocks instead
2660 * of one. (There are no problems if the previous block is stored or fixed.)
2661 * To simplify the code, we assume the worst case of last real code encoded
2667 send_bits(s
, STATIC_TREES
<<1, 3);
2668 send_code(s
, END_BLOCK
, static_ltree
);
2669 s
->compressed_len
+= 10L; /* 3 for block type, 7 for EOB */
2671 /* Of the 10 bits for the empty block, we have already sent
2672 * (10 - bi_valid) bits. The lookahead for the last real code (before
2673 * the EOB of the previous block) was thus at least one plus the length
2674 * of the EOB plus what we have just sent of the empty static block.
2676 if (1 + s
->last_eob_len
+ 10 - s
->bi_valid
< 9) {
2677 send_bits(s
, STATIC_TREES
<<1, 3);
2678 send_code(s
, END_BLOCK
, static_ltree
);
2679 s
->compressed_len
+= 10L;
2682 s
->last_eob_len
= 7;
2685 /* ===========================================================================
2686 * Determine the best encoding for the current block: dynamic trees, static
2687 * trees or store, and output the encoded block to the zip file. This function
2688 * returns the total compressed length for the file so far.
2690 ulg
_tr_flush_block(s
, buf
, stored_len
, eof
)
2692 charf
*buf
; /* input block, or NULL if too old */
2693 ulg stored_len
; /* length of input block */
2694 int eof
; /* true if this is the last block for a file */
2696 ulg opt_lenb
, static_lenb
; /* opt_len and static_len in bytes */
2697 int max_blindex
= 0; /* index of last bit length code of non zero freq */
2699 /* Build the Huffman trees unless a stored block is forced */
2702 /* Check if the file is ascii or binary */
2703 if (s
->data_type
== Z_UNKNOWN
) set_data_type(s
);
2705 /* Construct the literal and distance trees */
2706 build_tree(s
, (tree_desc
*)(&(s
->l_desc
)));
2707 Tracev((stderr
, "\nlit data: dyn %ld, stat %ld", s
->opt_len
,
2710 build_tree(s
, (tree_desc
*)(&(s
->d_desc
)));
2711 Tracev((stderr
, "\ndist data: dyn %ld, stat %ld", s
->opt_len
,
2713 /* At this point, opt_len and static_len are the total bit lengths of
2714 * the compressed block data, excluding the tree representations.
2717 /* Build the bit length tree for the above two trees, and get the index
2718 * in bl_order of the last bit length code to send.
2720 max_blindex
= build_bl_tree(s
);
2722 /* Determine the best encoding. Compute first the block length in bytes*/
2723 opt_lenb
= (s
->opt_len
+3+7)>>3;
2724 static_lenb
= (s
->static_len
+3+7)>>3;
2726 Tracev((stderr
, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2727 opt_lenb
, s
->opt_len
, static_lenb
, s
->static_len
, stored_len
,
2730 if (static_lenb
<= opt_lenb
) opt_lenb
= static_lenb
;
2733 Assert(buf
!= (char*)0, "lost buf");
2734 opt_lenb
= static_lenb
= stored_len
+ 5; /* force a stored block */
2737 /* If compression failed and this is the first and last block,
2738 * and if the .zip file can be seeked (to rewrite the local header),
2739 * the whole file is transformed into a stored file:
2741 #ifdef STORED_FILE_OK
2742 # ifdef FORCE_STORED_FILE
2743 if (eof
&& s
->compressed_len
== 0L) { /* force stored file */
2745 if (stored_len
<= opt_lenb
&& eof
&& s
->compressed_len
==0L && seekable()) {
2747 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2748 if (buf
== (charf
*)0) error ("block vanished");
2750 copy_block(s
, buf
, (unsigned)stored_len
, 0); /* without header */
2751 s
->compressed_len
= stored_len
<< 3;
2754 #endif /* STORED_FILE_OK */
2757 if (buf
!= (char*)0) { /* force stored block */
2759 if (stored_len
+4 <= opt_lenb
&& buf
!= (char*)0) {
2760 /* 4: two words for the lengths */
2762 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2763 * Otherwise we can't have processed more than WSIZE input bytes since
2764 * the last block flush, because compression would have been
2765 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2766 * transform a block into a stored block.
2768 _tr_stored_block(s
, buf
, stored_len
, eof
);
2771 } else if (static_lenb
>= 0) { /* force static trees */
2773 } else if (static_lenb
== opt_lenb
) {
2775 send_bits(s
, (STATIC_TREES
<<1)+eof
, 3);
2776 compress_block(s
, (ct_data
*)static_ltree
, (ct_data
*)static_dtree
);
2777 s
->compressed_len
+= 3 + s
->static_len
;
2779 send_bits(s
, (DYN_TREES
<<1)+eof
, 3);
2780 send_all_trees(s
, s
->l_desc
.max_code
+1, s
->d_desc
.max_code
+1,
2782 compress_block(s
, (ct_data
*)s
->dyn_ltree
, (ct_data
*)s
->dyn_dtree
);
2783 s
->compressed_len
+= 3 + s
->opt_len
;
2785 Assert (s
->compressed_len
== s
->bits_sent
, "bad compressed size");
2790 s
->compressed_len
+= 7; /* align on byte boundary */
2792 Tracev((stderr
,"\ncomprlen %lu(%lu) ", s
->compressed_len
>>3,
2793 s
->compressed_len
-7*eof
));
2795 return s
->compressed_len
>> 3;
2798 /* ===========================================================================
2799 * Save the match info and tally the frequency counts. Return true if
2800 * the current block must be flushed.
2802 int _tr_tally (s
, dist
, lc
)
2804 unsigned dist
; /* distance of matched string */
2805 unsigned lc
; /* match length-MIN_MATCH or unmatched char (if dist==0) */
2807 s
->d_buf
[s
->last_lit
] = (ush
)dist
;
2808 s
->l_buf
[s
->last_lit
++] = (uch
)lc
;
2810 /* lc is the unmatched char */
2811 s
->dyn_ltree
[lc
].Freq
++;
2814 /* Here, lc is the match length - MIN_MATCH */
2815 dist
--; /* dist = match distance - 1 */
2816 Assert((ush
)dist
< (ush
)MAX_DIST(s
) &&
2817 (ush
)lc
<= (ush
)(MAX_MATCH
-MIN_MATCH
) &&
2818 (ush
)d_code(dist
) < (ush
)D_CODES
, "_tr_tally: bad match");
2820 s
->dyn_ltree
[length_code
[lc
]+LITERALS
+1].Freq
++;
2821 s
->dyn_dtree
[d_code(dist
)].Freq
++;
2824 /* Try to guess if it is profitable to stop the current block here */
2825 if (s
->level
> 2 && (s
->last_lit
& 0xfff) == 0) {
2826 /* Compute an upper bound for the compressed length */
2827 ulg out_length
= (ulg
)s
->last_lit
*8L;
2828 ulg in_length
= (ulg
)((long)s
->strstart
- s
->block_start
);
2830 for (dcode
= 0; dcode
< D_CODES
; dcode
++) {
2831 out_length
+= (ulg
)s
->dyn_dtree
[dcode
].Freq
*
2832 (5L+extra_dbits
[dcode
]);
2835 Tracev((stderr
,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2836 s
->last_lit
, in_length
, out_length
,
2837 100L - out_length
*100L/in_length
));
2838 if (s
->matches
< s
->last_lit
/2 && out_length
< in_length
/2) return 1;
2840 return (s
->last_lit
== s
->lit_bufsize
-1);
2841 /* We avoid equality with lit_bufsize because of wraparound at 64K
2842 * on 16 bit machines and because stored blocks are restricted to
2847 /* ===========================================================================
2848 * Send the block data compressed using the given Huffman trees
2850 local
void compress_block(s
, ltree
, dtree
)
2852 ct_data
*ltree
; /* literal tree */
2853 ct_data
*dtree
; /* distance tree */
2855 unsigned dist
; /* distance of matched string */
2856 int lc
; /* match length or unmatched char (if dist == 0) */
2857 unsigned lx
= 0; /* running index in l_buf */
2858 unsigned code
; /* the code to send */
2859 int extra
; /* number of extra bits to send */
2861 if (s
->last_lit
!= 0) do {
2862 dist
= s
->d_buf
[lx
];
2863 lc
= s
->l_buf
[lx
++];
2865 send_code(s
, lc
, ltree
); /* send a literal byte */
2866 Tracecv(isgraph(lc
), (stderr
," '%c' ", lc
));
2868 /* Here, lc is the match length - MIN_MATCH */
2869 code
= length_code
[lc
];
2870 send_code(s
, code
+LITERALS
+1, ltree
); /* send the length code */
2871 extra
= extra_lbits
[code
];
2873 lc
-= base_length
[code
];
2874 send_bits(s
, lc
, extra
); /* send the extra length bits */
2876 dist
--; /* dist is now the match distance - 1 */
2877 code
= d_code(dist
);
2878 Assert (code
< D_CODES
, "bad d_code");
2880 send_code(s
, code
, dtree
); /* send the distance code */
2881 extra
= extra_dbits
[code
];
2883 dist
-= base_dist
[code
];
2884 send_bits(s
, dist
, extra
); /* send the extra distance bits */
2886 } /* literal or match pair ? */
2888 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2889 Assert(s
->pending
< s
->lit_bufsize
+ 2*lx
, "pendingBuf overflow");
2891 } while (lx
< s
->last_lit
);
2893 send_code(s
, END_BLOCK
, ltree
);
2894 s
->last_eob_len
= ltree
[END_BLOCK
].Len
;
2897 /* ===========================================================================
2898 * Set the data type to ASCII or BINARY, using a crude approximation:
2899 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2900 * IN assertion: the fields freq of dyn_ltree are set and the total of all
2901 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2903 local
void set_data_type(s
)
2907 unsigned ascii_freq
= 0;
2908 unsigned bin_freq
= 0;
2909 while (n
< 7) bin_freq
+= s
->dyn_ltree
[n
++].Freq
;
2910 while (n
< 128) ascii_freq
+= s
->dyn_ltree
[n
++].Freq
;
2911 while (n
< LITERALS
) bin_freq
+= s
->dyn_ltree
[n
++].Freq
;
2912 s
->data_type
= (Byte
)(bin_freq
> (ascii_freq
>> 2) ? Z_BINARY
: Z_ASCII
);
2915 /* ===========================================================================
2916 * Reverse the first len bits of a code, using straightforward code (a faster
2917 * method would use a table)
2918 * IN assertion: 1 <= len <= 15
2920 local
unsigned bi_reverse(code
, len
)
2921 unsigned code
; /* the value to invert */
2922 int len
; /* its bit length */
2924 register unsigned res
= 0;
2927 code
>>= 1, res
<<= 1;
2928 } while (--len
> 0);
2932 /* ===========================================================================
2933 * Flush the bit buffer, keeping at most 7 bits in it.
2935 local
void bi_flush(s
)
2938 if (s
->bi_valid
== 16) {
2939 put_short(s
, s
->bi_buf
);
2942 } else if (s
->bi_valid
>= 8) {
2943 put_byte(s
, (Byte
)s
->bi_buf
);
2949 /* ===========================================================================
2950 * Flush the bit buffer and align the output on a byte boundary
2952 local
void bi_windup(s
)
2955 if (s
->bi_valid
> 8) {
2956 put_short(s
, s
->bi_buf
);
2957 } else if (s
->bi_valid
> 0) {
2958 put_byte(s
, (Byte
)s
->bi_buf
);
2963 s
->bits_sent
= (s
->bits_sent
+7) & ~7;
2967 /* ===========================================================================
2968 * Copy a stored block, storing first the length and its
2969 * one's complement if requested.
2971 local
void copy_block(s
, buf
, len
, header
)
2973 charf
*buf
; /* the input data */
2974 unsigned len
; /* its length */
2975 int header
; /* true if block header must be written */
2977 bi_windup(s
); /* align on byte boundary */
2978 s
->last_eob_len
= 8; /* enough lookahead for inflate */
2981 put_short(s
, (ush
)len
);
2982 put_short(s
, (ush
)~len
);
2984 s
->bits_sent
+= 2*16;
2988 s
->bits_sent
+= (ulg
)len
<<3;
2990 /* bundle up the put_byte(s, *buf++) calls */
2991 zmemcpy(&s
->pending_buf
[s
->pending
], buf
, len
);
2997 /* inflate.c -- zlib interface to inflate modules
2998 * Copyright (C) 1995-1996 Mark Adler
2999 * For conditions of distribution and use, see copyright notice in zlib.h
3002 /* #include "zutil.h" */
3004 /* +++ infblock.h */
3005 /* infblock.h -- header to use infblock.c
3006 * Copyright (C) 1995-1996 Mark Adler
3007 * For conditions of distribution and use, see copyright notice in zlib.h
3010 /* WARNING: this file should *not* be used by applications. It is
3011 part of the implementation of the compression library and is
3012 subject to change. Applications should only use zlib.h.
3015 struct inflate_blocks_state
;
3016 typedef struct inflate_blocks_state FAR inflate_blocks_statef
;
3018 extern inflate_blocks_statef
* inflate_blocks_new
OF((
3020 check_func c
, /* check function */
3021 uInt w
)); /* window size */
3023 extern int inflate_blocks
OF((
3024 inflate_blocks_statef
*,
3026 int)); /* initial return code */
3028 extern void inflate_blocks_reset
OF((
3029 inflate_blocks_statef
*,
3031 uLongf
*)); /* check value on output */
3033 extern int inflate_blocks_free
OF((
3034 inflate_blocks_statef
*,
3036 uLongf
*)); /* check value on output */
3038 extern void inflate_set_dictionary
OF((
3039 inflate_blocks_statef
*s
,
3040 const Bytef
*d
, /* dictionary */
3041 uInt n
)); /* dictionary length */
3043 extern int inflate_addhistory
OF((
3044 inflate_blocks_statef
*,
3047 extern int inflate_packet_flush
OF((
3048 inflate_blocks_statef
*));
3049 /* --- infblock.h */
3051 #ifndef NO_DUMMY_DECL
3052 struct inflate_blocks_state
{int dummy
;}; /* for buggy compilers */
3055 /* inflate private state */
3056 struct internal_state
{
3060 METHOD
, /* waiting for method byte */
3061 FLAG
, /* waiting for flag byte */
3062 DICT4
, /* four dictionary check bytes to go */
3063 DICT3
, /* three dictionary check bytes to go */
3064 DICT2
, /* two dictionary check bytes to go */
3065 DICT1
, /* one dictionary check byte to go */
3066 DICT0
, /* waiting for inflateSetDictionary */
3067 BLOCKS
, /* decompressing blocks */
3068 CHECK4
, /* four check bytes to go */
3069 CHECK3
, /* three check bytes to go */
3070 CHECK2
, /* two check bytes to go */
3071 CHECK1
, /* one check byte to go */
3072 DONE
, /* finished check, done */
3073 BAD
} /* got an error--stay here */
3074 mode
; /* current inflate mode */
3076 /* mode dependent information */
3078 uInt method
; /* if FLAGS, method byte */
3080 uLong was
; /* computed check value */
3081 uLong need
; /* stream check value */
3082 } check
; /* if CHECK, check values to compare */
3083 uInt marker
; /* if BAD, inflateSync's marker bytes count */
3084 } sub
; /* submode */
3086 /* mode independent information */
3087 int nowrap
; /* flag for no wrapper */
3088 uInt wbits
; /* log2(window size) (8..15, defaults to 15) */
3089 inflate_blocks_statef
3090 *blocks
; /* current inflate_blocks state */
3100 if (z
== Z_NULL
|| z
->state
== Z_NULL
)
3101 return Z_STREAM_ERROR
;
3102 z
->total_in
= z
->total_out
= 0;
3104 z
->state
->mode
= z
->state
->nowrap
? BLOCKS
: METHOD
;
3105 inflate_blocks_reset(z
->state
->blocks
, z
, &c
);
3106 Trace((stderr
, "inflate: reset\n"));
3116 if (z
== Z_NULL
|| z
->state
== Z_NULL
|| z
->zfree
== Z_NULL
)
3117 return Z_STREAM_ERROR
;
3118 if (z
->state
->blocks
!= Z_NULL
)
3119 inflate_blocks_free(z
->state
->blocks
, z
, &c
);
3122 Trace((stderr
, "inflate: end\n"));
3127 int inflateInit2_(z
, w
, version
, stream_size
)
3130 const char *version
;
3133 if (version
== Z_NULL
|| version
[0] != ZLIB_VERSION
[0] ||
3134 stream_size
!= sizeof(z_stream
))
3135 return Z_VERSION_ERROR
;
3137 /* initialize state */
3139 return Z_STREAM_ERROR
;
3142 if (z
->zalloc
== Z_NULL
)
3144 z
->zalloc
= zcalloc
;
3145 z
->opaque
= (voidpf
)0;
3147 if (z
->zfree
== Z_NULL
) z
->zfree
= zcfree
;
3149 if ((z
->state
= (struct internal_state FAR
*)
3150 ZALLOC(z
,1,sizeof(struct internal_state
))) == Z_NULL
)
3152 z
->state
->blocks
= Z_NULL
;
3154 /* handle undocumented nowrap option (no zlib header or check) */
3155 z
->state
->nowrap
= 0;
3159 z
->state
->nowrap
= 1;
3162 /* set window size */
3163 if (w
< 8 || w
> 15)
3166 return Z_STREAM_ERROR
;
3168 z
->state
->wbits
= (uInt
)w
;
3170 /* create inflate_blocks state */
3171 if ((z
->state
->blocks
=
3172 inflate_blocks_new(z
, z
->state
->nowrap
? Z_NULL
: adler32
, (uInt
)1 << w
))
3178 Trace((stderr
, "inflate: allocated\n"));
3186 int inflateInit_(z
, version
, stream_size
)
3188 const char *version
;
3191 return inflateInit2_(z
, DEF_WBITS
, version
, stream_size
);
3195 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
3196 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
3205 if (z
== Z_NULL
|| z
->state
== Z_NULL
|| z
->next_in
== Z_NULL
|| f
< 0)
3206 return Z_STREAM_ERROR
;
3208 while (1) switch (z
->state
->mode
)
3212 if (((z
->state
->sub
.method
= NEXTBYTE
) & 0xf) != Z_DEFLATED
)
3214 z
->state
->mode
= BAD
;
3215 z
->msg
= (char*)"unknown compression method";
3216 z
->state
->sub
.marker
= 5; /* can't try inflateSync */
3219 if ((z
->state
->sub
.method
>> 4) + 8 > z
->state
->wbits
)
3221 z
->state
->mode
= BAD
;
3222 z
->msg
= (char*)"invalid window size";
3223 z
->state
->sub
.marker
= 5; /* can't try inflateSync */
3226 z
->state
->mode
= FLAG
;
3230 if (((z
->state
->sub
.method
<< 8) + b
) % 31)
3232 z
->state
->mode
= BAD
;
3233 z
->msg
= (char*)"incorrect header check";
3234 z
->state
->sub
.marker
= 5; /* can't try inflateSync */
3237 Trace((stderr
, "inflate: zlib header ok\n"));
3238 if (!(b
& PRESET_DICT
))
3240 z
->state
->mode
= BLOCKS
;
3243 z
->state
->mode
= DICT4
;
3246 z
->state
->sub
.check
.need
= (uLong
)NEXTBYTE
<< 24;
3247 z
->state
->mode
= DICT3
;
3250 z
->state
->sub
.check
.need
+= (uLong
)NEXTBYTE
<< 16;
3251 z
->state
->mode
= DICT2
;
3254 z
->state
->sub
.check
.need
+= (uLong
)NEXTBYTE
<< 8;
3255 z
->state
->mode
= DICT1
;
3258 z
->state
->sub
.check
.need
+= (uLong
)NEXTBYTE
;
3259 z
->adler
= z
->state
->sub
.check
.need
;
3260 z
->state
->mode
= DICT0
;
3263 z
->state
->mode
= BAD
;
3264 z
->msg
= (char*)"need dictionary";
3265 z
->state
->sub
.marker
= 0; /* can try inflateSync */
3266 return Z_STREAM_ERROR
;
3268 r
= inflate_blocks(z
->state
->blocks
, z
, r
);
3269 if (f
== Z_PACKET_FLUSH
&& z
->avail_in
== 0 && z
->avail_out
!= 0)
3270 r
= inflate_packet_flush(z
->state
->blocks
);
3271 if (r
== Z_DATA_ERROR
)
3273 z
->state
->mode
= BAD
;
3274 z
->state
->sub
.marker
= 0; /* can try inflateSync */
3277 if (r
!= Z_STREAM_END
)
3280 inflate_blocks_reset(z
->state
->blocks
, z
, &z
->state
->sub
.check
.was
);
3281 if (z
->state
->nowrap
)
3283 z
->state
->mode
= DONE
;
3286 z
->state
->mode
= CHECK4
;
3289 z
->state
->sub
.check
.need
= (uLong
)NEXTBYTE
<< 24;
3290 z
->state
->mode
= CHECK3
;
3293 z
->state
->sub
.check
.need
+= (uLong
)NEXTBYTE
<< 16;
3294 z
->state
->mode
= CHECK2
;
3297 z
->state
->sub
.check
.need
+= (uLong
)NEXTBYTE
<< 8;
3298 z
->state
->mode
= CHECK1
;
3301 z
->state
->sub
.check
.need
+= (uLong
)NEXTBYTE
;
3303 if (z
->state
->sub
.check
.was
!= z
->state
->sub
.check
.need
)
3305 z
->state
->mode
= BAD
;
3306 z
->msg
= (char*)"incorrect data check";
3307 z
->state
->sub
.marker
= 5; /* can't try inflateSync */
3310 Trace((stderr
, "inflate: zlib check ok\n"));
3311 z
->state
->mode
= DONE
;
3313 return Z_STREAM_END
;
3315 return Z_DATA_ERROR
;
3317 return Z_STREAM_ERROR
;
3321 if (f
!= Z_PACKET_FLUSH
)
3323 z
->state
->mode
= BAD
;
3324 z
->msg
= (char *)"need more for packet flush";
3325 z
->state
->sub
.marker
= 0; /* can try inflateSync */
3326 return Z_DATA_ERROR
;
3330 int inflateSetDictionary(z
, dictionary
, dictLength
)
3332 const Bytef
*dictionary
;
3335 uInt length
= dictLength
;
3337 if (z
== Z_NULL
|| z
->state
== Z_NULL
|| z
->state
->mode
!= DICT0
)
3338 return Z_STREAM_ERROR
;
3340 if (adler32(1L, dictionary
, dictLength
) != z
->adler
) return Z_DATA_ERROR
;
3343 if (length
>= ((uInt
)1<<z
->state
->wbits
))
3345 length
= (1<<z
->state
->wbits
)-1;
3346 dictionary
+= dictLength
- length
;
3348 inflate_set_dictionary(z
->state
->blocks
, dictionary
, length
);
3349 z
->state
->mode
= BLOCKS
;
3354 * This subroutine adds the data at next_in/avail_in to the output history
3355 * without performing any output. The output buffer must be "caught up";
3356 * i.e. no pending output (hence s->read equals s->write), and the state must
3357 * be BLOCKS (i.e. we should be willing to see the start of a series of
3358 * BLOCKS). On exit, the output will also be caught up, and the checksum
3359 * will have been updated if need be.
3362 int inflateIncomp(z
)
3365 if (z
->state
->mode
!= BLOCKS
)
3366 return Z_DATA_ERROR
;
3367 return inflate_addhistory(z
->state
->blocks
, z
);
3374 uInt n
; /* number of bytes to look at */
3375 Bytef
*p
; /* pointer to bytes */
3376 uInt m
; /* number of marker bytes found in a row */
3377 uLong r
, w
; /* temporaries to save total_in and total_out */
3380 if (z
== Z_NULL
|| z
->state
== Z_NULL
)
3381 return Z_STREAM_ERROR
;
3382 if (z
->state
->mode
!= BAD
)
3384 z
->state
->mode
= BAD
;
3385 z
->state
->sub
.marker
= 0;
3387 if ((n
= z
->avail_in
) == 0)
3390 m
= z
->state
->sub
.marker
;
3395 if (*p
== (Byte
)(m
< 2 ? 0 : 0xff))
3405 z
->total_in
+= p
- z
->next_in
;
3408 z
->state
->sub
.marker
= m
;
3410 /* return no joy or set up to restart on a new block */
3412 return Z_DATA_ERROR
;
3413 r
= z
->total_in
; w
= z
->total_out
;
3415 z
->total_in
= r
; z
->total_out
= w
;
3416 z
->state
->mode
= BLOCKS
;
3424 /* +++ infblock.c */
3425 /* infblock.c -- interpret and process block types to last block
3426 * Copyright (C) 1995-1996 Mark Adler
3427 * For conditions of distribution and use, see copyright notice in zlib.h
3430 /* #include "zutil.h" */
3431 /* #include "infblock.h" */
3433 /* +++ inftrees.h */
3434 /* inftrees.h -- header to use inftrees.c
3435 * Copyright (C) 1995-1996 Mark Adler
3436 * For conditions of distribution and use, see copyright notice in zlib.h
3439 /* WARNING: this file should *not* be used by applications. It is
3440 part of the implementation of the compression library and is
3441 subject to change. Applications should only use zlib.h.
3444 /* Huffman code lookup table entry--this entry is four bytes for machines
3445 that have 16-bit pointers (e.g. PC's in the small or medium model). */
3447 typedef struct inflate_huft_s FAR inflate_huft
;
3449 struct inflate_huft_s
{
3452 Byte Exop
; /* number of extra bits or operation */
3453 Byte Bits
; /* number of bits in this code or subcode */
3455 Bytef
*pad
; /* pad structure to a power of 2 (4 bytes for */
3456 } word
; /* 16-bit, 8 bytes for 32-bit machines) */
3458 uInt Base
; /* literal, length base, or distance base */
3459 inflate_huft
*Next
; /* pointer to next level of table */
3464 extern uInt inflate_hufts
;
3467 extern int inflate_trees_bits
OF((
3468 uIntf
*, /* 19 code lengths */
3469 uIntf
*, /* bits tree desired/actual depth */
3470 inflate_huft
* FAR
*, /* bits tree result */
3471 z_streamp
)); /* for zalloc, zfree functions */
3473 extern int inflate_trees_dynamic
OF((
3474 uInt
, /* number of literal/length codes */
3475 uInt
, /* number of distance codes */
3476 uIntf
*, /* that many (total) code lengths */
3477 uIntf
*, /* literal desired/actual bit depth */
3478 uIntf
*, /* distance desired/actual bit depth */
3479 inflate_huft
* FAR
*, /* literal/length tree result */
3480 inflate_huft
* FAR
*, /* distance tree result */
3481 z_streamp
)); /* for zalloc, zfree functions */
3483 extern int inflate_trees_fixed
OF((
3484 uIntf
*, /* literal desired/actual bit depth */
3485 uIntf
*, /* distance desired/actual bit depth */
3486 inflate_huft
* FAR
*, /* literal/length tree result */
3487 inflate_huft
* FAR
*)); /* distance tree result */
3489 extern int inflate_trees_free
OF((
3490 inflate_huft
*, /* tables to free */
3491 z_streamp
)); /* for zfree function */
3493 /* --- inftrees.h */
3495 /* +++ infcodes.h */
3496 /* infcodes.h -- header to use infcodes.c
3497 * Copyright (C) 1995-1996 Mark Adler
3498 * For conditions of distribution and use, see copyright notice in zlib.h
3501 /* WARNING: this file should *not* be used by applications. It is
3502 part of the implementation of the compression library and is
3503 subject to change. Applications should only use zlib.h.
3506 struct inflate_codes_state
;
3507 typedef struct inflate_codes_state FAR inflate_codes_statef
;
3509 extern inflate_codes_statef
*inflate_codes_new
OF((
3511 inflate_huft
*, inflate_huft
*,
3514 extern int inflate_codes
OF((
3515 inflate_blocks_statef
*,
3519 extern void inflate_codes_free
OF((
3520 inflate_codes_statef
*,
3523 /* --- infcodes.h */
3526 /* infutil.h -- types and macros common to blocks and codes
3527 * Copyright (C) 1995-1996 Mark Adler
3528 * For conditions of distribution and use, see copyright notice in zlib.h
3531 /* WARNING: this file should *not* be used by applications. It is
3532 part of the implementation of the compression library and is
3533 subject to change. Applications should only use zlib.h.
3540 TYPE
, /* get type bits (3, including end bit) */
3541 LENS
, /* get lengths for stored */
3542 STORED
, /* processing stored block */
3543 TABLE
, /* get table lengths */
3544 BTREE
, /* get bit lengths tree for a dynamic block */
3545 DTREE
, /* get length, distance trees for a dynamic block */
3546 CODES
, /* processing fixed or dynamic block */
3547 DRY
, /* output remaining window bytes */
3548 DONEB
, /* finished last block, done */
3549 BADB
} /* got a data error--stuck here */
3552 /* inflate blocks semi-private state */
3553 struct inflate_blocks_state
{
3556 inflate_block_mode mode
; /* current inflate_block mode */
3558 /* mode dependent information */
3560 uInt left
; /* if STORED, bytes left to copy */
3562 uInt table
; /* table lengths (14 bits) */
3563 uInt index
; /* index into blens (or border) */
3564 uIntf
*blens
; /* bit lengths of codes */
3565 uInt bb
; /* bit length tree depth */
3566 inflate_huft
*tb
; /* bit length decoding tree */
3567 } trees
; /* if DTREE, decoding info for trees */
3570 inflate_huft
*td
; /* trees to free */
3571 inflate_codes_statef
3573 } decode
; /* if CODES, current state */
3574 } sub
; /* submode */
3575 uInt last
; /* true if this block is the last block */
3577 /* mode independent information */
3578 uInt bitk
; /* bits in bit buffer */
3579 uLong bitb
; /* bit buffer */
3580 Bytef
*window
; /* sliding window */
3581 Bytef
*end
; /* one byte after sliding window */
3582 Bytef
*read
; /* window read pointer */
3583 Bytef
*write
; /* window write pointer */
3584 check_func checkfn
; /* check function */
3585 uLong check
; /* check on output */
3590 /* defines for inflate input/output */
3591 /* update pointers and return */
3592 #define UPDBITS {s->bitb=b;s->bitk=k;}
3593 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3594 #define UPDOUT {s->write=q;}
3595 #define UPDATE {UPDBITS UPDIN UPDOUT}
3596 #define LEAVE {UPDATE return inflate_flush(s,z,r);}
3597 /* get bytes and bits */
3598 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3599 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3600 #define NEXTBYTE (n--,*p++)
3601 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3602 #define DUMPBITS(j) {b>>=(j);k-=(j);}
3604 #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
3605 #define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
3606 #define WWRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
3607 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3608 #define NEEDOUT {if(m==0){WWRAP if(m==0){FLUSH WWRAP if(m==0) LEAVE}}r=Z_OK;}
3609 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3610 /* load local pointers */
3611 #define LOAD {LOADIN LOADOUT}
3613 /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
3614 extern uInt inflate_mask
[17];
3616 /* copy as much as possible from the sliding window to the output area */
3617 extern int inflate_flush
OF((
3618 inflate_blocks_statef
*,
3622 #ifndef NO_DUMMY_DECL
3623 struct internal_state
{int dummy
;}; /* for buggy compilers */
3629 #ifndef NO_DUMMY_DECL
3630 struct inflate_codes_state
{int dummy
;}; /* for buggy compilers */
3633 /* Table for deflate from PKZIP's appnote.txt. */
3634 local
const uInt border
[] = { /* Order of the bit length code lengths */
3635 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3638 Notes beyond the 1.93a appnote.txt:
3640 1. Distance pointers never point before the beginning of the output
3642 2. Distance pointers can point back across blocks, up to 32k away.
3643 3. There is an implied maximum of 7 bits for the bit length table and
3644 15 bits for the actual data.
3645 4. If only one code exists, then it is encoded using one bit. (Zero
3646 would be more efficient, but perhaps a little confusing.) If two
3647 codes exist, they are coded using one bit each (0 and 1).
3648 5. There is no way of sending zero distance codes--a dummy must be
3649 sent if there are none. (History: a pre 2.0 version of PKZIP would
3650 store blocks with no distance codes, but this was discovered to be
3651 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
3652 zero distance codes, which is sent as one code of zero bits in
3654 6. There are up to 286 literal/length codes. Code 256 represents the
3655 end-of-block. Note however that the static length tree defines
3656 288 codes just to fill out the Huffman codes. Codes 286 and 287
3657 cannot be used though, since there is no length base or extra bits
3658 defined for them. Similarily, there are up to 30 distance codes.
3659 However, static trees define 32 codes (all 5 bits) to fill out the
3660 Huffman codes, but the last two had better not show up in the data.
3661 7. Unzip can check dynamic Huffman blocks for complete code sets.
3662 The exception is that a single code would not be complete (see #4).
3663 8. The five bits following the block type is really the number of
3664 literal codes sent minus 257.
3665 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3666 (1+6+6). Therefore, to output three times the length, you output
3667 three codes (1+1+1), whereas to output four times the same length,
3668 you only need two codes (1+3). Hmm.
3669 10. In the tree reconstruction algorithm, Code = Code + Increment
3670 only if BitLength(i) is not zero. (Pretty obvious.)
3671 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
3672 12. Note: length code 284 can represent 227-258, but length code 285
3673 really is 258. The last length deserves its own, short code
3674 since it gets used a lot in very redundant files. The length
3675 258 is special since 258 - 3 (the min match length) is 255.
3676 13. The literal/length and distance code bit lengths are read as a
3677 single stream of lengths. It is possible (and advantageous) for
3678 a repeat code (16, 17, or 18) to go across the boundary between
3679 the two sets of lengths.
3683 void inflate_blocks_reset(s
, z
, c
)
3684 inflate_blocks_statef
*s
;
3688 if (s
->checkfn
!= Z_NULL
)
3690 if (s
->mode
== BTREE
|| s
->mode
== DTREE
)
3691 ZFREE(z
, s
->sub
.trees
.blens
);
3692 if (s
->mode
== CODES
)
3694 inflate_codes_free(s
->sub
.decode
.codes
, z
);
3695 inflate_trees_free(s
->sub
.decode
.td
, z
);
3696 inflate_trees_free(s
->sub
.decode
.tl
, z
);
3701 s
->read
= s
->write
= s
->window
;
3702 if (s
->checkfn
!= Z_NULL
)
3703 z
->adler
= s
->check
= (*s
->checkfn
)(0L, Z_NULL
, 0);
3704 Trace((stderr
, "inflate: blocks reset\n"));
3708 inflate_blocks_statef
*inflate_blocks_new(z
, c
, w
)
3713 inflate_blocks_statef
*s
;
3715 if ((s
= (inflate_blocks_statef
*)ZALLOC
3716 (z
,1,sizeof(struct inflate_blocks_state
))) == Z_NULL
)
3718 if ((s
->window
= (Bytef
*)ZALLOC(z
, 1, w
)) == Z_NULL
)
3723 s
->end
= s
->window
+ w
;
3726 Trace((stderr
, "inflate: blocks allocated\n"));
3727 inflate_blocks_reset(s
, z
, &s
->check
);
3733 extern uInt inflate_hufts
;
3735 int inflate_blocks(s
, z
, r
)
3736 inflate_blocks_statef
*s
;
3740 uInt t
; /* temporary storage */
3741 uLong b
; /* bit buffer */
3742 uInt k
; /* bits in bit buffer */
3743 Bytef
*p
; /* input data pointer */
3744 uInt n
; /* bytes available there */
3745 Bytef
*q
; /* output window write pointer */
3746 uInt m
; /* bytes to end of window or read pointer */
3748 /* copy input/output information to locals (UPDATE macro restores) */
3751 /* process input based on current state */
3752 while (1) switch (s
->mode
)
3760 case 0: /* stored */
3761 Trace((stderr
, "inflate: stored block%s\n",
3762 s
->last
? " (last)" : ""));
3764 t
= k
& 7; /* go to byte boundary */
3766 s
->mode
= LENS
; /* get length of stored block */
3769 Trace((stderr
, "inflate: fixed codes block%s\n",
3770 s
->last
? " (last)" : ""));
3773 inflate_huft
*tl
, *td
;
3775 inflate_trees_fixed(&bl
, &bd
, &tl
, &td
);
3776 s
->sub
.decode
.codes
= inflate_codes_new(bl
, bd
, tl
, td
, z
);
3777 if (s
->sub
.decode
.codes
== Z_NULL
)
3782 s
->sub
.decode
.tl
= Z_NULL
; /* don't try to free these */
3783 s
->sub
.decode
.td
= Z_NULL
;
3788 case 2: /* dynamic */
3789 Trace((stderr
, "inflate: dynamic codes block%s\n",
3790 s
->last
? " (last)" : ""));
3794 case 3: /* illegal */
3797 z
->msg
= (char*)"invalid block type";
3804 if ((((~b
) >> 16) & 0xffff) != (b
& 0xffff))
3807 z
->msg
= (char*)"invalid stored block lengths";
3811 s
->sub
.left
= (uInt
)b
& 0xffff;
3812 b
= k
= 0; /* dump bits */
3813 Tracev((stderr
, "inflate: stored length %u\n", s
->sub
.left
));
3814 s
->mode
= s
->sub
.left
? STORED
: (s
->last
? DRY
: TYPE
);
3826 if ((s
->sub
.left
-= t
) != 0)
3828 Tracev((stderr
, "inflate: stored end, %lu total out\n",
3829 z
->total_out
+ (q
>= s
->read
? q
- s
->read
:
3830 (s
->end
- s
->read
) + (q
- s
->window
))));
3831 s
->mode
= s
->last
? DRY
: TYPE
;
3835 s
->sub
.trees
.table
= t
= (uInt
)b
& 0x3fff;
3836 #ifndef PKZIP_BUG_WORKAROUND
3837 if ((t
& 0x1f) > 29 || ((t
>> 5) & 0x1f) > 29)
3840 z
->msg
= (char*)"too many length or distance symbols";
3845 t
= 258 + (t
& 0x1f) + ((t
>> 5) & 0x1f);
3848 if ((s
->sub
.trees
.blens
= (uIntf
*)ZALLOC(z
, t
, sizeof(uInt
))) == Z_NULL
)
3854 s
->sub
.trees
.index
= 0;
3855 Tracev((stderr
, "inflate: table sizes ok\n"));
3858 while (s
->sub
.trees
.index
< 4 + (s
->sub
.trees
.table
>> 10))
3861 s
->sub
.trees
.blens
[border
[s
->sub
.trees
.index
++]] = (uInt
)b
& 7;
3864 while (s
->sub
.trees
.index
< 19)
3865 s
->sub
.trees
.blens
[border
[s
->sub
.trees
.index
++]] = 0;
3866 s
->sub
.trees
.bb
= 7;
3867 t
= inflate_trees_bits(s
->sub
.trees
.blens
, &s
->sub
.trees
.bb
,
3868 &s
->sub
.trees
.tb
, z
);
3871 ZFREE(z
, s
->sub
.trees
.blens
);
3873 if (r
== Z_DATA_ERROR
)
3877 s
->sub
.trees
.index
= 0;
3878 Tracev((stderr
, "inflate: bits tree ok\n"));
3881 while (t
= s
->sub
.trees
.table
,
3882 s
->sub
.trees
.index
< 258 + (t
& 0x1f) + ((t
>> 5) & 0x1f))
3887 t
= s
->sub
.trees
.bb
;
3889 h
= s
->sub
.trees
.tb
+ ((uInt
)b
& inflate_mask
[t
]);
3890 t
= h
->word
.what
.Bits
;
3895 s
->sub
.trees
.blens
[s
->sub
.trees
.index
++] = c
;
3897 else /* c == 16..18 */
3899 i
= c
== 18 ? 7 : c
- 14;
3900 j
= c
== 18 ? 11 : 3;
3903 j
+= (uInt
)b
& inflate_mask
[i
];
3905 i
= s
->sub
.trees
.index
;
3906 t
= s
->sub
.trees
.table
;
3907 if (i
+ j
> 258 + (t
& 0x1f) + ((t
>> 5) & 0x1f) ||
3910 inflate_trees_free(s
->sub
.trees
.tb
, z
);
3911 ZFREE(z
, s
->sub
.trees
.blens
);
3913 z
->msg
= (char*)"invalid bit length repeat";
3917 c
= c
== 16 ? s
->sub
.trees
.blens
[i
- 1] : 0;
3919 s
->sub
.trees
.blens
[i
++] = c
;
3921 s
->sub
.trees
.index
= i
;
3924 inflate_trees_free(s
->sub
.trees
.tb
, z
);
3925 s
->sub
.trees
.tb
= Z_NULL
;
3928 inflate_huft
*tl
, *td
;
3929 inflate_codes_statef
*c
;
3931 bl
= 9; /* must be <= 9 for lookahead assumptions */
3932 bd
= 6; /* must be <= 9 for lookahead assumptions */
3933 t
= s
->sub
.trees
.table
;
3937 t
= inflate_trees_dynamic(257 + (t
& 0x1f), 1 + ((t
>> 5) & 0x1f),
3938 s
->sub
.trees
.blens
, &bl
, &bd
, &tl
, &td
, z
);
3939 ZFREE(z
, s
->sub
.trees
.blens
);
3942 if (t
== (uInt
)Z_DATA_ERROR
)
3947 Tracev((stderr
, "inflate: trees ok, %d * %d bytes used\n",
3948 inflate_hufts
, sizeof(inflate_huft
)));
3949 if ((c
= inflate_codes_new(bl
, bd
, tl
, td
, z
)) == Z_NULL
)
3951 inflate_trees_free(td
, z
);
3952 inflate_trees_free(tl
, z
);
3956 s
->sub
.decode
.codes
= c
;
3957 s
->sub
.decode
.tl
= tl
;
3958 s
->sub
.decode
.td
= td
;
3963 if ((r
= inflate_codes(s
, z
, r
)) != Z_STREAM_END
)
3964 return inflate_flush(s
, z
, r
);
3966 inflate_codes_free(s
->sub
.decode
.codes
, z
);
3967 inflate_trees_free(s
->sub
.decode
.td
, z
);
3968 inflate_trees_free(s
->sub
.decode
.tl
, z
);
3970 Tracev((stderr
, "inflate: codes end, %lu total out\n",
3971 z
->total_out
+ (q
>= s
->read
? q
- s
->read
:
3972 (s
->end
- s
->read
) + (q
- s
->window
))));
3978 if (k
> 7) /* return unused byte, if any */
3980 Assert(k
< 16, "inflate_codes grabbed too many bytes")
3983 p
--; /* can always return one */
3988 if (s
->read
!= s
->write
)
4004 int inflate_blocks_free(s
, z
, c
)
4005 inflate_blocks_statef
*s
;
4009 inflate_blocks_reset(s
, z
, c
);
4010 ZFREE(z
, s
->window
);
4012 Trace((stderr
, "inflate: blocks freed\n"));
4017 void inflate_set_dictionary(s
, d
, n
)
4018 inflate_blocks_statef
*s
;
4022 zmemcpy((charf
*)s
->window
, d
, n
);
4023 s
->read
= s
->write
= s
->window
+ n
;
4027 * This subroutine adds the data at next_in/avail_in to the output history
4028 * without performing any output. The output buffer must be "caught up";
4029 * i.e. no pending output (hence s->read equals s->write), and the state must
4030 * be BLOCKS (i.e. we should be willing to see the start of a series of
4031 * BLOCKS). On exit, the output will also be caught up, and the checksum
4032 * will have been updated if need be.
4034 int inflate_addhistory(s
, z
)
4035 inflate_blocks_statef
*s
;
4038 uLong b
; /* bit buffer */ /* NOT USED HERE */
4039 uInt k
; /* bits in bit buffer */ /* NOT USED HERE */
4040 uInt t
; /* temporary storage */
4041 Bytef
*p
; /* input data pointer */
4042 uInt n
; /* bytes available there */
4043 Bytef
*q
; /* output window write pointer */
4044 uInt m
; /* bytes to end of window or read pointer */
4046 if (s
->read
!= s
->write
)
4047 return Z_STREAM_ERROR
;
4048 if (s
->mode
!= TYPE
)
4049 return Z_DATA_ERROR
;
4051 /* we're ready to rock */
4053 /* while there is input ready, copy to output buffer, moving
4054 * pointers as needed.
4057 t
= n
; /* how many to do */
4058 /* is there room until end of buffer? */
4060 /* update check information */
4061 if (s
->checkfn
!= Z_NULL
)
4062 s
->check
= (*s
->checkfn
)(s
->check
, q
, t
);
4068 s
->read
= q
; /* drag read pointer forward */
4069 /* WWRAP */ /* expand WWRAP macro by hand to handle s->read */
4071 s
->read
= q
= s
->window
;
4081 * At the end of a Deflate-compressed PPP packet, we expect to have seen
4082 * a `stored' block type value but not the (zero) length bytes.
4084 int inflate_packet_flush(s
)
4085 inflate_blocks_statef
*s
;
4087 if (s
->mode
!= LENS
)
4088 return Z_DATA_ERROR
;
4092 /* --- infblock.c */
4094 /* +++ inftrees.c */
4095 /* inftrees.c -- generate Huffman trees for efficient decoding
4096 * Copyright (C) 1995-1996 Mark Adler
4097 * For conditions of distribution and use, see copyright notice in zlib.h
4100 /* #include "zutil.h" */
4101 /* #include "inftrees.h" */
4103 char inflate_copyright
[] = " inflate 1.0.4 Copyright 1995-1996 Mark Adler ";
4105 If you use the zlib library in a product, an acknowledgment is welcome
4106 in the documentation of your product. If for some reason you cannot
4107 include such an acknowledgment, I would appreciate that you keep this
4108 copyright string in the executable of your product.
4111 #ifndef NO_DUMMY_DECL
4112 struct internal_state
{int dummy
;}; /* for buggy compilers */
4115 /* simplify the use of the inflate_huft type with some defines */
4116 #define base more.Base
4117 #define next more.Next
4118 #define exop word.what.Exop
4119 #define bits word.what.Bits
4122 local
int huft_build
OF((
4123 uIntf
*, /* code lengths in bits */
4124 uInt
, /* number of codes */
4125 uInt
, /* number of "simple" codes */
4126 const uIntf
*, /* list of base values for non-simple codes */
4127 const uIntf
*, /* list of extra bits for non-simple codes */
4128 inflate_huft
* FAR
*,/* result: starting table */
4129 uIntf
*, /* maximum lookup bits (returns actual) */
4130 z_streamp
)); /* for zalloc function */
4132 local voidpf falloc
OF((
4133 voidpf
, /* opaque pointer (not used) */
4134 uInt
, /* number of items */
4135 uInt
)); /* size of item */
4137 /* Tables for deflate from PKZIP's appnote.txt. */
4138 local
const uInt cplens
[31] = { /* Copy lengths for literal codes 257..285 */
4139 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4140 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4141 /* see note #13 above about 258 */
4142 local
const uInt cplext
[31] = { /* Extra bits for literal codes 257..285 */
4143 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4144 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
4145 local
const uInt cpdist
[30] = { /* Copy offsets for distance codes 0..29 */
4146 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4147 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4148 8193, 12289, 16385, 24577};
4149 local
const uInt cpdext
[30] = { /* Extra bits for distance codes */
4150 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4151 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4155 Huffman code decoding is performed using a multi-level table lookup.
4156 The fastest way to decode is to simply build a lookup table whose
4157 size is determined by the longest code. However, the time it takes
4158 to build this table can also be a factor if the data being decoded
4159 is not very long. The most common codes are necessarily the
4160 shortest codes, so those codes dominate the decoding time, and hence
4161 the speed. The idea is you can have a shorter table that decodes the
4162 shorter, more probable codes, and then point to subsidiary tables for
4163 the longer codes. The time it costs to decode the longer codes is
4164 then traded against the time it takes to make longer tables.
4166 This results of this trade are in the variables lbits and dbits
4167 below. lbits is the number of bits the first level table for literal/
4168 length codes can decode in one step, and dbits is the same thing for
4169 the distance codes. Subsequent tables are also less than or equal to
4170 those sizes. These values may be adjusted either when all of the
4171 codes are shorter than that, in which case the longest code length in
4172 bits is used, or when the shortest code is *longer* than the requested
4173 table size, in which case the length of the shortest code in bits is
4176 There are two different values for the two tables, since they code a
4177 different number of possibilities each. The literal/length table
4178 codes 286 possible values, or in a flat code, a little over eight
4179 bits. The distance table codes 30 possible values, or a little less
4180 than five bits, flat. The optimum values for speed end up being
4181 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
4182 The optimum values may differ though from machine to machine, and
4183 possibly even between compilers. Your mileage may vary.
4187 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4188 #define BMAX 15 /* maximum bit length of any code */
4189 #define N_MAX 288 /* maximum number of codes in any set */
4195 local
int huft_build(b
, n
, s
, d
, e
, t
, m
, zs
)
4196 uIntf
*b
; /* code lengths in bits (all assumed <= BMAX) */
4197 uInt n
; /* number of codes (assumed <= N_MAX) */
4198 uInt s
; /* number of simple-valued codes (0..s-1) */
4199 const uIntf
*d
; /* list of base values for non-simple codes */
4200 const uIntf
*e
; /* list of extra bits for non-simple codes */
4201 inflate_huft
* FAR
*t
; /* result: starting table */
4202 uIntf
*m
; /* maximum lookup bits, returns actual */
4203 z_streamp zs
; /* for zalloc function */
4204 /* Given a list of code lengths and a maximum table size, make a set of
4205 tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
4206 if the given code set is incomplete (the tables are still built in this
4207 case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
4208 lengths), or Z_MEM_ERROR if not enough memory. */
4211 uInt a
; /* counter for codes of length k */
4212 uInt c
[BMAX
+1]; /* bit length count table */
4213 uInt f
; /* i repeats in table every f entries */
4214 int g
; /* maximum code length */
4215 int h
; /* table level */
4216 register uInt i
; /* counter, current code */
4217 register uInt j
; /* counter */
4218 register int k
; /* number of bits in current code */
4219 int l
; /* bits per table (returned in m) */
4220 register uIntf
*p
; /* pointer into c[], b[], or v[] */
4221 inflate_huft
*q
; /* points to current table */
4222 struct inflate_huft_s r
; /* table entry for structure assignment */
4223 inflate_huft
*u
[BMAX
]; /* table stack */
4224 uInt v
[N_MAX
]; /* values in order of bit length */
4225 register int w
; /* bits before this table == (l * h) */
4226 uInt x
[BMAX
+1]; /* bit offsets, then code stack */
4227 uIntf
*xp
; /* pointer into x */
4228 int y
; /* number of dummy codes added */
4229 uInt z
; /* number of entries in current table */
4232 /* Generate counts for each bit length */
4234 #define C0 *p++ = 0;
4235 #define C2 C0 C0 C0 C0
4236 #define C4 C2 C2 C2 C2
4237 C4
/* clear c[]--assume BMAX+1 is 16 */
4240 c
[*p
++]++; /* assume all entries <= BMAX */
4242 if (c
[0] == n
) /* null input--all zero length codes */
4244 *t
= (inflate_huft
*)Z_NULL
;
4250 /* Find minimum and maximum length, bound *m by those */
4252 for (j
= 1; j
<= BMAX
; j
++)
4255 k
= j
; /* minimum code length */
4258 for (i
= BMAX
; i
; i
--)
4261 g
= i
; /* maximum code length */
4267 /* Adjust last length count to fill out codes, if needed */
4268 for (y
= 1 << j
; j
< i
; j
++, y
<<= 1)
4269 if ((y
-= c
[j
]) < 0)
4270 return Z_DATA_ERROR
;
4271 if ((y
-= c
[i
]) < 0)
4272 return Z_DATA_ERROR
;
4276 /* Generate starting offsets into the value table for each length */
4278 p
= c
+ 1; xp
= x
+ 2;
4279 while (--i
) { /* note that i == g from above */
4280 *xp
++ = (j
+= *p
++);
4284 /* Make a table of values in order of bit lengths */
4287 if ((j
= *p
++) != 0)
4290 n
= x
[g
]; /* set n to length of v */
4293 /* Generate the Huffman codes and for each, make the table entries */
4294 x
[0] = i
= 0; /* first Huffman code is zero */
4295 p
= v
; /* grab values in bit order */
4296 h
= -1; /* no tables yet--level -1 */
4297 w
= -l
; /* bits decoded == (l * h) */
4298 u
[0] = (inflate_huft
*)Z_NULL
; /* just to keep compilers happy */
4299 q
= (inflate_huft
*)Z_NULL
; /* ditto */
4302 /* go through the bit lengths (k already is bits in shortest code) */
4308 /* here i is the Huffman code of length k bits for value *p */
4309 /* make tables up to required level */
4313 w
+= l
; /* previous table always l bits */
4315 /* compute minimum size table less than or equal to l bits */
4317 z
= z
> (uInt
)l
? l
: z
; /* table size upper limit */
4318 if ((f
= 1 << (j
= k
- w
)) > a
+ 1) /* try a k-w bit table */
4319 { /* too few codes for k-w bit table */
4320 f
-= a
+ 1; /* deduct codes from patterns left */
4323 while (++j
< z
) /* try smaller tables up to z bits */
4325 if ((f
<<= 1) <= *++xp
)
4326 break; /* enough codes to use up j bits */
4327 f
-= *xp
; /* else deduct codes from patterns */
4330 z
= 1 << j
; /* table entries for j-bit table */
4332 /* allocate and link in new table */
4333 if ((q
= (inflate_huft
*)ZALLOC
4334 (zs
,z
+ 1,sizeof(inflate_huft
))) == Z_NULL
)
4337 inflate_trees_free(u
[0], zs
);
4338 return Z_MEM_ERROR
; /* not enough memory */
4341 inflate_hufts
+= z
+ 1;
4343 *t
= q
+ 1; /* link to list for huft_free() */
4344 *(t
= &(q
->next
)) = Z_NULL
;
4345 u
[h
] = ++q
; /* table starts after link */
4347 /* connect to last table, if there is one */
4350 x
[h
] = i
; /* save pattern for backing up */
4351 r
.bits
= (Byte
)l
; /* bits to dump before this table */
4352 r
.exop
= (Byte
)j
; /* bits in this table */
4353 r
.next
= q
; /* pointer to this table */
4354 j
= i
>> (w
- l
); /* (get around Turbo C bug) */
4355 u
[h
-1][j
] = r
; /* connect to last table */
4359 /* set up table entry in r */
4360 r
.bits
= (Byte
)(k
- w
);
4362 r
.exop
= 128 + 64; /* out of values--invalid code */
4365 r
.exop
= (Byte
)(*p
< 256 ? 0 : 32 + 64); /* 256 is end-of-block */
4366 r
.base
= *p
++; /* simple code is just the value */
4370 r
.exop
= (Byte
)(e
[*p
- s
] + 16 + 64);/* non-simple--look up in lists */
4371 r
.base
= d
[*p
++ - s
];
4374 /* fill code-like entries with r */
4376 for (j
= i
>> w
; j
< z
; j
+= f
)
4379 /* backwards increment the k-bit code i */
4380 for (j
= 1 << (k
- 1); i
& j
; j
>>= 1)
4384 /* backup over finished tables */
4385 while ((i
& ((1 << w
) - 1)) != x
[h
])
4387 h
--; /* don't need to update q */
4394 /* Return Z_BUF_ERROR if we were given an incomplete table */
4395 return y
!= 0 && g
!= 1 ? Z_BUF_ERROR
: Z_OK
;
4399 int inflate_trees_bits(c
, bb
, tb
, z
)
4400 uIntf
*c
; /* 19 code lengths */
4401 uIntf
*bb
; /* bits tree desired/actual depth */
4402 inflate_huft
* FAR
*tb
; /* bits tree result */
4403 z_streamp z
; /* for zfree function */
4407 r
= huft_build(c
, 19, 19, (uIntf
*)Z_NULL
, (uIntf
*)Z_NULL
, tb
, bb
, z
);
4408 if (r
== Z_DATA_ERROR
)
4409 z
->msg
= (char*)"oversubscribed dynamic bit lengths tree";
4410 else if (r
== Z_BUF_ERROR
|| *bb
== 0)
4412 inflate_trees_free(*tb
, z
);
4413 z
->msg
= (char*)"incomplete dynamic bit lengths tree";
4420 int inflate_trees_dynamic(nl
, nd
, c
, bl
, bd
, tl
, td
, z
)
4421 uInt nl
; /* number of literal/length codes */
4422 uInt nd
; /* number of distance codes */
4423 uIntf
*c
; /* that many (total) code lengths */
4424 uIntf
*bl
; /* literal desired/actual bit depth */
4425 uIntf
*bd
; /* distance desired/actual bit depth */
4426 inflate_huft
* FAR
*tl
; /* literal/length tree result */
4427 inflate_huft
* FAR
*td
; /* distance tree result */
4428 z_streamp z
; /* for zfree function */
4432 /* build literal/length tree */
4433 r
= huft_build(c
, nl
, 257, cplens
, cplext
, tl
, bl
, z
);
4434 if (r
!= Z_OK
|| *bl
== 0)
4436 if (r
== Z_DATA_ERROR
)
4437 z
->msg
= (char*)"oversubscribed literal/length tree";
4438 else if (r
!= Z_MEM_ERROR
)
4440 inflate_trees_free(*tl
, z
);
4441 z
->msg
= (char*)"incomplete literal/length tree";
4447 /* build distance tree */
4448 r
= huft_build(c
+ nl
, nd
, 0, cpdist
, cpdext
, td
, bd
, z
);
4449 if (r
!= Z_OK
|| (*bd
== 0 && nl
> 257))
4451 if (r
== Z_DATA_ERROR
)
4452 z
->msg
= (char*)"oversubscribed distance tree";
4453 else if (r
== Z_BUF_ERROR
) {
4454 #ifdef PKZIP_BUG_WORKAROUND
4458 inflate_trees_free(*td
, z
);
4459 z
->msg
= (char*)"incomplete distance tree";
4462 else if (r
!= Z_MEM_ERROR
)
4464 z
->msg
= (char*)"empty distance tree with lengths";
4467 inflate_trees_free(*tl
, z
);
4477 /* build fixed tables only once--keep them here */
4478 local
int fixed_built
= 0;
4479 #define FIXEDH 530 /* number of hufts used by fixed tables */
4480 local inflate_huft fixed_mem
[FIXEDH
];
4481 local uInt fixed_bl
;
4482 local uInt fixed_bd
;
4483 local inflate_huft
*fixed_tl
;
4484 local inflate_huft
*fixed_td
;
4487 local voidpf
falloc(q
, n
, s
)
4488 voidpf q
; /* opaque pointer */
4489 uInt n
; /* number of items */
4490 uInt s
; /* size of item */
4492 Assert(s
== sizeof(inflate_huft
) && n
<= *(intf
*)q
,
4493 "inflate_trees falloc overflow");
4494 *(intf
*)q
-= n
+s
-s
; /* s-s to avoid warning */
4495 return (voidpf
)(fixed_mem
+ *(intf
*)q
);
4499 int inflate_trees_fixed(bl
, bd
, tl
, td
)
4500 uIntf
*bl
; /* literal desired/actual bit depth */
4501 uIntf
*bd
; /* distance desired/actual bit depth */
4502 inflate_huft
* FAR
*tl
; /* literal/length tree result */
4503 inflate_huft
* FAR
*td
; /* distance tree result */
4505 /* build fixed tables if not already (multiple overlapped executions ok) */
4508 int k
; /* temporary variable */
4509 unsigned c
[288]; /* length list for huft_build */
4510 z_stream z
; /* for falloc function */
4511 int f
= FIXEDH
; /* number of hufts left in fixed_mem */
4513 /* set up fake z_stream for memory routines */
4516 z
.opaque
= (voidpf
)&f
;
4519 for (k
= 0; k
< 144; k
++)
4521 for (; k
< 256; k
++)
4523 for (; k
< 280; k
++)
4525 for (; k
< 288; k
++)
4528 huft_build(c
, 288, 257, cplens
, cplext
, &fixed_tl
, &fixed_bl
, &z
);
4530 /* distance table */
4531 for (k
= 0; k
< 30; k
++)
4534 huft_build(c
, 30, 0, cpdist
, cpdext
, &fixed_td
, &fixed_bd
, &z
);
4537 Assert(f
== 0, "invalid build of fixed tables");
4548 int inflate_trees_free(t
, z
)
4549 inflate_huft
*t
; /* table to free */
4550 z_streamp z
; /* for zfree function */
4551 /* Free the malloc'ed tables built by huft_build(), which makes a linked
4552 list of the tables it made, with the links in a dummy first entry of
4555 register inflate_huft
*p
, *q
, *r
;
4557 /* Reverse linked list */
4567 /* Go through linked list, freeing from the malloced (t[-1]) address. */
4576 /* --- inftrees.c */
4578 /* +++ infcodes.c */
4579 /* infcodes.c -- process literals and length/distance pairs
4580 * Copyright (C) 1995-1996 Mark Adler
4581 * For conditions of distribution and use, see copyright notice in zlib.h
4584 /* #include "zutil.h" */
4585 /* #include "inftrees.h" */
4586 /* #include "infblock.h" */
4587 /* #include "infcodes.h" */
4588 /* #include "infutil.h" */
4591 /* inffast.h -- header to use inffast.c
4592 * Copyright (C) 1995-1996 Mark Adler
4593 * For conditions of distribution and use, see copyright notice in zlib.h
4596 /* WARNING: this file should *not* be used by applications. It is
4597 part of the implementation of the compression library and is
4598 subject to change. Applications should only use zlib.h.
4601 extern int inflate_fast
OF((
4606 inflate_blocks_statef
*,
4610 /* simplify the use of the inflate_huft type with some defines */
4611 #define base more.Base
4612 #define next more.Next
4613 #define exop word.what.Exop
4614 #define bits word.what.Bits
4616 /* inflate codes private state */
4617 struct inflate_codes_state
{
4620 enum { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4621 START
, /* x: set up for LEN */
4622 LEN
, /* i: get length/literal/eob next */
4623 LENEXT
, /* i: getting length extra (have base) */
4624 DIST
, /* i: get distance next */
4625 DISTEXT
, /* i: getting distance extra */
4626 COPY
, /* o: copying bytes in window, waiting for space */
4627 LIT
, /* o: got literal, waiting for output space */
4628 WASH
, /* o: got eob, possibly still output waiting */
4629 END
, /* x: got eob and all data flushed */
4630 BADCODE
} /* x: got error */
4631 mode
; /* current inflate_codes mode */
4633 /* mode dependent information */
4637 inflate_huft
*tree
; /* pointer into tree */
4638 uInt need
; /* bits needed */
4639 } code
; /* if LEN or DIST, where in tree */
4640 uInt lit
; /* if LIT, literal */
4642 uInt get
; /* bits to get for extra */
4643 uInt dist
; /* distance back to copy from */
4644 } copy
; /* if EXT or COPY, where and how much */
4645 } sub
; /* submode */
4647 /* mode independent information */
4648 Byte lbits
; /* ltree bits decoded per branch */
4649 Byte dbits
; /* dtree bits decoder per branch */
4650 inflate_huft
*ltree
; /* literal/length/eob tree */
4651 inflate_huft
*dtree
; /* distance tree */
4656 inflate_codes_statef
*inflate_codes_new(bl
, bd
, tl
, td
, z
)
4659 inflate_huft
*td
; /* need separate declaration for Borland C++ */
4662 inflate_codes_statef
*c
;
4664 if ((c
= (inflate_codes_statef
*)
4665 ZALLOC(z
,1,sizeof(struct inflate_codes_state
))) != Z_NULL
)
4668 c
->lbits
= (Byte
)bl
;
4669 c
->dbits
= (Byte
)bd
;
4672 Tracev((stderr
, "inflate: codes new\n"));
4678 int inflate_codes(s
, z
, r
)
4679 inflate_blocks_statef
*s
;
4683 uInt j
; /* temporary storage */
4684 inflate_huft
*t
; /* temporary pointer */
4685 uInt e
; /* extra bits or operation */
4686 uLong b
; /* bit buffer */
4687 uInt k
; /* bits in bit buffer */
4688 Bytef
*p
; /* input data pointer */
4689 uInt n
; /* bytes available there */
4690 Bytef
*q
; /* output window write pointer */
4691 uInt m
; /* bytes to end of window or read pointer */
4692 Bytef
*f
; /* pointer to copy strings from */
4693 inflate_codes_statef
*c
= s
->sub
.decode
.codes
; /* codes state */
4695 /* copy input/output information to locals (UPDATE macro restores) */
4698 /* process input and output based on current state */
4699 while (1) switch (c
->mode
)
4700 { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4701 case START
: /* x: set up for LEN */
4703 if (m
>= 258 && n
>= 10)
4706 r
= inflate_fast(c
->lbits
, c
->dbits
, c
->ltree
, c
->dtree
, s
, z
);
4710 c
->mode
= r
== Z_STREAM_END
? WASH
: BADCODE
;
4715 c
->sub
.code
.need
= c
->lbits
;
4716 c
->sub
.code
.tree
= c
->ltree
;
4718 case LEN
: /* i: get length/literal/eob next */
4719 j
= c
->sub
.code
.need
;
4721 t
= c
->sub
.code
.tree
+ ((uInt
)b
& inflate_mask
[j
]);
4723 e
= (uInt
)(t
->exop
);
4724 if (e
== 0) /* literal */
4726 c
->sub
.lit
= t
->base
;
4727 Tracevv((stderr
, t
->base
>= 0x20 && t
->base
< 0x7f ?
4728 "inflate: literal '%c'\n" :
4729 "inflate: literal 0x%02x\n", t
->base
));
4733 if (e
& 16) /* length */
4735 c
->sub
.copy
.get
= e
& 15;
4740 if ((e
& 64) == 0) /* next table */
4742 c
->sub
.code
.need
= e
;
4743 c
->sub
.code
.tree
= t
->next
;
4746 if (e
& 32) /* end of block */
4748 Tracevv((stderr
, "inflate: end of block\n"));
4752 c
->mode
= BADCODE
; /* invalid code */
4753 z
->msg
= (char*)"invalid literal/length code";
4756 case LENEXT
: /* i: getting length extra (have base) */
4757 j
= c
->sub
.copy
.get
;
4759 c
->len
+= (uInt
)b
& inflate_mask
[j
];
4761 c
->sub
.code
.need
= c
->dbits
;
4762 c
->sub
.code
.tree
= c
->dtree
;
4763 Tracevv((stderr
, "inflate: length %u\n", c
->len
));
4765 case DIST
: /* i: get distance next */
4766 j
= c
->sub
.code
.need
;
4768 t
= c
->sub
.code
.tree
+ ((uInt
)b
& inflate_mask
[j
]);
4770 e
= (uInt
)(t
->exop
);
4771 if (e
& 16) /* distance */
4773 c
->sub
.copy
.get
= e
& 15;
4774 c
->sub
.copy
.dist
= t
->base
;
4778 if ((e
& 64) == 0) /* next table */
4780 c
->sub
.code
.need
= e
;
4781 c
->sub
.code
.tree
= t
->next
;
4784 c
->mode
= BADCODE
; /* invalid code */
4785 z
->msg
= (char*)"invalid distance code";
4788 case DISTEXT
: /* i: getting distance extra */
4789 j
= c
->sub
.copy
.get
;
4791 c
->sub
.copy
.dist
+= (uInt
)b
& inflate_mask
[j
];
4793 Tracevv((stderr
, "inflate: distance %u\n", c
->sub
.copy
.dist
));
4795 case COPY
: /* o: copying bytes in window, waiting for space */
4796 #ifndef __TURBOC__ /* Turbo C bug for following expression */
4797 f
= (uInt
)(q
- s
->window
) < c
->sub
.copy
.dist
?
4798 s
->end
- (c
->sub
.copy
.dist
- (q
- s
->window
)) :
4799 q
- c
->sub
.copy
.dist
;
4801 f
= q
- c
->sub
.copy
.dist
;
4802 if ((uInt
)(q
- s
->window
) < c
->sub
.copy
.dist
)
4803 f
= s
->end
- (c
->sub
.copy
.dist
- (uInt
)(q
- s
->window
));
4815 case LIT
: /* o: got literal, waiting for output space */
4820 case WASH
: /* o: got eob, possibly more output */
4822 if (s
->read
!= s
->write
)
4828 case BADCODE
: /* x: got error */
4838 void inflate_codes_free(c
, z
)
4839 inflate_codes_statef
*c
;
4843 Tracev((stderr
, "inflate: codes free\n"));
4845 /* --- infcodes.c */
4848 /* inflate_util.c -- data and routines common to blocks and codes
4849 * Copyright (C) 1995-1996 Mark Adler
4850 * For conditions of distribution and use, see copyright notice in zlib.h
4853 /* #include "zutil.h" */
4854 /* #include "infblock.h" */
4855 /* #include "inftrees.h" */
4856 /* #include "infcodes.h" */
4857 /* #include "infutil.h" */
4859 #ifndef NO_DUMMY_DECL
4860 struct inflate_codes_state
{int dummy
;}; /* for buggy compilers */
4863 /* And'ing with mask[n] masks the lower n bits */
4864 uInt inflate_mask
[17] = {
4866 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
4867 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
4871 /* copy as much as possible from the sliding window to the output area */
4872 int inflate_flush(s
, z
, r
)
4873 inflate_blocks_statef
*s
;
4881 /* local copies of source and destination pointers */
4885 /* compute number of bytes to copy as far as end of window */
4886 n
= (uInt
)((q
<= s
->write
? s
->write
: s
->end
) - q
);
4887 if (n
> z
->avail_out
) n
= z
->avail_out
;
4888 if (n
&& r
== Z_BUF_ERROR
) r
= Z_OK
;
4890 /* update counters */
4894 /* update check information */
4895 if (s
->checkfn
!= Z_NULL
)
4896 z
->adler
= s
->check
= (*s
->checkfn
)(s
->check
, q
, n
);
4898 /* copy as far as end of window */
4905 /* see if more to copy at beginning of window */
4910 if (s
->write
== s
->end
)
4911 s
->write
= s
->window
;
4913 /* compute bytes to copy */
4914 n
= (uInt
)(s
->write
- q
);
4915 if (n
> z
->avail_out
) n
= z
->avail_out
;
4916 if (n
&& r
== Z_BUF_ERROR
) r
= Z_OK
;
4918 /* update counters */
4922 /* update check information */
4923 if (s
->checkfn
!= Z_NULL
)
4924 z
->adler
= s
->check
= (*s
->checkfn
)(s
->check
, q
, n
);
4934 /* update pointers */
4944 /* inffast.c -- process literals and length/distance pairs fast
4945 * Copyright (C) 1995-1996 Mark Adler
4946 * For conditions of distribution and use, see copyright notice in zlib.h
4949 /* #include "zutil.h" */
4950 /* #include "inftrees.h" */
4951 /* #include "infblock.h" */
4952 /* #include "infcodes.h" */
4953 /* #include "infutil.h" */
4954 /* #include "inffast.h" */
4956 #ifndef NO_DUMMY_DECL
4957 struct inflate_codes_state
{int dummy
;}; /* for buggy compilers */
4960 /* simplify the use of the inflate_huft type with some defines */
4961 #define base more.Base
4962 #define next more.Next
4963 #define exop word.what.Exop
4964 #define bits word.what.Bits
4966 /* macros for bit input with no checking and for returning unused bytes */
4967 #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4968 #define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4970 /* Called with number of bytes left to write in window at least 258
4971 (the maximum string length) and number of input bytes available
4972 at least ten. The ten bytes are six bytes for the longest length/
4973 distance pair plus four bytes for overloading the bit buffer. */
4975 int inflate_fast(bl
, bd
, tl
, td
, s
, z
)
4978 inflate_huft
*td
; /* need separate declaration for Borland C++ */
4979 inflate_blocks_statef
*s
;
4982 inflate_huft
*t
; /* temporary pointer */
4983 uInt e
; /* extra bits or operation */
4984 uLong b
; /* bit buffer */
4985 uInt k
; /* bits in bit buffer */
4986 Bytef
*p
; /* input data pointer */
4987 uInt n
; /* bytes available there */
4988 Bytef
*q
; /* output window write pointer */
4989 uInt m
; /* bytes to end of window or read pointer */
4990 uInt ml
; /* mask for literal/length tree */
4991 uInt md
; /* mask for distance tree */
4992 uInt c
; /* bytes to copy */
4993 uInt d
; /* distance back to copy from */
4994 Bytef
*r
; /* copy source pointer */
4996 /* load input, output, bit values */
4999 /* initialize masks */
5000 ml
= inflate_mask
[bl
];
5001 md
= inflate_mask
[bd
];
5003 /* do until not enough input or output space for fast loop */
5004 do { /* assume called with m >= 258 && n >= 10 */
5005 /* get literal/length code */
5006 GRABBITS(20) /* max bits for literal/length code */
5007 if ((e
= (t
= tl
+ ((uInt
)b
& ml
))->exop
) == 0)
5010 Tracevv((stderr
, t
->base
>= 0x20 && t
->base
< 0x7f ?
5011 "inflate: * literal '%c'\n" :
5012 "inflate: * literal 0x%02x\n", t
->base
));
5013 *q
++ = (Byte
)t
->base
;
5021 /* get extra bits for length */
5023 c
= t
->base
+ ((uInt
)b
& inflate_mask
[e
]);
5025 Tracevv((stderr
, "inflate: * length %u\n", c
));
5027 /* decode distance base of block to copy */
5028 GRABBITS(15); /* max bits for distance code */
5029 e
= (t
= td
+ ((uInt
)b
& md
))->exop
;
5034 /* get extra bits to add to distance base */
5036 GRABBITS(e
) /* get extra bits (up to 13) */
5037 d
= t
->base
+ ((uInt
)b
& inflate_mask
[e
]);
5039 Tracevv((stderr
, "inflate: * distance %u\n", d
));
5043 if ((uInt
)(q
- s
->window
) >= d
) /* offset before dest */
5046 *q
++ = *r
++; c
--; /* minimum count is three, */
5047 *q
++ = *r
++; c
--; /* so unroll loop a little */
5049 else /* else offset after destination */
5051 e
= d
- (uInt
)(q
- s
->window
); /* bytes from offset to end */
5052 r
= s
->end
- e
; /* pointer to offset */
5053 if (c
> e
) /* if source crosses, */
5055 c
-= e
; /* copy to end of window */
5059 r
= s
->window
; /* copy rest from start of window */
5062 do { /* copy all or what's left */
5067 else if ((e
& 64) == 0)
5068 e
= (t
= t
->next
+ ((uInt
)b
& inflate_mask
[e
]))->exop
;
5071 z
->msg
= (char*)"invalid distance code";
5074 return Z_DATA_ERROR
;
5081 if ((e
= (t
= t
->next
+ ((uInt
)b
& inflate_mask
[e
]))->exop
) == 0)
5084 Tracevv((stderr
, t
->base
>= 0x20 && t
->base
< 0x7f ?
5085 "inflate: * literal '%c'\n" :
5086 "inflate: * literal 0x%02x\n", t
->base
));
5087 *q
++ = (Byte
)t
->base
;
5094 Tracevv((stderr
, "inflate: * end of block\n"));
5097 return Z_STREAM_END
;
5101 z
->msg
= (char*)"invalid literal/length code";
5104 return Z_DATA_ERROR
;
5107 } while (m
>= 258 && n
>= 10);
5109 /* not enough input or output--restore pointers and return */
5117 /* zutil.c -- target dependent utility functions for the compression library
5118 * Copyright (C) 1995-1996 Jean-loup Gailly.
5119 * For conditions of distribution and use, see copyright notice in zlib.h
5122 /* From: zutil.c,v 1.17 1996/07/24 13:41:12 me Exp $ */
5128 /* #include "zutil.h" */
5130 #ifndef NO_DUMMY_DECL
5131 struct internal_state
{int dummy
;}; /* for buggy compilers */
5135 extern void exit
OF((int));
5138 static const char *z_errmsg
[10] = {
5139 "need dictionary", /* Z_NEED_DICT 2 */
5140 "stream end", /* Z_STREAM_END 1 */
5142 "file error", /* Z_ERRNO (-1) */
5143 "stream error", /* Z_STREAM_ERROR (-2) */
5144 "data error", /* Z_DATA_ERROR (-3) */
5145 "insufficient memory", /* Z_MEM_ERROR (-4) */
5146 "buffer error", /* Z_BUF_ERROR (-5) */
5147 "incompatible version",/* Z_VERSION_ERROR (-6) */
5151 const char *zlibVersion()
5153 return ZLIB_VERSION
;
5160 fprintf(stderr
, "%s\n", m
);
5167 void zmemcpy(dest
, source
, len
)
5172 if (len
== 0) return;
5174 *dest
++ = *source
++; /* ??? to be unrolled */
5175 } while (--len
!= 0);
5178 int zmemcmp(s1
, s2
, len
)
5185 for (j
= 0; j
< len
; j
++) {
5186 if (s1
[j
] != s2
[j
]) return 2*(s1
[j
] > s2
[j
])-1;
5191 void zmemzero(dest
, len
)
5195 if (len
== 0) return;
5197 *dest
++ = 0; /* ??? to be unrolled */
5198 } while (--len
!= 0);
5203 #if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5204 /* Small and medium model in Turbo C are for now limited to near allocation
5205 * with reduced MAX_WBITS and MAX_MEM_LEVEL
5209 /* Turbo C malloc() does not allow dynamic allocation of 64K bytes
5210 * and farmalloc(64K) returns a pointer with an offset of 8, so we
5211 * must fix the pointer. Warning: the pointer must be put back to its
5212 * original form in order to free it, use zcfree().
5218 local
int next_ptr
= 0;
5220 typedef struct ptr_table_s
{
5225 local ptr_table table
[MAX_PTR
];
5226 /* This table is used to remember the original form of pointers
5227 * to large buffers (64K). Such pointers are normalized with a zero offset.
5228 * Since MSDOS is not a preemptive multitasking OS, this table is not
5229 * protected from concurrent access. This hack doesn't work anyway on
5230 * a protected system like OS/2. Use Microsoft C instead.
5233 voidpf
zcalloc (voidpf opaque
, unsigned items
, unsigned size
)
5235 voidpf buf
= opaque
; /* just to make some compilers happy */
5236 ulg bsize
= (ulg
)items
*size
;
5238 /* If we allocate less than 65520 bytes, we assume that farmalloc
5239 * will return a usable pointer which doesn't have to be normalized.
5241 if (bsize
< 65520L) {
5242 buf
= farmalloc(bsize
);
5243 if (*(ush
*)&buf
!= 0) return buf
;
5245 buf
= farmalloc(bsize
+ 16L);
5247 if (buf
== NULL
|| next_ptr
>= MAX_PTR
) return NULL
;
5248 table
[next_ptr
].org_ptr
= buf
;
5250 /* Normalize the pointer to seg:0 */
5251 *((ush
*)&buf
+1) += ((ush
)((uch
*)buf
-0) + 15) >> 4;
5253 table
[next_ptr
++].new_ptr
= buf
;
5257 void zcfree (voidpf opaque
, voidpf ptr
)
5260 if (*(ush
*)&ptr
!= 0) { /* object < 64K */
5264 /* Find the original pointer */
5265 for (n
= 0; n
< next_ptr
; n
++) {
5266 if (ptr
!= table
[n
].new_ptr
) continue;
5268 farfree(table
[n
].org_ptr
);
5269 while (++n
< next_ptr
) {
5270 table
[n
-1] = table
[n
];
5275 ptr
= opaque
; /* just to make some compilers happy */
5276 Assert(0, "zcfree: ptr not found");
5279 #endif /* __TURBOC__ */
5282 #if defined(M_I86) && !defined(__32BIT__)
5283 /* Microsoft C in 16-bit mode */
5287 #if (!defined(_MSC_VER) || (_MSC_VER < 600))
5288 # define _halloc halloc
5289 # define _hfree hfree
5292 voidpf
zcalloc (voidpf opaque
, unsigned items
, unsigned size
)
5294 if (opaque
) opaque
= 0; /* to make compiler happy */
5295 return _halloc((long)items
, size
);
5298 void zcfree (voidpf opaque
, voidpf ptr
)
5300 if (opaque
) opaque
= 0; /* to make compiler happy */
5307 #ifndef MY_ZCALLOC /* Any system without a special alloc function */
5310 extern voidp calloc
OF((uInt items
, uInt size
));
5311 extern void free
OF((voidpf ptr
));
5314 voidpf
zcalloc (opaque
, items
, size
)
5319 if (opaque
) items
+= size
- size
; /* make compiler happy */
5320 return (voidpf
)calloc(items
, size
);
5323 void zcfree (opaque
, ptr
)
5328 if (opaque
) return; /* make compiler happy */
5331 #endif /* MY_ZCALLOC */
5335 /* adler32.c -- compute the Adler-32 checksum of a data stream
5336 * Copyright (C) 1995-1996 Mark Adler
5337 * For conditions of distribution and use, see copyright notice in zlib.h
5340 /* From: adler32.c,v 1.10 1996/05/22 11:52:18 me Exp $ */
5342 /* #include "zlib.h" */
5344 #define BASE 65521L /* largest prime smaller than 65536 */
5346 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
5348 #define DO1(buf,i) {s1 += buf[i]; s2 += s1;}
5349 #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
5350 #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
5351 #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
5352 #define DO16(buf) DO8(buf,0); DO8(buf,8);
5354 /* ========================================================================= */
5355 uLong
adler32(adler
, buf
, len
)
5360 unsigned long s1
= adler
& 0xffff;
5361 unsigned long s2
= (adler
>> 16) & 0xffff;
5364 if (buf
== Z_NULL
) return 1L;
5367 k
= len
< NMAX
? len
: NMAX
;
5381 return (s2
<< 16) | s1
;