2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
4 * @APPLE_LICENSE_HEADER_START@
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
20 * @APPLE_LICENSE_HEADER_END@
23 * Copyright (c) 1982, 1986, 1988, 1993
24 * The Regents of the University of California. All rights reserved.
26 * Redistribution and use in source and binary forms, with or without
27 * modification, are permitted provided that the following conditions
29 * 1. Redistributions of source code must retain the above copyright
30 * notice, this list of conditions and the following disclaimer.
31 * 2. Redistributions in binary form must reproduce the above copyright
32 * notice, this list of conditions and the following disclaimer in the
33 * documentation and/or other materials provided with the distribution.
34 * 3. All advertising materials mentioning features or use of this software
35 * must display the following acknowledgement:
36 * This product includes software developed by the University of
37 * California, Berkeley and its contributors.
38 * 4. Neither the name of the University nor the names of its contributors
39 * may be used to endorse or promote products derived from this software
40 * without specific prior written permission.
42 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
54 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
55 * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.25 2001/08/29 21:41:37 jesper Exp $
60 #include <sys/param.h>
61 #include <sys/systm.h>
63 #include <sys/malloc.h>
64 #include <sys/domain.h>
65 #include <sys/protosw.h>
66 #include <sys/socket.h>
68 #include <sys/kernel.h>
69 #include <sys/syslog.h>
70 #include <sys/sysctl.h>
72 #include <kern/queue.h>
73 #include <kern/locks.h>
76 #include <net/if_var.h>
77 #include <net/if_dl.h>
78 #include <net/route.h>
79 #include <net/kpi_protocol.h>
81 #include <netinet/in.h>
82 #include <netinet/in_systm.h>
83 #include <netinet/in_var.h>
84 #include <netinet/ip.h>
85 #include <netinet/in_pcb.h>
86 #include <netinet/ip_var.h>
87 #include <netinet/ip_icmp.h>
88 #include <sys/socketvar.h>
90 #include <netinet/ip_fw.h>
91 #include <netinet/ip_divert.h>
93 #include <netinet/kpi_ipfilter_var.h>
95 /* needed for AUTOCONFIGURING: */
96 #include <netinet/udp.h>
97 #include <netinet/udp_var.h>
98 #include <netinet/bootp.h>
100 #include <sys/kdebug.h>
102 #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIP, 0)
103 #define DBG_LAYER_END NETDBG_CODE(DBG_NETIP, 2)
104 #define DBG_FNC_IP_INPUT NETDBG_CODE(DBG_NETIP, (2 << 8))
108 #include <netinet6/ipsec.h>
109 #include <netkey/key.h>
113 #if defined(NFAITH) && NFAITH > 0
114 #include <net/if_types.h>
118 #include <netinet/ip_dummynet.h>
122 extern int ipsec_bypass
;
123 extern lck_mtx_t
*sadb_mutex
;
127 static int ip_rsvp_on
;
128 struct socket
*ip_rsvpd
;
130 int ipforwarding
= 0;
131 SYSCTL_INT(_net_inet_ip
, IPCTL_FORWARDING
, forwarding
, CTLFLAG_RW
,
132 &ipforwarding
, 0, "Enable IP forwarding between interfaces");
134 static int ipsendredirects
= 1; /* XXX */
135 SYSCTL_INT(_net_inet_ip
, IPCTL_SENDREDIRECTS
, redirect
, CTLFLAG_RW
,
136 &ipsendredirects
, 0, "Enable sending IP redirects");
138 int ip_defttl
= IPDEFTTL
;
139 SYSCTL_INT(_net_inet_ip
, IPCTL_DEFTTL
, ttl
, CTLFLAG_RW
,
140 &ip_defttl
, 0, "Maximum TTL on IP packets");
142 static int ip_dosourceroute
= 0;
143 SYSCTL_INT(_net_inet_ip
, IPCTL_SOURCEROUTE
, sourceroute
, CTLFLAG_RW
,
144 &ip_dosourceroute
, 0, "Enable forwarding source routed IP packets");
146 static int ip_acceptsourceroute
= 0;
147 SYSCTL_INT(_net_inet_ip
, IPCTL_ACCEPTSOURCEROUTE
, accept_sourceroute
,
148 CTLFLAG_RW
, &ip_acceptsourceroute
, 0,
149 "Enable accepting source routed IP packets");
151 static int ip_keepfaith
= 0;
152 SYSCTL_INT(_net_inet_ip
, IPCTL_KEEPFAITH
, keepfaith
, CTLFLAG_RW
,
154 "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
156 static int nipq
= 0; /* total # of reass queues */
158 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, maxfragpackets
, CTLFLAG_RW
,
160 "Maximum number of IPv4 fragment reassembly queue entries");
162 static int maxfragsperpacket
;
163 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, maxfragsperpacket
, CTLFLAG_RW
,
164 &maxfragsperpacket
, 0,
165 "Maximum number of IPv4 fragments allowed per packet");
168 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, maxfrags
, CTLFLAG_RW
,
169 &maxfrags
, 0, "Maximum number of IPv4 fragments allowed");
171 static int currentfrags
= 0;
174 * XXX - Setting ip_checkinterface mostly implements the receive side of
175 * the Strong ES model described in RFC 1122, but since the routing table
176 * and transmit implementation do not implement the Strong ES model,
177 * setting this to 1 results in an odd hybrid.
179 * XXX - ip_checkinterface currently must be disabled if you use ipnat
180 * to translate the destination address to another local interface.
182 * XXX - ip_checkinterface must be disabled if you add IP aliases
183 * to the loopback interface instead of the interface where the
184 * packets for those addresses are received.
186 static int ip_checkinterface
= 0;
187 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, check_interface
, CTLFLAG_RW
,
188 &ip_checkinterface
, 0, "Verify packet arrives on correct interface");
191 static int ipprintfs
= 0;
194 extern struct domain inetdomain
;
195 extern struct protosw inetsw
[];
196 struct protosw
*ip_protox
[IPPROTO_MAX
];
197 static int ipqmaxlen
= IFQ_MAXLEN
;
198 struct in_ifaddrhead in_ifaddrhead
; /* first inet address */
199 struct ifqueue ipintrq
;
200 SYSCTL_INT(_net_inet_ip
, IPCTL_INTRQMAXLEN
, intr_queue_maxlen
, CTLFLAG_RW
,
201 &ipintrq
.ifq_maxlen
, 0, "Maximum size of the IP input queue");
202 SYSCTL_INT(_net_inet_ip
, IPCTL_INTRQDROPS
, intr_queue_drops
, CTLFLAG_RD
,
203 &ipintrq
.ifq_drops
, 0, "Number of packets dropped from the IP input queue");
205 struct ipstat ipstat
;
206 SYSCTL_STRUCT(_net_inet_ip
, IPCTL_STATS
, stats
, CTLFLAG_RD
,
207 &ipstat
, ipstat
, "IP statistics (struct ipstat, netinet/ip_var.h)");
209 /* Packet reassembly stuff */
210 #define IPREASS_NHASH_LOG2 6
211 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
212 #define IPREASS_HMASK (IPREASS_NHASH - 1)
213 #define IPREASS_HASH(x,y) \
214 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
216 static struct ipq ipq
[IPREASS_NHASH
];
217 static TAILQ_HEAD(ipq_list
, ipq
) ipq_list
=
218 TAILQ_HEAD_INITIALIZER(ipq_list
);
219 const int ipintrq_present
= 1;
221 lck_attr_t
*ip_mutex_attr
;
222 lck_grp_t
*ip_mutex_grp
;
223 lck_grp_attr_t
*ip_mutex_grp_attr
;
224 lck_mtx_t
*inet_domain_mutex
;
225 extern lck_mtx_t
*domain_proto_mtx
;
228 SYSCTL_INT(_net_inet_ip
, IPCTL_DEFMTU
, mtu
, CTLFLAG_RW
,
229 &ip_mtu
, 0, "Default MTU");
233 static int ipstealth
= 0;
234 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, stealth
, CTLFLAG_RW
,
240 ip_fw_chk_t
*ip_fw_chk_ptr
;
245 ip_dn_io_t
*ip_dn_io_ptr
;
248 int (*fr_checkp
)(struct ip
*, int, struct ifnet
*, int, struct mbuf
**) = NULL
;
250 SYSCTL_NODE(_net_inet_ip
, OID_AUTO
, linklocal
, CTLFLAG_RW
, 0, "link local");
252 struct ip_linklocal_stat ip_linklocal_stat
;
253 SYSCTL_STRUCT(_net_inet_ip_linklocal
, OID_AUTO
, stat
, CTLFLAG_RD
,
254 &ip_linklocal_stat
, ip_linklocal_stat
,
255 "Number of link local packets with TTL less than 255");
257 SYSCTL_NODE(_net_inet_ip_linklocal
, OID_AUTO
, in
, CTLFLAG_RW
, 0, "link local input");
259 int ip_linklocal_in_allowbadttl
= 1;
260 SYSCTL_INT(_net_inet_ip_linklocal_in
, OID_AUTO
, allowbadttl
, CTLFLAG_RW
,
261 &ip_linklocal_in_allowbadttl
, 0,
262 "Allow incoming link local packets with TTL less than 255");
266 * We need to save the IP options in case a protocol wants to respond
267 * to an incoming packet over the same route if the packet got here
268 * using IP source routing. This allows connection establishment and
269 * maintenance when the remote end is on a network that is not known
272 static int ip_nhops
= 0;
273 static struct ip_srcrt
{
274 struct in_addr dst
; /* final destination */
275 char nop
; /* one NOP to align */
276 char srcopt
[IPOPT_OFFSET
+ 1]; /* OPTVAL, OLEN and OFFSET */
277 struct in_addr route
[MAX_IPOPTLEN
/sizeof(struct in_addr
)];
281 extern struct mbuf
* m_dup(register struct mbuf
*m
, int how
);
284 static void save_rte(u_char
*, struct in_addr
);
285 static int ip_dooptions(struct mbuf
*, int, struct sockaddr_in
*, struct route
*ipforward_rt
);
286 static void ip_forward(struct mbuf
*, int, struct sockaddr_in
*, struct route
*ipforward_rt
);
287 static void ip_freef(struct ipq
*);
290 static struct mbuf
*ip_reass(struct mbuf
*,
291 struct ipq
*, struct ipq
*, u_int32_t
*, u_int16_t
*);
293 static struct mbuf
*ip_reass(struct mbuf
*,
294 struct ipq
*, struct ipq
*, u_int16_t
*, u_int16_t
*);
297 static struct mbuf
*ip_reass(struct mbuf
*, struct ipq
*, struct ipq
*);
302 extern u_short ip_id
;
305 extern u_long route_generation
;
306 extern int apple_hwcksum_rx
;
309 * IP initialization: fill in IP protocol switch table.
310 * All protocols not implemented in kernel go to raw IP protocol handler.
315 register struct protosw
*pr
;
317 static ip_initialized
= 0;
318 struct timeval timenow
;
323 TAILQ_INIT(&in_ifaddrhead
);
324 pr
= pffindproto_locked(PF_INET
, IPPROTO_RAW
, SOCK_RAW
);
327 for (i
= 0; i
< IPPROTO_MAX
; i
++)
329 for (pr
= inetdomain
.dom_protosw
; pr
; pr
= pr
->pr_next
)
330 { if(!((unsigned int)pr
->pr_domain
)) continue; /* If uninitialized, skip */
331 if (pr
->pr_domain
->dom_family
== PF_INET
&&
332 pr
->pr_protocol
&& pr
->pr_protocol
!= IPPROTO_RAW
)
333 ip_protox
[pr
->pr_protocol
] = pr
;
335 for (i
= 0; i
< IPREASS_NHASH
; i
++)
336 ipq
[i
].next
= ipq
[i
].prev
= &ipq
[i
];
338 maxnipq
= nmbclusters
/ 32;
339 maxfrags
= maxnipq
* 2;
340 maxfragsperpacket
= 128; /* enough for 64k in 512 byte fragments */
343 getmicrouptime(&timenow
);
344 ip_id
= timenow
.tv_sec
& 0xffff;
346 ipintrq
.ifq_maxlen
= ipqmaxlen
;
350 ip_mutex_grp_attr
= lck_grp_attr_alloc_init();
351 lck_grp_attr_setdefault(ip_mutex_grp_attr
);
353 ip_mutex_grp
= lck_grp_alloc_init("ip", ip_mutex_grp_attr
);
355 ip_mutex_attr
= lck_attr_alloc_init();
357 lck_attr_setdefault(ip_mutex_attr
);
359 if ((ip_mutex
= lck_mtx_alloc_init(ip_mutex_grp
, ip_mutex_attr
)) == NULL
) {
360 printf("ip_init: can't alloc ip_mutex\n");
370 protocol_family_t protocol
,
376 /* Initialize the PF_INET domain, and add in the pre-defined protos */
380 register struct protosw
*pr
;
381 register struct domain
*dp
;
382 static inetdomain_initted
= 0;
383 extern int in_proto_count
;
385 if (!inetdomain_initted
)
387 kprintf("Initing %d protosw entries\n", in_proto_count
);
389 dp
->dom_flags
= DOM_REENTRANT
;
391 for (i
=0, pr
= &inetsw
[0]; i
<in_proto_count
; i
++, pr
++)
392 net_add_proto(pr
, dp
);
393 inet_domain_mutex
= dp
->dom_mtx
;
394 inetdomain_initted
= 1;
396 lck_mtx_unlock(domain_proto_mtx
);
397 proto_register_input(PF_INET
, ip_proto_input
, NULL
);
398 lck_mtx_lock(domain_proto_mtx
);
402 __private_extern__
void
403 ip_proto_dispatch_in(
407 ipfilter_t inject_ipfref
)
409 struct ipfilter
*filter
;
410 int seen
= (inject_ipfref
== 0);
411 int changed_header
= 0;
414 if (!TAILQ_EMPTY(&ipv4_filters
)) {
416 TAILQ_FOREACH(filter
, &ipv4_filters
, ipf_link
) {
418 if ((struct ipfilter
*)inject_ipfref
== filter
)
420 } else if (filter
->ipf_filter
.ipf_input
) {
423 if (changed_header
== 0) {
425 ip
= mtod(m
, struct ip
*);
426 ip
->ip_len
= htons(ip
->ip_len
+ hlen
);
427 ip
->ip_off
= htons(ip
->ip_off
);
429 ip
->ip_sum
= in_cksum(m
, hlen
);
431 result
= filter
->ipf_filter
.ipf_input(
432 filter
->ipf_filter
.cookie
, (mbuf_t
*)&m
, hlen
, proto
);
433 if (result
== EJUSTRETURN
) {
447 * If there isn't a specific lock for the protocol
448 * we're about to call, use the generic lock for AF_INET.
449 * otherwise let the protocol deal with its own locking
451 ip
= mtod(m
, struct ip
*);
453 if (changed_header
) {
454 ip
->ip_len
= ntohs(ip
->ip_len
) - hlen
;
455 ip
->ip_off
= ntohs(ip
->ip_off
);
458 if (!(ip_protox
[ip
->ip_p
]->pr_flags
& PR_PROTOLOCK
)) {
459 lck_mtx_lock(inet_domain_mutex
);
460 (*ip_protox
[ip
->ip_p
]->pr_input
)(m
, hlen
);
461 lck_mtx_unlock(inet_domain_mutex
);
464 (*ip_protox
[ip
->ip_p
]->pr_input
)(m
, hlen
);
469 * ipforward_rt cleared in in_addroute()
470 * when a new route is successfully created.
472 static struct sockaddr_in ipaddr
= { sizeof(ipaddr
), AF_INET
};
475 * Ip input routine. Checksum and byte swap header. If fragmented
476 * try to reassemble. Process options. Pass to next level.
479 ip_input(struct mbuf
*m
)
483 struct in_ifaddr
*ia
= NULL
;
484 int i
, hlen
, mff
, checkif
;
486 struct in_addr pkt_dst
;
487 u_int32_t div_info
= 0; /* packet divert/tee info */
488 struct ip_fw_args args
;
489 ipfilter_t inject_filter_ref
= 0;
491 struct route ipforward_rt
= { 0 };
493 lck_mtx_lock(ip_mutex
);
498 args
.divert_rule
= 0; /* divert cookie */
499 args
.next_hop
= NULL
;
501 /* Grab info from mtags prepended to the chain */
503 if ((tag
= m_tag_locate(m
, KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_DUMMYNET
, NULL
)) != NULL
) {
504 struct dn_pkt_tag
*dn_tag
;
506 dn_tag
= (struct dn_pkt_tag
*)(tag
+1);
507 args
.rule
= dn_tag
->rule
;
509 m_tag_delete(m
, tag
);
511 #endif /* DUMMYNET */
513 if ((tag
= m_tag_locate(m
, KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_DIVERT
, NULL
)) != NULL
) {
514 struct divert_tag
*div_tag
;
516 div_tag
= (struct divert_tag
*)(tag
+1);
517 args
.divert_rule
= div_tag
->cookie
;
519 m_tag_delete(m
, tag
);
521 if ((tag
= m_tag_locate(m
, KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_IPFORWARD
, NULL
)) != NULL
) {
522 struct ip_fwd_tag
*ipfwd_tag
;
524 ipfwd_tag
= (struct ip_fwd_tag
*)(tag
+1);
525 args
.next_hop
= ipfwd_tag
->next_hop
;
527 m_tag_delete(m
, tag
);
531 if (m
== NULL
|| (m
->m_flags
& M_PKTHDR
) == 0)
532 panic("ip_input no HDR");
535 if (args
.rule
) { /* dummynet already filtered us */
536 ip
= mtod(m
, struct ip
*);
537 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
538 inject_filter_ref
= ipf_get_inject_filter(m
);
543 * No need to proccess packet twice if we've
546 inject_filter_ref
= ipf_get_inject_filter(m
);
547 if (inject_filter_ref
!= 0) {
548 lck_mtx_unlock(ip_mutex
);
549 ip
= mtod(m
, struct ip
*);
550 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
551 ip
->ip_len
= ntohs(ip
->ip_len
) - hlen
;
552 ip
->ip_off
= ntohs(ip
->ip_off
);
553 ip_proto_dispatch_in(m
, hlen
, ip
->ip_p
, inject_filter_ref
);
559 if (m
->m_pkthdr
.len
< sizeof(struct ip
))
562 if (m
->m_len
< sizeof (struct ip
) &&
563 (m
= m_pullup(m
, sizeof (struct ip
))) == 0) {
564 ipstat
.ips_toosmall
++;
565 lck_mtx_unlock(ip_mutex
);
568 ip
= mtod(m
, struct ip
*);
570 KERNEL_DEBUG(DBG_LAYER_BEG
, ip
->ip_dst
.s_addr
,
571 ip
->ip_src
.s_addr
, ip
->ip_p
, ip
->ip_off
, ip
->ip_len
);
573 if (IP_VHL_V(ip
->ip_vhl
) != IPVERSION
) {
574 ipstat
.ips_badvers
++;
578 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
579 if (hlen
< sizeof(struct ip
)) { /* minimum header length */
580 ipstat
.ips_badhlen
++;
583 if (hlen
> m
->m_len
) {
584 if ((m
= m_pullup(m
, hlen
)) == 0) {
585 ipstat
.ips_badhlen
++;
586 lck_mtx_unlock(ip_mutex
);
589 ip
= mtod(m
, struct ip
*);
592 /* 127/8 must not appear on wire - RFC1122 */
593 if ((ntohl(ip
->ip_dst
.s_addr
) >> IN_CLASSA_NSHIFT
) == IN_LOOPBACKNET
||
594 (ntohl(ip
->ip_src
.s_addr
) >> IN_CLASSA_NSHIFT
) == IN_LOOPBACKNET
) {
595 if ((m
->m_pkthdr
.rcvif
->if_flags
& IFF_LOOPBACK
) == 0) {
596 ipstat
.ips_badaddr
++;
601 /* IPv4 Link-Local Addresses as defined in <draft-ietf-zeroconf-ipv4-linklocal-05.txt> */
602 if ((IN_LINKLOCAL(ntohl(ip
->ip_dst
.s_addr
)) ||
603 IN_LINKLOCAL(ntohl(ip
->ip_src
.s_addr
)))) {
604 ip_linklocal_stat
.iplls_in_total
++;
605 if (ip
->ip_ttl
!= MAXTTL
) {
606 ip_linklocal_stat
.iplls_in_badttl
++;
607 /* Silently drop link local traffic with bad TTL */
608 if (!ip_linklocal_in_allowbadttl
)
612 if ((IF_HWASSIST_CSUM_FLAGS(m
->m_pkthdr
.rcvif
->if_hwassist
) == 0)
613 || (apple_hwcksum_rx
== 0) ||
614 ((m
->m_pkthdr
.csum_flags
& CSUM_TCP_SUM16
) && ip
->ip_p
!= IPPROTO_TCP
)) {
615 m
->m_pkthdr
.csum_flags
= 0; /* invalidate HW generated checksum flags */
618 if (m
->m_pkthdr
.csum_flags
& CSUM_IP_CHECKED
) {
619 sum
= !(m
->m_pkthdr
.csum_flags
& CSUM_IP_VALID
);
621 sum
= in_cksum(m
, hlen
);
629 * Convert fields to host representation.
632 if (ip
->ip_len
< hlen
) {
639 * Check that the amount of data in the buffers
640 * is as at least much as the IP header would have us expect.
641 * Trim mbufs if longer than we expect.
642 * Drop packet if shorter than we expect.
644 if (m
->m_pkthdr
.len
< ip
->ip_len
) {
646 ipstat
.ips_tooshort
++;
649 if (m
->m_pkthdr
.len
> ip
->ip_len
) {
650 /* Invalidate hwcksuming */
651 m
->m_pkthdr
.csum_flags
= 0;
652 m
->m_pkthdr
.csum_data
= 0;
654 if (m
->m_len
== m
->m_pkthdr
.len
) {
655 m
->m_len
= ip
->ip_len
;
656 m
->m_pkthdr
.len
= ip
->ip_len
;
658 m_adj(m
, ip
->ip_len
- m
->m_pkthdr
.len
);
662 if (ipsec_bypass
== 0 && ipsec_gethist(m
, NULL
))
668 * Right now when no processing on packet has done
669 * and it is still fresh out of network we do our black
671 * - Firewall: deny/allow/divert
672 * - Xlate: translate packet's addr/port (NAT).
673 * - Pipe: pass pkt through dummynet.
674 * - Wrap: fake packet's addr/port <unimpl.>
675 * - Encapsulate: put it in another IP and send out. <unimp.>
678 #if defined(IPFIREWALL) && defined(DUMMYNET)
682 * Check if we want to allow this packet to be processed.
683 * Consider it to be bad if not.
688 if (fr_checkp(ip
, hlen
, m
->m_pkthdr
.rcvif
, 0, &m1
) || !m1
)
690 ip
= mtod(m
= m1
, struct ip
*);
692 if (fw_enable
&& IPFW_LOADED
) {
693 #if IPFIREWALL_FORWARD
695 * If we've been forwarded from the output side, then
696 * skip the firewall a second time
700 #endif /* IPFIREWALL_FORWARD */
703 i
= ip_fw_chk_ptr(&args
);
706 if ( (i
& IP_FW_PORT_DENY_FLAG
) || m
== NULL
) { /* drop */
709 lck_mtx_unlock(ip_mutex
);
712 ip
= mtod(m
, struct ip
*); /* just in case m changed */
713 if (i
== 0 && args
.next_hop
== NULL
) /* common case */
716 if (DUMMYNET_LOADED
&& (i
& IP_FW_PORT_DYNT_FLAG
) != 0) {
717 /* Send packet to the appropriate pipe */
718 lck_mtx_unlock(ip_mutex
);
719 ip_dn_io_ptr(m
, i
&0xffff, DN_TO_IP_IN
, &args
);
722 #endif /* DUMMYNET */
724 if (i
!= 0 && (i
& IP_FW_PORT_DYNT_FLAG
) == 0) {
725 /* Divert or tee packet */
730 #if IPFIREWALL_FORWARD
731 if (i
== 0 && args
.next_hop
!= NULL
)
735 * if we get here, the packet must be dropped
738 lck_mtx_unlock(ip_mutex
);
744 * Process options and, if not destined for us,
745 * ship it on. ip_dooptions returns 1 when an
746 * error was detected (causing an icmp message
747 * to be sent and the original packet to be freed).
749 ip_nhops
= 0; /* for source routed packets */
750 if (hlen
> sizeof (struct ip
) && ip_dooptions(m
, 0, args
.next_hop
, &ipforward_rt
)) {
751 lck_mtx_unlock(ip_mutex
);
755 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
756 * matter if it is destined to another node, or whether it is
757 * a multicast one, RSVP wants it! and prevents it from being forwarded
758 * anywhere else. Also checks if the rsvp daemon is running before
759 * grabbing the packet.
761 if (rsvp_on
&& ip
->ip_p
==IPPROTO_RSVP
)
765 * Check our list of addresses, to see if the packet is for us.
766 * If we don't have any addresses, assume any unicast packet
767 * we receive might be for us (and let the upper layers deal
770 if (TAILQ_EMPTY(&in_ifaddrhead
) &&
771 (m
->m_flags
& (M_MCAST
|M_BCAST
)) == 0)
775 * Cache the destination address of the packet; this may be
776 * changed by use of 'ipfw fwd'.
778 pkt_dst
= args
.next_hop
== NULL
?
779 ip
->ip_dst
: args
.next_hop
->sin_addr
;
782 * Enable a consistency check between the destination address
783 * and the arrival interface for a unicast packet (the RFC 1122
784 * strong ES model) if IP forwarding is disabled and the packet
785 * is not locally generated and the packet is not subject to
788 * XXX - Checking also should be disabled if the destination
789 * address is ipnat'ed to a different interface.
791 * XXX - Checking is incompatible with IP aliases added
792 * to the loopback interface instead of the interface where
793 * the packets are received.
795 checkif
= ip_checkinterface
&& (ipforwarding
== 0) &&
796 ((m
->m_pkthdr
.rcvif
->if_flags
& IFF_LOOPBACK
) == 0) &&
797 (args
.next_hop
== NULL
);
799 lck_mtx_lock(rt_mtx
);
800 TAILQ_FOREACH(ia
, &in_ifaddrhead
, ia_link
) {
801 #define satosin(sa) ((struct sockaddr_in *)(sa))
803 if (IA_SIN(ia
)->sin_addr
.s_addr
== INADDR_ANY
) {
804 lck_mtx_unlock(rt_mtx
);
809 * If the address matches, verify that the packet
810 * arrived via the correct interface if checking is
813 if (IA_SIN(ia
)->sin_addr
.s_addr
== pkt_dst
.s_addr
&&
814 (!checkif
|| ia
->ia_ifp
== m
->m_pkthdr
.rcvif
)) {
815 lck_mtx_unlock(rt_mtx
);
819 * Only accept broadcast packets that arrive via the
820 * matching interface. Reception of forwarded directed
821 * broadcasts would be handled via ip_forward() and
822 * ether_output() with the loopback into the stack for
823 * SIMPLEX interfaces handled by ether_output().
825 if ((!checkif
|| ia
->ia_ifp
== m
->m_pkthdr
.rcvif
) &&
826 ia
->ia_ifp
&& ia
->ia_ifp
->if_flags
& IFF_BROADCAST
) {
827 if (satosin(&ia
->ia_broadaddr
)->sin_addr
.s_addr
==
829 lck_mtx_unlock(rt_mtx
);
832 if (ia
->ia_netbroadcast
.s_addr
== pkt_dst
.s_addr
) {
833 lck_mtx_unlock(rt_mtx
);
838 lck_mtx_unlock(rt_mtx
);
839 if (IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
))) {
840 struct in_multi
*inm
;
843 * If we are acting as a multicast router, all
844 * incoming multicast packets are passed to the
845 * kernel-level multicast forwarding function.
846 * The packet is returned (relatively) intact; if
847 * ip_mforward() returns a non-zero value, the packet
848 * must be discarded, else it may be accepted below.
851 ip_mforward(ip
, m
->m_pkthdr
.rcvif
, m
, 0) != 0) {
852 ipstat
.ips_cantforward
++;
854 lck_mtx_unlock(ip_mutex
);
859 * The process-level routing daemon needs to receive
860 * all multicast IGMP packets, whether or not this
861 * host belongs to their destination groups.
863 if (ip
->ip_p
== IPPROTO_IGMP
)
865 ipstat
.ips_forward
++;
868 * See if we belong to the destination multicast group on the
871 IN_LOOKUP_MULTI(ip
->ip_dst
, m
->m_pkthdr
.rcvif
, inm
);
873 ipstat
.ips_notmember
++;
875 lck_mtx_unlock(ip_mutex
);
880 if (ip
->ip_dst
.s_addr
== (u_long
)INADDR_BROADCAST
)
882 if (ip
->ip_dst
.s_addr
== INADDR_ANY
)
885 /* Allow DHCP/BootP responses through */
886 if (m
->m_pkthdr
.rcvif
!= NULL
887 && (m
->m_pkthdr
.rcvif
->if_eflags
& IFEF_AUTOCONFIGURING
)
888 && hlen
== sizeof(struct ip
)
889 && ip
->ip_p
== IPPROTO_UDP
) {
891 if (m
->m_len
< sizeof(struct udpiphdr
)
892 && (m
= m_pullup(m
, sizeof(struct udpiphdr
))) == 0) {
893 udpstat
.udps_hdrops
++;
894 lck_mtx_unlock(ip_mutex
);
897 ui
= mtod(m
, struct udpiphdr
*);
898 if (ntohs(ui
->ui_dport
) == IPPORT_BOOTPC
) {
901 ip
= mtod(m
, struct ip
*); /* in case it changed */
904 #if defined(NFAITH) && 0 < NFAITH
906 * FAITH(Firewall Aided Internet Translator)
908 if (m
->m_pkthdr
.rcvif
&& m
->m_pkthdr
.rcvif
->if_type
== IFT_FAITH
) {
910 if (ip
->ip_p
== IPPROTO_TCP
|| ip
->ip_p
== IPPROTO_ICMP
)
914 lck_mtx_unlock(ip_mutex
);
918 lck_mtx_unlock(ip_mutex
);
920 * Not for us; forward if possible and desirable.
922 if (ipforwarding
== 0) {
923 ipstat
.ips_cantforward
++;
926 ip_forward(m
, 0, args
.next_hop
, &ipforward_rt
);
932 /* Darwin does not have an if_data in ifaddr */
933 /* Count the packet in the ip address stats */
935 ia
->ia_ifa
.if_ipackets
++;
936 ia
->ia_ifa
.if_ibytes
+= m
->m_pkthdr
.len
;
941 * If offset or IP_MF are set, must reassemble.
942 * Otherwise, nothing need be done.
943 * (We could look in the reassembly queue to see
944 * if the packet was previously fragmented,
945 * but it's not worth the time; just let them time out.)
947 if (ip
->ip_off
& (IP_MF
| IP_OFFMASK
| IP_RF
)) {
949 /* If maxnipq is 0, never accept fragments. */
951 ipstat
.ips_fragments
++;
952 ipstat
.ips_fragdropped
++;
957 * If we will exceed the number of fragments in queues, timeout the
958 * oldest fragemented packet to make space.
960 if (currentfrags
>= maxfrags
) {
961 fp
= TAILQ_LAST(&ipq_list
, ipq_list
);
962 ipstat
.ips_fragtimeout
+= fp
->ipq_nfrags
;
964 if (ip
->ip_id
== fp
->ipq_id
&&
965 ip
->ip_src
.s_addr
== fp
->ipq_src
.s_addr
&&
966 ip
->ip_dst
.s_addr
== fp
->ipq_dst
.s_addr
&&
967 ip
->ip_p
== fp
->ipq_p
) {
969 * If we match the fragment queue we were going to
970 * discard, drop this packet too.
972 ipstat
.ips_fragdropped
++;
980 sum
= IPREASS_HASH(ip
->ip_src
.s_addr
, ip
->ip_id
);
982 * Look for queue of fragments
985 for (fp
= ipq
[sum
].next
; fp
!= &ipq
[sum
]; fp
= fp
->next
)
986 if (ip
->ip_id
== fp
->ipq_id
&&
987 ip
->ip_src
.s_addr
== fp
->ipq_src
.s_addr
&&
988 ip
->ip_dst
.s_addr
== fp
->ipq_dst
.s_addr
&&
989 ip
->ip_p
== fp
->ipq_p
)
993 * Enforce upper bound on number of fragmented packets
994 * for which we attempt reassembly;
995 * If maxnipq is -1, accept all fragments without limitation.
997 if ((nipq
> maxnipq
) && (maxnipq
> 0)) {
999 * drop the oldest fragment before proceeding further
1001 fp
= TAILQ_LAST(&ipq_list
, ipq_list
);
1002 ipstat
.ips_fragtimeout
+= fp
->ipq_nfrags
;
1010 * Adjust ip_len to not reflect header,
1011 * convert offset of this to bytes.
1014 if (ip
->ip_off
& IP_MF
) {
1016 * Make sure that fragments have a data length
1017 * that's a non-zero multiple of 8 bytes.
1019 if (ip
->ip_len
== 0 || (ip
->ip_len
& 0x7) != 0) {
1020 ipstat
.ips_toosmall
++; /* XXX */
1023 m
->m_flags
|= M_FRAG
;
1025 /* Clear the flag in case packet comes from loopback */
1026 m
->m_flags
&= ~M_FRAG
;
1031 * Attempt reassembly; if it succeeds, proceed.
1032 * ip_reass() will return a different mbuf, and update
1033 * the divert info in div_info and args.divert_rule.
1035 ipstat
.ips_fragments
++;
1036 m
->m_pkthdr
.header
= ip
;
1039 fp
, &ipq
[sum
], &div_info
, &args
.divert_rule
);
1041 m
= ip_reass(m
, fp
, &ipq
[sum
]);
1044 lck_mtx_unlock(ip_mutex
);
1047 ipstat
.ips_reassembled
++;
1048 ip
= mtod(m
, struct ip
*);
1049 /* Get the header length of the reassembled packet */
1050 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
1052 /* Restore original checksum before diverting packet */
1053 if (div_info
!= 0) {
1058 ip
->ip_sum
= in_cksum(m
, hlen
);
1069 * Divert or tee packet to the divert protocol if required.
1071 * If div_info is zero then cookie should be too, so we shouldn't
1072 * need to clear them here. Assume divert_packet() does so also.
1074 if (div_info
!= 0) {
1075 struct mbuf
*clone
= NULL
;
1077 /* Clone packet if we're doing a 'tee' */
1078 if ((div_info
& IP_FW_PORT_TEE_FLAG
) != 0)
1079 clone
= m_dup(m
, M_DONTWAIT
);
1081 /* Restore packet header fields to original values */
1086 /* Deliver packet to divert input routine */
1087 ipstat
.ips_delivered
++;
1088 lck_mtx_unlock(ip_mutex
);
1089 divert_packet(m
, 1, div_info
& 0xffff, args
.divert_rule
);
1091 /* If 'tee', continue with original packet */
1092 if (clone
== NULL
) {
1095 lck_mtx_lock(ip_mutex
);
1097 ip
= mtod(m
, struct ip
*);
1103 * enforce IPsec policy checking if we are seeing last header.
1104 * note that we do not visit this with protocols with pcb layer
1105 * code - like udp/tcp/raw ip.
1107 if (ipsec_bypass
== 0 && (ip_protox
[ip
->ip_p
]->pr_flags
& PR_LASTHDR
) != 0) {
1108 lck_mtx_lock(sadb_mutex
);
1109 if (ipsec4_in_reject(m
, NULL
)) {
1110 ipsecstat
.in_polvio
++;
1111 lck_mtx_unlock(sadb_mutex
);
1114 lck_mtx_unlock(sadb_mutex
);
1119 * Switch out to protocol's input routine.
1121 ipstat
.ips_delivered
++;
1123 if (args
.next_hop
&& ip
->ip_p
== IPPROTO_TCP
) {
1124 /* TCP needs IPFORWARD info if available */
1125 struct m_tag
*fwd_tag
;
1126 struct ip_fwd_tag
*ipfwd_tag
;
1128 fwd_tag
= m_tag_alloc(KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_IPFORWARD
,
1129 sizeof(struct sockaddr_in
), M_NOWAIT
);
1130 if (fwd_tag
== NULL
) {
1134 ipfwd_tag
= (struct ip_fwd_tag
*)(fwd_tag
+1);
1135 ipfwd_tag
->next_hop
= args
.next_hop
;
1137 m_tag_prepend(m
, fwd_tag
);
1139 KERNEL_DEBUG(DBG_LAYER_END
, ip
->ip_dst
.s_addr
,
1140 ip
->ip_src
.s_addr
, ip
->ip_p
, ip
->ip_off
, ip
->ip_len
);
1142 lck_mtx_unlock(ip_mutex
);
1144 /* TCP deals with its own locking */
1145 ip_proto_dispatch_in(m
, hlen
, ip
->ip_p
, 0);
1147 KERNEL_DEBUG(DBG_LAYER_END
, ip
->ip_dst
.s_addr
,
1148 ip
->ip_src
.s_addr
, ip
->ip_p
, ip
->ip_off
, ip
->ip_len
);
1150 lck_mtx_unlock(ip_mutex
);
1151 ip_proto_dispatch_in(m
, hlen
, ip
->ip_p
, 0);
1157 KERNEL_DEBUG(DBG_LAYER_END
, 0,0,0,0,0);
1158 lck_mtx_unlock(ip_mutex
);
1163 * Take incoming datagram fragment and try to reassemble it into
1164 * whole datagram. If a chain for reassembly of this datagram already
1165 * exists, then it is given as fp; otherwise have to make a chain.
1167 * When IPDIVERT enabled, keep additional state with each packet that
1168 * tells us if we need to divert or tee the packet we're building.
1171 static struct mbuf
*
1173 ip_reass(m
, fp
, where
, divinfo
, divcookie
)
1175 ip_reass(m
, fp
, where
)
1177 register struct mbuf
*m
;
1178 register struct ipq
*fp
;
1186 u_int16_t
*divcookie
;
1189 struct ip
*ip
= mtod(m
, struct ip
*);
1190 register struct mbuf
*p
= 0, *q
, *nq
;
1192 int hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
1196 * Presence of header sizes in mbufs
1197 * would confuse code below.
1202 if (m
->m_pkthdr
.csum_flags
& CSUM_TCP_SUM16
)
1203 m
->m_pkthdr
.csum_flags
= 0;
1205 * If first fragment to arrive, create a reassembly queue.
1208 if ((t
= m_get(M_DONTWAIT
, MT_FTABLE
)) == NULL
)
1210 fp
= mtod(t
, struct ipq
*);
1211 insque((void*)fp
, (void*)where
);
1214 fp
->ipq_ttl
= IPFRAGTTL
;
1215 fp
->ipq_p
= ip
->ip_p
;
1216 fp
->ipq_id
= ip
->ip_id
;
1217 fp
->ipq_src
= ip
->ip_src
;
1218 fp
->ipq_dst
= ip
->ip_dst
;
1220 m
->m_nextpkt
= NULL
;
1223 fp
->ipq_div_info
= 0;
1227 fp
->ipq_div_cookie
= 0;
1229 TAILQ_INSERT_HEAD(&ipq_list
, fp
, ipq_list
);
1235 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header))
1238 * Find a segment which begins after this one does.
1240 for (p
= NULL
, q
= fp
->ipq_frags
; q
; p
= q
, q
= q
->m_nextpkt
)
1241 if (GETIP(q
)->ip_off
> ip
->ip_off
)
1245 * If there is a preceding segment, it may provide some of
1246 * our data already. If so, drop the data from the incoming
1247 * segment. If it provides all of our data, drop us, otherwise
1248 * stick new segment in the proper place.
1250 * If some of the data is dropped from the the preceding
1251 * segment, then it's checksum is invalidated.
1254 i
= GETIP(p
)->ip_off
+ GETIP(p
)->ip_len
- ip
->ip_off
;
1256 if (i
>= ip
->ip_len
)
1259 m
->m_pkthdr
.csum_flags
= 0;
1263 m
->m_nextpkt
= p
->m_nextpkt
;
1266 m
->m_nextpkt
= fp
->ipq_frags
;
1271 * While we overlap succeeding segments trim them or,
1272 * if they are completely covered, dequeue them.
1274 for (; q
!= NULL
&& ip
->ip_off
+ ip
->ip_len
> GETIP(q
)->ip_off
;
1276 i
= (ip
->ip_off
+ ip
->ip_len
) -
1278 if (i
< GETIP(q
)->ip_len
) {
1279 GETIP(q
)->ip_len
-= i
;
1280 GETIP(q
)->ip_off
+= i
;
1282 q
->m_pkthdr
.csum_flags
= 0;
1287 ipstat
.ips_fragdropped
++;
1297 * Transfer firewall instructions to the fragment structure.
1298 * Only trust info in the fragment at offset 0.
1300 if (ip
->ip_off
== 0) {
1302 fp
->ipq_div_info
= *divinfo
;
1304 fp
->ipq_divert
= *divinfo
;
1306 fp
->ipq_div_cookie
= *divcookie
;
1313 * Check for complete reassembly and perform frag per packet
1316 * Frag limiting is performed here so that the nth frag has
1317 * a chance to complete the packet before we drop the packet.
1318 * As a result, n+1 frags are actually allowed per packet, but
1319 * only n will ever be stored. (n = maxfragsperpacket.)
1323 for (p
= NULL
, q
= fp
->ipq_frags
; q
; p
= q
, q
= q
->m_nextpkt
) {
1324 if (GETIP(q
)->ip_off
!= next
) {
1325 if (fp
->ipq_nfrags
> maxfragsperpacket
) {
1326 ipstat
.ips_fragdropped
+= fp
->ipq_nfrags
;
1331 next
+= GETIP(q
)->ip_len
;
1333 /* Make sure the last packet didn't have the IP_MF flag */
1334 if (p
->m_flags
& M_FRAG
) {
1335 if (fp
->ipq_nfrags
> maxfragsperpacket
) {
1336 ipstat
.ips_fragdropped
+= fp
->ipq_nfrags
;
1343 * Reassembly is complete. Make sure the packet is a sane size.
1347 if (next
+ (IP_VHL_HL(ip
->ip_vhl
) << 2) > IP_MAXPACKET
) {
1348 ipstat
.ips_toolong
++;
1349 ipstat
.ips_fragdropped
+= fp
->ipq_nfrags
;
1355 * Concatenate fragments.
1363 for (q
= nq
; q
!= NULL
; q
= nq
) {
1365 q
->m_nextpkt
= NULL
;
1366 if (q
->m_pkthdr
.csum_flags
& CSUM_TCP_SUM16
)
1367 m
->m_pkthdr
.csum_flags
= 0;
1369 m
->m_pkthdr
.csum_flags
&= q
->m_pkthdr
.csum_flags
;
1370 m
->m_pkthdr
.csum_data
+= q
->m_pkthdr
.csum_data
;
1377 * Extract firewall instructions from the fragment structure.
1380 *divinfo
= fp
->ipq_div_info
;
1382 *divinfo
= fp
->ipq_divert
;
1384 *divcookie
= fp
->ipq_div_cookie
;
1388 * Create header for new ip packet by
1389 * modifying header of first packet;
1390 * dequeue and discard fragment reassembly header.
1391 * Make header visible.
1394 ip
->ip_src
= fp
->ipq_src
;
1395 ip
->ip_dst
= fp
->ipq_dst
;
1397 TAILQ_REMOVE(&ipq_list
, fp
, ipq_list
);
1398 currentfrags
-= fp
->ipq_nfrags
;
1400 (void) m_free(dtom(fp
));
1401 m
->m_len
+= (IP_VHL_HL(ip
->ip_vhl
) << 2);
1402 m
->m_data
-= (IP_VHL_HL(ip
->ip_vhl
) << 2);
1403 /* some debugging cruft by sklower, below, will go away soon */
1404 if (m
->m_flags
& M_PKTHDR
) { /* XXX this should be done elsewhere */
1405 register int plen
= 0;
1406 for (t
= m
; t
; t
= t
->m_next
)
1408 m
->m_pkthdr
.len
= plen
;
1417 ipstat
.ips_fragdropped
++;
1427 * Free a fragment reassembly header and all
1428 * associated datagrams.
1434 currentfrags
-= fp
->ipq_nfrags
;
1435 m_freem_list(fp
->ipq_frags
);
1437 TAILQ_REMOVE(&ipq_list
, fp
, ipq_list
);
1438 (void) m_free(dtom(fp
));
1443 * IP timer processing;
1444 * if a timer expires on a reassembly
1445 * queue, discard it.
1450 register struct ipq
*fp
;
1452 lck_mtx_lock(ip_mutex
);
1453 for (i
= 0; i
< IPREASS_NHASH
; i
++) {
1457 while (fp
!= &ipq
[i
]) {
1460 if (fp
->prev
->ipq_ttl
== 0) {
1461 ipstat
.ips_fragtimeout
+= fp
->prev
->ipq_nfrags
;
1467 * If we are over the maximum number of fragments
1468 * (due to the limit being lowered), drain off
1469 * enough to get down to the new limit.
1471 if (maxnipq
>= 0 && nipq
> maxnipq
) {
1472 for (i
= 0; i
< IPREASS_NHASH
; i
++) {
1473 while (nipq
> maxnipq
&&
1474 (ipq
[i
].next
!= &ipq
[i
])) {
1475 ipstat
.ips_fragdropped
+=
1476 ipq
[i
].next
->ipq_nfrags
;
1477 ip_freef(ipq
[i
].next
);
1482 lck_mtx_unlock(ip_mutex
);
1486 * Drain off all datagram fragments.
1493 lck_mtx_lock(ip_mutex
);
1494 for (i
= 0; i
< IPREASS_NHASH
; i
++) {
1495 while (ipq
[i
].next
!= &ipq
[i
]) {
1496 ipstat
.ips_fragdropped
+= ipq
[i
].next
->ipq_nfrags
;
1497 ip_freef(ipq
[i
].next
);
1500 lck_mtx_unlock(ip_mutex
);
1505 * Do option processing on a datagram,
1506 * possibly discarding it if bad options are encountered,
1507 * or forwarding it if source-routed.
1508 * The pass argument is used when operating in the IPSTEALTH
1509 * mode to tell what options to process:
1510 * [LS]SRR (pass 0) or the others (pass 1).
1511 * The reason for as many as two passes is that when doing IPSTEALTH,
1512 * non-routing options should be processed only if the packet is for us.
1513 * Returns 1 if packet has been forwarded/freed,
1514 * 0 if the packet should be processed further.
1517 ip_dooptions(struct mbuf
*m
, int pass
, struct sockaddr_in
*next_hop
, struct route
*ipforward_rt
)
1519 register struct ip
*ip
= mtod(m
, struct ip
*);
1520 register u_char
*cp
;
1521 register struct ip_timestamp
*ipt
;
1522 register struct in_ifaddr
*ia
;
1523 int opt
, optlen
, cnt
, off
, code
, type
= ICMP_PARAMPROB
, forward
= 0;
1524 struct in_addr
*sin
, dst
;
1528 cp
= (u_char
*)(ip
+ 1);
1529 cnt
= (IP_VHL_HL(ip
->ip_vhl
) << 2) - sizeof (struct ip
);
1530 for (; cnt
> 0; cnt
-= optlen
, cp
+= optlen
) {
1531 opt
= cp
[IPOPT_OPTVAL
];
1532 if (opt
== IPOPT_EOL
)
1534 if (opt
== IPOPT_NOP
)
1537 if (cnt
< IPOPT_OLEN
+ sizeof(*cp
)) {
1538 code
= &cp
[IPOPT_OLEN
] - (u_char
*)ip
;
1541 optlen
= cp
[IPOPT_OLEN
];
1542 if (optlen
< IPOPT_OLEN
+ sizeof(*cp
) || optlen
> cnt
) {
1543 code
= &cp
[IPOPT_OLEN
] - (u_char
*)ip
;
1553 * Source routing with record.
1554 * Find interface with current destination address.
1555 * If none on this machine then drop if strictly routed,
1556 * or do nothing if loosely routed.
1557 * Record interface address and bring up next address
1558 * component. If strictly routed make sure next
1559 * address is on directly accessible net.
1563 if (optlen
< IPOPT_OFFSET
+ sizeof(*cp
)) {
1564 code
= &cp
[IPOPT_OLEN
] - (u_char
*)ip
;
1567 if ((off
= cp
[IPOPT_OFFSET
]) < IPOPT_MINOFF
) {
1568 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1571 ipaddr
.sin_addr
= ip
->ip_dst
;
1572 ia
= (struct in_ifaddr
*)
1573 ifa_ifwithaddr((struct sockaddr
*)&ipaddr
);
1575 if (opt
== IPOPT_SSRR
) {
1576 type
= ICMP_UNREACH
;
1577 code
= ICMP_UNREACH_SRCFAIL
;
1580 if (!ip_dosourceroute
)
1581 goto nosourcerouting
;
1583 * Loose routing, and not at next destination
1584 * yet; nothing to do except forward.
1589 ifafree(&ia
->ia_ifa
);
1592 off
--; /* 0 origin */
1593 if (off
> optlen
- (int)sizeof(struct in_addr
)) {
1595 * End of source route. Should be for us.
1597 if (!ip_acceptsourceroute
)
1598 goto nosourcerouting
;
1599 save_rte(cp
, ip
->ip_src
);
1603 if (!ip_dosourceroute
) {
1605 char buf
[MAX_IPv4_STR_LEN
];
1606 char buf2
[MAX_IPv4_STR_LEN
];
1608 * Acting as a router, so generate ICMP
1612 "attempted source route from %s to %s\n",
1613 inet_ntop(AF_INET
, &ip
->ip_src
, buf
, sizeof(buf
)),
1614 inet_ntop(AF_INET
, &ip
->ip_dst
, buf2
, sizeof(buf2
)));
1615 type
= ICMP_UNREACH
;
1616 code
= ICMP_UNREACH_SRCFAIL
;
1620 * Not acting as a router, so silently drop.
1622 ipstat
.ips_cantforward
++;
1629 * locate outgoing interface
1631 (void)memcpy(&ipaddr
.sin_addr
, cp
+ off
,
1632 sizeof(ipaddr
.sin_addr
));
1634 if (opt
== IPOPT_SSRR
) {
1635 #define INA struct in_ifaddr *
1636 #define SA struct sockaddr *
1637 if ((ia
= (INA
)ifa_ifwithdstaddr((SA
)&ipaddr
)) == 0) {
1638 ia
= (INA
)ifa_ifwithnet((SA
)&ipaddr
);
1641 ia
= ip_rtaddr(ipaddr
.sin_addr
, ipforward_rt
);
1644 type
= ICMP_UNREACH
;
1645 code
= ICMP_UNREACH_SRCFAIL
;
1648 ip
->ip_dst
= ipaddr
.sin_addr
;
1649 (void)memcpy(cp
+ off
, &(IA_SIN(ia
)->sin_addr
),
1650 sizeof(struct in_addr
));
1651 ifafree(&ia
->ia_ifa
);
1653 cp
[IPOPT_OFFSET
] += sizeof(struct in_addr
);
1655 * Let ip_intr's mcast routing check handle mcast pkts
1657 forward
= !IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
));
1661 if (optlen
< IPOPT_OFFSET
+ sizeof(*cp
)) {
1662 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1665 if ((off
= cp
[IPOPT_OFFSET
]) < IPOPT_MINOFF
) {
1666 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1670 * If no space remains, ignore.
1672 off
--; /* 0 origin */
1673 if (off
> optlen
- (int)sizeof(struct in_addr
))
1675 (void)memcpy(&ipaddr
.sin_addr
, &ip
->ip_dst
,
1676 sizeof(ipaddr
.sin_addr
));
1678 * locate outgoing interface; if we're the destination,
1679 * use the incoming interface (should be same).
1681 if ((ia
= (INA
)ifa_ifwithaddr((SA
)&ipaddr
)) == 0) {
1682 if ((ia
= ip_rtaddr(ipaddr
.sin_addr
, ipforward_rt
)) == 0) {
1683 type
= ICMP_UNREACH
;
1684 code
= ICMP_UNREACH_HOST
;
1688 (void)memcpy(cp
+ off
, &(IA_SIN(ia
)->sin_addr
),
1689 sizeof(struct in_addr
));
1690 ifafree(&ia
->ia_ifa
);
1692 cp
[IPOPT_OFFSET
] += sizeof(struct in_addr
);
1696 code
= cp
- (u_char
*)ip
;
1697 ipt
= (struct ip_timestamp
*)cp
;
1698 if (ipt
->ipt_len
< 4 || ipt
->ipt_len
> 40) {
1699 code
= (u_char
*)&ipt
->ipt_len
- (u_char
*)ip
;
1702 if (ipt
->ipt_ptr
< 5) {
1703 code
= (u_char
*)&ipt
->ipt_ptr
- (u_char
*)ip
;
1707 ipt
->ipt_len
- (int)sizeof(int32_t)) {
1708 if (++ipt
->ipt_oflw
== 0) {
1709 code
= (u_char
*)&ipt
->ipt_ptr
-
1715 sin
= (struct in_addr
*)(cp
+ ipt
->ipt_ptr
- 1);
1716 switch (ipt
->ipt_flg
) {
1718 case IPOPT_TS_TSONLY
:
1721 case IPOPT_TS_TSANDADDR
:
1722 if (ipt
->ipt_ptr
- 1 + sizeof(n_time
) +
1723 sizeof(struct in_addr
) > ipt
->ipt_len
) {
1724 code
= (u_char
*)&ipt
->ipt_ptr
-
1728 ipaddr
.sin_addr
= dst
;
1729 ia
= (INA
)ifaof_ifpforaddr((SA
)&ipaddr
,
1733 (void)memcpy(sin
, &IA_SIN(ia
)->sin_addr
,
1734 sizeof(struct in_addr
));
1735 ipt
->ipt_ptr
+= sizeof(struct in_addr
);
1736 ifafree(&ia
->ia_ifa
);
1740 case IPOPT_TS_PRESPEC
:
1741 if (ipt
->ipt_ptr
- 1 + sizeof(n_time
) +
1742 sizeof(struct in_addr
) > ipt
->ipt_len
) {
1743 code
= (u_char
*)&ipt
->ipt_ptr
-
1747 (void)memcpy(&ipaddr
.sin_addr
, sin
,
1748 sizeof(struct in_addr
));
1749 if ((ia
= (struct in_ifaddr
*)ifa_ifwithaddr((SA
)&ipaddr
)) == 0)
1751 ifafree(&ia
->ia_ifa
);
1753 ipt
->ipt_ptr
+= sizeof(struct in_addr
);
1757 /* XXX can't take &ipt->ipt_flg */
1758 code
= (u_char
*)&ipt
->ipt_ptr
-
1763 (void)memcpy(cp
+ ipt
->ipt_ptr
- 1, &ntime
,
1765 ipt
->ipt_ptr
+= sizeof(n_time
);
1768 if (forward
&& ipforwarding
) {
1769 ip_forward(m
, 1, next_hop
, ipforward_rt
);
1774 ip
->ip_len
-= IP_VHL_HL(ip
->ip_vhl
) << 2; /* XXX icmp_error adds in hdr length */
1775 lck_mtx_unlock(ip_mutex
);
1776 icmp_error(m
, type
, code
, 0, 0);
1777 lck_mtx_lock(ip_mutex
);
1778 ipstat
.ips_badoptions
++;
1783 * Given address of next destination (final or next hop),
1784 * return internet address info of interface to be used to get there.
1791 register struct sockaddr_in
*sin
;
1793 sin
= (struct sockaddr_in
*)&rt
->ro_dst
;
1795 lck_mtx_lock(rt_mtx
);
1796 if (rt
->ro_rt
== 0 || dst
.s_addr
!= sin
->sin_addr
.s_addr
||
1797 rt
->ro_rt
->generation_id
!= route_generation
) {
1799 rtfree_locked(rt
->ro_rt
);
1802 sin
->sin_family
= AF_INET
;
1803 sin
->sin_len
= sizeof(*sin
);
1804 sin
->sin_addr
= dst
;
1806 rtalloc_ign_locked(rt
, RTF_PRCLONING
);
1808 if (rt
->ro_rt
== 0) {
1809 lck_mtx_unlock(rt_mtx
);
1810 return ((struct in_ifaddr
*)0);
1813 if (rt
->ro_rt
->rt_ifa
)
1814 ifaref(rt
->ro_rt
->rt_ifa
);
1815 lck_mtx_unlock(rt_mtx
);
1816 return ((struct in_ifaddr
*) rt
->ro_rt
->rt_ifa
);
1820 * Save incoming source route for use in replies,
1821 * to be picked up later by ip_srcroute if the receiver is interested.
1824 save_rte(option
, dst
)
1830 olen
= option
[IPOPT_OLEN
];
1833 printf("save_rte: olen %d\n", olen
);
1835 if (olen
> sizeof(ip_srcrt
) - (1 + sizeof(dst
)))
1837 bcopy(option
, ip_srcrt
.srcopt
, olen
);
1838 ip_nhops
= (olen
- IPOPT_OFFSET
- 1) / sizeof(struct in_addr
);
1843 * Retrieve incoming source route for use in replies,
1844 * in the same form used by setsockopt.
1845 * The first hop is placed before the options, will be removed later.
1850 register struct in_addr
*p
, *q
;
1851 register struct mbuf
*m
;
1854 return ((struct mbuf
*)0);
1855 m
= m_get(M_DONTWAIT
, MT_HEADER
);
1857 return ((struct mbuf
*)0);
1859 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1861 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1862 m
->m_len
= ip_nhops
* sizeof(struct in_addr
) + sizeof(struct in_addr
) +
1866 printf("ip_srcroute: nhops %d mlen %d", ip_nhops
, m
->m_len
);
1870 * First save first hop for return route
1872 p
= &ip_srcrt
.route
[ip_nhops
- 1];
1873 *(mtod(m
, struct in_addr
*)) = *p
--;
1876 printf(" hops %lx", (u_long
)ntohl(mtod(m
, struct in_addr
*)->s_addr
));
1880 * Copy option fields and padding (nop) to mbuf.
1882 ip_srcrt
.nop
= IPOPT_NOP
;
1883 ip_srcrt
.srcopt
[IPOPT_OFFSET
] = IPOPT_MINOFF
;
1884 (void)memcpy(mtod(m
, caddr_t
) + sizeof(struct in_addr
),
1885 &ip_srcrt
.nop
, OPTSIZ
);
1886 q
= (struct in_addr
*)(mtod(m
, caddr_t
) +
1887 sizeof(struct in_addr
) + OPTSIZ
);
1890 * Record return path as an IP source route,
1891 * reversing the path (pointers are now aligned).
1893 while (p
>= ip_srcrt
.route
) {
1896 printf(" %lx", (u_long
)ntohl(q
->s_addr
));
1901 * Last hop goes to final destination.
1906 printf(" %lx\n", (u_long
)ntohl(q
->s_addr
));
1912 * Strip out IP options, at higher
1913 * level protocol in the kernel.
1914 * Second argument is buffer to which options
1915 * will be moved, and return value is their length.
1916 * XXX should be deleted; last arg currently ignored.
1919 ip_stripoptions(m
, mopt
)
1920 register struct mbuf
*m
;
1924 struct ip
*ip
= mtod(m
, struct ip
*);
1925 register caddr_t opts
;
1928 olen
= (IP_VHL_HL(ip
->ip_vhl
) << 2) - sizeof (struct ip
);
1929 opts
= (caddr_t
)(ip
+ 1);
1930 i
= m
->m_len
- (sizeof (struct ip
) + olen
);
1931 bcopy(opts
+ olen
, opts
, (unsigned)i
);
1933 if (m
->m_flags
& M_PKTHDR
)
1934 m
->m_pkthdr
.len
-= olen
;
1935 ip
->ip_vhl
= IP_MAKE_VHL(IPVERSION
, sizeof(struct ip
) >> 2);
1938 u_char inetctlerrmap
[PRC_NCMDS
] = {
1940 0, EMSGSIZE
, EHOSTDOWN
, EHOSTUNREACH
,
1941 EHOSTUNREACH
, EHOSTUNREACH
, ECONNREFUSED
, ECONNREFUSED
,
1942 EMSGSIZE
, EHOSTUNREACH
, 0, 0,
1944 ENOPROTOOPT
, ECONNREFUSED
1948 * Forward a packet. If some error occurs return the sender
1949 * an icmp packet. Note we can't always generate a meaningful
1950 * icmp message because icmp doesn't have a large enough repertoire
1951 * of codes and types.
1953 * If not forwarding, just drop the packet. This could be confusing
1954 * if ipforwarding was zero but some routing protocol was advancing
1955 * us as a gateway to somewhere. However, we must let the routing
1956 * protocol deal with that.
1958 * The srcrt parameter indicates whether the packet is being forwarded
1959 * via a source route.
1962 ip_forward(struct mbuf
*m
, int srcrt
, struct sockaddr_in
*next_hop
, struct route
*ipforward_rt
)
1964 register struct ip
*ip
= mtod(m
, struct ip
*);
1965 register struct sockaddr_in
*sin
;
1966 register struct rtentry
*rt
;
1967 int error
, type
= 0, code
= 0;
1970 struct in_addr pkt_dst
;
1971 struct ifnet
*destifp
;
1973 struct ifnet dummyifp
;
1978 * Cache the destination address of the packet; this may be
1979 * changed by use of 'ipfw fwd'.
1981 pkt_dst
= next_hop
? next_hop
->sin_addr
: ip
->ip_dst
;
1985 printf("forward: src %lx dst %lx ttl %x\n",
1986 (u_long
)ip
->ip_src
.s_addr
, (u_long
)pkt_dst
.s_addr
,
1991 if (m
->m_flags
& (M_BCAST
|M_MCAST
) || in_canforward(pkt_dst
) == 0) {
1992 ipstat
.ips_cantforward
++;
1999 if (ip
->ip_ttl
<= IPTTLDEC
) {
2000 icmp_error(m
, ICMP_TIMXCEED
, ICMP_TIMXCEED_INTRANS
,
2008 sin
= (struct sockaddr_in
*)&ipforward_rt
->ro_dst
;
2009 if ((rt
= ipforward_rt
->ro_rt
) == 0 ||
2010 pkt_dst
.s_addr
!= sin
->sin_addr
.s_addr
||
2011 ipforward_rt
->ro_rt
->generation_id
!= route_generation
) {
2012 if (ipforward_rt
->ro_rt
) {
2013 rtfree(ipforward_rt
->ro_rt
);
2014 ipforward_rt
->ro_rt
= 0;
2016 sin
->sin_family
= AF_INET
;
2017 sin
->sin_len
= sizeof(*sin
);
2018 sin
->sin_addr
= pkt_dst
;
2020 rtalloc_ign(ipforward_rt
, RTF_PRCLONING
);
2021 if (ipforward_rt
->ro_rt
== 0) {
2022 icmp_error(m
, ICMP_UNREACH
, ICMP_UNREACH_HOST
, dest
, 0);
2025 rt
= ipforward_rt
->ro_rt
;
2029 * Save the IP header and at most 8 bytes of the payload,
2030 * in case we need to generate an ICMP message to the src.
2032 * We don't use m_copy() because it might return a reference
2033 * to a shared cluster. Both this function and ip_output()
2034 * assume exclusive access to the IP header in `m', so any
2035 * data in a cluster may change before we reach icmp_error().
2037 MGET(mcopy
, M_DONTWAIT
, m
->m_type
);
2038 if (mcopy
!= NULL
) {
2039 M_COPY_PKTHDR(mcopy
, m
);
2040 mcopy
->m_len
= imin((IP_VHL_HL(ip
->ip_vhl
) << 2) + 8,
2042 m_copydata(m
, 0, mcopy
->m_len
, mtod(mcopy
, caddr_t
));
2048 ip
->ip_ttl
-= IPTTLDEC
;
2054 * If forwarding packet using same interface that it came in on,
2055 * perhaps should send a redirect to sender to shortcut a hop.
2056 * Only send redirect if source is sending directly to us,
2057 * and if packet was not source routed (or has any options).
2058 * Also, don't send redirect if forwarding using a default route
2059 * or a route modified by a redirect.
2061 #define satosin(sa) ((struct sockaddr_in *)(sa))
2062 if (rt
->rt_ifp
== m
->m_pkthdr
.rcvif
&&
2063 (rt
->rt_flags
& (RTF_DYNAMIC
|RTF_MODIFIED
)) == 0 &&
2064 satosin(rt_key(rt
))->sin_addr
.s_addr
!= 0 &&
2065 ipsendredirects
&& !srcrt
) {
2066 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
2067 u_long src
= ntohl(ip
->ip_src
.s_addr
);
2070 (src
& RTA(rt
)->ia_subnetmask
) == RTA(rt
)->ia_subnet
) {
2071 if (rt
->rt_flags
& RTF_GATEWAY
)
2072 dest
= satosin(rt
->rt_gateway
)->sin_addr
.s_addr
;
2074 dest
= pkt_dst
.s_addr
;
2075 /* Router requirements says to only send host redirects */
2076 type
= ICMP_REDIRECT
;
2077 code
= ICMP_REDIRECT_HOST
;
2080 printf("redirect (%d) to %lx\n", code
, (u_long
)dest
);
2087 /* Pass IPFORWARD info if available */
2089 struct ip_fwd_tag
*ipfwd_tag
;
2091 tag
= m_tag_alloc(KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_IPFORWARD
,
2092 sizeof(struct sockaddr_in
), M_NOWAIT
);
2099 ipfwd_tag
= (struct ip_fwd_tag
*)(tag
+1);
2100 ipfwd_tag
->next_hop
= next_hop
;
2102 m_tag_prepend(m
, tag
);
2104 error
= ip_output_list(m
, 0, (struct mbuf
*)0, ipforward_rt
,
2108 ipstat
.ips_cantforward
++;
2110 ipstat
.ips_forward
++;
2112 ipstat
.ips_redirectsent
++;
2115 ipflow_create(ipforward_rt
, mcopy
);
2127 case 0: /* forwarded, but need redirect */
2128 /* type, code set above */
2131 case ENETUNREACH
: /* shouldn't happen, checked above */
2136 type
= ICMP_UNREACH
;
2137 code
= ICMP_UNREACH_HOST
;
2141 type
= ICMP_UNREACH
;
2142 code
= ICMP_UNREACH_NEEDFRAG
;
2144 if (ipforward_rt
->ro_rt
)
2145 destifp
= ipforward_rt
->ro_rt
->rt_ifp
;
2148 * If the packet is routed over IPsec tunnel, tell the
2149 * originator the tunnel MTU.
2150 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2153 if (ipforward_rt
->ro_rt
) {
2154 struct secpolicy
*sp
= NULL
;
2160 destifp
= ipforward_rt
->ro_rt
->rt_ifp
;
2161 ipstat
.ips_cantfrag
++;
2164 lck_mtx_lock(sadb_mutex
);
2165 sp
= ipsec4_getpolicybyaddr(mcopy
,
2171 destifp
= ipforward_rt
->ro_rt
->rt_ifp
;
2173 /* count IPsec header size */
2174 ipsechdr
= ipsec4_hdrsiz(mcopy
,
2179 * find the correct route for outer IPv4
2180 * header, compute tunnel MTU.
2183 * The "dummyifp" code relies upon the fact
2184 * that icmp_error() touches only ifp->if_mtu.
2189 && sp
->req
->sav
!= NULL
2190 && sp
->req
->sav
->sah
!= NULL
) {
2191 ro
= &sp
->req
->sav
->sah
->sa_route
;
2192 if (ro
->ro_rt
&& ro
->ro_rt
->rt_ifp
) {
2194 ro
->ro_rt
->rt_ifp
->if_mtu
;
2195 dummyifp
.if_mtu
-= ipsechdr
;
2196 destifp
= &dummyifp
;
2202 lck_mtx_unlock(sadb_mutex
);
2205 ipstat
.ips_cantfrag
++;
2209 type
= ICMP_SOURCEQUENCH
;
2213 case EACCES
: /* ipfw denied packet */
2217 icmp_error(mcopy
, type
, code
, dest
, destifp
);
2222 register struct inpcb
*inp
,
2223 register struct mbuf
**mp
,
2224 register struct ip
*ip
,
2225 register struct mbuf
*m
)
2227 if (inp
->inp_socket
->so_options
& SO_TIMESTAMP
) {
2231 *mp
= sbcreatecontrol((caddr_t
) &tv
, sizeof(tv
),
2232 SCM_TIMESTAMP
, SOL_SOCKET
);
2234 mp
= &(*mp
)->m_next
;
2236 if (inp
->inp_flags
& INP_RECVDSTADDR
) {
2237 *mp
= sbcreatecontrol((caddr_t
) &ip
->ip_dst
,
2238 sizeof(struct in_addr
), IP_RECVDSTADDR
, IPPROTO_IP
);
2240 mp
= &(*mp
)->m_next
;
2244 * Moving these out of udp_input() made them even more broken
2245 * than they already were.
2247 /* options were tossed already */
2248 if (inp
->inp_flags
& INP_RECVOPTS
) {
2249 *mp
= sbcreatecontrol((caddr_t
) opts_deleted_above
,
2250 sizeof(struct in_addr
), IP_RECVOPTS
, IPPROTO_IP
);
2252 mp
= &(*mp
)->m_next
;
2254 /* ip_srcroute doesn't do what we want here, need to fix */
2255 if (inp
->inp_flags
& INP_RECVRETOPTS
) {
2256 *mp
= sbcreatecontrol((caddr_t
) ip_srcroute(),
2257 sizeof(struct in_addr
), IP_RECVRETOPTS
, IPPROTO_IP
);
2259 mp
= &(*mp
)->m_next
;
2262 if (inp
->inp_flags
& INP_RECVIF
) {
2265 struct sockaddr_dl sdl
;
2268 struct sockaddr_dl
*sdp
;
2269 struct sockaddr_dl
*sdl2
= &sdlbuf
.sdl
;
2271 ifnet_head_lock_shared();
2272 if (((ifp
= m
->m_pkthdr
.rcvif
))
2273 && ( ifp
->if_index
&& (ifp
->if_index
<= if_index
))) {
2274 sdp
= (struct sockaddr_dl
*)(ifnet_addrs
2275 [ifp
->if_index
- 1]->ifa_addr
);
2277 * Change our mind and don't try copy.
2279 if ((sdp
->sdl_family
!= AF_LINK
)
2280 || (sdp
->sdl_len
> sizeof(sdlbuf
))) {
2283 bcopy(sdp
, sdl2
, sdp
->sdl_len
);
2287 = offsetof(struct sockaddr_dl
, sdl_data
[0]);
2288 sdl2
->sdl_family
= AF_LINK
;
2289 sdl2
->sdl_index
= 0;
2290 sdl2
->sdl_nlen
= sdl2
->sdl_alen
= sdl2
->sdl_slen
= 0;
2293 *mp
= sbcreatecontrol((caddr_t
) sdl2
, sdl2
->sdl_len
,
2294 IP_RECVIF
, IPPROTO_IP
);
2296 mp
= &(*mp
)->m_next
;
2298 if (inp
->inp_flags
& INP_RECVTTL
) {
2299 *mp
= sbcreatecontrol((caddr_t
)&ip
->ip_ttl
, sizeof(ip
->ip_ttl
), IP_RECVTTL
, IPPROTO_IP
);
2300 if (*mp
) mp
= &(*mp
)->m_next
;
2305 ip_rsvp_init(struct socket
*so
)
2307 if (so
->so_type
!= SOCK_RAW
||
2308 so
->so_proto
->pr_protocol
!= IPPROTO_RSVP
)
2311 if (ip_rsvpd
!= NULL
)
2316 * This may seem silly, but we need to be sure we don't over-increment
2317 * the RSVP counter, in case something slips up.
2332 * This may seem silly, but we need to be sure we don't over-decrement
2333 * the RSVP counter, in case something slips up.