2 * Copyright (c) 2005-2006 Apple Computer, Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #define MACH__POSIX_C_SOURCE_PRIVATE 1 /* pulls in suitable savearea from mach/ppc/thread_status.h */
30 #include <kern/thread.h>
31 #include <mach/thread_status.h>
33 typedef x86_saved_state_t savearea_t
;
37 #include <sys/malloc.h>
39 #include <sys/systm.h>
41 #include <sys/proc_internal.h>
42 #include <sys/kauth.h>
43 #include <sys/dtrace.h>
44 #include <sys/dtrace_impl.h>
45 #include <libkern/OSAtomic.h>
46 #include <kern/thread_call.h>
47 #include <kern/task.h>
48 #include <kern/sched_prim.h>
49 #include <miscfs/devfs/devfs.h>
50 #include <mach/vm_param.h>
51 #include <machine/pal_routines.h>
55 * APPLE NOTE: The regmap is used to decode which 64bit uregs[] register
56 * is being accessed when passed the 32bit uregs[] constant (based on
57 * the reg.d translator file). The dtrace_getreg() is smart enough to handle
58 * the register mappings. The register set definitions are the same as
59 * those used by the fasttrap_getreg code.
61 #include "fasttrap_regset.h"
62 static const uint8_t regmap
[19] = {
69 REG_RBP
, /* EBP, REG_FP */
72 REG_RDX
, /* EDX, REG_R1 */
74 REG_RAX
, /* EAX, REG_R0 */
75 REG_TRAPNO
, /* TRAPNO */
77 REG_RIP
, /* EIP, REG_PC */
79 REG_RFL
, /* EFL, REG_PS */
80 REG_RSP
, /* UESP, REG_SP */
84 extern dtrace_id_t dtrace_probeid_error
; /* special ERROR probe */
87 dtrace_probe_error(dtrace_state_t
*state
, dtrace_epid_t epid
, int which
,
88 int fltoffs
, int fault
, uint64_t illval
)
91 * For the case of the error probe firing lets
92 * stash away "illval" here, and special-case retrieving it in DIF_VARIABLE_ARG.
94 state
->dts_arg_error_illval
= illval
;
95 dtrace_probe( dtrace_probeid_error
, (uint64_t)(uintptr_t)state
, epid
, which
, fltoffs
, fault
);
99 * Atomicity and synchronization
102 dtrace_membar_producer(void)
104 __asm__
volatile("sfence");
108 dtrace_membar_consumer(void)
110 __asm__
volatile("lfence");
114 * Interrupt manipulation
115 * XXX dtrace_getipl() can be called from probe context.
121 * XXX Drat, get_interrupt_level is MACH_KERNEL_PRIVATE
122 * in osfmk/kern/cpu_data.h
124 /* return get_interrupt_level(); */
125 return (ml_at_interrupt_context() ? 1: 0);
131 typedef struct xcArg
{
138 xcRemote( void *foo
)
140 xcArg_t
*pArg
= (xcArg_t
*)foo
;
142 if ( pArg
->cpu
== CPU
->cpu_id
|| pArg
->cpu
== DTRACE_CPUALL
) {
143 (pArg
->f
)(pArg
->arg
);
149 * dtrace_xcall() is not called from probe context.
152 dtrace_xcall(processorid_t cpu
, dtrace_xcall_t f
, void *arg
)
160 if (cpu
== DTRACE_CPUALL
) {
161 mp_cpus_call (CPUMASK_ALL
, SYNC
, xcRemote
, (void*)&xcArg
);
164 mp_cpus_call (cpu_to_cpumask((cpu_t
)cpu
), SYNC
, xcRemote
, (void*)&xcArg
);
172 dtrace_getreg(struct regs
*savearea
, uint_t reg
)
174 boolean_t is64Bit
= proc_is64bit(current_proc());
175 x86_saved_state_t
*regs
= (x86_saved_state_t
*)savearea
;
186 return (uint64_t)(regs
->ss_64
.rdi
);
188 return (uint64_t)(regs
->ss_64
.rsi
);
190 return (uint64_t)(regs
->ss_64
.rdx
);
192 return (uint64_t)(regs
->ss_64
.rcx
);
194 return (uint64_t)(regs
->ss_64
.r8
);
196 return (uint64_t)(regs
->ss_64
.r9
);
198 return (uint64_t)(regs
->ss_64
.rax
);
200 return (uint64_t)(regs
->ss_64
.rbx
);
202 return (uint64_t)(regs
->ss_64
.rbp
);
204 return (uint64_t)(regs
->ss_64
.r10
);
206 return (uint64_t)(regs
->ss_64
.r11
);
208 return (uint64_t)(regs
->ss_64
.r12
);
210 return (uint64_t)(regs
->ss_64
.r13
);
212 return (uint64_t)(regs
->ss_64
.r14
);
214 return (uint64_t)(regs
->ss_64
.r15
);
216 return (uint64_t)(regs
->ss_64
.fs
);
218 return (uint64_t)(regs
->ss_64
.gs
);
220 return (uint64_t)(regs
->ss_64
.isf
.trapno
);
222 return (uint64_t)(regs
->ss_64
.isf
.err
);
224 return (uint64_t)(regs
->ss_64
.isf
.rip
);
226 return (uint64_t)(regs
->ss_64
.isf
.cs
);
228 return (uint64_t)(regs
->ss_64
.isf
.ss
);
230 return (uint64_t)(regs
->ss_64
.isf
.rflags
);
232 return (uint64_t)(regs
->ss_64
.isf
.rsp
);
236 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
240 } else { /* is 32bit user */
241 /* beyond register SS */
242 if (reg
> x86_SAVED_STATE32_COUNT
- 1) {
243 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
246 return (uint64_t)((unsigned int *)(&(regs
->ss_32
.gs
)))[reg
];
250 #define RETURN_OFFSET 4
251 #define RETURN_OFFSET64 8
254 dtrace_getustack_common(uint64_t *pcstack
, int pcstack_limit
, user_addr_t pc
,
258 volatile uint16_t *flags
=
259 (volatile uint16_t *)&cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
261 uintptr_t oldcontext
= lwp
->lwp_oldcontext
; /* XXX signal stack crawl */
265 boolean_t is64Bit
= proc_is64bit(current_proc());
267 ASSERT(pcstack
== NULL
|| pcstack_limit
> 0);
269 #if 0 /* XXX signal stack crawl */
270 if (p
->p_model
== DATAMODEL_NATIVE
) {
271 s1
= sizeof (struct frame
) + 2 * sizeof (long);
272 s2
= s1
+ sizeof (siginfo_t
);
274 s1
= sizeof (struct frame32
) + 3 * sizeof (int);
275 s2
= s1
+ sizeof (siginfo32_t
);
281 if (pcstack
!= NULL
) {
282 *pcstack
++ = (uint64_t)pc
;
284 if (pcstack_limit
<= 0)
291 #if 0 /* XXX signal stack crawl */
292 if (oldcontext
== sp
+ s1
|| oldcontext
== sp
+ s2
) {
293 if (p
->p_model
== DATAMODEL_NATIVE
) {
294 ucontext_t
*ucp
= (ucontext_t
*)oldcontext
;
295 greg_t
*gregs
= ucp
->uc_mcontext
.gregs
;
297 sp
= dtrace_fulword(&gregs
[REG_FP
]);
298 pc
= dtrace_fulword(&gregs
[REG_PC
]);
300 oldcontext
= dtrace_fulword(&ucp
->uc_link
);
302 ucontext32_t
*ucp
= (ucontext32_t
*)oldcontext
;
303 greg32_t
*gregs
= ucp
->uc_mcontext
.gregs
;
305 sp
= dtrace_fuword32(&gregs
[EBP
]);
306 pc
= dtrace_fuword32(&gregs
[EIP
]);
308 oldcontext
= dtrace_fuword32(&ucp
->uc_link
);
315 pc
= dtrace_fuword64((sp
+ RETURN_OFFSET64
));
316 sp
= dtrace_fuword64(sp
);
318 pc
= dtrace_fuword32((sp
+ RETURN_OFFSET
));
319 sp
= dtrace_fuword32(sp
);
325 * This is totally bogus: if we faulted, we're going to clear
326 * the fault and break. This is to deal with the apparently
327 * broken Java stacks on x86.
329 if (*flags
& CPU_DTRACE_FAULT
) {
330 *flags
&= ~CPU_DTRACE_FAULT
;
341 * The return value indicates if we've modified the stack.
344 dtrace_adjust_stack(uint64_t **pcstack
, int *pcstack_limit
, user_addr_t
*pc
,
349 boolean_t is64Bit
= proc_is64bit(current_proc());
353 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY
)) {
355 * If we found ourselves in an entry probe, the frame pointer has not
356 * yet been pushed (that happens in the
357 * function prologue). The best approach is to
358 * add the current pc as a missing top of stack,
359 * and back the pc up to the caller, which is stored at the
360 * current stack pointer address since the call
361 * instruction puts it there right before
368 *pc
= dtrace_fuword64(sp
);
370 *pc
= dtrace_fuword32(sp
);
373 * We might have a top of stack override, in which case we just
374 * add that frame without question to the top. This
375 * happens in return probes where you have a valid
376 * frame pointer, but it's for the callers frame
377 * and you'd like to add the pc of the return site
380 missing_tos
= cpu_core
[CPU
->cpu_id
].cpuc_missing_tos
;
383 if (missing_tos
!= 0) {
384 if (pcstack
!= NULL
&& pcstack_limit
!= NULL
) {
386 * If the missing top of stack has been filled out, then
387 * we add it and adjust the size.
389 *(*pcstack
)++ = missing_tos
;
393 * return 1 because we would have changed the
394 * stack whether or not it was passed in. This
395 * ensures the stack count is correct
403 dtrace_getupcstack(uint64_t *pcstack
, int pcstack_limit
)
405 thread_t thread
= current_thread();
406 x86_saved_state_t
*regs
;
407 user_addr_t pc
, sp
, fp
;
408 volatile uint16_t *flags
=
409 (volatile uint16_t *)&cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
411 boolean_t is64Bit
= proc_is64bit(current_proc());
413 if (*flags
& CPU_DTRACE_FAULT
)
416 if (pcstack_limit
<= 0)
420 * If there's no user context we still need to zero the stack.
425 pal_register_cache_state(thread
, VALID
);
426 regs
= (x86_saved_state_t
*)find_user_regs(thread
);
430 *pcstack
++ = (uint64_t)proc_selfpid();
433 if (pcstack_limit
<= 0)
437 pc
= regs
->ss_64
.isf
.rip
;
438 sp
= regs
->ss_64
.isf
.rsp
;
439 fp
= regs
->ss_64
.rbp
;
441 pc
= regs
->ss_32
.eip
;
442 sp
= regs
->ss_32
.uesp
;
443 fp
= regs
->ss_32
.ebp
;
447 * The return value indicates if we've modified the stack.
448 * Since there is nothing else to fix up in either case,
449 * we can safely ignore it here.
451 (void)dtrace_adjust_stack(&pcstack
, &pcstack_limit
, &pc
, sp
);
453 if(pcstack_limit
<= 0)
457 * Note that unlike ppc, the x86 code does not use
458 * CPU_DTRACE_USTACK_FP. This is because x86 always
459 * traces from the fp, even in syscall/profile/fbt
462 n
= dtrace_getustack_common(pcstack
, pcstack_limit
, pc
, fp
);
464 ASSERT(n
<= pcstack_limit
);
470 while (pcstack_limit
-- > 0)
475 dtrace_getustackdepth(void)
477 thread_t thread
= current_thread();
478 x86_saved_state_t
*regs
;
479 user_addr_t pc
, sp
, fp
;
481 boolean_t is64Bit
= proc_is64bit(current_proc());
486 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT
))
489 pal_register_cache_state(thread
, VALID
);
490 regs
= (x86_saved_state_t
*)find_user_regs(thread
);
495 pc
= regs
->ss_64
.isf
.rip
;
496 sp
= regs
->ss_64
.isf
.rsp
;
497 fp
= regs
->ss_64
.rbp
;
499 pc
= regs
->ss_32
.eip
;
500 sp
= regs
->ss_32
.uesp
;
501 fp
= regs
->ss_32
.ebp
;
504 if (dtrace_adjust_stack(NULL
, NULL
, &pc
, sp
) == 1) {
506 * we would have adjusted the stack if we had
507 * supplied one (that is what rc == 1 means).
508 * Also, as a side effect, the pc might have
509 * been fixed up, which is good for calling
510 * in to dtrace_getustack_common.
516 * Note that unlike ppc, the x86 code does not use
517 * CPU_DTRACE_USTACK_FP. This is because x86 always
518 * traces from the fp, even in syscall/profile/fbt
522 n
+= dtrace_getustack_common(NULL
, 0, pc
, fp
);
528 dtrace_getufpstack(uint64_t *pcstack
, uint64_t *fpstack
, int pcstack_limit
)
530 thread_t thread
= current_thread();
533 volatile uint16_t *flags
=
534 (volatile uint16_t *)&cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
536 uintptr_t oldcontext
;
539 boolean_t is64Bit
= proc_is64bit(current_proc());
541 if (*flags
& CPU_DTRACE_FAULT
)
544 if (pcstack_limit
<= 0)
548 * If there's no user context we still need to zero the stack.
553 regs
= (savearea_t
*)find_user_regs(thread
);
557 *pcstack
++ = (uint64_t)proc_selfpid();
560 if (pcstack_limit
<= 0)
563 pc
= regs
->ss_32
.eip
;
564 sp
= regs
->ss_32
.ebp
;
566 #if 0 /* XXX signal stack crawl */
567 oldcontext
= lwp
->lwp_oldcontext
;
569 if (p
->p_model
== DATAMODEL_NATIVE
) {
570 s1
= sizeof (struct frame
) + 2 * sizeof (long);
571 s2
= s1
+ sizeof (siginfo_t
);
573 s1
= sizeof (struct frame32
) + 3 * sizeof (int);
574 s2
= s1
+ sizeof (siginfo32_t
);
578 if(dtrace_adjust_stack(&pcstack
, &pcstack_limit
, &pc
, sp
) == 1) {
583 if (pcstack_limit
<= 0)
588 *pcstack
++ = (uint64_t)pc
;
591 if (pcstack_limit
<= 0)
597 #if 0 /* XXX signal stack crawl */
598 if (oldcontext
== sp
+ s1
|| oldcontext
== sp
+ s2
) {
599 if (p
->p_model
== DATAMODEL_NATIVE
) {
600 ucontext_t
*ucp
= (ucontext_t
*)oldcontext
;
601 greg_t
*gregs
= ucp
->uc_mcontext
.gregs
;
603 sp
= dtrace_fulword(&gregs
[REG_FP
]);
604 pc
= dtrace_fulword(&gregs
[REG_PC
]);
606 oldcontext
= dtrace_fulword(&ucp
->uc_link
);
608 ucontext_t
*ucp
= (ucontext_t
*)oldcontext
;
609 greg_t
*gregs
= ucp
->uc_mcontext
.gregs
;
611 sp
= dtrace_fuword32(&gregs
[EBP
]);
612 pc
= dtrace_fuword32(&gregs
[EIP
]);
614 oldcontext
= dtrace_fuword32(&ucp
->uc_link
);
621 pc
= dtrace_fuword64((sp
+ RETURN_OFFSET64
));
622 sp
= dtrace_fuword64(sp
);
624 pc
= dtrace_fuword32((sp
+ RETURN_OFFSET
));
625 sp
= dtrace_fuword32(sp
);
631 * This is totally bogus: if we faulted, we're going to clear
632 * the fault and break. This is to deal with the apparently
633 * broken Java stacks on x86.
635 if (*flags
& CPU_DTRACE_FAULT
) {
636 *flags
&= ~CPU_DTRACE_FAULT
;
643 while (pcstack_limit
-- > 0)
648 dtrace_getpcstack(pc_t
*pcstack
, int pcstack_limit
, int aframes
,
651 struct frame
*fp
= (struct frame
*)__builtin_frame_address(0);
652 struct frame
*nextfp
, *minfp
, *stacktop
;
656 uintptr_t caller
= CPU
->cpu_dtrace_caller
;
659 if ((on_intr
= CPU_ON_INTR(CPU
)) != 0)
660 stacktop
= (struct frame
*)dtrace_get_cpu_int_stack_top();
662 stacktop
= (struct frame
*)(dtrace_get_kernel_stack(current_thread()) + kernel_stack_size
);
668 if (intrpc
!= NULL
&& depth
< pcstack_limit
)
669 pcstack
[depth
++] = (pc_t
)intrpc
;
671 while (depth
< pcstack_limit
) {
672 nextfp
= *(struct frame
**)fp
;
673 #if defined(__x86_64__)
674 pc
= *(uintptr_t *)(((uintptr_t)fp
) + RETURN_OFFSET64
);
676 pc
= *(uintptr_t *)(((uintptr_t)fp
) + RETURN_OFFSET
);
679 if (nextfp
<= minfp
|| nextfp
>= stacktop
) {
682 * Hop from interrupt stack to thread stack.
684 vm_offset_t kstack_base
= dtrace_get_kernel_stack(current_thread());
686 minfp
= (struct frame
*)kstack_base
;
687 stacktop
= (struct frame
*)(kstack_base
+ kernel_stack_size
);
693 * This is the last frame we can process; indicate
694 * that we should return after processing this frame.
700 if (--aframes
== 0 && caller
!= 0) {
702 * We've just run out of artificial frames,
703 * and we have a valid caller -- fill it in
706 ASSERT(depth
< pcstack_limit
);
707 pcstack
[depth
++] = (pc_t
)caller
;
711 if (depth
< pcstack_limit
)
712 pcstack
[depth
++] = (pc_t
)pc
;
716 while (depth
< pcstack_limit
)
717 pcstack
[depth
++] = 0;
727 struct frame
*backchain
;
732 dtrace_getarg(int arg
, int aframes
)
735 struct frame
*fp
= (struct frame
*)__builtin_frame_address(0);
741 #if defined(__x86_64__)
743 * A total of 6 arguments are passed via registers; any argument with
744 * index of 5 or lower is therefore in a register.
749 for (i
= 1; i
<= aframes
; i
++) {
753 if (dtrace_invop_callsite_pre
!= NULL
754 && pc
> (uintptr_t)dtrace_invop_callsite_pre
755 && pc
<= (uintptr_t)dtrace_invop_callsite_post
) {
756 #if defined(__i386__)
758 * If we pass through the invalid op handler, we will
759 * use the pointer that it passed to the stack as the
760 * second argument to dtrace_invop() as the pointer to
761 * the frame we're hunting for.
764 stack
= (uintptr_t *)&fp
[1]; /* Find marshalled arguments */
765 fp
= (struct frame
*)stack
[1]; /* Grab *second* argument */
766 stack
= (uintptr_t *)&fp
[1]; /* Find marshalled arguments */
767 #elif defined(__x86_64__)
769 * In the case of x86_64, we will use the pointer to the
770 * save area structure that was pushed when we took the
771 * trap. To get this structure, we must increment
772 * beyond the frame structure. If the
773 * argument that we're seeking is passed on the stack,
774 * we'll pull the true stack pointer out of the saved
775 * registers and decrement our argument by the number
776 * of arguments passed in registers; if the argument
777 * we're seeking is passed in regsiters, we can just
781 /* fp points to frame of dtrace_invop() activation. */
782 fp
= fp
->backchain
; /* to fbt_perfcallback() activation. */
783 fp
= fp
->backchain
; /* to kernel_trap() activation. */
784 fp
= fp
->backchain
; /* to trap_from_kernel() activation. */
786 x86_saved_state_t
*tagged_regs
= (x86_saved_state_t
*)&fp
[1];
787 x86_saved_state64_t
*saved_state
= saved_state64(tagged_regs
);
790 stack
= (uintptr_t *)&saved_state
->rdi
;
792 fp
= (struct frame
*)(saved_state
->isf
.rsp
);
793 stack
= (uintptr_t *)&fp
[1]; /* Find marshalled
805 * We know that we did not come through a trap to get into
806 * dtrace_probe() -- We arrive here when the provider has
807 * called dtrace_probe() directly.
808 * The probe ID is the first argument to dtrace_probe().
809 * We must advance beyond that to get the argX.
811 arg
++; /* Advance past probeID */
813 #if defined(__x86_64__)
816 * This shouldn't happen. If the argument is passed in a
817 * register then it should have been, well, passed in a
820 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
826 stack
= (uintptr_t *)&fp
[1]; /* Find marshalled arguments */
829 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
830 /* dtrace_probe arguments arg0 ... arg4 are 64bits wide */
831 val
= (uint64_t)(*(((uintptr_t *)stack
) + arg
));
832 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
841 dtrace_toxic_ranges(void (*func
)(uintptr_t base
, uintptr_t limit
))
844 * "base" is the smallest toxic address in the range, "limit" is the first
845 * VALID address greater than "base".
847 func(0x0, VM_MIN_KERNEL_AND_KEXT_ADDRESS
);
848 if (VM_MAX_KERNEL_ADDRESS
< ~(uintptr_t)0)
849 func(VM_MAX_KERNEL_ADDRESS
+ 1, ~(uintptr_t)0);