]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kern/task_policy.c
88aeafa46f3548caa645aacb9d8d733f41d91a7a
[apple/xnu.git] / osfmk / kern / task_policy.c
1 /*
2 * Copyright (c) 2000-2004 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <mach/mach_types.h>
30 #include <mach/task_server.h>
31
32 #include <kern/sched.h>
33 #include <kern/task.h>
34 #include <mach/thread_policy.h>
35 #include <sys/errno.h>
36 #include <sys/resource.h>
37 #include <machine/limits.h>
38 #include <kern/ledger.h>
39 #include <kern/thread_call.h>
40 #if CONFIG_TELEMETRY
41 #include <kern/telemetry.h>
42 #endif
43
44 #if IMPORTANCE_DEBUG
45 #include <mach/machine/sdt.h>
46 #endif /* IMPORTANCE_DEBUG */
47
48 #include <sys/kdebug.h>
49
50 /*
51 * Task Policy
52 *
53 * This subsystem manages task and thread IO priority and backgrounding,
54 * as well as importance inheritance, process suppression, task QoS, and apptype.
55 * These properties have a suprising number of complex interactions, so they are
56 * centralized here in one state machine to simplify the implementation of those interactions.
57 *
58 * Architecture:
59 * Threads and tasks have three policy fields: requested, effective, and pending.
60 * Requested represents the wishes of each interface that influences task policy.
61 * Effective represents the distillation of that policy into a set of behaviors.
62 * Pending represents updates that haven't been applied yet.
63 *
64 * Each interface that has an input into the task policy state machine controls a field in requested.
65 * If the interface has a getter, it returns what is in the field in requested, but that is
66 * not necessarily what is actually in effect.
67 *
68 * All kernel subsystems that behave differently based on task policy call into
69 * the get_effective_policy function, which returns the decision of the task policy state machine
70 * for that subsystem by querying only the 'effective' field.
71 *
72 * Policy change operations:
73 * Here are the steps to change a policy on a task or thread:
74 * 1) Lock task
75 * 2) Change requested field for the relevant policy
76 * 3) Run a task policy update, which recalculates effective based on requested,
77 * then takes a diff between the old and new versions of requested and calls the relevant
78 * other subsystems to apply these changes, and updates the pending field.
79 * 4) Unlock task
80 * 5) Run task policy update complete, which looks at the pending field to update
81 * subsystems which cannot be touched while holding the task lock.
82 *
83 * To add a new requested policy, add the field in the requested struct, the flavor in task.h,
84 * the setter and getter in proc_(set|get)_task_policy*, and dump the state in task_requested_bitfield,
85 * then set up the effects of that behavior in task_policy_update*.
86 *
87 * Most policies are set via proc_set_task_policy, but policies that don't fit that interface
88 * roll their own lock/set/update/unlock/complete code inside this file.
89 *
90 *
91 * Suppression policy
92 *
93 * These are a set of behaviors that can be requested for a task. They currently have specific
94 * implied actions when they're enabled, but they may be made customizable in the future.
95 *
96 * When the affected task is boosted, we temporarily disable the suppression behaviors
97 * so that the affected process has a chance to run so it can call the API to permanently
98 * disable the suppression behaviors.
99 *
100 * Locking
101 *
102 * Changing task policy on a task or thread takes the task lock, and not the thread lock.
103 * TODO: Should changing policy on a thread take the thread lock instead?
104 *
105 * Querying the effective policy does not take the task lock, to prevent deadlocks or slowdown in sensitive code.
106 * This means that any notification of state change needs to be externally synchronized.
107 *
108 */
109
110 /* for task holds without dropping the lock */
111 extern void task_hold_locked(task_t task);
112 extern void task_release_locked(task_t task);
113 extern void task_wait_locked(task_t task, boolean_t until_not_runnable);
114
115 /* Task policy related helper functions */
116 static void proc_set_task_policy_locked(task_t task, thread_t thread, int category, int flavor, int value);
117
118 static void task_policy_update_locked(task_t task, thread_t thread);
119 static void task_policy_update_internal_locked(task_t task, thread_t thread, boolean_t in_create);
120 static void task_policy_update_task_locked(task_t task, boolean_t update_throttle, boolean_t update_bg_throttle);
121 static void task_policy_update_thread_locked(thread_t thread, int update_cpu, boolean_t update_throttle);
122
123 static void task_policy_update_complete_unlocked(task_t task, thread_t thread);
124
125 static int proc_get_effective_policy(task_t task, thread_t thread, int policy);
126
127 static void proc_iopol_to_tier(int iopolicy, int *tier, int *passive);
128 static int proc_tier_to_iopol(int tier, int passive);
129
130 static uintptr_t trequested(task_t task, thread_t thread);
131 static uintptr_t teffective(task_t task, thread_t thread);
132 static uintptr_t tpending(task_t task, thread_t thread);
133 static uint64_t task_requested_bitfield(task_t task, thread_t thread);
134 static uint64_t task_effective_bitfield(task_t task, thread_t thread);
135 static uint64_t task_pending_bitfield(task_t task, thread_t thread);
136
137 void proc_get_thread_policy(thread_t thread, thread_policy_state_t info);
138
139 /* CPU Limits related helper functions */
140 static int task_get_cpuusage(task_t task, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep, int *scope);
141 int task_set_cpuusage(task_t task, uint8_t percentage, uint64_t interval, uint64_t deadline, int scope, int entitled);
142 static int task_clear_cpuusage_locked(task_t task, int cpumon_entitled);
143 int task_disable_cpumon(task_t task);
144 static int task_apply_resource_actions(task_t task, int type);
145 void task_action_cpuusage(thread_call_param_t param0, thread_call_param_t param1);
146 void proc_init_cpumon_params(void);
147
148 #ifdef MACH_BSD
149 int proc_pid(void *proc);
150 extern int proc_selfpid(void);
151 extern char * proc_name_address(void *p);
152 extern void rethrottle_thread(void * uthread);
153 extern void proc_apply_task_networkbg(void * bsd_info, thread_t thread, int bg);
154 #endif /* MACH_BSD */
155
156
157 /* Importance Inheritance related helper functions */
158
159 void task_importance_mark_receiver(task_t task, boolean_t receiving);
160
161 #if IMPORTANCE_INHERITANCE
162 static void task_update_boost_locked(task_t task, boolean_t boost_active);
163
164 static int task_importance_hold_assertion_locked(task_t target_task, int external, uint32_t count);
165 static int task_importance_drop_assertion_locked(task_t target_task, int external, uint32_t count);
166 #endif /* IMPORTANCE_INHERITANCE */
167
168 #if IMPORTANCE_DEBUG
169 #define __impdebug_only
170 #else
171 #define __impdebug_only __unused
172 #endif
173
174 #if IMPORTANCE_INHERITANCE
175 #define __imp_only
176 #else
177 #define __imp_only __unused
178 #endif
179
180 #define TASK_LOCKED 1
181 #define TASK_UNLOCKED 0
182
183 #define DO_LOWPRI_CPU 1
184 #define UNDO_LOWPRI_CPU 2
185
186 /* Macros for making tracing simpler */
187
188 #define tpriority(task, thread) ((uintptr_t)(thread == THREAD_NULL ? (task->priority) : (thread->priority)))
189 #define tisthread(thread) (thread == THREAD_NULL ? TASK_POLICY_TASK : TASK_POLICY_THREAD)
190 #define targetid(task, thread) ((uintptr_t)(thread == THREAD_NULL ? (audit_token_pid_from_task(task)) : (thread->thread_id)))
191
192 /*
193 * Default parameters for certain policies
194 */
195
196 int proc_standard_daemon_tier = THROTTLE_LEVEL_TIER1;
197 int proc_suppressed_disk_tier = THROTTLE_LEVEL_TIER1;
198 int proc_tal_disk_tier = THROTTLE_LEVEL_TIER1;
199
200 int proc_graphics_timer_qos = (LATENCY_QOS_TIER_0 & 0xFF);
201
202 const int proc_default_bg_iotier = THROTTLE_LEVEL_TIER2;
203
204
205 const struct task_requested_policy default_task_requested_policy = {
206 .bg_iotier = proc_default_bg_iotier
207 };
208 const struct task_effective_policy default_task_effective_policy = {};
209 const struct task_pended_policy default_task_pended_policy = {};
210
211 /*
212 * Default parameters for CPU usage monitor.
213 *
214 * Default setting is 50% over 3 minutes.
215 */
216 #define DEFAULT_CPUMON_PERCENTAGE 50
217 #define DEFAULT_CPUMON_INTERVAL (3 * 60)
218
219 uint8_t proc_max_cpumon_percentage;
220 uint64_t proc_max_cpumon_interval;
221
222 static kern_return_t
223 task_qos_policy_validate(task_qos_policy_t qosinfo, mach_msg_type_number_t count) {
224 if (count < TASK_QOS_POLICY_COUNT)
225 return KERN_INVALID_ARGUMENT;
226
227 task_latency_qos_t ltier = qosinfo->task_latency_qos_tier;
228 task_throughput_qos_t ttier = qosinfo->task_throughput_qos_tier;
229
230 if ((ltier != LATENCY_QOS_TIER_UNSPECIFIED) &&
231 ((ltier > LATENCY_QOS_TIER_5) || (ltier < LATENCY_QOS_TIER_0)))
232 return KERN_INVALID_ARGUMENT;
233
234 if ((ttier != THROUGHPUT_QOS_TIER_UNSPECIFIED) &&
235 ((ttier > THROUGHPUT_QOS_TIER_5) || (ttier < THROUGHPUT_QOS_TIER_0)))
236 return KERN_INVALID_ARGUMENT;
237
238 return KERN_SUCCESS;
239 }
240
241 static uint32_t
242 task_qos_extract(uint32_t qv) {
243 return (qv & 0xFF);
244 }
245
246 static uint32_t
247 task_qos_latency_package(uint32_t qv) {
248 return (qv == LATENCY_QOS_TIER_UNSPECIFIED) ? LATENCY_QOS_TIER_UNSPECIFIED : ((0xFF << 16) | qv);
249 }
250
251 static uint32_t
252 task_qos_throughput_package(uint32_t qv) {
253 return (qv == THROUGHPUT_QOS_TIER_UNSPECIFIED) ? THROUGHPUT_QOS_TIER_UNSPECIFIED : ((0xFE << 16) | qv);
254 }
255
256 kern_return_t
257 task_policy_set(
258 task_t task,
259 task_policy_flavor_t flavor,
260 task_policy_t policy_info,
261 mach_msg_type_number_t count)
262 {
263 kern_return_t result = KERN_SUCCESS;
264
265 if (task == TASK_NULL || task == kernel_task)
266 return (KERN_INVALID_ARGUMENT);
267
268 switch (flavor) {
269
270 case TASK_CATEGORY_POLICY: {
271 task_category_policy_t info = (task_category_policy_t)policy_info;
272
273 if (count < TASK_CATEGORY_POLICY_COUNT)
274 return (KERN_INVALID_ARGUMENT);
275
276
277 switch(info->role) {
278 case TASK_FOREGROUND_APPLICATION:
279 case TASK_BACKGROUND_APPLICATION:
280 case TASK_DEFAULT_APPLICATION:
281 proc_set_task_policy(task, THREAD_NULL,
282 TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE,
283 info->role);
284 break;
285
286 case TASK_CONTROL_APPLICATION:
287 if (task != current_task() || task->sec_token.val[0] != 0)
288 result = KERN_INVALID_ARGUMENT;
289 else
290 proc_set_task_policy(task, THREAD_NULL,
291 TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE,
292 info->role);
293 break;
294
295 case TASK_GRAPHICS_SERVER:
296 /* TODO: Restrict this role to FCFS <rdar://problem/12552788> */
297 if (task != current_task() || task->sec_token.val[0] != 0)
298 result = KERN_INVALID_ARGUMENT;
299 else
300 proc_set_task_policy(task, THREAD_NULL,
301 TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE,
302 info->role);
303 break;
304 default:
305 result = KERN_INVALID_ARGUMENT;
306 break;
307 } /* switch (info->role) */
308
309 break;
310 }
311
312 /* Desired energy-efficiency/performance "quality-of-service" */
313 case TASK_BASE_QOS_POLICY:
314 {
315 task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info;
316 kern_return_t kr = task_qos_policy_validate(qosinfo, count);
317
318 if (kr != KERN_SUCCESS)
319 return kr;
320
321 task_lock(task);
322
323 /* This uses the latency QoS tracepoint, even though we might be changing both */
324 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
325 (IMPORTANCE_CODE(TASK_POLICY_LATENCY_QOS, (TASK_POLICY_ATTRIBUTE | TASK_POLICY_TASK))) | DBG_FUNC_START,
326 proc_selfpid(), targetid(task, THREAD_NULL), trequested(task, THREAD_NULL), 0, 0);
327
328 task->requested_policy.t_base_latency_qos = task_qos_extract(qosinfo->task_latency_qos_tier);
329 task->requested_policy.t_base_through_qos = task_qos_extract(qosinfo->task_throughput_qos_tier);
330
331 task_policy_update_locked(task, THREAD_NULL);
332
333 task_unlock(task);
334
335 task_policy_update_complete_unlocked(task, THREAD_NULL);
336
337 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
338 (IMPORTANCE_CODE(TASK_POLICY_LATENCY_QOS, (TASK_POLICY_ATTRIBUTE | TASK_POLICY_TASK))) | DBG_FUNC_END,
339 proc_selfpid(), targetid(task, THREAD_NULL), trequested(task, THREAD_NULL), 0, 0);
340 }
341 break;
342
343 case TASK_OVERRIDE_QOS_POLICY:
344 {
345 task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info;
346 kern_return_t kr = task_qos_policy_validate(qosinfo, count);
347
348 if (kr != KERN_SUCCESS)
349 return kr;
350
351 task_lock(task);
352
353 /* This uses the latency QoS tracepoint, even though we might be changing both */
354 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
355 (IMPORTANCE_CODE(TASK_POLICY_LATENCY_QOS, (TASK_POLICY_ATTRIBUTE | TASK_POLICY_TASK))) | DBG_FUNC_START,
356 proc_selfpid(), targetid(task, THREAD_NULL), trequested(task, THREAD_NULL), 0, 0);
357
358 task->requested_policy.t_over_latency_qos = task_qos_extract(qosinfo->task_latency_qos_tier);
359 task->requested_policy.t_over_through_qos = task_qos_extract(qosinfo->task_throughput_qos_tier);
360
361 task_policy_update_locked(task, THREAD_NULL);
362
363 task_unlock(task);
364
365 task_policy_update_complete_unlocked(task, THREAD_NULL);
366
367 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
368 (IMPORTANCE_CODE(TASK_POLICY_LATENCY_QOS, (TASK_POLICY_ATTRIBUTE | TASK_POLICY_TASK))) | DBG_FUNC_END,
369 proc_selfpid(), targetid(task, THREAD_NULL), trequested(task, THREAD_NULL), 0, 0);
370 }
371 break;
372
373 case TASK_SUPPRESSION_POLICY:
374 {
375
376 task_suppression_policy_t info = (task_suppression_policy_t)policy_info;
377
378 if (count < TASK_SUPPRESSION_POLICY_COUNT)
379 return (KERN_INVALID_ARGUMENT);
380
381 struct task_qos_policy qosinfo;
382
383 qosinfo.task_latency_qos_tier = info->timer_throttle;
384 qosinfo.task_throughput_qos_tier = info->throughput_qos;
385
386 kern_return_t kr = task_qos_policy_validate(&qosinfo, TASK_QOS_POLICY_COUNT);
387
388 if (kr != KERN_SUCCESS)
389 return kr;
390
391 task_lock(task);
392
393 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
394 (IMPORTANCE_CODE(IMP_TASK_SUPPRESSION, info->active)) | DBG_FUNC_START,
395 proc_selfpid(), audit_token_pid_from_task(task), trequested(task, THREAD_NULL),
396 0, 0);
397
398 task->requested_policy.t_sup_active = (info->active) ? 1 : 0;
399 task->requested_policy.t_sup_lowpri_cpu = (info->lowpri_cpu) ? 1 : 0;
400 task->requested_policy.t_sup_timer = task_qos_extract(info->timer_throttle);
401 task->requested_policy.t_sup_disk = (info->disk_throttle) ? 1 : 0;
402 task->requested_policy.t_sup_cpu_limit = (info->cpu_limit) ? 1 : 0;
403 task->requested_policy.t_sup_suspend = (info->suspend) ? 1 : 0;
404 task->requested_policy.t_sup_throughput = task_qos_extract(info->throughput_qos);
405 task->requested_policy.t_sup_cpu = (info->suppressed_cpu) ? 1 : 0;
406
407 task_policy_update_locked(task, THREAD_NULL);
408
409 task_unlock(task);
410
411 task_policy_update_complete_unlocked(task, THREAD_NULL);
412
413 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
414 (IMPORTANCE_CODE(IMP_TASK_SUPPRESSION, info->active)) | DBG_FUNC_END,
415 proc_selfpid(), audit_token_pid_from_task(task), trequested(task, THREAD_NULL),
416 0, 0);
417
418 break;
419
420 }
421
422 default:
423 result = KERN_INVALID_ARGUMENT;
424 break;
425 }
426
427 return (result);
428 }
429
430 /* Sets BSD 'nice' value on the task */
431 kern_return_t
432 task_importance(
433 task_t task,
434 integer_t importance)
435 {
436 if (task == TASK_NULL || task == kernel_task)
437 return (KERN_INVALID_ARGUMENT);
438
439 task_lock(task);
440
441 if (!task->active) {
442 task_unlock(task);
443
444 return (KERN_TERMINATED);
445 }
446
447 if (proc_get_effective_task_policy(task, TASK_POLICY_ROLE) >= TASK_CONTROL_APPLICATION) {
448 task_unlock(task);
449
450 return (KERN_INVALID_ARGUMENT);
451 }
452
453 task->importance = importance;
454
455 /* TODO: tracepoint? */
456
457 /* Redrive only the task priority calculation */
458 task_policy_update_task_locked(task, FALSE, FALSE);
459
460 task_unlock(task);
461
462 return (KERN_SUCCESS);
463 }
464
465 kern_return_t
466 task_policy_get(
467 task_t task,
468 task_policy_flavor_t flavor,
469 task_policy_t policy_info,
470 mach_msg_type_number_t *count,
471 boolean_t *get_default)
472 {
473 if (task == TASK_NULL || task == kernel_task)
474 return (KERN_INVALID_ARGUMENT);
475
476 switch (flavor) {
477
478 case TASK_CATEGORY_POLICY:
479 {
480 task_category_policy_t info = (task_category_policy_t)policy_info;
481
482 if (*count < TASK_CATEGORY_POLICY_COUNT)
483 return (KERN_INVALID_ARGUMENT);
484
485 if (*get_default)
486 info->role = TASK_UNSPECIFIED;
487 else
488 info->role = proc_get_task_policy(task, THREAD_NULL, TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE);
489 break;
490 }
491
492 case TASK_BASE_QOS_POLICY: /* FALLTHRU */
493 case TASK_OVERRIDE_QOS_POLICY:
494 {
495 task_qos_policy_t info = (task_qos_policy_t)policy_info;
496
497 if (*count < TASK_QOS_POLICY_COUNT)
498 return (KERN_INVALID_ARGUMENT);
499
500 if (*get_default) {
501 info->task_latency_qos_tier = LATENCY_QOS_TIER_UNSPECIFIED;
502 info->task_throughput_qos_tier = THROUGHPUT_QOS_TIER_UNSPECIFIED;
503 } else if (flavor == TASK_BASE_QOS_POLICY) {
504 task_lock(task);
505
506 info->task_latency_qos_tier = task_qos_latency_package(task->requested_policy.t_base_latency_qos);
507 info->task_throughput_qos_tier = task_qos_throughput_package(task->requested_policy.t_base_through_qos);
508
509 task_unlock(task);
510 } else if (flavor == TASK_OVERRIDE_QOS_POLICY) {
511 task_lock(task);
512
513 info->task_latency_qos_tier = task_qos_latency_package(task->requested_policy.t_over_latency_qos);
514 info->task_throughput_qos_tier = task_qos_throughput_package(task->requested_policy.t_over_through_qos);
515
516 task_unlock(task);
517 }
518
519 break;
520 }
521
522 case TASK_POLICY_STATE:
523 {
524 task_policy_state_t info = (task_policy_state_t)policy_info;
525
526 if (*count < TASK_POLICY_STATE_COUNT)
527 return (KERN_INVALID_ARGUMENT);
528
529 /* Only root can get this info */
530 if (current_task()->sec_token.val[0] != 0)
531 return KERN_PROTECTION_FAILURE;
532
533 task_lock(task);
534
535 if (*get_default) {
536 info->requested = 0;
537 info->effective = 0;
538 info->pending = 0;
539 info->imp_assertcnt = 0;
540 info->imp_externcnt = 0;
541 info->flags = 0;
542 } else {
543 info->requested = task_requested_bitfield(task, THREAD_NULL);
544 info->effective = task_effective_bitfield(task, THREAD_NULL);
545 info->pending = task_pending_bitfield(task, THREAD_NULL);
546 info->imp_assertcnt = task->task_imp_assertcnt;
547 info->imp_externcnt = task->task_imp_externcnt;
548
549 info->flags = 0;
550 info->flags |= (task->imp_receiver ? TASK_IMP_RECEIVER : 0);
551 info->flags |= (task->imp_donor ? TASK_IMP_DONOR : 0);
552 }
553
554 task_unlock(task);
555
556 break;
557 }
558
559 case TASK_SUPPRESSION_POLICY:
560 {
561 task_suppression_policy_t info = (task_suppression_policy_t)policy_info;
562
563 if (*count < TASK_SUPPRESSION_POLICY_COUNT)
564 return (KERN_INVALID_ARGUMENT);
565
566 task_lock(task);
567
568 if (*get_default) {
569 info->active = 0;
570 info->lowpri_cpu = 0;
571 info->timer_throttle = LATENCY_QOS_TIER_UNSPECIFIED;
572 info->disk_throttle = 0;
573 info->cpu_limit = 0;
574 info->suspend = 0;
575 info->throughput_qos = 0;
576 info->suppressed_cpu = 0;
577 } else {
578 info->active = task->requested_policy.t_sup_active;
579 info->lowpri_cpu = task->requested_policy.t_sup_lowpri_cpu;
580 info->timer_throttle = task_qos_latency_package(task->requested_policy.t_sup_timer);
581 info->disk_throttle = task->requested_policy.t_sup_disk;
582 info->cpu_limit = task->requested_policy.t_sup_cpu_limit;
583 info->suspend = task->requested_policy.t_sup_suspend;
584 info->throughput_qos = task_qos_throughput_package(task->requested_policy.t_sup_throughput);
585 info->suppressed_cpu = task->requested_policy.t_sup_cpu;
586 }
587
588 task_unlock(task);
589 break;
590 }
591
592 default:
593 return (KERN_INVALID_ARGUMENT);
594 }
595
596 return (KERN_SUCCESS);
597 }
598
599 /*
600 * Called at task creation
601 * We calculate the correct effective but don't apply it to anything yet.
602 * The threads, etc will inherit from the task as they get created.
603 */
604 void
605 task_policy_create(task_t task, int parent_boosted)
606 {
607 if (task->requested_policy.t_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE) {
608 if (parent_boosted) {
609 task->requested_policy.t_apptype = TASK_APPTYPE_DAEMON_INTERACTIVE;
610 task_importance_mark_donor(task, TRUE);
611 } else {
612 task->requested_policy.t_apptype = TASK_APPTYPE_DAEMON_BACKGROUND;
613 task_importance_mark_receiver(task, FALSE);
614 }
615 }
616
617 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
618 (IMPORTANCE_CODE(IMP_UPDATE, (IMP_UPDATE_TASK_CREATE | TASK_POLICY_TASK))) | DBG_FUNC_START,
619 proc_selfpid(), audit_token_pid_from_task(task),
620 teffective(task, THREAD_NULL), tpriority(task, THREAD_NULL), 0);
621
622 task_policy_update_internal_locked(task, THREAD_NULL, TRUE);
623
624 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
625 (IMPORTANCE_CODE(IMP_UPDATE, (IMP_UPDATE_TASK_CREATE | TASK_POLICY_TASK))) | DBG_FUNC_END,
626 proc_selfpid(), audit_token_pid_from_task(task),
627 teffective(task, THREAD_NULL), tpriority(task, THREAD_NULL), 0);
628 }
629
630 static void
631 task_policy_update_locked(task_t task, thread_t thread)
632 {
633 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
634 (IMPORTANCE_CODE(IMP_UPDATE, tisthread(thread)) | DBG_FUNC_START),
635 proc_selfpid(), targetid(task, thread),
636 teffective(task, thread), tpriority(task, thread), 0);
637
638 task_policy_update_internal_locked(task, thread, FALSE);
639
640 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
641 (IMPORTANCE_CODE(IMP_UPDATE, tisthread(thread))) | DBG_FUNC_END,
642 proc_selfpid(), targetid(task, thread),
643 teffective(task, thread), tpriority(task, thread), 0);
644 }
645
646 /*
647 * One state update function TO RULE THEM ALL
648 *
649 * This function updates the task or thread effective policy fields
650 * and pushes the results to the relevant subsystems.
651 *
652 * Must call update_complete after unlocking the task,
653 * as some subsystems cannot be updated while holding the task lock.
654 *
655 * Called with task locked, not thread
656 */
657 static void
658 task_policy_update_internal_locked(task_t task, thread_t thread, boolean_t in_create)
659 {
660 boolean_t on_task = (thread == THREAD_NULL) ? TRUE : FALSE;
661
662 /*
663 * Step 1:
664 * Gather requested policy
665 */
666
667 struct task_requested_policy requested =
668 (on_task) ? task->requested_policy : thread->requested_policy;
669
670 /*
671 * Step 2:
672 * Calculate new effective policies from requested policy and task state
673 * Rules:
674 * If in an 'on_task' block, must only look at and set fields starting with t_
675 * If operating on a task, don't touch anything starting with th_
676 * If operating on a thread, don't touch anything starting with t_
677 * Don't change requested, it won't take effect
678 */
679
680 struct task_effective_policy next = {};
681
682 /* Calculate DARWIN_BG */
683 boolean_t wants_darwinbg = FALSE;
684 boolean_t wants_all_sockets_bg = FALSE; /* Do I want my existing sockets to be bg */
685 boolean_t wants_watchersbg = FALSE; /* Do I want my pidbound threads to be bg */
686 boolean_t wants_tal = FALSE; /* Do I want the effects of TAL mode */
687 /*
688 * If DARWIN_BG has been requested at either level, it's engaged.
689 * Only true DARWIN_BG changes cause watchers to transition.
690 */
691 if (requested.int_darwinbg || requested.ext_darwinbg)
692 wants_watchersbg = wants_all_sockets_bg = wants_darwinbg = TRUE;
693
694 if (on_task) {
695 /* Background TAL apps are throttled when TAL is enabled */
696 if (requested.t_apptype == TASK_APPTYPE_APP_TAL &&
697 requested.t_role == TASK_BACKGROUND_APPLICATION &&
698 requested.t_tal_enabled == 1) {
699 wants_tal = TRUE;
700 next.t_tal_engaged = 1;
701 }
702
703 /* Adaptive daemons are DARWIN_BG unless boosted, and don't get network throttled. */
704 if (requested.t_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE &&
705 requested.t_boosted == 0)
706 wants_darwinbg = TRUE;
707
708 /* Background daemons are always DARWIN_BG, no exceptions, and don't get network throttled. */
709 if (requested.t_apptype == TASK_APPTYPE_DAEMON_BACKGROUND)
710 wants_darwinbg = TRUE;
711 } else {
712 if (requested.th_pidbind_bg)
713 wants_all_sockets_bg = wants_darwinbg = TRUE;
714
715 if (requested.th_workq_bg)
716 wants_darwinbg = TRUE;
717 }
718
719 /* Calculate side effects of DARWIN_BG */
720
721 if (wants_darwinbg) {
722 next.darwinbg = 1;
723 /* darwinbg threads/tasks always create bg sockets, but we don't always loop over all sockets */
724 next.new_sockets_bg = 1;
725 next.lowpri_cpu = 1;
726 }
727
728 if (wants_all_sockets_bg)
729 next.all_sockets_bg = 1;
730
731 if (on_task && wants_watchersbg)
732 next.t_watchers_bg = 1;
733
734 /* Calculate low CPU priority */
735
736 boolean_t wants_lowpri_cpu = FALSE;
737
738 if (wants_darwinbg || wants_tal)
739 wants_lowpri_cpu = TRUE;
740
741 if (on_task && requested.t_sup_lowpri_cpu && requested.t_boosted == 0)
742 wants_lowpri_cpu = TRUE;
743
744 if (wants_lowpri_cpu)
745 next.lowpri_cpu = 1;
746
747 /* Calculate IO policy */
748
749 /* Update BG IO policy (so we can see if it has changed) */
750 next.bg_iotier = requested.bg_iotier;
751
752 int iopol = THROTTLE_LEVEL_TIER0;
753
754 if (wants_darwinbg)
755 iopol = MAX(iopol, requested.bg_iotier);
756
757 if (on_task) {
758 if (requested.t_apptype == TASK_APPTYPE_DAEMON_STANDARD)
759 iopol = MAX(iopol, proc_standard_daemon_tier);
760
761 if (requested.t_sup_disk && requested.t_boosted == 0)
762 iopol = MAX(iopol, proc_suppressed_disk_tier);
763
764 if (wants_tal)
765 iopol = MAX(iopol, proc_tal_disk_tier);
766 }
767
768 iopol = MAX(iopol, requested.int_iotier);
769 iopol = MAX(iopol, requested.ext_iotier);
770
771 next.io_tier = iopol;
772
773 /* Calculate Passive IO policy */
774
775 if (requested.ext_iopassive || requested.int_iopassive)
776 next.io_passive = 1;
777
778 /* Calculate miscellaneous policy */
779
780 if (on_task) {
781 /* Update role */
782 next.t_role = requested.t_role;
783
784 /* Calculate suppression-active flag */
785 if (requested.t_sup_active && requested.t_boosted == 0)
786 next.t_sup_active = 1;
787
788 /* Calculate suspend policy */
789 if (requested.t_sup_suspend && requested.t_boosted == 0)
790 next.t_suspended = 1;
791
792 /* Calculate GPU Access policy */
793 if (requested.t_int_gpu_deny || requested.t_ext_gpu_deny)
794 next.t_gpu_deny = 1;
795
796
797 /* Calculate timer QOS */
798 int latency_qos = requested.t_base_latency_qos;
799
800 if (requested.t_sup_timer && requested.t_boosted == 0)
801 latency_qos = requested.t_sup_timer;
802
803 if (requested.t_over_latency_qos != 0)
804 latency_qos = requested.t_over_latency_qos;
805
806 /* Treat the windowserver special */
807 if (requested.t_role == TASK_GRAPHICS_SERVER)
808 latency_qos = proc_graphics_timer_qos;
809
810 next.t_latency_qos = latency_qos;
811
812 /* Calculate throughput QOS */
813 int through_qos = requested.t_base_through_qos;
814
815 if (requested.t_sup_throughput && requested.t_boosted == 0)
816 through_qos = requested.t_sup_throughput;
817
818 if (requested.t_over_through_qos != 0)
819 through_qos = requested.t_over_through_qos;
820
821 next.t_through_qos = through_qos;
822
823 /* Calculate suppressed CPU priority */
824 if (requested.t_sup_cpu && requested.t_boosted == 0)
825 next.t_suppressed_cpu = 1;
826 }
827
828 if (requested.terminated) {
829 /*
830 * Shoot down the throttles that slow down exit or response to SIGTERM
831 * We don't need to shoot down:
832 * passive (don't want to cause others to throttle)
833 * all_sockets_bg (don't need to iterate FDs on every exit)
834 * new_sockets_bg (doesn't matter for exiting process)
835 * gpu deny (doesn't matter for exiting process)
836 * pidsuspend (jetsam-ed BG process shouldn't run again)
837 * watchers_bg (watcher threads don't need to be unthrottled)
838 * t_latency_qos (affects userspace timers only)
839 */
840
841 next.terminated = 1;
842 next.darwinbg = 0;
843 next.lowpri_cpu = 0;
844 next.io_tier = THROTTLE_LEVEL_TIER0;
845 if (on_task) {
846 next.t_tal_engaged = 0;
847 next.t_role = TASK_UNSPECIFIED;
848 next.t_suppressed_cpu = 0;
849
850 /* TODO: This should only be shot down on SIGTERM, not exit */
851 next.t_suspended = 0;
852 }
853 }
854
855 /*
856 * Step 3:
857 * Swap out old policy for new policy
858 */
859
860 struct task_effective_policy prev =
861 (on_task) ? task->effective_policy : thread->effective_policy;
862
863 /*
864 * Check for invalid transitions here for easier debugging
865 * TODO: dump the structs as hex in the panic string
866 */
867 if (task == kernel_task && prev.all_sockets_bg != next.all_sockets_bg)
868 panic("unexpected network change for kernel task");
869
870 /* This is the point where the new values become visible to other threads */
871 if (on_task)
872 task->effective_policy = next;
873 else
874 thread->effective_policy = next;
875
876 /* Don't do anything further to a half-formed task or thread */
877 if (in_create)
878 return;
879
880 /*
881 * Step 4:
882 * Pend updates that can't be done while holding the task lock
883 * Preserve pending updates that may still be waiting to be applied
884 */
885
886 struct task_pended_policy pended =
887 (on_task) ? task->pended_policy : thread->pended_policy;
888
889 if (prev.all_sockets_bg != next.all_sockets_bg)
890 pended.update_sockets = 1;
891
892 if (on_task) {
893 /* Only re-scan the timer list if the qos level is getting less strong */
894 if (prev.t_latency_qos > next.t_latency_qos)
895 pended.t_update_timers = 1;
896
897 }
898
899 if (on_task)
900 task->pended_policy = pended;
901 else
902 thread->pended_policy = pended;
903
904 /*
905 * Step 5:
906 * Update other subsystems as necessary if something has changed
907 */
908
909 boolean_t update_throttle = (prev.io_tier != next.io_tier) ? TRUE : FALSE;
910
911 if (on_task) {
912 if (prev.t_suspended == 0 && next.t_suspended == 1 && task->active) {
913 task_hold_locked(task);
914 task_wait_locked(task, FALSE);
915 }
916 if (prev.t_suspended == 1 && next.t_suspended == 0 && task->active) {
917 task_release_locked(task);
918 }
919
920 boolean_t update_threads = FALSE;
921
922 if (prev.bg_iotier != next.bg_iotier)
923 update_threads = TRUE;
924
925 if (prev.terminated != next.terminated)
926 update_threads = TRUE;
927
928 task_policy_update_task_locked(task, update_throttle, update_threads);
929 } else {
930 int update_cpu = 0;
931
932 if (prev.lowpri_cpu != next.lowpri_cpu)
933 update_cpu = (next.lowpri_cpu ? DO_LOWPRI_CPU : UNDO_LOWPRI_CPU);
934
935 task_policy_update_thread_locked(thread, update_cpu, update_throttle);
936 }
937 }
938
939 /* Despite the name, the thread's task is locked, the thread is not */
940 static void
941 task_policy_update_thread_locked(thread_t thread,
942 int update_cpu,
943 boolean_t update_throttle)
944 {
945 thread_precedence_policy_data_t policy;
946
947 if (update_throttle) {
948 rethrottle_thread(thread->uthread);
949 }
950
951 /*
952 * TODO: pidbind needs to stuff remembered importance into saved_importance
953 * properly deal with bg'ed threads being pidbound and unbging while pidbound
954 *
955 * TODO: A BG thread's priority is 0 on desktop and 4 on embedded. Need to reconcile this.
956 * */
957 if (update_cpu == DO_LOWPRI_CPU) {
958 thread->saved_importance = thread->importance;
959 policy.importance = INT_MIN;
960 } else if (update_cpu == UNDO_LOWPRI_CPU) {
961 policy.importance = thread->saved_importance;
962 thread->saved_importance = 0;
963 }
964
965 /* Takes thread lock and thread mtx lock */
966 if (update_cpu)
967 thread_policy_set_internal(thread, THREAD_PRECEDENCE_POLICY,
968 (thread_policy_t)&policy,
969 THREAD_PRECEDENCE_POLICY_COUNT);
970 }
971
972 /*
973 * Calculate priority on a task, loop through its threads, and tell them about
974 * priority changes and throttle changes.
975 */
976 static void
977 task_policy_update_task_locked(task_t task,
978 boolean_t update_throttle,
979 boolean_t update_threads)
980 {
981 boolean_t update_priority = FALSE;
982
983 if (task == kernel_task)
984 panic("Attempting to set task policy on kernel_task");
985
986 int priority = BASEPRI_DEFAULT;
987 int max_priority = MAXPRI_USER;
988
989 if (proc_get_effective_task_policy(task, TASK_POLICY_LOWPRI_CPU)) {
990 priority = MAXPRI_THROTTLE;
991 max_priority = MAXPRI_THROTTLE;
992 } else if (proc_get_effective_task_policy(task, TASK_POLICY_SUPPRESSED_CPU)) {
993 priority = MAXPRI_SUPPRESSED;
994 max_priority = MAXPRI_SUPPRESSED;
995 } else {
996 switch (proc_get_effective_task_policy(task, TASK_POLICY_ROLE)) {
997 case TASK_FOREGROUND_APPLICATION:
998 priority = BASEPRI_FOREGROUND;
999 break;
1000 case TASK_BACKGROUND_APPLICATION:
1001 priority = BASEPRI_BACKGROUND;
1002 break;
1003 case TASK_CONTROL_APPLICATION:
1004 priority = BASEPRI_CONTROL;
1005 break;
1006 case TASK_GRAPHICS_SERVER:
1007 priority = BASEPRI_GRAPHICS;
1008 max_priority = MAXPRI_RESERVED;
1009 break;
1010 default:
1011 break;
1012 }
1013
1014 /* factor in 'nice' value */
1015 priority += task->importance;
1016 }
1017
1018 /* avoid extra work if priority isn't changing */
1019 if (task->priority != priority || task->max_priority != max_priority) {
1020 update_priority = TRUE;
1021
1022 /* update the scheduling priority for the task */
1023 task->max_priority = max_priority;
1024
1025 if (priority > task->max_priority)
1026 priority = task->max_priority;
1027 else if (priority < MINPRI)
1028 priority = MINPRI;
1029
1030 task->priority = priority;
1031 }
1032
1033 /* Loop over the threads in the task only once, and only if necessary */
1034 if (update_threads || update_throttle || update_priority ) {
1035 thread_t thread;
1036
1037 queue_iterate(&task->threads, thread, thread_t, task_threads) {
1038 if (update_priority) {
1039 thread_mtx_lock(thread);
1040
1041 if (thread->active)
1042 thread_task_priority(thread, priority, max_priority);
1043
1044 thread_mtx_unlock(thread);
1045 }
1046
1047 if (update_throttle) {
1048 rethrottle_thread(thread->uthread);
1049 }
1050
1051 if (update_threads) {
1052 thread->requested_policy.bg_iotier = task->effective_policy.bg_iotier;
1053 thread->requested_policy.terminated = task->effective_policy.terminated;
1054
1055 task_policy_update_internal_locked(task, thread, FALSE);
1056 /* The thread policy must not emit any completion actions due to this change. */
1057 }
1058 }
1059 }
1060 }
1061
1062 /*
1063 * Called with task unlocked to do things that can't be done while holding the task lock
1064 * To keep things consistent, only one thread can make progress through here at a time for any one task.
1065 *
1066 * TODO: tracepoints
1067 */
1068 static void
1069 task_policy_update_complete_unlocked(task_t task, thread_t thread)
1070 {
1071 boolean_t on_task = (thread == THREAD_NULL) ? TRUE : FALSE;
1072
1073 task_lock(task);
1074
1075 while (task->pended_policy.t_updating_policy != 0) {
1076 assert_wait((event_t)&task->pended_policy, THREAD_UNINT);
1077 task_unlock(task);
1078 thread_block(THREAD_CONTINUE_NULL);
1079 task_lock(task);
1080 }
1081
1082 /* Take a snapshot of the current state */
1083
1084 struct task_pended_policy pended =
1085 (on_task) ? task->pended_policy : thread->pended_policy;
1086
1087 struct task_effective_policy effective =
1088 (on_task) ? task->effective_policy : thread->effective_policy;
1089
1090 /* Mark the pended operations as being handled */
1091 if (on_task)
1092 task->pended_policy = default_task_pended_policy;
1093 else
1094 thread->pended_policy = default_task_pended_policy;
1095
1096 task->pended_policy.t_updating_policy = 1;
1097
1098 task_unlock(task);
1099
1100 /* Update the other subsystems with the new state */
1101
1102 #ifdef MACH_BSD
1103 if (pended.update_sockets)
1104 proc_apply_task_networkbg(task->bsd_info, thread, effective.all_sockets_bg);
1105 #endif /* MACH_BSD */
1106
1107 if (on_task) {
1108 /* The timer throttle has been removed, we need to look for expired timers and fire them */
1109 if (pended.t_update_timers)
1110 ml_timer_evaluate();
1111
1112 }
1113
1114 /* Wake up anyone waiting to make another update */
1115 task_lock(task);
1116 task->pended_policy.t_updating_policy = 0;
1117 thread_wakeup(&task->pended_policy);
1118 task_unlock(task);
1119 }
1120
1121 /*
1122 * Initiate a task policy state transition
1123 *
1124 * Everything that modifies requested except functions that need to hold the task lock
1125 * should use this function
1126 *
1127 * Argument validation should be performed before reaching this point.
1128 *
1129 * TODO: Do we need to check task->active or thread->active?
1130 */
1131 void
1132 proc_set_task_policy(task_t task,
1133 thread_t thread,
1134 int category,
1135 int flavor,
1136 int value)
1137 {
1138 task_lock(task);
1139
1140 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1141 (IMPORTANCE_CODE(flavor, (category | tisthread(thread)))) | DBG_FUNC_START,
1142 proc_selfpid(), targetid(task, thread), trequested(task, thread), value, 0);
1143
1144 proc_set_task_policy_locked(task, thread, category, flavor, value);
1145
1146 task_policy_update_locked(task, thread);
1147
1148 task_unlock(task);
1149
1150 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1151 (IMPORTANCE_CODE(flavor, (category | tisthread(thread)))) | DBG_FUNC_END,
1152 proc_selfpid(), targetid(task, thread), trequested(task, thread), tpending(task, thread), 0);
1153
1154 task_policy_update_complete_unlocked(task, thread);
1155 }
1156
1157 /*
1158 * Initiate a task policy state transition on a thread with its TID
1159 * Useful if you cannot guarantee the thread won't get terminated
1160 */
1161 void
1162 proc_set_task_policy_thread(task_t task,
1163 uint64_t tid,
1164 int category,
1165 int flavor,
1166 int value)
1167 {
1168 thread_t thread;
1169 thread_t self = current_thread();
1170
1171 task_lock(task);
1172
1173 if (tid == TID_NULL || tid == self->thread_id)
1174 thread = self;
1175 else
1176 thread = task_findtid(task, tid);
1177
1178 if (thread == THREAD_NULL) {
1179 task_unlock(task);
1180 return;
1181 }
1182
1183 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1184 (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_THREAD))) | DBG_FUNC_START,
1185 proc_selfpid(), targetid(task, thread), trequested(task, thread), value, 0);
1186
1187 proc_set_task_policy_locked(task, thread, category, flavor, value);
1188
1189 task_policy_update_locked(task, thread);
1190
1191 task_unlock(task);
1192
1193 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1194 (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_THREAD))) | DBG_FUNC_END,
1195 proc_selfpid(), targetid(task, thread), trequested(task, thread), tpending(task, thread), 0);
1196
1197 task_policy_update_complete_unlocked(task, thread);
1198 }
1199
1200
1201 /*
1202 * Set the requested state for a specific flavor to a specific value.
1203 *
1204 * TODO:
1205 * Verify that arguments to non iopol things are 1 or 0
1206 */
1207 static void
1208 proc_set_task_policy_locked(task_t task,
1209 thread_t thread,
1210 int category,
1211 int flavor,
1212 int value)
1213 {
1214 boolean_t on_task = (thread == THREAD_NULL) ? TRUE : FALSE;
1215
1216 int tier, passive;
1217
1218 struct task_requested_policy requested =
1219 (on_task) ? task->requested_policy : thread->requested_policy;
1220
1221 switch (flavor) {
1222
1223 /* Category: EXTERNAL and INTERNAL, thread and task */
1224
1225 case TASK_POLICY_DARWIN_BG:
1226 if (category == TASK_POLICY_EXTERNAL)
1227 requested.ext_darwinbg = value;
1228 else
1229 requested.int_darwinbg = value;
1230 break;
1231
1232 case TASK_POLICY_IOPOL:
1233 proc_iopol_to_tier(value, &tier, &passive);
1234 if (category == TASK_POLICY_EXTERNAL) {
1235 requested.ext_iotier = tier;
1236 requested.ext_iopassive = passive;
1237 } else {
1238 requested.int_iotier = tier;
1239 requested.int_iopassive = passive;
1240 }
1241 break;
1242
1243 case TASK_POLICY_IO:
1244 if (category == TASK_POLICY_EXTERNAL)
1245 requested.ext_iotier = value;
1246 else
1247 requested.int_iotier = value;
1248 break;
1249
1250 case TASK_POLICY_PASSIVE_IO:
1251 if (category == TASK_POLICY_EXTERNAL)
1252 requested.ext_iopassive = value;
1253 else
1254 requested.int_iopassive = value;
1255 break;
1256
1257 /* Category: EXTERNAL and INTERNAL, task only */
1258
1259 case TASK_POLICY_GPU_DENY:
1260 assert(on_task);
1261 if (category == TASK_POLICY_EXTERNAL)
1262 requested.t_ext_gpu_deny = value;
1263 else
1264 requested.t_int_gpu_deny = value;
1265 break;
1266
1267 case TASK_POLICY_DARWIN_BG_AND_GPU:
1268 assert(on_task);
1269 if (category == TASK_POLICY_EXTERNAL) {
1270 requested.ext_darwinbg = value;
1271 requested.t_ext_gpu_deny = value;
1272 } else {
1273 requested.int_darwinbg = value;
1274 requested.t_int_gpu_deny = value;
1275 }
1276 break;
1277
1278 /* Category: INTERNAL, task only */
1279
1280 case TASK_POLICY_DARWIN_BG_IOPOL:
1281 assert(on_task && category == TASK_POLICY_INTERNAL);
1282 proc_iopol_to_tier(value, &tier, &passive);
1283 requested.bg_iotier = tier;
1284 break;
1285
1286 /* Category: ATTRIBUTE, task only */
1287
1288 case TASK_POLICY_TAL:
1289 assert(on_task && category == TASK_POLICY_ATTRIBUTE);
1290 requested.t_tal_enabled = value;
1291 break;
1292
1293 case TASK_POLICY_BOOST:
1294 assert(on_task && category == TASK_POLICY_ATTRIBUTE);
1295 requested.t_boosted = value;
1296 break;
1297
1298 case TASK_POLICY_ROLE:
1299 assert(on_task && category == TASK_POLICY_ATTRIBUTE);
1300 requested.t_role = value;
1301 break;
1302
1303 case TASK_POLICY_TERMINATED:
1304 assert(on_task && category == TASK_POLICY_ATTRIBUTE);
1305 requested.terminated = value;
1306 break;
1307
1308 /* Category: ATTRIBUTE, thread only */
1309
1310 case TASK_POLICY_PIDBIND_BG:
1311 assert(!on_task && category == TASK_POLICY_ATTRIBUTE);
1312 requested.th_pidbind_bg = value;
1313 break;
1314
1315 case TASK_POLICY_WORKQ_BG:
1316 assert(!on_task && category == TASK_POLICY_ATTRIBUTE);
1317 requested.th_workq_bg = value;
1318 break;
1319
1320 default:
1321 panic("unknown task policy: %d %d %d", category, flavor, value);
1322 break;
1323 }
1324
1325 if (on_task)
1326 task->requested_policy = requested;
1327 else
1328 thread->requested_policy = requested;
1329 }
1330
1331
1332 /*
1333 * Gets what you set. Effective values may be different.
1334 */
1335 int
1336 proc_get_task_policy(task_t task,
1337 thread_t thread,
1338 int category,
1339 int flavor)
1340 {
1341 boolean_t on_task = (thread == THREAD_NULL) ? TRUE : FALSE;
1342
1343 int value = 0;
1344
1345 task_lock(task);
1346
1347 struct task_requested_policy requested =
1348 (on_task) ? task->requested_policy : thread->requested_policy;
1349
1350 switch (flavor) {
1351 case TASK_POLICY_DARWIN_BG:
1352 if (category == TASK_POLICY_EXTERNAL)
1353 value = requested.ext_darwinbg;
1354 else
1355 value = requested.int_darwinbg;
1356 break;
1357 case TASK_POLICY_IOPOL:
1358 if (category == TASK_POLICY_EXTERNAL)
1359 value = proc_tier_to_iopol(requested.ext_iotier,
1360 requested.ext_iopassive);
1361 else
1362 value = proc_tier_to_iopol(requested.int_iotier,
1363 requested.int_iopassive);
1364 break;
1365 case TASK_POLICY_IO:
1366 if (category == TASK_POLICY_EXTERNAL)
1367 value = requested.ext_iotier;
1368 else
1369 value = requested.int_iotier;
1370 break;
1371 case TASK_POLICY_PASSIVE_IO:
1372 if (category == TASK_POLICY_EXTERNAL)
1373 value = requested.ext_iopassive;
1374 else
1375 value = requested.int_iopassive;
1376 break;
1377 case TASK_POLICY_GPU_DENY:
1378 assert(on_task);
1379 if (category == TASK_POLICY_EXTERNAL)
1380 value = requested.t_ext_gpu_deny;
1381 else
1382 value = requested.t_int_gpu_deny;
1383 break;
1384 case TASK_POLICY_DARWIN_BG_IOPOL:
1385 assert(on_task && category == TASK_POLICY_ATTRIBUTE);
1386 value = proc_tier_to_iopol(requested.bg_iotier, 0);
1387 break;
1388 case TASK_POLICY_ROLE:
1389 assert(on_task && category == TASK_POLICY_ATTRIBUTE);
1390 value = requested.t_role;
1391 break;
1392 default:
1393 panic("unknown policy_flavor %d", flavor);
1394 break;
1395 }
1396
1397 task_unlock(task);
1398
1399 return value;
1400 }
1401
1402
1403 /*
1404 * Functions for querying effective state for relevant subsystems
1405 * ONLY the relevant subsystem should query these.
1406 * NEVER take a value from one of the 'effective' functions and stuff it into a setter.
1407 */
1408
1409 int
1410 proc_get_effective_task_policy(task_t task, int flavor)
1411 {
1412 return proc_get_effective_policy(task, THREAD_NULL, flavor);
1413 }
1414
1415 int
1416 proc_get_effective_thread_policy(thread_t thread, int flavor)
1417 {
1418 return proc_get_effective_policy(thread->task, thread, flavor);
1419 }
1420
1421 /*
1422 * Gets what is actually in effect, for subsystems which pull policy instead of receive updates.
1423 *
1424 * NOTE: This accessor does not take the task lock.
1425 * Notifications of state updates need to be externally synchronized with state queries.
1426 * This routine *MUST* remain interrupt safe, as it is potentially invoked
1427 * within the context of a timer interrupt.
1428 */
1429 static int
1430 proc_get_effective_policy(task_t task,
1431 thread_t thread,
1432 int flavor)
1433 {
1434 boolean_t on_task = (thread == THREAD_NULL) ? TRUE : FALSE;
1435 int value = 0;
1436
1437 switch (flavor) {
1438 case TASK_POLICY_DARWIN_BG:
1439 /*
1440 * This backs the KPI call proc_pidbackgrounded to find
1441 * out if a pid is backgrounded,
1442 * as well as proc_get_effective_thread_policy.
1443 * Its main use is within the timer layer, as well as
1444 * prioritizing requests to the graphics system.
1445 * Returns 1 for background mode, 0 for normal mode
1446 */
1447 if (on_task)
1448 value = task->effective_policy.darwinbg;
1449 else
1450 value = (task->effective_policy.darwinbg ||
1451 thread->effective_policy.darwinbg) ? 1 : 0;
1452 break;
1453 case TASK_POLICY_IO:
1454 /*
1455 * The I/O system calls here to find out what throttling tier to apply to an operation.
1456 * Returns THROTTLE_LEVEL_* values
1457 */
1458 if (on_task)
1459 value = task->effective_policy.io_tier;
1460 else {
1461 value = MAX(task->effective_policy.io_tier,
1462 thread->effective_policy.io_tier);
1463 if (thread->iotier_override != THROTTLE_LEVEL_NONE)
1464 value = MIN(value, thread->iotier_override);
1465 }
1466 break;
1467 case TASK_POLICY_PASSIVE_IO:
1468 /*
1469 * The I/O system calls here to find out whether an operation should be passive.
1470 * (i.e. not cause operations with lower throttle tiers to be throttled)
1471 * Returns 1 for passive mode, 0 for normal mode
1472 */
1473 if (on_task)
1474 value = task->effective_policy.io_passive;
1475 else
1476 value = (task->effective_policy.io_passive ||
1477 thread->effective_policy.io_passive) ? 1 : 0;
1478 break;
1479 case TASK_POLICY_NEW_SOCKETS_BG:
1480 /*
1481 * socreate() calls this to determine if it should mark a new socket as background
1482 * Returns 1 for background mode, 0 for normal mode
1483 */
1484 if (on_task)
1485 value = task->effective_policy.new_sockets_bg;
1486 else
1487 value = (task->effective_policy.new_sockets_bg ||
1488 thread->effective_policy.new_sockets_bg) ? 1 : 0;
1489 break;
1490 case TASK_POLICY_LOWPRI_CPU:
1491 /*
1492 * Returns 1 for low priority cpu mode, 0 for normal mode
1493 */
1494 if (on_task)
1495 value = task->effective_policy.lowpri_cpu;
1496 else
1497 value = (task->effective_policy.lowpri_cpu ||
1498 thread->effective_policy.lowpri_cpu) ? 1 : 0;
1499 break;
1500 case TASK_POLICY_SUPPRESSED_CPU:
1501 /*
1502 * Returns 1 for suppressed cpu mode, 0 for normal mode
1503 */
1504 assert(on_task);
1505 value = task->effective_policy.t_suppressed_cpu;
1506 break;
1507 case TASK_POLICY_LATENCY_QOS:
1508 /*
1509 * timer arming calls into here to find out the timer coalescing level
1510 * Returns a QoS tier (0-6)
1511 */
1512 assert(on_task);
1513 value = task->effective_policy.t_latency_qos;
1514 break;
1515 case TASK_POLICY_THROUGH_QOS:
1516 /*
1517 * Returns a QoS tier (0-6)
1518 */
1519 assert(on_task);
1520 value = task->effective_policy.t_through_qos;
1521 break;
1522 case TASK_POLICY_GPU_DENY:
1523 /*
1524 * This is where IOKit calls into task_policy to find out whether
1525 * it should allow access to the GPU.
1526 * Returns 1 for NOT allowed, returns 0 for allowed
1527 */
1528 assert(on_task);
1529 value = task->effective_policy.t_gpu_deny;
1530 break;
1531 case TASK_POLICY_ROLE:
1532 assert(on_task);
1533 value = task->effective_policy.t_role;
1534 break;
1535 case TASK_POLICY_WATCHERS_BG:
1536 assert(on_task);
1537 value = task->effective_policy.t_watchers_bg;
1538 break;
1539 default:
1540 panic("unknown policy_flavor %d", flavor);
1541 break;
1542 }
1543
1544 return value;
1545 }
1546
1547 /*
1548 * Convert from IOPOL_* values to throttle tiers.
1549 *
1550 * TODO: Can this be made more compact, like an array lookup
1551 * Note that it is possible to support e.g. IOPOL_PASSIVE_STANDARD in the future
1552 */
1553
1554 static void
1555 proc_iopol_to_tier(int iopolicy, int *tier, int *passive)
1556 {
1557 *passive = 0;
1558 *tier = 0;
1559 switch (iopolicy) {
1560 case IOPOL_IMPORTANT:
1561 *tier = THROTTLE_LEVEL_TIER0;
1562 break;
1563 case IOPOL_PASSIVE:
1564 *tier = THROTTLE_LEVEL_TIER0;
1565 *passive = 1;
1566 break;
1567 case IOPOL_STANDARD:
1568 *tier = THROTTLE_LEVEL_TIER1;
1569 break;
1570 case IOPOL_UTILITY:
1571 *tier = THROTTLE_LEVEL_TIER2;
1572 break;
1573 case IOPOL_THROTTLE:
1574 *tier = THROTTLE_LEVEL_TIER3;
1575 break;
1576 default:
1577 panic("unknown I/O policy %d", iopolicy);
1578 break;
1579 }
1580 }
1581
1582 static int
1583 proc_tier_to_iopol(int tier, int passive)
1584 {
1585 if (passive == 1) {
1586 switch (tier) {
1587 case THROTTLE_LEVEL_TIER0:
1588 return IOPOL_PASSIVE;
1589 break;
1590 default:
1591 panic("unknown passive tier %d", tier);
1592 return IOPOL_DEFAULT;
1593 break;
1594 }
1595 } else {
1596 switch (tier) {
1597 case THROTTLE_LEVEL_NONE:
1598 return IOPOL_DEFAULT;
1599 break;
1600 case THROTTLE_LEVEL_TIER0:
1601 return IOPOL_IMPORTANT;
1602 break;
1603 case THROTTLE_LEVEL_TIER1:
1604 return IOPOL_STANDARD;
1605 break;
1606 case THROTTLE_LEVEL_TIER2:
1607 return IOPOL_UTILITY;
1608 break;
1609 case THROTTLE_LEVEL_TIER3:
1610 return IOPOL_THROTTLE;
1611 break;
1612 default:
1613 panic("unknown tier %d", tier);
1614 return IOPOL_DEFAULT;
1615 break;
1616 }
1617 }
1618 }
1619
1620 /* apply internal backgrounding for workqueue threads */
1621 int
1622 proc_apply_workq_bgthreadpolicy(thread_t thread)
1623 {
1624 if (thread == THREAD_NULL)
1625 return ESRCH;
1626
1627 proc_set_task_policy(thread->task, thread, TASK_POLICY_ATTRIBUTE,
1628 TASK_POLICY_WORKQ_BG, TASK_POLICY_ENABLE);
1629
1630 return(0);
1631 }
1632
1633 /*
1634 * remove internal backgrounding for workqueue threads
1635 * does NOT go find sockets created while BG and unbackground them
1636 */
1637 int
1638 proc_restore_workq_bgthreadpolicy(thread_t thread)
1639 {
1640 if (thread == THREAD_NULL)
1641 return ESRCH;
1642
1643 proc_set_task_policy(thread->task, thread, TASK_POLICY_ATTRIBUTE,
1644 TASK_POLICY_WORKQ_BG, TASK_POLICY_DISABLE);
1645
1646 return(0);
1647 }
1648
1649 /* here for temporary compatibility */
1650 int
1651 proc_setthread_saved_importance(__unused thread_t thread, __unused int importance)
1652 {
1653 return(0);
1654 }
1655
1656 /*
1657 * Set an override on the thread which is consulted with a
1658 * higher priority than the task/thread policy. This should
1659 * only be set for temporary grants until the thread
1660 * returns to the userspace boundary
1661 *
1662 * We use atomic operations to swap in the override, with
1663 * the assumption that the thread itself can
1664 * read the override and clear it on return to userspace.
1665 *
1666 * No locking is performed, since it is acceptable to see
1667 * a stale override for one loop through throttle_lowpri_io().
1668 * However a thread reference must be held on the thread.
1669 */
1670
1671 void set_thread_iotier_override(thread_t thread, int policy)
1672 {
1673 int current_override;
1674
1675 /* Let most aggressive I/O policy win until user boundary */
1676 do {
1677 current_override = thread->iotier_override;
1678
1679 if (current_override != THROTTLE_LEVEL_NONE)
1680 policy = MIN(current_override, policy);
1681
1682 if (current_override == policy) {
1683 /* no effective change */
1684 return;
1685 }
1686 } while (!OSCompareAndSwap(current_override, policy, &thread->iotier_override));
1687
1688 /*
1689 * Since the thread may be currently throttled,
1690 * re-evaluate tiers and potentially break out
1691 * of an msleep
1692 */
1693 rethrottle_thread(thread->uthread);
1694 }
1695
1696 /*
1697 * Called at process exec to initialize the apptype of a process
1698 */
1699 void
1700 proc_set_task_apptype(task_t task, int apptype)
1701 {
1702 task_lock(task);
1703
1704 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1705 (IMPORTANCE_CODE(IMP_TASK_APPTYPE, apptype)) | DBG_FUNC_START,
1706 proc_selfpid(), audit_token_pid_from_task(task), trequested(task, THREAD_NULL),
1707 apptype, 0);
1708
1709 switch (apptype) {
1710 case TASK_APPTYPE_APP_TAL:
1711 /* TAL starts off enabled by default */
1712 task->requested_policy.t_tal_enabled = 1;
1713 /* fall through */
1714
1715 case TASK_APPTYPE_APP_DEFAULT:
1716 case TASK_APPTYPE_DAEMON_INTERACTIVE:
1717 task->requested_policy.t_apptype = apptype;
1718
1719 task_importance_mark_donor(task, TRUE);
1720 /* Apps (and interactive daemons) are boost recievers on desktop for suppression behaviors */
1721 task_importance_mark_receiver(task, TRUE);
1722 break;
1723
1724 case TASK_APPTYPE_DAEMON_STANDARD:
1725 task->requested_policy.t_apptype = apptype;
1726
1727 task_importance_mark_donor(task, TRUE);
1728 task_importance_mark_receiver(task, FALSE);
1729 break;
1730
1731 case TASK_APPTYPE_DAEMON_ADAPTIVE:
1732 task->requested_policy.t_apptype = apptype;
1733
1734 task_importance_mark_donor(task, FALSE);
1735 task_importance_mark_receiver(task, TRUE);
1736 break;
1737
1738 case TASK_APPTYPE_DAEMON_BACKGROUND:
1739 task->requested_policy.t_apptype = apptype;
1740
1741 task_importance_mark_donor(task, FALSE);
1742 task_importance_mark_receiver(task, FALSE);
1743 break;
1744
1745 default:
1746 panic("invalid apptype %d", apptype);
1747 break;
1748 }
1749
1750 task_policy_update_locked(task, THREAD_NULL);
1751
1752 task_unlock(task);
1753
1754 task_policy_update_complete_unlocked(task, THREAD_NULL);
1755
1756 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1757 (IMPORTANCE_CODE(IMP_TASK_APPTYPE, apptype)) | DBG_FUNC_END,
1758 proc_selfpid(), audit_token_pid_from_task(task), trequested(task, THREAD_NULL),
1759 task->imp_receiver, 0);
1760 }
1761
1762 /* for process_policy to check before attempting to set */
1763 boolean_t
1764 proc_task_is_tal(task_t task)
1765 {
1766 return (task->requested_policy.t_apptype == TASK_APPTYPE_APP_TAL) ? TRUE : FALSE;
1767 }
1768
1769 /* for telemetry */
1770 integer_t
1771 task_grab_latency_qos(task_t task)
1772 {
1773 return task_qos_latency_package(proc_get_effective_task_policy(task, TASK_POLICY_LATENCY_QOS));
1774 }
1775
1776 /* update the darwin background action state in the flags field for libproc */
1777 int
1778 proc_get_darwinbgstate(task_t task, uint32_t * flagsp)
1779 {
1780 if (task->requested_policy.ext_darwinbg)
1781 *flagsp |= PROC_FLAG_EXT_DARWINBG;
1782
1783 if (task->requested_policy.int_darwinbg)
1784 *flagsp |= PROC_FLAG_DARWINBG;
1785
1786
1787 if (task->requested_policy.t_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE)
1788 *flagsp |= PROC_FLAG_ADAPTIVE;
1789
1790 if (task->requested_policy.t_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE && task->requested_policy.t_boosted == 1)
1791 *flagsp |= PROC_FLAG_ADAPTIVE_IMPORTANT;
1792
1793 if (task->imp_donor)
1794 *flagsp |= PROC_FLAG_IMPORTANCE_DONOR;
1795
1796 if (task->effective_policy.t_sup_active)
1797 *flagsp |= PROC_FLAG_SUPPRESSED;
1798
1799 return(0);
1800 }
1801
1802 /* All per-thread state is in the first 32-bits of the bitfield */
1803 void
1804 proc_get_thread_policy(thread_t thread, thread_policy_state_t info)
1805 {
1806 task_t task = thread->task;
1807 task_lock(task);
1808 info->requested = (integer_t)task_requested_bitfield(task, thread);
1809 info->effective = (integer_t)task_effective_bitfield(task, thread);
1810 info->pending = (integer_t)task_pending_bitfield(task, thread);
1811 task_unlock(task);
1812 }
1813
1814
1815 /* dump requested for tracepoint */
1816 static uintptr_t
1817 trequested(task_t task, thread_t thread)
1818 {
1819 return (uintptr_t) task_requested_bitfield(task, thread);
1820 }
1821
1822 /* dump effective for tracepoint */
1823 static uintptr_t
1824 teffective(task_t task, thread_t thread)
1825 {
1826 return (uintptr_t) task_effective_bitfield(task, thread);
1827 }
1828
1829 /* dump pending for tracepoint */
1830 static uintptr_t
1831 tpending(task_t task, thread_t thread)
1832 {
1833 return (uintptr_t) task_pending_bitfield(task, thread);
1834 }
1835
1836 uint64_t
1837 task_requested_bitfield(task_t task, thread_t thread)
1838 {
1839 uint64_t bits = 0;
1840 struct task_requested_policy requested =
1841 (thread == THREAD_NULL) ? task->requested_policy : thread->requested_policy;
1842
1843 bits |= (requested.int_darwinbg ? POLICY_REQ_INT_DARWIN_BG : 0);
1844 bits |= (requested.ext_darwinbg ? POLICY_REQ_EXT_DARWIN_BG : 0);
1845 bits |= (requested.int_iotier ? (((uint64_t)requested.int_iotier) << POLICY_REQ_INT_IO_TIER_SHIFT) : 0);
1846 bits |= (requested.ext_iotier ? (((uint64_t)requested.ext_iotier) << POLICY_REQ_EXT_IO_TIER_SHIFT) : 0);
1847 bits |= (requested.int_iopassive ? POLICY_REQ_INT_PASSIVE_IO : 0);
1848 bits |= (requested.ext_iopassive ? POLICY_REQ_EXT_PASSIVE_IO : 0);
1849 bits |= (requested.bg_iotier ? (((uint64_t)requested.bg_iotier) << POLICY_REQ_BG_IOTIER_SHIFT) : 0);
1850 bits |= (requested.terminated ? POLICY_REQ_TERMINATED : 0);
1851
1852 bits |= (requested.th_pidbind_bg ? POLICY_REQ_PIDBIND_BG : 0);
1853 bits |= (requested.th_workq_bg ? POLICY_REQ_WORKQ_BG : 0);
1854
1855 bits |= (requested.t_boosted ? POLICY_REQ_BOOSTED : 0);
1856 bits |= (requested.t_tal_enabled ? POLICY_REQ_TAL_ENABLED : 0);
1857 bits |= (requested.t_int_gpu_deny ? POLICY_REQ_INT_GPU_DENY : 0);
1858 bits |= (requested.t_ext_gpu_deny ? POLICY_REQ_EXT_GPU_DENY : 0);
1859 bits |= (requested.t_apptype ? (((uint64_t)requested.t_apptype) << POLICY_REQ_APPTYPE_SHIFT) : 0);
1860 bits |= (requested.t_role ? (((uint64_t)requested.t_role) << POLICY_REQ_ROLE_SHIFT) : 0);
1861
1862 bits |= (requested.t_sup_active ? POLICY_REQ_SUP_ACTIVE : 0);
1863 bits |= (requested.t_sup_lowpri_cpu ? POLICY_REQ_SUP_LOWPRI_CPU : 0);
1864 bits |= (requested.t_sup_cpu ? POLICY_REQ_SUP_CPU : 0);
1865 bits |= (requested.t_sup_timer ? (((uint64_t)requested.t_sup_timer) << POLICY_REQ_SUP_TIMER_THROTTLE_SHIFT) : 0);
1866 bits |= (requested.t_sup_throughput ? (((uint64_t)requested.t_sup_throughput) << POLICY_REQ_SUP_THROUGHPUT_SHIFT) : 0);
1867 bits |= (requested.t_sup_disk ? POLICY_REQ_SUP_DISK_THROTTLE : 0);
1868 bits |= (requested.t_sup_cpu_limit ? POLICY_REQ_SUP_CPU_LIMIT : 0);
1869 bits |= (requested.t_sup_suspend ? POLICY_REQ_SUP_SUSPEND : 0);
1870 bits |= (requested.t_base_latency_qos ? (((uint64_t)requested.t_base_latency_qos) << POLICY_REQ_BASE_LATENCY_QOS_SHIFT) : 0);
1871 bits |= (requested.t_over_latency_qos ? (((uint64_t)requested.t_over_latency_qos) << POLICY_REQ_OVER_LATENCY_QOS_SHIFT) : 0);
1872 bits |= (requested.t_base_through_qos ? (((uint64_t)requested.t_base_through_qos) << POLICY_REQ_BASE_THROUGH_QOS_SHIFT) : 0);
1873 bits |= (requested.t_over_through_qos ? (((uint64_t)requested.t_over_through_qos) << POLICY_REQ_OVER_THROUGH_QOS_SHIFT) : 0);
1874
1875 return bits;
1876 }
1877
1878 uint64_t
1879 task_effective_bitfield(task_t task, thread_t thread)
1880 {
1881 uint64_t bits = 0;
1882 struct task_effective_policy effective =
1883 (thread == THREAD_NULL) ? task->effective_policy : thread->effective_policy;
1884
1885 bits |= (effective.io_tier ? (((uint64_t)effective.io_tier) << POLICY_EFF_IO_TIER_SHIFT) : 0);
1886 bits |= (effective.io_passive ? POLICY_EFF_IO_PASSIVE : 0);
1887 bits |= (effective.darwinbg ? POLICY_EFF_DARWIN_BG : 0);
1888 bits |= (effective.lowpri_cpu ? POLICY_EFF_LOWPRI_CPU : 0);
1889 bits |= (effective.terminated ? POLICY_EFF_TERMINATED : 0);
1890 bits |= (effective.all_sockets_bg ? POLICY_EFF_ALL_SOCKETS_BG : 0);
1891 bits |= (effective.new_sockets_bg ? POLICY_EFF_NEW_SOCKETS_BG : 0);
1892 bits |= (effective.bg_iotier ? (((uint64_t)effective.bg_iotier) << POLICY_EFF_BG_IOTIER_SHIFT) : 0);
1893
1894 bits |= (effective.t_gpu_deny ? POLICY_EFF_GPU_DENY : 0);
1895 bits |= (effective.t_tal_engaged ? POLICY_EFF_TAL_ENGAGED : 0);
1896 bits |= (effective.t_suspended ? POLICY_EFF_SUSPENDED : 0);
1897 bits |= (effective.t_watchers_bg ? POLICY_EFF_WATCHERS_BG : 0);
1898 bits |= (effective.t_sup_active ? POLICY_EFF_SUP_ACTIVE : 0);
1899 bits |= (effective.t_suppressed_cpu ? POLICY_EFF_SUP_CPU : 0);
1900 bits |= (effective.t_role ? (((uint64_t)effective.t_role) << POLICY_EFF_ROLE_SHIFT) : 0);
1901 bits |= (effective.t_latency_qos ? (((uint64_t)effective.t_latency_qos) << POLICY_EFF_LATENCY_QOS_SHIFT) : 0);
1902 bits |= (effective.t_through_qos ? (((uint64_t)effective.t_through_qos) << POLICY_EFF_THROUGH_QOS_SHIFT) : 0);
1903
1904 return bits;
1905 }
1906
1907 uint64_t
1908 task_pending_bitfield(task_t task, thread_t thread)
1909 {
1910 uint64_t bits = 0;
1911 struct task_pended_policy pended =
1912 (thread == THREAD_NULL) ? task->pended_policy : thread->pended_policy;
1913
1914 bits |= (pended.t_updating_policy ? POLICY_PEND_UPDATING : 0);
1915 bits |= (pended.update_sockets ? POLICY_PEND_SOCKETS : 0);
1916
1917 bits |= (pended.t_update_timers ? POLICY_PEND_TIMERS : 0);
1918 bits |= (pended.t_update_watchers ? POLICY_PEND_WATCHERS : 0);
1919
1920 return bits;
1921 }
1922
1923
1924 /*
1925 * Resource usage and CPU related routines
1926 */
1927
1928 int
1929 proc_get_task_ruse_cpu(task_t task, uint32_t *policyp, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep)
1930 {
1931
1932 int error = 0;
1933 int scope;
1934
1935 task_lock(task);
1936
1937
1938 error = task_get_cpuusage(task, percentagep, intervalp, deadlinep, &scope);
1939 task_unlock(task);
1940
1941 /*
1942 * Reverse-map from CPU resource limit scopes back to policies (see comment below).
1943 */
1944 if (scope == TASK_RUSECPU_FLAGS_PERTHR_LIMIT) {
1945 *policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC;
1946 } else if (scope == TASK_RUSECPU_FLAGS_PROC_LIMIT) {
1947 *policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE;
1948 } else if (scope == TASK_RUSECPU_FLAGS_DEADLINE) {
1949 *policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE;
1950 }
1951
1952 return(error);
1953 }
1954
1955 /*
1956 * Configure the default CPU usage monitor parameters.
1957 *
1958 * For tasks which have this mechanism activated: if any thread in the
1959 * process consumes more CPU than this, an EXC_RESOURCE exception will be generated.
1960 */
1961 void
1962 proc_init_cpumon_params(void)
1963 {
1964 if (!PE_parse_boot_argn("max_cpumon_percentage", &proc_max_cpumon_percentage,
1965 sizeof (proc_max_cpumon_percentage))) {
1966 proc_max_cpumon_percentage = DEFAULT_CPUMON_PERCENTAGE;
1967 }
1968
1969 if (proc_max_cpumon_percentage > 100) {
1970 proc_max_cpumon_percentage = 100;
1971 }
1972
1973 /* The interval should be specified in seconds. */
1974 if (!PE_parse_boot_argn("max_cpumon_interval", &proc_max_cpumon_interval,
1975 sizeof (proc_max_cpumon_interval))) {
1976 proc_max_cpumon_interval = DEFAULT_CPUMON_INTERVAL;
1977 }
1978
1979 proc_max_cpumon_interval *= NSEC_PER_SEC;
1980 }
1981
1982 /*
1983 * Currently supported configurations for CPU limits.
1984 *
1985 * Policy | Deadline-based CPU limit | Percentage-based CPU limit
1986 * -------------------------------------+--------------------------+------------------------------
1987 * PROC_POLICY_RSRCACT_THROTTLE | ENOTSUP | Task-wide scope only
1988 * PROC_POLICY_RSRCACT_SUSPEND | Task-wide scope only | ENOTSUP
1989 * PROC_POLICY_RSRCACT_TERMINATE | Task-wide scope only | ENOTSUP
1990 * PROC_POLICY_RSRCACT_NOTIFY_KQ | Task-wide scope only | ENOTSUP
1991 * PROC_POLICY_RSRCACT_NOTIFY_EXC | ENOTSUP | Per-thread scope only
1992 *
1993 * A deadline-based CPU limit is actually a simple wallclock timer - the requested action is performed
1994 * after the specified amount of wallclock time has elapsed.
1995 *
1996 * A percentage-based CPU limit performs the requested action after the specified amount of actual CPU time
1997 * has been consumed -- regardless of how much wallclock time has elapsed -- by either the task as an
1998 * aggregate entity (so-called "Task-wide" or "Proc-wide" scope, whereby the CPU time consumed by all threads
1999 * in the task are added together), or by any one thread in the task (so-called "per-thread" scope).
2000 *
2001 * We support either deadline != 0 OR percentage != 0, but not both. The original intention in having them
2002 * share an API was to use actual CPU time as the basis of the deadline-based limit (as in: perform an action
2003 * after I have used some amount of CPU time; this is different than the recurring percentage/interval model)
2004 * but the potential consumer of the API at the time was insisting on wallclock time instead.
2005 *
2006 * Currently, requesting notification via an exception is the only way to get per-thread scope for a
2007 * CPU limit. All other types of notifications force task-wide scope for the limit.
2008 */
2009 int
2010 proc_set_task_ruse_cpu(task_t task, uint32_t policy, uint8_t percentage, uint64_t interval, uint64_t deadline,
2011 int cpumon_entitled)
2012 {
2013 int error = 0;
2014 int scope;
2015
2016 /*
2017 * Enforce the matrix of supported configurations for policy, percentage, and deadline.
2018 */
2019 switch (policy) {
2020 // If no policy is explicitly given, the default is to throttle.
2021 case TASK_POLICY_RESOURCE_ATTRIBUTE_NONE:
2022 case TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE:
2023 if (deadline != 0)
2024 return (ENOTSUP);
2025 scope = TASK_RUSECPU_FLAGS_PROC_LIMIT;
2026 break;
2027 case TASK_POLICY_RESOURCE_ATTRIBUTE_SUSPEND:
2028 case TASK_POLICY_RESOURCE_ATTRIBUTE_TERMINATE:
2029 case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_KQ:
2030 if (percentage != 0)
2031 return (ENOTSUP);
2032 scope = TASK_RUSECPU_FLAGS_DEADLINE;
2033 break;
2034 case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC:
2035 if (deadline != 0)
2036 return (ENOTSUP);
2037 scope = TASK_RUSECPU_FLAGS_PERTHR_LIMIT;
2038 #ifdef CONFIG_NOMONITORS
2039 return (error);
2040 #endif /* CONFIG_NOMONITORS */
2041 break;
2042 default:
2043 return (EINVAL);
2044 }
2045
2046 task_lock(task);
2047 if (task != current_task()) {
2048 task->policy_ru_cpu_ext = policy;
2049 } else {
2050 task->policy_ru_cpu = policy;
2051 }
2052 error = task_set_cpuusage(task, percentage, interval, deadline, scope, cpumon_entitled);
2053 task_unlock(task);
2054 return(error);
2055 }
2056
2057 int
2058 proc_clear_task_ruse_cpu(task_t task, int cpumon_entitled)
2059 {
2060 int error = 0;
2061 int action;
2062 void * bsdinfo = NULL;
2063
2064 task_lock(task);
2065 if (task != current_task()) {
2066 task->policy_ru_cpu_ext = TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT;
2067 } else {
2068 task->policy_ru_cpu = TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT;
2069 }
2070
2071 error = task_clear_cpuusage_locked(task, cpumon_entitled);
2072 if (error != 0)
2073 goto out;
2074
2075 action = task->applied_ru_cpu;
2076 if (task->applied_ru_cpu_ext != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
2077 /* reset action */
2078 task->applied_ru_cpu_ext = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE;
2079 }
2080 if (action != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
2081 bsdinfo = task->bsd_info;
2082 task_unlock(task);
2083 proc_restore_resource_actions(bsdinfo, TASK_POLICY_CPU_RESOURCE_USAGE, action);
2084 goto out1;
2085 }
2086
2087 out:
2088 task_unlock(task);
2089 out1:
2090 return(error);
2091
2092 }
2093
2094 /* used to apply resource limit related actions */
2095 static int
2096 task_apply_resource_actions(task_t task, int type)
2097 {
2098 int action = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE;
2099 void * bsdinfo = NULL;
2100
2101 switch (type) {
2102 case TASK_POLICY_CPU_RESOURCE_USAGE:
2103 break;
2104 case TASK_POLICY_WIREDMEM_RESOURCE_USAGE:
2105 case TASK_POLICY_VIRTUALMEM_RESOURCE_USAGE:
2106 case TASK_POLICY_DISK_RESOURCE_USAGE:
2107 case TASK_POLICY_NETWORK_RESOURCE_USAGE:
2108 case TASK_POLICY_POWER_RESOURCE_USAGE:
2109 return(0);
2110
2111 default:
2112 return(1);
2113 };
2114
2115 /* only cpu actions for now */
2116 task_lock(task);
2117
2118 if (task->applied_ru_cpu_ext == TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
2119 /* apply action */
2120 task->applied_ru_cpu_ext = task->policy_ru_cpu_ext;
2121 action = task->applied_ru_cpu_ext;
2122 } else {
2123 action = task->applied_ru_cpu_ext;
2124 }
2125
2126 if (action != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
2127 bsdinfo = task->bsd_info;
2128 task_unlock(task);
2129 proc_apply_resource_actions(bsdinfo, TASK_POLICY_CPU_RESOURCE_USAGE, action);
2130 } else
2131 task_unlock(task);
2132
2133 return(0);
2134 }
2135
2136 /*
2137 * XXX This API is somewhat broken; we support multiple simultaneous CPU limits, but the get/set API
2138 * only allows for one at a time. This means that if there is a per-thread limit active, the other
2139 * "scopes" will not be accessible via this API. We could change it to pass in the scope of interest
2140 * to the caller, and prefer that, but there's no need for that at the moment.
2141 */
2142 int
2143 task_get_cpuusage(task_t task, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep, int *scope)
2144 {
2145 *percentagep = 0;
2146 *intervalp = 0;
2147 *deadlinep = 0;
2148
2149 if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) != 0) {
2150 *scope = TASK_RUSECPU_FLAGS_PERTHR_LIMIT;
2151 *percentagep = task->rusage_cpu_perthr_percentage;
2152 *intervalp = task->rusage_cpu_perthr_interval;
2153 } else if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PROC_LIMIT) != 0) {
2154 *scope = TASK_RUSECPU_FLAGS_PROC_LIMIT;
2155 *percentagep = task->rusage_cpu_percentage;
2156 *intervalp = task->rusage_cpu_interval;
2157 } else if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_DEADLINE) != 0) {
2158 *scope = TASK_RUSECPU_FLAGS_DEADLINE;
2159 *deadlinep = task->rusage_cpu_deadline;
2160 } else {
2161 *scope = 0;
2162 }
2163
2164 return(0);
2165 }
2166
2167 /*
2168 * Disable the CPU usage monitor for the task. Return value indicates
2169 * if the mechanism was actually enabled.
2170 */
2171 int
2172 task_disable_cpumon(task_t task) {
2173 thread_t thread;
2174
2175 task_lock_assert_owned(task);
2176
2177 if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) == 0) {
2178 return (KERN_INVALID_ARGUMENT);
2179 }
2180
2181 #if CONFIG_TELEMETRY
2182 /*
2183 * Disable task-wide telemetry if it was ever enabled by the CPU usage
2184 * monitor's warning zone.
2185 */
2186 telemetry_task_ctl_locked(current_task(), TF_CPUMON_WARNING, 0);
2187 #endif
2188
2189 /*
2190 * Disable the monitor for the task, and propagate that change to each thread.
2191 */
2192 task->rusage_cpu_flags &= ~(TASK_RUSECPU_FLAGS_PERTHR_LIMIT | TASK_RUSECPU_FLAGS_FATAL_CPUMON);
2193 queue_iterate(&task->threads, thread, thread_t, task_threads) {
2194 set_astledger(thread);
2195 }
2196 task->rusage_cpu_perthr_percentage = 0;
2197 task->rusage_cpu_perthr_interval = 0;
2198
2199 return (KERN_SUCCESS);
2200 }
2201
2202 int
2203 task_set_cpuusage(task_t task, uint8_t percentage, uint64_t interval, uint64_t deadline, int scope, int cpumon_entitled)
2204 {
2205 thread_t thread;
2206 uint64_t abstime = 0;
2207 uint64_t limittime = 0;
2208
2209 lck_mtx_assert(&task->lock, LCK_MTX_ASSERT_OWNED);
2210
2211 /* By default, refill once per second */
2212 if (interval == 0)
2213 interval = NSEC_PER_SEC;
2214
2215 if (percentage != 0) {
2216 if (scope == TASK_RUSECPU_FLAGS_PERTHR_LIMIT) {
2217 boolean_t warn = FALSE;
2218
2219 /*
2220 * A per-thread CPU limit on a task generates an exception
2221 * (LEDGER_ACTION_EXCEPTION) if any one thread in the task
2222 * exceeds the limit.
2223 */
2224
2225 if (percentage == TASK_POLICY_CPUMON_DISABLE) {
2226 if (cpumon_entitled) {
2227 task_disable_cpumon(task);
2228 return (0);
2229 }
2230
2231 /*
2232 * This task wishes to disable the CPU usage monitor, but it's
2233 * missing the required entitlement:
2234 * com.apple.private.kernel.override-cpumon
2235 *
2236 * Instead, treat this as a request to reset its params
2237 * back to the defaults.
2238 */
2239 warn = TRUE;
2240 percentage = TASK_POLICY_CPUMON_DEFAULTS;
2241 }
2242
2243 if (percentage == TASK_POLICY_CPUMON_DEFAULTS) {
2244 percentage = proc_max_cpumon_percentage;
2245 interval = proc_max_cpumon_interval;
2246 }
2247
2248 if (percentage > 100) {
2249 percentage = 100;
2250 }
2251
2252 /*
2253 * Passing in an interval of -1 means either:
2254 * - Leave the interval as-is, if there's already a per-thread
2255 * limit configured
2256 * - Use the system default.
2257 */
2258 if (interval == -1ULL) {
2259 if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) {
2260 interval = task->rusage_cpu_perthr_interval;
2261 } else {
2262 interval = proc_max_cpumon_interval;
2263 }
2264 }
2265
2266 /*
2267 * Enforce global caps on CPU usage monitor here if the process is not
2268 * entitled to escape the global caps.
2269 */
2270 if ((percentage > proc_max_cpumon_percentage) && (cpumon_entitled == 0)) {
2271 warn = TRUE;
2272 percentage = proc_max_cpumon_percentage;
2273 }
2274
2275 if ((interval > proc_max_cpumon_interval) && (cpumon_entitled == 0)) {
2276 warn = TRUE;
2277 interval = proc_max_cpumon_interval;
2278 }
2279
2280 if (warn) {
2281 int pid = 0;
2282 char *procname = (char *)"unknown";
2283
2284 #ifdef MACH_BSD
2285 pid = proc_selfpid();
2286 if (current_task()->bsd_info != NULL) {
2287 procname = proc_name_address(current_task()->bsd_info);
2288 }
2289 #endif
2290
2291 printf("process %s[%d] denied attempt to escape CPU monitor"
2292 " (missing required entitlement).\n", procname, pid);
2293 }
2294
2295 task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_PERTHR_LIMIT;
2296 task->rusage_cpu_perthr_percentage = percentage;
2297 task->rusage_cpu_perthr_interval = interval;
2298 queue_iterate(&task->threads, thread, thread_t, task_threads) {
2299 set_astledger(thread);
2300 }
2301 } else if (scope == TASK_RUSECPU_FLAGS_PROC_LIMIT) {
2302 /*
2303 * Currently, a proc-wide CPU limit always blocks if the limit is
2304 * exceeded (LEDGER_ACTION_BLOCK).
2305 */
2306 task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_PROC_LIMIT;
2307 task->rusage_cpu_percentage = percentage;
2308 task->rusage_cpu_interval = interval;
2309
2310 limittime = (interval * percentage) / 100;
2311 nanoseconds_to_absolutetime(limittime, &abstime);
2312
2313 ledger_set_limit(task->ledger, task_ledgers.cpu_time, abstime, 0);
2314 ledger_set_period(task->ledger, task_ledgers.cpu_time, interval);
2315 ledger_set_action(task->ledger, task_ledgers.cpu_time, LEDGER_ACTION_BLOCK);
2316 }
2317 }
2318
2319 if (deadline != 0) {
2320 assert(scope == TASK_RUSECPU_FLAGS_DEADLINE);
2321
2322 /* if already in use, cancel and wait for it to cleanout */
2323 if (task->rusage_cpu_callt != NULL) {
2324 task_unlock(task);
2325 thread_call_cancel_wait(task->rusage_cpu_callt);
2326 task_lock(task);
2327 }
2328 if (task->rusage_cpu_callt == NULL) {
2329 task->rusage_cpu_callt = thread_call_allocate_with_priority(task_action_cpuusage, (thread_call_param_t)task, THREAD_CALL_PRIORITY_KERNEL);
2330 }
2331 /* setup callout */
2332 if (task->rusage_cpu_callt != 0) {
2333 uint64_t save_abstime = 0;
2334
2335 task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_DEADLINE;
2336 task->rusage_cpu_deadline = deadline;
2337
2338 nanoseconds_to_absolutetime(deadline, &abstime);
2339 save_abstime = abstime;
2340 clock_absolutetime_interval_to_deadline(save_abstime, &abstime);
2341 thread_call_enter_delayed(task->rusage_cpu_callt, abstime);
2342 }
2343 }
2344
2345 return(0);
2346 }
2347
2348 int
2349 task_clear_cpuusage(task_t task, int cpumon_entitled)
2350 {
2351 int retval = 0;
2352
2353 task_lock(task);
2354 retval = task_clear_cpuusage_locked(task, cpumon_entitled);
2355 task_unlock(task);
2356
2357 return(retval);
2358 }
2359
2360 int
2361 task_clear_cpuusage_locked(task_t task, int cpumon_entitled)
2362 {
2363 thread_call_t savecallt;
2364
2365 /* cancel percentage handling if set */
2366 if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PROC_LIMIT) {
2367 task->rusage_cpu_flags &= ~TASK_RUSECPU_FLAGS_PROC_LIMIT;
2368 ledger_set_limit(task->ledger, task_ledgers.cpu_time, LEDGER_LIMIT_INFINITY, 0);
2369 task->rusage_cpu_percentage = 0;
2370 task->rusage_cpu_interval = 0;
2371 }
2372
2373 /*
2374 * Disable the CPU usage monitor.
2375 */
2376 if (cpumon_entitled) {
2377 task_disable_cpumon(task);
2378 }
2379
2380 /* cancel deadline handling if set */
2381 if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_DEADLINE) {
2382 task->rusage_cpu_flags &= ~TASK_RUSECPU_FLAGS_DEADLINE;
2383 if (task->rusage_cpu_callt != 0) {
2384 savecallt = task->rusage_cpu_callt;
2385 task->rusage_cpu_callt = NULL;
2386 task->rusage_cpu_deadline = 0;
2387 task_unlock(task);
2388 thread_call_cancel_wait(savecallt);
2389 thread_call_free(savecallt);
2390 task_lock(task);
2391 }
2392 }
2393 return(0);
2394 }
2395
2396 /* called by ledger unit to enforce action due to resource usage criteria being met */
2397 void
2398 task_action_cpuusage(thread_call_param_t param0, __unused thread_call_param_t param1)
2399 {
2400 task_t task = (task_t)param0;
2401 (void)task_apply_resource_actions(task, TASK_POLICY_CPU_RESOURCE_USAGE);
2402 return;
2403 }
2404
2405
2406 /*
2407 * Routines for taskwatch and pidbind
2408 */
2409
2410
2411 /*
2412 * Routines for importance donation/inheritance/boosting
2413 */
2414
2415 void
2416 task_importance_mark_donor(task_t task, boolean_t donating)
2417 {
2418 #if IMPORTANCE_INHERITANCE
2419 task->imp_donor = (donating ? 1 : 0);
2420 #endif /* IMPORTANCE_INHERITANCE */
2421 }
2422
2423 void
2424 task_importance_mark_receiver(task_t task, boolean_t receiving)
2425 {
2426 #if IMPORTANCE_INHERITANCE
2427 if (receiving) {
2428 assert(task->task_imp_assertcnt == 0);
2429 task->imp_receiver = 1; /* task can receive importance boost */
2430 task->task_imp_assertcnt = 0;
2431 task->task_imp_externcnt = 0;
2432 } else {
2433 if (task->task_imp_assertcnt != 0 || task->task_imp_externcnt != 0)
2434 panic("disabling imp_receiver on task with pending boosts!");
2435
2436 task->imp_receiver = 0;
2437 task->task_imp_assertcnt = 0;
2438 task->task_imp_externcnt = 0;
2439 }
2440 #endif /* IMPORTANCE_INHERITANCE */
2441 }
2442
2443
2444 #if IMPORTANCE_INHERITANCE
2445
2446 static void
2447 task_update_boost_locked(task_t task, boolean_t boost_active)
2448 {
2449 #if IMPORTANCE_DEBUG
2450 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_BOOST, (boost_active ? IMP_BOOSTED : IMP_UNBOOSTED)) | DBG_FUNC_START),
2451 proc_selfpid(), audit_token_pid_from_task(task), trequested(task, THREAD_NULL), 0, 0);
2452 #endif
2453
2454 /* assert(boost_active ? task->requested_policy.t_boosted == 0 : task->requested_policy.t_boosted == 1); */
2455
2456 proc_set_task_policy_locked(task, THREAD_NULL, TASK_POLICY_ATTRIBUTE, TASK_POLICY_BOOST, boost_active);
2457
2458 task_policy_update_locked(task, THREAD_NULL);
2459
2460 #if IMPORTANCE_DEBUG
2461 if (boost_active == TRUE){
2462 DTRACE_BOOST2(boost, task_t, task, int, audit_token_pid_from_task(task));
2463 } else {
2464 DTRACE_BOOST2(unboost, task_t, task, int, audit_token_pid_from_task(task));
2465 }
2466 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_BOOST, (boost_active ? IMP_BOOSTED : IMP_UNBOOSTED)) | DBG_FUNC_END),
2467 proc_selfpid(), audit_token_pid_from_task(task),
2468 trequested(task, THREAD_NULL), tpending(task, THREAD_NULL), 0);
2469 #endif
2470 }
2471
2472 /*
2473 * Check if this task should donate importance.
2474 *
2475 * May be called without taking the task lock. In that case, donor status can change
2476 * so you must check only once for each donation event.
2477 */
2478 boolean_t
2479 task_is_importance_donor(task_t task)
2480 {
2481 return (task->imp_donor == 1 || task->task_imp_assertcnt > 0) ? TRUE : FALSE;
2482 }
2483
2484 /*
2485 * This routine may be called without holding task lock
2486 * since the value of imp_receiver can never be unset.
2487 */
2488 boolean_t
2489 task_is_importance_receiver(task_t task)
2490 {
2491 return (task->imp_receiver) ? TRUE : FALSE;
2492 }
2493
2494 /*
2495 * External importance assertions are managed by the process in userspace
2496 * Internal importance assertions are the responsibility of the kernel
2497 * Assertions are changed from internal to external via task_importance_externalize_assertion
2498 */
2499
2500 int
2501 task_importance_hold_internal_assertion(task_t target_task, uint32_t count)
2502 {
2503 int rval = 0;
2504
2505 task_lock(target_task);
2506 rval = task_importance_hold_assertion_locked(target_task, TASK_POLICY_INTERNAL, count);
2507 task_unlock(target_task);
2508
2509 task_policy_update_complete_unlocked(target_task, THREAD_NULL);
2510
2511 return(rval);
2512 }
2513
2514 int
2515 task_importance_hold_external_assertion(task_t target_task, uint32_t count)
2516 {
2517 int rval = 0;
2518
2519 task_lock(target_task);
2520 rval = task_importance_hold_assertion_locked(target_task, TASK_POLICY_EXTERNAL, count);
2521 task_unlock(target_task);
2522
2523 task_policy_update_complete_unlocked(target_task, THREAD_NULL);
2524
2525 return(rval);
2526 }
2527
2528 int
2529 task_importance_drop_internal_assertion(task_t target_task, uint32_t count)
2530 {
2531 int rval = 0;
2532
2533 task_lock(target_task);
2534 rval = task_importance_drop_assertion_locked(target_task, TASK_POLICY_INTERNAL, count);
2535 task_unlock(target_task);
2536
2537 task_policy_update_complete_unlocked(target_task, THREAD_NULL);
2538
2539 return(rval);
2540 }
2541
2542 int
2543 task_importance_drop_external_assertion(task_t target_task, uint32_t count)
2544 {
2545 int rval = 0;
2546
2547 task_lock(target_task);
2548 rval = task_importance_drop_assertion_locked(target_task, TASK_POLICY_EXTERNAL, count);
2549 task_unlock(target_task);
2550
2551 task_policy_update_complete_unlocked(target_task, THREAD_NULL);
2552
2553 return(rval);
2554 }
2555
2556 /*
2557 * Returns EOVERFLOW if an external assertion is taken when not holding an external boost.
2558 */
2559 static int
2560 task_importance_hold_assertion_locked(task_t target_task, int external, uint32_t count)
2561 {
2562 boolean_t apply_boost = FALSE;
2563 int ret = 0;
2564
2565 assert(target_task->imp_receiver != 0);
2566
2567 #if IMPORTANCE_DEBUG
2568 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_ASSERTION, (IMP_HOLD | external))) | DBG_FUNC_START,
2569 proc_selfpid(), audit_token_pid_from_task(target_task), target_task->task_imp_assertcnt, target_task->task_imp_externcnt, 0);
2570 #endif
2571
2572 /* assert(target_task->task_imp_assertcnt >= target_task->task_imp_externcnt); */
2573
2574 if (external == TASK_POLICY_EXTERNAL) {
2575 if (target_task->task_imp_externcnt == 0) {
2576 /* Only allowed to take a new boost assertion when holding an external boost */
2577 printf("BUG in process %s[%d]: it attempted to acquire a new boost assertion without holding an existing external assertion. "
2578 "(%d total, %d external)\n",
2579 proc_name_address(target_task->bsd_info), audit_token_pid_from_task(target_task),
2580 target_task->task_imp_assertcnt, target_task->task_imp_externcnt);
2581 ret = EOVERFLOW;
2582 count = 0;
2583 } else {
2584 target_task->task_imp_assertcnt += count;
2585 target_task->task_imp_externcnt += count;
2586 }
2587 } else {
2588 if (target_task->task_imp_assertcnt == 0)
2589 apply_boost = TRUE;
2590 target_task->task_imp_assertcnt += count;
2591 }
2592
2593 if (apply_boost == TRUE)
2594 task_update_boost_locked(target_task, TRUE);
2595
2596 #if IMPORTANCE_DEBUG
2597 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_ASSERTION, (IMP_HOLD | external))) | DBG_FUNC_END,
2598 proc_selfpid(), audit_token_pid_from_task(target_task), target_task->task_imp_assertcnt, target_task->task_imp_externcnt, 0);
2599 DTRACE_BOOST6(receive_internal_boost, task_t, target_task, int, audit_token_pid_from_task(target_task), task_t, current_task(), int, proc_selfpid(), int, count, int, target_task->task_imp_assertcnt);
2600 if (external == TASK_POLICY_EXTERNAL){
2601 DTRACE_BOOST5(receive_boost, task_t, target_task, int, audit_token_pid_from_task(target_task), int, proc_selfpid(), int, count, int, target_task->task_imp_externcnt);
2602 }
2603 #endif
2604 return(ret);
2605 }
2606
2607
2608 /*
2609 * Returns EOVERFLOW if an external assertion is over-released.
2610 * Panics if an internal assertion is over-released.
2611 */
2612 static int
2613 task_importance_drop_assertion_locked(task_t target_task, int external, uint32_t count)
2614 {
2615 int ret = 0;
2616
2617 assert(target_task->imp_receiver != 0);
2618
2619 #if IMPORTANCE_DEBUG
2620 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_ASSERTION, (IMP_DROP | external))) | DBG_FUNC_START,
2621 proc_selfpid(), audit_token_pid_from_task(target_task), target_task->task_imp_assertcnt, target_task->task_imp_externcnt, 0);
2622 #endif
2623
2624 /* assert(target_task->task_imp_assertcnt >= target_task->task_imp_externcnt); */
2625
2626 if (external == TASK_POLICY_EXTERNAL) {
2627 assert(count == 1);
2628 if (count <= target_task->task_imp_externcnt) {
2629 target_task->task_imp_externcnt -= count;
2630 if (count <= target_task->task_imp_assertcnt)
2631 target_task->task_imp_assertcnt -= count;
2632 } else {
2633 /* Process over-released its boost count */
2634 printf("BUG in process %s[%d]: over-released external boost assertions (%d total, %d external)\n",
2635 proc_name_address(target_task->bsd_info), audit_token_pid_from_task(target_task),
2636 target_task->task_imp_assertcnt, target_task->task_imp_externcnt);
2637
2638 /* TODO: If count > 1, we should clear out as many external assertions as there are left. */
2639 ret = EOVERFLOW;
2640 count = 0;
2641 }
2642 } else {
2643 if (count <= target_task->task_imp_assertcnt) {
2644 target_task->task_imp_assertcnt -= count;
2645 } else {
2646 /* TODO: Turn this back into a panic <rdar://problem/12592649> */
2647 printf("Over-release of kernel-internal importance assertions for task %p (%s), dropping %d assertion(s) but task only has %d remaining (%d external).\n",
2648 target_task,
2649 (target_task->bsd_info == NULL) ? "" : proc_name_address(target_task->bsd_info),
2650 count,
2651 target_task->task_imp_assertcnt,
2652 target_task->task_imp_externcnt);
2653 count = 0;
2654 }
2655 }
2656
2657 /* assert(target_task->task_imp_assertcnt >= target_task->task_imp_externcnt); */
2658
2659 if (target_task->task_imp_assertcnt == 0 && ret == 0)
2660 task_update_boost_locked(target_task, FALSE);
2661
2662 #if IMPORTANCE_DEBUG
2663 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_ASSERTION, (IMP_DROP | external))) | DBG_FUNC_END,
2664 proc_selfpid(), audit_token_pid_from_task(target_task), target_task->task_imp_assertcnt, target_task->task_imp_externcnt, 0);
2665 if (external == TASK_POLICY_EXTERNAL) {
2666 DTRACE_BOOST4(drop_boost, task_t, target_task, int, audit_token_pid_from_task(target_task), int, count, int, target_task->task_imp_externcnt);
2667 }
2668 DTRACE_BOOST4(drop_internal_boost, task_t, target_task, int, audit_token_pid_from_task(target_task), int, count, int, target_task->task_imp_assertcnt);
2669 #endif
2670
2671 return(ret);
2672 }
2673
2674 /* Transfer an assertion to userspace responsibility */
2675 int
2676 task_importance_externalize_assertion(task_t target_task, uint32_t count, __unused int sender_pid)
2677 {
2678 assert(target_task != TASK_NULL);
2679 assert(target_task->imp_receiver != 0);
2680
2681 task_lock(target_task);
2682
2683 #if IMPORTANCE_DEBUG
2684 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_ASSERTION, IMP_EXTERN)) | DBG_FUNC_START,
2685 proc_selfpid(), audit_token_pid_from_task(target_task), target_task->task_imp_assertcnt, target_task->task_imp_externcnt, 0);
2686 #endif
2687
2688 /* assert(target_task->task_imp_assertcnt >= target_task->task_imp_externcnt + count); */
2689
2690 target_task->task_imp_externcnt += count;
2691
2692 #if IMPORTANCE_DEBUG
2693 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_ASSERTION, IMP_EXTERN)) | DBG_FUNC_END,
2694 proc_selfpid(), audit_token_pid_from_task(target_task), target_task->task_imp_assertcnt, target_task->task_imp_externcnt, 0);
2695 DTRACE_BOOST5(receive_boost, task_t, target_task, int, audit_token_pid_from_task(target_task),
2696 int, sender_pid, int, count, int, target_task->task_imp_externcnt);
2697 #endif /* IMPORTANCE_DEBUG */
2698
2699 task_unlock(target_task);
2700
2701 return(0);
2702 }
2703
2704
2705 #endif /* IMPORTANCE_INHERITANCE */
2706
2707 void
2708 task_hold_multiple_assertion(__imp_only task_t task, __imp_only uint32_t count)
2709 {
2710 #if IMPORTANCE_INHERITANCE
2711 assert(task->imp_receiver != 0);
2712
2713 task_importance_hold_internal_assertion(task, count);
2714 #endif /* IMPORTANCE_INHERITANCE */
2715 }
2716
2717 void
2718 task_add_importance_watchport(__imp_only task_t task, __imp_only __impdebug_only int pid, __imp_only mach_port_t port, int *boostp)
2719 {
2720 int boost = 0;
2721
2722 __impdebug_only int released_pid = 0;
2723
2724 #if IMPORTANCE_INHERITANCE
2725 task_t release_imp_task = TASK_NULL;
2726
2727 if (task->imp_receiver == 0) {
2728 *boostp = boost;
2729 return;
2730 }
2731
2732 if (IP_VALID(port) != 0) {
2733 ip_lock(port);
2734
2735 /*
2736 * The port must have been marked tempowner already.
2737 * This also filters out ports whose receive rights
2738 * are already enqueued in a message, as you can't
2739 * change the right's destination once it's already
2740 * on its way.
2741 */
2742 if (port->ip_tempowner != 0) {
2743 assert(port->ip_impdonation != 0);
2744
2745 boost = port->ip_impcount;
2746 if (port->ip_taskptr != 0) {
2747 /*
2748 * if this port is already bound to a task,
2749 * release the task reference and drop any
2750 * watchport-forwarded boosts
2751 */
2752 release_imp_task = port->ip_imp_task;
2753 }
2754
2755 /* mark the port is watching another task */
2756 port->ip_taskptr = 1;
2757 port->ip_imp_task = task;
2758 task_reference(task);
2759 }
2760 ip_unlock(port);
2761
2762 if (release_imp_task != TASK_NULL) {
2763 if (boost > 0)
2764 task_importance_drop_internal_assertion(release_imp_task, boost);
2765 released_pid = audit_token_pid_from_task(release_imp_task);
2766 task_deallocate(release_imp_task);
2767 }
2768 #if IMPORTANCE_DEBUG
2769 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_WATCHPORT, 0)) | DBG_FUNC_NONE,
2770 proc_selfpid(), pid, boost, released_pid, 0);
2771 #endif /* IMPORTANCE_DEBUG */
2772 }
2773 #endif /* IMPORTANCE_INHERITANCE */
2774
2775 *boostp = boost;
2776 return;
2777 }
2778
2779
2780 /*
2781 * Routines for VM to query task importance
2782 */
2783
2784
2785 /*
2786 * Order to be considered while estimating importance
2787 * for low memory notification and purging purgeable memory.
2788 */
2789 #define TASK_IMPORTANCE_FOREGROUND 4
2790 #define TASK_IMPORTANCE_NOTDARWINBG 1
2791
2792
2793 /*
2794 * Checks if the task is already notified.
2795 *
2796 * Condition: task lock should be held while calling this function.
2797 */
2798 boolean_t
2799 task_has_been_notified(task_t task, int pressurelevel)
2800 {
2801 if (task == NULL) {
2802 return FALSE;
2803 }
2804
2805 if (pressurelevel == kVMPressureWarning)
2806 return (task->low_mem_notified_warn ? TRUE : FALSE);
2807 else if (pressurelevel == kVMPressureCritical)
2808 return (task->low_mem_notified_critical ? TRUE : FALSE);
2809 else
2810 return TRUE;
2811 }
2812
2813
2814 /*
2815 * Checks if the task is used for purging.
2816 *
2817 * Condition: task lock should be held while calling this function.
2818 */
2819 boolean_t
2820 task_used_for_purging(task_t task, int pressurelevel)
2821 {
2822 if (task == NULL) {
2823 return FALSE;
2824 }
2825
2826 if (pressurelevel == kVMPressureWarning)
2827 return (task->purged_memory_warn ? TRUE : FALSE);
2828 else if (pressurelevel == kVMPressureCritical)
2829 return (task->purged_memory_critical ? TRUE : FALSE);
2830 else
2831 return TRUE;
2832 }
2833
2834
2835 /*
2836 * Mark the task as notified with memory notification.
2837 *
2838 * Condition: task lock should be held while calling this function.
2839 */
2840 void
2841 task_mark_has_been_notified(task_t task, int pressurelevel)
2842 {
2843 if (task == NULL) {
2844 return;
2845 }
2846
2847 if (pressurelevel == kVMPressureWarning)
2848 task->low_mem_notified_warn = 1;
2849 else if (pressurelevel == kVMPressureCritical)
2850 task->low_mem_notified_critical = 1;
2851 }
2852
2853
2854 /*
2855 * Mark the task as purged.
2856 *
2857 * Condition: task lock should be held while calling this function.
2858 */
2859 void
2860 task_mark_used_for_purging(task_t task, int pressurelevel)
2861 {
2862 if (task == NULL) {
2863 return;
2864 }
2865
2866 if (pressurelevel == kVMPressureWarning)
2867 task->purged_memory_warn = 1;
2868 else if (pressurelevel == kVMPressureCritical)
2869 task->purged_memory_critical = 1;
2870 }
2871
2872
2873 /*
2874 * Mark the task eligible for low memory notification.
2875 *
2876 * Condition: task lock should be held while calling this function.
2877 */
2878 void
2879 task_clear_has_been_notified(task_t task, int pressurelevel)
2880 {
2881 if (task == NULL) {
2882 return;
2883 }
2884
2885 if (pressurelevel == kVMPressureWarning)
2886 task->low_mem_notified_warn = 0;
2887 else if (pressurelevel == kVMPressureCritical)
2888 task->low_mem_notified_critical = 0;
2889 }
2890
2891
2892 /*
2893 * Mark the task eligible for purging its purgeable memory.
2894 *
2895 * Condition: task lock should be held while calling this function.
2896 */
2897 void
2898 task_clear_used_for_purging(task_t task)
2899 {
2900 if (task == NULL) {
2901 return;
2902 }
2903
2904 task->purged_memory_warn = 0;
2905 task->purged_memory_critical = 0;
2906 }
2907
2908
2909 /*
2910 * Estimate task importance for purging its purgeable memory
2911 * and low memory notification.
2912 *
2913 * Importance is calculated in the following order of criteria:
2914 * -Task role : Background vs Foreground
2915 * -Boost status: Not boosted vs Boosted
2916 * -Darwin BG status.
2917 *
2918 * Returns: Estimated task importance. Less important task will have lower
2919 * estimated importance.
2920 */
2921 int
2922 task_importance_estimate(task_t task)
2923 {
2924 int task_importance = 0;
2925
2926 if (task == NULL) {
2927 return 0;
2928 }
2929
2930 if (proc_get_effective_task_policy(task, TASK_POLICY_ROLE) == TASK_FOREGROUND_APPLICATION)
2931 task_importance += TASK_IMPORTANCE_FOREGROUND;
2932
2933 if (proc_get_effective_task_policy(task, TASK_POLICY_DARWIN_BG) == 0)
2934 task_importance += TASK_IMPORTANCE_NOTDARWINBG;
2935
2936 return task_importance;
2937 }
2938