2 * Copyright (c) 2012-2013, 2015 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
34 * A corpse is a state of process that is past the point of its death. This means that process has
35 * completed all its termination operations like releasing file descriptors, mach ports, sockets and
36 * other constructs used to identify a process. For all the processes this mimics the behavior as if
37 * the process has died and no longer available by any means.
39 * Why do we need Corpses?
40 * -----------------------
41 * For crash inspection we need to inspect the state and data that is associated with process so that
42 * crash reporting infrastructure can build backtraces, find leaks etc. For example a crash
44 * Corpses functionality in kernel
45 * ===============================
46 * The corpse functionality is an extension of existing exception reporting mechanisms we have. The
47 * exception_triage calls will try to deliver the first round of exceptions allowing
48 * task/debugger/ReportCrash/launchd level exception handlers to respond to exception. If even after
49 * notification the exception is not handled, then the process begins the death operations and during
50 * proc_prepareexit, we decide to create a corpse for inspection. Following is a sample run through
51 * of events and data shuffling that happens when corpses is enabled.
53 * * a process causes an exception during normal execution of threads.
54 * * The exception generated by either mach(e.g GUARDED_MARCHPORT) or bsd(eg SIGABORT, GUARDED_FD
55 * etc) side is passed through the exception_triage() function to follow the thread -> task -> host
56 * level exception handling system. This set of steps are same as before and allow for existing
57 * crash reporting systems (both internal and 3rd party) to catch and create reports as required.
58 * * If above exception handling returns failed (when nobody handles the notification), then the
59 * proc_prepareexit path has logic to decide to create corpse.
60 * * The task_mark_corpse function allocates userspace vm memory and attaches the information
61 * kcdata_descriptor_t to task->corpse_info field of task.
62 * - All the task's threads are marked with the "inspection" flag which signals the termination
63 * daemon to not reap them but hold until they are being inspected.
64 * - task flags t_flags reflect the corpse bit and also a PENDING_CORPSE bit. PENDING_CORPSE
65 * prevents task_terminate from stripping important data from task.
66 * - It marks all the threads to terminate and return to AST for termination.
67 * - The allocation logic takes into account the rate limiting policy of allowing only
68 * TOTAL_CORPSES_ALLOWED in flight.
69 * * The proc exit threads continues and collects required information in the allocated vm region.
70 * Once complete it marks itself for termination.
71 * * In the thread_terminate_self(), the last thread to enter will do a call to proc_exit().
72 * Following this is a check to see if task is marked for corpse notification and will
73 * invoke the the task_deliver_crash_notification().
74 * * Once EXC_CORPSE_NOTIFY is delivered, it removes the PENDING_CORPSE flag from task (and
75 * inspection flag from all its threads) and allows task_terminate to go ahead and continue
76 * the mach task termination process.
77 * * ASIDE: The rest of the threads that are reaching the thread_terminate_daemon() with the
78 * inspection flag set are just bounced to another holding queue (crashed_threads_queue).
79 * Only after the corpse notification these are pulled out from holding queue and enqueued
80 * back to termination queue
85 * The kernel (task_mark_corpse()) makes a vm allocation in the dead task's vm space (with tag
86 * VM_MEMORY_CORPSEINFO (80)). Within this memory all corpse information is saved by various
88 * * bsd proc exit path may write down pid, parent pid, number of file descriptors etc
89 * * mach side may append data regarding ledger usage, memory stats etc
90 * See detailed info about the memory structure and format in kern_cdata.h documentation.
92 * Configuring Corpses functionality
93 * =================================
94 * boot-arg: -no_corpses disables the corpse generation. This can be added/removed without affecting
95 * any other subsystem.
96 * TOTAL_CORPSES_ALLOWED : (recompilation required) - Changing this number allows for controlling
97 * the number of corpse instances to be held for inspection before allowing memory to be reclaimed
99 * CORPSEINFO_ALLOCATION_SIZE: is the default size of vm allocation. If in future there is much more
100 * data to be put in, then please re-tune this parameter.
102 * Debugging/Visibility
103 * ====================
104 * * lldbmacros for thread and task summary are updated to show "C" flag for corpse task/threads.
105 * * there are macros to see list of threads in termination queue (dumpthread_terminate_queue)
106 * and holding queue (dumpcrashed_thread_queue).
107 * * In case of corpse creation is disabled of ignored then the system log is updated with
108 * printf data with reason.
110 * Limitations of Corpses
111 * ======================
112 * With holding off memory for inspection, it creates vm pressure which might not be desirable
113 * on low memory devices. There are limits to max corpses being inspected at a time which is
114 * marked by TOTAL_CORPSES_ALLOWED.
119 #include <kern/assert.h>
120 #include <mach/mach_types.h>
121 #include <mach/boolean.h>
122 #include <mach/vm_param.h>
123 #include <kern/kern_types.h>
124 #include <kern/mach_param.h>
125 #include <kern/thread.h>
126 #include <kern/task.h>
127 #include <corpses/task_corpse.h>
128 #include <kern/kalloc.h>
129 #include <kern/kern_cdata.h>
130 #include <mach/mach_vm.h>
133 #include <security/mac_mach_internal.h>
137 * Exported interfaces
139 #include <mach/task_server.h>
141 unsigned long total_corpses_count
= 0;
142 unsigned long total_corpses_created
= 0;
143 boolean_t corpse_enabled_config
= TRUE
;
145 /* bootarg to turn on corpse forking for EXC_RESOURCE */
146 int exc_via_corpse_forking
= 1;
148 /* bootarg to unify corpse blob allocation */
149 int unify_corpse_blob_alloc
= 1;
151 /* bootarg to generate corpse for fatal high memory watermark violation */
152 int corpse_for_fatal_memkill
= 1;
154 kcdata_descriptor_t
task_get_corpseinfo(task_t task
);
155 kcdata_descriptor_t
task_crashinfo_alloc_init(mach_vm_address_t crash_data_p
, unsigned size
, int get_corpseref
, unsigned flags
);
156 kern_return_t
task_crashinfo_destroy(kcdata_descriptor_t data
, int release_corpseref
);
157 static kern_return_t
task_crashinfo_get_ref();
158 static kern_return_t
task_crashinfo_release_ref();
159 extern int IS_64BIT_PROCESS(void *);
160 extern void gather_populate_corpse_crashinfo(void *p
, void *crash_info_ptr
, mach_exception_data_type_t code
, mach_exception_data_type_t subcode
, uint64_t *udata_buffer
, int num_udata
);
161 extern void *proc_find(int pid
);
162 extern int proc_rele(void *p
);
167 int exc_corpse_forking
;
168 int corpse_blob_alloc
;
170 if (PE_parse_boot_argn("-no_corpses", temp_buf
, sizeof(temp_buf
))) {
171 corpse_enabled_config
= FALSE
;
173 if (PE_parse_boot_argn("exc_via_corpse_forking", &exc_corpse_forking
, sizeof(exc_corpse_forking
))) {
174 exc_via_corpse_forking
= exc_corpse_forking
;
176 if (PE_parse_boot_argn("unify_corpse_blob_alloc", &corpse_blob_alloc
, sizeof(corpse_blob_alloc
))) {
177 unify_corpse_blob_alloc
= corpse_blob_alloc
;
179 if (PE_parse_boot_argn("corpse_for_fatal_memkill", &fatal_memkill
, sizeof(fatal_memkill
))) {
180 corpse_for_fatal_memkill
= fatal_memkill
;
185 * Routine: corpses_enabled
186 * returns FALSE if not enabled
188 boolean_t
corpses_enabled()
190 return corpse_enabled_config
;
194 * Routine: task_crashinfo_get_ref()
195 * Grab a slot at creating a corpse.
196 * Returns: KERN_SUCCESS if the policy allows for creating a corpse.
198 kern_return_t
task_crashinfo_get_ref()
200 unsigned long counter
= total_corpses_count
;
201 counter
= OSIncrementAtomic((SInt32
*)&total_corpses_count
);
202 if (counter
>= TOTAL_CORPSES_ALLOWED
) {
203 OSDecrementAtomic((SInt32
*)&total_corpses_count
);
204 return KERN_RESOURCE_SHORTAGE
;
206 OSIncrementAtomicLong((volatile long *)&total_corpses_created
);
211 * Routine: task_crashinfo_release_ref
212 * release the slot for corpse being used.
214 kern_return_t
task_crashinfo_release_ref()
216 unsigned long __assert_only counter
;
217 counter
= OSDecrementAtomic((SInt32
*)&total_corpses_count
);
223 kcdata_descriptor_t
task_crashinfo_alloc_init(mach_vm_address_t crash_data_p
, unsigned size
, int get_corpseref
, unsigned flags
)
225 if(get_corpseref
&& KERN_SUCCESS
!= task_crashinfo_get_ref()) {
229 return kcdata_memory_alloc_init(crash_data_p
, TASK_CRASHINFO_BEGIN
, size
, flags
);
234 * Free up the memory associated with task_crashinfo_data
236 kern_return_t
task_crashinfo_destroy(kcdata_descriptor_t data
, int release_corpseref
)
239 return KERN_INVALID_ARGUMENT
;
242 if (release_corpseref
)
243 task_crashinfo_release_ref();
244 return kcdata_memory_destroy(data
);
248 * Routine: task_get_corpseinfo
249 * params: task - task which has corpse info setup.
250 * returns: crash info data attached to task.
251 * NULL if task is null or has no corpse info
253 kcdata_descriptor_t
task_get_corpseinfo(task_t task
)
255 kcdata_descriptor_t retval
= NULL
;
257 retval
= task
->corpse_info
;
263 * Routine: task_add_to_corpse_task_list
264 * params: task - task to be added to corpse task list
268 task_add_to_corpse_task_list(task_t corpse_task
)
270 lck_mtx_lock(&tasks_corpse_lock
);
271 queue_enter(&corpse_tasks
, corpse_task
, task_t
, corpse_tasks
);
272 lck_mtx_unlock(&tasks_corpse_lock
);
276 * Routine: task_remove_from_corpse_task_list
277 * params: task - task to be removed from corpse task list
281 task_remove_from_corpse_task_list(task_t corpse_task
)
283 lck_mtx_lock(&tasks_corpse_lock
);
284 queue_remove(&corpse_tasks
, corpse_task
, task_t
, corpse_tasks
);
285 lck_mtx_unlock(&tasks_corpse_lock
);
289 * Routine: task_purge_all_corpses
294 task_purge_all_corpses(void)
298 printf("Purging corpses......\n\n");
300 lck_mtx_lock(&tasks_corpse_lock
);
301 /* Iterate through all the corpse tasks and clear all map entries */
302 queue_iterate(&corpse_tasks
, task
, task_t
, corpse_tasks
) {
303 vm_map_remove(task
->map
,
304 task
->map
->min_offset
,
305 task
->map
->max_offset
,
306 /* no unnesting on final cleanup: */
307 VM_MAP_REMOVE_NO_UNNESTING
);
310 lck_mtx_unlock(&tasks_corpse_lock
);
314 * Routine: task_generate_corpse
315 * params: task - task to fork a corpse
316 * corpse_task - task port of the generated corpse
317 * returns: KERN_SUCCESS on Success.
318 * KERN_FAILURE on Failure.
319 * KERN_NO_SUPPORTED on corpse disabled.
320 * KERN_RESOURCE_SHORTAGE on memory alloc failure or reaching max corpse.
323 task_generate_corpse(
325 ipc_port_t
*corpse_task_port
)
329 thread_t thread
, th_iter
;
330 ipc_port_t corpse_port
;
331 ipc_port_t old_notify
;
333 if (task
== kernel_task
|| task
== TASK_NULL
|| task
== current_task()) {
334 return KERN_INVALID_ARGUMENT
;
338 if (task_is_a_corpse_fork(task
)) {
340 return KERN_INVALID_ARGUMENT
;
344 /* Generate a corpse for the given task, will return with a ref on corpse task */
345 kr
= task_generate_corpse_internal(task
, &new_task
, &thread
, 0, 0);
346 if (kr
!= KERN_SUCCESS
) {
349 assert(thread
== THREAD_NULL
);
351 /* wait for all the threads in the task to terminate */
353 task_wait_till_threads_terminate_locked(new_task
);
355 /* Reset thread ports of all the threads in task */
356 queue_iterate(&new_task
->threads
, th_iter
, thread_t
, task_threads
)
358 /* Do not reset the thread port for inactive threads */
359 if (th_iter
->corpse_dup
== FALSE
) {
360 ipc_thread_reset(th_iter
);
363 task_unlock(new_task
);
365 /* transfer the task ref to port and arm the no-senders notification */
366 corpse_port
= convert_task_to_port(new_task
);
367 assert(IP_NULL
!= corpse_port
);
369 ip_lock(corpse_port
);
370 assert(ip_active(corpse_port
));
371 ipc_port_nsrequest(corpse_port
, corpse_port
->ip_mscount
, ipc_port_make_sonce_locked(corpse_port
), &old_notify
);
374 assert(IP_NULL
== old_notify
);
375 *corpse_task_port
= corpse_port
;
380 * Routine: task_enqueue_exception_with_corpse
381 * params: task - task to generate a corpse and enqueue it
382 * code - exception code to be enqueued
383 * codeCnt - code array count - code and subcode
386 task_enqueue_exception_with_corpse(
388 mach_exception_data_t code
,
389 mach_msg_type_number_t codeCnt
)
391 task_t new_task
= TASK_NULL
;
392 thread_t thread
= THREAD_NULL
;
399 /* Generate a corpse for the given task, will return with a ref on corpse task */
400 kr
= task_generate_corpse_internal(task
, &new_task
, &thread
, code
[0], code
[1]);
401 if (kr
!= KERN_SUCCESS
) {
405 assert(thread
!= THREAD_NULL
);
406 assert(new_task
!= TASK_NULL
);
407 thread_exception_enqueue(new_task
, thread
);
413 * Routine: task_generate_corpse_internal
414 * params: task - task to fork a corpse
415 * corpse_task - task of the generated corpse
416 * exc_thread - equivalent thread in corpse enqueuing exception
417 * code - mach exception code to be passed in corpse blob
418 * subcode - mach excpetion subcode to be passed in corpse blob
419 * returns: KERN_SUCCESS on Success.
420 * KERN_FAILURE on Failure.
421 * KERN_NO_SUPPORTED on corpse disabled.
422 * KERN_RESOURCE_SHORTAGE on memory alloc failure or reaching max corpse.
425 task_generate_corpse_internal(
428 thread_t
*exc_thread
,
429 mach_exception_data_type_t code
,
430 mach_exception_data_type_t subcode
)
432 task_t new_task
= TASK_NULL
;
433 thread_t thread
= THREAD_NULL
;
434 thread_t thread_next
= THREAD_NULL
;
436 struct proc
*p
= NULL
;
439 uint64_t *udata_buffer
= NULL
;
442 boolean_t release_corpse_ref
= FALSE
;
444 if (!corpses_enabled()) {
445 return KERN_NOT_SUPPORTED
;
448 kr
= task_crashinfo_get_ref();
449 if (kr
!= KERN_SUCCESS
) {
452 release_corpse_ref
= TRUE
;
454 /* Having a task reference does not guarantee a proc reference */
455 p
= proc_find(task_pid(task
));
457 kr
= KERN_INVALID_TASK
;
458 goto error_task_generate_corpse
;
461 is64bit
= IS_64BIT_PROCESS(p
);
462 t_flags
= TF_CORPSE_FORK
| TF_PENDING_CORPSE
| TF_CORPSE
| (is64bit
? TF_64B_ADDR
: TF_NONE
);
464 /* Create a task for corpse */
465 kr
= task_create_internal(task
,
472 if (kr
!= KERN_SUCCESS
) {
473 goto error_task_generate_corpse
;
476 /* Create and copy threads from task, returns a ref to thread */
477 kr
= task_duplicate_map_and_threads(task
, p
, new_task
, &thread
,
478 &udata_buffer
, &size
, &num_udata
);
479 if (kr
!= KERN_SUCCESS
) {
480 goto error_task_generate_corpse
;
483 kr
= task_collect_crash_info(new_task
, p
, TRUE
);
484 if (kr
!= KERN_SUCCESS
) {
485 goto error_task_generate_corpse
;
488 /* The corpse_info field in task in initialized, call to task_deallocate will drop corpse ref */
489 release_corpse_ref
= FALSE
;
491 kr
= task_start_halt(new_task
);
492 if (kr
!= KERN_SUCCESS
) {
493 goto error_task_generate_corpse
;
496 /* terminate the ipc space */
497 ipc_space_terminate(new_task
->itk_space
);
499 /* Populate the corpse blob, use the proc struct of task instead of corpse task */
500 gather_populate_corpse_crashinfo(p
, task_get_corpseinfo(new_task
), code
, subcode
, udata_buffer
, num_udata
);
502 /* Add it to global corpse task list */
503 task_add_to_corpse_task_list(new_task
);
505 *corpse_task
= new_task
;
506 *exc_thread
= thread
;
508 error_task_generate_corpse
:
509 /* Release the proc reference */
514 if (kr
!= KERN_SUCCESS
) {
515 if (thread
!= THREAD_NULL
) {
516 thread_deallocate(thread
);
518 if (new_task
!= TASK_NULL
) {
520 /* Terminate all the other threads in the task. */
521 queue_iterate(&new_task
->threads
, thread_next
, thread_t
, task_threads
)
523 thread_terminate_internal(thread_next
);
525 /* wait for all the threads in the task to terminate */
526 task_wait_till_threads_terminate_locked(new_task
);
527 task_unlock(new_task
);
529 task_clear_corpse(new_task
);
530 task_terminate_internal(new_task
);
531 task_deallocate(new_task
);
533 if (release_corpse_ref
) {
534 task_crashinfo_release_ref();
537 /* Free the udata buffer allocated in task_duplicate_map_and_threads */
538 if (udata_buffer
!= NULL
) {
539 kfree(udata_buffer
, size
);
546 * Routine: task_map_corpse_info
547 * params: task - Map the corpse info in task's address space
548 * corpse_task - task port of the corpse
549 * kcd_addr_begin - address of the mapped corpse info
550 * kcd_addr_begin - size of the mapped corpse info
551 * returns: KERN_SUCCESS on Success.
552 * KERN_FAILURE on Failure.
553 * KERN_INVALID_ARGUMENT on invalid arguments.
554 * Note: Temporary function, will be deleted soon.
557 task_map_corpse_info(
560 vm_address_t
*kcd_addr_begin
,
564 mach_vm_address_t kcd_addr_begin_64
;
565 mach_vm_size_t size_64
;
567 kr
= task_map_corpse_info_64(task
, corpse_task
, &kcd_addr_begin_64
, &size_64
);
568 if (kr
!= KERN_SUCCESS
) {
572 *kcd_addr_begin
= (vm_address_t
)kcd_addr_begin_64
;
573 *kcd_size
= (uint32_t) size_64
;
578 * Routine: task_map_corpse_info_64
579 * params: task - Map the corpse info in task's address space
580 * corpse_task - task port of the corpse
581 * kcd_addr_begin - address of the mapped corpse info (takes mach_vm_addess_t *)
582 * kcd_addr_begin - size of the mapped corpse info (takes mach_vm_size_t *)
583 * returns: KERN_SUCCESS on Success.
584 * KERN_FAILURE on Failure.
585 * KERN_INVALID_ARGUMENT on invalid arguments.
588 task_map_corpse_info_64(
591 mach_vm_address_t
*kcd_addr_begin
,
592 mach_vm_size_t
*kcd_size
)
595 mach_vm_offset_t crash_data_ptr
= 0;
596 mach_vm_size_t size
= CORPSEINFO_ALLOCATION_SIZE
;
598 if (task
== TASK_NULL
|| task_is_a_corpse_fork(task
)) {
599 return KERN_INVALID_ARGUMENT
;
602 if (corpse_task
== TASK_NULL
|| !task_is_a_corpse(corpse_task
) ||
603 corpse_task
->corpse_info
== NULL
|| corpse_task
->corpse_info_kernel
== NULL
) {
604 return KERN_INVALID_ARGUMENT
;
606 kr
= mach_vm_allocate(task
->map
, &crash_data_ptr
, size
,
607 (VM_MAKE_TAG(VM_MEMORY_CORPSEINFO
) | VM_FLAGS_ANYWHERE
));
608 if (kr
!= KERN_SUCCESS
) {
611 copyout(corpse_task
->corpse_info_kernel
, crash_data_ptr
, size
);
612 *kcd_addr_begin
= crash_data_ptr
;