]> git.saurik.com Git - apple/xnu.git/blob - osfmk/ppc/machine_routines.c
86b62c3f6ed389f0246b066efa45e289b3bf9375
[apple/xnu.git] / osfmk / ppc / machine_routines.c
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
7 *
8 * This file contains Original Code and/or Modifications of Original Code
9 * as defined in and that are subject to the Apple Public Source License
10 * Version 2.0 (the 'License'). You may not use this file except in
11 * compliance with the License. Please obtain a copy of the License at
12 * http://www.opensource.apple.com/apsl/ and read it before using this
13 * file.
14 *
15 * The Original Code and all software distributed under the License are
16 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
17 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
18 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
20 * Please see the License for the specific language governing rights and
21 * limitations under the License.
22 *
23 * @APPLE_LICENSE_HEADER_END@
24 */
25 #include <ppc/machine_routines.h>
26 #include <ppc/machine_cpu.h>
27 #include <ppc/exception.h>
28 #include <ppc/misc_protos.h>
29 #include <ppc/Firmware.h>
30 #include <vm/vm_page.h>
31 #include <ppc/pmap.h>
32 #include <ppc/proc_reg.h>
33 #include <kern/processor.h>
34
35 unsigned int max_cpus_initialized = 0;
36
37 #define MAX_CPUS_SET 0x1
38 #define MAX_CPUS_WAIT 0x2
39
40 boolean_t get_interrupts_enabled(void);
41
42 /* Map memory map IO space */
43 vm_offset_t
44 ml_io_map(
45 vm_offset_t phys_addr,
46 vm_size_t size)
47 {
48 return(io_map(phys_addr,size));
49 }
50
51 /* static memory allocation */
52 vm_offset_t
53 ml_static_malloc(
54 vm_size_t size)
55 {
56 extern vm_offset_t static_memory_end;
57 extern boolean_t pmap_initialized;
58 vm_offset_t vaddr;
59
60 if (pmap_initialized)
61 return((vm_offset_t)NULL);
62 else {
63 vaddr = static_memory_end;
64 static_memory_end = round_page(vaddr+size);
65 return(vaddr);
66 }
67 }
68
69 vm_offset_t
70 ml_static_ptovirt(
71 vm_offset_t paddr)
72 {
73 extern vm_offset_t static_memory_end;
74 vm_offset_t vaddr;
75
76 /* Static memory is map V=R */
77 vaddr = paddr;
78 if ( (vaddr < static_memory_end) && (pmap_extract(kernel_pmap, vaddr)==paddr) )
79 return(vaddr);
80 else
81 return((vm_offset_t)NULL);
82 }
83
84 void
85 ml_static_mfree(
86 vm_offset_t vaddr,
87 vm_size_t size)
88 {
89 vm_offset_t paddr_cur, vaddr_cur;
90
91 for (vaddr_cur = round_page(vaddr);
92 vaddr_cur < trunc_page(vaddr+size);
93 vaddr_cur += PAGE_SIZE) {
94 paddr_cur = pmap_extract(kernel_pmap, vaddr_cur);
95 if (paddr_cur != (vm_offset_t)NULL) {
96 vm_page_wire_count--;
97 pmap_remove(kernel_pmap, vaddr_cur, vaddr_cur+PAGE_SIZE);
98 vm_page_create(paddr_cur,paddr_cur+PAGE_SIZE);
99 }
100 }
101 }
102
103 /* virtual to physical on wired pages */
104 vm_offset_t ml_vtophys(
105 vm_offset_t vaddr)
106 {
107 return(pmap_extract(kernel_pmap, vaddr));
108 }
109
110 /* Initialize Interrupt Handler */
111 void ml_install_interrupt_handler(
112 void *nub,
113 int source,
114 void *target,
115 IOInterruptHandler handler,
116 void *refCon)
117 {
118 int current_cpu;
119 boolean_t current_state;
120
121 current_cpu = cpu_number();
122 current_state = ml_get_interrupts_enabled();
123
124 per_proc_info[current_cpu].interrupt_nub = nub;
125 per_proc_info[current_cpu].interrupt_source = source;
126 per_proc_info[current_cpu].interrupt_target = target;
127 per_proc_info[current_cpu].interrupt_handler = handler;
128 per_proc_info[current_cpu].interrupt_refCon = refCon;
129
130 per_proc_info[current_cpu].interrupts_enabled = TRUE;
131 (void) ml_set_interrupts_enabled(current_state);
132
133 initialize_screen(0, kPEAcquireScreen);
134 }
135
136 /* Initialize Interrupts */
137 void ml_init_interrupt(void)
138 {
139 int current_cpu;
140 boolean_t current_state;
141
142 current_state = ml_get_interrupts_enabled();
143
144 current_cpu = cpu_number();
145 per_proc_info[current_cpu].interrupts_enabled = TRUE;
146 (void) ml_set_interrupts_enabled(current_state);
147 }
148
149 boolean_t fake_get_interrupts_enabled(void)
150 {
151 /*
152 * The scheduler is not active on this cpu. There is no need to disable
153 * preemption. The current thread wont be dispatched on anhother cpu.
154 */
155 return((per_proc_info[cpu_number()].cpu_flags & turnEEon) != 0);
156 }
157
158 boolean_t fake_set_interrupts_enabled(boolean_t enable)
159 {
160 boolean_t interrupt_state_prev;
161
162 /*
163 * The scheduler is not active on this cpu. There is no need to disable
164 * preemption. The current thread wont be dispatched on anhother cpu.
165 */
166 interrupt_state_prev =
167 (per_proc_info[cpu_number()].cpu_flags & turnEEon) != 0;
168 if (interrupt_state_prev != enable)
169 per_proc_info[cpu_number()].cpu_flags ^= turnEEon;
170 return(interrupt_state_prev);
171 }
172
173 /* Get Interrupts Enabled */
174 boolean_t ml_get_interrupts_enabled(void)
175 {
176 if (per_proc_info[cpu_number()].interrupts_enabled == TRUE)
177 return(get_interrupts_enabled());
178 else
179 return(fake_get_interrupts_enabled());
180 }
181
182 boolean_t get_interrupts_enabled(void)
183 {
184 return((mfmsr() & MASK(MSR_EE)) != 0);
185 }
186
187 /* Check if running at interrupt context */
188 boolean_t ml_at_interrupt_context(void)
189 {
190 boolean_t ret;
191 boolean_t current_state;
192
193 current_state = ml_set_interrupts_enabled(FALSE);
194 ret = (per_proc_info[cpu_number()].istackptr == 0);
195 ml_set_interrupts_enabled(current_state);
196 return(ret);
197 }
198
199 /* Generate a fake interrupt */
200 void ml_cause_interrupt(void)
201 {
202 CreateFakeIO();
203 }
204
205 void ml_thread_policy(
206 thread_t thread,
207 unsigned policy_id,
208 unsigned policy_info)
209 {
210 if ((policy_id == MACHINE_GROUP) &&
211 ((per_proc_info[0].pf.Available) & pfSMPcap))
212 thread_bind(thread, master_processor);
213
214 if (policy_info & MACHINE_NETWORK_WORKLOOP) {
215 spl_t s = splsched();
216
217 thread_lock(thread);
218
219 thread->sched_mode |= TH_MODE_FORCEDPREEMPT;
220 set_priority(thread, thread->priority + 1);
221
222 thread_unlock(thread);
223 splx(s);
224 }
225 }
226
227 void machine_idle(void)
228 {
229 if (per_proc_info[cpu_number()].interrupts_enabled == TRUE) {
230 int cur_decr;
231
232 machine_idle_ppc();
233
234 /*
235 * protect against a lost decrementer trap
236 * if the current decrementer value is negative
237 * by more than 10 ticks, re-arm it since it's
238 * unlikely to fire at this point... a hardware
239 * interrupt got us out of machine_idle and may
240 * also be contributing to this state
241 */
242 cur_decr = isync_mfdec();
243
244 if (cur_decr < -10) {
245 mtdec(1);
246 }
247 }
248 }
249
250 void
251 machine_signal_idle(
252 processor_t processor)
253 {
254 (void)cpu_signal(processor->slot_num, SIGPwake, 0, 0);
255 }
256
257 kern_return_t
258 ml_processor_register(
259 ml_processor_info_t *processor_info,
260 processor_t *processor,
261 ipi_handler_t *ipi_handler)
262 {
263 kern_return_t ret;
264 int target_cpu;
265
266 if (processor_info->boot_cpu == FALSE) {
267 if (cpu_register(&target_cpu) != KERN_SUCCESS)
268 return KERN_FAILURE;
269 } else {
270 /* boot_cpu is always 0 */
271 target_cpu= 0;
272 }
273
274 per_proc_info[target_cpu].cpu_id = processor_info->cpu_id;
275 per_proc_info[target_cpu].start_paddr = processor_info->start_paddr;
276
277 if(per_proc_info[target_cpu].pf.Available & pfCanNap)
278 if(processor_info->supports_nap)
279 per_proc_info[target_cpu].pf.Available |= pfWillNap;
280
281 if(processor_info->time_base_enable != (void(*)(cpu_id_t, boolean_t ))NULL)
282 per_proc_info[target_cpu].time_base_enable = processor_info->time_base_enable;
283 else
284 per_proc_info[target_cpu].time_base_enable = (void(*)(cpu_id_t, boolean_t ))NULL;
285
286 if(target_cpu == cpu_number())
287 __asm__ volatile("mtsprg 2,%0" : : "r" (per_proc_info[target_cpu].pf.Available)); /* Set live value */
288
289 *processor = cpu_to_processor(target_cpu);
290 *ipi_handler = cpu_signal_handler;
291
292 return KERN_SUCCESS;
293 }
294
295 boolean_t
296 ml_enable_nap(int target_cpu, boolean_t nap_enabled)
297 {
298 boolean_t prev_value = (per_proc_info[target_cpu].pf.Available & pfCanNap) && (per_proc_info[target_cpu].pf.Available & pfWillNap);
299
300 if(per_proc_info[target_cpu].pf.Available & pfCanNap) { /* Can the processor nap? */
301 if (nap_enabled) per_proc_info[target_cpu].pf.Available |= pfWillNap; /* Is nap supported on this machine? */
302 else per_proc_info[target_cpu].pf.Available &= ~pfWillNap; /* Clear if not */
303 }
304
305 if(target_cpu == cpu_number())
306 __asm__ volatile("mtsprg 2,%0" : : "r" (per_proc_info[target_cpu].pf.Available)); /* Set live value */
307
308 return (prev_value);
309 }
310
311 void
312 ml_init_max_cpus(unsigned long max_cpus)
313 {
314 boolean_t current_state;
315
316 current_state = ml_set_interrupts_enabled(FALSE);
317 if (max_cpus_initialized != MAX_CPUS_SET) {
318 if (max_cpus > 0 && max_cpus < NCPUS)
319 machine_info.max_cpus = max_cpus;
320 if (max_cpus_initialized == MAX_CPUS_WAIT)
321 wakeup((event_t)&max_cpus_initialized);
322 max_cpus_initialized = MAX_CPUS_SET;
323 }
324 (void) ml_set_interrupts_enabled(current_state);
325 }
326
327 int
328 ml_get_max_cpus(void)
329 {
330 boolean_t current_state;
331
332 current_state = ml_set_interrupts_enabled(FALSE);
333 if (max_cpus_initialized != MAX_CPUS_SET) {
334 max_cpus_initialized = MAX_CPUS_WAIT;
335 assert_wait((event_t)&max_cpus_initialized, THREAD_UNINT);
336 (void)thread_block(THREAD_CONTINUE_NULL);
337 }
338 (void) ml_set_interrupts_enabled(current_state);
339 return(machine_info.max_cpus);
340 }
341
342 int
343 ml_get_current_cpus(void)
344 {
345 return machine_info.avail_cpus;
346 }
347
348 void
349 ml_cpu_get_info(ml_cpu_info_t *cpu_info)
350 {
351 if (cpu_info == 0) return;
352
353 cpu_info->vector_unit = (per_proc_info[0].pf.Available & pfAltivec) != 0;
354 cpu_info->cache_line_size = per_proc_info[0].pf.lineSize;
355 cpu_info->l1_icache_size = per_proc_info[0].pf.l1iSize;
356 cpu_info->l1_dcache_size = per_proc_info[0].pf.l1dSize;
357
358 if (per_proc_info[0].pf.Available & pfL2) {
359 cpu_info->l2_settings = per_proc_info[0].pf.l2cr;
360 cpu_info->l2_cache_size = per_proc_info[0].pf.l2Size;
361 } else {
362 cpu_info->l2_settings = 0;
363 cpu_info->l2_cache_size = 0xFFFFFFFF;
364 }
365 if (per_proc_info[0].pf.Available & pfL3) {
366 cpu_info->l3_settings = per_proc_info[0].pf.l3cr;
367 cpu_info->l3_cache_size = per_proc_info[0].pf.l3Size;
368 } else {
369 cpu_info->l3_settings = 0;
370 cpu_info->l3_cache_size = 0xFFFFFFFF;
371 }
372 }
373
374 #define l2em 0x80000000
375 #define l3em 0x80000000
376
377 extern int real_ncpus;
378
379 int
380 ml_enable_cache_level(int cache_level, int enable)
381 {
382 int old_mode;
383 unsigned long available, ccr;
384
385 if (real_ncpus != 1) return -1;
386
387 available = per_proc_info[0].pf.Available;
388
389 if ((cache_level == 2) && (available & pfL2)) {
390 ccr = per_proc_info[0].pf.l2cr;
391 old_mode = (ccr & l2em) ? TRUE : FALSE;
392 if (old_mode != enable) {
393 if (enable) ccr = per_proc_info[0].pf.l2crOriginal;
394 else ccr = 0;
395 per_proc_info[0].pf.l2cr = ccr;
396 cacheInit();
397 }
398
399 return old_mode;
400 }
401
402 if ((cache_level == 3) && (available & pfL3)) {
403 ccr = per_proc_info[0].pf.l3cr;
404 old_mode = (ccr & l3em) ? TRUE : FALSE;
405 if (old_mode != enable) {
406 if (enable) ccr = per_proc_info[0].pf.l3crOriginal;
407 else ccr = 0;
408 per_proc_info[0].pf.l3cr = ccr;
409 cacheInit();
410 }
411
412 return old_mode;
413 }
414
415 return -1;
416 }
417
418 void
419 init_ast_check(processor_t processor)
420 {}
421
422 void
423 cause_ast_check(
424 processor_t processor)
425 {
426 if ( processor != current_processor() &&
427 per_proc_info[processor->slot_num].interrupts_enabled == TRUE )
428 cpu_signal(processor->slot_num, SIGPast, NULL, NULL);
429 }
430
431 thread_t
432 switch_to_shutdown_context(
433 thread_t thread,
434 void (*doshutdown)(processor_t),
435 processor_t processor)
436 {
437 CreateShutdownCTX();
438 return((thread_t)(per_proc_info[cpu_number()].old_thread));
439 }
440
441 int
442 set_be_bit()
443 {
444
445 int mycpu;
446 boolean_t current_state;
447
448 current_state = ml_set_interrupts_enabled(FALSE); /* Can't allow interruptions when mucking with per_proc flags */
449 mycpu = cpu_number();
450 per_proc_info[mycpu].cpu_flags |= traceBE;
451 (void) ml_set_interrupts_enabled(current_state);
452 return(1);
453 }
454
455 int
456 clr_be_bit()
457 {
458 int mycpu;
459 boolean_t current_state;
460
461 current_state = ml_set_interrupts_enabled(FALSE); /* Can't allow interruptions when mucking with per_proc flags */
462 mycpu = cpu_number();
463 per_proc_info[mycpu].cpu_flags &= ~traceBE;
464 (void) ml_set_interrupts_enabled(current_state);
465 return(1);
466 }
467
468 int
469 be_tracing()
470 {
471 int mycpu = cpu_number();
472 return(per_proc_info[mycpu].cpu_flags & traceBE);
473 }
474