]> git.saurik.com Git - apple/xnu.git/blob - iokit/Kernel/IOBufferMemoryDescriptor.cpp
845c6e12ecd96c83236a550e5f3d5db3f63aa92f
[apple/xnu.git] / iokit / Kernel / IOBufferMemoryDescriptor.cpp
1 /*
2 * Copyright (c) 1998-2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
7 *
8 * This file contains Original Code and/or Modifications of Original Code
9 * as defined in and that are subject to the Apple Public Source License
10 * Version 2.0 (the 'License'). You may not use this file except in
11 * compliance with the License. Please obtain a copy of the License at
12 * http://www.opensource.apple.com/apsl/ and read it before using this
13 * file.
14 *
15 * The Original Code and all software distributed under the License are
16 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
17 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
18 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
20 * Please see the License for the specific language governing rights and
21 * limitations under the License.
22 *
23 * @APPLE_LICENSE_HEADER_END@
24 */
25 #include <IOKit/assert.h>
26 #include <IOKit/system.h>
27
28 #include <IOKit/IOLib.h>
29 #include <IOKit/IOBufferMemoryDescriptor.h>
30
31 __BEGIN_DECLS
32 void ipc_port_release_send(ipc_port_t port);
33 #include <vm/pmap.h>
34 __END_DECLS
35
36 extern "C" vm_map_t IOPageableMapForAddress( vm_address_t address );
37
38 #define super IOGeneralMemoryDescriptor
39 OSDefineMetaClassAndStructors(IOBufferMemoryDescriptor,
40 IOGeneralMemoryDescriptor);
41
42 bool IOBufferMemoryDescriptor::initWithAddress(
43 void * /* address */ ,
44 IOByteCount /* withLength */ ,
45 IODirection /* withDirection */ )
46 {
47 return false;
48 }
49
50 bool IOBufferMemoryDescriptor::initWithAddress(
51 vm_address_t /* address */ ,
52 IOByteCount /* withLength */ ,
53 IODirection /* withDirection */ ,
54 task_t /* withTask */ )
55 {
56 return false;
57 }
58
59 bool IOBufferMemoryDescriptor::initWithPhysicalAddress(
60 IOPhysicalAddress /* address */ ,
61 IOByteCount /* withLength */ ,
62 IODirection /* withDirection */ )
63 {
64 return false;
65 }
66
67 bool IOBufferMemoryDescriptor::initWithPhysicalRanges(
68 IOPhysicalRange * /* ranges */ ,
69 UInt32 /* withCount */ ,
70 IODirection /* withDirection */ ,
71 bool /* asReference */ )
72 {
73 return false;
74 }
75
76 bool IOBufferMemoryDescriptor::initWithRanges(
77 IOVirtualRange * /* ranges */ ,
78 UInt32 /* withCount */ ,
79 IODirection /* withDirection */ ,
80 task_t /* withTask */ ,
81 bool /* asReference */ )
82 {
83 return false;
84 }
85
86 bool IOBufferMemoryDescriptor::initWithOptions(
87 IOOptionBits options,
88 vm_size_t capacity,
89 vm_offset_t alignment,
90 task_t inTask)
91 {
92 vm_map_t map = 0;
93
94 if (!capacity)
95 return false;
96
97 _options = options;
98 _capacity = capacity;
99 _physAddrs = 0;
100 _physSegCount = 0;
101 _buffer = 0;
102
103 if ((options & kIOMemorySharingTypeMask) && (alignment < page_size))
104 alignment = page_size;
105
106 if ((inTask != kernel_task) && !(options & kIOMemoryPageable))
107 return false;
108
109 _alignment = alignment;
110 if (options & kIOMemoryPageable)
111 {
112 if (inTask == kernel_task)
113 {
114 /* Allocate some kernel address space. */
115 _buffer = IOMallocPageable(capacity, alignment);
116 if (_buffer)
117 map = IOPageableMapForAddress((vm_address_t) _buffer);
118 }
119 else
120 {
121 kern_return_t kr;
122
123 if( !reserved) {
124 reserved = IONew( ExpansionData, 1 );
125 if( !reserved)
126 return( false );
127 }
128 map = get_task_map(inTask);
129 vm_map_reference(map);
130 reserved->map = map;
131 kr = vm_allocate( map, (vm_address_t *) &_buffer, round_page(capacity),
132 VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_MEMORY_IOKIT) );
133 if( KERN_SUCCESS != kr)
134 return( false );
135
136 // we have to make sure that these pages don't get copied on fork.
137 kr = vm_inherit( map, (vm_address_t) _buffer, round_page(capacity), VM_INHERIT_NONE);
138 if( KERN_SUCCESS != kr)
139 return( false );
140 }
141 }
142 else
143 {
144 /* Allocate a wired-down buffer inside kernel space. */
145 if (options & kIOMemoryPhysicallyContiguous)
146 _buffer = IOMallocContiguous(capacity, alignment, 0);
147 else if (alignment > 1)
148 _buffer = IOMallocAligned(capacity, alignment);
149 else
150 _buffer = IOMalloc(capacity);
151 }
152
153 if (!_buffer)
154 return false;
155
156 _singleRange.v.address = (vm_address_t) _buffer;
157 _singleRange.v.length = capacity;
158
159 if (!super::initWithRanges(&_singleRange.v, 1,
160 (IODirection) (options & kIOMemoryDirectionMask),
161 inTask, true))
162 return false;
163
164 if (options & kIOMemoryPageable)
165 {
166 _flags |= kIOMemoryRequiresWire;
167
168 kern_return_t kr;
169 ipc_port_t sharedMem = (ipc_port_t) _memEntry;
170 vm_size_t size = round_page(_ranges.v[0].length);
171
172 // must create the entry before any pages are allocated
173 if( 0 == sharedMem) {
174 kr = mach_make_memory_entry( map,
175 &size, _ranges.v[0].address,
176 VM_PROT_READ | VM_PROT_WRITE, &sharedMem,
177 NULL );
178 if( (KERN_SUCCESS == kr) && (size != round_page(_ranges.v[0].length))) {
179 ipc_port_release_send( sharedMem );
180 kr = kIOReturnVMError;
181 }
182 if( KERN_SUCCESS != kr)
183 sharedMem = 0;
184 _memEntry = (void *) sharedMem;
185 }
186 }
187 else
188 {
189 /* Precompute virtual-to-physical page mappings. */
190 vm_address_t inBuffer = (vm_address_t) _buffer;
191 _physSegCount = atop(trunc_page(inBuffer + capacity - 1) -
192 trunc_page(inBuffer)) + 1;
193 _physAddrs = IONew(IOPhysicalAddress, _physSegCount);
194 if (!_physAddrs)
195 return false;
196
197 inBuffer = trunc_page(inBuffer);
198 for (unsigned i = 0; i < _physSegCount; i++) {
199 _physAddrs[i] = pmap_extract(get_task_pmap(kernel_task), inBuffer);
200 assert(_physAddrs[i]); /* supposed to be wired */
201 inBuffer += page_size;
202 }
203 }
204
205 setLength(capacity);
206
207 return true;
208 }
209
210 IOBufferMemoryDescriptor * IOBufferMemoryDescriptor::inTaskWithOptions(
211 task_t inTask,
212 IOOptionBits options,
213 vm_size_t capacity,
214 vm_offset_t alignment = 1)
215 {
216 IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor;
217
218 if (me && !me->initWithOptions(options, capacity, alignment, inTask)) {
219 me->release();
220 me = 0;
221 }
222 return me;
223 }
224
225 bool IOBufferMemoryDescriptor::initWithOptions(
226 IOOptionBits options,
227 vm_size_t capacity,
228 vm_offset_t alignment)
229 {
230 return( initWithOptions(options, capacity, alignment, kernel_task) );
231 }
232
233 IOBufferMemoryDescriptor * IOBufferMemoryDescriptor::withOptions(
234 IOOptionBits options,
235 vm_size_t capacity,
236 vm_offset_t alignment = 1)
237 {
238 IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor;
239
240 if (me && !me->initWithOptions(options, capacity, alignment, kernel_task)) {
241 me->release();
242 me = 0;
243 }
244 return me;
245 }
246
247
248 /*
249 * withCapacity:
250 *
251 * Returns a new IOBufferMemoryDescriptor with a buffer large enough to
252 * hold capacity bytes. The descriptor's length is initially set to the capacity.
253 */
254 IOBufferMemoryDescriptor *
255 IOBufferMemoryDescriptor::withCapacity(vm_size_t inCapacity,
256 IODirection inDirection,
257 bool inContiguous)
258 {
259 return( IOBufferMemoryDescriptor::withOptions(
260 inDirection | kIOMemoryUnshared
261 | (inContiguous ? kIOMemoryPhysicallyContiguous : 0),
262 inCapacity, inContiguous ? inCapacity : 1 ));
263 }
264
265 /*
266 * initWithBytes:
267 *
268 * Initialize a new IOBufferMemoryDescriptor preloaded with bytes (copied).
269 * The descriptor's length and capacity are set to the input buffer's size.
270 */
271 bool IOBufferMemoryDescriptor::initWithBytes(const void * inBytes,
272 vm_size_t inLength,
273 IODirection inDirection,
274 bool inContiguous)
275 {
276 if (!initWithOptions(
277 inDirection | kIOMemoryUnshared
278 | (inContiguous ? kIOMemoryPhysicallyContiguous : 0),
279 inLength, inLength ))
280 return false;
281
282 // start out with no data
283 setLength(0);
284
285 if (!appendBytes(inBytes, inLength))
286 return false;
287
288 return true;
289 }
290
291 /*
292 * withBytes:
293 *
294 * Returns a new IOBufferMemoryDescriptor preloaded with bytes (copied).
295 * The descriptor's length and capacity are set to the input buffer's size.
296 */
297 IOBufferMemoryDescriptor *
298 IOBufferMemoryDescriptor::withBytes(const void * inBytes,
299 vm_size_t inLength,
300 IODirection inDirection,
301 bool inContiguous)
302 {
303 IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor;
304
305 if (me && !me->initWithBytes(inBytes, inLength, inDirection, inContiguous)){
306 me->release();
307 me = 0;
308 }
309 return me;
310 }
311
312 /*
313 * free:
314 *
315 * Free resources
316 */
317 void IOBufferMemoryDescriptor::free()
318 {
319 IOOptionBits options = _options;
320 vm_size_t size = _capacity;
321 void * buffer = _buffer;
322 vm_map_t map = 0;
323 vm_offset_t alignment = _alignment;
324
325 if (_physAddrs)
326 IODelete(_physAddrs, IOPhysicalAddress, _physSegCount);
327
328 if (reserved)
329 {
330 map = reserved->map;
331 IODelete( reserved, ExpansionData, 1 );
332 }
333
334 /* super::free may unwire - deallocate buffer afterwards */
335 super::free();
336
337 if (buffer)
338 {
339 if (options & kIOMemoryPageable)
340 {
341 if (map)
342 vm_deallocate(map, (vm_address_t) buffer, round_page(size));
343 else
344 IOFreePageable(buffer, size);
345 }
346 else
347 {
348 if (options & kIOMemoryPhysicallyContiguous)
349 IOFreeContiguous(buffer, size);
350 else if (alignment > 1)
351 IOFreeAligned(buffer, size);
352 else
353 IOFree(buffer, size);
354 }
355 }
356 if (map)
357 vm_map_deallocate(map);
358 }
359
360 /*
361 * getCapacity:
362 *
363 * Get the buffer capacity
364 */
365 vm_size_t IOBufferMemoryDescriptor::getCapacity() const
366 {
367 return _capacity;
368 }
369
370 /*
371 * setLength:
372 *
373 * Change the buffer length of the memory descriptor. When a new buffer
374 * is created, the initial length of the buffer is set to be the same as
375 * the capacity. The length can be adjusted via setLength for a shorter
376 * transfer (there is no need to create more buffer descriptors when you
377 * can reuse an existing one, even for different transfer sizes). Note
378 * that the specified length must not exceed the capacity of the buffer.
379 */
380 void IOBufferMemoryDescriptor::setLength(vm_size_t length)
381 {
382 assert(length <= _capacity);
383
384 _length = length;
385 _singleRange.v.length = length;
386 }
387
388 /*
389 * setDirection:
390 *
391 * Change the direction of the transfer. This method allows one to redirect
392 * the descriptor's transfer direction. This eliminates the need to destroy
393 * and create new buffers when different transfer directions are needed.
394 */
395 void IOBufferMemoryDescriptor::setDirection(IODirection direction)
396 {
397 _direction = direction;
398 }
399
400 /*
401 * appendBytes:
402 *
403 * Add some data to the end of the buffer. This method automatically
404 * maintains the memory descriptor buffer length. Note that appendBytes
405 * will not copy past the end of the memory descriptor's current capacity.
406 */
407 bool
408 IOBufferMemoryDescriptor::appendBytes(const void * bytes, vm_size_t withLength)
409 {
410 vm_size_t actualBytesToCopy = min(withLength, _capacity - _length);
411
412 assert(_length <= _capacity);
413 bcopy(/* from */ bytes, (void *)(_singleRange.v.address + _length),
414 actualBytesToCopy);
415 _length += actualBytesToCopy;
416 _singleRange.v.length += actualBytesToCopy;
417
418 return true;
419 }
420
421 /*
422 * getBytesNoCopy:
423 *
424 * Return the virtual address of the beginning of the buffer
425 */
426 void * IOBufferMemoryDescriptor::getBytesNoCopy()
427 {
428 return (void *)_singleRange.v.address;
429 }
430
431 /*
432 * getBytesNoCopy:
433 *
434 * Return the virtual address of an offset from the beginning of the buffer
435 */
436 void *
437 IOBufferMemoryDescriptor::getBytesNoCopy(vm_size_t start, vm_size_t withLength)
438 {
439 if (start < _length && (start + withLength) <= _length)
440 return (void *)(_singleRange.v.address + start);
441 return 0;
442 }
443
444 /*
445 * getPhysicalSegment:
446 *
447 * Get the physical address of the buffer, relative to the current position.
448 * If the current position is at the end of the buffer, a zero is returned.
449 */
450 IOPhysicalAddress
451 IOBufferMemoryDescriptor::getPhysicalSegment(IOByteCount offset,
452 IOByteCount * lengthOfSegment)
453 {
454 IOPhysicalAddress physAddr;
455
456 if( offset != _position)
457 setPosition( offset );
458
459 assert(_position <= _length);
460
461 /* Fail gracefully if the position is at (or past) the end-of-buffer. */
462 if (_position >= _length) {
463 *lengthOfSegment = 0;
464 return 0;
465 }
466
467 if (_options & kIOMemoryPageable) {
468 physAddr = super::getPhysicalSegment(offset, lengthOfSegment);
469
470 } else {
471 /* Compute the largest contiguous physical length possible. */
472 vm_address_t actualPos = _singleRange.v.address + _position;
473 vm_address_t actualPage = trunc_page(actualPos);
474 unsigned physInd = atop(actualPage-trunc_page(_singleRange.v.address));
475
476 vm_size_t physicalLength = actualPage + page_size - actualPos;
477 for (unsigned index = physInd + 1; index < _physSegCount &&
478 _physAddrs[index] == _physAddrs[index-1] + page_size; index++) {
479 physicalLength += page_size;
480 }
481
482 /* Clip contiguous physical length at the end-of-buffer. */
483 if (physicalLength > _length - _position)
484 physicalLength = _length - _position;
485
486 *lengthOfSegment = physicalLength;
487 physAddr = _physAddrs[physInd] + (actualPos - actualPage);
488 }
489
490 return physAddr;
491 }
492
493 OSMetaClassDefineReservedUsed(IOBufferMemoryDescriptor, 0);
494 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 1);
495 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 2);
496 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 3);
497 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 4);
498 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 5);
499 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 6);
500 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 7);
501 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 8);
502 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 9);
503 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 10);
504 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 11);
505 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 12);
506 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 13);
507 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 14);
508 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 15);