]> git.saurik.com Git - apple/xnu.git/blob - osfmk/default_pager/dp_memory_object.c
83c24fe6f655eac1aadefeb08d4879815cd601a2
[apple/xnu.git] / osfmk / default_pager / dp_memory_object.c
1 /*
2 * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56
57 /*
58 * Default Pager.
59 * Memory Object Management.
60 */
61
62 #include "default_pager_internal.h"
63 #include <default_pager/default_pager_object_server.h>
64 #include <mach/memory_object_default_server.h>
65 #include <mach/memory_object_control.h>
66 #include <mach/memory_object_types.h>
67 #include <mach/memory_object_server.h>
68 #include <mach/upl.h>
69 #include <mach/vm_map.h>
70 #include <vm/memory_object.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_protos.h>
74
75 /* forward declaration */
76 vstruct_t vs_object_create(dp_size_t size);
77
78 /*
79 * List of all vstructs. A specific vstruct is
80 * found directly via its port, this list is
81 * only used for monitoring purposes by the
82 * default_pager_object* calls and by ps_delete
83 * when abstract memory objects must be scanned
84 * to remove any live storage on a segment which
85 * is to be removed.
86 */
87 struct vstruct_list_head vstruct_list;
88
89 __private_extern__ void
90 vstruct_list_insert(
91 vstruct_t vs)
92 {
93 VSL_LOCK();
94 queue_enter(&vstruct_list.vsl_queue, vs, vstruct_t, vs_links);
95 vstruct_list.vsl_count++;
96 VSL_UNLOCK();
97 }
98
99
100 __private_extern__ void
101 vstruct_list_delete(
102 vstruct_t vs)
103 {
104 queue_remove(&vstruct_list.vsl_queue, vs, vstruct_t, vs_links);
105 vstruct_list.vsl_count--;
106 }
107
108 /*
109 * We use the sequence numbers on requests to regulate
110 * our parallelism. In general, we allow multiple reads and writes
111 * to proceed in parallel, with the exception that reads must
112 * wait for previous writes to finish. (Because the kernel might
113 * generate a data-request for a page on the heels of a data-write
114 * for the same page, and we must avoid returning stale data.)
115 * terminate requests wait for proceeding reads and writes to finish.
116 */
117
118 static unsigned int default_pager_total = 0; /* debugging */
119 static unsigned int default_pager_wait_seqno = 0; /* debugging */
120 static unsigned int default_pager_wait_read = 0; /* debugging */
121 static unsigned int default_pager_wait_write = 0; /* debugging */
122
123 __private_extern__ void
124 vs_async_wait(
125 vstruct_t vs)
126 {
127
128 ASSERT(vs->vs_async_pending >= 0);
129 while (vs->vs_async_pending > 0) {
130 vs->vs_waiting_async = TRUE;
131 assert_wait(&vs->vs_async_pending, THREAD_UNINT);
132 VS_UNLOCK(vs);
133 thread_block(THREAD_CONTINUE_NULL);
134 VS_LOCK(vs);
135 }
136 ASSERT(vs->vs_async_pending == 0);
137 }
138
139
140 #if PARALLEL
141 /*
142 * Waits for correct sequence number. Leaves pager locked.
143 *
144 * JMM - Sequence numbers guarantee ordering of requests generated
145 * by a single thread if the receiver is multithreaded and
146 * the interfaces are asynchronous (i.e. sender can generate
147 * more than one request before the first is received in the
148 * pager). Normally, IPC would generate these number in that
149 * case. But we are trying to avoid using IPC for the in-kernel
150 * scenario. Since these are actually invoked synchronously
151 * anyway (in-kernel), we can just fake the sequence number
152 * generation here (thus avoiding the dependence on IPC).
153 */
154 __private_extern__ void
155 vs_lock(
156 vstruct_t vs)
157 {
158 mach_port_seqno_t seqno;
159
160 default_pager_total++;
161 VS_LOCK(vs);
162
163 seqno = vs->vs_next_seqno++;
164
165 while (vs->vs_seqno != seqno) {
166 default_pager_wait_seqno++;
167 vs->vs_waiting_seqno = TRUE;
168 assert_wait(&vs->vs_seqno, THREAD_UNINT);
169 VS_UNLOCK(vs);
170 thread_block(THREAD_CONTINUE_NULL);
171 VS_LOCK(vs);
172 }
173 }
174
175 /*
176 * Increments sequence number and unlocks pager.
177 */
178 __private_extern__ void
179 vs_unlock(vstruct_t vs)
180 {
181 vs->vs_seqno++;
182 if (vs->vs_waiting_seqno) {
183 vs->vs_waiting_seqno = FALSE;
184 VS_UNLOCK(vs);
185 thread_wakeup(&vs->vs_seqno);
186 return;
187 }
188 VS_UNLOCK(vs);
189 }
190
191 /*
192 * Start a read - one more reader. Pager must be locked.
193 */
194 __private_extern__ void
195 vs_start_read(
196 vstruct_t vs)
197 {
198 vs->vs_readers++;
199 }
200
201 /*
202 * Wait for readers. Unlocks and relocks pager if wait needed.
203 */
204 __private_extern__ void
205 vs_wait_for_readers(
206 vstruct_t vs)
207 {
208 while (vs->vs_readers != 0) {
209 default_pager_wait_read++;
210 vs->vs_waiting_read = TRUE;
211 assert_wait(&vs->vs_readers, THREAD_UNINT);
212 VS_UNLOCK(vs);
213 thread_block(THREAD_CONTINUE_NULL);
214 VS_LOCK(vs);
215 }
216 }
217
218 /*
219 * Finish a read. Pager is unlocked and returns unlocked.
220 */
221 __private_extern__ void
222 vs_finish_read(
223 vstruct_t vs)
224 {
225 VS_LOCK(vs);
226 if (--vs->vs_readers == 0 && vs->vs_waiting_read) {
227 vs->vs_waiting_read = FALSE;
228 VS_UNLOCK(vs);
229 thread_wakeup(&vs->vs_readers);
230 return;
231 }
232 VS_UNLOCK(vs);
233 }
234
235 /*
236 * Start a write - one more writer. Pager must be locked.
237 */
238 __private_extern__ void
239 vs_start_write(
240 vstruct_t vs)
241 {
242 vs->vs_writers++;
243 }
244
245 /*
246 * Wait for writers. Unlocks and relocks pager if wait needed.
247 */
248 __private_extern__ void
249 vs_wait_for_writers(
250 vstruct_t vs)
251 {
252 while (vs->vs_writers != 0) {
253 default_pager_wait_write++;
254 vs->vs_waiting_write = TRUE;
255 assert_wait(&vs->vs_writers, THREAD_UNINT);
256 VS_UNLOCK(vs);
257 thread_block(THREAD_CONTINUE_NULL);
258 VS_LOCK(vs);
259 }
260 vs_async_wait(vs);
261 }
262
263 /* This is to be used for the transfer from segment code ONLY */
264 /* The transfer code holds off vs destruction by keeping the */
265 /* vs_async_wait count non-zero. It will not ocnflict with */
266 /* other writers on an async basis because it only writes on */
267 /* a cluster basis into fresh (as of sync time) cluster locations */
268
269 __private_extern__ void
270 vs_wait_for_sync_writers(
271 vstruct_t vs)
272 {
273 while (vs->vs_writers != 0) {
274 default_pager_wait_write++;
275 vs->vs_waiting_write = TRUE;
276 assert_wait(&vs->vs_writers, THREAD_UNINT);
277 VS_UNLOCK(vs);
278 thread_block(THREAD_CONTINUE_NULL);
279 VS_LOCK(vs);
280 }
281 }
282
283
284 /*
285 * Finish a write. Pager is unlocked and returns unlocked.
286 */
287 __private_extern__ void
288 vs_finish_write(
289 vstruct_t vs)
290 {
291 VS_LOCK(vs);
292 if (--vs->vs_writers == 0 && vs->vs_waiting_write) {
293 vs->vs_waiting_write = FALSE;
294 VS_UNLOCK(vs);
295 thread_wakeup(&vs->vs_writers);
296 return;
297 }
298 VS_UNLOCK(vs);
299 }
300 #endif /* PARALLEL */
301
302 vstruct_t
303 vs_object_create(
304 dp_size_t size)
305 {
306 vstruct_t vs;
307
308 /*
309 * Allocate a vstruct. If there are any problems, then report them
310 * to the console.
311 */
312 vs = ps_vstruct_create(size);
313 if (vs == VSTRUCT_NULL) {
314 dprintf(("vs_object_create: unable to allocate %s\n",
315 "-- either run swapon command or reboot"));
316 return VSTRUCT_NULL;
317 }
318
319 return vs;
320 }
321
322 #if 0
323 void default_pager_add(vstruct_t, boolean_t); /* forward */
324
325 void
326 default_pager_add(
327 vstruct_t vs,
328 boolean_t internal)
329 {
330 memory_object_t mem_obj = vs->vs_mem_obj;
331 mach_port_t pset;
332 mach_port_mscount_t sync;
333 mach_port_t previous;
334 kern_return_t kr;
335 static char here[] = "default_pager_add";
336
337 /*
338 * The port currently has a make-send count of zero,
339 * because either we just created the port or we just
340 * received the port in a memory_object_create request.
341 */
342
343 if (internal) {
344 /* possibly generate an immediate no-senders notification */
345 sync = 0;
346 pset = default_pager_internal_set;
347 } else {
348 /* delay notification till send right is created */
349 sync = 1;
350 pset = default_pager_external_set;
351 }
352
353 ip_lock(mem_obj); /* unlocked in nsrequest below */
354 ipc_port_make_sonce_locked(mem_obj);
355 ipc_port_nsrequest(mem_obj, sync, mem_obj, &previous);
356 }
357
358 #endif
359
360 const struct memory_object_pager_ops default_pager_ops = {
361 dp_memory_object_reference,
362 dp_memory_object_deallocate,
363 dp_memory_object_init,
364 dp_memory_object_terminate,
365 dp_memory_object_data_request,
366 dp_memory_object_data_return,
367 dp_memory_object_data_initialize,
368 dp_memory_object_data_unlock,
369 dp_memory_object_synchronize,
370 dp_memory_object_map,
371 dp_memory_object_last_unmap,
372 dp_memory_object_data_reclaim,
373 "default pager"
374 };
375
376 kern_return_t
377 dp_memory_object_init(
378 memory_object_t mem_obj,
379 memory_object_control_t control,
380 __unused memory_object_cluster_size_t pager_page_size)
381 {
382 vstruct_t vs;
383
384 assert(pager_page_size == vm_page_size);
385
386 memory_object_control_reference(control);
387
388 vs_lookup(mem_obj, vs);
389 vs_lock(vs);
390
391 if (vs->vs_control != MEMORY_OBJECT_CONTROL_NULL)
392 Panic("bad request");
393
394 vs->vs_control = control;
395 vs_unlock(vs);
396
397 return KERN_SUCCESS;
398 }
399
400 kern_return_t
401 dp_memory_object_synchronize(
402 memory_object_t mem_obj,
403 memory_object_offset_t offset,
404 memory_object_size_t length,
405 __unused vm_sync_t flags)
406 {
407 vstruct_t vs;
408
409 vs_lookup(mem_obj, vs);
410 vs_lock(vs);
411 vs_unlock(vs);
412
413 memory_object_synchronize_completed(vs->vs_control, offset, length);
414
415 return KERN_SUCCESS;
416 }
417
418 kern_return_t
419 dp_memory_object_map(
420 __unused memory_object_t mem_obj,
421 __unused vm_prot_t prot)
422 {
423 panic("dp_memory_object_map");
424 return KERN_FAILURE;
425 }
426
427 kern_return_t
428 dp_memory_object_last_unmap(
429 __unused memory_object_t mem_obj)
430 {
431 panic("dp_memory_object_last_unmap");
432 return KERN_FAILURE;
433 }
434
435 kern_return_t
436 dp_memory_object_data_reclaim(
437 memory_object_t mem_obj,
438 boolean_t reclaim_backing_store)
439 {
440 vstruct_t vs;
441
442 vs_lookup(mem_obj, vs);
443 for (;;) {
444 vs_lock(vs);
445 vs_async_wait(vs);
446 if (!vs->vs_xfer_pending) {
447 break;
448 }
449 }
450 vs->vs_xfer_pending = TRUE;
451 vs_unlock(vs);
452
453 ps_vstruct_reclaim(vs, TRUE, reclaim_backing_store);
454
455 vs_lock(vs);
456 vs->vs_xfer_pending = FALSE;
457 vs_unlock(vs);
458
459 return KERN_SUCCESS;
460 }
461
462 kern_return_t
463 dp_memory_object_terminate(
464 memory_object_t mem_obj)
465 {
466 memory_object_control_t control;
467 vstruct_t vs;
468
469 /*
470 * control port is a receive right, not a send right.
471 */
472
473 vs_lookup(mem_obj, vs);
474 vs_lock(vs);
475
476 /*
477 * Wait for read and write requests to terminate.
478 */
479
480 vs_wait_for_readers(vs);
481 vs_wait_for_writers(vs);
482
483 /*
484 * After memory_object_terminate both memory_object_init
485 * and a no-senders notification are possible, so we need
486 * to clean up our reference to the memory_object_control
487 * to prepare for a new init.
488 */
489
490 control = vs->vs_control;
491 vs->vs_control = MEMORY_OBJECT_CONTROL_NULL;
492
493 /* a bit of special case ugliness here. Wakeup any waiting reads */
494 /* these data requests had to be removed from the seqno traffic */
495 /* based on a performance bottleneck with large memory objects */
496 /* the problem will right itself with the new component based */
497 /* synchronous interface. The new async will be able to return */
498 /* failure during its sync phase. In the mean time ... */
499
500 thread_wakeup(&vs->vs_writers);
501 thread_wakeup(&vs->vs_async_pending);
502
503 vs_unlock(vs);
504
505 /*
506 * Now we deallocate our reference on the control.
507 */
508 memory_object_control_deallocate(control);
509 return KERN_SUCCESS;
510 }
511
512 void
513 dp_memory_object_reference(
514 memory_object_t mem_obj)
515 {
516 vstruct_t vs;
517
518 vs_lookup_safe(mem_obj, vs);
519 if (vs == VSTRUCT_NULL)
520 return;
521
522 VS_LOCK(vs);
523 assert(vs->vs_references > 0);
524 vs->vs_references++;
525 VS_UNLOCK(vs);
526 }
527
528 void
529 dp_memory_object_deallocate(
530 memory_object_t mem_obj)
531 {
532 vstruct_t vs;
533 mach_port_seqno_t seqno;
534
535 /*
536 * Because we don't give out multiple first references
537 * for a memory object, there can't be a race
538 * between getting a deallocate call and creating
539 * a new reference for the object.
540 */
541
542 vs_lookup_safe(mem_obj, vs);
543 if (vs == VSTRUCT_NULL)
544 return;
545
546 VS_LOCK(vs);
547 if (--vs->vs_references > 0) {
548 VS_UNLOCK(vs);
549 return;
550 }
551
552 seqno = vs->vs_next_seqno++;
553 while (vs->vs_seqno != seqno) {
554 default_pager_wait_seqno++;
555 vs->vs_waiting_seqno = TRUE;
556 assert_wait(&vs->vs_seqno, THREAD_UNINT);
557 VS_UNLOCK(vs);
558 thread_block(THREAD_CONTINUE_NULL);
559 VS_LOCK(vs);
560 }
561
562 vs_async_wait(vs); /* wait for pending async IO */
563
564 /* do not delete the vs structure until the referencing pointers */
565 /* in the vstruct list have been expunged */
566
567 /* get VSL_LOCK out of order by using TRY mechanism */
568 while(!VSL_LOCK_TRY()) {
569 VS_UNLOCK(vs);
570 VSL_LOCK();
571 VSL_UNLOCK();
572 VS_LOCK(vs);
573 vs_async_wait(vs); /* wait for pending async IO */
574 }
575
576
577 /*
578 * We shouldn't get a deallocation call
579 * when the kernel has the object cached.
580 */
581 if (vs->vs_control != MEMORY_OBJECT_CONTROL_NULL)
582 Panic("bad request");
583
584 /*
585 * Unlock the pager (though there should be no one
586 * waiting for it).
587 */
588 VS_UNLOCK(vs);
589
590 /* Lock out paging segment removal for the duration of this */
591 /* call. We are vulnerable to losing a paging segment we rely */
592 /* on as soon as we remove ourselves from the VSL and unlock */
593
594 /* Keep our thread from blocking on attempt to trigger backing */
595 /* store release */
596 backing_store_release_trigger_disable += 1;
597
598 /*
599 * Remove the memory object port association, and then
600 * the destroy the port itself. We must remove the object
601 * from the port list before deallocating the pager,
602 * because of default_pager_objects.
603 */
604 vstruct_list_delete(vs);
605 VSL_UNLOCK();
606
607 ps_vstruct_dealloc(vs);
608
609 VSL_LOCK();
610 backing_store_release_trigger_disable -= 1;
611 if(backing_store_release_trigger_disable == 0) {
612 thread_wakeup((event_t)&backing_store_release_trigger_disable);
613 }
614 VSL_UNLOCK();
615 }
616
617 kern_return_t
618 dp_memory_object_data_request(
619 memory_object_t mem_obj,
620 memory_object_offset_t offset,
621 memory_object_cluster_size_t length,
622 __unused vm_prot_t protection_required,
623 memory_object_fault_info_t fault_info)
624 {
625 vstruct_t vs;
626 kern_return_t kr = KERN_SUCCESS;
627
628 GSTAT(global_stats.gs_pagein_calls++);
629
630
631 /* CDY at this moment vs_lookup panics when presented with the wrong */
632 /* port. As we are expanding this pager to support user interfaces */
633 /* this should be changed to return kern_failure */
634 vs_lookup(mem_obj, vs);
635 vs_lock(vs);
636
637 /* We are going to relax the strict sequencing here for performance */
638 /* reasons. We can do this because we know that the read and */
639 /* write threads are different and we rely on synchronization */
640 /* of read and write requests at the cache memory_object level */
641 /* break out wait_for_writers, all of this goes away when */
642 /* we get real control of seqno with the new component interface */
643
644 if (vs->vs_writers != 0) {
645 /* you can't hold on to the seqno and go */
646 /* to sleep like that */
647 vs_unlock(vs); /* bump internal count of seqno */
648 VS_LOCK(vs);
649 while (vs->vs_writers != 0) {
650 default_pager_wait_write++;
651 vs->vs_waiting_write = TRUE;
652 assert_wait(&vs->vs_writers, THREAD_UNINT);
653 VS_UNLOCK(vs);
654 thread_block(THREAD_CONTINUE_NULL);
655 VS_LOCK(vs);
656 vs_async_wait(vs);
657 }
658 if(vs->vs_control == MEMORY_OBJECT_CONTROL_NULL) {
659 VS_UNLOCK(vs);
660 return KERN_FAILURE;
661 }
662 vs_start_read(vs);
663 VS_UNLOCK(vs);
664 } else {
665 vs_start_read(vs);
666 vs_unlock(vs);
667 }
668
669 /*
670 * Request must be on a page boundary and a multiple of pages.
671 */
672 if ((offset & vm_page_mask) != 0 || (length & vm_page_mask) != 0)
673 Panic("bad alignment");
674
675 assert((dp_offset_t) offset == offset);
676 kr = pvs_cluster_read(vs, (dp_offset_t) offset, length, fault_info);
677
678 /* Regular data requests have a non-zero length and always return KERN_SUCCESS.
679 Their actual success is determined by the fact that they provide a page or not,
680 i.e whether we call upl_commit() or upl_abort(). A length of 0 means that the
681 caller is only asking if the pager has a copy of that page or not. The answer to
682 that question is provided by the return value. KERN_SUCCESS means that the pager
683 does have that page.
684 */
685 if(length) {
686 kr = KERN_SUCCESS;
687 }
688
689 vs_finish_read(vs);
690
691 return kr;
692 }
693
694 /*
695 * memory_object_data_initialize: check whether we already have each page, and
696 * write it if we do not. The implementation is far from optimized, and
697 * also assumes that the default_pager is single-threaded.
698 */
699 /* It is questionable whether or not a pager should decide what is relevant */
700 /* and what is not in data sent from the kernel. Data initialize has been */
701 /* changed to copy back all data sent to it in preparation for its eventual */
702 /* merge with data return. It is the kernel that should decide what pages */
703 /* to write back. As of the writing of this note, this is indeed the case */
704 /* the kernel writes back one page at a time through this interface */
705
706 kern_return_t
707 dp_memory_object_data_initialize(
708 memory_object_t mem_obj,
709 memory_object_offset_t offset,
710 memory_object_cluster_size_t size)
711 {
712 vstruct_t vs;
713
714 DP_DEBUG(DEBUG_MO_EXTERNAL,
715 ("mem_obj=0x%x,offset=0x%x,cnt=0x%x\n",
716 (int)mem_obj, (int)offset, (int)size));
717 GSTAT(global_stats.gs_pages_init += atop_32(size));
718
719 vs_lookup(mem_obj, vs);
720 vs_lock(vs);
721 vs_start_write(vs);
722 vs_unlock(vs);
723
724 /*
725 * Write the data via clustered writes. vs_cluster_write will
726 * loop if the address range specified crosses cluster
727 * boundaries.
728 */
729 assert((upl_offset_t) offset == offset);
730 vs_cluster_write(vs, 0, (upl_offset_t)offset, size, FALSE, 0);
731
732 vs_finish_write(vs);
733
734 return KERN_SUCCESS;
735 }
736
737 kern_return_t
738 dp_memory_object_data_unlock(
739 __unused memory_object_t mem_obj,
740 __unused memory_object_offset_t offset,
741 __unused memory_object_size_t size,
742 __unused vm_prot_t desired_access)
743 {
744 Panic("dp_memory_object_data_unlock: illegal");
745 return KERN_FAILURE;
746 }
747
748
749 /*ARGSUSED8*/
750 kern_return_t
751 dp_memory_object_data_return(
752 memory_object_t mem_obj,
753 memory_object_offset_t offset,
754 memory_object_cluster_size_t size,
755 __unused memory_object_offset_t *resid_offset,
756 __unused int *io_error,
757 __unused boolean_t dirty,
758 __unused boolean_t kernel_copy,
759 __unused int upl_flags)
760 {
761 vstruct_t vs;
762
763 DP_DEBUG(DEBUG_MO_EXTERNAL,
764 ("mem_obj=0x%x,offset=0x%x,size=0x%x\n",
765 (int)mem_obj, (int)offset, (int)size));
766 GSTAT(global_stats.gs_pageout_calls++);
767
768 /* This routine is called by the pageout thread. The pageout thread */
769 /* cannot be blocked by read activities unless the read activities */
770 /* Therefore the grant of vs lock must be done on a try versus a */
771 /* blocking basis. The code below relies on the fact that the */
772 /* interface is synchronous. Should this interface be again async */
773 /* for some type of pager in the future the pages will have to be */
774 /* returned through a separate, asynchronous path. */
775
776 vs_lookup(mem_obj, vs);
777
778 default_pager_total++;
779 if(!VS_TRY_LOCK(vs)) {
780 /* the call below will not be done by caller when we have */
781 /* a synchronous interface */
782 /* return KERN_LOCK_OWNED; */
783 upl_t upl;
784 unsigned int page_list_count = 0;
785 memory_object_super_upl_request(vs->vs_control,
786 (memory_object_offset_t)offset,
787 size, size,
788 &upl, NULL, &page_list_count,
789 UPL_NOBLOCK | UPL_CLEAN_IN_PLACE
790 | UPL_NO_SYNC | UPL_COPYOUT_FROM);
791 upl_abort(upl,0);
792 upl_deallocate(upl);
793 return KERN_SUCCESS;
794 }
795
796 if ((vs->vs_seqno != vs->vs_next_seqno++)
797 || (vs->vs_readers)
798 || (vs->vs_xfer_pending)) {
799 upl_t upl;
800 unsigned int page_list_count = 0;
801
802 vs->vs_next_seqno--;
803 VS_UNLOCK(vs);
804
805 /* the call below will not be done by caller when we have */
806 /* a synchronous interface */
807 /* return KERN_LOCK_OWNED; */
808 memory_object_super_upl_request(vs->vs_control,
809 (memory_object_offset_t)offset,
810 size, size,
811 &upl, NULL, &page_list_count,
812 UPL_NOBLOCK | UPL_CLEAN_IN_PLACE
813 | UPL_NO_SYNC | UPL_COPYOUT_FROM);
814 upl_abort(upl,0);
815 upl_deallocate(upl);
816 return KERN_SUCCESS;
817 }
818
819 if ((size % vm_page_size) != 0)
820 Panic("bad alignment");
821
822 vs_start_write(vs);
823
824
825 vs->vs_async_pending += 1; /* protect from backing store contraction */
826 vs_unlock(vs);
827
828 /*
829 * Write the data via clustered writes. vs_cluster_write will
830 * loop if the address range specified crosses cluster
831 * boundaries.
832 */
833 assert((upl_offset_t) offset == offset);
834 vs_cluster_write(vs, 0, (upl_offset_t) offset, size, FALSE, 0);
835
836 vs_finish_write(vs);
837
838 /* temporary, need a finer lock based on cluster */
839
840 VS_LOCK(vs);
841 vs->vs_async_pending -= 1; /* release vs_async_wait */
842 if (vs->vs_async_pending == 0 && vs->vs_waiting_async) {
843 vs->vs_waiting_async = FALSE;
844 VS_UNLOCK(vs);
845 thread_wakeup(&vs->vs_async_pending);
846 } else {
847 VS_UNLOCK(vs);
848 }
849
850
851 return KERN_SUCCESS;
852 }
853
854 /*
855 * Routine: default_pager_memory_object_create
856 * Purpose:
857 * Handle requests for memory objects from the
858 * kernel.
859 * Notes:
860 * Because we only give out the default memory
861 * manager port to the kernel, we don't have to
862 * be so paranoid about the contents.
863 */
864 kern_return_t
865 default_pager_memory_object_create(
866 __unused memory_object_default_t dmm,
867 vm_size_t new_size,
868 memory_object_t *new_mem_obj)
869 {
870 vstruct_t vs;
871
872 assert(dmm == default_pager_object);
873
874 if ((dp_size_t) new_size != new_size) {
875 /* 32-bit overflow */
876 return KERN_INVALID_ARGUMENT;
877 }
878
879 vs = vs_object_create((dp_size_t) new_size);
880 if (vs == VSTRUCT_NULL)
881 return KERN_RESOURCE_SHORTAGE;
882
883 vs->vs_next_seqno = 0;
884
885 /*
886 * Set up associations between this memory object
887 * and this default_pager structure
888 */
889
890 vs->vs_pager_ops = &default_pager_ops;
891 vs->vs_pager_header.io_bits = IKOT_MEMORY_OBJECT;
892
893 /*
894 * After this, other threads might receive requests
895 * for this memory object or find it in the port list.
896 */
897
898 vstruct_list_insert(vs);
899 *new_mem_obj = vs_to_mem_obj(vs);
900 return KERN_SUCCESS;
901 }
902
903 /*
904 * Create an external object.
905 */
906 kern_return_t
907 default_pager_object_create(
908 default_pager_t default_pager,
909 vm_size_t size,
910 memory_object_t *mem_objp)
911 {
912 vstruct_t vs;
913
914 if (default_pager != default_pager_object)
915 return KERN_INVALID_ARGUMENT;
916
917 if ((dp_size_t) size != size) {
918 /* 32-bit overflow */
919 return KERN_INVALID_ARGUMENT;
920 }
921
922 vs = vs_object_create((dp_size_t) size);
923 if (vs == VSTRUCT_NULL)
924 return KERN_RESOURCE_SHORTAGE;
925
926 /*
927 * Set up associations between the default pager
928 * and this vstruct structure
929 */
930 vs->vs_pager_ops = &default_pager_ops;
931 vstruct_list_insert(vs);
932 *mem_objp = vs_to_mem_obj(vs);
933 return KERN_SUCCESS;
934 }
935
936 kern_return_t
937 default_pager_objects(
938 default_pager_t default_pager,
939 default_pager_object_array_t *objectsp,
940 mach_msg_type_number_t *ocountp,
941 mach_port_array_t *portsp,
942 mach_msg_type_number_t *pcountp)
943 {
944 vm_offset_t oaddr = 0; /* memory for objects */
945 vm_size_t osize = 0; /* current size */
946 default_pager_object_t * objects;
947 unsigned int opotential = 0;
948
949 vm_map_copy_t pcopy = 0; /* copy handle for pagers */
950 vm_size_t psize = 0; /* current size */
951 memory_object_t * pagers;
952 unsigned int ppotential = 0;
953
954 unsigned int actual;
955 unsigned int num_objects;
956 kern_return_t kr;
957 vstruct_t entry;
958
959 if (default_pager != default_pager_object)
960 return KERN_INVALID_ARGUMENT;
961
962 /*
963 * We will send no more than this many
964 */
965 actual = vstruct_list.vsl_count;
966
967 /*
968 * Out out-of-line port arrays are simply kalloc'ed.
969 */
970 psize = round_page(actual * sizeof (*pagers));
971 ppotential = (unsigned int) (psize / sizeof (*pagers));
972 pagers = (memory_object_t *)kalloc(psize);
973 if (0 == pagers)
974 return KERN_RESOURCE_SHORTAGE;
975
976 /*
977 * returned out of line data must be allocated out
978 * the ipc_kernel_map, wired down, filled in, and
979 * then "copied in" as if it had been sent by a
980 * user process.
981 */
982 osize = round_page(actual * sizeof (*objects));
983 opotential = (unsigned int) (osize / sizeof (*objects));
984 kr = kmem_alloc(ipc_kernel_map, &oaddr, osize);
985 if (KERN_SUCCESS != kr) {
986 kfree(pagers, psize);
987 return KERN_RESOURCE_SHORTAGE;
988 }
989 objects = (default_pager_object_t *)oaddr;
990
991
992 /*
993 * Now scan the list.
994 */
995
996 VSL_LOCK();
997
998 num_objects = 0;
999 queue_iterate(&vstruct_list.vsl_queue, entry, vstruct_t, vs_links) {
1000
1001 memory_object_t pager;
1002 vm_size_t size;
1003
1004 if ((num_objects >= opotential) ||
1005 (num_objects >= ppotential)) {
1006
1007 /*
1008 * This should be rare. In any case,
1009 * we will only miss recent objects,
1010 * because they are added at the end.
1011 */
1012 break;
1013 }
1014
1015 /*
1016 * Avoid interfering with normal operations
1017 */
1018 if (!VS_MAP_TRY_LOCK(entry))
1019 goto not_this_one;
1020 size = ps_vstruct_allocated_size(entry);
1021 VS_MAP_UNLOCK(entry);
1022
1023 VS_LOCK(entry);
1024
1025 /*
1026 * We need a reference for our caller. Adding this
1027 * reference through the linked list could race with
1028 * destruction of the object. If we find the object
1029 * has no references, just give up on it.
1030 */
1031 VS_LOCK(entry);
1032 if (entry->vs_references == 0) {
1033 VS_UNLOCK(entry);
1034 goto not_this_one;
1035 }
1036 pager = vs_to_mem_obj(entry);
1037 dp_memory_object_reference(pager);
1038 VS_UNLOCK(entry);
1039
1040 /* the arrays are wired, so no deadlock worries */
1041
1042 objects[num_objects].dpo_object = (vm_offset_t) entry;
1043 objects[num_objects].dpo_size = size;
1044 pagers [num_objects++] = pager;
1045 continue;
1046
1047 not_this_one:
1048 /*
1049 * Do not return garbage
1050 */
1051 objects[num_objects].dpo_object = (vm_offset_t) 0;
1052 objects[num_objects].dpo_size = 0;
1053 pagers[num_objects++] = MEMORY_OBJECT_NULL;
1054
1055 }
1056
1057 VSL_UNLOCK();
1058
1059 /* clear out any excess allocation */
1060 while (num_objects < opotential) {
1061 objects[--opotential].dpo_object = (vm_offset_t) 0;
1062 objects[opotential].dpo_size = 0;
1063 }
1064 while (num_objects < ppotential) {
1065 pagers[--ppotential] = MEMORY_OBJECT_NULL;
1066 }
1067
1068 kr = vm_map_unwire(ipc_kernel_map, vm_map_trunc_page(oaddr),
1069 vm_map_round_page(oaddr + osize), FALSE);
1070 assert(KERN_SUCCESS == kr);
1071 kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)oaddr,
1072 (vm_map_size_t)osize, TRUE, &pcopy);
1073 assert(KERN_SUCCESS == kr);
1074
1075 *objectsp = (default_pager_object_array_t)objects;
1076 *ocountp = num_objects;
1077 *portsp = (mach_port_array_t)pcopy;
1078 *pcountp = num_objects;
1079
1080 return KERN_SUCCESS;
1081 }
1082
1083 kern_return_t
1084 default_pager_object_pages(
1085 default_pager_t default_pager,
1086 mach_port_t memory_object,
1087 default_pager_page_array_t *pagesp,
1088 mach_msg_type_number_t *countp)
1089 {
1090 vm_offset_t addr = 0; /* memory for page offsets */
1091 vm_size_t size = 0; /* current memory size */
1092 vm_map_copy_t copy;
1093 default_pager_page_t * pages = 0;
1094 unsigned int potential;
1095 unsigned int actual;
1096 kern_return_t kr;
1097 memory_object_t object;
1098
1099 if (default_pager != default_pager_object)
1100 return KERN_INVALID_ARGUMENT;
1101
1102 object = (memory_object_t) memory_object;
1103
1104 potential = 0;
1105 for (;;) {
1106 vstruct_t entry;
1107
1108 VSL_LOCK();
1109 queue_iterate(&vstruct_list.vsl_queue, entry, vstruct_t,
1110 vs_links) {
1111 VS_LOCK(entry);
1112 if (vs_to_mem_obj(entry) == object) {
1113 VSL_UNLOCK();
1114 goto found_object;
1115 }
1116 VS_UNLOCK(entry);
1117 }
1118 VSL_UNLOCK();
1119
1120 /* did not find the object */
1121 if (0 != addr)
1122 kmem_free(ipc_kernel_map, addr, size);
1123
1124 return KERN_INVALID_ARGUMENT;
1125
1126 found_object:
1127
1128 if (!VS_MAP_TRY_LOCK(entry)) {
1129 /* oh well bad luck */
1130 int wresult;
1131
1132 VS_UNLOCK(entry);
1133
1134 assert_wait_timeout((event_t)assert_wait_timeout, THREAD_UNINT, 1, 1000*NSEC_PER_USEC);
1135 wresult = thread_block(THREAD_CONTINUE_NULL);
1136 assert(wresult == THREAD_TIMED_OUT);
1137 continue;
1138 }
1139
1140 actual = ps_vstruct_allocated_pages(entry, pages, potential);
1141 VS_MAP_UNLOCK(entry);
1142 VS_UNLOCK(entry);
1143
1144 if (actual <= potential)
1145 break;
1146
1147 /* allocate more memory */
1148 if (0 != addr)
1149 kmem_free(ipc_kernel_map, addr, size);
1150
1151 size = round_page(actual * sizeof (*pages));
1152 kr = kmem_alloc(ipc_kernel_map, &addr, size);
1153 if (KERN_SUCCESS != kr)
1154 return KERN_RESOURCE_SHORTAGE;
1155
1156 pages = (default_pager_page_t *)addr;
1157 potential = (unsigned int) (size / sizeof (*pages));
1158 }
1159
1160 /*
1161 * Clear unused memory.
1162 */
1163 while (actual < potential)
1164 pages[--potential].dpp_offset = 0;
1165
1166 kr = vm_map_unwire(ipc_kernel_map, vm_map_trunc_page(addr),
1167 vm_map_round_page(addr + size), FALSE);
1168 assert(KERN_SUCCESS == kr);
1169 kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)addr,
1170 (vm_map_size_t)size, TRUE, &copy);
1171 assert(KERN_SUCCESS == kr);
1172
1173
1174 *pagesp = (default_pager_page_array_t)copy;
1175 *countp = actual;
1176 return KERN_SUCCESS;
1177 }