]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet6/frag6.c
80b021c271c740accd38210f277412c8a2bb9d49
[apple/xnu.git] / bsd / netinet6 / frag6.c
1 /* $FreeBSD: src/sys/netinet6/frag6.c,v 1.2.2.5 2001/07/03 11:01:50 ume Exp $ */
2 /* $KAME: frag6.c,v 1.31 2001/05/17 13:45:34 jinmei Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/mbuf.h>
37 #include <sys/domain.h>
38 #include <sys/protosw.h>
39 #include <sys/socket.h>
40 #include <sys/errno.h>
41 #include <sys/time.h>
42 #include <sys/kernel.h>
43 #include <sys/syslog.h>
44 #include <kern/queue.h>
45
46 #include <net/if.h>
47 #include <net/route.h>
48
49 #include <netinet/in.h>
50 #include <netinet/in_var.h>
51 #include <netinet/ip6.h>
52 #include <netinet6/ip6_var.h>
53 #include <netinet/icmp6.h>
54
55 #include <net/net_osdep.h>
56
57 /*
58 * Define it to get a correct behavior on per-interface statistics.
59 * You will need to perform an extra routing table lookup, per fragment,
60 * to do it. This may, or may not be, a performance hit.
61 */
62 #define IN6_IFSTAT_STRICT
63
64 static void frag6_enq __P((struct ip6asfrag *, struct ip6asfrag *));
65 static void frag6_deq __P((struct ip6asfrag *));
66 static void frag6_insque __P((struct ip6q *, struct ip6q *));
67 static void frag6_remque __P((struct ip6q *));
68 static void frag6_freef __P((struct ip6q *));
69
70 /* XXX we eventually need splreass6, or some real semaphore */
71 int frag6_doing_reass;
72 u_int frag6_nfragpackets;
73 struct ip6q ip6q; /* ip6 reassemble queue */
74
75 #ifndef __APPLE__
76 MALLOC_DEFINE(M_FTABLE, "fragment", "fragment reassembly header");
77 #endif
78
79 /*
80 * Initialise reassembly queue and fragment identifier.
81 */
82 void
83 frag6_init()
84 {
85 struct timeval tv;
86
87 ip6_maxfragpackets = nmbclusters / 4;
88
89 /*
90 * in many cases, random() here does NOT return random number
91 * as initialization during bootstrap time occur in fixed order.
92 */
93 microtime(&tv);
94 ip6_id = random() ^ tv.tv_usec;
95 ip6q.ip6q_next = ip6q.ip6q_prev = &ip6q;
96 }
97
98 /*
99 * In RFC2460, fragment and reassembly rule do not agree with each other,
100 * in terms of next header field handling in fragment header.
101 * While the sender will use the same value for all of the fragmented packets,
102 * receiver is suggested not to check the consistency.
103 *
104 * fragment rule (p20):
105 * (2) A Fragment header containing:
106 * The Next Header value that identifies the first header of
107 * the Fragmentable Part of the original packet.
108 * -> next header field is same for all fragments
109 *
110 * reassembly rule (p21):
111 * The Next Header field of the last header of the Unfragmentable
112 * Part is obtained from the Next Header field of the first
113 * fragment's Fragment header.
114 * -> should grab it from the first fragment only
115 *
116 * The following note also contradicts with fragment rule - noone is going to
117 * send different fragment with different next header field.
118 *
119 * additional note (p22):
120 * The Next Header values in the Fragment headers of different
121 * fragments of the same original packet may differ. Only the value
122 * from the Offset zero fragment packet is used for reassembly.
123 * -> should grab it from the first fragment only
124 *
125 * There is no explicit reason given in the RFC. Historical reason maybe?
126 */
127 /*
128 * Fragment input
129 */
130 int
131 frag6_input(mp, offp, proto)
132 struct mbuf **mp;
133 int *offp, proto;
134 {
135 struct mbuf *m = *mp, *t;
136 struct ip6_hdr *ip6;
137 struct ip6_frag *ip6f;
138 struct ip6q *q6;
139 struct ip6asfrag *af6, *ip6af, *af6dwn;
140 int offset = *offp, nxt, i, next;
141 int first_frag = 0;
142 int fragoff, frgpartlen; /* must be larger than u_int16_t */
143 struct ifnet *dstifp;
144 #ifdef IN6_IFSTAT_STRICT
145 static struct route_in6 ro;
146 struct sockaddr_in6 *dst;
147 #endif
148
149 ip6 = mtod(m, struct ip6_hdr *);
150 #ifndef PULLDOWN_TEST
151 IP6_EXTHDR_CHECK(m, offset, sizeof(struct ip6_frag), IPPROTO_DONE);
152 ip6f = (struct ip6_frag *)((caddr_t)ip6 + offset);
153 #else
154 IP6_EXTHDR_GET(ip6f, struct ip6_frag *, m, offset, sizeof(*ip6f));
155 if (ip6f == NULL)
156 return IPPROTO_DONE;
157 #endif
158
159 dstifp = NULL;
160 #ifdef IN6_IFSTAT_STRICT
161 /* find the destination interface of the packet. */
162 dst = (struct sockaddr_in6 *)&ro.ro_dst;
163 if (ro.ro_rt
164 && ((ro.ro_rt->rt_flags & RTF_UP) == 0
165 || !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
166 rtfree(ro.ro_rt);
167 ro.ro_rt = (struct rtentry *)0;
168 }
169 if (ro.ro_rt == NULL) {
170 bzero(dst, sizeof(*dst));
171 dst->sin6_family = AF_INET6;
172 dst->sin6_len = sizeof(struct sockaddr_in6);
173 dst->sin6_addr = ip6->ip6_dst;
174 }
175 rtalloc((struct route *)&ro);
176 if (ro.ro_rt != NULL && ro.ro_rt->rt_ifa != NULL)
177 dstifp = ((struct in6_ifaddr *)ro.ro_rt->rt_ifa)->ia_ifp;
178 #else
179 /* we are violating the spec, this is not the destination interface */
180 if ((m->m_flags & M_PKTHDR) != 0)
181 dstifp = m->m_pkthdr.rcvif;
182 #endif
183
184 /* jumbo payload can't contain a fragment header */
185 if (ip6->ip6_plen == 0) {
186 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, offset);
187 in6_ifstat_inc(dstifp, ifs6_reass_fail);
188 return IPPROTO_DONE;
189 }
190
191 /*
192 * check whether fragment packet's fragment length is
193 * multiple of 8 octets.
194 * sizeof(struct ip6_frag) == 8
195 * sizeof(struct ip6_hdr) = 40
196 */
197 if ((ip6f->ip6f_offlg & IP6F_MORE_FRAG) &&
198 (((ntohs(ip6->ip6_plen) - offset) & 0x7) != 0)) {
199 icmp6_error(m, ICMP6_PARAM_PROB,
200 ICMP6_PARAMPROB_HEADER,
201 offsetof(struct ip6_hdr, ip6_plen));
202 in6_ifstat_inc(dstifp, ifs6_reass_fail);
203 return IPPROTO_DONE;
204 }
205
206 ip6stat.ip6s_fragments++;
207 in6_ifstat_inc(dstifp, ifs6_reass_reqd);
208
209 /* offset now points to data portion */
210 offset += sizeof(struct ip6_frag);
211
212 frag6_doing_reass = 1;
213
214 for (q6 = ip6q.ip6q_next; q6 != &ip6q; q6 = q6->ip6q_next)
215 if (ip6f->ip6f_ident == q6->ip6q_ident &&
216 IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &q6->ip6q_src) &&
217 IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &q6->ip6q_dst))
218 break;
219
220 if (q6 == &ip6q) {
221 /*
222 * the first fragment to arrive, create a reassembly queue.
223 */
224 first_frag = 1;
225
226 /*
227 * Enforce upper bound on number of fragmented packets
228 * for which we attempt reassembly;
229 * If maxfrag is 0, never accept fragments.
230 * If maxfrag is -1, accept all fragments without limitation.
231 */
232 if (ip6_maxfragpackets < 0)
233 ;
234 else if (frag6_nfragpackets >= (u_int)ip6_maxfragpackets)
235 goto dropfrag;
236 frag6_nfragpackets++;
237 q6 = (struct ip6q *)_MALLOC(sizeof(struct ip6q), M_FTABLE,
238 M_DONTWAIT);
239 if (q6 == NULL)
240 goto dropfrag;
241 bzero(q6, sizeof(*q6));
242
243 frag6_insque(q6, &ip6q);
244
245 /* ip6q_nxt will be filled afterwards, from 1st fragment */
246 q6->ip6q_down = q6->ip6q_up = (struct ip6asfrag *)q6;
247 #ifdef notyet
248 q6->ip6q_nxtp = (u_char *)nxtp;
249 #endif
250 q6->ip6q_ident = ip6f->ip6f_ident;
251 q6->ip6q_arrive = 0; /* Is it used anywhere? */
252 q6->ip6q_ttl = IPV6_FRAGTTL;
253 q6->ip6q_src = ip6->ip6_src;
254 q6->ip6q_dst = ip6->ip6_dst;
255 q6->ip6q_unfrglen = -1; /* The 1st fragment has not arrived. */
256 }
257
258 /*
259 * If it's the 1st fragment, record the length of the
260 * unfragmentable part and the next header of the fragment header.
261 */
262 fragoff = ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK);
263 if (fragoff == 0) {
264 q6->ip6q_unfrglen = offset - sizeof(struct ip6_hdr)
265 - sizeof(struct ip6_frag);
266 q6->ip6q_nxt = ip6f->ip6f_nxt;
267 }
268
269 /*
270 * Check that the reassembled packet would not exceed 65535 bytes
271 * in size.
272 * If it would exceed, discard the fragment and return an ICMP error.
273 */
274 frgpartlen = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - offset;
275 if (q6->ip6q_unfrglen >= 0) {
276 /* The 1st fragment has already arrived. */
277 if (q6->ip6q_unfrglen + fragoff + frgpartlen > IPV6_MAXPACKET) {
278 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
279 offset - sizeof(struct ip6_frag) +
280 offsetof(struct ip6_frag, ip6f_offlg));
281 frag6_doing_reass = 0;
282 return(IPPROTO_DONE);
283 }
284 }
285 else if (fragoff + frgpartlen > IPV6_MAXPACKET) {
286 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
287 offset - sizeof(struct ip6_frag) +
288 offsetof(struct ip6_frag, ip6f_offlg));
289 frag6_doing_reass = 0;
290 return(IPPROTO_DONE);
291 }
292 /*
293 * If it's the first fragment, do the above check for each
294 * fragment already stored in the reassembly queue.
295 */
296 if (fragoff == 0) {
297 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
298 af6 = af6dwn) {
299 af6dwn = af6->ip6af_down;
300
301 if (q6->ip6q_unfrglen + af6->ip6af_off + af6->ip6af_frglen >
302 IPV6_MAXPACKET) {
303 struct mbuf *merr = IP6_REASS_MBUF(af6);
304 struct ip6_hdr *ip6err;
305 int erroff = af6->ip6af_offset;
306
307 /* dequeue the fragment. */
308 frag6_deq(af6);
309 FREE(af6, M_FTABLE);
310
311 /* adjust pointer. */
312 ip6err = mtod(merr, struct ip6_hdr *);
313
314 /*
315 * Restore source and destination addresses
316 * in the erroneous IPv6 header.
317 */
318 ip6err->ip6_src = q6->ip6q_src;
319 ip6err->ip6_dst = q6->ip6q_dst;
320
321 icmp6_error(merr, ICMP6_PARAM_PROB,
322 ICMP6_PARAMPROB_HEADER,
323 erroff - sizeof(struct ip6_frag) +
324 offsetof(struct ip6_frag, ip6f_offlg));
325 }
326 }
327 }
328
329 ip6af = (struct ip6asfrag *)_MALLOC(sizeof(struct ip6asfrag), M_FTABLE,
330 M_DONTWAIT);
331 if (ip6af == NULL)
332 goto dropfrag;
333 bzero(ip6af, sizeof(*ip6af));
334 ip6af->ip6af_head = ip6->ip6_flow;
335 ip6af->ip6af_len = ip6->ip6_plen;
336 ip6af->ip6af_nxt = ip6->ip6_nxt;
337 ip6af->ip6af_hlim = ip6->ip6_hlim;
338 ip6af->ip6af_mff = ip6f->ip6f_offlg & IP6F_MORE_FRAG;
339 ip6af->ip6af_off = fragoff;
340 ip6af->ip6af_frglen = frgpartlen;
341 ip6af->ip6af_offset = offset;
342 IP6_REASS_MBUF(ip6af) = m;
343
344 if (first_frag) {
345 af6 = (struct ip6asfrag *)q6;
346 goto insert;
347 }
348
349 /*
350 * Find a segment which begins after this one does.
351 */
352 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
353 af6 = af6->ip6af_down)
354 if (af6->ip6af_off > ip6af->ip6af_off)
355 break;
356
357 #if 0
358 /*
359 * If there is a preceding segment, it may provide some of
360 * our data already. If so, drop the data from the incoming
361 * segment. If it provides all of our data, drop us.
362 */
363 if (af6->ip6af_up != (struct ip6asfrag *)q6) {
364 i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen
365 - ip6af->ip6af_off;
366 if (i > 0) {
367 if (i >= ip6af->ip6af_frglen)
368 goto dropfrag;
369 m_adj(IP6_REASS_MBUF(ip6af), i);
370 ip6af->ip6af_off += i;
371 ip6af->ip6af_frglen -= i;
372 }
373 }
374
375 /*
376 * While we overlap succeeding segments trim them or,
377 * if they are completely covered, dequeue them.
378 */
379 while (af6 != (struct ip6asfrag *)q6 &&
380 ip6af->ip6af_off + ip6af->ip6af_frglen > af6->ip6af_off) {
381 i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off;
382 if (i < af6->ip6af_frglen) {
383 af6->ip6af_frglen -= i;
384 af6->ip6af_off += i;
385 m_adj(IP6_REASS_MBUF(af6), i);
386 break;
387 }
388 af6 = af6->ip6af_down;
389 m_freem(IP6_REASS_MBUF(af6->ip6af_up));
390 frag6_deq(af6->ip6af_up);
391 }
392 #else
393 /*
394 * If the incoming framgent overlaps some existing fragments in
395 * the reassembly queue, drop it, since it is dangerous to override
396 * existing fragments from a security point of view.
397 */
398 if (af6->ip6af_up != (struct ip6asfrag *)q6) {
399 i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen
400 - ip6af->ip6af_off;
401 if (i > 0) {
402 #if 0 /* suppress the noisy log */
403 log(LOG_ERR, "%d bytes of a fragment from %s "
404 "overlaps the previous fragment\n",
405 i, ip6_sprintf(&q6->ip6q_src));
406 #endif
407 FREE(ip6af, M_FTABLE);
408 goto dropfrag;
409 }
410 }
411 if (af6 != (struct ip6asfrag *)q6) {
412 i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off;
413 if (i > 0) {
414 #if 0 /* suppress the noisy log */
415 log(LOG_ERR, "%d bytes of a fragment from %s "
416 "overlaps the succeeding fragment",
417 i, ip6_sprintf(&q6->ip6q_src));
418 #endif
419 FREE(ip6af, M_FTABLE);
420 goto dropfrag;
421 }
422 }
423 #endif
424
425 insert:
426
427 /*
428 * Stick new segment in its place;
429 * check for complete reassembly.
430 * Move to front of packet queue, as we are
431 * the most recently active fragmented packet.
432 */
433 frag6_enq(ip6af, af6->ip6af_up);
434 #if 0 /* xxx */
435 if (q6 != ip6q.ip6q_next) {
436 frag6_remque(q6);
437 frag6_insque(q6, &ip6q);
438 }
439 #endif
440 next = 0;
441 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
442 af6 = af6->ip6af_down) {
443 if (af6->ip6af_off != next) {
444 frag6_doing_reass = 0;
445 return IPPROTO_DONE;
446 }
447 next += af6->ip6af_frglen;
448 }
449 if (af6->ip6af_up->ip6af_mff) {
450 frag6_doing_reass = 0;
451 return IPPROTO_DONE;
452 }
453
454 /*
455 * Reassembly is complete; concatenate fragments.
456 */
457 ip6af = q6->ip6q_down;
458 t = m = IP6_REASS_MBUF(ip6af);
459 af6 = ip6af->ip6af_down;
460 frag6_deq(ip6af);
461 while (af6 != (struct ip6asfrag *)q6) {
462 af6dwn = af6->ip6af_down;
463 frag6_deq(af6);
464 while (t->m_next)
465 t = t->m_next;
466 t->m_next = IP6_REASS_MBUF(af6);
467 m_adj(t->m_next, af6->ip6af_offset);
468 FREE(af6, M_FTABLE);
469 af6 = af6dwn;
470 }
471
472 /* adjust offset to point where the original next header starts */
473 offset = ip6af->ip6af_offset - sizeof(struct ip6_frag);
474 FREE(ip6af, M_FTABLE);
475 ip6 = mtod(m, struct ip6_hdr *);
476 ip6->ip6_plen = htons((u_short)next + offset - sizeof(struct ip6_hdr));
477 ip6->ip6_src = q6->ip6q_src;
478 ip6->ip6_dst = q6->ip6q_dst;
479 nxt = q6->ip6q_nxt;
480 #if notyet
481 *q6->ip6q_nxtp = (u_char)(nxt & 0xff);
482 #endif
483
484 /*
485 * Delete frag6 header with as a few cost as possible.
486 */
487 if (offset < m->m_len) {
488 ovbcopy((caddr_t)ip6, (caddr_t)ip6 + sizeof(struct ip6_frag),
489 offset);
490 m->m_data += sizeof(struct ip6_frag);
491 m->m_len -= sizeof(struct ip6_frag);
492 } else {
493 /* this comes with no copy if the boundary is on cluster */
494 if ((t = m_split(m, offset, M_DONTWAIT)) == NULL) {
495 frag6_remque(q6);
496 FREE(q6, M_FTABLE);
497 frag6_nfragpackets--;
498 goto dropfrag;
499 }
500 m_adj(t, sizeof(struct ip6_frag));
501 m_cat(m, t);
502 }
503
504 /*
505 * Store NXT to the original.
506 */
507 {
508 char *prvnxtp = ip6_get_prevhdr(m, offset); /* XXX */
509 *prvnxtp = nxt;
510 }
511
512 frag6_remque(q6);
513 FREE(q6, M_FTABLE);
514 frag6_nfragpackets--;
515
516 if (m->m_flags & M_PKTHDR) { /* Isn't it always true? */
517 int plen = 0;
518 for (t = m; t; t = t->m_next)
519 plen += t->m_len;
520 m->m_pkthdr.len = plen;
521 }
522
523 ip6stat.ip6s_reassembled++;
524 in6_ifstat_inc(dstifp, ifs6_reass_ok);
525
526 /*
527 * Tell launch routine the next header
528 */
529
530 *mp = m;
531 *offp = offset;
532
533 frag6_doing_reass = 0;
534 return nxt;
535
536 dropfrag:
537 in6_ifstat_inc(dstifp, ifs6_reass_fail);
538 ip6stat.ip6s_fragdropped++;
539 m_freem(m);
540 frag6_doing_reass = 0;
541 return IPPROTO_DONE;
542 }
543
544 /*
545 * Free a fragment reassembly header and all
546 * associated datagrams.
547 */
548 void
549 frag6_freef(q6)
550 struct ip6q *q6;
551 {
552 struct ip6asfrag *af6, *down6;
553
554 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
555 af6 = down6) {
556 struct mbuf *m = IP6_REASS_MBUF(af6);
557
558 down6 = af6->ip6af_down;
559 frag6_deq(af6);
560
561 /*
562 * Return ICMP time exceeded error for the 1st fragment.
563 * Just free other fragments.
564 */
565 if (af6->ip6af_off == 0) {
566 struct ip6_hdr *ip6;
567
568 /* adjust pointer */
569 ip6 = mtod(m, struct ip6_hdr *);
570
571 /* restoure source and destination addresses */
572 ip6->ip6_src = q6->ip6q_src;
573 ip6->ip6_dst = q6->ip6q_dst;
574
575 icmp6_error(m, ICMP6_TIME_EXCEEDED,
576 ICMP6_TIME_EXCEED_REASSEMBLY, 0);
577 } else
578 m_freem(m);
579 FREE(af6, M_FTABLE);
580
581 }
582 frag6_remque(q6);
583 FREE(q6, M_FTABLE);
584 frag6_nfragpackets--;
585 }
586
587 /*
588 * Put an ip fragment on a reassembly chain.
589 * Like insque, but pointers in middle of structure.
590 */
591 void
592 frag6_enq(af6, up6)
593 struct ip6asfrag *af6, *up6;
594 {
595 af6->ip6af_up = up6;
596 af6->ip6af_down = up6->ip6af_down;
597 up6->ip6af_down->ip6af_up = af6;
598 up6->ip6af_down = af6;
599 }
600
601 /*
602 * To frag6_enq as remque is to insque.
603 */
604 void
605 frag6_deq(af6)
606 struct ip6asfrag *af6;
607 {
608 af6->ip6af_up->ip6af_down = af6->ip6af_down;
609 af6->ip6af_down->ip6af_up = af6->ip6af_up;
610 }
611
612 void
613 frag6_insque(new, old)
614 struct ip6q *new, *old;
615 {
616 new->ip6q_prev = old;
617 new->ip6q_next = old->ip6q_next;
618 old->ip6q_next->ip6q_prev= new;
619 old->ip6q_next = new;
620 }
621
622 void
623 frag6_remque(p6)
624 struct ip6q *p6;
625 {
626 p6->ip6q_prev->ip6q_next = p6->ip6q_next;
627 p6->ip6q_next->ip6q_prev = p6->ip6q_prev;
628 }
629
630 /*
631 * IPv6 reassembling timer processing;
632 * if a timer expires on a reassembly
633 * queue, discard it.
634 */
635 void
636 frag6_slowtimo()
637 {
638 struct ip6q *q6;
639 int s = splnet();
640
641 frag6_doing_reass = 1;
642 q6 = ip6q.ip6q_next;
643 if (q6)
644 while (q6 != &ip6q) {
645 --q6->ip6q_ttl;
646 q6 = q6->ip6q_next;
647 if (q6->ip6q_prev->ip6q_ttl == 0) {
648 ip6stat.ip6s_fragtimeout++;
649 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
650 frag6_freef(q6->ip6q_prev);
651 }
652 }
653 /*
654 * If we are over the maximum number of fragments
655 * (due to the limit being lowered), drain off
656 * enough to get down to the new limit.
657 */
658 while (frag6_nfragpackets > (u_int)ip6_maxfragpackets &&
659 ip6q.ip6q_prev) {
660 ip6stat.ip6s_fragoverflow++;
661 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
662 frag6_freef(ip6q.ip6q_prev);
663 }
664 frag6_doing_reass = 0;
665
666 #if 0
667 /*
668 * Routing changes might produce a better route than we last used;
669 * make sure we notice eventually, even if forwarding only for one
670 * destination and the cache is never replaced.
671 */
672 if (ip6_forward_rt.ro_rt) {
673 rtfree(ip6_forward_rt.ro_rt);
674 ip6_forward_rt.ro_rt = 0;
675 }
676 if (ipsrcchk_rt.ro_rt) {
677 rtfree(ipsrcchk_rt.ro_rt);
678 ipsrcchk_rt.ro_rt = 0;
679 }
680 #endif
681
682 splx(s);
683 }
684
685 /*
686 * Drain off all datagram fragments.
687 */
688 void
689 frag6_drain()
690 {
691 if (frag6_doing_reass)
692 return;
693 while (ip6q.ip6q_next != &ip6q) {
694 ip6stat.ip6s_fragdropped++;
695 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
696 frag6_freef(ip6q.ip6q_next);
697 }
698 }