]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kern/telemetry.c
7df3ce15b1e869122abbb1336b86202726fa982b
[apple/xnu.git] / osfmk / kern / telemetry.c
1 /*
2 * Copyright (c) 2012-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 #include <mach/host_priv.h>
29 #include <mach/host_special_ports.h>
30 #include <mach/mach_types.h>
31 #include <mach/telemetry_notification_server.h>
32
33 #include <kern/assert.h>
34 #include <kern/clock.h>
35 #include <kern/debug.h>
36 #include <kern/host.h>
37 #include <kern/kalloc.h>
38 #include <kern/kern_types.h>
39 #include <kern/locks.h>
40 #include <kern/misc_protos.h>
41 #include <kern/sched.h>
42 #include <kern/sched_prim.h>
43 #include <kern/telemetry.h>
44 #include <kern/timer_call.h>
45 #include <kern/policy_internal.h>
46 #include <kern/kcdata.h>
47
48 #include <pexpert/pexpert.h>
49
50 #include <vm/vm_kern.h>
51 #include <vm/vm_shared_region.h>
52
53 #include <kperf/callstack.h>
54 #include <kern/backtrace.h>
55 #include <kern/monotonic.h>
56
57 #include <sys/kdebug.h>
58 #include <uuid/uuid.h>
59 #include <kdp/kdp_dyld.h>
60
61 #define TELEMETRY_DEBUG 0
62
63 extern int proc_pid(void *);
64 extern char *proc_name_address(void *p);
65 extern uint64_t proc_uniqueid(void *p);
66 extern uint64_t proc_was_throttled(void *p);
67 extern uint64_t proc_did_throttle(void *p);
68 extern int proc_selfpid(void);
69 extern boolean_t task_did_exec(task_t task);
70 extern boolean_t task_is_exec_copy(task_t task);
71
72 struct micro_snapshot_buffer {
73 vm_offset_t buffer;
74 uint32_t size;
75 uint32_t current_position;
76 uint32_t end_point;
77 };
78
79 void telemetry_take_sample(thread_t thread, uint8_t microsnapshot_flags, struct micro_snapshot_buffer * current_buffer);
80 int telemetry_buffer_gather(user_addr_t buffer, uint32_t *length, boolean_t mark, struct micro_snapshot_buffer * current_buffer);
81
82 #define TELEMETRY_DEFAULT_SAMPLE_RATE (1) /* 1 sample every 1 second */
83 #define TELEMETRY_DEFAULT_BUFFER_SIZE (16*1024)
84 #define TELEMETRY_MAX_BUFFER_SIZE (64*1024)
85
86 #define TELEMETRY_DEFAULT_NOTIFY_LEEWAY (4*1024) // Userland gets 4k of leeway to collect data after notification
87 #define TELEMETRY_MAX_UUID_COUNT (128) // Max of 128 non-shared-cache UUIDs to log for symbolication
88
89 uint32_t telemetry_sample_rate = 0;
90 volatile boolean_t telemetry_needs_record = FALSE;
91 volatile boolean_t telemetry_needs_timer_arming_record = FALSE;
92
93 /*
94 * If TRUE, record micro-stackshot samples for all tasks.
95 * If FALSE, only sample tasks which are marked for telemetry.
96 */
97 boolean_t telemetry_sample_all_tasks = FALSE;
98 boolean_t telemetry_sample_pmis = FALSE;
99 uint32_t telemetry_active_tasks = 0; // Number of tasks opted into telemetry
100
101 uint32_t telemetry_timestamp = 0;
102
103 /*
104 * The telemetry_buffer is responsible
105 * for timer samples and interrupt samples that are driven by
106 * compute_averages(). It will notify its client (if one
107 * exists) when it has enough data to be worth flushing.
108 */
109 struct micro_snapshot_buffer telemetry_buffer = {0, 0, 0, 0};
110
111 int telemetry_bytes_since_last_mark = -1; // How much data since buf was last marked?
112 int telemetry_buffer_notify_at = 0;
113
114 lck_grp_t telemetry_lck_grp;
115 lck_mtx_t telemetry_mtx;
116 lck_mtx_t telemetry_pmi_mtx;
117
118 #define TELEMETRY_LOCK() do { lck_mtx_lock(&telemetry_mtx); } while (0)
119 #define TELEMETRY_TRY_SPIN_LOCK() lck_mtx_try_lock_spin(&telemetry_mtx)
120 #define TELEMETRY_UNLOCK() do { lck_mtx_unlock(&telemetry_mtx); } while (0)
121
122 #define TELEMETRY_PMI_LOCK() do { lck_mtx_lock(&telemetry_pmi_mtx); } while (0)
123 #define TELEMETRY_PMI_UNLOCK() do { lck_mtx_unlock(&telemetry_pmi_mtx); } while (0)
124
125 void
126 telemetry_init(void)
127 {
128 kern_return_t ret;
129 uint32_t telemetry_notification_leeway;
130
131 lck_grp_init(&telemetry_lck_grp, "telemetry group", LCK_GRP_ATTR_NULL);
132 lck_mtx_init(&telemetry_mtx, &telemetry_lck_grp, LCK_ATTR_NULL);
133 lck_mtx_init(&telemetry_pmi_mtx, &telemetry_lck_grp, LCK_ATTR_NULL);
134
135 if (!PE_parse_boot_argn("telemetry_buffer_size", &telemetry_buffer.size, sizeof(telemetry_buffer.size))) {
136 telemetry_buffer.size = TELEMETRY_DEFAULT_BUFFER_SIZE;
137 }
138
139 if (telemetry_buffer.size > TELEMETRY_MAX_BUFFER_SIZE) {
140 telemetry_buffer.size = TELEMETRY_MAX_BUFFER_SIZE;
141 }
142
143 ret = kmem_alloc(kernel_map, &telemetry_buffer.buffer, telemetry_buffer.size, VM_KERN_MEMORY_DIAG);
144 if (ret != KERN_SUCCESS) {
145 kprintf("Telemetry: Allocation failed: %d\n", ret);
146 return;
147 }
148 bzero((void *) telemetry_buffer.buffer, telemetry_buffer.size);
149
150 if (!PE_parse_boot_argn("telemetry_notification_leeway", &telemetry_notification_leeway, sizeof(telemetry_notification_leeway))) {
151 /*
152 * By default, notify the user to collect the buffer when there is this much space left in the buffer.
153 */
154 telemetry_notification_leeway = TELEMETRY_DEFAULT_NOTIFY_LEEWAY;
155 }
156 if (telemetry_notification_leeway >= telemetry_buffer.size) {
157 printf("telemetry: nonsensical telemetry_notification_leeway boot-arg %d changed to %d\n",
158 telemetry_notification_leeway, TELEMETRY_DEFAULT_NOTIFY_LEEWAY);
159 telemetry_notification_leeway = TELEMETRY_DEFAULT_NOTIFY_LEEWAY;
160 }
161 telemetry_buffer_notify_at = telemetry_buffer.size - telemetry_notification_leeway;
162
163 if (!PE_parse_boot_argn("telemetry_sample_rate", &telemetry_sample_rate, sizeof(telemetry_sample_rate))) {
164 telemetry_sample_rate = TELEMETRY_DEFAULT_SAMPLE_RATE;
165 }
166
167 /*
168 * To enable telemetry for all tasks, include "telemetry_sample_all_tasks=1" in boot-args.
169 */
170 if (!PE_parse_boot_argn("telemetry_sample_all_tasks", &telemetry_sample_all_tasks, sizeof(telemetry_sample_all_tasks))) {
171 #if CONFIG_EMBEDDED && !(DEVELOPMENT || DEBUG)
172 telemetry_sample_all_tasks = FALSE;
173 #else
174 telemetry_sample_all_tasks = TRUE;
175 #endif /* CONFIG_EMBEDDED && !(DEVELOPMENT || DEBUG) */
176 }
177
178 kprintf("Telemetry: Sampling %stasks once per %u second%s\n",
179 (telemetry_sample_all_tasks) ? "all " : "",
180 telemetry_sample_rate, telemetry_sample_rate == 1 ? "" : "s");
181 }
182
183 /*
184 * Enable or disable global microstackshots (ie telemetry_sample_all_tasks).
185 *
186 * enable_disable == 1: turn it on
187 * enable_disable == 0: turn it off
188 */
189 void
190 telemetry_global_ctl(int enable_disable)
191 {
192 if (enable_disable == 1) {
193 telemetry_sample_all_tasks = TRUE;
194 } else {
195 telemetry_sample_all_tasks = FALSE;
196 }
197 }
198
199 /*
200 * Opt the given task into or out of the telemetry stream.
201 *
202 * Supported reasons (callers may use any or all of):
203 * TF_CPUMON_WARNING
204 * TF_WAKEMON_WARNING
205 *
206 * enable_disable == 1: turn it on
207 * enable_disable == 0: turn it off
208 */
209 void
210 telemetry_task_ctl(task_t task, uint32_t reasons, int enable_disable)
211 {
212 task_lock(task);
213 telemetry_task_ctl_locked(task, reasons, enable_disable);
214 task_unlock(task);
215 }
216
217 void
218 telemetry_task_ctl_locked(task_t task, uint32_t reasons, int enable_disable)
219 {
220 uint32_t origflags;
221
222 assert((reasons != 0) && ((reasons | TF_TELEMETRY) == TF_TELEMETRY));
223
224 task_lock_assert_owned(task);
225
226 origflags = task->t_flags;
227
228 if (enable_disable == 1) {
229 task->t_flags |= reasons;
230 if ((origflags & TF_TELEMETRY) == 0) {
231 OSIncrementAtomic(&telemetry_active_tasks);
232 #if TELEMETRY_DEBUG
233 printf("%s: telemetry OFF -> ON (%d active)\n", proc_name_address(task->bsd_info), telemetry_active_tasks);
234 #endif
235 }
236 } else {
237 task->t_flags &= ~reasons;
238 if (((origflags & TF_TELEMETRY) != 0) && ((task->t_flags & TF_TELEMETRY) == 0)) {
239 /*
240 * If this task went from having at least one telemetry bit to having none,
241 * the net change was to disable telemetry for the task.
242 */
243 OSDecrementAtomic(&telemetry_active_tasks);
244 #if TELEMETRY_DEBUG
245 printf("%s: telemetry ON -> OFF (%d active)\n", proc_name_address(task->bsd_info), telemetry_active_tasks);
246 #endif
247 }
248 }
249 }
250
251 /*
252 * Determine if the current thread is eligible for telemetry:
253 *
254 * telemetry_sample_all_tasks: All threads are eligible. This takes precedence.
255 * telemetry_active_tasks: Count of tasks opted in.
256 * task->t_flags & TF_TELEMETRY: This task is opted in.
257 */
258 static boolean_t
259 telemetry_is_active(thread_t thread)
260 {
261 task_t task = thread->task;
262
263 if (task == kernel_task) {
264 /* Kernel threads never return to an AST boundary, and are ineligible */
265 return FALSE;
266 }
267
268 if (telemetry_sample_all_tasks || telemetry_sample_pmis) {
269 return TRUE;
270 }
271
272 if ((telemetry_active_tasks > 0) && ((thread->task->t_flags & TF_TELEMETRY) != 0)) {
273 return TRUE;
274 }
275
276 return FALSE;
277 }
278
279 /*
280 * Userland is arming a timer. If we are eligible for such a record,
281 * sample now. No need to do this one at the AST because we're already at
282 * a safe place in this system call.
283 */
284 int
285 telemetry_timer_event(__unused uint64_t deadline, __unused uint64_t interval, __unused uint64_t leeway)
286 {
287 if (telemetry_needs_timer_arming_record == TRUE) {
288 telemetry_needs_timer_arming_record = FALSE;
289 telemetry_take_sample(current_thread(), kTimerArmingRecord | kUserMode, &telemetry_buffer);
290 }
291
292 return 0;
293 }
294
295 #if defined(MT_CORE_INSTRS) && defined(MT_CORE_CYCLES)
296 static void
297 telemetry_pmi_handler(bool user_mode, __unused void *ctx)
298 {
299 telemetry_mark_curthread(user_mode, TRUE);
300 }
301 #endif /* defined(MT_CORE_INSTRS) && defined(MT_CORE_CYCLES) */
302
303 int
304 telemetry_pmi_setup(enum telemetry_pmi pmi_ctr, uint64_t period)
305 {
306 #if defined(MT_CORE_INSTRS) && defined(MT_CORE_CYCLES)
307 static boolean_t sample_all_tasks_aside = FALSE;
308 static uint32_t active_tasks_aside = FALSE;
309 int error = 0;
310 const char *name = "?";
311
312 unsigned int ctr = 0;
313
314 TELEMETRY_PMI_LOCK();
315
316 switch (pmi_ctr) {
317 case TELEMETRY_PMI_NONE:
318 if (!telemetry_sample_pmis) {
319 error = 1;
320 goto out;
321 }
322
323 telemetry_sample_pmis = FALSE;
324 telemetry_sample_all_tasks = sample_all_tasks_aside;
325 telemetry_active_tasks = active_tasks_aside;
326 error = mt_microstackshot_stop();
327 if (!error) {
328 printf("telemetry: disabling ustackshot on PMI\n");
329 }
330 goto out;
331
332 case TELEMETRY_PMI_INSTRS:
333 ctr = MT_CORE_INSTRS;
334 name = "instructions";
335 break;
336
337 case TELEMETRY_PMI_CYCLES:
338 ctr = MT_CORE_CYCLES;
339 name = "cycles";
340 break;
341
342 default:
343 error = 1;
344 goto out;
345 }
346
347 telemetry_sample_pmis = TRUE;
348 sample_all_tasks_aside = telemetry_sample_all_tasks;
349 active_tasks_aside = telemetry_active_tasks;
350 telemetry_sample_all_tasks = FALSE;
351 telemetry_active_tasks = 0;
352
353 error = mt_microstackshot_start(ctr, period, telemetry_pmi_handler, NULL);
354 if (!error) {
355 printf("telemetry: ustackshot every %llu %s\n", period, name);
356 }
357
358 out:
359 TELEMETRY_PMI_UNLOCK();
360 return error;
361 #else /* defined(MT_CORE_INSTRS) && defined(MT_CORE_CYCLES) */
362 #pragma unused(pmi_ctr, period)
363 return 1;
364 #endif /* !defined(MT_CORE_INSTRS) || !defined(MT_CORE_CYCLES) */
365 }
366
367 /*
368 * Mark the current thread for an interrupt-based
369 * telemetry record, to be sampled at the next AST boundary.
370 */
371 void
372 telemetry_mark_curthread(boolean_t interrupted_userspace, boolean_t pmi)
373 {
374 uint32_t ast_bits = 0;
375 thread_t thread = current_thread();
376
377 /*
378 * If telemetry isn't active for this thread, return and try
379 * again next time.
380 */
381 if (telemetry_is_active(thread) == FALSE) {
382 return;
383 }
384
385 ast_bits |= (interrupted_userspace ? AST_TELEMETRY_USER : AST_TELEMETRY_KERNEL);
386 if (pmi) {
387 ast_bits |= AST_TELEMETRY_PMI;
388 }
389
390 telemetry_needs_record = FALSE;
391 thread_ast_set(thread, ast_bits);
392 ast_propagate(thread);
393 }
394
395 void
396 compute_telemetry(void *arg __unused)
397 {
398 if (telemetry_sample_all_tasks || (telemetry_active_tasks > 0)) {
399 if ((++telemetry_timestamp) % telemetry_sample_rate == 0) {
400 telemetry_needs_record = TRUE;
401 telemetry_needs_timer_arming_record = TRUE;
402 }
403 }
404 }
405
406 /*
407 * If userland has registered a port for telemetry notifications, send one now.
408 */
409 static void
410 telemetry_notify_user(void)
411 {
412 mach_port_t user_port = MACH_PORT_NULL;
413
414 kern_return_t kr = host_get_telemetry_port(host_priv_self(), &user_port);
415 if ((kr != KERN_SUCCESS) || !IPC_PORT_VALID(user_port)) {
416 return;
417 }
418
419 telemetry_notification(user_port, 0);
420 ipc_port_release_send(user_port);
421 }
422
423 void
424 telemetry_ast(thread_t thread, ast_t reasons)
425 {
426 assert((reasons & AST_TELEMETRY_ALL) != 0);
427
428 uint8_t record_type = 0;
429 if (reasons & AST_TELEMETRY_IO) {
430 record_type |= kIORecord;
431 }
432 if (reasons & (AST_TELEMETRY_USER | AST_TELEMETRY_KERNEL)) {
433 record_type |= (reasons & AST_TELEMETRY_PMI) ? kPMIRecord :
434 kInterruptRecord;
435 }
436
437 uint8_t user_telemetry = (reasons & AST_TELEMETRY_USER) ? kUserMode : 0;
438
439 uint8_t microsnapshot_flags = record_type | user_telemetry;
440
441 telemetry_take_sample(thread, microsnapshot_flags, &telemetry_buffer);
442 }
443
444 void
445 telemetry_take_sample(thread_t thread, uint8_t microsnapshot_flags, struct micro_snapshot_buffer * current_buffer)
446 {
447 task_t task;
448 void *p;
449 uint32_t btcount = 0, bti;
450 struct micro_snapshot *msnap;
451 struct task_snapshot *tsnap;
452 struct thread_snapshot *thsnap;
453 clock_sec_t secs;
454 clock_usec_t usecs;
455 vm_size_t framesize;
456 uint32_t current_record_start;
457 uint32_t tmp = 0;
458 boolean_t notify = FALSE;
459
460 if (thread == THREAD_NULL) {
461 return;
462 }
463
464 task = thread->task;
465 if ((task == TASK_NULL) || (task == kernel_task) || task_did_exec(task) || task_is_exec_copy(task)) {
466 return;
467 }
468
469 /* telemetry_XXX accessed outside of lock for instrumentation only */
470 KDBG(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_RECORD) | DBG_FUNC_START,
471 microsnapshot_flags, telemetry_bytes_since_last_mark, 0,
472 (&telemetry_buffer != current_buffer));
473
474 p = get_bsdtask_info(task);
475
476 /*
477 * Gather up the data we'll need for this sample. The sample is written into the kernel
478 * buffer with the global telemetry lock held -- so we must do our (possibly faulting)
479 * copies from userland here, before taking the lock.
480 */
481 uintptr_t frames[MAX_CALLSTACK_FRAMES] = {};
482 bool user64;
483 int backtrace_error = backtrace_user(frames, MAX_CALLSTACK_FRAMES, &btcount, &user64);
484 if (backtrace_error) {
485 return;
486 }
487
488 /*
489 * Find the actual [slid] address of the shared cache's UUID, and copy it in from userland.
490 */
491 int shared_cache_uuid_valid = 0;
492 uint64_t shared_cache_base_address;
493 struct _dyld_cache_header shared_cache_header;
494 uint64_t shared_cache_slide;
495
496 /*
497 * Don't copy in the entire shared cache header; we only need the UUID. Calculate the
498 * offset of that one field.
499 */
500 int sc_header_uuid_offset = (char *)&shared_cache_header.uuid - (char *)&shared_cache_header;
501 vm_shared_region_t sr = vm_shared_region_get(task);
502 if (sr != NULL) {
503 if ((vm_shared_region_start_address(sr, &shared_cache_base_address) == KERN_SUCCESS) &&
504 (copyin(shared_cache_base_address + sc_header_uuid_offset, (char *)&shared_cache_header.uuid,
505 sizeof(shared_cache_header.uuid)) == 0)) {
506 shared_cache_uuid_valid = 1;
507 shared_cache_slide = vm_shared_region_get_slide(sr);
508 }
509 // vm_shared_region_get() gave us a reference on the shared region.
510 vm_shared_region_deallocate(sr);
511 }
512
513 /*
514 * Retrieve the array of UUID's for binaries used by this task.
515 * We reach down into DYLD's data structures to find the array.
516 *
517 * XXX - make this common with kdp?
518 */
519 uint32_t uuid_info_count = 0;
520 mach_vm_address_t uuid_info_addr = 0;
521 if (task_has_64Bit_addr(task)) {
522 struct user64_dyld_all_image_infos task_image_infos;
523 if (copyin(task->all_image_info_addr, (char *)&task_image_infos, sizeof(task_image_infos)) == 0) {
524 uuid_info_count = (uint32_t)task_image_infos.uuidArrayCount;
525 uuid_info_addr = task_image_infos.uuidArray;
526 }
527 } else {
528 struct user32_dyld_all_image_infos task_image_infos;
529 if (copyin(task->all_image_info_addr, (char *)&task_image_infos, sizeof(task_image_infos)) == 0) {
530 uuid_info_count = task_image_infos.uuidArrayCount;
531 uuid_info_addr = task_image_infos.uuidArray;
532 }
533 }
534
535 /*
536 * If we get a NULL uuid_info_addr (which can happen when we catch dyld in the middle of updating
537 * this data structure), we zero the uuid_info_count so that we won't even try to save load info
538 * for this task.
539 */
540 if (!uuid_info_addr) {
541 uuid_info_count = 0;
542 }
543
544 /*
545 * Don't copy in an unbounded amount of memory. The main binary and interesting
546 * non-shared-cache libraries should be in the first few images.
547 */
548 if (uuid_info_count > TELEMETRY_MAX_UUID_COUNT) {
549 uuid_info_count = TELEMETRY_MAX_UUID_COUNT;
550 }
551
552 uint32_t uuid_info_size = (uint32_t)(task_has_64Bit_addr(thread->task) ? sizeof(struct user64_dyld_uuid_info) : sizeof(struct user32_dyld_uuid_info));
553 uint32_t uuid_info_array_size = uuid_info_count * uuid_info_size;
554 char *uuid_info_array = NULL;
555
556 if (uuid_info_count > 0) {
557 if ((uuid_info_array = (char *)kalloc(uuid_info_array_size)) == NULL) {
558 return;
559 }
560
561 /*
562 * Copy in the UUID info array.
563 * It may be nonresident, in which case just fix up nloadinfos to 0 in the task snapshot.
564 */
565 if (copyin(uuid_info_addr, uuid_info_array, uuid_info_array_size) != 0) {
566 kfree(uuid_info_array, uuid_info_array_size);
567 uuid_info_array = NULL;
568 uuid_info_array_size = 0;
569 }
570 }
571
572 /*
573 * Look for a dispatch queue serial number, and copy it in from userland if present.
574 */
575 uint64_t dqserialnum = 0;
576 int dqserialnum_valid = 0;
577
578 uint64_t dqkeyaddr = thread_dispatchqaddr(thread);
579 if (dqkeyaddr != 0) {
580 uint64_t dqaddr = 0;
581 uint64_t dq_serialno_offset = get_task_dispatchqueue_serialno_offset(task);
582 if ((copyin(dqkeyaddr, (char *)&dqaddr, (task_has_64Bit_addr(task) ? 8 : 4)) == 0) &&
583 (dqaddr != 0) && (dq_serialno_offset != 0)) {
584 uint64_t dqserialnumaddr = dqaddr + dq_serialno_offset;
585 if (copyin(dqserialnumaddr, (char *)&dqserialnum, (task_has_64Bit_addr(task) ? 8 : 4)) == 0) {
586 dqserialnum_valid = 1;
587 }
588 }
589 }
590
591 clock_get_calendar_microtime(&secs, &usecs);
592
593 TELEMETRY_LOCK();
594
595 /*
596 * If our buffer is not backed by anything,
597 * then we cannot take the sample. Meant to allow us to deallocate the window
598 * buffer if it is disabled.
599 */
600 if (!current_buffer->buffer) {
601 goto cancel_sample;
602 }
603
604 /*
605 * We do the bulk of the operation under the telemetry lock, on assumption that
606 * any page faults during execution will not cause another AST_TELEMETRY_ALL
607 * to deadlock; they will just block until we finish. This makes it easier
608 * to copy into the buffer directly. As soon as we unlock, userspace can copy
609 * out of our buffer.
610 */
611
612 copytobuffer:
613
614 current_record_start = current_buffer->current_position;
615
616 if ((current_buffer->size - current_buffer->current_position) < sizeof(struct micro_snapshot)) {
617 /*
618 * We can't fit a record in the space available, so wrap around to the beginning.
619 * Save the current position as the known end point of valid data.
620 */
621 current_buffer->end_point = current_record_start;
622 current_buffer->current_position = 0;
623 if (current_record_start == 0) {
624 /* This sample is too large to fit in the buffer even when we started at 0, so skip it */
625 goto cancel_sample;
626 }
627 goto copytobuffer;
628 }
629
630 msnap = (struct micro_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position);
631 msnap->snapshot_magic = STACKSHOT_MICRO_SNAPSHOT_MAGIC;
632 msnap->ms_flags = microsnapshot_flags;
633 msnap->ms_opaque_flags = 0; /* namespace managed by userspace */
634 msnap->ms_cpu = cpu_number();
635 msnap->ms_time = secs;
636 msnap->ms_time_microsecs = usecs;
637
638 current_buffer->current_position += sizeof(struct micro_snapshot);
639
640 if ((current_buffer->size - current_buffer->current_position) < sizeof(struct task_snapshot)) {
641 current_buffer->end_point = current_record_start;
642 current_buffer->current_position = 0;
643 if (current_record_start == 0) {
644 /* This sample is too large to fit in the buffer even when we started at 0, so skip it */
645 goto cancel_sample;
646 }
647 goto copytobuffer;
648 }
649
650 tsnap = (struct task_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position);
651 bzero(tsnap, sizeof(*tsnap));
652 tsnap->snapshot_magic = STACKSHOT_TASK_SNAPSHOT_MAGIC;
653 tsnap->pid = proc_pid(p);
654 tsnap->uniqueid = proc_uniqueid(p);
655 tsnap->user_time_in_terminated_threads = task->total_user_time;
656 tsnap->system_time_in_terminated_threads = task->total_system_time;
657 tsnap->suspend_count = task->suspend_count;
658 tsnap->task_size = (typeof(tsnap->task_size))(get_task_phys_footprint(task) / PAGE_SIZE);
659 tsnap->faults = task->faults;
660 tsnap->pageins = task->pageins;
661 tsnap->cow_faults = task->cow_faults;
662 /*
663 * The throttling counters are maintained as 64-bit counters in the proc
664 * structure. However, we reserve 32-bits (each) for them in the task_snapshot
665 * struct to save space and since we do not expect them to overflow 32-bits. If we
666 * find these values overflowing in the future, the fix would be to simply
667 * upgrade these counters to 64-bit in the task_snapshot struct
668 */
669 tsnap->was_throttled = (uint32_t) proc_was_throttled(p);
670 tsnap->did_throttle = (uint32_t) proc_did_throttle(p);
671
672 if (task->t_flags & TF_TELEMETRY) {
673 tsnap->ss_flags |= kTaskRsrcFlagged;
674 }
675
676 if (proc_get_effective_task_policy(task, TASK_POLICY_DARWIN_BG)) {
677 tsnap->ss_flags |= kTaskDarwinBG;
678 }
679
680 proc_get_darwinbgstate(task, &tmp);
681
682 if (proc_get_effective_task_policy(task, TASK_POLICY_ROLE) == TASK_FOREGROUND_APPLICATION) {
683 tsnap->ss_flags |= kTaskIsForeground;
684 }
685
686 if (tmp & PROC_FLAG_ADAPTIVE_IMPORTANT) {
687 tsnap->ss_flags |= kTaskIsBoosted;
688 }
689
690 if (tmp & PROC_FLAG_SUPPRESSED) {
691 tsnap->ss_flags |= kTaskIsSuppressed;
692 }
693
694 tsnap->latency_qos = task_grab_latency_qos(task);
695
696 strlcpy(tsnap->p_comm, proc_name_address(p), sizeof(tsnap->p_comm));
697 if (task_has_64Bit_addr(thread->task)) {
698 tsnap->ss_flags |= kUser64_p;
699 }
700
701 if (shared_cache_uuid_valid) {
702 tsnap->shared_cache_slide = shared_cache_slide;
703 bcopy(shared_cache_header.uuid, tsnap->shared_cache_identifier, sizeof(shared_cache_header.uuid));
704 }
705
706 current_buffer->current_position += sizeof(struct task_snapshot);
707
708 /*
709 * Directly after the task snapshot, place the array of UUID's corresponding to the binaries
710 * used by this task.
711 */
712 if ((current_buffer->size - current_buffer->current_position) < uuid_info_array_size) {
713 current_buffer->end_point = current_record_start;
714 current_buffer->current_position = 0;
715 if (current_record_start == 0) {
716 /* This sample is too large to fit in the buffer even when we started at 0, so skip it */
717 goto cancel_sample;
718 }
719 goto copytobuffer;
720 }
721
722 /*
723 * Copy the UUID info array into our sample.
724 */
725 if (uuid_info_array_size > 0) {
726 bcopy(uuid_info_array, (char *)(current_buffer->buffer + current_buffer->current_position), uuid_info_array_size);
727 tsnap->nloadinfos = uuid_info_count;
728 }
729
730 current_buffer->current_position += uuid_info_array_size;
731
732 /*
733 * After the task snapshot & list of binary UUIDs, we place a thread snapshot.
734 */
735
736 if ((current_buffer->size - current_buffer->current_position) < sizeof(struct thread_snapshot)) {
737 /* wrap and overwrite */
738 current_buffer->end_point = current_record_start;
739 current_buffer->current_position = 0;
740 if (current_record_start == 0) {
741 /* This sample is too large to fit in the buffer even when we started at 0, so skip it */
742 goto cancel_sample;
743 }
744 goto copytobuffer;
745 }
746
747 thsnap = (struct thread_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position);
748 bzero(thsnap, sizeof(*thsnap));
749
750 thsnap->snapshot_magic = STACKSHOT_THREAD_SNAPSHOT_MAGIC;
751 thsnap->thread_id = thread_tid(thread);
752 thsnap->state = thread->state;
753 thsnap->priority = thread->base_pri;
754 thsnap->sched_pri = thread->sched_pri;
755 thsnap->sched_flags = thread->sched_flags;
756 thsnap->ss_flags |= kStacksPCOnly;
757 thsnap->ts_qos = thread->effective_policy.thep_qos;
758 thsnap->ts_rqos = thread->requested_policy.thrp_qos;
759 thsnap->ts_rqos_override = MAX(thread->requested_policy.thrp_qos_override,
760 thread->requested_policy.thrp_qos_workq_override);
761
762 if (proc_get_effective_thread_policy(thread, TASK_POLICY_DARWIN_BG)) {
763 thsnap->ss_flags |= kThreadDarwinBG;
764 }
765
766 thsnap->user_time = timer_grab(&thread->user_timer);
767
768 uint64_t tval = timer_grab(&thread->system_timer);
769
770 if (thread->precise_user_kernel_time) {
771 thsnap->system_time = tval;
772 } else {
773 thsnap->user_time += tval;
774 thsnap->system_time = 0;
775 }
776
777 current_buffer->current_position += sizeof(struct thread_snapshot);
778
779 /*
780 * If this thread has a dispatch queue serial number, include it here.
781 */
782 if (dqserialnum_valid) {
783 if ((current_buffer->size - current_buffer->current_position) < sizeof(dqserialnum)) {
784 /* wrap and overwrite */
785 current_buffer->end_point = current_record_start;
786 current_buffer->current_position = 0;
787 if (current_record_start == 0) {
788 /* This sample is too large to fit in the buffer even when we started at 0, so skip it */
789 goto cancel_sample;
790 }
791 goto copytobuffer;
792 }
793
794 thsnap->ss_flags |= kHasDispatchSerial;
795 bcopy(&dqserialnum, (char *)current_buffer->buffer + current_buffer->current_position, sizeof(dqserialnum));
796 current_buffer->current_position += sizeof(dqserialnum);
797 }
798
799 if (user64) {
800 framesize = 8;
801 thsnap->ss_flags |= kUser64_p;
802 } else {
803 framesize = 4;
804 }
805
806 /*
807 * If we can't fit this entire stacktrace then cancel this record, wrap to the beginning,
808 * and start again there so that we always store a full record.
809 */
810 if ((current_buffer->size - current_buffer->current_position) / framesize < btcount) {
811 current_buffer->end_point = current_record_start;
812 current_buffer->current_position = 0;
813 if (current_record_start == 0) {
814 /* This sample is too large to fit in the buffer even when we started at 0, so skip it */
815 goto cancel_sample;
816 }
817 goto copytobuffer;
818 }
819
820 for (bti = 0; bti < btcount; bti++, current_buffer->current_position += framesize) {
821 if (framesize == 8) {
822 *(uint64_t *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position) = frames[bti];
823 } else {
824 *(uint32_t *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position) = (uint32_t)frames[bti];
825 }
826 }
827
828 if (current_buffer->end_point < current_buffer->current_position) {
829 /*
830 * Each time the cursor wraps around to the beginning, we leave a
831 * differing amount of unused space at the end of the buffer. Make
832 * sure the cursor pushes the end point in case we're making use of
833 * more of the buffer than we did the last time we wrapped.
834 */
835 current_buffer->end_point = current_buffer->current_position;
836 }
837
838 thsnap->nuser_frames = btcount;
839
840 /*
841 * Now THIS is a hack.
842 */
843 if (current_buffer == &telemetry_buffer) {
844 telemetry_bytes_since_last_mark += (current_buffer->current_position - current_record_start);
845 if (telemetry_bytes_since_last_mark > telemetry_buffer_notify_at) {
846 notify = TRUE;
847 }
848 }
849
850 cancel_sample:
851 TELEMETRY_UNLOCK();
852
853 KDBG(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_RECORD) | DBG_FUNC_END,
854 notify, telemetry_bytes_since_last_mark,
855 current_buffer->current_position, current_buffer->end_point);
856
857 if (notify) {
858 telemetry_notify_user();
859 }
860
861 if (uuid_info_array != NULL) {
862 kfree(uuid_info_array, uuid_info_array_size);
863 }
864 }
865
866 #if TELEMETRY_DEBUG
867 static void
868 log_telemetry_output(vm_offset_t buf, uint32_t pos, uint32_t sz)
869 {
870 struct micro_snapshot *p;
871 uint32_t offset;
872
873 printf("Copying out %d bytes of telemetry at offset %d\n", sz, pos);
874
875 buf += pos;
876
877 /*
878 * Find and log each timestamp in this chunk of buffer.
879 */
880 for (offset = 0; offset < sz; offset++) {
881 p = (struct micro_snapshot *)(buf + offset);
882 if (p->snapshot_magic == STACKSHOT_MICRO_SNAPSHOT_MAGIC) {
883 printf("telemetry timestamp: %lld\n", p->ms_time);
884 }
885 }
886 }
887 #endif
888
889 int
890 telemetry_gather(user_addr_t buffer, uint32_t *length, boolean_t mark)
891 {
892 return telemetry_buffer_gather(buffer, length, mark, &telemetry_buffer);
893 }
894
895 int
896 telemetry_buffer_gather(user_addr_t buffer, uint32_t *length, boolean_t mark, struct micro_snapshot_buffer * current_buffer)
897 {
898 int result = 0;
899 uint32_t oldest_record_offset;
900
901 KDBG(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_GATHER) | DBG_FUNC_START,
902 mark, telemetry_bytes_since_last_mark, 0,
903 (&telemetry_buffer != current_buffer));
904
905 TELEMETRY_LOCK();
906
907 if (current_buffer->buffer == 0) {
908 *length = 0;
909 goto out;
910 }
911
912 if (*length < current_buffer->size) {
913 result = KERN_NO_SPACE;
914 goto out;
915 }
916
917 /*
918 * Copy the ring buffer out to userland in order sorted by time: least recent to most recent.
919 * First, we need to search forward from the cursor to find the oldest record in our buffer.
920 */
921 oldest_record_offset = current_buffer->current_position;
922 do {
923 if (((oldest_record_offset + sizeof(uint32_t)) > current_buffer->size) ||
924 ((oldest_record_offset + sizeof(uint32_t)) > current_buffer->end_point)) {
925 if (*(uint32_t *)(uintptr_t)(current_buffer->buffer) == 0) {
926 /*
927 * There is no magic number at the start of the buffer, which means
928 * it's empty; nothing to see here yet.
929 */
930 *length = 0;
931 goto out;
932 }
933 /*
934 * We've looked through the end of the active buffer without finding a valid
935 * record; that means all valid records are in a single chunk, beginning at
936 * the very start of the buffer.
937 */
938
939 oldest_record_offset = 0;
940 assert(*(uint32_t *)(uintptr_t)(current_buffer->buffer) == STACKSHOT_MICRO_SNAPSHOT_MAGIC);
941 break;
942 }
943
944 if (*(uint32_t *)(uintptr_t)(current_buffer->buffer + oldest_record_offset) == STACKSHOT_MICRO_SNAPSHOT_MAGIC) {
945 break;
946 }
947
948 /*
949 * There are no alignment guarantees for micro-stackshot records, so we must search at each
950 * byte offset.
951 */
952 oldest_record_offset++;
953 } while (oldest_record_offset != current_buffer->current_position);
954
955 /*
956 * If needed, copyout in two chunks: from the oldest record to the end of the buffer, and then
957 * from the beginning of the buffer up to the current position.
958 */
959 if (oldest_record_offset != 0) {
960 #if TELEMETRY_DEBUG
961 log_telemetry_output(current_buffer->buffer, oldest_record_offset,
962 current_buffer->end_point - oldest_record_offset);
963 #endif
964 if ((result = copyout((void *)(current_buffer->buffer + oldest_record_offset), buffer,
965 current_buffer->end_point - oldest_record_offset)) != 0) {
966 *length = 0;
967 goto out;
968 }
969 *length = current_buffer->end_point - oldest_record_offset;
970 } else {
971 *length = 0;
972 }
973
974 #if TELEMETRY_DEBUG
975 log_telemetry_output(current_buffer->buffer, 0, current_buffer->current_position);
976 #endif
977 if ((result = copyout((void *)current_buffer->buffer, buffer + *length,
978 current_buffer->current_position)) != 0) {
979 *length = 0;
980 goto out;
981 }
982 *length += (uint32_t)current_buffer->current_position;
983
984 out:
985
986 if (mark && (*length > 0)) {
987 telemetry_bytes_since_last_mark = 0;
988 }
989
990 TELEMETRY_UNLOCK();
991
992 KDBG(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_GATHER) | DBG_FUNC_END,
993 current_buffer->current_position, *length,
994 current_buffer->end_point, (&telemetry_buffer != current_buffer));
995
996 return result;
997 }
998
999 /************************/
1000 /* BOOT PROFILE SUPPORT */
1001 /************************/
1002 /*
1003 * Boot Profiling
1004 *
1005 * The boot-profiling support is a mechanism to sample activity happening on the
1006 * system during boot. This mechanism sets up a periodic timer and on every timer fire,
1007 * captures a full backtrace into the boot profiling buffer. This buffer can be pulled
1008 * out and analyzed from user-space. It is turned on using the following boot-args:
1009 * "bootprofile_buffer_size" specifies the size of the boot profile buffer
1010 * "bootprofile_interval_ms" specifies the interval for the profiling timer
1011 *
1012 * Process Specific Boot Profiling
1013 *
1014 * The boot-arg "bootprofile_proc_name" can be used to specify a certain
1015 * process that needs to profiled during boot. Setting this boot-arg changes
1016 * the way stackshots are captured. At every timer fire, the code looks at the
1017 * currently running process and takes a stackshot only if the requested process
1018 * is on-core (which makes it unsuitable for MP systems).
1019 *
1020 * Trigger Events
1021 *
1022 * The boot-arg "bootprofile_type=boot" starts the timer during early boot. Using
1023 * "wake" starts the timer at AP wake from suspend-to-RAM.
1024 */
1025
1026 #define BOOTPROFILE_MAX_BUFFER_SIZE (64*1024*1024) /* see also COPYSIZELIMIT_PANIC */
1027
1028 vm_offset_t bootprofile_buffer = 0;
1029 uint32_t bootprofile_buffer_size = 0;
1030 uint32_t bootprofile_buffer_current_position = 0;
1031 uint32_t bootprofile_interval_ms = 0;
1032 uint32_t bootprofile_stackshot_flags = 0;
1033 uint64_t bootprofile_interval_abs = 0;
1034 uint64_t bootprofile_next_deadline = 0;
1035 uint32_t bootprofile_all_procs = 0;
1036 char bootprofile_proc_name[17];
1037 uint64_t bootprofile_delta_since_timestamp = 0;
1038 lck_grp_t bootprofile_lck_grp;
1039 lck_mtx_t bootprofile_mtx;
1040
1041
1042 enum {
1043 kBootProfileDisabled = 0,
1044 kBootProfileStartTimerAtBoot,
1045 kBootProfileStartTimerAtWake
1046 } bootprofile_type = kBootProfileDisabled;
1047
1048
1049 static timer_call_data_t bootprofile_timer_call_entry;
1050
1051 #define BOOTPROFILE_LOCK() do { lck_mtx_lock(&bootprofile_mtx); } while(0)
1052 #define BOOTPROFILE_TRY_SPIN_LOCK() lck_mtx_try_lock_spin(&bootprofile_mtx)
1053 #define BOOTPROFILE_UNLOCK() do { lck_mtx_unlock(&bootprofile_mtx); } while(0)
1054
1055 static void bootprofile_timer_call(
1056 timer_call_param_t param0,
1057 timer_call_param_t param1);
1058
1059 void
1060 bootprofile_init(void)
1061 {
1062 kern_return_t ret;
1063 char type[32];
1064
1065 lck_grp_init(&bootprofile_lck_grp, "bootprofile group", LCK_GRP_ATTR_NULL);
1066 lck_mtx_init(&bootprofile_mtx, &bootprofile_lck_grp, LCK_ATTR_NULL);
1067
1068 if (!PE_parse_boot_argn("bootprofile_buffer_size", &bootprofile_buffer_size, sizeof(bootprofile_buffer_size))) {
1069 bootprofile_buffer_size = 0;
1070 }
1071
1072 if (bootprofile_buffer_size > BOOTPROFILE_MAX_BUFFER_SIZE) {
1073 bootprofile_buffer_size = BOOTPROFILE_MAX_BUFFER_SIZE;
1074 }
1075
1076 if (!PE_parse_boot_argn("bootprofile_interval_ms", &bootprofile_interval_ms, sizeof(bootprofile_interval_ms))) {
1077 bootprofile_interval_ms = 0;
1078 }
1079
1080 if (!PE_parse_boot_argn("bootprofile_stackshot_flags", &bootprofile_stackshot_flags, sizeof(bootprofile_stackshot_flags))) {
1081 bootprofile_stackshot_flags = 0;
1082 }
1083
1084 if (!PE_parse_boot_argn("bootprofile_proc_name", &bootprofile_proc_name, sizeof(bootprofile_proc_name))) {
1085 bootprofile_all_procs = 1;
1086 bootprofile_proc_name[0] = '\0';
1087 }
1088
1089 if (PE_parse_boot_argn("bootprofile_type", type, sizeof(type))) {
1090 if (0 == strcmp(type, "boot")) {
1091 bootprofile_type = kBootProfileStartTimerAtBoot;
1092 } else if (0 == strcmp(type, "wake")) {
1093 bootprofile_type = kBootProfileStartTimerAtWake;
1094 } else {
1095 bootprofile_type = kBootProfileDisabled;
1096 }
1097 } else {
1098 bootprofile_type = kBootProfileDisabled;
1099 }
1100
1101 clock_interval_to_absolutetime_interval(bootprofile_interval_ms, NSEC_PER_MSEC, &bootprofile_interval_abs);
1102
1103 /* Both boot args must be set to enable */
1104 if ((bootprofile_type == kBootProfileDisabled) || (bootprofile_buffer_size == 0) || (bootprofile_interval_abs == 0)) {
1105 return;
1106 }
1107
1108 ret = kmem_alloc(kernel_map, &bootprofile_buffer, bootprofile_buffer_size, VM_KERN_MEMORY_DIAG);
1109 if (ret != KERN_SUCCESS) {
1110 kprintf("Boot profile: Allocation failed: %d\n", ret);
1111 return;
1112 }
1113 bzero((void *) bootprofile_buffer, bootprofile_buffer_size);
1114
1115 kprintf("Boot profile: Sampling %s once per %u ms at %s\n", bootprofile_all_procs ? "all procs" : bootprofile_proc_name, bootprofile_interval_ms,
1116 bootprofile_type == kBootProfileStartTimerAtBoot ? "boot" : (bootprofile_type == kBootProfileStartTimerAtWake ? "wake" : "unknown"));
1117
1118 timer_call_setup(&bootprofile_timer_call_entry,
1119 bootprofile_timer_call,
1120 NULL);
1121
1122 if (bootprofile_type == kBootProfileStartTimerAtBoot) {
1123 bootprofile_next_deadline = mach_absolute_time() + bootprofile_interval_abs;
1124 timer_call_enter_with_leeway(&bootprofile_timer_call_entry,
1125 NULL,
1126 bootprofile_next_deadline,
1127 0,
1128 TIMER_CALL_SYS_NORMAL,
1129 FALSE);
1130 }
1131 }
1132
1133 void
1134 bootprofile_wake_from_sleep(void)
1135 {
1136 if (bootprofile_type == kBootProfileStartTimerAtWake) {
1137 bootprofile_next_deadline = mach_absolute_time() + bootprofile_interval_abs;
1138 timer_call_enter_with_leeway(&bootprofile_timer_call_entry,
1139 NULL,
1140 bootprofile_next_deadline,
1141 0,
1142 TIMER_CALL_SYS_NORMAL,
1143 FALSE);
1144 }
1145 }
1146
1147
1148 static void
1149 bootprofile_timer_call(
1150 timer_call_param_t param0 __unused,
1151 timer_call_param_t param1 __unused)
1152 {
1153 unsigned retbytes = 0;
1154 int pid_to_profile = -1;
1155
1156 if (!BOOTPROFILE_TRY_SPIN_LOCK()) {
1157 goto reprogram;
1158 }
1159
1160 /* Check if process-specific boot profiling is turned on */
1161 if (!bootprofile_all_procs) {
1162 /*
1163 * Since boot profiling initializes really early in boot, it is
1164 * possible that at this point, the task/proc is not initialized.
1165 * Nothing to do in that case.
1166 */
1167
1168 if ((current_task() != NULL) && (current_task()->bsd_info != NULL) &&
1169 (0 == strncmp(bootprofile_proc_name, proc_name_address(current_task()->bsd_info), 17))) {
1170 pid_to_profile = proc_selfpid();
1171 } else {
1172 /*
1173 * Process-specific boot profiling requested but the on-core process is
1174 * something else. Nothing to do here.
1175 */
1176 BOOTPROFILE_UNLOCK();
1177 goto reprogram;
1178 }
1179 }
1180
1181 /* initiate a stackshot with whatever portion of the buffer is left */
1182 if (bootprofile_buffer_current_position < bootprofile_buffer_size) {
1183 uint32_t flags = STACKSHOT_KCDATA_FORMAT | STACKSHOT_TRYLOCK | STACKSHOT_SAVE_LOADINFO
1184 | STACKSHOT_GET_GLOBAL_MEM_STATS;
1185 #if __x86_64__
1186 flags |= STACKSHOT_SAVE_KEXT_LOADINFO;
1187 #endif /* __x86_64__ */
1188
1189
1190 /* OR on flags specified in boot-args */
1191 flags |= bootprofile_stackshot_flags;
1192 if ((flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) && (bootprofile_delta_since_timestamp == 0)) {
1193 /* Can't take deltas until the first one */
1194 flags &= ~STACKSHOT_COLLECT_DELTA_SNAPSHOT;
1195 }
1196
1197 uint64_t timestamp = 0;
1198 if (bootprofile_stackshot_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) {
1199 timestamp = mach_absolute_time();
1200 }
1201
1202 kern_return_t r = stack_snapshot_from_kernel(
1203 pid_to_profile, (void *)(bootprofile_buffer + bootprofile_buffer_current_position),
1204 bootprofile_buffer_size - bootprofile_buffer_current_position,
1205 flags, bootprofile_delta_since_timestamp, &retbytes);
1206
1207 /*
1208 * We call with STACKSHOT_TRYLOCK because the stackshot lock is coarser
1209 * than the bootprofile lock. If someone else has the lock we'll just
1210 * try again later.
1211 */
1212
1213 if (r == KERN_LOCK_OWNED) {
1214 BOOTPROFILE_UNLOCK();
1215 goto reprogram;
1216 }
1217
1218 if (bootprofile_stackshot_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT &&
1219 r == KERN_SUCCESS) {
1220 bootprofile_delta_since_timestamp = timestamp;
1221 }
1222
1223 bootprofile_buffer_current_position += retbytes;
1224 }
1225
1226 BOOTPROFILE_UNLOCK();
1227
1228 /* If we didn't get any data or have run out of buffer space, stop profiling */
1229 if ((retbytes == 0) || (bootprofile_buffer_current_position == bootprofile_buffer_size)) {
1230 return;
1231 }
1232
1233
1234 reprogram:
1235 /* If the user gathered the buffer, no need to keep profiling */
1236 if (bootprofile_interval_abs == 0) {
1237 return;
1238 }
1239
1240 clock_deadline_for_periodic_event(bootprofile_interval_abs,
1241 mach_absolute_time(),
1242 &bootprofile_next_deadline);
1243 timer_call_enter_with_leeway(&bootprofile_timer_call_entry,
1244 NULL,
1245 bootprofile_next_deadline,
1246 0,
1247 TIMER_CALL_SYS_NORMAL,
1248 FALSE);
1249 }
1250
1251 void
1252 bootprofile_get(void **buffer, uint32_t *length)
1253 {
1254 BOOTPROFILE_LOCK();
1255 *buffer = (void*) bootprofile_buffer;
1256 *length = bootprofile_buffer_current_position;
1257 BOOTPROFILE_UNLOCK();
1258 }
1259
1260 int
1261 bootprofile_gather(user_addr_t buffer, uint32_t *length)
1262 {
1263 int result = 0;
1264
1265 BOOTPROFILE_LOCK();
1266
1267 if (bootprofile_buffer == 0) {
1268 *length = 0;
1269 goto out;
1270 }
1271
1272 if (*length < bootprofile_buffer_current_position) {
1273 result = KERN_NO_SPACE;
1274 goto out;
1275 }
1276
1277 if ((result = copyout((void *)bootprofile_buffer, buffer,
1278 bootprofile_buffer_current_position)) != 0) {
1279 *length = 0;
1280 goto out;
1281 }
1282 *length = bootprofile_buffer_current_position;
1283
1284 /* cancel future timers */
1285 bootprofile_interval_abs = 0;
1286
1287 out:
1288
1289 BOOTPROFILE_UNLOCK();
1290
1291 return result;
1292 }