]> git.saurik.com Git - apple/xnu.git/blob - osfmk/vm/vm_pageout.c
7d78f66b28722d43bc77aea71a2060c61b341eb4
[apple/xnu.git] / osfmk / vm / vm_pageout.c
1 /*
2 * Copyright (c) 2000-2014 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58 /*
59 * File: vm/vm_pageout.c
60 * Author: Avadis Tevanian, Jr., Michael Wayne Young
61 * Date: 1985
62 *
63 * The proverbial page-out daemon.
64 */
65
66 #include <stdint.h>
67
68 #include <debug.h>
69 #include <mach_pagemap.h>
70 #include <mach_cluster_stats.h>
71
72 #include <mach/mach_types.h>
73 #include <mach/memory_object.h>
74 #include <mach/memory_object_default.h>
75 #include <mach/memory_object_control_server.h>
76 #include <mach/mach_host_server.h>
77 #include <mach/upl.h>
78 #include <mach/vm_map.h>
79 #include <mach/vm_param.h>
80 #include <mach/vm_statistics.h>
81 #include <mach/sdt.h>
82
83 #include <kern/kern_types.h>
84 #include <kern/counters.h>
85 #include <kern/host_statistics.h>
86 #include <kern/machine.h>
87 #include <kern/misc_protos.h>
88 #include <kern/sched.h>
89 #include <kern/thread.h>
90 #include <kern/xpr.h>
91 #include <kern/kalloc.h>
92
93 #include <machine/vm_tuning.h>
94 #include <machine/commpage.h>
95
96 #include <vm/pmap.h>
97 #include <vm/vm_compressor_pager.h>
98 #include <vm/vm_fault.h>
99 #include <vm/vm_map.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_protos.h> /* must be last */
104 #include <vm/memory_object.h>
105 #include <vm/vm_purgeable_internal.h>
106 #include <vm/vm_shared_region.h>
107 #include <vm/vm_compressor.h>
108
109 #if CONFIG_PHANTOM_CACHE
110 #include <vm/vm_phantom_cache.h>
111 #endif
112 /*
113 * ENCRYPTED SWAP:
114 */
115 #include <libkern/crypto/aes.h>
116 extern u_int32_t random(void); /* from <libkern/libkern.h> */
117
118 extern int cs_debug;
119
120 #if UPL_DEBUG
121 #include <libkern/OSDebug.h>
122 #endif
123
124 extern void m_drain(void);
125
126 #if VM_PRESSURE_EVENTS
127 extern unsigned int memorystatus_available_pages;
128 extern unsigned int memorystatus_available_pages_pressure;
129 extern unsigned int memorystatus_available_pages_critical;
130 extern unsigned int memorystatus_frozen_count;
131 extern unsigned int memorystatus_suspended_count;
132
133 extern vm_pressure_level_t memorystatus_vm_pressure_level;
134 int memorystatus_purge_on_warning = 2;
135 int memorystatus_purge_on_urgent = 5;
136 int memorystatus_purge_on_critical = 8;
137
138 void vm_pressure_response(void);
139 boolean_t vm_pressure_thread_running = FALSE;
140 extern void consider_vm_pressure_events(void);
141
142 #define MEMORYSTATUS_SUSPENDED_THRESHOLD 4
143 #endif /* VM_PRESSURE_EVENTS */
144
145 boolean_t vm_pressure_changed = FALSE;
146
147 #ifndef VM_PAGEOUT_BURST_ACTIVE_THROTTLE /* maximum iterations of the active queue to move pages to inactive */
148 #define VM_PAGEOUT_BURST_ACTIVE_THROTTLE 100
149 #endif
150
151 #ifndef VM_PAGEOUT_BURST_INACTIVE_THROTTLE /* maximum iterations of the inactive queue w/o stealing/cleaning a page */
152 #define VM_PAGEOUT_BURST_INACTIVE_THROTTLE 4096
153 #endif
154
155 #ifndef VM_PAGEOUT_DEADLOCK_RELIEF
156 #define VM_PAGEOUT_DEADLOCK_RELIEF 100 /* number of pages to move to break deadlock */
157 #endif
158
159 #ifndef VM_PAGEOUT_INACTIVE_RELIEF
160 #define VM_PAGEOUT_INACTIVE_RELIEF 50 /* minimum number of pages to move to the inactive q */
161 #endif
162
163 #ifndef VM_PAGE_LAUNDRY_MAX
164 #define VM_PAGE_LAUNDRY_MAX 128UL /* maximum pageouts on a given pageout queue */
165 #endif /* VM_PAGEOUT_LAUNDRY_MAX */
166
167 #ifndef VM_PAGEOUT_BURST_WAIT
168 #define VM_PAGEOUT_BURST_WAIT 10 /* milliseconds */
169 #endif /* VM_PAGEOUT_BURST_WAIT */
170
171 #ifndef VM_PAGEOUT_EMPTY_WAIT
172 #define VM_PAGEOUT_EMPTY_WAIT 200 /* milliseconds */
173 #endif /* VM_PAGEOUT_EMPTY_WAIT */
174
175 #ifndef VM_PAGEOUT_DEADLOCK_WAIT
176 #define VM_PAGEOUT_DEADLOCK_WAIT 300 /* milliseconds */
177 #endif /* VM_PAGEOUT_DEADLOCK_WAIT */
178
179 #ifndef VM_PAGEOUT_IDLE_WAIT
180 #define VM_PAGEOUT_IDLE_WAIT 10 /* milliseconds */
181 #endif /* VM_PAGEOUT_IDLE_WAIT */
182
183 #ifndef VM_PAGEOUT_SWAP_WAIT
184 #define VM_PAGEOUT_SWAP_WAIT 50 /* milliseconds */
185 #endif /* VM_PAGEOUT_SWAP_WAIT */
186
187 #ifndef VM_PAGEOUT_PRESSURE_PAGES_CONSIDERED
188 #define VM_PAGEOUT_PRESSURE_PAGES_CONSIDERED 1000 /* maximum pages considered before we issue a pressure event */
189 #endif /* VM_PAGEOUT_PRESSURE_PAGES_CONSIDERED */
190
191 #ifndef VM_PAGEOUT_PRESSURE_EVENT_MONITOR_SECS
192 #define VM_PAGEOUT_PRESSURE_EVENT_MONITOR_SECS 5 /* seconds */
193 #endif /* VM_PAGEOUT_PRESSURE_EVENT_MONITOR_SECS */
194
195 unsigned int vm_page_speculative_q_age_ms = VM_PAGE_SPECULATIVE_Q_AGE_MS;
196 unsigned int vm_page_speculative_percentage = 5;
197
198 #ifndef VM_PAGE_SPECULATIVE_TARGET
199 #define VM_PAGE_SPECULATIVE_TARGET(total) ((total) * 1 / (100 / vm_page_speculative_percentage))
200 #endif /* VM_PAGE_SPECULATIVE_TARGET */
201
202
203 #ifndef VM_PAGE_INACTIVE_HEALTHY_LIMIT
204 #define VM_PAGE_INACTIVE_HEALTHY_LIMIT(total) ((total) * 1 / 200)
205 #endif /* VM_PAGE_INACTIVE_HEALTHY_LIMIT */
206
207
208 /*
209 * To obtain a reasonable LRU approximation, the inactive queue
210 * needs to be large enough to give pages on it a chance to be
211 * referenced a second time. This macro defines the fraction
212 * of active+inactive pages that should be inactive.
213 * The pageout daemon uses it to update vm_page_inactive_target.
214 *
215 * If vm_page_free_count falls below vm_page_free_target and
216 * vm_page_inactive_count is below vm_page_inactive_target,
217 * then the pageout daemon starts running.
218 */
219
220 #ifndef VM_PAGE_INACTIVE_TARGET
221 #define VM_PAGE_INACTIVE_TARGET(avail) ((avail) * 1 / 2)
222 #endif /* VM_PAGE_INACTIVE_TARGET */
223
224 /*
225 * Once the pageout daemon starts running, it keeps going
226 * until vm_page_free_count meets or exceeds vm_page_free_target.
227 */
228
229 #ifndef VM_PAGE_FREE_TARGET
230 #define VM_PAGE_FREE_TARGET(free) (15 + (free) / 80)
231 #endif /* VM_PAGE_FREE_TARGET */
232
233
234 /*
235 * The pageout daemon always starts running once vm_page_free_count
236 * falls below vm_page_free_min.
237 */
238
239 #ifndef VM_PAGE_FREE_MIN
240 #define VM_PAGE_FREE_MIN(free) (10 + (free) / 100)
241 #endif /* VM_PAGE_FREE_MIN */
242
243 #define VM_PAGE_FREE_RESERVED_LIMIT 1700
244 #define VM_PAGE_FREE_MIN_LIMIT 3500
245 #define VM_PAGE_FREE_TARGET_LIMIT 4000
246
247 /*
248 * When vm_page_free_count falls below vm_page_free_reserved,
249 * only vm-privileged threads can allocate pages. vm-privilege
250 * allows the pageout daemon and default pager (and any other
251 * associated threads needed for default pageout) to continue
252 * operation by dipping into the reserved pool of pages.
253 */
254
255 #ifndef VM_PAGE_FREE_RESERVED
256 #define VM_PAGE_FREE_RESERVED(n) \
257 ((unsigned) (6 * VM_PAGE_LAUNDRY_MAX) + (n))
258 #endif /* VM_PAGE_FREE_RESERVED */
259
260 /*
261 * When we dequeue pages from the inactive list, they are
262 * reactivated (ie, put back on the active queue) if referenced.
263 * However, it is possible to starve the free list if other
264 * processors are referencing pages faster than we can turn off
265 * the referenced bit. So we limit the number of reactivations
266 * we will make per call of vm_pageout_scan().
267 */
268 #define VM_PAGE_REACTIVATE_LIMIT_MAX 20000
269 #ifndef VM_PAGE_REACTIVATE_LIMIT
270 #define VM_PAGE_REACTIVATE_LIMIT(avail) (MAX((avail) * 1 / 20,VM_PAGE_REACTIVATE_LIMIT_MAX))
271 #endif /* VM_PAGE_REACTIVATE_LIMIT */
272 #define VM_PAGEOUT_INACTIVE_FORCE_RECLAIM 100
273
274
275 extern boolean_t hibernate_cleaning_in_progress;
276
277 /*
278 * Exported variable used to broadcast the activation of the pageout scan
279 * Working Set uses this to throttle its use of pmap removes. In this
280 * way, code which runs within memory in an uncontested context does
281 * not keep encountering soft faults.
282 */
283
284 unsigned int vm_pageout_scan_event_counter = 0;
285
286 /*
287 * Forward declarations for internal routines.
288 */
289 struct cq {
290 struct vm_pageout_queue *q;
291 void *current_chead;
292 char *scratch_buf;
293 };
294
295
296 #if VM_PRESSURE_EVENTS
297 void vm_pressure_thread(void);
298
299 boolean_t VM_PRESSURE_NORMAL_TO_WARNING(void);
300 boolean_t VM_PRESSURE_WARNING_TO_CRITICAL(void);
301
302 boolean_t VM_PRESSURE_WARNING_TO_NORMAL(void);
303 boolean_t VM_PRESSURE_CRITICAL_TO_WARNING(void);
304 #endif
305 static void vm_pageout_garbage_collect(int);
306 static void vm_pageout_iothread_continue(struct vm_pageout_queue *);
307 static void vm_pageout_iothread_external(void);
308 static void vm_pageout_iothread_internal(struct cq *cq);
309 static void vm_pageout_adjust_io_throttles(struct vm_pageout_queue *, struct vm_pageout_queue *, boolean_t);
310
311 extern void vm_pageout_continue(void);
312 extern void vm_pageout_scan(void);
313
314 static thread_t vm_pageout_external_iothread = THREAD_NULL;
315 static thread_t vm_pageout_internal_iothread = THREAD_NULL;
316
317 unsigned int vm_pageout_reserved_internal = 0;
318 unsigned int vm_pageout_reserved_really = 0;
319
320 unsigned int vm_pageout_swap_wait = 0;
321 unsigned int vm_pageout_idle_wait = 0; /* milliseconds */
322 unsigned int vm_pageout_empty_wait = 0; /* milliseconds */
323 unsigned int vm_pageout_burst_wait = 0; /* milliseconds */
324 unsigned int vm_pageout_deadlock_wait = 0; /* milliseconds */
325 unsigned int vm_pageout_deadlock_relief = 0;
326 unsigned int vm_pageout_inactive_relief = 0;
327 unsigned int vm_pageout_burst_active_throttle = 0;
328 unsigned int vm_pageout_burst_inactive_throttle = 0;
329
330 int vm_upl_wait_for_pages = 0;
331
332
333 /*
334 * These variables record the pageout daemon's actions:
335 * how many pages it looks at and what happens to those pages.
336 * No locking needed because only one thread modifies the variables.
337 */
338
339 unsigned int vm_pageout_active = 0; /* debugging */
340 unsigned int vm_pageout_active_busy = 0; /* debugging */
341 unsigned int vm_pageout_inactive = 0; /* debugging */
342 unsigned int vm_pageout_inactive_throttled = 0; /* debugging */
343 unsigned int vm_pageout_inactive_forced = 0; /* debugging */
344 unsigned int vm_pageout_inactive_nolock = 0; /* debugging */
345 unsigned int vm_pageout_inactive_avoid = 0; /* debugging */
346 unsigned int vm_pageout_inactive_busy = 0; /* debugging */
347 unsigned int vm_pageout_inactive_error = 0; /* debugging */
348 unsigned int vm_pageout_inactive_absent = 0; /* debugging */
349 unsigned int vm_pageout_inactive_notalive = 0; /* debugging */
350 unsigned int vm_pageout_inactive_used = 0; /* debugging */
351 unsigned int vm_pageout_cache_evicted = 0; /* debugging */
352 unsigned int vm_pageout_inactive_clean = 0; /* debugging */
353 unsigned int vm_pageout_speculative_clean = 0; /* debugging */
354
355 unsigned int vm_pageout_freed_from_cleaned = 0;
356 unsigned int vm_pageout_freed_from_speculative = 0;
357 unsigned int vm_pageout_freed_from_inactive_clean = 0;
358
359 unsigned int vm_pageout_enqueued_cleaned_from_inactive_clean = 0;
360 unsigned int vm_pageout_enqueued_cleaned_from_inactive_dirty = 0;
361
362 unsigned int vm_pageout_cleaned_reclaimed = 0; /* debugging; how many cleaned pages are reclaimed by the pageout scan */
363 unsigned int vm_pageout_cleaned_reactivated = 0; /* debugging; how many cleaned pages are found to be referenced on pageout (and are therefore reactivated) */
364 unsigned int vm_pageout_cleaned_reference_reactivated = 0;
365 unsigned int vm_pageout_cleaned_volatile_reactivated = 0;
366 unsigned int vm_pageout_cleaned_fault_reactivated = 0;
367 unsigned int vm_pageout_cleaned_commit_reactivated = 0; /* debugging; how many cleaned pages are found to be referenced on commit (and are therefore reactivated) */
368 unsigned int vm_pageout_cleaned_busy = 0;
369 unsigned int vm_pageout_cleaned_nolock = 0;
370
371 unsigned int vm_pageout_inactive_dirty_internal = 0; /* debugging */
372 unsigned int vm_pageout_inactive_dirty_external = 0; /* debugging */
373 unsigned int vm_pageout_inactive_deactivated = 0; /* debugging */
374 unsigned int vm_pageout_inactive_anonymous = 0; /* debugging */
375 unsigned int vm_pageout_dirty_no_pager = 0; /* debugging */
376 unsigned int vm_pageout_purged_objects = 0; /* debugging */
377 unsigned int vm_stat_discard = 0; /* debugging */
378 unsigned int vm_stat_discard_sent = 0; /* debugging */
379 unsigned int vm_stat_discard_failure = 0; /* debugging */
380 unsigned int vm_stat_discard_throttle = 0; /* debugging */
381 unsigned int vm_pageout_reactivation_limit_exceeded = 0; /* debugging */
382 unsigned int vm_pageout_catch_ups = 0; /* debugging */
383 unsigned int vm_pageout_inactive_force_reclaim = 0; /* debugging */
384
385 unsigned int vm_pageout_scan_reclaimed_throttled = 0;
386 unsigned int vm_pageout_scan_active_throttled = 0;
387 unsigned int vm_pageout_scan_inactive_throttled_internal = 0;
388 unsigned int vm_pageout_scan_inactive_throttled_external = 0;
389 unsigned int vm_pageout_scan_throttle = 0; /* debugging */
390 unsigned int vm_pageout_scan_burst_throttle = 0; /* debugging */
391 unsigned int vm_pageout_scan_empty_throttle = 0; /* debugging */
392 unsigned int vm_pageout_scan_swap_throttle = 0; /* debugging */
393 unsigned int vm_pageout_scan_deadlock_detected = 0; /* debugging */
394 unsigned int vm_pageout_scan_active_throttle_success = 0; /* debugging */
395 unsigned int vm_pageout_scan_inactive_throttle_success = 0; /* debugging */
396 unsigned int vm_pageout_inactive_external_forced_jetsam_count = 0; /* debugging */
397 unsigned int vm_page_speculative_count_drifts = 0;
398 unsigned int vm_page_speculative_count_drift_max = 0;
399
400
401 /*
402 * Backing store throttle when BS is exhausted
403 */
404 unsigned int vm_backing_store_low = 0;
405
406 unsigned int vm_pageout_out_of_line = 0;
407 unsigned int vm_pageout_in_place = 0;
408
409 unsigned int vm_page_steal_pageout_page = 0;
410
411 /*
412 * ENCRYPTED SWAP:
413 * counters and statistics...
414 */
415 unsigned long vm_page_decrypt_counter = 0;
416 unsigned long vm_page_decrypt_for_upl_counter = 0;
417 unsigned long vm_page_encrypt_counter = 0;
418 unsigned long vm_page_encrypt_abort_counter = 0;
419 unsigned long vm_page_encrypt_already_encrypted_counter = 0;
420 boolean_t vm_pages_encrypted = FALSE; /* are there encrypted pages ? */
421
422 struct vm_pageout_queue vm_pageout_queue_internal;
423 struct vm_pageout_queue vm_pageout_queue_external;
424
425 unsigned int vm_page_speculative_target = 0;
426
427 vm_object_t vm_pageout_scan_wants_object = VM_OBJECT_NULL;
428
429 boolean_t (* volatile consider_buffer_cache_collect)(int) = NULL;
430
431 #if DEVELOPMENT || DEBUG
432 unsigned long vm_cs_validated_resets = 0;
433 #endif
434
435 int vm_debug_events = 0;
436
437 #if CONFIG_MEMORYSTATUS
438 #if !CONFIG_JETSAM
439 extern boolean_t memorystatus_idle_exit_from_VM(void);
440 #endif
441 extern boolean_t memorystatus_kill_on_VM_page_shortage(boolean_t async);
442 extern void memorystatus_on_pageout_scan_end(void);
443 #endif
444
445 boolean_t vm_page_compressions_failing = FALSE;
446
447 /*
448 * Routine: vm_backing_store_disable
449 * Purpose:
450 * Suspend non-privileged threads wishing to extend
451 * backing store when we are low on backing store
452 * (Synchronized by caller)
453 */
454 void
455 vm_backing_store_disable(
456 boolean_t disable)
457 {
458 if(disable) {
459 vm_backing_store_low = 1;
460 } else {
461 if(vm_backing_store_low) {
462 vm_backing_store_low = 0;
463 thread_wakeup((event_t) &vm_backing_store_low);
464 }
465 }
466 }
467
468
469 #if MACH_CLUSTER_STATS
470 unsigned long vm_pageout_cluster_dirtied = 0;
471 unsigned long vm_pageout_cluster_cleaned = 0;
472 unsigned long vm_pageout_cluster_collisions = 0;
473 unsigned long vm_pageout_cluster_clusters = 0;
474 unsigned long vm_pageout_cluster_conversions = 0;
475 unsigned long vm_pageout_target_collisions = 0;
476 unsigned long vm_pageout_target_page_dirtied = 0;
477 unsigned long vm_pageout_target_page_freed = 0;
478 #define CLUSTER_STAT(clause) clause
479 #else /* MACH_CLUSTER_STATS */
480 #define CLUSTER_STAT(clause)
481 #endif /* MACH_CLUSTER_STATS */
482
483 /*
484 * Routine: vm_pageout_object_terminate
485 * Purpose:
486 * Destroy the pageout_object, and perform all of the
487 * required cleanup actions.
488 *
489 * In/Out conditions:
490 * The object must be locked, and will be returned locked.
491 */
492 void
493 vm_pageout_object_terminate(
494 vm_object_t object)
495 {
496 vm_object_t shadow_object;
497
498 /*
499 * Deal with the deallocation (last reference) of a pageout object
500 * (used for cleaning-in-place) by dropping the paging references/
501 * freeing pages in the original object.
502 */
503
504 assert(object->pageout);
505 shadow_object = object->shadow;
506 vm_object_lock(shadow_object);
507
508 while (!queue_empty(&object->memq)) {
509 vm_page_t p, m;
510 vm_object_offset_t offset;
511
512 p = (vm_page_t) queue_first(&object->memq);
513
514 assert(p->private);
515 assert(p->pageout);
516 p->pageout = FALSE;
517 assert(!p->cleaning);
518 assert(!p->laundry);
519
520 offset = p->offset;
521 VM_PAGE_FREE(p);
522 p = VM_PAGE_NULL;
523
524 m = vm_page_lookup(shadow_object,
525 offset + object->vo_shadow_offset);
526
527 if(m == VM_PAGE_NULL)
528 continue;
529
530 assert((m->dirty) || (m->precious) ||
531 (m->busy && m->cleaning));
532
533 /*
534 * Handle the trusted pager throttle.
535 * Also decrement the burst throttle (if external).
536 */
537 vm_page_lock_queues();
538 if (m->pageout_queue)
539 vm_pageout_throttle_up(m);
540
541 /*
542 * Handle the "target" page(s). These pages are to be freed if
543 * successfully cleaned. Target pages are always busy, and are
544 * wired exactly once. The initial target pages are not mapped,
545 * (so cannot be referenced or modified) but converted target
546 * pages may have been modified between the selection as an
547 * adjacent page and conversion to a target.
548 */
549 if (m->pageout) {
550 assert(m->busy);
551 assert(m->wire_count == 1);
552 m->cleaning = FALSE;
553 m->encrypted_cleaning = FALSE;
554 m->pageout = FALSE;
555 #if MACH_CLUSTER_STATS
556 if (m->wanted) vm_pageout_target_collisions++;
557 #endif
558 /*
559 * Revoke all access to the page. Since the object is
560 * locked, and the page is busy, this prevents the page
561 * from being dirtied after the pmap_disconnect() call
562 * returns.
563 *
564 * Since the page is left "dirty" but "not modifed", we
565 * can detect whether the page was redirtied during
566 * pageout by checking the modify state.
567 */
568 if (pmap_disconnect(m->phys_page) & VM_MEM_MODIFIED) {
569 SET_PAGE_DIRTY(m, FALSE);
570 } else {
571 m->dirty = FALSE;
572 }
573
574 if (m->dirty) {
575 CLUSTER_STAT(vm_pageout_target_page_dirtied++;)
576 vm_page_unwire(m, TRUE); /* reactivates */
577 VM_STAT_INCR(reactivations);
578 PAGE_WAKEUP_DONE(m);
579 } else {
580 CLUSTER_STAT(vm_pageout_target_page_freed++;)
581 vm_page_free(m);/* clears busy, etc. */
582 }
583 vm_page_unlock_queues();
584 continue;
585 }
586 /*
587 * Handle the "adjacent" pages. These pages were cleaned in
588 * place, and should be left alone.
589 * If prep_pin_count is nonzero, then someone is using the
590 * page, so make it active.
591 */
592 if (!m->active && !m->inactive && !m->throttled && !m->private) {
593 if (m->reference)
594 vm_page_activate(m);
595 else
596 vm_page_deactivate(m);
597 }
598 if (m->overwriting) {
599 /*
600 * the (COPY_OUT_FROM == FALSE) request_page_list case
601 */
602 if (m->busy) {
603 /*
604 * We do not re-set m->dirty !
605 * The page was busy so no extraneous activity
606 * could have occurred. COPY_INTO is a read into the
607 * new pages. CLEAN_IN_PLACE does actually write
608 * out the pages but handling outside of this code
609 * will take care of resetting dirty. We clear the
610 * modify however for the Programmed I/O case.
611 */
612 pmap_clear_modify(m->phys_page);
613
614 m->busy = FALSE;
615 m->absent = FALSE;
616 } else {
617 /*
618 * alternate (COPY_OUT_FROM == FALSE) request_page_list case
619 * Occurs when the original page was wired
620 * at the time of the list request
621 */
622 assert(VM_PAGE_WIRED(m));
623 vm_page_unwire(m, TRUE); /* reactivates */
624 }
625 m->overwriting = FALSE;
626 } else {
627 /*
628 * Set the dirty state according to whether or not the page was
629 * modified during the pageout. Note that we purposefully do
630 * NOT call pmap_clear_modify since the page is still mapped.
631 * If the page were to be dirtied between the 2 calls, this
632 * this fact would be lost. This code is only necessary to
633 * maintain statistics, since the pmap module is always
634 * consulted if m->dirty is false.
635 */
636 #if MACH_CLUSTER_STATS
637 m->dirty = pmap_is_modified(m->phys_page);
638
639 if (m->dirty) vm_pageout_cluster_dirtied++;
640 else vm_pageout_cluster_cleaned++;
641 if (m->wanted) vm_pageout_cluster_collisions++;
642 #else
643 m->dirty = FALSE;
644 #endif
645 }
646 if (m->encrypted_cleaning == TRUE) {
647 m->encrypted_cleaning = FALSE;
648 m->busy = FALSE;
649 }
650 m->cleaning = FALSE;
651
652 /*
653 * Wakeup any thread waiting for the page to be un-cleaning.
654 */
655 PAGE_WAKEUP(m);
656 vm_page_unlock_queues();
657 }
658 /*
659 * Account for the paging reference taken in vm_paging_object_allocate.
660 */
661 vm_object_activity_end(shadow_object);
662 vm_object_unlock(shadow_object);
663
664 assert(object->ref_count == 0);
665 assert(object->paging_in_progress == 0);
666 assert(object->activity_in_progress == 0);
667 assert(object->resident_page_count == 0);
668 return;
669 }
670
671 /*
672 * Routine: vm_pageclean_setup
673 *
674 * Purpose: setup a page to be cleaned (made non-dirty), but not
675 * necessarily flushed from the VM page cache.
676 * This is accomplished by cleaning in place.
677 *
678 * The page must not be busy, and new_object
679 * must be locked.
680 *
681 */
682 void
683 vm_pageclean_setup(
684 vm_page_t m,
685 vm_page_t new_m,
686 vm_object_t new_object,
687 vm_object_offset_t new_offset)
688 {
689 assert(!m->busy);
690 #if 0
691 assert(!m->cleaning);
692 #endif
693
694 XPR(XPR_VM_PAGEOUT,
695 "vm_pageclean_setup, obj 0x%X off 0x%X page 0x%X new 0x%X new_off 0x%X\n",
696 m->object, m->offset, m,
697 new_m, new_offset);
698
699 pmap_clear_modify(m->phys_page);
700
701 /*
702 * Mark original page as cleaning in place.
703 */
704 m->cleaning = TRUE;
705 SET_PAGE_DIRTY(m, FALSE);
706 m->precious = FALSE;
707
708 /*
709 * Convert the fictitious page to a private shadow of
710 * the real page.
711 */
712 assert(new_m->fictitious);
713 assert(new_m->phys_page == vm_page_fictitious_addr);
714 new_m->fictitious = FALSE;
715 new_m->private = TRUE;
716 new_m->pageout = TRUE;
717 new_m->phys_page = m->phys_page;
718
719 vm_page_lockspin_queues();
720 vm_page_wire(new_m);
721 vm_page_unlock_queues();
722
723 vm_page_insert(new_m, new_object, new_offset);
724 assert(!new_m->wanted);
725 new_m->busy = FALSE;
726 }
727
728 /*
729 * Routine: vm_pageout_initialize_page
730 * Purpose:
731 * Causes the specified page to be initialized in
732 * the appropriate memory object. This routine is used to push
733 * pages into a copy-object when they are modified in the
734 * permanent object.
735 *
736 * The page is moved to a temporary object and paged out.
737 *
738 * In/out conditions:
739 * The page in question must not be on any pageout queues.
740 * The object to which it belongs must be locked.
741 * The page must be busy, but not hold a paging reference.
742 *
743 * Implementation:
744 * Move this page to a completely new object.
745 */
746 void
747 vm_pageout_initialize_page(
748 vm_page_t m)
749 {
750 vm_object_t object;
751 vm_object_offset_t paging_offset;
752 memory_object_t pager;
753
754 XPR(XPR_VM_PAGEOUT,
755 "vm_pageout_initialize_page, page 0x%X\n",
756 m, 0, 0, 0, 0);
757 assert(m->busy);
758
759 /*
760 * Verify that we really want to clean this page
761 */
762 assert(!m->absent);
763 assert(!m->error);
764 assert(m->dirty);
765
766 /*
767 * Create a paging reference to let us play with the object.
768 */
769 object = m->object;
770 paging_offset = m->offset + object->paging_offset;
771
772 if (m->absent || m->error || m->restart || (!m->dirty && !m->precious)) {
773 VM_PAGE_FREE(m);
774 panic("reservation without pageout?"); /* alan */
775 vm_object_unlock(object);
776
777 return;
778 }
779
780 /*
781 * If there's no pager, then we can't clean the page. This should
782 * never happen since this should be a copy object and therefore not
783 * an external object, so the pager should always be there.
784 */
785
786 pager = object->pager;
787
788 if (pager == MEMORY_OBJECT_NULL) {
789 VM_PAGE_FREE(m);
790 panic("missing pager for copy object");
791 return;
792 }
793
794 /*
795 * set the page for future call to vm_fault_list_request
796 */
797 pmap_clear_modify(m->phys_page);
798 SET_PAGE_DIRTY(m, FALSE);
799 m->pageout = TRUE;
800
801 /*
802 * keep the object from collapsing or terminating
803 */
804 vm_object_paging_begin(object);
805 vm_object_unlock(object);
806
807 /*
808 * Write the data to its pager.
809 * Note that the data is passed by naming the new object,
810 * not a virtual address; the pager interface has been
811 * manipulated to use the "internal memory" data type.
812 * [The object reference from its allocation is donated
813 * to the eventual recipient.]
814 */
815 memory_object_data_initialize(pager, paging_offset, PAGE_SIZE);
816
817 vm_object_lock(object);
818 vm_object_paging_end(object);
819 }
820
821 #if MACH_CLUSTER_STATS
822 #define MAXCLUSTERPAGES 16
823 struct {
824 unsigned long pages_in_cluster;
825 unsigned long pages_at_higher_offsets;
826 unsigned long pages_at_lower_offsets;
827 } cluster_stats[MAXCLUSTERPAGES];
828 #endif /* MACH_CLUSTER_STATS */
829
830
831 /*
832 * vm_pageout_cluster:
833 *
834 * Given a page, queue it to the appropriate I/O thread,
835 * which will page it out and attempt to clean adjacent pages
836 * in the same operation.
837 *
838 * The object and queues must be locked. We will take a
839 * paging reference to prevent deallocation or collapse when we
840 * release the object lock back at the call site. The I/O thread
841 * is responsible for consuming this reference
842 *
843 * The page must not be on any pageout queue.
844 */
845
846 void
847 vm_pageout_cluster(vm_page_t m, boolean_t pageout)
848 {
849 vm_object_t object = m->object;
850 struct vm_pageout_queue *q;
851
852
853 XPR(XPR_VM_PAGEOUT,
854 "vm_pageout_cluster, object 0x%X offset 0x%X page 0x%X\n",
855 object, m->offset, m, 0, 0);
856
857 VM_PAGE_CHECK(m);
858 #if DEBUG
859 lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
860 #endif
861 vm_object_lock_assert_exclusive(object);
862
863 /*
864 * Only a certain kind of page is appreciated here.
865 */
866 assert((m->dirty || m->precious) && (!VM_PAGE_WIRED(m)));
867 assert(!m->cleaning && !m->pageout && !m->laundry);
868 #ifndef CONFIG_FREEZE
869 assert(!m->inactive && !m->active);
870 assert(!m->throttled);
871 #endif
872
873 /*
874 * protect the object from collapse or termination
875 */
876 vm_object_activity_begin(object);
877
878 m->pageout = pageout;
879
880 if (object->internal == TRUE) {
881 if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE)
882 m->busy = TRUE;
883
884 q = &vm_pageout_queue_internal;
885 } else
886 q = &vm_pageout_queue_external;
887
888 /*
889 * pgo_laundry count is tied to the laundry bit
890 */
891 m->laundry = TRUE;
892 q->pgo_laundry++;
893
894 m->pageout_queue = TRUE;
895 queue_enter(&q->pgo_pending, m, vm_page_t, pageq);
896
897 if (q->pgo_idle == TRUE) {
898 q->pgo_idle = FALSE;
899 thread_wakeup((event_t) &q->pgo_pending);
900 }
901 VM_PAGE_CHECK(m);
902 }
903
904
905 unsigned long vm_pageout_throttle_up_count = 0;
906
907 /*
908 * A page is back from laundry or we are stealing it back from
909 * the laundering state. See if there are some pages waiting to
910 * go to laundry and if we can let some of them go now.
911 *
912 * Object and page queues must be locked.
913 */
914 void
915 vm_pageout_throttle_up(
916 vm_page_t m)
917 {
918 struct vm_pageout_queue *q;
919
920 assert(m->object != VM_OBJECT_NULL);
921 assert(m->object != kernel_object);
922
923 #if DEBUG
924 lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
925 vm_object_lock_assert_exclusive(m->object);
926 #endif
927
928 vm_pageout_throttle_up_count++;
929
930 if (m->object->internal == TRUE)
931 q = &vm_pageout_queue_internal;
932 else
933 q = &vm_pageout_queue_external;
934
935 if (m->pageout_queue == TRUE) {
936
937 queue_remove(&q->pgo_pending, m, vm_page_t, pageq);
938 m->pageout_queue = FALSE;
939
940 m->pageq.next = NULL;
941 m->pageq.prev = NULL;
942
943 vm_object_activity_end(m->object);
944 }
945 if (m->laundry == TRUE) {
946
947 m->laundry = FALSE;
948 q->pgo_laundry--;
949
950 if (q->pgo_throttled == TRUE) {
951 q->pgo_throttled = FALSE;
952 thread_wakeup((event_t) &q->pgo_laundry);
953 }
954 if (q->pgo_draining == TRUE && q->pgo_laundry == 0) {
955 q->pgo_draining = FALSE;
956 thread_wakeup((event_t) (&q->pgo_laundry+1));
957 }
958 }
959 }
960
961
962 static void
963 vm_pageout_throttle_up_batch(
964 struct vm_pageout_queue *q,
965 int batch_cnt)
966 {
967 #if DEBUG
968 lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
969 #endif
970
971 vm_pageout_throttle_up_count += batch_cnt;
972
973 q->pgo_laundry -= batch_cnt;
974
975 if (q->pgo_throttled == TRUE) {
976 q->pgo_throttled = FALSE;
977 thread_wakeup((event_t) &q->pgo_laundry);
978 }
979 if (q->pgo_draining == TRUE && q->pgo_laundry == 0) {
980 q->pgo_draining = FALSE;
981 thread_wakeup((event_t) (&q->pgo_laundry+1));
982 }
983 }
984
985
986
987 /*
988 * VM memory pressure monitoring.
989 *
990 * vm_pageout_scan() keeps track of the number of pages it considers and
991 * reclaims, in the currently active vm_pageout_stat[vm_pageout_stat_now].
992 *
993 * compute_memory_pressure() is called every second from compute_averages()
994 * and moves "vm_pageout_stat_now" forward, to start accumulating the number
995 * of recalimed pages in a new vm_pageout_stat[] bucket.
996 *
997 * mach_vm_pressure_monitor() collects past statistics about memory pressure.
998 * The caller provides the number of seconds ("nsecs") worth of statistics
999 * it wants, up to 30 seconds.
1000 * It computes the number of pages reclaimed in the past "nsecs" seconds and
1001 * also returns the number of pages the system still needs to reclaim at this
1002 * moment in time.
1003 */
1004 #define VM_PAGEOUT_STAT_SIZE 31
1005 struct vm_pageout_stat {
1006 unsigned int considered;
1007 unsigned int reclaimed;
1008 } vm_pageout_stats[VM_PAGEOUT_STAT_SIZE] = {{0,0}, };
1009 unsigned int vm_pageout_stat_now = 0;
1010 unsigned int vm_memory_pressure = 0;
1011
1012 #define VM_PAGEOUT_STAT_BEFORE(i) \
1013 (((i) == 0) ? VM_PAGEOUT_STAT_SIZE - 1 : (i) - 1)
1014 #define VM_PAGEOUT_STAT_AFTER(i) \
1015 (((i) == VM_PAGEOUT_STAT_SIZE - 1) ? 0 : (i) + 1)
1016
1017 #if VM_PAGE_BUCKETS_CHECK
1018 int vm_page_buckets_check_interval = 10; /* in seconds */
1019 #endif /* VM_PAGE_BUCKETS_CHECK */
1020
1021 /*
1022 * Called from compute_averages().
1023 */
1024 void
1025 compute_memory_pressure(
1026 __unused void *arg)
1027 {
1028 unsigned int vm_pageout_next;
1029
1030 #if VM_PAGE_BUCKETS_CHECK
1031 /* check the consistency of VM page buckets at regular interval */
1032 static int counter = 0;
1033 if ((++counter % vm_page_buckets_check_interval) == 0) {
1034 vm_page_buckets_check();
1035 }
1036 #endif /* VM_PAGE_BUCKETS_CHECK */
1037
1038 vm_memory_pressure =
1039 vm_pageout_stats[VM_PAGEOUT_STAT_BEFORE(vm_pageout_stat_now)].reclaimed;
1040
1041 commpage_set_memory_pressure( vm_memory_pressure );
1042
1043 /* move "now" forward */
1044 vm_pageout_next = VM_PAGEOUT_STAT_AFTER(vm_pageout_stat_now);
1045 vm_pageout_stats[vm_pageout_next].considered = 0;
1046 vm_pageout_stats[vm_pageout_next].reclaimed = 0;
1047 vm_pageout_stat_now = vm_pageout_next;
1048 }
1049
1050
1051 /*
1052 * IMPORTANT
1053 * mach_vm_ctl_page_free_wanted() is called indirectly, via
1054 * mach_vm_pressure_monitor(), when taking a stackshot. Therefore,
1055 * it must be safe in the restricted stackshot context. Locks and/or
1056 * blocking are not allowable.
1057 */
1058 unsigned int
1059 mach_vm_ctl_page_free_wanted(void)
1060 {
1061 unsigned int page_free_target, page_free_count, page_free_wanted;
1062
1063 page_free_target = vm_page_free_target;
1064 page_free_count = vm_page_free_count;
1065 if (page_free_target > page_free_count) {
1066 page_free_wanted = page_free_target - page_free_count;
1067 } else {
1068 page_free_wanted = 0;
1069 }
1070
1071 return page_free_wanted;
1072 }
1073
1074
1075 /*
1076 * IMPORTANT:
1077 * mach_vm_pressure_monitor() is called when taking a stackshot, with
1078 * wait_for_pressure FALSE, so that code path must remain safe in the
1079 * restricted stackshot context. No blocking or locks are allowable.
1080 * on that code path.
1081 */
1082
1083 kern_return_t
1084 mach_vm_pressure_monitor(
1085 boolean_t wait_for_pressure,
1086 unsigned int nsecs_monitored,
1087 unsigned int *pages_reclaimed_p,
1088 unsigned int *pages_wanted_p)
1089 {
1090 wait_result_t wr;
1091 unsigned int vm_pageout_then, vm_pageout_now;
1092 unsigned int pages_reclaimed;
1093
1094 /*
1095 * We don't take the vm_page_queue_lock here because we don't want
1096 * vm_pressure_monitor() to get in the way of the vm_pageout_scan()
1097 * thread when it's trying to reclaim memory. We don't need fully
1098 * accurate monitoring anyway...
1099 */
1100
1101 if (wait_for_pressure) {
1102 /* wait until there's memory pressure */
1103 while (vm_page_free_count >= vm_page_free_target) {
1104 wr = assert_wait((event_t) &vm_page_free_wanted,
1105 THREAD_INTERRUPTIBLE);
1106 if (wr == THREAD_WAITING) {
1107 wr = thread_block(THREAD_CONTINUE_NULL);
1108 }
1109 if (wr == THREAD_INTERRUPTED) {
1110 return KERN_ABORTED;
1111 }
1112 if (wr == THREAD_AWAKENED) {
1113 /*
1114 * The memory pressure might have already
1115 * been relieved but let's not block again
1116 * and let's report that there was memory
1117 * pressure at some point.
1118 */
1119 break;
1120 }
1121 }
1122 }
1123
1124 /* provide the number of pages the system wants to reclaim */
1125 if (pages_wanted_p != NULL) {
1126 *pages_wanted_p = mach_vm_ctl_page_free_wanted();
1127 }
1128
1129 if (pages_reclaimed_p == NULL) {
1130 return KERN_SUCCESS;
1131 }
1132
1133 /* provide number of pages reclaimed in the last "nsecs_monitored" */
1134 do {
1135 vm_pageout_now = vm_pageout_stat_now;
1136 pages_reclaimed = 0;
1137 for (vm_pageout_then =
1138 VM_PAGEOUT_STAT_BEFORE(vm_pageout_now);
1139 vm_pageout_then != vm_pageout_now &&
1140 nsecs_monitored-- != 0;
1141 vm_pageout_then =
1142 VM_PAGEOUT_STAT_BEFORE(vm_pageout_then)) {
1143 pages_reclaimed += vm_pageout_stats[vm_pageout_then].reclaimed;
1144 }
1145 } while (vm_pageout_now != vm_pageout_stat_now);
1146 *pages_reclaimed_p = pages_reclaimed;
1147
1148 return KERN_SUCCESS;
1149 }
1150
1151
1152
1153 /*
1154 * function in BSD to apply I/O throttle to the pageout thread
1155 */
1156 extern void vm_pageout_io_throttle(void);
1157
1158 /*
1159 * Page States: Used below to maintain the page state
1160 * before it's removed from it's Q. This saved state
1161 * helps us do the right accounting in certain cases
1162 */
1163 #define PAGE_STATE_SPECULATIVE 1
1164 #define PAGE_STATE_ANONYMOUS 2
1165 #define PAGE_STATE_INACTIVE 3
1166 #define PAGE_STATE_INACTIVE_FIRST 4
1167 #define PAGE_STATE_CLEAN 5
1168
1169
1170 #define VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m) \
1171 MACRO_BEGIN \
1172 /* \
1173 * If a "reusable" page somehow made it back into \
1174 * the active queue, it's been re-used and is not \
1175 * quite re-usable. \
1176 * If the VM object was "all_reusable", consider it \
1177 * as "all re-used" instead of converting it to \
1178 * "partially re-used", which could be expensive. \
1179 */ \
1180 if ((m)->reusable || \
1181 (m)->object->all_reusable) { \
1182 vm_object_reuse_pages((m)->object, \
1183 (m)->offset, \
1184 (m)->offset + PAGE_SIZE_64, \
1185 FALSE); \
1186 } \
1187 MACRO_END
1188
1189
1190 #define VM_PAGEOUT_DELAYED_UNLOCK_LIMIT 64
1191 #define VM_PAGEOUT_DELAYED_UNLOCK_LIMIT_MAX 1024
1192
1193 #define FCS_IDLE 0
1194 #define FCS_DELAYED 1
1195 #define FCS_DEADLOCK_DETECTED 2
1196
1197 struct flow_control {
1198 int state;
1199 mach_timespec_t ts;
1200 };
1201
1202 uint32_t vm_pageout_considered_page = 0;
1203 uint32_t vm_page_filecache_min = 0;
1204
1205 #define VM_PAGE_FILECACHE_MIN 50000
1206 #define ANONS_GRABBED_LIMIT 2
1207
1208 /*
1209 * vm_pageout_scan does the dirty work for the pageout daemon.
1210 * It returns with both vm_page_queue_free_lock and vm_page_queue_lock
1211 * held and vm_page_free_wanted == 0.
1212 */
1213 void
1214 vm_pageout_scan(void)
1215 {
1216 unsigned int loop_count = 0;
1217 unsigned int inactive_burst_count = 0;
1218 unsigned int active_burst_count = 0;
1219 unsigned int reactivated_this_call;
1220 unsigned int reactivate_limit;
1221 vm_page_t local_freeq = NULL;
1222 int local_freed = 0;
1223 int delayed_unlock;
1224 int delayed_unlock_limit = 0;
1225 int refmod_state = 0;
1226 int vm_pageout_deadlock_target = 0;
1227 struct vm_pageout_queue *iq;
1228 struct vm_pageout_queue *eq;
1229 struct vm_speculative_age_q *sq;
1230 struct flow_control flow_control = { 0, { 0, 0 } };
1231 boolean_t inactive_throttled = FALSE;
1232 boolean_t try_failed;
1233 mach_timespec_t ts;
1234 unsigned int msecs = 0;
1235 vm_object_t object;
1236 vm_object_t last_object_tried;
1237 uint32_t catch_up_count = 0;
1238 uint32_t inactive_reclaim_run;
1239 boolean_t forced_reclaim;
1240 boolean_t exceeded_burst_throttle;
1241 boolean_t grab_anonymous = FALSE;
1242 boolean_t force_anonymous = FALSE;
1243 int anons_grabbed = 0;
1244 int page_prev_state = 0;
1245 int cache_evict_throttle = 0;
1246 uint32_t vm_pageout_inactive_external_forced_reactivate_limit = 0;
1247 int force_purge = 0;
1248
1249 #if VM_PRESSURE_EVENTS
1250 vm_pressure_level_t pressure_level;
1251 #endif /* VM_PRESSURE_EVENTS */
1252
1253 VM_DEBUG_EVENT(vm_pageout_scan, VM_PAGEOUT_SCAN, DBG_FUNC_START,
1254 vm_pageout_speculative_clean, vm_pageout_inactive_clean,
1255 vm_pageout_inactive_dirty_internal, vm_pageout_inactive_dirty_external);
1256
1257 flow_control.state = FCS_IDLE;
1258 iq = &vm_pageout_queue_internal;
1259 eq = &vm_pageout_queue_external;
1260 sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q];
1261
1262
1263 XPR(XPR_VM_PAGEOUT, "vm_pageout_scan\n", 0, 0, 0, 0, 0);
1264
1265
1266 vm_page_lock_queues();
1267 delayed_unlock = 1; /* must be nonzero if Qs are locked, 0 if unlocked */
1268
1269 /*
1270 * Calculate the max number of referenced pages on the inactive
1271 * queue that we will reactivate.
1272 */
1273 reactivated_this_call = 0;
1274 reactivate_limit = VM_PAGE_REACTIVATE_LIMIT(vm_page_active_count +
1275 vm_page_inactive_count);
1276 inactive_reclaim_run = 0;
1277
1278 vm_pageout_inactive_external_forced_reactivate_limit = vm_page_active_count + vm_page_inactive_count;
1279
1280 /*
1281 * We want to gradually dribble pages from the active queue
1282 * to the inactive queue. If we let the inactive queue get
1283 * very small, and then suddenly dump many pages into it,
1284 * those pages won't get a sufficient chance to be referenced
1285 * before we start taking them from the inactive queue.
1286 *
1287 * We must limit the rate at which we send pages to the pagers
1288 * so that we don't tie up too many pages in the I/O queues.
1289 * We implement a throttling mechanism using the laundry count
1290 * to limit the number of pages outstanding to the default
1291 * and external pagers. We can bypass the throttles and look
1292 * for clean pages if the pageout queues don't drain in a timely
1293 * fashion since this may indicate that the pageout paths are
1294 * stalled waiting for memory, which only we can provide.
1295 */
1296
1297
1298 Restart:
1299 assert(delayed_unlock!=0);
1300
1301 /*
1302 * Recalculate vm_page_inactivate_target.
1303 */
1304 vm_page_inactive_target = VM_PAGE_INACTIVE_TARGET(vm_page_active_count +
1305 vm_page_inactive_count +
1306 vm_page_speculative_count);
1307
1308 vm_page_anonymous_min = vm_page_inactive_target / 20;
1309
1310
1311 /*
1312 * don't want to wake the pageout_scan thread up everytime we fall below
1313 * the targets... set a low water mark at 0.25% below the target
1314 */
1315 vm_page_inactive_min = vm_page_inactive_target - (vm_page_inactive_target / 400);
1316
1317 if (vm_page_speculative_percentage > 50)
1318 vm_page_speculative_percentage = 50;
1319 else if (vm_page_speculative_percentage <= 0)
1320 vm_page_speculative_percentage = 1;
1321
1322 vm_page_speculative_target = VM_PAGE_SPECULATIVE_TARGET(vm_page_active_count +
1323 vm_page_inactive_count);
1324
1325 object = NULL;
1326 last_object_tried = NULL;
1327 try_failed = FALSE;
1328
1329 if ((vm_page_inactive_count + vm_page_speculative_count) < VM_PAGE_INACTIVE_HEALTHY_LIMIT(vm_page_active_count))
1330 catch_up_count = vm_page_inactive_count + vm_page_speculative_count;
1331 else
1332 catch_up_count = 0;
1333
1334 for (;;) {
1335 vm_page_t m;
1336
1337 DTRACE_VM2(rev, int, 1, (uint64_t *), NULL);
1338
1339 if (delayed_unlock == 0) {
1340 vm_page_lock_queues();
1341 delayed_unlock = 1;
1342 }
1343 if (vm_upl_wait_for_pages < 0)
1344 vm_upl_wait_for_pages = 0;
1345
1346 delayed_unlock_limit = VM_PAGEOUT_DELAYED_UNLOCK_LIMIT + vm_upl_wait_for_pages;
1347
1348 if (delayed_unlock_limit > VM_PAGEOUT_DELAYED_UNLOCK_LIMIT_MAX)
1349 delayed_unlock_limit = VM_PAGEOUT_DELAYED_UNLOCK_LIMIT_MAX;
1350
1351 /*
1352 * Move pages from active to inactive if we're below the target
1353 */
1354 /* if we are trying to make clean, we need to make sure we actually have inactive - mj */
1355 if ((vm_page_inactive_count + vm_page_speculative_count) >= vm_page_inactive_target)
1356 goto done_moving_active_pages;
1357
1358 if (object != NULL) {
1359 vm_object_unlock(object);
1360 object = NULL;
1361 vm_pageout_scan_wants_object = VM_OBJECT_NULL;
1362 }
1363 /*
1364 * Don't sweep through active queue more than the throttle
1365 * which should be kept relatively low
1366 */
1367 active_burst_count = MIN(vm_pageout_burst_active_throttle, vm_page_active_count);
1368
1369 VM_DEBUG_EVENT(vm_pageout_balance, VM_PAGEOUT_BALANCE, DBG_FUNC_START,
1370 vm_pageout_inactive, vm_pageout_inactive_used, vm_page_free_count, local_freed);
1371
1372 VM_DEBUG_EVENT(vm_pageout_balance, VM_PAGEOUT_BALANCE, DBG_FUNC_NONE,
1373 vm_pageout_speculative_clean, vm_pageout_inactive_clean,
1374 vm_pageout_inactive_dirty_internal, vm_pageout_inactive_dirty_external);
1375 memoryshot(VM_PAGEOUT_BALANCE, DBG_FUNC_START);
1376
1377
1378 while (!queue_empty(&vm_page_queue_active) && active_burst_count--) {
1379
1380 vm_pageout_active++;
1381
1382 m = (vm_page_t) queue_first(&vm_page_queue_active);
1383
1384 assert(m->active && !m->inactive);
1385 assert(!m->laundry);
1386 assert(m->object != kernel_object);
1387 assert(m->phys_page != vm_page_guard_addr);
1388
1389 DTRACE_VM2(scan, int, 1, (uint64_t *), NULL);
1390
1391 /*
1392 * by not passing in a pmap_flush_context we will forgo any TLB flushing, local or otherwise...
1393 *
1394 * a TLB flush isn't really needed here since at worst we'll miss the reference bit being
1395 * updated in the PTE if a remote processor still has this mapping cached in its TLB when the
1396 * new reference happens. If no futher references happen on the page after that remote TLB flushes
1397 * we'll see a clean, non-referenced page when it eventually gets pulled out of the inactive queue
1398 * by pageout_scan, which is just fine since the last reference would have happened quite far
1399 * in the past (TLB caches don't hang around for very long), and of course could just as easily
1400 * have happened before we moved the page
1401 */
1402 pmap_clear_refmod_options(m->phys_page, VM_MEM_REFERENCED, PMAP_OPTIONS_NOFLUSH, (void *)NULL);
1403
1404 /*
1405 * The page might be absent or busy,
1406 * but vm_page_deactivate can handle that.
1407 * FALSE indicates that we don't want a H/W clear reference
1408 */
1409 vm_page_deactivate_internal(m, FALSE);
1410
1411 if (delayed_unlock++ > delayed_unlock_limit) {
1412
1413 if (local_freeq) {
1414 vm_page_unlock_queues();
1415
1416 VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_START,
1417 vm_page_free_count, local_freed, delayed_unlock_limit, 1);
1418
1419 vm_page_free_list(local_freeq, TRUE);
1420
1421 VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_END,
1422 vm_page_free_count, 0, 0, 1);
1423
1424 local_freeq = NULL;
1425 local_freed = 0;
1426 vm_page_lock_queues();
1427 } else {
1428 lck_mtx_yield(&vm_page_queue_lock);
1429 }
1430
1431 delayed_unlock = 1;
1432
1433 /*
1434 * continue the while loop processing
1435 * the active queue... need to hold
1436 * the page queues lock
1437 */
1438 }
1439 }
1440
1441 VM_DEBUG_EVENT(vm_pageout_balance, VM_PAGEOUT_BALANCE, DBG_FUNC_END,
1442 vm_page_active_count, vm_page_inactive_count, vm_page_speculative_count, vm_page_inactive_target);
1443 memoryshot(VM_PAGEOUT_BALANCE, DBG_FUNC_END);
1444
1445 /**********************************************************************
1446 * above this point we're playing with the active queue
1447 * below this point we're playing with the throttling mechanisms
1448 * and the inactive queue
1449 **********************************************************************/
1450
1451 done_moving_active_pages:
1452
1453 if (vm_page_free_count + local_freed >= vm_page_free_target) {
1454 if (object != NULL) {
1455 vm_object_unlock(object);
1456 object = NULL;
1457 }
1458 vm_pageout_scan_wants_object = VM_OBJECT_NULL;
1459
1460 if (local_freeq) {
1461 vm_page_unlock_queues();
1462
1463 VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_START,
1464 vm_page_free_count, local_freed, delayed_unlock_limit, 2);
1465
1466 vm_page_free_list(local_freeq, TRUE);
1467
1468 VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_END,
1469 vm_page_free_count, local_freed, 0, 2);
1470
1471 local_freeq = NULL;
1472 local_freed = 0;
1473 vm_page_lock_queues();
1474 }
1475 /*
1476 * make sure the pageout I/O threads are running
1477 * throttled in case there are still requests
1478 * in the laundry... since we have met our targets
1479 * we don't need the laundry to be cleaned in a timely
1480 * fashion... so let's avoid interfering with foreground
1481 * activity
1482 */
1483 vm_pageout_adjust_io_throttles(iq, eq, TRUE);
1484
1485 /*
1486 * recalculate vm_page_inactivate_target
1487 */
1488 vm_page_inactive_target = VM_PAGE_INACTIVE_TARGET(vm_page_active_count +
1489 vm_page_inactive_count +
1490 vm_page_speculative_count);
1491 if (((vm_page_inactive_count + vm_page_speculative_count) < vm_page_inactive_target) &&
1492 !queue_empty(&vm_page_queue_active)) {
1493 /*
1494 * inactive target still not met... keep going
1495 * until we get the queues balanced...
1496 */
1497 continue;
1498 }
1499 lck_mtx_lock(&vm_page_queue_free_lock);
1500
1501 if ((vm_page_free_count >= vm_page_free_target) &&
1502 (vm_page_free_wanted == 0) && (vm_page_free_wanted_privileged == 0)) {
1503 /*
1504 * done - we have met our target *and*
1505 * there is no one waiting for a page.
1506 */
1507 return_from_scan:
1508 assert(vm_pageout_scan_wants_object == VM_OBJECT_NULL);
1509
1510 VM_DEBUG_EVENT(vm_pageout_scan, VM_PAGEOUT_SCAN, DBG_FUNC_NONE,
1511 vm_pageout_inactive, vm_pageout_inactive_used, 0, 0);
1512 VM_DEBUG_EVENT(vm_pageout_scan, VM_PAGEOUT_SCAN, DBG_FUNC_END,
1513 vm_pageout_speculative_clean, vm_pageout_inactive_clean,
1514 vm_pageout_inactive_dirty_internal, vm_pageout_inactive_dirty_external);
1515
1516 return;
1517 }
1518 lck_mtx_unlock(&vm_page_queue_free_lock);
1519 }
1520
1521 /*
1522 * Before anything, we check if we have any ripe volatile
1523 * objects around. If so, try to purge the first object.
1524 * If the purge fails, fall through to reclaim a page instead.
1525 * If the purge succeeds, go back to the top and reevalute
1526 * the new memory situation.
1527 */
1528
1529 assert (available_for_purge>=0);
1530 force_purge = 0; /* no force-purging */
1531
1532 #if VM_PRESSURE_EVENTS
1533 pressure_level = memorystatus_vm_pressure_level;
1534
1535 if (pressure_level > kVMPressureNormal) {
1536
1537 if (pressure_level >= kVMPressureCritical) {
1538 force_purge = memorystatus_purge_on_critical;
1539 } else if (pressure_level >= kVMPressureUrgent) {
1540 force_purge = memorystatus_purge_on_urgent;
1541 } else if (pressure_level >= kVMPressureWarning) {
1542 force_purge = memorystatus_purge_on_warning;
1543 }
1544 }
1545 #endif /* VM_PRESSURE_EVENTS */
1546
1547 if (available_for_purge || force_purge) {
1548
1549 if (object != NULL) {
1550 vm_object_unlock(object);
1551 object = NULL;
1552 }
1553
1554 memoryshot(VM_PAGEOUT_PURGEONE, DBG_FUNC_START);
1555
1556 VM_DEBUG_EVENT(vm_pageout_purgeone, VM_PAGEOUT_PURGEONE, DBG_FUNC_START, vm_page_free_count, 0, 0, 0);
1557 if (vm_purgeable_object_purge_one(force_purge, C_DONT_BLOCK)) {
1558
1559 VM_DEBUG_EVENT(vm_pageout_purgeone, VM_PAGEOUT_PURGEONE, DBG_FUNC_END, vm_page_free_count, 0, 0, 0);
1560 memoryshot(VM_PAGEOUT_PURGEONE, DBG_FUNC_END);
1561 continue;
1562 }
1563 VM_DEBUG_EVENT(vm_pageout_purgeone, VM_PAGEOUT_PURGEONE, DBG_FUNC_END, 0, 0, 0, -1);
1564 memoryshot(VM_PAGEOUT_PURGEONE, DBG_FUNC_END);
1565 }
1566
1567 if (queue_empty(&sq->age_q) && vm_page_speculative_count) {
1568 /*
1569 * try to pull pages from the aging bins...
1570 * see vm_page.h for an explanation of how
1571 * this mechanism works
1572 */
1573 struct vm_speculative_age_q *aq;
1574 mach_timespec_t ts_fully_aged;
1575 boolean_t can_steal = FALSE;
1576 int num_scanned_queues;
1577
1578 aq = &vm_page_queue_speculative[speculative_steal_index];
1579
1580 num_scanned_queues = 0;
1581 while (queue_empty(&aq->age_q) &&
1582 num_scanned_queues++ != VM_PAGE_MAX_SPECULATIVE_AGE_Q) {
1583
1584 speculative_steal_index++;
1585
1586 if (speculative_steal_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q)
1587 speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q;
1588
1589 aq = &vm_page_queue_speculative[speculative_steal_index];
1590 }
1591
1592 if (num_scanned_queues == VM_PAGE_MAX_SPECULATIVE_AGE_Q + 1) {
1593 /*
1594 * XXX We've scanned all the speculative
1595 * queues but still haven't found one
1596 * that is not empty, even though
1597 * vm_page_speculative_count is not 0.
1598 *
1599 * report the anomaly...
1600 */
1601 printf("vm_pageout_scan: "
1602 "all speculative queues empty "
1603 "but count=%d. Re-adjusting.\n",
1604 vm_page_speculative_count);
1605 if (vm_page_speculative_count > vm_page_speculative_count_drift_max)
1606 vm_page_speculative_count_drift_max = vm_page_speculative_count;
1607 vm_page_speculative_count_drifts++;
1608 #if 6553678
1609 Debugger("vm_pageout_scan: no speculative pages");
1610 #endif
1611 /* readjust... */
1612 vm_page_speculative_count = 0;
1613 /* ... and continue */
1614 continue;
1615 }
1616
1617 if (vm_page_speculative_count > vm_page_speculative_target)
1618 can_steal = TRUE;
1619 else {
1620 ts_fully_aged.tv_sec = (VM_PAGE_MAX_SPECULATIVE_AGE_Q * vm_page_speculative_q_age_ms) / 1000;
1621 ts_fully_aged.tv_nsec = ((VM_PAGE_MAX_SPECULATIVE_AGE_Q * vm_page_speculative_q_age_ms) % 1000)
1622 * 1000 * NSEC_PER_USEC;
1623
1624 ADD_MACH_TIMESPEC(&ts_fully_aged, &aq->age_ts);
1625
1626 clock_sec_t sec;
1627 clock_nsec_t nsec;
1628 clock_get_system_nanotime(&sec, &nsec);
1629 ts.tv_sec = (unsigned int) sec;
1630 ts.tv_nsec = nsec;
1631
1632 if (CMP_MACH_TIMESPEC(&ts, &ts_fully_aged) >= 0)
1633 can_steal = TRUE;
1634 }
1635 if (can_steal == TRUE)
1636 vm_page_speculate_ageit(aq);
1637 }
1638 if (queue_empty(&sq->age_q) && cache_evict_throttle == 0) {
1639 int pages_evicted;
1640
1641 if (object != NULL) {
1642 vm_object_unlock(object);
1643 object = NULL;
1644 }
1645 pages_evicted = vm_object_cache_evict(100, 10);
1646
1647 if (pages_evicted) {
1648
1649 vm_pageout_cache_evicted += pages_evicted;
1650
1651 VM_DEBUG_EVENT(vm_pageout_cache_evict, VM_PAGEOUT_CACHE_EVICT, DBG_FUNC_NONE,
1652 vm_page_free_count, pages_evicted, vm_pageout_cache_evicted, 0);
1653 memoryshot(VM_PAGEOUT_CACHE_EVICT, DBG_FUNC_NONE);
1654
1655 /*
1656 * we just freed up to 100 pages,
1657 * so go back to the top of the main loop
1658 * and re-evaulate the memory situation
1659 */
1660 continue;
1661 } else
1662 cache_evict_throttle = 100;
1663 }
1664 if (cache_evict_throttle)
1665 cache_evict_throttle--;
1666
1667
1668 exceeded_burst_throttle = FALSE;
1669 /*
1670 * Sometimes we have to pause:
1671 * 1) No inactive pages - nothing to do.
1672 * 2) Loop control - no acceptable pages found on the inactive queue
1673 * within the last vm_pageout_burst_inactive_throttle iterations
1674 * 3) Flow control - default pageout queue is full
1675 */
1676 if (queue_empty(&vm_page_queue_inactive) && queue_empty(&vm_page_queue_anonymous) && queue_empty(&sq->age_q)) {
1677 vm_pageout_scan_empty_throttle++;
1678 msecs = vm_pageout_empty_wait;
1679 goto vm_pageout_scan_delay;
1680
1681 } else if (inactive_burst_count >=
1682 MIN(vm_pageout_burst_inactive_throttle,
1683 (vm_page_inactive_count +
1684 vm_page_speculative_count))) {
1685 vm_pageout_scan_burst_throttle++;
1686 msecs = vm_pageout_burst_wait;
1687
1688 exceeded_burst_throttle = TRUE;
1689 goto vm_pageout_scan_delay;
1690
1691 } else if (vm_page_free_count > (vm_page_free_reserved / 4) &&
1692 VM_PAGEOUT_SCAN_NEEDS_TO_THROTTLE()) {
1693 vm_pageout_scan_swap_throttle++;
1694 msecs = vm_pageout_swap_wait;
1695 goto vm_pageout_scan_delay;
1696
1697 } else if (VM_PAGE_Q_THROTTLED(iq) &&
1698 VM_DYNAMIC_PAGING_ENABLED(memory_manager_default)) {
1699 clock_sec_t sec;
1700 clock_nsec_t nsec;
1701
1702 switch (flow_control.state) {
1703
1704 case FCS_IDLE:
1705 if ((vm_page_free_count + local_freed) < vm_page_free_target) {
1706
1707 if (vm_page_pageable_external_count > vm_page_filecache_min && !queue_empty(&vm_page_queue_inactive)) {
1708 anons_grabbed = ANONS_GRABBED_LIMIT;
1709 goto consider_inactive;
1710 }
1711 if (((vm_page_inactive_count + vm_page_speculative_count) < vm_page_inactive_target) && vm_page_active_count)
1712 continue;
1713 }
1714 reset_deadlock_timer:
1715 ts.tv_sec = vm_pageout_deadlock_wait / 1000;
1716 ts.tv_nsec = (vm_pageout_deadlock_wait % 1000) * 1000 * NSEC_PER_USEC;
1717 clock_get_system_nanotime(&sec, &nsec);
1718 flow_control.ts.tv_sec = (unsigned int) sec;
1719 flow_control.ts.tv_nsec = nsec;
1720 ADD_MACH_TIMESPEC(&flow_control.ts, &ts);
1721
1722 flow_control.state = FCS_DELAYED;
1723 msecs = vm_pageout_deadlock_wait;
1724
1725 break;
1726
1727 case FCS_DELAYED:
1728 clock_get_system_nanotime(&sec, &nsec);
1729 ts.tv_sec = (unsigned int) sec;
1730 ts.tv_nsec = nsec;
1731
1732 if (CMP_MACH_TIMESPEC(&ts, &flow_control.ts) >= 0) {
1733 /*
1734 * the pageout thread for the default pager is potentially
1735 * deadlocked since the
1736 * default pager queue has been throttled for more than the
1737 * allowable time... we need to move some clean pages or dirty
1738 * pages belonging to the external pagers if they aren't throttled
1739 * vm_page_free_wanted represents the number of threads currently
1740 * blocked waiting for pages... we'll move one page for each of
1741 * these plus a fixed amount to break the logjam... once we're done
1742 * moving this number of pages, we'll re-enter the FSC_DELAYED state
1743 * with a new timeout target since we have no way of knowing
1744 * whether we've broken the deadlock except through observation
1745 * of the queue associated with the default pager... we need to
1746 * stop moving pages and allow the system to run to see what
1747 * state it settles into.
1748 */
1749 vm_pageout_deadlock_target = vm_pageout_deadlock_relief + vm_page_free_wanted + vm_page_free_wanted_privileged;
1750 vm_pageout_scan_deadlock_detected++;
1751 flow_control.state = FCS_DEADLOCK_DETECTED;
1752 thread_wakeup((event_t) &vm_pageout_garbage_collect);
1753 goto consider_inactive;
1754 }
1755 /*
1756 * just resniff instead of trying
1757 * to compute a new delay time... we're going to be
1758 * awakened immediately upon a laundry completion,
1759 * so we won't wait any longer than necessary
1760 */
1761 msecs = vm_pageout_idle_wait;
1762 break;
1763
1764 case FCS_DEADLOCK_DETECTED:
1765 if (vm_pageout_deadlock_target)
1766 goto consider_inactive;
1767 goto reset_deadlock_timer;
1768
1769 }
1770 vm_pageout_scan_delay:
1771 if (object != NULL) {
1772 vm_object_unlock(object);
1773 object = NULL;
1774 }
1775 vm_pageout_scan_wants_object = VM_OBJECT_NULL;
1776
1777 vm_page_unlock_queues();
1778
1779 if (local_freeq) {
1780
1781 VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_START,
1782 vm_page_free_count, local_freed, delayed_unlock_limit, 3);
1783
1784 vm_page_free_list(local_freeq, TRUE);
1785
1786 VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_END,
1787 vm_page_free_count, local_freed, 0, 3);
1788
1789 local_freeq = NULL;
1790 local_freed = 0;
1791 }
1792 if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE)
1793 vm_consider_waking_compactor_swapper();
1794
1795 vm_page_lock_queues();
1796
1797 if (flow_control.state == FCS_DELAYED &&
1798 !VM_PAGE_Q_THROTTLED(iq)) {
1799 flow_control.state = FCS_IDLE;
1800 goto consider_inactive;
1801 }
1802
1803 if (vm_page_free_count >= vm_page_free_target) {
1804 /*
1805 * we're here because
1806 * 1) someone else freed up some pages while we had
1807 * the queues unlocked above
1808 * and we've hit one of the 3 conditions that
1809 * cause us to pause the pageout scan thread
1810 *
1811 * since we already have enough free pages,
1812 * let's avoid stalling and return normally
1813 *
1814 * before we return, make sure the pageout I/O threads
1815 * are running throttled in case there are still requests
1816 * in the laundry... since we have enough free pages
1817 * we don't need the laundry to be cleaned in a timely
1818 * fashion... so let's avoid interfering with foreground
1819 * activity
1820 *
1821 * we don't want to hold vm_page_queue_free_lock when
1822 * calling vm_pageout_adjust_io_throttles (since it
1823 * may cause other locks to be taken), we do the intitial
1824 * check outside of the lock. Once we take the lock,
1825 * we recheck the condition since it may have changed.
1826 * if it has, no problem, we will make the threads
1827 * non-throttled before actually blocking
1828 */
1829 vm_pageout_adjust_io_throttles(iq, eq, TRUE);
1830 }
1831 lck_mtx_lock(&vm_page_queue_free_lock);
1832
1833 if (vm_page_free_count >= vm_page_free_target &&
1834 (vm_page_free_wanted == 0) && (vm_page_free_wanted_privileged == 0)) {
1835 goto return_from_scan;
1836 }
1837 lck_mtx_unlock(&vm_page_queue_free_lock);
1838
1839 if ((vm_page_free_count + vm_page_cleaned_count) < vm_page_free_target) {
1840 /*
1841 * we're most likely about to block due to one of
1842 * the 3 conditions that cause vm_pageout_scan to
1843 * not be able to make forward progress w/r
1844 * to providing new pages to the free queue,
1845 * so unthrottle the I/O threads in case we
1846 * have laundry to be cleaned... it needs
1847 * to be completed ASAP.
1848 *
1849 * even if we don't block, we want the io threads
1850 * running unthrottled since the sum of free +
1851 * clean pages is still under our free target
1852 */
1853 vm_pageout_adjust_io_throttles(iq, eq, FALSE);
1854 }
1855 if (vm_page_cleaned_count > 0 && exceeded_burst_throttle == FALSE) {
1856 /*
1857 * if we get here we're below our free target and
1858 * we're stalling due to a full laundry queue or
1859 * we don't have any inactive pages other then
1860 * those in the clean queue...
1861 * however, we have pages on the clean queue that
1862 * can be moved to the free queue, so let's not
1863 * stall the pageout scan
1864 */
1865 flow_control.state = FCS_IDLE;
1866 goto consider_inactive;
1867 }
1868 VM_CHECK_MEMORYSTATUS;
1869
1870 if (flow_control.state != FCS_IDLE)
1871 vm_pageout_scan_throttle++;
1872 iq->pgo_throttled = TRUE;
1873
1874 if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE)
1875 vm_consider_waking_compactor_swapper();
1876
1877 assert_wait_timeout((event_t) &iq->pgo_laundry, THREAD_INTERRUPTIBLE, msecs, 1000*NSEC_PER_USEC);
1878 counter(c_vm_pageout_scan_block++);
1879
1880 vm_page_unlock_queues();
1881
1882 assert(vm_pageout_scan_wants_object == VM_OBJECT_NULL);
1883
1884 VM_DEBUG_EVENT(vm_pageout_thread_block, VM_PAGEOUT_THREAD_BLOCK, DBG_FUNC_START,
1885 iq->pgo_laundry, iq->pgo_maxlaundry, msecs, 0);
1886 memoryshot(VM_PAGEOUT_THREAD_BLOCK, DBG_FUNC_START);
1887
1888 thread_block(THREAD_CONTINUE_NULL);
1889
1890 VM_DEBUG_EVENT(vm_pageout_thread_block, VM_PAGEOUT_THREAD_BLOCK, DBG_FUNC_END,
1891 iq->pgo_laundry, iq->pgo_maxlaundry, msecs, 0);
1892 memoryshot(VM_PAGEOUT_THREAD_BLOCK, DBG_FUNC_END);
1893
1894 vm_page_lock_queues();
1895 delayed_unlock = 1;
1896
1897 iq->pgo_throttled = FALSE;
1898
1899 if (loop_count >= vm_page_inactive_count)
1900 loop_count = 0;
1901 inactive_burst_count = 0;
1902
1903 goto Restart;
1904 /*NOTREACHED*/
1905 }
1906
1907
1908 flow_control.state = FCS_IDLE;
1909 consider_inactive:
1910 vm_pageout_inactive_external_forced_reactivate_limit = MIN((vm_page_active_count + vm_page_inactive_count),
1911 vm_pageout_inactive_external_forced_reactivate_limit);
1912 loop_count++;
1913 inactive_burst_count++;
1914 vm_pageout_inactive++;
1915
1916
1917 /*
1918 * Choose a victim.
1919 */
1920 while (1) {
1921 m = NULL;
1922
1923 if (VM_DYNAMIC_PAGING_ENABLED(memory_manager_default)) {
1924 assert(vm_page_throttled_count == 0);
1925 assert(queue_empty(&vm_page_queue_throttled));
1926 }
1927 /*
1928 * The most eligible pages are ones we paged in speculatively,
1929 * but which have not yet been touched.
1930 */
1931 if (!queue_empty(&sq->age_q) && force_anonymous == FALSE) {
1932 m = (vm_page_t) queue_first(&sq->age_q);
1933
1934 page_prev_state = PAGE_STATE_SPECULATIVE;
1935
1936 break;
1937 }
1938 /*
1939 * Try a clean-queue inactive page.
1940 */
1941 if (!queue_empty(&vm_page_queue_cleaned)) {
1942 m = (vm_page_t) queue_first(&vm_page_queue_cleaned);
1943
1944 page_prev_state = PAGE_STATE_CLEAN;
1945
1946 break;
1947 }
1948
1949 grab_anonymous = (vm_page_anonymous_count > vm_page_anonymous_min);
1950
1951 if (vm_page_pageable_external_count < vm_page_filecache_min || force_anonymous == TRUE) {
1952 grab_anonymous = TRUE;
1953 anons_grabbed = 0;
1954 }
1955
1956 if (grab_anonymous == FALSE || anons_grabbed >= ANONS_GRABBED_LIMIT || queue_empty(&vm_page_queue_anonymous)) {
1957
1958 if ( !queue_empty(&vm_page_queue_inactive) ) {
1959 m = (vm_page_t) queue_first(&vm_page_queue_inactive);
1960
1961 page_prev_state = PAGE_STATE_INACTIVE;
1962 anons_grabbed = 0;
1963
1964 break;
1965 }
1966 }
1967 if ( !queue_empty(&vm_page_queue_anonymous) ) {
1968 m = (vm_page_t) queue_first(&vm_page_queue_anonymous);
1969
1970 page_prev_state = PAGE_STATE_ANONYMOUS;
1971 anons_grabbed++;
1972
1973 break;
1974 }
1975
1976 /*
1977 * if we've gotten here, we have no victim page.
1978 * if making clean, free the local freed list and return.
1979 * if making free, check to see if we've finished balancing the queues
1980 * yet, if we haven't just continue, else panic
1981 */
1982 vm_page_unlock_queues();
1983
1984 if (object != NULL) {
1985 vm_object_unlock(object);
1986 object = NULL;
1987 }
1988 vm_pageout_scan_wants_object = VM_OBJECT_NULL;
1989
1990 if (local_freeq) {
1991 VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_START,
1992 vm_page_free_count, local_freed, delayed_unlock_limit, 5);
1993
1994 vm_page_free_list(local_freeq, TRUE);
1995
1996 VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_END,
1997 vm_page_free_count, local_freed, 0, 5);
1998
1999 local_freeq = NULL;
2000 local_freed = 0;
2001 }
2002 vm_page_lock_queues();
2003 delayed_unlock = 1;
2004
2005 force_anonymous = FALSE;
2006
2007 if ((vm_page_inactive_count + vm_page_speculative_count) < vm_page_inactive_target)
2008 goto Restart;
2009
2010 if (!queue_empty(&sq->age_q))
2011 goto Restart;
2012
2013 panic("vm_pageout: no victim");
2014
2015 /* NOTREACHED */
2016 }
2017 force_anonymous = FALSE;
2018
2019 /*
2020 * we just found this page on one of our queues...
2021 * it can't also be on the pageout queue, so safe
2022 * to call VM_PAGE_QUEUES_REMOVE
2023 */
2024 assert(!m->pageout_queue);
2025
2026 VM_PAGE_QUEUES_REMOVE(m);
2027
2028 assert(!m->laundry);
2029 assert(!m->private);
2030 assert(!m->fictitious);
2031 assert(m->object != kernel_object);
2032 assert(m->phys_page != vm_page_guard_addr);
2033
2034
2035 if (page_prev_state != PAGE_STATE_SPECULATIVE)
2036 vm_pageout_stats[vm_pageout_stat_now].considered++;
2037
2038 DTRACE_VM2(scan, int, 1, (uint64_t *), NULL);
2039
2040 /*
2041 * check to see if we currently are working
2042 * with the same object... if so, we've
2043 * already got the lock
2044 */
2045 if (m->object != object) {
2046 /*
2047 * the object associated with candidate page is
2048 * different from the one we were just working
2049 * with... dump the lock if we still own it
2050 */
2051 if (object != NULL) {
2052 vm_object_unlock(object);
2053 object = NULL;
2054 vm_pageout_scan_wants_object = VM_OBJECT_NULL;
2055 }
2056 /*
2057 * Try to lock object; since we've alread got the
2058 * page queues lock, we can only 'try' for this one.
2059 * if the 'try' fails, we need to do a mutex_pause
2060 * to allow the owner of the object lock a chance to
2061 * run... otherwise, we're likely to trip over this
2062 * object in the same state as we work our way through
2063 * the queue... clumps of pages associated with the same
2064 * object are fairly typical on the inactive and active queues
2065 */
2066 if (!vm_object_lock_try_scan(m->object)) {
2067 vm_page_t m_want = NULL;
2068
2069 vm_pageout_inactive_nolock++;
2070
2071 if (page_prev_state == PAGE_STATE_CLEAN)
2072 vm_pageout_cleaned_nolock++;
2073
2074 if (page_prev_state == PAGE_STATE_SPECULATIVE)
2075 page_prev_state = PAGE_STATE_INACTIVE_FIRST;
2076
2077 pmap_clear_reference(m->phys_page);
2078 m->reference = FALSE;
2079
2080 /*
2081 * m->object must be stable since we hold the page queues lock...
2082 * we can update the scan_collisions field sans the object lock
2083 * since it is a separate field and this is the only spot that does
2084 * a read-modify-write operation and it is never executed concurrently...
2085 * we can asynchronously set this field to 0 when creating a UPL, so it
2086 * is possible for the value to be a bit non-determistic, but that's ok
2087 * since it's only used as a hint
2088 */
2089 m->object->scan_collisions++;
2090
2091 if ( !queue_empty(&sq->age_q) )
2092 m_want = (vm_page_t) queue_first(&sq->age_q);
2093 else if ( !queue_empty(&vm_page_queue_cleaned))
2094 m_want = (vm_page_t) queue_first(&vm_page_queue_cleaned);
2095 else if (anons_grabbed >= ANONS_GRABBED_LIMIT || queue_empty(&vm_page_queue_anonymous))
2096 m_want = (vm_page_t) queue_first(&vm_page_queue_inactive);
2097 else if ( !queue_empty(&vm_page_queue_anonymous))
2098 m_want = (vm_page_t) queue_first(&vm_page_queue_anonymous);
2099
2100 /*
2101 * this is the next object we're going to be interested in
2102 * try to make sure its available after the mutex_yield
2103 * returns control
2104 */
2105 if (m_want)
2106 vm_pageout_scan_wants_object = m_want->object;
2107
2108 /*
2109 * force us to dump any collected free pages
2110 * and to pause before moving on
2111 */
2112 try_failed = TRUE;
2113
2114 goto requeue_page;
2115 }
2116 object = m->object;
2117 vm_pageout_scan_wants_object = VM_OBJECT_NULL;
2118
2119 try_failed = FALSE;
2120 }
2121 if (catch_up_count)
2122 catch_up_count--;
2123
2124 if (m->busy) {
2125 if (m->encrypted_cleaning) {
2126 /*
2127 * ENCRYPTED SWAP:
2128 * if this page has already been picked up as
2129 * part of a page-out cluster, it will be busy
2130 * because it is being encrypted (see
2131 * vm_object_upl_request()). But we still
2132 * want to demote it from "clean-in-place"
2133 * (aka "adjacent") to "clean-and-free" (aka
2134 * "target"), so let's ignore its "busy" bit
2135 * here and proceed to check for "cleaning" a
2136 * little bit below...
2137 *
2138 * CAUTION CAUTION:
2139 * A "busy" page should still be left alone for
2140 * most purposes, so we have to be very careful
2141 * not to process that page too much.
2142 */
2143 assert(m->cleaning);
2144 goto consider_inactive_page;
2145 }
2146
2147 /*
2148 * Somebody is already playing with this page.
2149 * Put it back on the appropriate queue
2150 *
2151 */
2152 vm_pageout_inactive_busy++;
2153
2154 if (page_prev_state == PAGE_STATE_CLEAN)
2155 vm_pageout_cleaned_busy++;
2156
2157 requeue_page:
2158 switch (page_prev_state) {
2159
2160 case PAGE_STATE_SPECULATIVE:
2161 vm_page_speculate(m, FALSE);
2162 break;
2163
2164 case PAGE_STATE_ANONYMOUS:
2165 case PAGE_STATE_CLEAN:
2166 case PAGE_STATE_INACTIVE:
2167 VM_PAGE_ENQUEUE_INACTIVE(m, FALSE);
2168 break;
2169
2170 case PAGE_STATE_INACTIVE_FIRST:
2171 VM_PAGE_ENQUEUE_INACTIVE(m, TRUE);
2172 break;
2173 }
2174 goto done_with_inactivepage;
2175 }
2176
2177
2178 /*
2179 * If it's absent, in error or the object is no longer alive,
2180 * we can reclaim the page... in the no longer alive case,
2181 * there are 2 states the page can be in that preclude us
2182 * from reclaiming it - busy or cleaning - that we've already
2183 * dealt with
2184 */
2185 if (m->absent || m->error || !object->alive) {
2186
2187 if (m->absent)
2188 vm_pageout_inactive_absent++;
2189 else if (!object->alive)
2190 vm_pageout_inactive_notalive++;
2191 else
2192 vm_pageout_inactive_error++;
2193 reclaim_page:
2194 if (vm_pageout_deadlock_target) {
2195 vm_pageout_scan_inactive_throttle_success++;
2196 vm_pageout_deadlock_target--;
2197 }
2198
2199 DTRACE_VM2(dfree, int, 1, (uint64_t *), NULL);
2200
2201 if (object->internal) {
2202 DTRACE_VM2(anonfree, int, 1, (uint64_t *), NULL);
2203 } else {
2204 DTRACE_VM2(fsfree, int, 1, (uint64_t *), NULL);
2205 }
2206 assert(!m->cleaning);
2207 assert(!m->laundry);
2208
2209 m->busy = TRUE;
2210
2211 /*
2212 * remove page from object here since we're already
2213 * behind the object lock... defer the rest of the work
2214 * we'd normally do in vm_page_free_prepare_object
2215 * until 'vm_page_free_list' is called
2216 */
2217 if (m->tabled)
2218 vm_page_remove(m, TRUE);
2219
2220 assert(m->pageq.next == NULL &&
2221 m->pageq.prev == NULL);
2222 m->pageq.next = (queue_entry_t)local_freeq;
2223 local_freeq = m;
2224 local_freed++;
2225
2226 if (page_prev_state == PAGE_STATE_SPECULATIVE)
2227 vm_pageout_freed_from_speculative++;
2228 else if (page_prev_state == PAGE_STATE_CLEAN)
2229 vm_pageout_freed_from_cleaned++;
2230 else
2231 vm_pageout_freed_from_inactive_clean++;
2232
2233 if (page_prev_state != PAGE_STATE_SPECULATIVE)
2234 vm_pageout_stats[vm_pageout_stat_now].reclaimed++;
2235
2236 inactive_burst_count = 0;
2237 goto done_with_inactivepage;
2238 }
2239 /*
2240 * If the object is empty, the page must be reclaimed even
2241 * if dirty or used.
2242 * If the page belongs to a volatile object, we stick it back
2243 * on.
2244 */
2245 if (object->copy == VM_OBJECT_NULL) {
2246 if (object->purgable == VM_PURGABLE_EMPTY) {
2247 if (m->pmapped == TRUE) {
2248 /* unmap the page */
2249 refmod_state = pmap_disconnect(m->phys_page);
2250 if (refmod_state & VM_MEM_MODIFIED) {
2251 SET_PAGE_DIRTY(m, FALSE);
2252 }
2253 }
2254 if (m->dirty || m->precious) {
2255 /* we saved the cost of cleaning this page ! */
2256 vm_page_purged_count++;
2257 }
2258 goto reclaim_page;
2259 }
2260
2261 if (COMPRESSED_PAGER_IS_ACTIVE) {
2262 /*
2263 * With the VM compressor, the cost of
2264 * reclaiming a page is much lower (no I/O),
2265 * so if we find a "volatile" page, it's better
2266 * to let it get compressed rather than letting
2267 * it occupy a full page until it gets purged.
2268 * So no need to check for "volatile" here.
2269 */
2270 } else if (object->purgable == VM_PURGABLE_VOLATILE) {
2271 /*
2272 * Avoid cleaning a "volatile" page which might
2273 * be purged soon.
2274 */
2275
2276 /* if it's wired, we can't put it on our queue */
2277 assert(!VM_PAGE_WIRED(m));
2278
2279 /* just stick it back on! */
2280 reactivated_this_call++;
2281
2282 if (page_prev_state == PAGE_STATE_CLEAN)
2283 vm_pageout_cleaned_volatile_reactivated++;
2284
2285 goto reactivate_page;
2286 }
2287 }
2288
2289 consider_inactive_page:
2290 if (m->busy) {
2291 /*
2292 * CAUTION CAUTION:
2293 * A "busy" page should always be left alone, except...
2294 */
2295 if (m->cleaning && m->encrypted_cleaning) {
2296 /*
2297 * ENCRYPTED_SWAP:
2298 * We could get here with a "busy" page
2299 * if it's being encrypted during a
2300 * "clean-in-place" operation. We'll deal
2301 * with it right away by testing if it has been
2302 * referenced and either reactivating it or
2303 * promoting it from "clean-in-place" to
2304 * "clean-and-free".
2305 */
2306 } else {
2307 panic("\"busy\" page considered for pageout\n");
2308 }
2309 }
2310
2311 /*
2312 * If it's being used, reactivate.
2313 * (Fictitious pages are either busy or absent.)
2314 * First, update the reference and dirty bits
2315 * to make sure the page is unreferenced.
2316 */
2317 refmod_state = -1;
2318
2319 if (m->reference == FALSE && m->pmapped == TRUE) {
2320 refmod_state = pmap_get_refmod(m->phys_page);
2321
2322 if (refmod_state & VM_MEM_REFERENCED)
2323 m->reference = TRUE;
2324 if (refmod_state & VM_MEM_MODIFIED) {
2325 SET_PAGE_DIRTY(m, FALSE);
2326 }
2327 }
2328
2329 /*
2330 * if (m->cleaning && !m->pageout)
2331 * If already cleaning this page in place and it hasn't
2332 * been recently referenced, just pull off the queue.
2333 * We can leave the page mapped, and upl_commit_range
2334 * will put it on the clean queue.
2335 *
2336 * note: if m->encrypted_cleaning == TRUE, then
2337 * m->cleaning == TRUE
2338 * and we'll handle it here
2339 *
2340 * if (m->pageout && !m->cleaning)
2341 * an msync INVALIDATE is in progress...
2342 * this page has been marked for destruction
2343 * after it has been cleaned,
2344 * but not yet gathered into a UPL
2345 * where 'cleaning' will be set...
2346 * just leave it off the paging queues
2347 *
2348 * if (m->pageout && m->clenaing)
2349 * an msync INVALIDATE is in progress
2350 * and the UPL has already gathered this page...
2351 * just leave it off the paging queues
2352 */
2353
2354 /*
2355 * page with m->pageout and still on the queues means that an
2356 * MS_INVALIDATE is in progress on this page... leave it alone
2357 */
2358 if (m->pageout) {
2359 goto done_with_inactivepage;
2360 }
2361
2362 /* if cleaning, reactivate if referenced. otherwise, just pull off queue */
2363 if (m->cleaning) {
2364 if (m->reference == TRUE) {
2365 reactivated_this_call++;
2366 goto reactivate_page;
2367 } else {
2368 goto done_with_inactivepage;
2369 }
2370 }
2371
2372 if (m->reference || m->dirty) {
2373 /* deal with a rogue "reusable" page */
2374 VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m);
2375 }
2376
2377 if (!m->no_cache &&
2378 (m->reference ||
2379 (m->xpmapped && !object->internal && (vm_page_xpmapped_external_count < (vm_page_external_count / 4))))) {
2380 /*
2381 * The page we pulled off the inactive list has
2382 * been referenced. It is possible for other
2383 * processors to be touching pages faster than we
2384 * can clear the referenced bit and traverse the
2385 * inactive queue, so we limit the number of
2386 * reactivations.
2387 */
2388 if (++reactivated_this_call >= reactivate_limit) {
2389 vm_pageout_reactivation_limit_exceeded++;
2390 } else if (catch_up_count) {
2391 vm_pageout_catch_ups++;
2392 } else if (++inactive_reclaim_run >= VM_PAGEOUT_INACTIVE_FORCE_RECLAIM) {
2393 vm_pageout_inactive_force_reclaim++;
2394 } else {
2395 uint32_t isinuse;
2396
2397 if (page_prev_state == PAGE_STATE_CLEAN)
2398 vm_pageout_cleaned_reference_reactivated++;
2399
2400 reactivate_page:
2401 if ( !object->internal && object->pager != MEMORY_OBJECT_NULL &&
2402 vnode_pager_get_isinuse(object->pager, &isinuse) == KERN_SUCCESS && !isinuse) {
2403 /*
2404 * no explict mappings of this object exist
2405 * and it's not open via the filesystem
2406 */
2407 vm_page_deactivate(m);
2408 vm_pageout_inactive_deactivated++;
2409 } else {
2410 /*
2411 * The page was/is being used, so put back on active list.
2412 */
2413 vm_page_activate(m);
2414 VM_STAT_INCR(reactivations);
2415 inactive_burst_count = 0;
2416 }
2417
2418 if (page_prev_state == PAGE_STATE_CLEAN)
2419 vm_pageout_cleaned_reactivated++;
2420
2421 vm_pageout_inactive_used++;
2422
2423 goto done_with_inactivepage;
2424 }
2425 /*
2426 * Make sure we call pmap_get_refmod() if it
2427 * wasn't already called just above, to update
2428 * the dirty bit.
2429 */
2430 if ((refmod_state == -1) && !m->dirty && m->pmapped) {
2431 refmod_state = pmap_get_refmod(m->phys_page);
2432 if (refmod_state & VM_MEM_MODIFIED) {
2433 SET_PAGE_DIRTY(m, FALSE);
2434 }
2435 }
2436 forced_reclaim = TRUE;
2437 } else {
2438 forced_reclaim = FALSE;
2439 }
2440
2441 XPR(XPR_VM_PAGEOUT,
2442 "vm_pageout_scan, replace object 0x%X offset 0x%X page 0x%X\n",
2443 object, m->offset, m, 0,0);
2444
2445 /*
2446 * we've got a candidate page to steal...
2447 *
2448 * m->dirty is up to date courtesy of the
2449 * preceding check for m->reference... if
2450 * we get here, then m->reference had to be
2451 * FALSE (or possibly "reactivate_limit" was
2452 * exceeded), but in either case we called
2453 * pmap_get_refmod() and updated both
2454 * m->reference and m->dirty
2455 *
2456 * if it's dirty or precious we need to
2457 * see if the target queue is throtttled
2458 * it if is, we need to skip over it by moving it back
2459 * to the end of the inactive queue
2460 */
2461
2462 inactive_throttled = FALSE;
2463
2464 if (m->dirty || m->precious) {
2465 if (object->internal) {
2466 if (VM_PAGE_Q_THROTTLED(iq))
2467 inactive_throttled = TRUE;
2468 } else if (VM_PAGE_Q_THROTTLED(eq)) {
2469 inactive_throttled = TRUE;
2470 }
2471 }
2472 throttle_inactive:
2473 if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) &&
2474 object->internal && m->dirty &&
2475 (object->purgable == VM_PURGABLE_DENY ||
2476 object->purgable == VM_PURGABLE_NONVOLATILE ||
2477 object->purgable == VM_PURGABLE_VOLATILE)) {
2478 queue_enter(&vm_page_queue_throttled, m,
2479 vm_page_t, pageq);
2480 m->throttled = TRUE;
2481 vm_page_throttled_count++;
2482
2483 vm_pageout_scan_reclaimed_throttled++;
2484
2485 inactive_burst_count = 0;
2486 goto done_with_inactivepage;
2487 }
2488 if (inactive_throttled == TRUE) {
2489
2490 if (object->internal == FALSE) {
2491 /*
2492 * we need to break up the following potential deadlock case...
2493 * a) The external pageout thread is stuck on the truncate lock for a file that is being extended i.e. written.
2494 * b) The thread doing the writing is waiting for pages while holding the truncate lock
2495 * c) Most of the pages in the inactive queue belong to this file.
2496 *
2497 * we are potentially in this deadlock because...
2498 * a) the external pageout queue is throttled
2499 * b) we're done with the active queue and moved on to the inactive queue
2500 * c) we've got a dirty external page
2501 *
2502 * since we don't know the reason for the external pageout queue being throttled we
2503 * must suspect that we are deadlocked, so move the current page onto the active queue
2504 * in an effort to cause a page from the active queue to 'age' to the inactive queue
2505 *
2506 * if we don't have jetsam configured (i.e. we have a dynamic pager), set
2507 * 'force_anonymous' to TRUE to cause us to grab a page from the cleaned/anonymous
2508 * pool the next time we select a victim page... if we can make enough new free pages,
2509 * the deadlock will break, the external pageout queue will empty and it will no longer
2510 * be throttled
2511 *
2512 * if we have jestam configured, keep a count of the pages reactivated this way so
2513 * that we can try to find clean pages in the active/inactive queues before
2514 * deciding to jetsam a process
2515 */
2516 vm_pageout_scan_inactive_throttled_external++;
2517
2518 queue_enter(&vm_page_queue_active, m, vm_page_t, pageq);
2519 m->active = TRUE;
2520 vm_page_active_count++;
2521 vm_page_pageable_external_count++;
2522
2523 vm_pageout_adjust_io_throttles(iq, eq, FALSE);
2524
2525 #if CONFIG_MEMORYSTATUS && CONFIG_JETSAM
2526 vm_pageout_inactive_external_forced_reactivate_limit--;
2527
2528 if (vm_pageout_inactive_external_forced_reactivate_limit <= 0) {
2529 vm_pageout_inactive_external_forced_reactivate_limit = vm_page_active_count + vm_page_inactive_count;
2530 /*
2531 * Possible deadlock scenario so request jetsam action
2532 */
2533 assert(object);
2534 vm_object_unlock(object);
2535 object = VM_OBJECT_NULL;
2536 vm_page_unlock_queues();
2537
2538 VM_DEBUG_EVENT(vm_pageout_jetsam, VM_PAGEOUT_JETSAM, DBG_FUNC_START,
2539 vm_page_active_count, vm_page_inactive_count, vm_page_free_count, vm_page_free_count);
2540
2541 /* Kill first suitable process */
2542 if (memorystatus_kill_on_VM_page_shortage(FALSE) == FALSE) {
2543 panic("vm_pageout_scan: Jetsam request failed\n");
2544 }
2545
2546 VM_DEBUG_EVENT(vm_pageout_jetsam, VM_PAGEOUT_JETSAM, DBG_FUNC_END, 0, 0, 0, 0);
2547
2548 vm_pageout_inactive_external_forced_jetsam_count++;
2549 vm_page_lock_queues();
2550 delayed_unlock = 1;
2551 }
2552 #else /* CONFIG_MEMORYSTATUS && CONFIG_JETSAM */
2553 force_anonymous = TRUE;
2554 #endif
2555 inactive_burst_count = 0;
2556 goto done_with_inactivepage;
2557 } else {
2558 if (page_prev_state == PAGE_STATE_SPECULATIVE)
2559 page_prev_state = PAGE_STATE_INACTIVE;
2560
2561 vm_pageout_scan_inactive_throttled_internal++;
2562
2563 goto requeue_page;
2564 }
2565 }
2566
2567 /*
2568 * we've got a page that we can steal...
2569 * eliminate all mappings and make sure
2570 * we have the up-to-date modified state
2571 *
2572 * if we need to do a pmap_disconnect then we
2573 * need to re-evaluate m->dirty since the pmap_disconnect
2574 * provides the true state atomically... the
2575 * page was still mapped up to the pmap_disconnect
2576 * and may have been dirtied at the last microsecond
2577 *
2578 * Note that if 'pmapped' is FALSE then the page is not
2579 * and has not been in any map, so there is no point calling
2580 * pmap_disconnect(). m->dirty could have been set in anticipation
2581 * of likely usage of the page.
2582 */
2583 if (m->pmapped == TRUE) {
2584
2585 if (DEFAULT_PAGER_IS_ACTIVE || DEFAULT_FREEZER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE || object->internal == FALSE) {
2586 /*
2587 * Don't count this page as going into the compressor if any of these are true:
2588 * 1) We have the dynamic pager i.e. no compressed pager
2589 * 2) Freezer enabled device with a freezer file to hold the app data i.e. no compressed pager
2590 * 3) Freezer enabled device with compressed pager backend (exclusive use) i.e. most of the VM system
2591 (including vm_pageout_scan) has no knowledge of the compressor
2592 * 4) This page belongs to a file and hence will not be sent into the compressor
2593 */
2594
2595 refmod_state = pmap_disconnect_options(m->phys_page, 0, NULL);
2596 } else {
2597 refmod_state = pmap_disconnect_options(m->phys_page, PMAP_OPTIONS_COMPRESSOR, NULL);
2598 }
2599
2600 if (refmod_state & VM_MEM_MODIFIED) {
2601 SET_PAGE_DIRTY(m, FALSE);
2602 }
2603 }
2604 /*
2605 * reset our count of pages that have been reclaimed
2606 * since the last page was 'stolen'
2607 */
2608 inactive_reclaim_run = 0;
2609
2610 /*
2611 * If it's clean and not precious, we can free the page.
2612 */
2613 if (!m->dirty && !m->precious) {
2614
2615 if (page_prev_state == PAGE_STATE_SPECULATIVE)
2616 vm_pageout_speculative_clean++;
2617 else {
2618 if (page_prev_state == PAGE_STATE_ANONYMOUS)
2619 vm_pageout_inactive_anonymous++;
2620 else if (page_prev_state == PAGE_STATE_CLEAN)
2621 vm_pageout_cleaned_reclaimed++;
2622
2623 vm_pageout_inactive_clean++;
2624 }
2625
2626 /*
2627 * OK, at this point we have found a page we are going to free.
2628 */
2629 #if CONFIG_PHANTOM_CACHE
2630 if (!object->internal)
2631 vm_phantom_cache_add_ghost(m);
2632 #endif
2633 goto reclaim_page;
2634 }
2635
2636 /*
2637 * The page may have been dirtied since the last check
2638 * for a throttled target queue (which may have been skipped
2639 * if the page was clean then). With the dirty page
2640 * disconnected here, we can make one final check.
2641 */
2642 if (object->internal) {
2643 if (VM_PAGE_Q_THROTTLED(iq))
2644 inactive_throttled = TRUE;
2645 } else if (VM_PAGE_Q_THROTTLED(eq)) {
2646 inactive_throttled = TRUE;
2647 }
2648
2649 if (inactive_throttled == TRUE)
2650 goto throttle_inactive;
2651
2652 #if VM_PRESSURE_EVENTS
2653 #if CONFIG_JETSAM
2654
2655 /*
2656 * If Jetsam is enabled, then the sending
2657 * of memory pressure notifications is handled
2658 * from the same thread that takes care of high-water
2659 * and other jetsams i.e. the memorystatus_thread.
2660 */
2661
2662 #else /* CONFIG_JETSAM */
2663
2664 vm_pressure_response();
2665
2666 #endif /* CONFIG_JETSAM */
2667 #endif /* VM_PRESSURE_EVENTS */
2668
2669 /*
2670 * do NOT set the pageout bit!
2671 * sure, we might need free pages, but this page is going to take time to become free
2672 * anyway, so we may as well put it on the clean queue first and take it from there later
2673 * if necessary. that way, we'll ensure we don't free up too much. -mj
2674 */
2675 vm_pageout_cluster(m, FALSE);
2676
2677 if (page_prev_state == PAGE_STATE_ANONYMOUS)
2678 vm_pageout_inactive_anonymous++;
2679 if (object->internal)
2680 vm_pageout_inactive_dirty_internal++;
2681 else
2682 vm_pageout_inactive_dirty_external++;
2683
2684
2685 done_with_inactivepage:
2686
2687 if (delayed_unlock++ > delayed_unlock_limit || try_failed == TRUE) {
2688 boolean_t need_delay = TRUE;
2689
2690 if (object != NULL) {
2691 vm_pageout_scan_wants_object = VM_OBJECT_NULL;
2692 vm_object_unlock(object);
2693 object = NULL;
2694 }
2695 vm_page_unlock_queues();
2696
2697 if (local_freeq) {
2698
2699 VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_START,
2700 vm_page_free_count, local_freed, delayed_unlock_limit, 4);
2701
2702 vm_page_free_list(local_freeq, TRUE);
2703
2704 VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_END,
2705 vm_page_free_count, local_freed, 0, 4);
2706
2707 local_freeq = NULL;
2708 local_freed = 0;
2709 need_delay = FALSE;
2710 }
2711 if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) {
2712 vm_consider_waking_compactor_swapper();
2713 need_delay = FALSE;
2714 }
2715 vm_page_lock_queues();
2716
2717 if (need_delay == TRUE)
2718 lck_mtx_yield(&vm_page_queue_lock);
2719
2720 delayed_unlock = 1;
2721 }
2722 vm_pageout_considered_page++;
2723
2724 /*
2725 * back to top of pageout scan loop
2726 */
2727 }
2728 }
2729
2730
2731 int vm_page_free_count_init;
2732
2733 void
2734 vm_page_free_reserve(
2735 int pages)
2736 {
2737 int free_after_reserve;
2738
2739 if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) {
2740
2741 if ((vm_page_free_reserved + pages + COMPRESSOR_FREE_RESERVED_LIMIT) >= (VM_PAGE_FREE_RESERVED_LIMIT + COMPRESSOR_FREE_RESERVED_LIMIT))
2742 vm_page_free_reserved = VM_PAGE_FREE_RESERVED_LIMIT + COMPRESSOR_FREE_RESERVED_LIMIT;
2743 else
2744 vm_page_free_reserved += (pages + COMPRESSOR_FREE_RESERVED_LIMIT);
2745
2746 } else {
2747 if ((vm_page_free_reserved + pages) >= VM_PAGE_FREE_RESERVED_LIMIT)
2748 vm_page_free_reserved = VM_PAGE_FREE_RESERVED_LIMIT;
2749 else
2750 vm_page_free_reserved += pages;
2751 }
2752 free_after_reserve = vm_page_free_count_init - vm_page_free_reserved;
2753
2754 vm_page_free_min = vm_page_free_reserved +
2755 VM_PAGE_FREE_MIN(free_after_reserve);
2756
2757 if (vm_page_free_min > VM_PAGE_FREE_MIN_LIMIT)
2758 vm_page_free_min = VM_PAGE_FREE_MIN_LIMIT;
2759
2760 vm_page_free_target = vm_page_free_reserved +
2761 VM_PAGE_FREE_TARGET(free_after_reserve);
2762
2763 if (vm_page_free_target > VM_PAGE_FREE_TARGET_LIMIT)
2764 vm_page_free_target = VM_PAGE_FREE_TARGET_LIMIT;
2765
2766 if (vm_page_free_target < vm_page_free_min + 5)
2767 vm_page_free_target = vm_page_free_min + 5;
2768
2769 vm_page_throttle_limit = vm_page_free_target - (vm_page_free_target / 3);
2770 vm_page_creation_throttle = vm_page_free_target * 3;
2771 }
2772
2773 /*
2774 * vm_pageout is the high level pageout daemon.
2775 */
2776
2777 void
2778 vm_pageout_continue(void)
2779 {
2780 DTRACE_VM2(pgrrun, int, 1, (uint64_t *), NULL);
2781 vm_pageout_scan_event_counter++;
2782
2783 vm_pageout_scan();
2784 /*
2785 * we hold both the vm_page_queue_free_lock
2786 * and the vm_page_queues_lock at this point
2787 */
2788 assert(vm_page_free_wanted == 0);
2789 assert(vm_page_free_wanted_privileged == 0);
2790 assert_wait((event_t) &vm_page_free_wanted, THREAD_UNINT);
2791
2792 lck_mtx_unlock(&vm_page_queue_free_lock);
2793 vm_page_unlock_queues();
2794
2795 counter(c_vm_pageout_block++);
2796 thread_block((thread_continue_t)vm_pageout_continue);
2797 /*NOTREACHED*/
2798 }
2799
2800
2801 #ifdef FAKE_DEADLOCK
2802
2803 #define FAKE_COUNT 5000
2804
2805 int internal_count = 0;
2806 int fake_deadlock = 0;
2807
2808 #endif
2809
2810 static void
2811 vm_pageout_iothread_continue(struct vm_pageout_queue *q)
2812 {
2813 vm_page_t m = NULL;
2814 vm_object_t object;
2815 vm_object_offset_t offset;
2816 memory_object_t pager;
2817 thread_t self = current_thread();
2818
2819 if ((vm_pageout_internal_iothread != THREAD_NULL)
2820 && (self == vm_pageout_external_iothread )
2821 && (self->options & TH_OPT_VMPRIV))
2822 self->options &= ~TH_OPT_VMPRIV;
2823
2824 vm_page_lockspin_queues();
2825
2826 while ( !queue_empty(&q->pgo_pending) ) {
2827
2828 q->pgo_busy = TRUE;
2829 queue_remove_first(&q->pgo_pending, m, vm_page_t, pageq);
2830 if (m->object->object_slid) {
2831 panic("slid page %p not allowed on this path\n", m);
2832 }
2833 VM_PAGE_CHECK(m);
2834 m->pageout_queue = FALSE;
2835 m->pageq.next = NULL;
2836 m->pageq.prev = NULL;
2837
2838 /*
2839 * grab a snapshot of the object and offset this
2840 * page is tabled in so that we can relookup this
2841 * page after we've taken the object lock - these
2842 * fields are stable while we hold the page queues lock
2843 * but as soon as we drop it, there is nothing to keep
2844 * this page in this object... we hold an activity_in_progress
2845 * on this object which will keep it from terminating
2846 */
2847 object = m->object;
2848 offset = m->offset;
2849
2850 vm_page_unlock_queues();
2851
2852 #ifdef FAKE_DEADLOCK
2853 if (q == &vm_pageout_queue_internal) {
2854 vm_offset_t addr;
2855 int pg_count;
2856
2857 internal_count++;
2858
2859 if ((internal_count == FAKE_COUNT)) {
2860
2861 pg_count = vm_page_free_count + vm_page_free_reserved;
2862
2863 if (kmem_alloc(kernel_map, &addr, PAGE_SIZE * pg_count) == KERN_SUCCESS) {
2864 kmem_free(kernel_map, addr, PAGE_SIZE * pg_count);
2865 }
2866 internal_count = 0;
2867 fake_deadlock++;
2868 }
2869 }
2870 #endif
2871 vm_object_lock(object);
2872
2873 m = vm_page_lookup(object, offset);
2874
2875 if (m == NULL ||
2876 m->busy || m->cleaning || m->pageout_queue || !m->laundry) {
2877 /*
2878 * it's either the same page that someone else has
2879 * started cleaning (or it's finished cleaning or
2880 * been put back on the pageout queue), or
2881 * the page has been freed or we have found a
2882 * new page at this offset... in all of these cases
2883 * we merely need to release the activity_in_progress
2884 * we took when we put the page on the pageout queue
2885 */
2886 vm_object_activity_end(object);
2887 vm_object_unlock(object);
2888
2889 vm_page_lockspin_queues();
2890 continue;
2891 }
2892 if (!object->pager_initialized) {
2893
2894 /*
2895 * If there is no memory object for the page, create
2896 * one and hand it to the default pager.
2897 */
2898
2899 if (!object->pager_initialized)
2900 vm_object_collapse(object,
2901 (vm_object_offset_t) 0,
2902 TRUE);
2903 if (!object->pager_initialized)
2904 vm_object_pager_create(object);
2905 if (!object->pager_initialized) {
2906 /*
2907 * Still no pager for the object.
2908 * Reactivate the page.
2909 *
2910 * Should only happen if there is no
2911 * default pager.
2912 */
2913 m->pageout = FALSE;
2914
2915 vm_page_lockspin_queues();
2916
2917 vm_pageout_throttle_up(m);
2918 vm_page_activate(m);
2919 vm_pageout_dirty_no_pager++;
2920
2921 vm_page_unlock_queues();
2922
2923 /*
2924 * And we are done with it.
2925 */
2926 vm_object_activity_end(object);
2927 vm_object_unlock(object);
2928
2929 vm_page_lockspin_queues();
2930 continue;
2931 }
2932 }
2933 pager = object->pager;
2934
2935 if (pager == MEMORY_OBJECT_NULL) {
2936 /*
2937 * This pager has been destroyed by either
2938 * memory_object_destroy or vm_object_destroy, and
2939 * so there is nowhere for the page to go.
2940 */
2941 if (m->pageout) {
2942 /*
2943 * Just free the page... VM_PAGE_FREE takes
2944 * care of cleaning up all the state...
2945 * including doing the vm_pageout_throttle_up
2946 */
2947 VM_PAGE_FREE(m);
2948 } else {
2949 vm_page_lockspin_queues();
2950
2951 vm_pageout_throttle_up(m);
2952 vm_page_activate(m);
2953
2954 vm_page_unlock_queues();
2955
2956 /*
2957 * And we are done with it.
2958 */
2959 }
2960 vm_object_activity_end(object);
2961 vm_object_unlock(object);
2962
2963 vm_page_lockspin_queues();
2964 continue;
2965 }
2966 #if 0
2967 /*
2968 * we don't hold the page queue lock
2969 * so this check isn't safe to make
2970 */
2971 VM_PAGE_CHECK(m);
2972 #endif
2973 /*
2974 * give back the activity_in_progress reference we
2975 * took when we queued up this page and replace it
2976 * it with a paging_in_progress reference that will
2977 * also hold the paging offset from changing and
2978 * prevent the object from terminating
2979 */
2980 vm_object_activity_end(object);
2981 vm_object_paging_begin(object);
2982 vm_object_unlock(object);
2983
2984 /*
2985 * Send the data to the pager.
2986 * any pageout clustering happens there
2987 */
2988 memory_object_data_return(pager,
2989 m->offset + object->paging_offset,
2990 PAGE_SIZE,
2991 NULL,
2992 NULL,
2993 FALSE,
2994 FALSE,
2995 0);
2996
2997 vm_object_lock(object);
2998 vm_object_paging_end(object);
2999 vm_object_unlock(object);
3000
3001 vm_pageout_io_throttle();
3002
3003 vm_page_lockspin_queues();
3004 }
3005 q->pgo_busy = FALSE;
3006 q->pgo_idle = TRUE;
3007
3008 assert_wait((event_t) &q->pgo_pending, THREAD_UNINT);
3009 vm_page_unlock_queues();
3010
3011 thread_block_parameter((thread_continue_t)vm_pageout_iothread_continue, (void *) q);
3012 /*NOTREACHED*/
3013 }
3014
3015
3016 static void
3017 vm_pageout_iothread_external_continue(struct vm_pageout_queue *q)
3018 {
3019 vm_page_t m = NULL;
3020 vm_object_t object;
3021 vm_object_offset_t offset;
3022 memory_object_t pager;
3023
3024
3025 if (vm_pageout_internal_iothread != THREAD_NULL)
3026 current_thread()->options &= ~TH_OPT_VMPRIV;
3027
3028 vm_page_lockspin_queues();
3029
3030 while ( !queue_empty(&q->pgo_pending) ) {
3031
3032 q->pgo_busy = TRUE;
3033 queue_remove_first(&q->pgo_pending, m, vm_page_t, pageq);
3034 if (m->object->object_slid) {
3035 panic("slid page %p not allowed on this path\n", m);
3036 }
3037 VM_PAGE_CHECK(m);
3038 m->pageout_queue = FALSE;
3039 m->pageq.next = NULL;
3040 m->pageq.prev = NULL;
3041
3042 /*
3043 * grab a snapshot of the object and offset this
3044 * page is tabled in so that we can relookup this
3045 * page after we've taken the object lock - these
3046 * fields are stable while we hold the page queues lock
3047 * but as soon as we drop it, there is nothing to keep
3048 * this page in this object... we hold an activity_in_progress
3049 * on this object which will keep it from terminating
3050 */
3051 object = m->object;
3052 offset = m->offset;
3053
3054 vm_page_unlock_queues();
3055
3056 vm_object_lock(object);
3057
3058 m = vm_page_lookup(object, offset);
3059
3060 if (m == NULL ||
3061 m->busy || m->cleaning || m->pageout_queue || !m->laundry) {
3062 /*
3063 * it's either the same page that someone else has
3064 * started cleaning (or it's finished cleaning or
3065 * been put back on the pageout queue), or
3066 * the page has been freed or we have found a
3067 * new page at this offset... in all of these cases
3068 * we merely need to release the activity_in_progress
3069 * we took when we put the page on the pageout queue
3070 */
3071 vm_object_activity_end(object);
3072 vm_object_unlock(object);
3073
3074 vm_page_lockspin_queues();
3075 continue;
3076 }
3077 pager = object->pager;
3078
3079 if (pager == MEMORY_OBJECT_NULL) {
3080 /*
3081 * This pager has been destroyed by either
3082 * memory_object_destroy or vm_object_destroy, and
3083 * so there is nowhere for the page to go.
3084 */
3085 if (m->pageout) {
3086 /*
3087 * Just free the page... VM_PAGE_FREE takes
3088 * care of cleaning up all the state...
3089 * including doing the vm_pageout_throttle_up
3090 */
3091 VM_PAGE_FREE(m);
3092 } else {
3093 vm_page_lockspin_queues();
3094
3095 vm_pageout_throttle_up(m);
3096 vm_page_activate(m);
3097
3098 vm_page_unlock_queues();
3099
3100 /*
3101 * And we are done with it.
3102 */
3103 }
3104 vm_object_activity_end(object);
3105 vm_object_unlock(object);
3106
3107 vm_page_lockspin_queues();
3108 continue;
3109 }
3110 #if 0
3111 /*
3112 * we don't hold the page queue lock
3113 * so this check isn't safe to make
3114 */
3115 VM_PAGE_CHECK(m);
3116 #endif
3117 /*
3118 * give back the activity_in_progress reference we
3119 * took when we queued up this page and replace it
3120 * it with a paging_in_progress reference that will
3121 * also hold the paging offset from changing and
3122 * prevent the object from terminating
3123 */
3124 vm_object_activity_end(object);
3125 vm_object_paging_begin(object);
3126 vm_object_unlock(object);
3127
3128 /*
3129 * Send the data to the pager.
3130 * any pageout clustering happens there
3131 */
3132 memory_object_data_return(pager,
3133 m->offset + object->paging_offset,
3134 PAGE_SIZE,
3135 NULL,
3136 NULL,
3137 FALSE,
3138 FALSE,
3139 0);
3140
3141 vm_object_lock(object);
3142 vm_object_paging_end(object);
3143 vm_object_unlock(object);
3144
3145 vm_pageout_io_throttle();
3146
3147 vm_page_lockspin_queues();
3148 }
3149 q->pgo_busy = FALSE;
3150 q->pgo_idle = TRUE;
3151
3152 assert_wait((event_t) &q->pgo_pending, THREAD_UNINT);
3153 vm_page_unlock_queues();
3154
3155 thread_block_parameter((thread_continue_t)vm_pageout_iothread_external_continue, (void *) q);
3156 /*NOTREACHED*/
3157 }
3158
3159
3160 uint32_t vm_compressor_failed;
3161
3162 static void
3163 vm_pageout_iothread_internal_continue(struct cq *cq)
3164 {
3165 struct vm_pageout_queue *q;
3166 vm_page_t m = NULL;
3167 vm_object_t object;
3168 memory_object_t pager;
3169 boolean_t pgo_draining;
3170 vm_page_t local_q;
3171 int local_cnt;
3172 vm_page_t local_freeq = NULL;
3173 int local_freed = 0;
3174 int local_batch_size;
3175 kern_return_t retval;
3176 int compressed_count_delta;
3177
3178
3179 KERNEL_DEBUG(0xe040000c | DBG_FUNC_END, 0, 0, 0, 0, 0);
3180
3181 q = cq->q;
3182 local_batch_size = q->pgo_maxlaundry / (vm_compressor_thread_count * 4);
3183
3184 while (TRUE) {
3185
3186 local_cnt = 0;
3187 local_q = NULL;
3188
3189 KERNEL_DEBUG(0xe0400014 | DBG_FUNC_START, 0, 0, 0, 0, 0);
3190
3191 vm_page_lock_queues();
3192
3193 KERNEL_DEBUG(0xe0400014 | DBG_FUNC_END, 0, 0, 0, 0, 0);
3194
3195 KERNEL_DEBUG(0xe0400018 | DBG_FUNC_START, 0, 0, 0, 0, 0);
3196
3197 while ( !queue_empty(&q->pgo_pending) && local_cnt < local_batch_size) {
3198
3199 queue_remove_first(&q->pgo_pending, m, vm_page_t, pageq);
3200
3201 VM_PAGE_CHECK(m);
3202
3203 m->pageout_queue = FALSE;
3204 m->pageq.prev = NULL;
3205
3206 m->pageq.next = (queue_entry_t)local_q;
3207 local_q = m;
3208 local_cnt++;
3209 }
3210 if (local_q == NULL)
3211 break;
3212
3213 q->pgo_busy = TRUE;
3214
3215 if ((pgo_draining = q->pgo_draining) == FALSE)
3216 vm_pageout_throttle_up_batch(q, local_cnt);
3217
3218 vm_page_unlock_queues();
3219
3220 KERNEL_DEBUG(0xe0400018 | DBG_FUNC_END, 0, 0, 0, 0, 0);
3221
3222 while (local_q) {
3223
3224 m = local_q;
3225 local_q = (vm_page_t)m->pageq.next;
3226 m->pageq.next = NULL;
3227
3228 if (m->object->object_slid) {
3229 panic("slid page %p not allowed on this path\n", m);
3230 }
3231
3232 object = m->object;
3233 pager = object->pager;
3234
3235 if (!object->pager_initialized || pager == MEMORY_OBJECT_NULL) {
3236
3237 KERNEL_DEBUG(0xe0400010 | DBG_FUNC_START, object, pager, 0, 0, 0);
3238
3239 vm_object_lock(object);
3240
3241 /*
3242 * If there is no memory object for the page, create
3243 * one and hand it to the compression pager.
3244 */
3245
3246 if (!object->pager_initialized)
3247 vm_object_collapse(object, (vm_object_offset_t) 0, TRUE);
3248 if (!object->pager_initialized)
3249 vm_object_compressor_pager_create(object);
3250
3251 if (!object->pager_initialized) {
3252 /*
3253 * Still no pager for the object.
3254 * Reactivate the page.
3255 *
3256 * Should only happen if there is no
3257 * compression pager
3258 */
3259 m->pageout = FALSE;
3260 m->laundry = FALSE;
3261 PAGE_WAKEUP_DONE(m);
3262
3263 vm_page_lockspin_queues();
3264 vm_page_activate(m);
3265 vm_pageout_dirty_no_pager++;
3266 vm_page_unlock_queues();
3267
3268 /*
3269 * And we are done with it.
3270 */
3271 vm_object_activity_end(object);
3272 vm_object_unlock(object);
3273
3274 continue;
3275 }
3276 pager = object->pager;
3277
3278 if (pager == MEMORY_OBJECT_NULL) {
3279 /*
3280 * This pager has been destroyed by either
3281 * memory_object_destroy or vm_object_destroy, and
3282 * so there is nowhere for the page to go.
3283 */
3284 if (m->pageout) {
3285 /*
3286 * Just free the page... VM_PAGE_FREE takes
3287 * care of cleaning up all the state...
3288 * including doing the vm_pageout_throttle_up
3289 */
3290 VM_PAGE_FREE(m);
3291 } else {
3292 m->laundry = FALSE;
3293 PAGE_WAKEUP_DONE(m);
3294
3295 vm_page_lockspin_queues();
3296 vm_page_activate(m);
3297 vm_page_unlock_queues();
3298
3299 /*
3300 * And we are done with it.
3301 */
3302 }
3303 vm_object_activity_end(object);
3304 vm_object_unlock(object);
3305
3306 continue;
3307 }
3308 vm_object_unlock(object);
3309
3310 KERNEL_DEBUG(0xe0400010 | DBG_FUNC_END, object, pager, 0, 0, 0);
3311 }
3312 while (vm_page_free_count < (vm_page_free_reserved - COMPRESSOR_FREE_RESERVED_LIMIT)) {
3313 kern_return_t wait_result;
3314 int need_wakeup = 0;
3315
3316 if (local_freeq) {
3317 vm_page_free_list(local_freeq, TRUE);
3318
3319 local_freeq = NULL;
3320 local_freed = 0;
3321
3322 continue;
3323 }
3324 lck_mtx_lock_spin(&vm_page_queue_free_lock);
3325
3326 if (vm_page_free_count < (vm_page_free_reserved - COMPRESSOR_FREE_RESERVED_LIMIT)) {
3327
3328 if (vm_page_free_wanted_privileged++ == 0)
3329 need_wakeup = 1;
3330 wait_result = assert_wait((event_t)&vm_page_free_wanted_privileged, THREAD_UNINT);
3331
3332 lck_mtx_unlock(&vm_page_queue_free_lock);
3333
3334 if (need_wakeup)
3335 thread_wakeup((event_t)&vm_page_free_wanted);
3336
3337 if (wait_result == THREAD_WAITING)
3338 thread_block(THREAD_CONTINUE_NULL);
3339 } else
3340 lck_mtx_unlock(&vm_page_queue_free_lock);
3341 }
3342
3343 assert(object->activity_in_progress > 0);
3344
3345 retval = vm_compressor_pager_put(
3346 pager,
3347 m->offset + object->paging_offset,
3348 m->phys_page,
3349 &cq->current_chead,
3350 cq->scratch_buf,
3351 &compressed_count_delta);
3352
3353 vm_object_lock(object);
3354 assert(object->activity_in_progress > 0);
3355
3356 assert(m->object == object);
3357
3358 vm_compressor_pager_count(pager,
3359 compressed_count_delta,
3360 FALSE, /* shared_lock */
3361 object);
3362
3363 m->laundry = FALSE;
3364 m->pageout = FALSE;
3365
3366 if (retval == KERN_SUCCESS) {
3367 /*
3368 * If the object is purgeable, its owner's
3369 * purgeable ledgers will be updated in
3370 * vm_page_remove() but the page still
3371 * contributes to the owner's memory footprint,
3372 * so account for it as such.
3373 */
3374 if (object->purgable != VM_PURGABLE_DENY &&
3375 object->vo_purgeable_owner != NULL) {
3376 /* one more compressed purgeable page */
3377 vm_purgeable_compressed_update(object,
3378 +1);
3379 }
3380
3381 vm_page_compressions_failing = FALSE;
3382
3383 VM_STAT_INCR(compressions);
3384
3385 if (m->tabled)
3386 vm_page_remove(m, TRUE);
3387 vm_object_activity_end(object);
3388 vm_object_unlock(object);
3389
3390 m->pageq.next = (queue_entry_t)local_freeq;
3391 local_freeq = m;
3392 local_freed++;
3393
3394 } else {
3395 PAGE_WAKEUP_DONE(m);
3396
3397 vm_page_lockspin_queues();
3398
3399 vm_page_activate(m);
3400 vm_compressor_failed++;
3401
3402 vm_page_compressions_failing = TRUE;
3403
3404 vm_page_unlock_queues();
3405
3406 vm_object_activity_end(object);
3407 vm_object_unlock(object);
3408 }
3409 }
3410 if (local_freeq) {
3411 vm_page_free_list(local_freeq, TRUE);
3412
3413 local_freeq = NULL;
3414 local_freed = 0;
3415 }
3416 if (pgo_draining == TRUE) {
3417 vm_page_lockspin_queues();
3418 vm_pageout_throttle_up_batch(q, local_cnt);
3419 vm_page_unlock_queues();
3420 }
3421 }
3422 KERNEL_DEBUG(0xe040000c | DBG_FUNC_START, 0, 0, 0, 0, 0);
3423
3424 /*
3425 * queue lock is held and our q is empty
3426 */
3427 q->pgo_busy = FALSE;
3428 q->pgo_idle = TRUE;
3429
3430 assert_wait((event_t) &q->pgo_pending, THREAD_UNINT);
3431 vm_page_unlock_queues();
3432
3433 KERNEL_DEBUG(0xe0400018 | DBG_FUNC_END, 0, 0, 0, 0, 0);
3434
3435 thread_block_parameter((thread_continue_t)vm_pageout_iothread_internal_continue, (void *) cq);
3436 /*NOTREACHED*/
3437 }
3438
3439
3440
3441 static void
3442 vm_pageout_adjust_io_throttles(struct vm_pageout_queue *iq, struct vm_pageout_queue *eq, boolean_t req_lowpriority)
3443 {
3444 uint32_t policy;
3445 boolean_t set_iq = FALSE;
3446 boolean_t set_eq = FALSE;
3447
3448 if (hibernate_cleaning_in_progress == TRUE)
3449 req_lowpriority = FALSE;
3450
3451 if ((DEFAULT_PAGER_IS_ACTIVE || DEFAULT_FREEZER_IS_ACTIVE) && iq->pgo_inited == TRUE && iq->pgo_lowpriority != req_lowpriority)
3452 set_iq = TRUE;
3453
3454 if (eq->pgo_inited == TRUE && eq->pgo_lowpriority != req_lowpriority)
3455 set_eq = TRUE;
3456
3457 if (set_iq == TRUE || set_eq == TRUE) {
3458
3459 vm_page_unlock_queues();
3460
3461 if (req_lowpriority == TRUE) {
3462 policy = THROTTLE_LEVEL_PAGEOUT_THROTTLED;
3463 DTRACE_VM(laundrythrottle);
3464 } else {
3465 policy = THROTTLE_LEVEL_PAGEOUT_UNTHROTTLED;
3466 DTRACE_VM(laundryunthrottle);
3467 }
3468 if (set_iq == TRUE) {
3469 proc_set_task_policy_thread(kernel_task, iq->pgo_tid, TASK_POLICY_EXTERNAL, TASK_POLICY_IO, policy);
3470
3471 iq->pgo_lowpriority = req_lowpriority;
3472 }
3473 if (set_eq == TRUE) {
3474 proc_set_task_policy_thread(kernel_task, eq->pgo_tid, TASK_POLICY_EXTERNAL, TASK_POLICY_IO, policy);
3475
3476 eq->pgo_lowpriority = req_lowpriority;
3477 }
3478 vm_page_lock_queues();
3479 }
3480 }
3481
3482
3483 static void
3484 vm_pageout_iothread_external(void)
3485 {
3486 thread_t self = current_thread();
3487
3488 self->options |= TH_OPT_VMPRIV;
3489
3490 DTRACE_VM2(laundrythrottle, int, 1, (uint64_t *), NULL);
3491
3492 proc_set_task_policy_thread(kernel_task, self->thread_id, TASK_POLICY_EXTERNAL,
3493 TASK_POLICY_IO, THROTTLE_LEVEL_PAGEOUT_THROTTLED);
3494
3495 vm_page_lock_queues();
3496
3497 vm_pageout_queue_external.pgo_tid = self->thread_id;
3498 vm_pageout_queue_external.pgo_lowpriority = TRUE;
3499 vm_pageout_queue_external.pgo_inited = TRUE;
3500
3501 vm_page_unlock_queues();
3502
3503 if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE)
3504 vm_pageout_iothread_external_continue(&vm_pageout_queue_external);
3505 else
3506 vm_pageout_iothread_continue(&vm_pageout_queue_external);
3507
3508 /*NOTREACHED*/
3509 }
3510
3511
3512 static void
3513 vm_pageout_iothread_internal(struct cq *cq)
3514 {
3515 thread_t self = current_thread();
3516
3517 self->options |= TH_OPT_VMPRIV;
3518
3519 if (DEFAULT_PAGER_IS_ACTIVE || DEFAULT_FREEZER_IS_ACTIVE) {
3520 DTRACE_VM2(laundrythrottle, int, 1, (uint64_t *), NULL);
3521
3522 proc_set_task_policy_thread(kernel_task, self->thread_id, TASK_POLICY_EXTERNAL,
3523 TASK_POLICY_IO, THROTTLE_LEVEL_PAGEOUT_THROTTLED);
3524 }
3525 vm_page_lock_queues();
3526
3527 vm_pageout_queue_internal.pgo_tid = self->thread_id;
3528 vm_pageout_queue_internal.pgo_lowpriority = TRUE;
3529 vm_pageout_queue_internal.pgo_inited = TRUE;
3530
3531 vm_page_unlock_queues();
3532
3533 if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) {
3534 cq->q = &vm_pageout_queue_internal;
3535 cq->current_chead = NULL;
3536 cq->scratch_buf = kalloc(COMPRESSOR_SCRATCH_BUF_SIZE);
3537
3538 vm_pageout_iothread_internal_continue(cq);
3539 } else
3540 vm_pageout_iothread_continue(&vm_pageout_queue_internal);
3541
3542 /*NOTREACHED*/
3543 }
3544
3545 kern_return_t
3546 vm_set_buffer_cleanup_callout(boolean_t (*func)(int))
3547 {
3548 if (OSCompareAndSwapPtr(NULL, func, (void * volatile *) &consider_buffer_cache_collect)) {
3549 return KERN_SUCCESS;
3550 } else {
3551 return KERN_FAILURE; /* Already set */
3552 }
3553 }
3554
3555 extern boolean_t memorystatus_manual_testing_on;
3556 extern unsigned int memorystatus_level;
3557
3558
3559 #if VM_PRESSURE_EVENTS
3560
3561 boolean_t vm_pressure_events_enabled = FALSE;
3562
3563 void
3564 vm_pressure_response(void)
3565 {
3566
3567 vm_pressure_level_t old_level = kVMPressureNormal;
3568 int new_level = -1;
3569
3570 uint64_t available_memory = 0;
3571
3572 if (vm_pressure_events_enabled == FALSE)
3573 return;
3574
3575
3576 available_memory = (((uint64_t) AVAILABLE_NON_COMPRESSED_MEMORY) * 100);
3577
3578
3579 memorystatus_level = (unsigned int) (available_memory / atop_64(max_mem));
3580
3581 if (memorystatus_manual_testing_on) {
3582 return;
3583 }
3584
3585 old_level = memorystatus_vm_pressure_level;
3586
3587 switch (memorystatus_vm_pressure_level) {
3588
3589 case kVMPressureNormal:
3590 {
3591 if (VM_PRESSURE_WARNING_TO_CRITICAL()) {
3592 new_level = kVMPressureCritical;
3593 } else if (VM_PRESSURE_NORMAL_TO_WARNING()) {
3594 new_level = kVMPressureWarning;
3595 }
3596 break;
3597 }
3598
3599 case kVMPressureWarning:
3600 case kVMPressureUrgent:
3601 {
3602 if (VM_PRESSURE_WARNING_TO_NORMAL()) {
3603 new_level = kVMPressureNormal;
3604 } else if (VM_PRESSURE_WARNING_TO_CRITICAL()) {
3605 new_level = kVMPressureCritical;
3606 }
3607 break;
3608 }
3609
3610 case kVMPressureCritical:
3611 {
3612 if (VM_PRESSURE_WARNING_TO_NORMAL()) {
3613 new_level = kVMPressureNormal;
3614 } else if (VM_PRESSURE_CRITICAL_TO_WARNING()) {
3615 new_level = kVMPressureWarning;
3616 }
3617 break;
3618 }
3619
3620 default:
3621 return;
3622 }
3623
3624 if (new_level != -1) {
3625 memorystatus_vm_pressure_level = (vm_pressure_level_t) new_level;
3626
3627 if ((memorystatus_vm_pressure_level != kVMPressureNormal) || (old_level != new_level)) {
3628 if (vm_pressure_thread_running == FALSE) {
3629 thread_wakeup(&vm_pressure_thread);
3630 }
3631
3632 if (old_level != new_level) {
3633 thread_wakeup(&vm_pressure_changed);
3634 }
3635 }
3636 }
3637
3638 }
3639 #endif /* VM_PRESSURE_EVENTS */
3640
3641 kern_return_t
3642 mach_vm_pressure_level_monitor(__unused boolean_t wait_for_pressure, __unused unsigned int *pressure_level) {
3643
3644 #if !VM_PRESSURE_EVENTS
3645
3646 return KERN_FAILURE;
3647
3648 #else /* VM_PRESSURE_EVENTS */
3649
3650 kern_return_t kr = KERN_SUCCESS;
3651
3652 if (pressure_level != NULL) {
3653
3654 vm_pressure_level_t old_level = memorystatus_vm_pressure_level;
3655
3656 if (wait_for_pressure == TRUE) {
3657 wait_result_t wr = 0;
3658
3659 while (old_level == *pressure_level) {
3660 wr = assert_wait((event_t) &vm_pressure_changed,
3661 THREAD_INTERRUPTIBLE);
3662 if (wr == THREAD_WAITING) {
3663 wr = thread_block(THREAD_CONTINUE_NULL);
3664 }
3665 if (wr == THREAD_INTERRUPTED) {
3666 return KERN_ABORTED;
3667 }
3668 if (wr == THREAD_AWAKENED) {
3669
3670 old_level = memorystatus_vm_pressure_level;
3671
3672 if (old_level != *pressure_level) {
3673 break;
3674 }
3675 }
3676 }
3677 }
3678
3679 *pressure_level = old_level;
3680 kr = KERN_SUCCESS;
3681 } else {
3682 kr = KERN_INVALID_ARGUMENT;
3683 }
3684
3685 return kr;
3686 #endif /* VM_PRESSURE_EVENTS */
3687 }
3688
3689 #if VM_PRESSURE_EVENTS
3690 void
3691 vm_pressure_thread(void) {
3692 static boolean_t thread_initialized = FALSE;
3693
3694 if (thread_initialized == TRUE) {
3695 vm_pressure_thread_running = TRUE;
3696 consider_vm_pressure_events();
3697 vm_pressure_thread_running = FALSE;
3698 }
3699
3700 thread_initialized = TRUE;
3701 assert_wait((event_t) &vm_pressure_thread, THREAD_UNINT);
3702 thread_block((thread_continue_t)vm_pressure_thread);
3703 }
3704 #endif /* VM_PRESSURE_EVENTS */
3705
3706
3707 uint32_t vm_pageout_considered_page_last = 0;
3708
3709 /*
3710 * called once per-second via "compute_averages"
3711 */
3712 void
3713 compute_pageout_gc_throttle()
3714 {
3715 if (vm_pageout_considered_page != vm_pageout_considered_page_last) {
3716
3717 vm_pageout_considered_page_last = vm_pageout_considered_page;
3718
3719 thread_wakeup((event_t) &vm_pageout_garbage_collect);
3720 }
3721 }
3722
3723
3724 static void
3725 vm_pageout_garbage_collect(int collect)
3726 {
3727
3728 if (collect) {
3729 boolean_t buf_large_zfree = FALSE;
3730 boolean_t first_try = TRUE;
3731
3732 stack_collect();
3733
3734 consider_machine_collect();
3735 m_drain();
3736
3737 do {
3738 if (consider_buffer_cache_collect != NULL) {
3739 buf_large_zfree = (*consider_buffer_cache_collect)(0);
3740 }
3741 if (first_try == TRUE || buf_large_zfree == TRUE) {
3742 /*
3743 * consider_zone_gc should be last, because the other operations
3744 * might return memory to zones.
3745 */
3746 consider_zone_gc(buf_large_zfree);
3747 }
3748 first_try = FALSE;
3749
3750 } while (buf_large_zfree == TRUE && vm_page_free_count < vm_page_free_target);
3751
3752 consider_machine_adjust();
3753 }
3754 assert_wait((event_t) &vm_pageout_garbage_collect, THREAD_UNINT);
3755
3756 thread_block_parameter((thread_continue_t) vm_pageout_garbage_collect, (void *)1);
3757 /*NOTREACHED*/
3758 }
3759
3760
3761 void vm_pageout_reinit_tuneables(void);
3762
3763 void
3764 vm_pageout_reinit_tuneables(void)
3765 {
3766 vm_page_filecache_min = (uint32_t) (max_mem / PAGE_SIZE) / 15;
3767
3768 if (vm_page_filecache_min < VM_PAGE_FILECACHE_MIN)
3769 vm_page_filecache_min = VM_PAGE_FILECACHE_MIN;
3770
3771 vm_compressor_minorcompact_threshold_divisor = 18;
3772 vm_compressor_majorcompact_threshold_divisor = 22;
3773 vm_compressor_unthrottle_threshold_divisor = 32;
3774 }
3775
3776
3777 #if VM_PAGE_BUCKETS_CHECK
3778 #if VM_PAGE_FAKE_BUCKETS
3779 extern vm_map_offset_t vm_page_fake_buckets_start, vm_page_fake_buckets_end;
3780 #endif /* VM_PAGE_FAKE_BUCKETS */
3781 #endif /* VM_PAGE_BUCKETS_CHECK */
3782
3783 #define FBDP_TEST_COLLAPSE_COMPRESSOR 0
3784 #if FBDP_TEST_COLLAPSE_COMPRESSOR
3785 extern boolean_t vm_object_collapse_compressor_allowed;
3786 #include <IOKit/IOLib.h>
3787 #endif /* FBDP_TEST_COLLAPSE_COMPRESSOR */
3788
3789 #define FBDP_TEST_WIRE_AND_EXTRACT 0
3790 #if FBDP_TEST_WIRE_AND_EXTRACT
3791 extern ledger_template_t task_ledger_template;
3792 #include <mach/mach_vm.h>
3793 extern ppnum_t vm_map_get_phys_page(vm_map_t map,
3794 vm_offset_t offset);
3795 #endif /* FBDP_TEST_WIRE_AND_EXTRACT */
3796
3797 void
3798 vm_pageout(void)
3799 {
3800 thread_t self = current_thread();
3801 thread_t thread;
3802 kern_return_t result;
3803 spl_t s;
3804
3805 /*
3806 * Set thread privileges.
3807 */
3808 s = splsched();
3809 thread_lock(self);
3810 self->priority = BASEPRI_PREEMPT - 1;
3811 set_sched_pri(self, self->priority);
3812 thread_unlock(self);
3813
3814 if (!self->reserved_stack)
3815 self->reserved_stack = self->kernel_stack;
3816
3817 splx(s);
3818
3819 /*
3820 * Initialize some paging parameters.
3821 */
3822
3823 if (vm_pageout_swap_wait == 0)
3824 vm_pageout_swap_wait = VM_PAGEOUT_SWAP_WAIT;
3825
3826 if (vm_pageout_idle_wait == 0)
3827 vm_pageout_idle_wait = VM_PAGEOUT_IDLE_WAIT;
3828
3829 if (vm_pageout_burst_wait == 0)
3830 vm_pageout_burst_wait = VM_PAGEOUT_BURST_WAIT;
3831
3832 if (vm_pageout_empty_wait == 0)
3833 vm_pageout_empty_wait = VM_PAGEOUT_EMPTY_WAIT;
3834
3835 if (vm_pageout_deadlock_wait == 0)
3836 vm_pageout_deadlock_wait = VM_PAGEOUT_DEADLOCK_WAIT;
3837
3838 if (vm_pageout_deadlock_relief == 0)
3839 vm_pageout_deadlock_relief = VM_PAGEOUT_DEADLOCK_RELIEF;
3840
3841 if (vm_pageout_inactive_relief == 0)
3842 vm_pageout_inactive_relief = VM_PAGEOUT_INACTIVE_RELIEF;
3843
3844 if (vm_pageout_burst_active_throttle == 0)
3845 vm_pageout_burst_active_throttle = VM_PAGEOUT_BURST_ACTIVE_THROTTLE;
3846
3847 if (vm_pageout_burst_inactive_throttle == 0)
3848 vm_pageout_burst_inactive_throttle = VM_PAGEOUT_BURST_INACTIVE_THROTTLE;
3849
3850 #if !CONFIG_JETSAM
3851 vm_page_filecache_min = (uint32_t) (max_mem / PAGE_SIZE) / 20;
3852 if (vm_page_filecache_min < VM_PAGE_FILECACHE_MIN)
3853 vm_page_filecache_min = VM_PAGE_FILECACHE_MIN;
3854 #endif
3855
3856 /*
3857 * Set kernel task to low backing store privileged
3858 * status
3859 */
3860 task_lock(kernel_task);
3861 kernel_task->priv_flags |= VM_BACKING_STORE_PRIV;
3862 task_unlock(kernel_task);
3863
3864 vm_page_free_count_init = vm_page_free_count;
3865
3866 /*
3867 * even if we've already called vm_page_free_reserve
3868 * call it again here to insure that the targets are
3869 * accurately calculated (it uses vm_page_free_count_init)
3870 * calling it with an arg of 0 will not change the reserve
3871 * but will re-calculate free_min and free_target
3872 */
3873 if (vm_page_free_reserved < VM_PAGE_FREE_RESERVED(processor_count)) {
3874 vm_page_free_reserve((VM_PAGE_FREE_RESERVED(processor_count)) - vm_page_free_reserved);
3875 } else
3876 vm_page_free_reserve(0);
3877
3878
3879 queue_init(&vm_pageout_queue_external.pgo_pending);
3880 vm_pageout_queue_external.pgo_maxlaundry = VM_PAGE_LAUNDRY_MAX;
3881 vm_pageout_queue_external.pgo_laundry = 0;
3882 vm_pageout_queue_external.pgo_idle = FALSE;
3883 vm_pageout_queue_external.pgo_busy = FALSE;
3884 vm_pageout_queue_external.pgo_throttled = FALSE;
3885 vm_pageout_queue_external.pgo_draining = FALSE;
3886 vm_pageout_queue_external.pgo_lowpriority = FALSE;
3887 vm_pageout_queue_external.pgo_tid = -1;
3888 vm_pageout_queue_external.pgo_inited = FALSE;
3889
3890
3891 queue_init(&vm_pageout_queue_internal.pgo_pending);
3892 vm_pageout_queue_internal.pgo_maxlaundry = 0;
3893 vm_pageout_queue_internal.pgo_laundry = 0;
3894 vm_pageout_queue_internal.pgo_idle = FALSE;
3895 vm_pageout_queue_internal.pgo_busy = FALSE;
3896 vm_pageout_queue_internal.pgo_throttled = FALSE;
3897 vm_pageout_queue_internal.pgo_draining = FALSE;
3898 vm_pageout_queue_internal.pgo_lowpriority = FALSE;
3899 vm_pageout_queue_internal.pgo_tid = -1;
3900 vm_pageout_queue_internal.pgo_inited = FALSE;
3901
3902 /* internal pageout thread started when default pager registered first time */
3903 /* external pageout and garbage collection threads started here */
3904
3905 result = kernel_thread_start_priority((thread_continue_t)vm_pageout_iothread_external, NULL,
3906 BASEPRI_PREEMPT - 1,
3907 &vm_pageout_external_iothread);
3908 if (result != KERN_SUCCESS)
3909 panic("vm_pageout_iothread_external: create failed");
3910
3911 thread_deallocate(vm_pageout_external_iothread);
3912
3913 result = kernel_thread_start_priority((thread_continue_t)vm_pageout_garbage_collect, NULL,
3914 BASEPRI_DEFAULT,
3915 &thread);
3916 if (result != KERN_SUCCESS)
3917 panic("vm_pageout_garbage_collect: create failed");
3918
3919 thread_deallocate(thread);
3920
3921 #if VM_PRESSURE_EVENTS
3922 result = kernel_thread_start_priority((thread_continue_t)vm_pressure_thread, NULL,
3923 BASEPRI_DEFAULT,
3924 &thread);
3925
3926 if (result != KERN_SUCCESS)
3927 panic("vm_pressure_thread: create failed");
3928
3929 thread_deallocate(thread);
3930 #endif
3931
3932 vm_object_reaper_init();
3933
3934 if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE)
3935 vm_compressor_pager_init();
3936
3937 #if VM_PRESSURE_EVENTS
3938 vm_pressure_events_enabled = TRUE;
3939 #endif /* VM_PRESSURE_EVENTS */
3940
3941 #if CONFIG_PHANTOM_CACHE
3942 vm_phantom_cache_init();
3943 #endif
3944 #if VM_PAGE_BUCKETS_CHECK
3945 #if VM_PAGE_FAKE_BUCKETS
3946 printf("**** DEBUG: protecting fake buckets [0x%llx:0x%llx]\n",
3947 (uint64_t) vm_page_fake_buckets_start,
3948 (uint64_t) vm_page_fake_buckets_end);
3949 pmap_protect(kernel_pmap,
3950 vm_page_fake_buckets_start,
3951 vm_page_fake_buckets_end,
3952 VM_PROT_READ);
3953 // *(char *) vm_page_fake_buckets_start = 'x'; /* panic! */
3954 #endif /* VM_PAGE_FAKE_BUCKETS */
3955 #endif /* VM_PAGE_BUCKETS_CHECK */
3956
3957 #if VM_OBJECT_TRACKING
3958 vm_object_tracking_init();
3959 #endif /* VM_OBJECT_TRACKING */
3960
3961
3962 #if FBDP_TEST_COLLAPSE_COMPRESSOR
3963 vm_object_size_t backing_size, top_size;
3964 vm_object_t backing_object, top_object;
3965 vm_map_offset_t backing_offset, top_offset;
3966 unsigned char *backing_address, *top_address;
3967 kern_return_t kr;
3968
3969 printf("FBDP_TEST_COLLAPSE_COMPRESSOR:\n");
3970
3971 /* create backing object */
3972 backing_size = 15 * PAGE_SIZE;
3973 backing_object = vm_object_allocate(backing_size);
3974 assert(backing_object != VM_OBJECT_NULL);
3975 printf("FBDP_TEST_COLLAPSE_COMPRESSOR: created backing object %p\n",
3976 backing_object);
3977 /* map backing object */
3978 backing_offset = 0;
3979 kr = vm_map_enter(kernel_map, &backing_offset, backing_size, 0,
3980 VM_FLAGS_ANYWHERE, backing_object, 0, FALSE,
3981 VM_PROT_DEFAULT, VM_PROT_DEFAULT, VM_INHERIT_DEFAULT);
3982 assert(kr == KERN_SUCCESS);
3983 backing_address = (unsigned char *) backing_offset;
3984 printf("FBDP_TEST_COLLAPSE_COMPRESSOR: "
3985 "mapped backing object %p at 0x%llx\n",
3986 backing_object, (uint64_t) backing_offset);
3987 /* populate with pages to be compressed in backing object */
3988 backing_address[0x1*PAGE_SIZE] = 0xB1;
3989 backing_address[0x4*PAGE_SIZE] = 0xB4;
3990 backing_address[0x7*PAGE_SIZE] = 0xB7;
3991 backing_address[0xa*PAGE_SIZE] = 0xBA;
3992 backing_address[0xd*PAGE_SIZE] = 0xBD;
3993 printf("FBDP_TEST_COLLAPSE_COMPRESSOR: "
3994 "populated pages to be compressed in "
3995 "backing_object %p\n", backing_object);
3996 /* compress backing object */
3997 vm_object_pageout(backing_object);
3998 printf("FBDP_TEST_COLLAPSE_COMPRESSOR: compressing backing_object %p\n",
3999 backing_object);
4000 /* wait for all the pages to be gone */
4001 while (*(volatile int *)&backing_object->resident_page_count != 0)
4002 IODelay(10);
4003 printf("FBDP_TEST_COLLAPSE_COMPRESSOR: backing_object %p compressed\n",
4004 backing_object);
4005 /* populate with pages to be resident in backing object */
4006 backing_address[0x0*PAGE_SIZE] = 0xB0;
4007 backing_address[0x3*PAGE_SIZE] = 0xB3;
4008 backing_address[0x6*PAGE_SIZE] = 0xB6;
4009 backing_address[0x9*PAGE_SIZE] = 0xB9;
4010 backing_address[0xc*PAGE_SIZE] = 0xBC;
4011 printf("FBDP_TEST_COLLAPSE_COMPRESSOR: "
4012 "populated pages to be resident in "
4013 "backing_object %p\n", backing_object);
4014 /* leave the other pages absent */
4015 /* mess with the paging_offset of the backing_object */
4016 assert(backing_object->paging_offset == 0);
4017 backing_object->paging_offset = 0x3000;
4018
4019 /* create top object */
4020 top_size = 9 * PAGE_SIZE;
4021 top_object = vm_object_allocate(top_size);
4022 assert(top_object != VM_OBJECT_NULL);
4023 printf("FBDP_TEST_COLLAPSE_COMPRESSOR: created top object %p\n",
4024 top_object);
4025 /* map top object */
4026 top_offset = 0;
4027 kr = vm_map_enter(kernel_map, &top_offset, top_size, 0,
4028 VM_FLAGS_ANYWHERE, top_object, 0, FALSE,
4029 VM_PROT_DEFAULT, VM_PROT_DEFAULT, VM_INHERIT_DEFAULT);
4030 assert(kr == KERN_SUCCESS);
4031 top_address = (unsigned char *) top_offset;
4032 printf("FBDP_TEST_COLLAPSE_COMPRESSOR: "
4033 "mapped top object %p at 0x%llx\n",
4034 top_object, (uint64_t) top_offset);
4035 /* populate with pages to be compressed in top object */
4036 top_address[0x3*PAGE_SIZE] = 0xA3;
4037 top_address[0x4*PAGE_SIZE] = 0xA4;
4038 top_address[0x5*PAGE_SIZE] = 0xA5;
4039 printf("FBDP_TEST_COLLAPSE_COMPRESSOR: "
4040 "populated pages to be compressed in "
4041 "top_object %p\n", top_object);
4042 /* compress top object */
4043 vm_object_pageout(top_object);
4044 printf("FBDP_TEST_COLLAPSE_COMPRESSOR: compressing top_object %p\n",
4045 top_object);
4046 /* wait for all the pages to be gone */
4047 while (top_object->resident_page_count != 0);
4048 printf("FBDP_TEST_COLLAPSE_COMPRESSOR: top_object %p compressed\n",
4049 top_object);
4050 /* populate with pages to be resident in top object */
4051 top_address[0x0*PAGE_SIZE] = 0xA0;
4052 top_address[0x1*PAGE_SIZE] = 0xA1;
4053 top_address[0x2*PAGE_SIZE] = 0xA2;
4054 printf("FBDP_TEST_COLLAPSE_COMPRESSOR: "
4055 "populated pages to be resident in "
4056 "top_object %p\n", top_object);
4057 /* leave the other pages absent */
4058
4059 /* link the 2 objects */
4060 vm_object_reference(backing_object);
4061 top_object->shadow = backing_object;
4062 top_object->vo_shadow_offset = 0x3000;
4063 printf("FBDP_TEST_COLLAPSE_COMPRESSOR: linked %p and %p\n",
4064 top_object, backing_object);
4065
4066 /* unmap backing object */
4067 vm_map_remove(kernel_map,
4068 backing_offset,
4069 backing_offset + backing_size,
4070 0);
4071 printf("FBDP_TEST_COLLAPSE_COMPRESSOR: "
4072 "unmapped backing_object %p [0x%llx:0x%llx]\n",
4073 backing_object,
4074 (uint64_t) backing_offset,
4075 (uint64_t) (backing_offset + backing_size));
4076
4077 /* collapse */
4078 printf("FBDP_TEST_COLLAPSE_COMPRESSOR: collapsing %p\n", top_object);
4079 vm_object_lock(top_object);
4080 vm_object_collapse(top_object, 0, FALSE);
4081 vm_object_unlock(top_object);
4082 printf("FBDP_TEST_COLLAPSE_COMPRESSOR: collapsed %p\n", top_object);
4083
4084 /* did it work? */
4085 if (top_object->shadow != VM_OBJECT_NULL) {
4086 printf("FBDP_TEST_COLLAPSE_COMPRESSOR: not collapsed\n");
4087 printf("FBDP_TEST_COLLAPSE_COMPRESSOR: FAIL\n");
4088 if (vm_object_collapse_compressor_allowed) {
4089 panic("FBDP_TEST_COLLAPSE_COMPRESSOR: FAIL\n");
4090 }
4091 } else {
4092 /* check the contents of the mapping */
4093 unsigned char expect[9] =
4094 { 0xA0, 0xA1, 0xA2, /* resident in top */
4095 0xA3, 0xA4, 0xA5, /* compressed in top */
4096 0xB9, /* resident in backing + shadow_offset */
4097 0xBD, /* compressed in backing + shadow_offset + paging_offset */
4098 0x00 }; /* absent in both */
4099 unsigned char actual[9];
4100 unsigned int i, errors;
4101
4102 errors = 0;
4103 for (i = 0; i < sizeof (actual); i++) {
4104 actual[i] = (unsigned char) top_address[i*PAGE_SIZE];
4105 if (actual[i] != expect[i]) {
4106 errors++;
4107 }
4108 }
4109 printf("FBDP_TEST_COLLAPSE_COMPRESSOR: "
4110 "actual [%x %x %x %x %x %x %x %x %x] "
4111 "expect [%x %x %x %x %x %x %x %x %x] "
4112 "%d errors\n",
4113 actual[0], actual[1], actual[2], actual[3],
4114 actual[4], actual[5], actual[6], actual[7],
4115 actual[8],
4116 expect[0], expect[1], expect[2], expect[3],
4117 expect[4], expect[5], expect[6], expect[7],
4118 expect[8],
4119 errors);
4120 if (errors) {
4121 panic("FBDP_TEST_COLLAPSE_COMPRESSOR: FAIL\n");
4122 } else {
4123 printf("FBDP_TEST_COLLAPSE_COMPRESSOR: PASS\n");
4124 }
4125 }
4126 #endif /* FBDP_TEST_COLLAPSE_COMPRESSOR */
4127
4128 #if FBDP_TEST_WIRE_AND_EXTRACT
4129 ledger_t ledger;
4130 vm_map_t user_map, wire_map;
4131 mach_vm_address_t user_addr, wire_addr;
4132 mach_vm_size_t user_size, wire_size;
4133 mach_vm_offset_t cur_offset;
4134 vm_prot_t cur_prot, max_prot;
4135 ppnum_t user_ppnum, wire_ppnum;
4136 kern_return_t kr;
4137
4138 ledger = ledger_instantiate(task_ledger_template,
4139 LEDGER_CREATE_ACTIVE_ENTRIES);
4140 user_map = vm_map_create(pmap_create(ledger, 0, TRUE),
4141 0x100000000ULL,
4142 0x200000000ULL,
4143 TRUE);
4144 wire_map = vm_map_create(NULL,
4145 0x100000000ULL,
4146 0x200000000ULL,
4147 TRUE);
4148 user_addr = 0;
4149 user_size = 0x10000;
4150 kr = mach_vm_allocate(user_map,
4151 &user_addr,
4152 user_size,
4153 VM_FLAGS_ANYWHERE);
4154 assert(kr == KERN_SUCCESS);
4155 wire_addr = 0;
4156 wire_size = user_size;
4157 kr = mach_vm_remap(wire_map,
4158 &wire_addr,
4159 wire_size,
4160 0,
4161 VM_FLAGS_ANYWHERE,
4162 user_map,
4163 user_addr,
4164 FALSE,
4165 &cur_prot,
4166 &max_prot,
4167 VM_INHERIT_NONE);
4168 assert(kr == KERN_SUCCESS);
4169 for (cur_offset = 0;
4170 cur_offset < wire_size;
4171 cur_offset += PAGE_SIZE) {
4172 kr = vm_map_wire_and_extract(wire_map,
4173 wire_addr + cur_offset,
4174 VM_PROT_DEFAULT,
4175 TRUE,
4176 &wire_ppnum);
4177 assert(kr == KERN_SUCCESS);
4178 user_ppnum = vm_map_get_phys_page(user_map,
4179 user_addr + cur_offset);
4180 printf("FBDP_TEST_WIRE_AND_EXTRACT: kr=0x%x "
4181 "user[%p:0x%llx:0x%x] wire[%p:0x%llx:0x%x]\n",
4182 kr,
4183 user_map, user_addr + cur_offset, user_ppnum,
4184 wire_map, wire_addr + cur_offset, wire_ppnum);
4185 if (kr != KERN_SUCCESS ||
4186 wire_ppnum == 0 ||
4187 wire_ppnum != user_ppnum) {
4188 panic("FBDP_TEST_WIRE_AND_EXTRACT: FAIL\n");
4189 }
4190 }
4191 cur_offset -= PAGE_SIZE;
4192 kr = vm_map_wire_and_extract(wire_map,
4193 wire_addr + cur_offset,
4194 VM_PROT_DEFAULT,
4195 TRUE,
4196 &wire_ppnum);
4197 assert(kr == KERN_SUCCESS);
4198 printf("FBDP_TEST_WIRE_AND_EXTRACT: re-wire kr=0x%x "
4199 "user[%p:0x%llx:0x%x] wire[%p:0x%llx:0x%x]\n",
4200 kr,
4201 user_map, user_addr + cur_offset, user_ppnum,
4202 wire_map, wire_addr + cur_offset, wire_ppnum);
4203 if (kr != KERN_SUCCESS ||
4204 wire_ppnum == 0 ||
4205 wire_ppnum != user_ppnum) {
4206 panic("FBDP_TEST_WIRE_AND_EXTRACT: FAIL\n");
4207 }
4208
4209 printf("FBDP_TEST_WIRE_AND_EXTRACT: PASS\n");
4210 #endif /* FBDP_TEST_WIRE_AND_EXTRACT */
4211
4212
4213 vm_pageout_continue();
4214
4215 /*
4216 * Unreached code!
4217 *
4218 * The vm_pageout_continue() call above never returns, so the code below is never
4219 * executed. We take advantage of this to declare several DTrace VM related probe
4220 * points that our kernel doesn't have an analog for. These are probe points that
4221 * exist in Solaris and are in the DTrace documentation, so people may have written
4222 * scripts that use them. Declaring the probe points here means their scripts will
4223 * compile and execute which we want for portability of the scripts, but since this
4224 * section of code is never reached, the probe points will simply never fire. Yes,
4225 * this is basically a hack. The problem is the DTrace probe points were chosen with
4226 * Solaris specific VM events in mind, not portability to different VM implementations.
4227 */
4228
4229 DTRACE_VM2(execfree, int, 1, (uint64_t *), NULL);
4230 DTRACE_VM2(execpgin, int, 1, (uint64_t *), NULL);
4231 DTRACE_VM2(execpgout, int, 1, (uint64_t *), NULL);
4232 DTRACE_VM2(pgswapin, int, 1, (uint64_t *), NULL);
4233 DTRACE_VM2(pgswapout, int, 1, (uint64_t *), NULL);
4234 DTRACE_VM2(swapin, int, 1, (uint64_t *), NULL);
4235 DTRACE_VM2(swapout, int, 1, (uint64_t *), NULL);
4236 /*NOTREACHED*/
4237 }
4238
4239
4240
4241 #define MAX_COMRPESSOR_THREAD_COUNT 8
4242
4243 struct cq ciq[MAX_COMRPESSOR_THREAD_COUNT];
4244
4245 int vm_compressor_thread_count = 2;
4246
4247 kern_return_t
4248 vm_pageout_internal_start(void)
4249 {
4250 kern_return_t result;
4251 int i;
4252 host_basic_info_data_t hinfo;
4253
4254 if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) {
4255 mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT;
4256 #define BSD_HOST 1
4257 host_info((host_t)BSD_HOST, HOST_BASIC_INFO, (host_info_t)&hinfo, &count);
4258
4259 assert(hinfo.max_cpus > 0);
4260
4261 if (vm_compressor_thread_count >= hinfo.max_cpus)
4262 vm_compressor_thread_count = hinfo.max_cpus - 1;
4263 if (vm_compressor_thread_count <= 0)
4264 vm_compressor_thread_count = 1;
4265 else if (vm_compressor_thread_count > MAX_COMRPESSOR_THREAD_COUNT)
4266 vm_compressor_thread_count = MAX_COMRPESSOR_THREAD_COUNT;
4267
4268 vm_pageout_queue_internal.pgo_maxlaundry = (vm_compressor_thread_count * 4) * VM_PAGE_LAUNDRY_MAX;
4269 } else {
4270 vm_compressor_thread_count = 1;
4271 vm_pageout_queue_internal.pgo_maxlaundry = VM_PAGE_LAUNDRY_MAX;
4272 }
4273
4274 for (i = 0; i < vm_compressor_thread_count; i++) {
4275
4276 result = kernel_thread_start_priority((thread_continue_t)vm_pageout_iothread_internal, (void *)&ciq[i], BASEPRI_PREEMPT - 1, &vm_pageout_internal_iothread);
4277 if (result == KERN_SUCCESS)
4278 thread_deallocate(vm_pageout_internal_iothread);
4279 else
4280 break;
4281 }
4282 return result;
4283 }
4284
4285 #if CONFIG_IOSCHED
4286 /*
4287 * To support I/O Expedite for compressed files we mark the upls with special flags.
4288 * The way decmpfs works is that we create a big upl which marks all the pages needed to
4289 * represent the compressed file as busy. We tag this upl with the flag UPL_DECMP_REQ. Decmpfs
4290 * then issues smaller I/Os for compressed I/Os, deflates them and puts the data into the pages
4291 * being held in the big original UPL. We mark each of these smaller UPLs with the flag
4292 * UPL_DECMP_REAL_IO. Any outstanding real I/O UPL is tracked by the big req upl using the
4293 * decmp_io_upl field (in the upl structure). This link is protected in the forward direction
4294 * by the req upl lock (the reverse link doesnt need synch. since we never inspect this link
4295 * unless the real I/O upl is being destroyed).
4296 */
4297
4298
4299 static void
4300 upl_set_decmp_info(upl_t upl, upl_t src_upl)
4301 {
4302 assert((src_upl->flags & UPL_DECMP_REQ) != 0);
4303
4304 upl_lock(src_upl);
4305 if (src_upl->decmp_io_upl) {
4306 /*
4307 * If there is already an alive real I/O UPL, ignore this new UPL.
4308 * This case should rarely happen and even if it does, it just means
4309 * that we might issue a spurious expedite which the driver is expected
4310 * to handle.
4311 */
4312 upl_unlock(src_upl);
4313 return;
4314 }
4315 src_upl->decmp_io_upl = (void *)upl;
4316 src_upl->ref_count++;
4317 upl_unlock(src_upl);
4318
4319 upl->flags |= UPL_DECMP_REAL_IO;
4320 upl->decmp_io_upl = (void *)src_upl;
4321
4322 }
4323 #endif /* CONFIG_IOSCHED */
4324
4325 #if UPL_DEBUG
4326 int upl_debug_enabled = 1;
4327 #else
4328 int upl_debug_enabled = 0;
4329 #endif
4330
4331 static upl_t
4332 upl_create(int type, int flags, upl_size_t size)
4333 {
4334 upl_t upl;
4335 vm_size_t page_field_size = 0;
4336 int upl_flags = 0;
4337 vm_size_t upl_size = sizeof(struct upl);
4338
4339 size = round_page_32(size);
4340
4341 if (type & UPL_CREATE_LITE) {
4342 page_field_size = (atop(size) + 7) >> 3;
4343 page_field_size = (page_field_size + 3) & 0xFFFFFFFC;
4344
4345 upl_flags |= UPL_LITE;
4346 }
4347 if (type & UPL_CREATE_INTERNAL) {
4348 upl_size += sizeof(struct upl_page_info) * atop(size);
4349
4350 upl_flags |= UPL_INTERNAL;
4351 }
4352 upl = (upl_t)kalloc(upl_size + page_field_size);
4353
4354 if (page_field_size)
4355 bzero((char *)upl + upl_size, page_field_size);
4356
4357 upl->flags = upl_flags | flags;
4358 upl->src_object = NULL;
4359 upl->kaddr = (vm_offset_t)0;
4360 upl->size = 0;
4361 upl->map_object = NULL;
4362 upl->ref_count = 1;
4363 upl->ext_ref_count = 0;
4364 upl->highest_page = 0;
4365 upl_lock_init(upl);
4366 upl->vector_upl = NULL;
4367 #if CONFIG_IOSCHED
4368 if (type & UPL_CREATE_IO_TRACKING) {
4369 upl->upl_priority = proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO);
4370 }
4371
4372 upl->upl_reprio_info = 0;
4373 upl->decmp_io_upl = 0;
4374 if ((type & UPL_CREATE_INTERNAL) && (type & UPL_CREATE_EXPEDITE_SUP)) {
4375 /* Only support expedite on internal UPLs */
4376 thread_t curthread = current_thread();
4377 upl->upl_reprio_info = (uint64_t *)kalloc(sizeof(uint64_t) * atop(size));
4378 bzero(upl->upl_reprio_info, (sizeof(uint64_t) * atop(size)));
4379 upl->flags |= UPL_EXPEDITE_SUPPORTED;
4380 if (curthread->decmp_upl != NULL)
4381 upl_set_decmp_info(upl, curthread->decmp_upl);
4382 }
4383 #endif
4384 #if CONFIG_IOSCHED || UPL_DEBUG
4385 if ((type & UPL_CREATE_IO_TRACKING) || upl_debug_enabled) {
4386 upl->upl_creator = current_thread();
4387 upl->uplq.next = 0;
4388 upl->uplq.prev = 0;
4389 upl->flags |= UPL_TRACKED_BY_OBJECT;
4390 }
4391 #endif
4392
4393 #if UPL_DEBUG
4394 upl->ubc_alias1 = 0;
4395 upl->ubc_alias2 = 0;
4396
4397 upl->upl_state = 0;
4398 upl->upl_commit_index = 0;
4399 bzero(&upl->upl_commit_records[0], sizeof(upl->upl_commit_records));
4400
4401 (void) OSBacktrace(&upl->upl_create_retaddr[0], UPL_DEBUG_STACK_FRAMES);
4402 #endif /* UPL_DEBUG */
4403
4404 return(upl);
4405 }
4406
4407 static void
4408 upl_destroy(upl_t upl)
4409 {
4410 int page_field_size; /* bit field in word size buf */
4411 int size;
4412
4413 if (upl->ext_ref_count) {
4414 panic("upl(%p) ext_ref_count", upl);
4415 }
4416
4417 #if CONFIG_IOSCHED
4418 if ((upl->flags & UPL_DECMP_REAL_IO) && upl->decmp_io_upl) {
4419 upl_t src_upl;
4420 src_upl = upl->decmp_io_upl;
4421 assert((src_upl->flags & UPL_DECMP_REQ) != 0);
4422 upl_lock(src_upl);
4423 src_upl->decmp_io_upl = NULL;
4424 upl_unlock(src_upl);
4425 upl_deallocate(src_upl);
4426 }
4427 #endif /* CONFIG_IOSCHED */
4428
4429 #if CONFIG_IOSCHED || UPL_DEBUG
4430 if ((upl->flags & UPL_TRACKED_BY_OBJECT) && !(upl->flags & UPL_VECTOR)) {
4431 vm_object_t object;
4432
4433 if (upl->flags & UPL_SHADOWED) {
4434 object = upl->map_object->shadow;
4435 } else {
4436 object = upl->map_object;
4437 }
4438
4439 vm_object_lock(object);
4440 queue_remove(&object->uplq, upl, upl_t, uplq);
4441 vm_object_activity_end(object);
4442 vm_object_collapse(object, 0, TRUE);
4443 vm_object_unlock(object);
4444 }
4445 #endif
4446 /*
4447 * drop a reference on the map_object whether or
4448 * not a pageout object is inserted
4449 */
4450 if (upl->flags & UPL_SHADOWED)
4451 vm_object_deallocate(upl->map_object);
4452
4453 if (upl->flags & UPL_DEVICE_MEMORY)
4454 size = PAGE_SIZE;
4455 else
4456 size = upl->size;
4457 page_field_size = 0;
4458
4459 if (upl->flags & UPL_LITE) {
4460 page_field_size = ((size/PAGE_SIZE) + 7) >> 3;
4461 page_field_size = (page_field_size + 3) & 0xFFFFFFFC;
4462 }
4463 upl_lock_destroy(upl);
4464 upl->vector_upl = (vector_upl_t) 0xfeedbeef;
4465
4466 #if CONFIG_IOSCHED
4467 if (upl->flags & UPL_EXPEDITE_SUPPORTED)
4468 kfree(upl->upl_reprio_info, sizeof(uint64_t) * (size/PAGE_SIZE));
4469 #endif
4470
4471 if (upl->flags & UPL_INTERNAL) {
4472 kfree(upl,
4473 sizeof(struct upl) +
4474 (sizeof(struct upl_page_info) * (size/PAGE_SIZE))
4475 + page_field_size);
4476 } else {
4477 kfree(upl, sizeof(struct upl) + page_field_size);
4478 }
4479 }
4480
4481 void
4482 upl_deallocate(upl_t upl)
4483 {
4484 upl_lock(upl);
4485 if (--upl->ref_count == 0) {
4486 if(vector_upl_is_valid(upl))
4487 vector_upl_deallocate(upl);
4488 upl_unlock(upl);
4489 upl_destroy(upl);
4490 }
4491 else
4492 upl_unlock(upl);
4493 }
4494
4495 #if CONFIG_IOSCHED
4496 void
4497 upl_mark_decmp(upl_t upl)
4498 {
4499 if (upl->flags & UPL_TRACKED_BY_OBJECT) {
4500 upl->flags |= UPL_DECMP_REQ;
4501 upl->upl_creator->decmp_upl = (void *)upl;
4502 }
4503 }
4504
4505 void
4506 upl_unmark_decmp(upl_t upl)
4507 {
4508 if(upl && (upl->flags & UPL_DECMP_REQ)) {
4509 upl->upl_creator->decmp_upl = NULL;
4510 }
4511 }
4512
4513 #endif /* CONFIG_IOSCHED */
4514
4515 #define VM_PAGE_Q_BACKING_UP(q) \
4516 ((q)->pgo_laundry >= (((q)->pgo_maxlaundry * 8) / 10))
4517
4518 boolean_t must_throttle_writes(void);
4519
4520 boolean_t
4521 must_throttle_writes()
4522 {
4523 if (VM_PAGE_Q_BACKING_UP(&vm_pageout_queue_external) &&
4524 vm_page_pageable_external_count > (AVAILABLE_NON_COMPRESSED_MEMORY * 6) / 10)
4525 return (TRUE);
4526
4527 return (FALSE);
4528 }
4529
4530
4531 #if DEVELOPMENT || DEBUG
4532 /*/*
4533 * Statistics about UPL enforcement of copy-on-write obligations.
4534 */
4535 unsigned long upl_cow = 0;
4536 unsigned long upl_cow_again = 0;
4537 unsigned long upl_cow_pages = 0;
4538 unsigned long upl_cow_again_pages = 0;
4539
4540 unsigned long iopl_cow = 0;
4541 unsigned long iopl_cow_pages = 0;
4542 #endif
4543
4544 /*
4545 * Routine: vm_object_upl_request
4546 * Purpose:
4547 * Cause the population of a portion of a vm_object.
4548 * Depending on the nature of the request, the pages
4549 * returned may be contain valid data or be uninitialized.
4550 * A page list structure, listing the physical pages
4551 * will be returned upon request.
4552 * This function is called by the file system or any other
4553 * supplier of backing store to a pager.
4554 * IMPORTANT NOTE: The caller must still respect the relationship
4555 * between the vm_object and its backing memory object. The
4556 * caller MUST NOT substitute changes in the backing file
4557 * without first doing a memory_object_lock_request on the
4558 * target range unless it is know that the pages are not
4559 * shared with another entity at the pager level.
4560 * Copy_in_to:
4561 * if a page list structure is present
4562 * return the mapped physical pages, where a
4563 * page is not present, return a non-initialized
4564 * one. If the no_sync bit is turned on, don't
4565 * call the pager unlock to synchronize with other
4566 * possible copies of the page. Leave pages busy
4567 * in the original object, if a page list structure
4568 * was specified. When a commit of the page list
4569 * pages is done, the dirty bit will be set for each one.
4570 * Copy_out_from:
4571 * If a page list structure is present, return
4572 * all mapped pages. Where a page does not exist
4573 * map a zero filled one. Leave pages busy in
4574 * the original object. If a page list structure
4575 * is not specified, this call is a no-op.
4576 *
4577 * Note: access of default pager objects has a rather interesting
4578 * twist. The caller of this routine, presumably the file system
4579 * page cache handling code, will never actually make a request
4580 * against a default pager backed object. Only the default
4581 * pager will make requests on backing store related vm_objects
4582 * In this way the default pager can maintain the relationship
4583 * between backing store files (abstract memory objects) and
4584 * the vm_objects (cache objects), they support.
4585 *
4586 */
4587
4588 __private_extern__ kern_return_t
4589 vm_object_upl_request(
4590 vm_object_t object,
4591 vm_object_offset_t offset,
4592 upl_size_t size,
4593 upl_t *upl_ptr,
4594 upl_page_info_array_t user_page_list,
4595 unsigned int *page_list_count,
4596 int cntrl_flags)
4597 {
4598 vm_page_t dst_page = VM_PAGE_NULL;
4599 vm_object_offset_t dst_offset;
4600 upl_size_t xfer_size;
4601 unsigned int size_in_pages;
4602 boolean_t dirty;
4603 boolean_t hw_dirty;
4604 upl_t upl = NULL;
4605 unsigned int entry;
4606 #if MACH_CLUSTER_STATS
4607 boolean_t encountered_lrp = FALSE;
4608 #endif
4609 vm_page_t alias_page = NULL;
4610 int refmod_state = 0;
4611 wpl_array_t lite_list = NULL;
4612 vm_object_t last_copy_object;
4613 struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT];
4614 struct vm_page_delayed_work *dwp;
4615 int dw_count;
4616 int dw_limit;
4617 int io_tracking_flag = 0;
4618
4619 if (cntrl_flags & ~UPL_VALID_FLAGS) {
4620 /*
4621 * For forward compatibility's sake,
4622 * reject any unknown flag.
4623 */
4624 return KERN_INVALID_VALUE;
4625 }
4626 if ( (!object->internal) && (object->paging_offset != 0) )
4627 panic("vm_object_upl_request: external object with non-zero paging offset\n");
4628 if (object->phys_contiguous)
4629 panic("vm_object_upl_request: contiguous object specified\n");
4630
4631
4632 if (size > MAX_UPL_SIZE_BYTES)
4633 size = MAX_UPL_SIZE_BYTES;
4634
4635 if ( (cntrl_flags & UPL_SET_INTERNAL) && page_list_count != NULL)
4636 *page_list_count = MAX_UPL_SIZE_BYTES >> PAGE_SHIFT;
4637
4638 #if CONFIG_IOSCHED || UPL_DEBUG
4639 if (object->io_tracking || upl_debug_enabled)
4640 io_tracking_flag |= UPL_CREATE_IO_TRACKING;
4641 #endif
4642 #if CONFIG_IOSCHED
4643 if (object->io_tracking)
4644 io_tracking_flag |= UPL_CREATE_EXPEDITE_SUP;
4645 #endif
4646
4647 if (cntrl_flags & UPL_SET_INTERNAL) {
4648 if (cntrl_flags & UPL_SET_LITE) {
4649
4650 upl = upl_create(UPL_CREATE_INTERNAL | UPL_CREATE_LITE | io_tracking_flag, 0, size);
4651
4652 user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl));
4653 lite_list = (wpl_array_t)
4654 (((uintptr_t)user_page_list) +
4655 ((size/PAGE_SIZE) * sizeof(upl_page_info_t)));
4656 if (size == 0) {
4657 user_page_list = NULL;
4658 lite_list = NULL;
4659 }
4660 } else {
4661 upl = upl_create(UPL_CREATE_INTERNAL | io_tracking_flag, 0, size);
4662
4663 user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl));
4664 if (size == 0) {
4665 user_page_list = NULL;
4666 }
4667 }
4668 } else {
4669 if (cntrl_flags & UPL_SET_LITE) {
4670
4671 upl = upl_create(UPL_CREATE_EXTERNAL | UPL_CREATE_LITE | io_tracking_flag, 0, size);
4672
4673 lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl));
4674 if (size == 0) {
4675 lite_list = NULL;
4676 }
4677 } else {
4678 upl = upl_create(UPL_CREATE_EXTERNAL | io_tracking_flag, 0, size);
4679 }
4680 }
4681 *upl_ptr = upl;
4682
4683 if (user_page_list)
4684 user_page_list[0].device = FALSE;
4685
4686 if (cntrl_flags & UPL_SET_LITE) {
4687 upl->map_object = object;
4688 } else {
4689 upl->map_object = vm_object_allocate(size);
4690 /*
4691 * No neeed to lock the new object: nobody else knows
4692 * about it yet, so it's all ours so far.
4693 */
4694 upl->map_object->shadow = object;
4695 upl->map_object->pageout = TRUE;
4696 upl->map_object->can_persist = FALSE;
4697 upl->map_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
4698 upl->map_object->vo_shadow_offset = offset;
4699 upl->map_object->wimg_bits = object->wimg_bits;
4700
4701 VM_PAGE_GRAB_FICTITIOUS(alias_page);
4702
4703 upl->flags |= UPL_SHADOWED;
4704 }
4705 /*
4706 * ENCRYPTED SWAP:
4707 * Just mark the UPL as "encrypted" here.
4708 * We'll actually encrypt the pages later,
4709 * in upl_encrypt(), when the caller has
4710 * selected which pages need to go to swap.
4711 */
4712 if (cntrl_flags & UPL_ENCRYPT)
4713 upl->flags |= UPL_ENCRYPTED;
4714
4715 if (cntrl_flags & UPL_FOR_PAGEOUT)
4716 upl->flags |= UPL_PAGEOUT;
4717
4718 vm_object_lock(object);
4719 vm_object_activity_begin(object);
4720
4721 /*
4722 * we can lock in the paging_offset once paging_in_progress is set
4723 */
4724 upl->size = size;
4725 upl->offset = offset + object->paging_offset;
4726
4727 #if CONFIG_IOSCHED || UPL_DEBUG
4728 if (object->io_tracking || upl_debug_enabled) {
4729 vm_object_activity_begin(object);
4730 queue_enter(&object->uplq, upl, upl_t, uplq);
4731 }
4732 #endif
4733 if ((cntrl_flags & UPL_WILL_MODIFY) && object->copy != VM_OBJECT_NULL) {
4734 /*
4735 * Honor copy-on-write obligations
4736 *
4737 * The caller is gathering these pages and
4738 * might modify their contents. We need to
4739 * make sure that the copy object has its own
4740 * private copies of these pages before we let
4741 * the caller modify them.
4742 */
4743 vm_object_update(object,
4744 offset,
4745 size,
4746 NULL,
4747 NULL,
4748 FALSE, /* should_return */
4749 MEMORY_OBJECT_COPY_SYNC,
4750 VM_PROT_NO_CHANGE);
4751 #if DEVELOPMENT || DEBUG
4752 upl_cow++;
4753 upl_cow_pages += size >> PAGE_SHIFT;
4754 #endif
4755 }
4756 /*
4757 * remember which copy object we synchronized with
4758 */
4759 last_copy_object = object->copy;
4760 entry = 0;
4761
4762 xfer_size = size;
4763 dst_offset = offset;
4764 size_in_pages = size / PAGE_SIZE;
4765
4766 dwp = &dw_array[0];
4767 dw_count = 0;
4768 dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
4769
4770 if (vm_page_free_count > (vm_page_free_target + size_in_pages) ||
4771 object->resident_page_count < ((MAX_UPL_SIZE_BYTES * 2) >> PAGE_SHIFT))
4772 object->scan_collisions = 0;
4773
4774 if ((cntrl_flags & UPL_WILL_MODIFY) && must_throttle_writes() == TRUE) {
4775 boolean_t isSSD = FALSE;
4776
4777 vnode_pager_get_isSSD(object->pager, &isSSD);
4778 vm_object_unlock(object);
4779
4780 OSAddAtomic(size_in_pages, &vm_upl_wait_for_pages);
4781
4782 if (isSSD == TRUE)
4783 delay(1000 * size_in_pages);
4784 else
4785 delay(5000 * size_in_pages);
4786 OSAddAtomic(-size_in_pages, &vm_upl_wait_for_pages);
4787
4788 vm_object_lock(object);
4789 }
4790
4791 while (xfer_size) {
4792
4793 dwp->dw_mask = 0;
4794
4795 if ((alias_page == NULL) && !(cntrl_flags & UPL_SET_LITE)) {
4796 vm_object_unlock(object);
4797 VM_PAGE_GRAB_FICTITIOUS(alias_page);
4798 vm_object_lock(object);
4799 }
4800 if (cntrl_flags & UPL_COPYOUT_FROM) {
4801 upl->flags |= UPL_PAGE_SYNC_DONE;
4802
4803 if ( ((dst_page = vm_page_lookup(object, dst_offset)) == VM_PAGE_NULL) ||
4804 dst_page->fictitious ||
4805 dst_page->absent ||
4806 dst_page->error ||
4807 dst_page->cleaning ||
4808 (VM_PAGE_WIRED(dst_page))) {
4809
4810 if (user_page_list)
4811 user_page_list[entry].phys_addr = 0;
4812
4813 goto try_next_page;
4814 }
4815 /*
4816 * grab this up front...
4817 * a high percentange of the time we're going to
4818 * need the hardware modification state a bit later
4819 * anyway... so we can eliminate an extra call into
4820 * the pmap layer by grabbing it here and recording it
4821 */
4822 if (dst_page->pmapped)
4823 refmod_state = pmap_get_refmod(dst_page->phys_page);
4824 else
4825 refmod_state = 0;
4826
4827 if ( (refmod_state & VM_MEM_REFERENCED) && dst_page->inactive ) {
4828 /*
4829 * page is on inactive list and referenced...
4830 * reactivate it now... this gets it out of the
4831 * way of vm_pageout_scan which would have to
4832 * reactivate it upon tripping over it
4833 */
4834 dwp->dw_mask |= DW_vm_page_activate;
4835 }
4836 if (cntrl_flags & UPL_RET_ONLY_DIRTY) {
4837 /*
4838 * we're only asking for DIRTY pages to be returned
4839 */
4840 if (dst_page->laundry || !(cntrl_flags & UPL_FOR_PAGEOUT)) {
4841 /*
4842 * if we were the page stolen by vm_pageout_scan to be
4843 * cleaned (as opposed to a buddy being clustered in
4844 * or this request is not being driven by a PAGEOUT cluster
4845 * then we only need to check for the page being dirty or
4846 * precious to decide whether to return it
4847 */
4848 if (dst_page->dirty || dst_page->precious || (refmod_state & VM_MEM_MODIFIED))
4849 goto check_busy;
4850 goto dont_return;
4851 }
4852 /*
4853 * this is a request for a PAGEOUT cluster and this page
4854 * is merely along for the ride as a 'buddy'... not only
4855 * does it have to be dirty to be returned, but it also
4856 * can't have been referenced recently...
4857 */
4858 if ( (hibernate_cleaning_in_progress == TRUE ||
4859 (!((refmod_state & VM_MEM_REFERENCED) || dst_page->reference) || dst_page->throttled)) &&
4860 ((refmod_state & VM_MEM_MODIFIED) || dst_page->dirty || dst_page->precious) ) {
4861 goto check_busy;
4862 }
4863 dont_return:
4864 /*
4865 * if we reach here, we're not to return
4866 * the page... go on to the next one
4867 */
4868 if (dst_page->laundry == TRUE) {
4869 /*
4870 * if we get here, the page is not 'cleaning' (filtered out above).
4871 * since it has been referenced, remove it from the laundry
4872 * so we don't pay the cost of an I/O to clean a page
4873 * we're just going to take back
4874 */
4875 vm_page_lockspin_queues();
4876
4877 vm_pageout_steal_laundry(dst_page, TRUE);
4878 vm_page_activate(dst_page);
4879
4880 vm_page_unlock_queues();
4881 }
4882 if (user_page_list)
4883 user_page_list[entry].phys_addr = 0;
4884
4885 goto try_next_page;
4886 }
4887 check_busy:
4888 if (dst_page->busy) {
4889 if (cntrl_flags & UPL_NOBLOCK) {
4890 if (user_page_list)
4891 user_page_list[entry].phys_addr = 0;
4892
4893 goto try_next_page;
4894 }
4895 /*
4896 * someone else is playing with the
4897 * page. We will have to wait.
4898 */
4899 PAGE_SLEEP(object, dst_page, THREAD_UNINT);
4900
4901 continue;
4902 }
4903 /*
4904 * ENCRYPTED SWAP:
4905 * The caller is gathering this page and might
4906 * access its contents later on. Decrypt the
4907 * page before adding it to the UPL, so that
4908 * the caller never sees encrypted data.
4909 */
4910 if (! (cntrl_flags & UPL_ENCRYPT) && dst_page->encrypted) {
4911 int was_busy;
4912
4913 /*
4914 * save the current state of busy
4915 * mark page as busy while decrypt
4916 * is in progress since it will drop
4917 * the object lock...
4918 */
4919 was_busy = dst_page->busy;
4920 dst_page->busy = TRUE;
4921
4922 vm_page_decrypt(dst_page, 0);
4923 vm_page_decrypt_for_upl_counter++;
4924 /*
4925 * restore to original busy state
4926 */
4927 dst_page->busy = was_busy;
4928 }
4929 if (dst_page->pageout_queue == TRUE) {
4930
4931 vm_page_lockspin_queues();
4932
4933 if (dst_page->pageout_queue == TRUE) {
4934 /*
4935 * we've buddied up a page for a clustered pageout
4936 * that has already been moved to the pageout
4937 * queue by pageout_scan... we need to remove
4938 * it from the queue and drop the laundry count
4939 * on that queue
4940 */
4941 vm_pageout_throttle_up(dst_page);
4942 }
4943 vm_page_unlock_queues();
4944 }
4945 #if MACH_CLUSTER_STATS
4946 /*
4947 * pageout statistics gathering. count
4948 * all the pages we will page out that
4949 * were not counted in the initial
4950 * vm_pageout_scan work
4951 */
4952 if (dst_page->pageout)
4953 encountered_lrp = TRUE;
4954 if ((dst_page->dirty || (dst_page->object->internal && dst_page->precious))) {
4955 if (encountered_lrp)
4956 CLUSTER_STAT(pages_at_higher_offsets++;)
4957 else
4958 CLUSTER_STAT(pages_at_lower_offsets++;)
4959 }
4960 #endif
4961 hw_dirty = refmod_state & VM_MEM_MODIFIED;
4962 dirty = hw_dirty ? TRUE : dst_page->dirty;
4963
4964 if (dst_page->phys_page > upl->highest_page)
4965 upl->highest_page = dst_page->phys_page;
4966
4967 if (cntrl_flags & UPL_SET_LITE) {
4968 unsigned int pg_num;
4969
4970 pg_num = (unsigned int) ((dst_offset-offset)/PAGE_SIZE);
4971 assert(pg_num == (dst_offset-offset)/PAGE_SIZE);
4972 lite_list[pg_num>>5] |= 1 << (pg_num & 31);
4973
4974 if (hw_dirty)
4975 pmap_clear_modify(dst_page->phys_page);
4976
4977 /*
4978 * Mark original page as cleaning
4979 * in place.
4980 */
4981 dst_page->cleaning = TRUE;
4982 dst_page->precious = FALSE;
4983 } else {
4984 /*
4985 * use pageclean setup, it is more
4986 * convenient even for the pageout
4987 * cases here
4988 */
4989 vm_object_lock(upl->map_object);
4990 vm_pageclean_setup(dst_page, alias_page, upl->map_object, size - xfer_size);
4991 vm_object_unlock(upl->map_object);
4992
4993 alias_page->absent = FALSE;
4994 alias_page = NULL;
4995 }
4996 #if MACH_PAGEMAP
4997 /*
4998 * Record that this page has been
4999 * written out
5000 */
5001 vm_external_state_set(object->existence_map, dst_page->offset);
5002 #endif /*MACH_PAGEMAP*/
5003 if (dirty) {
5004 SET_PAGE_DIRTY(dst_page, FALSE);
5005 } else {
5006 dst_page->dirty = FALSE;
5007 }
5008
5009 if (!dirty)
5010 dst_page->precious = TRUE;
5011
5012 if ( (cntrl_flags & UPL_ENCRYPT) ) {
5013 /*
5014 * ENCRYPTED SWAP:
5015 * We want to deny access to the target page
5016 * because its contents are about to be
5017 * encrypted and the user would be very
5018 * confused to see encrypted data instead
5019 * of their data.
5020 * We also set "encrypted_cleaning" to allow
5021 * vm_pageout_scan() to demote that page
5022 * from "adjacent/clean-in-place" to
5023 * "target/clean-and-free" if it bumps into
5024 * this page during its scanning while we're
5025 * still processing this cluster.
5026 */
5027 dst_page->busy = TRUE;
5028 dst_page->encrypted_cleaning = TRUE;
5029 }
5030 if ( !(cntrl_flags & UPL_CLEAN_IN_PLACE) ) {
5031 if ( !VM_PAGE_WIRED(dst_page))
5032 dst_page->pageout = TRUE;
5033 }
5034 } else {
5035 if ((cntrl_flags & UPL_WILL_MODIFY) && object->copy != last_copy_object) {
5036 /*
5037 * Honor copy-on-write obligations
5038 *
5039 * The copy object has changed since we
5040 * last synchronized for copy-on-write.
5041 * Another copy object might have been
5042 * inserted while we released the object's
5043 * lock. Since someone could have seen the
5044 * original contents of the remaining pages
5045 * through that new object, we have to
5046 * synchronize with it again for the remaining
5047 * pages only. The previous pages are "busy"
5048 * so they can not be seen through the new
5049 * mapping. The new mapping will see our
5050 * upcoming changes for those previous pages,
5051 * but that's OK since they couldn't see what
5052 * was there before. It's just a race anyway
5053 * and there's no guarantee of consistency or
5054 * atomicity. We just don't want new mappings
5055 * to see both the *before* and *after* pages.
5056 */
5057 if (object->copy != VM_OBJECT_NULL) {
5058 vm_object_update(
5059 object,
5060 dst_offset,/* current offset */
5061 xfer_size, /* remaining size */
5062 NULL,
5063 NULL,
5064 FALSE, /* should_return */
5065 MEMORY_OBJECT_COPY_SYNC,
5066 VM_PROT_NO_CHANGE);
5067
5068 #if DEVELOPMENT || DEBUG
5069 upl_cow_again++;
5070 upl_cow_again_pages += xfer_size >> PAGE_SHIFT;
5071 #endif
5072 }
5073 /*
5074 * remember the copy object we synced with
5075 */
5076 last_copy_object = object->copy;
5077 }
5078 dst_page = vm_page_lookup(object, dst_offset);
5079
5080 if (dst_page != VM_PAGE_NULL) {
5081
5082 if ((cntrl_flags & UPL_RET_ONLY_ABSENT)) {
5083 /*
5084 * skip over pages already present in the cache
5085 */
5086 if (user_page_list)
5087 user_page_list[entry].phys_addr = 0;
5088
5089 goto try_next_page;
5090 }
5091 if (dst_page->fictitious) {
5092 panic("need corner case for fictitious page");
5093 }
5094
5095 if (dst_page->busy || dst_page->cleaning) {
5096 /*
5097 * someone else is playing with the
5098 * page. We will have to wait.
5099 */
5100 PAGE_SLEEP(object, dst_page, THREAD_UNINT);
5101
5102 continue;
5103 }
5104 if (dst_page->laundry) {
5105 dst_page->pageout = FALSE;
5106
5107 vm_pageout_steal_laundry(dst_page, FALSE);
5108 }
5109 } else {
5110 if (object->private) {
5111 /*
5112 * This is a nasty wrinkle for users
5113 * of upl who encounter device or
5114 * private memory however, it is
5115 * unavoidable, only a fault can
5116 * resolve the actual backing
5117 * physical page by asking the
5118 * backing device.
5119 */
5120 if (user_page_list)
5121 user_page_list[entry].phys_addr = 0;
5122
5123 goto try_next_page;
5124 }
5125 if (object->scan_collisions) {
5126 /*
5127 * the pageout_scan thread is trying to steal
5128 * pages from this object, but has run into our
5129 * lock... grab 2 pages from the head of the object...
5130 * the first is freed on behalf of pageout_scan, the
5131 * 2nd is for our own use... we use vm_object_page_grab
5132 * in both cases to avoid taking pages from the free
5133 * list since we are under memory pressure and our
5134 * lock on this object is getting in the way of
5135 * relieving it
5136 */
5137 dst_page = vm_object_page_grab(object);
5138
5139 if (dst_page != VM_PAGE_NULL)
5140 vm_page_release(dst_page);
5141
5142 dst_page = vm_object_page_grab(object);
5143 }
5144 if (dst_page == VM_PAGE_NULL) {
5145 /*
5146 * need to allocate a page
5147 */
5148 dst_page = vm_page_grab();
5149 }
5150 if (dst_page == VM_PAGE_NULL) {
5151 if ( (cntrl_flags & (UPL_RET_ONLY_ABSENT | UPL_NOBLOCK)) == (UPL_RET_ONLY_ABSENT | UPL_NOBLOCK)) {
5152 /*
5153 * we don't want to stall waiting for pages to come onto the free list
5154 * while we're already holding absent pages in this UPL
5155 * the caller will deal with the empty slots
5156 */
5157 if (user_page_list)
5158 user_page_list[entry].phys_addr = 0;
5159
5160 goto try_next_page;
5161 }
5162 /*
5163 * no pages available... wait
5164 * then try again for the same
5165 * offset...
5166 */
5167 vm_object_unlock(object);
5168
5169 OSAddAtomic(size_in_pages, &vm_upl_wait_for_pages);
5170
5171 VM_DEBUG_EVENT(vm_upl_page_wait, VM_UPL_PAGE_WAIT, DBG_FUNC_START, vm_upl_wait_for_pages, 0, 0, 0);
5172
5173 VM_PAGE_WAIT();
5174 OSAddAtomic(-size_in_pages, &vm_upl_wait_for_pages);
5175
5176 VM_DEBUG_EVENT(vm_upl_page_wait, VM_UPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, 0);
5177
5178 vm_object_lock(object);
5179
5180 continue;
5181 }
5182 vm_page_insert(dst_page, object, dst_offset);
5183
5184 dst_page->absent = TRUE;
5185 dst_page->busy = FALSE;
5186
5187 if (cntrl_flags & UPL_RET_ONLY_ABSENT) {
5188 /*
5189 * if UPL_RET_ONLY_ABSENT was specified,
5190 * than we're definitely setting up a
5191 * upl for a clustered read/pagein
5192 * operation... mark the pages as clustered
5193 * so upl_commit_range can put them on the
5194 * speculative list
5195 */
5196 dst_page->clustered = TRUE;
5197
5198 if ( !(cntrl_flags & UPL_FILE_IO))
5199 VM_STAT_INCR(pageins);
5200 }
5201 }
5202 /*
5203 * ENCRYPTED SWAP:
5204 */
5205 if (cntrl_flags & UPL_ENCRYPT) {
5206 /*
5207 * The page is going to be encrypted when we
5208 * get it from the pager, so mark it so.
5209 */
5210 dst_page->encrypted = TRUE;
5211 } else {
5212 /*
5213 * Otherwise, the page will not contain
5214 * encrypted data.
5215 */
5216 dst_page->encrypted = FALSE;
5217 }
5218 dst_page->overwriting = TRUE;
5219
5220 if (dst_page->pmapped) {
5221 if ( !(cntrl_flags & UPL_FILE_IO))
5222 /*
5223 * eliminate all mappings from the
5224 * original object and its prodigy
5225 */
5226 refmod_state = pmap_disconnect(dst_page->phys_page);
5227 else
5228 refmod_state = pmap_get_refmod(dst_page->phys_page);
5229 } else
5230 refmod_state = 0;
5231
5232 hw_dirty = refmod_state & VM_MEM_MODIFIED;
5233 dirty = hw_dirty ? TRUE : dst_page->dirty;
5234
5235 if (cntrl_flags & UPL_SET_LITE) {
5236 unsigned int pg_num;
5237
5238 pg_num = (unsigned int) ((dst_offset-offset)/PAGE_SIZE);
5239 assert(pg_num == (dst_offset-offset)/PAGE_SIZE);
5240 lite_list[pg_num>>5] |= 1 << (pg_num & 31);
5241
5242 if (hw_dirty)
5243 pmap_clear_modify(dst_page->phys_page);
5244
5245 /*
5246 * Mark original page as cleaning
5247 * in place.
5248 */
5249 dst_page->cleaning = TRUE;
5250 dst_page->precious = FALSE;
5251 } else {
5252 /*
5253 * use pageclean setup, it is more
5254 * convenient even for the pageout
5255 * cases here
5256 */
5257 vm_object_lock(upl->map_object);
5258 vm_pageclean_setup(dst_page, alias_page, upl->map_object, size - xfer_size);
5259 vm_object_unlock(upl->map_object);
5260
5261 alias_page->absent = FALSE;
5262 alias_page = NULL;
5263 }
5264
5265 if (cntrl_flags & UPL_REQUEST_SET_DIRTY) {
5266 upl->flags &= ~UPL_CLEAR_DIRTY;
5267 upl->flags |= UPL_SET_DIRTY;
5268 dirty = TRUE;
5269 upl->flags |= UPL_SET_DIRTY;
5270 } else if (cntrl_flags & UPL_CLEAN_IN_PLACE) {
5271 /*
5272 * clean in place for read implies
5273 * that a write will be done on all
5274 * the pages that are dirty before
5275 * a upl commit is done. The caller
5276 * is obligated to preserve the
5277 * contents of all pages marked dirty
5278 */
5279 upl->flags |= UPL_CLEAR_DIRTY;
5280 }
5281 dst_page->dirty = dirty;
5282
5283 if (!dirty)
5284 dst_page->precious = TRUE;
5285
5286 if ( !VM_PAGE_WIRED(dst_page)) {
5287 /*
5288 * deny access to the target page while
5289 * it is being worked on
5290 */
5291 dst_page->busy = TRUE;
5292 } else
5293 dwp->dw_mask |= DW_vm_page_wire;
5294
5295 /*
5296 * We might be about to satisfy a fault which has been
5297 * requested. So no need for the "restart" bit.
5298 */
5299 dst_page->restart = FALSE;
5300 if (!dst_page->absent && !(cntrl_flags & UPL_WILL_MODIFY)) {
5301 /*
5302 * expect the page to be used
5303 */
5304 dwp->dw_mask |= DW_set_reference;
5305 }
5306 if (cntrl_flags & UPL_PRECIOUS) {
5307 if (dst_page->object->internal) {
5308 SET_PAGE_DIRTY(dst_page, FALSE);
5309 dst_page->precious = FALSE;
5310 } else {
5311 dst_page->precious = TRUE;
5312 }
5313 } else {
5314 dst_page->precious = FALSE;
5315 }
5316 }
5317 if (dst_page->busy)
5318 upl->flags |= UPL_HAS_BUSY;
5319
5320 if (dst_page->phys_page > upl->highest_page)
5321 upl->highest_page = dst_page->phys_page;
5322 if (user_page_list) {
5323 user_page_list[entry].phys_addr = dst_page->phys_page;
5324 user_page_list[entry].pageout = dst_page->pageout;
5325 user_page_list[entry].absent = dst_page->absent;
5326 user_page_list[entry].dirty = dst_page->dirty;
5327 user_page_list[entry].precious = dst_page->precious;
5328 user_page_list[entry].device = FALSE;
5329 user_page_list[entry].needed = FALSE;
5330 if (dst_page->clustered == TRUE)
5331 user_page_list[entry].speculative = dst_page->speculative;
5332 else
5333 user_page_list[entry].speculative = FALSE;
5334 user_page_list[entry].cs_validated = dst_page->cs_validated;
5335 user_page_list[entry].cs_tainted = dst_page->cs_tainted;
5336 }
5337 /*
5338 * if UPL_RET_ONLY_ABSENT is set, then
5339 * we are working with a fresh page and we've
5340 * just set the clustered flag on it to
5341 * indicate that it was drug in as part of a
5342 * speculative cluster... so leave it alone
5343 */
5344 if ( !(cntrl_flags & UPL_RET_ONLY_ABSENT)) {
5345 /*
5346 * someone is explicitly grabbing this page...
5347 * update clustered and speculative state
5348 *
5349 */
5350 if (dst_page->clustered)
5351 VM_PAGE_CONSUME_CLUSTERED(dst_page);
5352 }
5353 try_next_page:
5354 if (dwp->dw_mask) {
5355 if (dwp->dw_mask & DW_vm_page_activate)
5356 VM_STAT_INCR(reactivations);
5357
5358 VM_PAGE_ADD_DELAYED_WORK(dwp, dst_page, dw_count);
5359
5360 if (dw_count >= dw_limit) {
5361 vm_page_do_delayed_work(object, &dw_array[0], dw_count);
5362
5363 dwp = &dw_array[0];
5364 dw_count = 0;
5365 }
5366 }
5367 entry++;
5368 dst_offset += PAGE_SIZE_64;
5369 xfer_size -= PAGE_SIZE;
5370 }
5371 if (dw_count)
5372 vm_page_do_delayed_work(object, &dw_array[0], dw_count);
5373
5374 if (alias_page != NULL) {
5375 VM_PAGE_FREE(alias_page);
5376 }
5377
5378 if (page_list_count != NULL) {
5379 if (upl->flags & UPL_INTERNAL)
5380 *page_list_count = 0;
5381 else if (*page_list_count > entry)
5382 *page_list_count = entry;
5383 }
5384 #if UPL_DEBUG
5385 upl->upl_state = 1;
5386 #endif
5387 vm_object_unlock(object);
5388
5389 return KERN_SUCCESS;
5390 }
5391
5392 /* JMM - Backward compatability for now */
5393 kern_return_t
5394 vm_fault_list_request( /* forward */
5395 memory_object_control_t control,
5396 vm_object_offset_t offset,
5397 upl_size_t size,
5398 upl_t *upl_ptr,
5399 upl_page_info_t **user_page_list_ptr,
5400 unsigned int page_list_count,
5401 int cntrl_flags);
5402 kern_return_t
5403 vm_fault_list_request(
5404 memory_object_control_t control,
5405 vm_object_offset_t offset,
5406 upl_size_t size,
5407 upl_t *upl_ptr,
5408 upl_page_info_t **user_page_list_ptr,
5409 unsigned int page_list_count,
5410 int cntrl_flags)
5411 {
5412 unsigned int local_list_count;
5413 upl_page_info_t *user_page_list;
5414 kern_return_t kr;
5415
5416 if((cntrl_flags & UPL_VECTOR)==UPL_VECTOR)
5417 return KERN_INVALID_ARGUMENT;
5418
5419 if (user_page_list_ptr != NULL) {
5420 local_list_count = page_list_count;
5421 user_page_list = *user_page_list_ptr;
5422 } else {
5423 local_list_count = 0;
5424 user_page_list = NULL;
5425 }
5426 kr = memory_object_upl_request(control,
5427 offset,
5428 size,
5429 upl_ptr,
5430 user_page_list,
5431 &local_list_count,
5432 cntrl_flags);
5433
5434 if(kr != KERN_SUCCESS)
5435 return kr;
5436
5437 if ((user_page_list_ptr != NULL) && (cntrl_flags & UPL_INTERNAL)) {
5438 *user_page_list_ptr = UPL_GET_INTERNAL_PAGE_LIST(*upl_ptr);
5439 }
5440
5441 return KERN_SUCCESS;
5442 }
5443
5444
5445
5446 /*
5447 * Routine: vm_object_super_upl_request
5448 * Purpose:
5449 * Cause the population of a portion of a vm_object
5450 * in much the same way as memory_object_upl_request.
5451 * Depending on the nature of the request, the pages
5452 * returned may be contain valid data or be uninitialized.
5453 * However, the region may be expanded up to the super
5454 * cluster size provided.
5455 */
5456
5457 __private_extern__ kern_return_t
5458 vm_object_super_upl_request(
5459 vm_object_t object,
5460 vm_object_offset_t offset,
5461 upl_size_t size,
5462 upl_size_t super_cluster,
5463 upl_t *upl,
5464 upl_page_info_t *user_page_list,
5465 unsigned int *page_list_count,
5466 int cntrl_flags)
5467 {
5468 if (object->paging_offset > offset || ((cntrl_flags & UPL_VECTOR)==UPL_VECTOR))
5469 return KERN_FAILURE;
5470
5471 assert(object->paging_in_progress);
5472 offset = offset - object->paging_offset;
5473
5474 if (super_cluster > size) {
5475
5476 vm_object_offset_t base_offset;
5477 upl_size_t super_size;
5478 vm_object_size_t super_size_64;
5479
5480 base_offset = (offset & ~((vm_object_offset_t) super_cluster - 1));
5481 super_size = (offset + size) > (base_offset + super_cluster) ? super_cluster<<1 : super_cluster;
5482 super_size_64 = ((base_offset + super_size) > object->vo_size) ? (object->vo_size - base_offset) : super_size;
5483 super_size = (upl_size_t) super_size_64;
5484 assert(super_size == super_size_64);
5485
5486 if (offset > (base_offset + super_size)) {
5487 panic("vm_object_super_upl_request: Missed target pageout"
5488 " %#llx,%#llx, %#x, %#x, %#x, %#llx\n",
5489 offset, base_offset, super_size, super_cluster,
5490 size, object->paging_offset);
5491 }
5492 /*
5493 * apparently there is a case where the vm requests a
5494 * page to be written out who's offset is beyond the
5495 * object size
5496 */
5497 if ((offset + size) > (base_offset + super_size)) {
5498 super_size_64 = (offset + size) - base_offset;
5499 super_size = (upl_size_t) super_size_64;
5500 assert(super_size == super_size_64);
5501 }
5502
5503 offset = base_offset;
5504 size = super_size;
5505 }
5506 return vm_object_upl_request(object, offset, size, upl, user_page_list, page_list_count, cntrl_flags);
5507 }
5508
5509
5510 kern_return_t
5511 vm_map_create_upl(
5512 vm_map_t map,
5513 vm_map_address_t offset,
5514 upl_size_t *upl_size,
5515 upl_t *upl,
5516 upl_page_info_array_t page_list,
5517 unsigned int *count,
5518 int *flags)
5519 {
5520 vm_map_entry_t entry;
5521 int caller_flags;
5522 int force_data_sync;
5523 int sync_cow_data;
5524 vm_object_t local_object;
5525 vm_map_offset_t local_offset;
5526 vm_map_offset_t local_start;
5527 kern_return_t ret;
5528
5529 caller_flags = *flags;
5530
5531 if (caller_flags & ~UPL_VALID_FLAGS) {
5532 /*
5533 * For forward compatibility's sake,
5534 * reject any unknown flag.
5535 */
5536 return KERN_INVALID_VALUE;
5537 }
5538 force_data_sync = (caller_flags & UPL_FORCE_DATA_SYNC);
5539 sync_cow_data = !(caller_flags & UPL_COPYOUT_FROM);
5540
5541 if (upl == NULL)
5542 return KERN_INVALID_ARGUMENT;
5543
5544 REDISCOVER_ENTRY:
5545 vm_map_lock_read(map);
5546
5547 if (vm_map_lookup_entry(map, offset, &entry)) {
5548
5549 if ((entry->vme_end - offset) < *upl_size) {
5550 *upl_size = (upl_size_t) (entry->vme_end - offset);
5551 assert(*upl_size == entry->vme_end - offset);
5552 }
5553
5554 if (caller_flags & UPL_QUERY_OBJECT_TYPE) {
5555 *flags = 0;
5556
5557 if ( !entry->is_sub_map && entry->object.vm_object != VM_OBJECT_NULL) {
5558 if (entry->object.vm_object->private)
5559 *flags = UPL_DEV_MEMORY;
5560
5561 if (entry->object.vm_object->phys_contiguous)
5562 *flags |= UPL_PHYS_CONTIG;
5563 }
5564 vm_map_unlock_read(map);
5565
5566 return KERN_SUCCESS;
5567 }
5568
5569 if (entry->is_sub_map) {
5570 vm_map_t submap;
5571
5572 submap = entry->object.sub_map;
5573 local_start = entry->vme_start;
5574 local_offset = entry->offset;
5575
5576 vm_map_reference(submap);
5577 vm_map_unlock_read(map);
5578
5579 ret = vm_map_create_upl(submap,
5580 local_offset + (offset - local_start),
5581 upl_size, upl, page_list, count, flags);
5582 vm_map_deallocate(submap);
5583
5584 return ret;
5585 }
5586
5587 if (entry->object.vm_object == VM_OBJECT_NULL || !entry->object.vm_object->phys_contiguous) {
5588 if (*upl_size > MAX_UPL_SIZE_BYTES)
5589 *upl_size = MAX_UPL_SIZE_BYTES;
5590 }
5591 /*
5592 * Create an object if necessary.
5593 */
5594 if (entry->object.vm_object == VM_OBJECT_NULL) {
5595
5596 if (vm_map_lock_read_to_write(map))
5597 goto REDISCOVER_ENTRY;
5598
5599 entry->object.vm_object = vm_object_allocate((vm_size_t)(entry->vme_end - entry->vme_start));
5600 entry->offset = 0;
5601
5602 vm_map_lock_write_to_read(map);
5603 }
5604 if (!(caller_flags & UPL_COPYOUT_FROM)) {
5605 if (!(entry->protection & VM_PROT_WRITE)) {
5606 vm_map_unlock_read(map);
5607 return KERN_PROTECTION_FAILURE;
5608 }
5609 }
5610
5611 local_object = entry->object.vm_object;
5612 if (vm_map_entry_should_cow_for_true_share(entry) &&
5613 local_object->vo_size > *upl_size &&
5614 *upl_size != 0) {
5615 vm_prot_t prot;
5616
5617 /*
5618 * Set up the targeted range for copy-on-write to avoid
5619 * applying true_share/copy_delay to the entire object.
5620 */
5621
5622 if (vm_map_lock_read_to_write(map)) {
5623 goto REDISCOVER_ENTRY;
5624 }
5625
5626 vm_map_clip_start(map,
5627 entry,
5628 vm_map_trunc_page(offset,
5629 VM_MAP_PAGE_MASK(map)));
5630 vm_map_clip_end(map,
5631 entry,
5632 vm_map_round_page(offset + *upl_size,
5633 VM_MAP_PAGE_MASK(map)));
5634 if ((entry->vme_end - offset) < *upl_size) {
5635 *upl_size = (upl_size_t) (entry->vme_end - offset);
5636 assert(*upl_size == entry->vme_end - offset);
5637 }
5638
5639 prot = entry->protection & ~VM_PROT_WRITE;
5640 if (override_nx(map, entry->alias) && prot)
5641 prot |= VM_PROT_EXECUTE;
5642 vm_object_pmap_protect(local_object,
5643 entry->offset,
5644 entry->vme_end - entry->vme_start,
5645 ((entry->is_shared || map->mapped_in_other_pmaps)
5646 ? PMAP_NULL
5647 : map->pmap),
5648 entry->vme_start,
5649 prot);
5650 entry->needs_copy = TRUE;
5651
5652 vm_map_lock_write_to_read(map);
5653 }
5654
5655 if (entry->needs_copy) {
5656 /*
5657 * Honor copy-on-write for COPY_SYMMETRIC
5658 * strategy.
5659 */
5660 vm_map_t local_map;
5661 vm_object_t object;
5662 vm_object_offset_t new_offset;
5663 vm_prot_t prot;
5664 boolean_t wired;
5665 vm_map_version_t version;
5666 vm_map_t real_map;
5667 vm_prot_t fault_type;
5668
5669 local_map = map;
5670
5671 if (caller_flags & UPL_COPYOUT_FROM) {
5672 fault_type = VM_PROT_READ | VM_PROT_COPY;
5673 vm_counters.create_upl_extra_cow++;
5674 vm_counters.create_upl_extra_cow_pages += (entry->vme_end - entry->vme_start) / PAGE_SIZE;
5675 } else {
5676 fault_type = VM_PROT_WRITE;
5677 }
5678 if (vm_map_lookup_locked(&local_map,
5679 offset, fault_type,
5680 OBJECT_LOCK_EXCLUSIVE,
5681 &version, &object,
5682 &new_offset, &prot, &wired,
5683 NULL,
5684 &real_map) != KERN_SUCCESS) {
5685 if (fault_type == VM_PROT_WRITE) {
5686 vm_counters.create_upl_lookup_failure_write++;
5687 } else {
5688 vm_counters.create_upl_lookup_failure_copy++;
5689 }
5690 vm_map_unlock_read(local_map);
5691 return KERN_FAILURE;
5692 }
5693 if (real_map != map)
5694 vm_map_unlock(real_map);
5695 vm_map_unlock_read(local_map);
5696
5697 vm_object_unlock(object);
5698
5699 goto REDISCOVER_ENTRY;
5700 }
5701
5702 if (sync_cow_data) {
5703 if (entry->object.vm_object->shadow || entry->object.vm_object->copy) {
5704 local_object = entry->object.vm_object;
5705 local_start = entry->vme_start;
5706 local_offset = entry->offset;
5707
5708 vm_object_reference(local_object);
5709 vm_map_unlock_read(map);
5710
5711 if (local_object->shadow && local_object->copy) {
5712 vm_object_lock_request(
5713 local_object->shadow,
5714 (vm_object_offset_t)
5715 ((offset - local_start) +
5716 local_offset) +
5717 local_object->vo_shadow_offset,
5718 *upl_size, FALSE,
5719 MEMORY_OBJECT_DATA_SYNC,
5720 VM_PROT_NO_CHANGE);
5721 }
5722 sync_cow_data = FALSE;
5723 vm_object_deallocate(local_object);
5724
5725 goto REDISCOVER_ENTRY;
5726 }
5727 }
5728 if (force_data_sync) {
5729 local_object = entry->object.vm_object;
5730 local_start = entry->vme_start;
5731 local_offset = entry->offset;
5732
5733 vm_object_reference(local_object);
5734 vm_map_unlock_read(map);
5735
5736 vm_object_lock_request(
5737 local_object,
5738 (vm_object_offset_t)
5739 ((offset - local_start) + local_offset),
5740 (vm_object_size_t)*upl_size, FALSE,
5741 MEMORY_OBJECT_DATA_SYNC,
5742 VM_PROT_NO_CHANGE);
5743
5744 force_data_sync = FALSE;
5745 vm_object_deallocate(local_object);
5746
5747 goto REDISCOVER_ENTRY;
5748 }
5749 if (entry->object.vm_object->private)
5750 *flags = UPL_DEV_MEMORY;
5751 else
5752 *flags = 0;
5753
5754 if (entry->object.vm_object->phys_contiguous)
5755 *flags |= UPL_PHYS_CONTIG;
5756
5757 local_object = entry->object.vm_object;
5758 local_offset = entry->offset;
5759 local_start = entry->vme_start;
5760
5761 vm_object_reference(local_object);
5762 vm_map_unlock_read(map);
5763
5764 ret = vm_object_iopl_request(local_object,
5765 (vm_object_offset_t) ((offset - local_start) + local_offset),
5766 *upl_size,
5767 upl,
5768 page_list,
5769 count,
5770 caller_flags);
5771 vm_object_deallocate(local_object);
5772
5773 return(ret);
5774 }
5775 vm_map_unlock_read(map);
5776
5777 return(KERN_FAILURE);
5778 }
5779
5780 /*
5781 * Internal routine to enter a UPL into a VM map.
5782 *
5783 * JMM - This should just be doable through the standard
5784 * vm_map_enter() API.
5785 */
5786 kern_return_t
5787 vm_map_enter_upl(
5788 vm_map_t map,
5789 upl_t upl,
5790 vm_map_offset_t *dst_addr)
5791 {
5792 vm_map_size_t size;
5793 vm_object_offset_t offset;
5794 vm_map_offset_t addr;
5795 vm_page_t m;
5796 kern_return_t kr;
5797 int isVectorUPL = 0, curr_upl=0;
5798 upl_t vector_upl = NULL;
5799 vm_offset_t vector_upl_dst_addr = 0;
5800 vm_map_t vector_upl_submap = NULL;
5801 upl_offset_t subupl_offset = 0;
5802 upl_size_t subupl_size = 0;
5803
5804 if (upl == UPL_NULL)
5805 return KERN_INVALID_ARGUMENT;
5806
5807 if((isVectorUPL = vector_upl_is_valid(upl))) {
5808 int mapped=0,valid_upls=0;
5809 vector_upl = upl;
5810
5811 upl_lock(vector_upl);
5812 for(curr_upl=0; curr_upl < MAX_VECTOR_UPL_ELEMENTS; curr_upl++) {
5813 upl = vector_upl_subupl_byindex(vector_upl, curr_upl );
5814 if(upl == NULL)
5815 continue;
5816 valid_upls++;
5817 if (UPL_PAGE_LIST_MAPPED & upl->flags)
5818 mapped++;
5819 }
5820
5821 if(mapped) {
5822 if(mapped != valid_upls)
5823 panic("Only %d of the %d sub-upls within the Vector UPL are alread mapped\n", mapped, valid_upls);
5824 else {
5825 upl_unlock(vector_upl);
5826 return KERN_FAILURE;
5827 }
5828 }
5829
5830 kr = kmem_suballoc(map, &vector_upl_dst_addr, vector_upl->size, FALSE, VM_FLAGS_ANYWHERE, &vector_upl_submap);
5831 if( kr != KERN_SUCCESS )
5832 panic("Vector UPL submap allocation failed\n");
5833 map = vector_upl_submap;
5834 vector_upl_set_submap(vector_upl, vector_upl_submap, vector_upl_dst_addr);
5835 curr_upl=0;
5836 }
5837 else
5838 upl_lock(upl);
5839
5840 process_upl_to_enter:
5841 if(isVectorUPL){
5842 if(curr_upl == MAX_VECTOR_UPL_ELEMENTS) {
5843 *dst_addr = vector_upl_dst_addr;
5844 upl_unlock(vector_upl);
5845 return KERN_SUCCESS;
5846 }
5847 upl = vector_upl_subupl_byindex(vector_upl, curr_upl++ );
5848 if(upl == NULL)
5849 goto process_upl_to_enter;
5850
5851 vector_upl_get_iostate(vector_upl, upl, &subupl_offset, &subupl_size);
5852 *dst_addr = (vm_map_offset_t)(vector_upl_dst_addr + (vm_map_offset_t)subupl_offset);
5853 } else {
5854 /*
5855 * check to see if already mapped
5856 */
5857 if (UPL_PAGE_LIST_MAPPED & upl->flags) {
5858 upl_unlock(upl);
5859 return KERN_FAILURE;
5860 }
5861 }
5862 if ((!(upl->flags & UPL_SHADOWED)) &&
5863 ((upl->flags & UPL_HAS_BUSY) ||
5864 !((upl->flags & (UPL_DEVICE_MEMORY | UPL_IO_WIRE)) || (upl->map_object->phys_contiguous)))) {
5865
5866 vm_object_t object;
5867 vm_page_t alias_page;
5868 vm_object_offset_t new_offset;
5869 unsigned int pg_num;
5870 wpl_array_t lite_list;
5871
5872 if (upl->flags & UPL_INTERNAL) {
5873 lite_list = (wpl_array_t)
5874 ((((uintptr_t)upl) + sizeof(struct upl))
5875 + ((upl->size/PAGE_SIZE) * sizeof(upl_page_info_t)));
5876 } else {
5877 lite_list = (wpl_array_t)(((uintptr_t)upl) + sizeof(struct upl));
5878 }
5879 object = upl->map_object;
5880 upl->map_object = vm_object_allocate(upl->size);
5881
5882 vm_object_lock(upl->map_object);
5883
5884 upl->map_object->shadow = object;
5885 upl->map_object->pageout = TRUE;
5886 upl->map_object->can_persist = FALSE;
5887 upl->map_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
5888 upl->map_object->vo_shadow_offset = upl->offset - object->paging_offset;
5889 upl->map_object->wimg_bits = object->wimg_bits;
5890 offset = upl->map_object->vo_shadow_offset;
5891 new_offset = 0;
5892 size = upl->size;
5893
5894 upl->flags |= UPL_SHADOWED;
5895
5896 while (size) {
5897 pg_num = (unsigned int) (new_offset / PAGE_SIZE);
5898 assert(pg_num == new_offset / PAGE_SIZE);
5899
5900 if (lite_list[pg_num>>5] & (1 << (pg_num & 31))) {
5901
5902 VM_PAGE_GRAB_FICTITIOUS(alias_page);
5903
5904 vm_object_lock(object);
5905
5906 m = vm_page_lookup(object, offset);
5907 if (m == VM_PAGE_NULL) {
5908 panic("vm_upl_map: page missing\n");
5909 }
5910
5911 /*
5912 * Convert the fictitious page to a private
5913 * shadow of the real page.
5914 */
5915 assert(alias_page->fictitious);
5916 alias_page->fictitious = FALSE;
5917 alias_page->private = TRUE;
5918 alias_page->pageout = TRUE;
5919 /*
5920 * since m is a page in the upl it must
5921 * already be wired or BUSY, so it's
5922 * safe to assign the underlying physical
5923 * page to the alias
5924 */
5925 alias_page->phys_page = m->phys_page;
5926
5927 vm_object_unlock(object);
5928
5929 vm_page_lockspin_queues();
5930 vm_page_wire(alias_page);
5931 vm_page_unlock_queues();
5932
5933 /*
5934 * ENCRYPTED SWAP:
5935 * The virtual page ("m") has to be wired in some way
5936 * here or its physical page ("m->phys_page") could
5937 * be recycled at any time.
5938 * Assuming this is enforced by the caller, we can't
5939 * get an encrypted page here. Since the encryption
5940 * key depends on the VM page's "pager" object and
5941 * the "paging_offset", we couldn't handle 2 pageable
5942 * VM pages (with different pagers and paging_offsets)
5943 * sharing the same physical page: we could end up
5944 * encrypting with one key (via one VM page) and
5945 * decrypting with another key (via the alias VM page).
5946 */
5947 ASSERT_PAGE_DECRYPTED(m);
5948
5949 vm_page_insert(alias_page, upl->map_object, new_offset);
5950
5951 assert(!alias_page->wanted);
5952 alias_page->busy = FALSE;
5953 alias_page->absent = FALSE;
5954 }
5955 size -= PAGE_SIZE;
5956 offset += PAGE_SIZE_64;
5957 new_offset += PAGE_SIZE_64;
5958 }
5959 vm_object_unlock(upl->map_object);
5960 }
5961 if (upl->flags & UPL_SHADOWED)
5962 offset = 0;
5963 else
5964 offset = upl->offset - upl->map_object->paging_offset;
5965
5966 size = upl->size;
5967
5968 vm_object_reference(upl->map_object);
5969
5970 if(!isVectorUPL) {
5971 *dst_addr = 0;
5972 /*
5973 * NEED A UPL_MAP ALIAS
5974 */
5975 kr = vm_map_enter(map, dst_addr, (vm_map_size_t)size, (vm_map_offset_t) 0,
5976 VM_FLAGS_ANYWHERE, upl->map_object, offset, FALSE,
5977 VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT);
5978
5979 if (kr != KERN_SUCCESS) {
5980 upl_unlock(upl);
5981 return(kr);
5982 }
5983 }
5984 else {
5985 kr = vm_map_enter(map, dst_addr, (vm_map_size_t)size, (vm_map_offset_t) 0,
5986 VM_FLAGS_FIXED, upl->map_object, offset, FALSE,
5987 VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT);
5988 if(kr)
5989 panic("vm_map_enter failed for a Vector UPL\n");
5990 }
5991 vm_object_lock(upl->map_object);
5992
5993 for (addr = *dst_addr; size > 0; size -= PAGE_SIZE, addr += PAGE_SIZE) {
5994 m = vm_page_lookup(upl->map_object, offset);
5995
5996 if (m) {
5997 m->pmapped = TRUE;
5998
5999 /* CODE SIGNING ENFORCEMENT: page has been wpmapped,
6000 * but only in kernel space. If this was on a user map,
6001 * we'd have to set the wpmapped bit. */
6002 /* m->wpmapped = TRUE; */
6003 assert(map->pmap == kernel_pmap);
6004
6005 PMAP_ENTER(map->pmap, addr, m, VM_PROT_DEFAULT, VM_PROT_NONE, 0, TRUE);
6006 }
6007 offset += PAGE_SIZE_64;
6008 }
6009 vm_object_unlock(upl->map_object);
6010
6011 /*
6012 * hold a reference for the mapping
6013 */
6014 upl->ref_count++;
6015 upl->flags |= UPL_PAGE_LIST_MAPPED;
6016 upl->kaddr = (vm_offset_t) *dst_addr;
6017 assert(upl->kaddr == *dst_addr);
6018
6019 if(isVectorUPL)
6020 goto process_upl_to_enter;
6021
6022 upl_unlock(upl);
6023
6024 return KERN_SUCCESS;
6025 }
6026
6027 /*
6028 * Internal routine to remove a UPL mapping from a VM map.
6029 *
6030 * XXX - This should just be doable through a standard
6031 * vm_map_remove() operation. Otherwise, implicit clean-up
6032 * of the target map won't be able to correctly remove
6033 * these (and release the reference on the UPL). Having
6034 * to do this means we can't map these into user-space
6035 * maps yet.
6036 */
6037 kern_return_t
6038 vm_map_remove_upl(
6039 vm_map_t map,
6040 upl_t upl)
6041 {
6042 vm_address_t addr;
6043 upl_size_t size;
6044 int isVectorUPL = 0, curr_upl = 0;
6045 upl_t vector_upl = NULL;
6046
6047 if (upl == UPL_NULL)
6048 return KERN_INVALID_ARGUMENT;
6049
6050 if((isVectorUPL = vector_upl_is_valid(upl))) {
6051 int unmapped=0, valid_upls=0;
6052 vector_upl = upl;
6053 upl_lock(vector_upl);
6054 for(curr_upl=0; curr_upl < MAX_VECTOR_UPL_ELEMENTS; curr_upl++) {
6055 upl = vector_upl_subupl_byindex(vector_upl, curr_upl );
6056 if(upl == NULL)
6057 continue;
6058 valid_upls++;
6059 if (!(UPL_PAGE_LIST_MAPPED & upl->flags))
6060 unmapped++;
6061 }
6062
6063 if(unmapped) {
6064 if(unmapped != valid_upls)
6065 panic("%d of the %d sub-upls within the Vector UPL is/are not mapped\n", unmapped, valid_upls);
6066 else {
6067 upl_unlock(vector_upl);
6068 return KERN_FAILURE;
6069 }
6070 }
6071 curr_upl=0;
6072 }
6073 else
6074 upl_lock(upl);
6075
6076 process_upl_to_remove:
6077 if(isVectorUPL) {
6078 if(curr_upl == MAX_VECTOR_UPL_ELEMENTS) {
6079 vm_map_t v_upl_submap;
6080 vm_offset_t v_upl_submap_dst_addr;
6081 vector_upl_get_submap(vector_upl, &v_upl_submap, &v_upl_submap_dst_addr);
6082
6083 vm_map_remove(map, v_upl_submap_dst_addr, v_upl_submap_dst_addr + vector_upl->size, VM_MAP_NO_FLAGS);
6084 vm_map_deallocate(v_upl_submap);
6085 upl_unlock(vector_upl);
6086 return KERN_SUCCESS;
6087 }
6088
6089 upl = vector_upl_subupl_byindex(vector_upl, curr_upl++ );
6090 if(upl == NULL)
6091 goto process_upl_to_remove;
6092 }
6093
6094 if (upl->flags & UPL_PAGE_LIST_MAPPED) {
6095 addr = upl->kaddr;
6096 size = upl->size;
6097
6098 assert(upl->ref_count > 1);
6099 upl->ref_count--; /* removing mapping ref */
6100
6101 upl->flags &= ~UPL_PAGE_LIST_MAPPED;
6102 upl->kaddr = (vm_offset_t) 0;
6103
6104 if(!isVectorUPL) {
6105 upl_unlock(upl);
6106
6107 vm_map_remove(
6108 map,
6109 vm_map_trunc_page(addr,
6110 VM_MAP_PAGE_MASK(map)),
6111 vm_map_round_page(addr + size,
6112 VM_MAP_PAGE_MASK(map)),
6113 VM_MAP_NO_FLAGS);
6114
6115 return KERN_SUCCESS;
6116 }
6117 else {
6118 /*
6119 * If it's a Vectored UPL, we'll be removing the entire
6120 * submap anyways, so no need to remove individual UPL
6121 * element mappings from within the submap
6122 */
6123 goto process_upl_to_remove;
6124 }
6125 }
6126 upl_unlock(upl);
6127
6128 return KERN_FAILURE;
6129 }
6130
6131 kern_return_t
6132 upl_commit_range(
6133 upl_t upl,
6134 upl_offset_t offset,
6135 upl_size_t size,
6136 int flags,
6137 upl_page_info_t *page_list,
6138 mach_msg_type_number_t count,
6139 boolean_t *empty)
6140 {
6141 upl_size_t xfer_size, subupl_size = size;
6142 vm_object_t shadow_object;
6143 vm_object_t object;
6144 vm_object_offset_t target_offset;
6145 upl_offset_t subupl_offset = offset;
6146 int entry;
6147 wpl_array_t lite_list;
6148 int occupied;
6149 int clear_refmod = 0;
6150 int pgpgout_count = 0;
6151 struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT];
6152 struct vm_page_delayed_work *dwp;
6153 int dw_count;
6154 int dw_limit;
6155 int isVectorUPL = 0;
6156 upl_t vector_upl = NULL;
6157 boolean_t should_be_throttled = FALSE;
6158
6159 vm_page_t nxt_page = VM_PAGE_NULL;
6160 int fast_path_possible = 0;
6161 int fast_path_full_commit = 0;
6162 int throttle_page = 0;
6163 int unwired_count = 0;
6164 int local_queue_count = 0;
6165 queue_head_t local_queue;
6166
6167 *empty = FALSE;
6168
6169 if (upl == UPL_NULL)
6170 return KERN_INVALID_ARGUMENT;
6171
6172 if (count == 0)
6173 page_list = NULL;
6174
6175 if((isVectorUPL = vector_upl_is_valid(upl))) {
6176 vector_upl = upl;
6177 upl_lock(vector_upl);
6178 }
6179 else
6180 upl_lock(upl);
6181
6182 process_upl_to_commit:
6183
6184 if(isVectorUPL) {
6185 size = subupl_size;
6186 offset = subupl_offset;
6187 if(size == 0) {
6188 upl_unlock(vector_upl);
6189 return KERN_SUCCESS;
6190 }
6191 upl = vector_upl_subupl_byoffset(vector_upl, &offset, &size);
6192 if(upl == NULL) {
6193 upl_unlock(vector_upl);
6194 return KERN_FAILURE;
6195 }
6196 page_list = UPL_GET_INTERNAL_PAGE_LIST_SIMPLE(upl);
6197 subupl_size -= size;
6198 subupl_offset += size;
6199 }
6200
6201 #if UPL_DEBUG
6202 if (upl->upl_commit_index < UPL_DEBUG_COMMIT_RECORDS) {
6203 (void) OSBacktrace(&upl->upl_commit_records[upl->upl_commit_index].c_retaddr[0], UPL_DEBUG_STACK_FRAMES);
6204
6205 upl->upl_commit_records[upl->upl_commit_index].c_beg = offset;
6206 upl->upl_commit_records[upl->upl_commit_index].c_end = (offset + size);
6207
6208 upl->upl_commit_index++;
6209 }
6210 #endif
6211 if (upl->flags & UPL_DEVICE_MEMORY)
6212 xfer_size = 0;
6213 else if ((offset + size) <= upl->size)
6214 xfer_size = size;
6215 else {
6216 if(!isVectorUPL)
6217 upl_unlock(upl);
6218 else {
6219 upl_unlock(vector_upl);
6220 }
6221 return KERN_FAILURE;
6222 }
6223 if (upl->flags & UPL_SET_DIRTY)
6224 flags |= UPL_COMMIT_SET_DIRTY;
6225 if (upl->flags & UPL_CLEAR_DIRTY)
6226 flags |= UPL_COMMIT_CLEAR_DIRTY;
6227
6228 if (upl->flags & UPL_INTERNAL)
6229 lite_list = (wpl_array_t) ((((uintptr_t)upl) + sizeof(struct upl))
6230 + ((upl->size/PAGE_SIZE) * sizeof(upl_page_info_t)));
6231 else
6232 lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl));
6233
6234 object = upl->map_object;
6235
6236 if (upl->flags & UPL_SHADOWED) {
6237 vm_object_lock(object);
6238 shadow_object = object->shadow;
6239 } else {
6240 shadow_object = object;
6241 }
6242 entry = offset/PAGE_SIZE;
6243 target_offset = (vm_object_offset_t)offset;
6244
6245 if (upl->flags & UPL_KERNEL_OBJECT)
6246 vm_object_lock_shared(shadow_object);
6247 else
6248 vm_object_lock(shadow_object);
6249
6250 if (upl->flags & UPL_ACCESS_BLOCKED) {
6251 assert(shadow_object->blocked_access);
6252 shadow_object->blocked_access = FALSE;
6253 vm_object_wakeup(object, VM_OBJECT_EVENT_UNBLOCKED);
6254 }
6255
6256 if (shadow_object->code_signed) {
6257 /*
6258 * CODE SIGNING:
6259 * If the object is code-signed, do not let this UPL tell
6260 * us if the pages are valid or not. Let the pages be
6261 * validated by VM the normal way (when they get mapped or
6262 * copied).
6263 */
6264 flags &= ~UPL_COMMIT_CS_VALIDATED;
6265 }
6266 if (! page_list) {
6267 /*
6268 * No page list to get the code-signing info from !?
6269 */
6270 flags &= ~UPL_COMMIT_CS_VALIDATED;
6271 }
6272 if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) && shadow_object->internal)
6273 should_be_throttled = TRUE;
6274
6275 dwp = &dw_array[0];
6276 dw_count = 0;
6277 dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
6278
6279 if ((upl->flags & UPL_IO_WIRE) &&
6280 !(flags & UPL_COMMIT_FREE_ABSENT) &&
6281 !isVectorUPL &&
6282 shadow_object->purgable != VM_PURGABLE_VOLATILE &&
6283 shadow_object->purgable != VM_PURGABLE_EMPTY) {
6284
6285 if (!queue_empty(&shadow_object->memq)) {
6286 queue_init(&local_queue);
6287 if (size == shadow_object->vo_size) {
6288 nxt_page = (vm_page_t)queue_first(&shadow_object->memq);
6289 fast_path_full_commit = 1;
6290 }
6291 fast_path_possible = 1;
6292
6293 if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) && shadow_object->internal &&
6294 (shadow_object->purgable == VM_PURGABLE_DENY ||
6295 shadow_object->purgable == VM_PURGABLE_NONVOLATILE ||
6296 shadow_object->purgable == VM_PURGABLE_VOLATILE)) {
6297 throttle_page = 1;
6298 }
6299 }
6300 }
6301
6302 while (xfer_size) {
6303 vm_page_t t, m;
6304
6305 dwp->dw_mask = 0;
6306 clear_refmod = 0;
6307
6308 m = VM_PAGE_NULL;
6309
6310 if (upl->flags & UPL_LITE) {
6311 unsigned int pg_num;
6312
6313 if (nxt_page != VM_PAGE_NULL) {
6314 m = nxt_page;
6315 nxt_page = (vm_page_t)queue_next(&nxt_page->listq);
6316 target_offset = m->offset;
6317 }
6318 pg_num = (unsigned int) (target_offset/PAGE_SIZE);
6319 assert(pg_num == target_offset/PAGE_SIZE);
6320
6321 if (lite_list[pg_num>>5] & (1 << (pg_num & 31))) {
6322 lite_list[pg_num>>5] &= ~(1 << (pg_num & 31));
6323
6324 if (!(upl->flags & UPL_KERNEL_OBJECT) && m == VM_PAGE_NULL)
6325 m = vm_page_lookup(shadow_object, target_offset + (upl->offset - shadow_object->paging_offset));
6326 } else
6327 m = NULL;
6328 }
6329 if (upl->flags & UPL_SHADOWED) {
6330 if ((t = vm_page_lookup(object, target_offset)) != VM_PAGE_NULL) {
6331
6332 t->pageout = FALSE;
6333
6334 VM_PAGE_FREE(t);
6335
6336 if (!(upl->flags & UPL_KERNEL_OBJECT) && m == VM_PAGE_NULL)
6337 m = vm_page_lookup(shadow_object, target_offset + object->vo_shadow_offset);
6338 }
6339 }
6340 if (m == VM_PAGE_NULL)
6341 goto commit_next_page;
6342
6343 if (m->compressor) {
6344 assert(m->busy);
6345
6346 dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP);
6347 goto commit_next_page;
6348 }
6349
6350 if (flags & UPL_COMMIT_CS_VALIDATED) {
6351 /*
6352 * CODE SIGNING:
6353 * Set the code signing bits according to
6354 * what the UPL says they should be.
6355 */
6356 m->cs_validated = page_list[entry].cs_validated;
6357 m->cs_tainted = page_list[entry].cs_tainted;
6358 }
6359 if (flags & UPL_COMMIT_WRITTEN_BY_KERNEL)
6360 m->written_by_kernel = TRUE;
6361
6362 if (upl->flags & UPL_IO_WIRE) {
6363
6364 if (page_list)
6365 page_list[entry].phys_addr = 0;
6366
6367 if (flags & UPL_COMMIT_SET_DIRTY) {
6368 SET_PAGE_DIRTY(m, FALSE);
6369 } else if (flags & UPL_COMMIT_CLEAR_DIRTY) {
6370 m->dirty = FALSE;
6371
6372 if (! (flags & UPL_COMMIT_CS_VALIDATED) &&
6373 m->cs_validated && !m->cs_tainted) {
6374 /*
6375 * CODE SIGNING:
6376 * This page is no longer dirty
6377 * but could have been modified,
6378 * so it will need to be
6379 * re-validated.
6380 */
6381 if (m->slid) {
6382 panic("upl_commit_range(%p): page %p was slid\n",
6383 upl, m);
6384 }
6385 assert(!m->slid);
6386 m->cs_validated = FALSE;
6387 #if DEVELOPMENT || DEBUG
6388 vm_cs_validated_resets++;
6389 #endif
6390 pmap_disconnect(m->phys_page);
6391 }
6392 clear_refmod |= VM_MEM_MODIFIED;
6393 }
6394 if (upl->flags & UPL_ACCESS_BLOCKED) {
6395 /*
6396 * We blocked access to the pages in this UPL.
6397 * Clear the "busy" bit and wake up any waiter
6398 * for this page.
6399 */
6400 dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP);
6401 }
6402 if (fast_path_possible) {
6403 assert(m->object->purgable != VM_PURGABLE_EMPTY);
6404 assert(m->object->purgable != VM_PURGABLE_VOLATILE);
6405 if (m->absent) {
6406 assert(m->wire_count == 0);
6407 assert(m->busy);
6408
6409 m->absent = FALSE;
6410 dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP);
6411 } else {
6412 if (m->wire_count == 0)
6413 panic("wire_count == 0, m = %p, obj = %p\n", m, shadow_object);
6414
6415 /*
6416 * XXX FBDP need to update some other
6417 * counters here (purgeable_wired_count)
6418 * (ledgers), ...
6419 */
6420 assert(m->wire_count);
6421 m->wire_count--;
6422
6423 if (m->wire_count == 0)
6424 unwired_count++;
6425 }
6426 if (m->wire_count == 0) {
6427 queue_enter(&local_queue, m, vm_page_t, pageq);
6428 local_queue_count++;
6429
6430 if (throttle_page) {
6431 m->throttled = TRUE;
6432 } else {
6433 if (flags & UPL_COMMIT_INACTIVATE)
6434 m->inactive = TRUE;
6435 else
6436 m->active = TRUE;
6437 }
6438 }
6439 } else {
6440 if (flags & UPL_COMMIT_INACTIVATE) {
6441 dwp->dw_mask |= DW_vm_page_deactivate_internal;
6442 clear_refmod |= VM_MEM_REFERENCED;
6443 }
6444 if (m->absent) {
6445 if (flags & UPL_COMMIT_FREE_ABSENT)
6446 dwp->dw_mask |= DW_vm_page_free;
6447 else {
6448 m->absent = FALSE;
6449 dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP);
6450
6451 if ( !(dwp->dw_mask & DW_vm_page_deactivate_internal))
6452 dwp->dw_mask |= DW_vm_page_activate;
6453 }
6454 } else
6455 dwp->dw_mask |= DW_vm_page_unwire;
6456 }
6457 goto commit_next_page;
6458 }
6459 assert(!m->compressor);
6460
6461 if (page_list)
6462 page_list[entry].phys_addr = 0;
6463
6464 /*
6465 * make sure to clear the hardware
6466 * modify or reference bits before
6467 * releasing the BUSY bit on this page
6468 * otherwise we risk losing a legitimate
6469 * change of state
6470 */
6471 if (flags & UPL_COMMIT_CLEAR_DIRTY) {
6472 m->dirty = FALSE;
6473
6474 clear_refmod |= VM_MEM_MODIFIED;
6475 }
6476 if (m->laundry)
6477 dwp->dw_mask |= DW_vm_pageout_throttle_up;
6478
6479 if (VM_PAGE_WIRED(m))
6480 m->pageout = FALSE;
6481
6482 if (! (flags & UPL_COMMIT_CS_VALIDATED) &&
6483 m->cs_validated && !m->cs_tainted) {
6484 /*
6485 * CODE SIGNING:
6486 * This page is no longer dirty
6487 * but could have been modified,
6488 * so it will need to be
6489 * re-validated.
6490 */
6491 if (m->slid) {
6492 panic("upl_commit_range(%p): page %p was slid\n",
6493 upl, m);
6494 }
6495 assert(!m->slid);
6496 m->cs_validated = FALSE;
6497 #if DEVELOPMENT || DEBUG
6498 vm_cs_validated_resets++;
6499 #endif
6500 pmap_disconnect(m->phys_page);
6501 }
6502 if (m->overwriting) {
6503 /*
6504 * the (COPY_OUT_FROM == FALSE) request_page_list case
6505 */
6506 if (m->busy) {
6507 #if CONFIG_PHANTOM_CACHE
6508 if (m->absent && !m->object->internal)
6509 dwp->dw_mask |= DW_vm_phantom_cache_update;
6510 #endif
6511 m->absent = FALSE;
6512
6513 dwp->dw_mask |= DW_clear_busy;
6514 } else {
6515 /*
6516 * alternate (COPY_OUT_FROM == FALSE) page_list case
6517 * Occurs when the original page was wired
6518 * at the time of the list request
6519 */
6520 assert(VM_PAGE_WIRED(m));
6521
6522 dwp->dw_mask |= DW_vm_page_unwire; /* reactivates */
6523 }
6524 m->overwriting = FALSE;
6525 }
6526 if (m->encrypted_cleaning == TRUE) {
6527 m->encrypted_cleaning = FALSE;
6528
6529 dwp->dw_mask |= DW_clear_busy | DW_PAGE_WAKEUP;
6530 }
6531 m->cleaning = FALSE;
6532
6533 if (m->pageout) {
6534 /*
6535 * With the clean queue enabled, UPL_PAGEOUT should
6536 * no longer set the pageout bit. It's pages now go
6537 * to the clean queue.
6538 */
6539 assert(!(flags & UPL_PAGEOUT));
6540
6541 m->pageout = FALSE;
6542 #if MACH_CLUSTER_STATS
6543 if (m->wanted) vm_pageout_target_collisions++;
6544 #endif
6545 if ((flags & UPL_COMMIT_SET_DIRTY) ||
6546 (m->pmapped && (pmap_disconnect(m->phys_page) & VM_MEM_MODIFIED))) {
6547 /*
6548 * page was re-dirtied after we started
6549 * the pageout... reactivate it since
6550 * we don't know whether the on-disk
6551 * copy matches what is now in memory
6552 */
6553 SET_PAGE_DIRTY(m, FALSE);
6554
6555 dwp->dw_mask |= DW_vm_page_activate | DW_PAGE_WAKEUP;
6556
6557 if (upl->flags & UPL_PAGEOUT) {
6558 CLUSTER_STAT(vm_pageout_target_page_dirtied++;)
6559 VM_STAT_INCR(reactivations);
6560 DTRACE_VM2(pgrec, int, 1, (uint64_t *), NULL);
6561 }
6562 } else {
6563 /*
6564 * page has been successfully cleaned
6565 * go ahead and free it for other use
6566 */
6567 if (m->object->internal) {
6568 DTRACE_VM2(anonpgout, int, 1, (uint64_t *), NULL);
6569 } else {
6570 DTRACE_VM2(fspgout, int, 1, (uint64_t *), NULL);
6571 }
6572 m->dirty = FALSE;
6573 m->busy = TRUE;
6574
6575 dwp->dw_mask |= DW_vm_page_free;
6576 }
6577 goto commit_next_page;
6578 }
6579 #if MACH_CLUSTER_STATS
6580 if (m->wpmapped)
6581 m->dirty = pmap_is_modified(m->phys_page);
6582
6583 if (m->dirty) vm_pageout_cluster_dirtied++;
6584 else vm_pageout_cluster_cleaned++;
6585 if (m->wanted) vm_pageout_cluster_collisions++;
6586 #endif
6587 /*
6588 * It is a part of the semantic of COPYOUT_FROM
6589 * UPLs that a commit implies cache sync
6590 * between the vm page and the backing store
6591 * this can be used to strip the precious bit
6592 * as well as clean
6593 */
6594 if ((upl->flags & UPL_PAGE_SYNC_DONE) || (flags & UPL_COMMIT_CLEAR_PRECIOUS))
6595 m->precious = FALSE;
6596
6597 if (flags & UPL_COMMIT_SET_DIRTY) {
6598 SET_PAGE_DIRTY(m, FALSE);
6599 } else {
6600 m->dirty = FALSE;
6601 }
6602
6603 /* with the clean queue on, move *all* cleaned pages to the clean queue */
6604 if (hibernate_cleaning_in_progress == FALSE && !m->dirty && (upl->flags & UPL_PAGEOUT)) {
6605 pgpgout_count++;
6606
6607 VM_STAT_INCR(pageouts);
6608 DTRACE_VM2(pgout, int, 1, (uint64_t *), NULL);
6609
6610 dwp->dw_mask |= DW_enqueue_cleaned;
6611 vm_pageout_enqueued_cleaned_from_inactive_dirty++;
6612 } else if (should_be_throttled == TRUE && !m->active && !m->inactive && !m->speculative && !m->throttled) {
6613 /*
6614 * page coming back in from being 'frozen'...
6615 * it was dirty before it was frozen, so keep it so
6616 * the vm_page_activate will notice that it really belongs
6617 * on the throttle queue and put it there
6618 */
6619 SET_PAGE_DIRTY(m, FALSE);
6620 dwp->dw_mask |= DW_vm_page_activate;
6621
6622 } else {
6623 if ((flags & UPL_COMMIT_INACTIVATE) && !m->clustered && !m->speculative) {
6624 dwp->dw_mask |= DW_vm_page_deactivate_internal;
6625 clear_refmod |= VM_MEM_REFERENCED;
6626 } else if (!m->active && !m->inactive && !m->speculative) {
6627
6628 if (m->clustered || (flags & UPL_COMMIT_SPECULATE))
6629 dwp->dw_mask |= DW_vm_page_speculate;
6630 else if (m->reference)
6631 dwp->dw_mask |= DW_vm_page_activate;
6632 else {
6633 dwp->dw_mask |= DW_vm_page_deactivate_internal;
6634 clear_refmod |= VM_MEM_REFERENCED;
6635 }
6636 }
6637 }
6638 if (upl->flags & UPL_ACCESS_BLOCKED) {
6639 /*
6640 * We blocked access to the pages in this URL.
6641 * Clear the "busy" bit on this page before we
6642 * wake up any waiter.
6643 */
6644 dwp->dw_mask |= DW_clear_busy;
6645 }
6646 /*
6647 * Wakeup any thread waiting for the page to be un-cleaning.
6648 */
6649 dwp->dw_mask |= DW_PAGE_WAKEUP;
6650
6651 commit_next_page:
6652 if (clear_refmod)
6653 pmap_clear_refmod(m->phys_page, clear_refmod);
6654
6655 target_offset += PAGE_SIZE_64;
6656 xfer_size -= PAGE_SIZE;
6657 entry++;
6658
6659 if (dwp->dw_mask) {
6660 if (dwp->dw_mask & ~(DW_clear_busy | DW_PAGE_WAKEUP)) {
6661 VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count);
6662
6663 if (dw_count >= dw_limit) {
6664 vm_page_do_delayed_work(shadow_object, &dw_array[0], dw_count);
6665
6666 dwp = &dw_array[0];
6667 dw_count = 0;
6668 }
6669 } else {
6670 if (dwp->dw_mask & DW_clear_busy)
6671 m->busy = FALSE;
6672
6673 if (dwp->dw_mask & DW_PAGE_WAKEUP)
6674 PAGE_WAKEUP(m);
6675 }
6676 }
6677 }
6678 if (dw_count)
6679 vm_page_do_delayed_work(shadow_object, &dw_array[0], dw_count);
6680
6681 if (fast_path_possible) {
6682
6683 assert(shadow_object->purgable != VM_PURGABLE_VOLATILE);
6684 assert(shadow_object->purgable != VM_PURGABLE_EMPTY);
6685
6686 if (local_queue_count || unwired_count) {
6687
6688 if (local_queue_count) {
6689 vm_page_t first_local, last_local;
6690 vm_page_t first_target;
6691 queue_head_t *target_queue;
6692
6693 if (throttle_page)
6694 target_queue = &vm_page_queue_throttled;
6695 else {
6696 if (flags & UPL_COMMIT_INACTIVATE) {
6697 if (shadow_object->internal)
6698 target_queue = &vm_page_queue_anonymous;
6699 else
6700 target_queue = &vm_page_queue_inactive;
6701 } else
6702 target_queue = &vm_page_queue_active;
6703 }
6704 /*
6705 * Transfer the entire local queue to a regular LRU page queues.
6706 */
6707 first_local = (vm_page_t) queue_first(&local_queue);
6708 last_local = (vm_page_t) queue_last(&local_queue);
6709
6710 vm_page_lockspin_queues();
6711
6712 first_target = (vm_page_t) queue_first(target_queue);
6713
6714 if (queue_empty(target_queue))
6715 queue_last(target_queue) = (queue_entry_t) last_local;
6716 else
6717 queue_prev(&first_target->pageq) = (queue_entry_t) last_local;
6718
6719 queue_first(target_queue) = (queue_entry_t) first_local;
6720 queue_prev(&first_local->pageq) = (queue_entry_t) target_queue;
6721 queue_next(&last_local->pageq) = (queue_entry_t) first_target;
6722
6723 /*
6724 * Adjust the global page counts.
6725 */
6726 if (throttle_page) {
6727 vm_page_throttled_count += local_queue_count;
6728 } else {
6729 if (flags & UPL_COMMIT_INACTIVATE) {
6730 if (shadow_object->internal)
6731 vm_page_anonymous_count += local_queue_count;
6732 vm_page_inactive_count += local_queue_count;
6733
6734 token_new_pagecount += local_queue_count;
6735 } else
6736 vm_page_active_count += local_queue_count;
6737
6738 if (shadow_object->internal)
6739 vm_page_pageable_internal_count += local_queue_count;
6740 else
6741 vm_page_pageable_external_count += local_queue_count;
6742 }
6743 } else {
6744 vm_page_lockspin_queues();
6745 }
6746 if (unwired_count) {
6747 vm_page_wire_count -= unwired_count;
6748 VM_CHECK_MEMORYSTATUS;
6749 }
6750 vm_page_unlock_queues();
6751
6752 shadow_object->wired_page_count -= unwired_count;
6753 }
6754 }
6755 occupied = 1;
6756
6757 if (upl->flags & UPL_DEVICE_MEMORY) {
6758 occupied = 0;
6759 } else if (upl->flags & UPL_LITE) {
6760 int pg_num;
6761 int i;
6762
6763 occupied = 0;
6764
6765 if (!fast_path_full_commit) {
6766 pg_num = upl->size/PAGE_SIZE;
6767 pg_num = (pg_num + 31) >> 5;
6768
6769 for (i = 0; i < pg_num; i++) {
6770 if (lite_list[i] != 0) {
6771 occupied = 1;
6772 break;
6773 }
6774 }
6775 }
6776 } else {
6777 if (queue_empty(&upl->map_object->memq))
6778 occupied = 0;
6779 }
6780 if (occupied == 0) {
6781 /*
6782 * If this UPL element belongs to a Vector UPL and is
6783 * empty, then this is the right function to deallocate
6784 * it. So go ahead set the *empty variable. The flag
6785 * UPL_COMMIT_NOTIFY_EMPTY, from the caller's point of view
6786 * should be considered relevant for the Vector UPL and not
6787 * the internal UPLs.
6788 */
6789 if ((upl->flags & UPL_COMMIT_NOTIFY_EMPTY) || isVectorUPL)
6790 *empty = TRUE;
6791
6792 if (object == shadow_object && !(upl->flags & UPL_KERNEL_OBJECT)) {
6793 /*
6794 * this is not a paging object
6795 * so we need to drop the paging reference
6796 * that was taken when we created the UPL
6797 * against this object
6798 */
6799 vm_object_activity_end(shadow_object);
6800 vm_object_collapse(shadow_object, 0, TRUE);
6801 } else {
6802 /*
6803 * we dontated the paging reference to
6804 * the map object... vm_pageout_object_terminate
6805 * will drop this reference
6806 */
6807 }
6808 }
6809 vm_object_unlock(shadow_object);
6810 if (object != shadow_object)
6811 vm_object_unlock(object);
6812
6813 if(!isVectorUPL)
6814 upl_unlock(upl);
6815 else {
6816 /*
6817 * If we completed our operations on an UPL that is
6818 * part of a Vectored UPL and if empty is TRUE, then
6819 * we should go ahead and deallocate this UPL element.
6820 * Then we check if this was the last of the UPL elements
6821 * within that Vectored UPL. If so, set empty to TRUE
6822 * so that in ubc_upl_commit_range or ubc_upl_commit, we
6823 * can go ahead and deallocate the Vector UPL too.
6824 */
6825 if(*empty==TRUE) {
6826 *empty = vector_upl_set_subupl(vector_upl, upl, 0);
6827 upl_deallocate(upl);
6828 }
6829 goto process_upl_to_commit;
6830 }
6831
6832 if (pgpgout_count) {
6833 DTRACE_VM2(pgpgout, int, pgpgout_count, (uint64_t *), NULL);
6834 }
6835
6836 return KERN_SUCCESS;
6837 }
6838
6839 kern_return_t
6840 upl_abort_range(
6841 upl_t upl,
6842 upl_offset_t offset,
6843 upl_size_t size,
6844 int error,
6845 boolean_t *empty)
6846 {
6847 upl_page_info_t *user_page_list = NULL;
6848 upl_size_t xfer_size, subupl_size = size;
6849 vm_object_t shadow_object;
6850 vm_object_t object;
6851 vm_object_offset_t target_offset;
6852 upl_offset_t subupl_offset = offset;
6853 int entry;
6854 wpl_array_t lite_list;
6855 int occupied;
6856 struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT];
6857 struct vm_page_delayed_work *dwp;
6858 int dw_count;
6859 int dw_limit;
6860 int isVectorUPL = 0;
6861 upl_t vector_upl = NULL;
6862
6863 *empty = FALSE;
6864
6865 if (upl == UPL_NULL)
6866 return KERN_INVALID_ARGUMENT;
6867
6868 if ( (upl->flags & UPL_IO_WIRE) && !(error & UPL_ABORT_DUMP_PAGES) )
6869 return upl_commit_range(upl, offset, size, UPL_COMMIT_FREE_ABSENT, NULL, 0, empty);
6870
6871 if((isVectorUPL = vector_upl_is_valid(upl))) {
6872 vector_upl = upl;
6873 upl_lock(vector_upl);
6874 }
6875 else
6876 upl_lock(upl);
6877
6878 process_upl_to_abort:
6879 if(isVectorUPL) {
6880 size = subupl_size;
6881 offset = subupl_offset;
6882 if(size == 0) {
6883 upl_unlock(vector_upl);
6884 return KERN_SUCCESS;
6885 }
6886 upl = vector_upl_subupl_byoffset(vector_upl, &offset, &size);
6887 if(upl == NULL) {
6888 upl_unlock(vector_upl);
6889 return KERN_FAILURE;
6890 }
6891 subupl_size -= size;
6892 subupl_offset += size;
6893 }
6894
6895 *empty = FALSE;
6896
6897 #if UPL_DEBUG
6898 if (upl->upl_commit_index < UPL_DEBUG_COMMIT_RECORDS) {
6899 (void) OSBacktrace(&upl->upl_commit_records[upl->upl_commit_index].c_retaddr[0], UPL_DEBUG_STACK_FRAMES);
6900
6901 upl->upl_commit_records[upl->upl_commit_index].c_beg = offset;
6902 upl->upl_commit_records[upl->upl_commit_index].c_end = (offset + size);
6903 upl->upl_commit_records[upl->upl_commit_index].c_aborted = 1;
6904
6905 upl->upl_commit_index++;
6906 }
6907 #endif
6908 if (upl->flags & UPL_DEVICE_MEMORY)
6909 xfer_size = 0;
6910 else if ((offset + size) <= upl->size)
6911 xfer_size = size;
6912 else {
6913 if(!isVectorUPL)
6914 upl_unlock(upl);
6915 else {
6916 upl_unlock(vector_upl);
6917 }
6918
6919 return KERN_FAILURE;
6920 }
6921 if (upl->flags & UPL_INTERNAL) {
6922 lite_list = (wpl_array_t)
6923 ((((uintptr_t)upl) + sizeof(struct upl))
6924 + ((upl->size/PAGE_SIZE) * sizeof(upl_page_info_t)));
6925
6926 user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl));
6927 } else {
6928 lite_list = (wpl_array_t)
6929 (((uintptr_t)upl) + sizeof(struct upl));
6930 }
6931 object = upl->map_object;
6932
6933 if (upl->flags & UPL_SHADOWED) {
6934 vm_object_lock(object);
6935 shadow_object = object->shadow;
6936 } else
6937 shadow_object = object;
6938
6939 entry = offset/PAGE_SIZE;
6940 target_offset = (vm_object_offset_t)offset;
6941
6942 if (upl->flags & UPL_KERNEL_OBJECT)
6943 vm_object_lock_shared(shadow_object);
6944 else
6945 vm_object_lock(shadow_object);
6946
6947 if (upl->flags & UPL_ACCESS_BLOCKED) {
6948 assert(shadow_object->blocked_access);
6949 shadow_object->blocked_access = FALSE;
6950 vm_object_wakeup(object, VM_OBJECT_EVENT_UNBLOCKED);
6951 }
6952
6953 dwp = &dw_array[0];
6954 dw_count = 0;
6955 dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
6956
6957 if ((error & UPL_ABORT_DUMP_PAGES) && (upl->flags & UPL_KERNEL_OBJECT))
6958 panic("upl_abort_range: kernel_object being DUMPED");
6959
6960 while (xfer_size) {
6961 vm_page_t t, m;
6962 unsigned int pg_num;
6963 boolean_t needed;
6964
6965 pg_num = (unsigned int) (target_offset/PAGE_SIZE);
6966 assert(pg_num == target_offset/PAGE_SIZE);
6967
6968 needed = FALSE;
6969
6970 if (user_page_list)
6971 needed = user_page_list[pg_num].needed;
6972
6973 dwp->dw_mask = 0;
6974 m = VM_PAGE_NULL;
6975
6976 if (upl->flags & UPL_LITE) {
6977
6978 if (lite_list[pg_num>>5] & (1 << (pg_num & 31))) {
6979 lite_list[pg_num>>5] &= ~(1 << (pg_num & 31));
6980
6981 if ( !(upl->flags & UPL_KERNEL_OBJECT))
6982 m = vm_page_lookup(shadow_object, target_offset +
6983 (upl->offset - shadow_object->paging_offset));
6984 }
6985 }
6986 if (upl->flags & UPL_SHADOWED) {
6987 if ((t = vm_page_lookup(object, target_offset)) != VM_PAGE_NULL) {
6988 t->pageout = FALSE;
6989
6990 VM_PAGE_FREE(t);
6991
6992 if (m == VM_PAGE_NULL)
6993 m = vm_page_lookup(shadow_object, target_offset + object->vo_shadow_offset);
6994 }
6995 }
6996 if ((upl->flags & UPL_KERNEL_OBJECT))
6997 goto abort_next_page;
6998
6999 if (m != VM_PAGE_NULL) {
7000
7001 assert(!m->compressor);
7002
7003 if (m->absent) {
7004 boolean_t must_free = TRUE;
7005
7006 /*
7007 * COPYOUT = FALSE case
7008 * check for error conditions which must
7009 * be passed back to the pages customer
7010 */
7011 if (error & UPL_ABORT_RESTART) {
7012 m->restart = TRUE;
7013 m->absent = FALSE;
7014 m->unusual = TRUE;
7015 must_free = FALSE;
7016 } else if (error & UPL_ABORT_UNAVAILABLE) {
7017 m->restart = FALSE;
7018 m->unusual = TRUE;
7019 must_free = FALSE;
7020 } else if (error & UPL_ABORT_ERROR) {
7021 m->restart = FALSE;
7022 m->absent = FALSE;
7023 m->error = TRUE;
7024 m->unusual = TRUE;
7025 must_free = FALSE;
7026 }
7027 if (m->clustered && needed == FALSE) {
7028 /*
7029 * This page was a part of a speculative
7030 * read-ahead initiated by the kernel
7031 * itself. No one is expecting this
7032 * page and no one will clean up its
7033 * error state if it ever becomes valid
7034 * in the future.
7035 * We have to free it here.
7036 */
7037 must_free = TRUE;
7038 }
7039
7040 /*
7041 * ENCRYPTED SWAP:
7042 * If the page was already encrypted,
7043 * we don't really need to decrypt it
7044 * now. It will get decrypted later,
7045 * on demand, as soon as someone needs
7046 * to access its contents.
7047 */
7048
7049 m->cleaning = FALSE;
7050 m->encrypted_cleaning = FALSE;
7051
7052 if (m->overwriting && !m->busy) {
7053 /*
7054 * this shouldn't happen since
7055 * this is an 'absent' page, but
7056 * it doesn't hurt to check for
7057 * the 'alternate' method of
7058 * stabilizing the page...
7059 * we will mark 'busy' to be cleared
7060 * in the following code which will
7061 * take care of the primary stabilzation
7062 * method (i.e. setting 'busy' to TRUE)
7063 */
7064 dwp->dw_mask |= DW_vm_page_unwire;
7065 }
7066 m->overwriting = FALSE;
7067
7068 dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP);
7069
7070 if (must_free == TRUE)
7071 dwp->dw_mask |= DW_vm_page_free;
7072 else
7073 dwp->dw_mask |= DW_vm_page_activate;
7074 } else {
7075 /*
7076 * Handle the trusted pager throttle.
7077 */
7078 if (m->laundry)
7079 dwp->dw_mask |= DW_vm_pageout_throttle_up;
7080
7081 if (upl->flags & UPL_ACCESS_BLOCKED) {
7082 /*
7083 * We blocked access to the pages in this UPL.
7084 * Clear the "busy" bit and wake up any waiter
7085 * for this page.
7086 */
7087 dwp->dw_mask |= DW_clear_busy;
7088 }
7089 if (m->overwriting) {
7090 if (m->busy)
7091 dwp->dw_mask |= DW_clear_busy;
7092 else {
7093 /*
7094 * deal with the 'alternate' method
7095 * of stabilizing the page...
7096 * we will either free the page
7097 * or mark 'busy' to be cleared
7098 * in the following code which will
7099 * take care of the primary stabilzation
7100 * method (i.e. setting 'busy' to TRUE)
7101 */
7102 dwp->dw_mask |= DW_vm_page_unwire;
7103 }
7104 m->overwriting = FALSE;
7105 }
7106 if (m->encrypted_cleaning == TRUE) {
7107 m->encrypted_cleaning = FALSE;
7108
7109 dwp->dw_mask |= DW_clear_busy;
7110 }
7111 m->pageout = FALSE;
7112 m->cleaning = FALSE;
7113 #if MACH_PAGEMAP
7114 vm_external_state_clr(m->object->existence_map, m->offset);
7115 #endif /* MACH_PAGEMAP */
7116 if (error & UPL_ABORT_DUMP_PAGES) {
7117 pmap_disconnect(m->phys_page);
7118
7119 dwp->dw_mask |= DW_vm_page_free;
7120 } else {
7121 if (!(dwp->dw_mask & DW_vm_page_unwire)) {
7122 if (error & UPL_ABORT_REFERENCE) {
7123 /*
7124 * we've been told to explictly
7125 * reference this page... for
7126 * file I/O, this is done by
7127 * implementing an LRU on the inactive q
7128 */
7129 dwp->dw_mask |= DW_vm_page_lru;
7130
7131 } else if (!m->active && !m->inactive && !m->speculative)
7132 dwp->dw_mask |= DW_vm_page_deactivate_internal;
7133 }
7134 dwp->dw_mask |= DW_PAGE_WAKEUP;
7135 }
7136 }
7137 }
7138 abort_next_page:
7139 target_offset += PAGE_SIZE_64;
7140 xfer_size -= PAGE_SIZE;
7141 entry++;
7142
7143 if (dwp->dw_mask) {
7144 if (dwp->dw_mask & ~(DW_clear_busy | DW_PAGE_WAKEUP)) {
7145 VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count);
7146
7147 if (dw_count >= dw_limit) {
7148 vm_page_do_delayed_work(shadow_object, &dw_array[0], dw_count);
7149
7150 dwp = &dw_array[0];
7151 dw_count = 0;
7152 }
7153 } else {
7154 if (dwp->dw_mask & DW_clear_busy)
7155 m->busy = FALSE;
7156
7157 if (dwp->dw_mask & DW_PAGE_WAKEUP)
7158 PAGE_WAKEUP(m);
7159 }
7160 }
7161 }
7162 if (dw_count)
7163 vm_page_do_delayed_work(shadow_object, &dw_array[0], dw_count);
7164
7165 occupied = 1;
7166
7167 if (upl->flags & UPL_DEVICE_MEMORY) {
7168 occupied = 0;
7169 } else if (upl->flags & UPL_LITE) {
7170 int pg_num;
7171 int i;
7172
7173 pg_num = upl->size/PAGE_SIZE;
7174 pg_num = (pg_num + 31) >> 5;
7175 occupied = 0;
7176
7177 for (i = 0; i < pg_num; i++) {
7178 if (lite_list[i] != 0) {
7179 occupied = 1;
7180 break;
7181 }
7182 }
7183 } else {
7184 if (queue_empty(&upl->map_object->memq))
7185 occupied = 0;
7186 }
7187 if (occupied == 0) {
7188 /*
7189 * If this UPL element belongs to a Vector UPL and is
7190 * empty, then this is the right function to deallocate
7191 * it. So go ahead set the *empty variable. The flag
7192 * UPL_COMMIT_NOTIFY_EMPTY, from the caller's point of view
7193 * should be considered relevant for the Vector UPL and
7194 * not the internal UPLs.
7195 */
7196 if ((upl->flags & UPL_COMMIT_NOTIFY_EMPTY) || isVectorUPL)
7197 *empty = TRUE;
7198
7199 if (object == shadow_object && !(upl->flags & UPL_KERNEL_OBJECT)) {
7200 /*
7201 * this is not a paging object
7202 * so we need to drop the paging reference
7203 * that was taken when we created the UPL
7204 * against this object
7205 */
7206 vm_object_activity_end(shadow_object);
7207 vm_object_collapse(shadow_object, 0, TRUE);
7208 } else {
7209 /*
7210 * we dontated the paging reference to
7211 * the map object... vm_pageout_object_terminate
7212 * will drop this reference
7213 */
7214 }
7215 }
7216 vm_object_unlock(shadow_object);
7217 if (object != shadow_object)
7218 vm_object_unlock(object);
7219
7220 if(!isVectorUPL)
7221 upl_unlock(upl);
7222 else {
7223 /*
7224 * If we completed our operations on an UPL that is
7225 * part of a Vectored UPL and if empty is TRUE, then
7226 * we should go ahead and deallocate this UPL element.
7227 * Then we check if this was the last of the UPL elements
7228 * within that Vectored UPL. If so, set empty to TRUE
7229 * so that in ubc_upl_abort_range or ubc_upl_abort, we
7230 * can go ahead and deallocate the Vector UPL too.
7231 */
7232 if(*empty == TRUE) {
7233 *empty = vector_upl_set_subupl(vector_upl, upl,0);
7234 upl_deallocate(upl);
7235 }
7236 goto process_upl_to_abort;
7237 }
7238
7239 return KERN_SUCCESS;
7240 }
7241
7242
7243 kern_return_t
7244 upl_abort(
7245 upl_t upl,
7246 int error)
7247 {
7248 boolean_t empty;
7249
7250 return upl_abort_range(upl, 0, upl->size, error, &empty);
7251 }
7252
7253
7254 /* an option on commit should be wire */
7255 kern_return_t
7256 upl_commit(
7257 upl_t upl,
7258 upl_page_info_t *page_list,
7259 mach_msg_type_number_t count)
7260 {
7261 boolean_t empty;
7262
7263 return upl_commit_range(upl, 0, upl->size, 0, page_list, count, &empty);
7264 }
7265
7266
7267 void
7268 iopl_valid_data(
7269 upl_t upl)
7270 {
7271 vm_object_t object;
7272 vm_offset_t offset;
7273 vm_page_t m, nxt_page = VM_PAGE_NULL;
7274 upl_size_t size;
7275 int wired_count = 0;
7276
7277 if (upl == NULL)
7278 panic("iopl_valid_data: NULL upl");
7279 if (vector_upl_is_valid(upl))
7280 panic("iopl_valid_data: vector upl");
7281 if ((upl->flags & (UPL_DEVICE_MEMORY|UPL_SHADOWED|UPL_ACCESS_BLOCKED|UPL_IO_WIRE|UPL_INTERNAL)) != UPL_IO_WIRE)
7282 panic("iopl_valid_data: unsupported upl, flags = %x", upl->flags);
7283
7284 object = upl->map_object;
7285
7286 if (object == kernel_object || object == compressor_object)
7287 panic("iopl_valid_data: object == kernel or compressor");
7288
7289 if (object->purgable == VM_PURGABLE_VOLATILE)
7290 panic("iopl_valid_data: object == VM_PURGABLE_VOLATILE");
7291
7292 size = upl->size;
7293
7294 vm_object_lock(object);
7295
7296 if (object->vo_size == size && object->resident_page_count == (size / PAGE_SIZE))
7297 nxt_page = (vm_page_t)queue_first(&object->memq);
7298 else
7299 offset = 0 + upl->offset - object->paging_offset;
7300
7301 while (size) {
7302
7303 if (nxt_page != VM_PAGE_NULL) {
7304 m = nxt_page;
7305 nxt_page = (vm_page_t)queue_next(&nxt_page->listq);
7306 } else {
7307 m = vm_page_lookup(object, offset);
7308 offset += PAGE_SIZE;
7309
7310 if (m == VM_PAGE_NULL)
7311 panic("iopl_valid_data: missing expected page at offset %lx", (long)offset);
7312 }
7313 if (m->busy) {
7314 if (!m->absent)
7315 panic("iopl_valid_data: busy page w/o absent");
7316
7317 if (m->pageq.next || m->pageq.prev)
7318 panic("iopl_valid_data: busy+absent page on page queue");
7319
7320 m->absent = FALSE;
7321 m->dirty = TRUE;
7322 m->wire_count++;
7323 wired_count++;
7324
7325 PAGE_WAKEUP_DONE(m);
7326 }
7327 size -= PAGE_SIZE;
7328 }
7329 if (wired_count) {
7330 object->wired_page_count += wired_count;
7331
7332 vm_page_lockspin_queues();
7333 vm_page_wire_count += wired_count;
7334 vm_page_unlock_queues();
7335 }
7336 vm_object_unlock(object);
7337 }
7338
7339
7340
7341
7342 void
7343 vm_object_set_pmap_cache_attr(
7344 vm_object_t object,
7345 upl_page_info_array_t user_page_list,
7346 unsigned int num_pages,
7347 boolean_t batch_pmap_op)
7348 {
7349 unsigned int cache_attr = 0;
7350
7351 cache_attr = object->wimg_bits & VM_WIMG_MASK;
7352 assert(user_page_list);
7353 if (cache_attr != VM_WIMG_USE_DEFAULT) {
7354 PMAP_BATCH_SET_CACHE_ATTR(object, user_page_list, cache_attr, num_pages, batch_pmap_op);
7355 }
7356 }
7357
7358 unsigned int vm_object_iopl_request_sleep_for_cleaning = 0;
7359
7360 kern_return_t
7361 vm_object_iopl_request(
7362 vm_object_t object,
7363 vm_object_offset_t offset,
7364 upl_size_t size,
7365 upl_t *upl_ptr,
7366 upl_page_info_array_t user_page_list,
7367 unsigned int *page_list_count,
7368 int cntrl_flags)
7369 {
7370 vm_page_t dst_page;
7371 vm_object_offset_t dst_offset;
7372 upl_size_t xfer_size;
7373 upl_t upl = NULL;
7374 unsigned int entry;
7375 wpl_array_t lite_list = NULL;
7376 int no_zero_fill = FALSE;
7377 unsigned int size_in_pages;
7378 u_int32_t psize;
7379 kern_return_t ret;
7380 vm_prot_t prot;
7381 struct vm_object_fault_info fault_info;
7382 struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT];
7383 struct vm_page_delayed_work *dwp;
7384 int dw_count;
7385 int dw_limit;
7386 int dw_index;
7387 boolean_t caller_lookup;
7388 int io_tracking_flag = 0;
7389 int interruptible;
7390
7391 boolean_t set_cache_attr_needed = FALSE;
7392 boolean_t free_wired_pages = FALSE;
7393 int fast_path_possible = 0;
7394
7395
7396 if (cntrl_flags & ~UPL_VALID_FLAGS) {
7397 /*
7398 * For forward compatibility's sake,
7399 * reject any unknown flag.
7400 */
7401 return KERN_INVALID_VALUE;
7402 }
7403 if (vm_lopage_needed == FALSE)
7404 cntrl_flags &= ~UPL_NEED_32BIT_ADDR;
7405
7406 if (cntrl_flags & UPL_NEED_32BIT_ADDR) {
7407 if ( (cntrl_flags & (UPL_SET_IO_WIRE | UPL_SET_LITE)) != (UPL_SET_IO_WIRE | UPL_SET_LITE))
7408 return KERN_INVALID_VALUE;
7409
7410 if (object->phys_contiguous) {
7411 if ((offset + object->vo_shadow_offset) >= (vm_object_offset_t)max_valid_dma_address)
7412 return KERN_INVALID_ADDRESS;
7413
7414 if (((offset + object->vo_shadow_offset) + size) >= (vm_object_offset_t)max_valid_dma_address)
7415 return KERN_INVALID_ADDRESS;
7416 }
7417 }
7418
7419 if (cntrl_flags & UPL_ENCRYPT) {
7420 /*
7421 * ENCRYPTED SWAP:
7422 * The paging path doesn't use this interface,
7423 * so we don't support the UPL_ENCRYPT flag
7424 * here. We won't encrypt the pages.
7425 */
7426 assert(! (cntrl_flags & UPL_ENCRYPT));
7427 }
7428 if (cntrl_flags & (UPL_NOZEROFILL | UPL_NOZEROFILLIO))
7429 no_zero_fill = TRUE;
7430
7431 if (cntrl_flags & UPL_COPYOUT_FROM)
7432 prot = VM_PROT_READ;
7433 else
7434 prot = VM_PROT_READ | VM_PROT_WRITE;
7435
7436 if ((!object->internal) && (object->paging_offset != 0))
7437 panic("vm_object_iopl_request: external object with non-zero paging offset\n");
7438
7439 #if CONFIG_IOSCHED || UPL_DEBUG
7440 if ((object->io_tracking && object != kernel_object) || upl_debug_enabled)
7441 io_tracking_flag |= UPL_CREATE_IO_TRACKING;
7442 #endif
7443
7444 #if CONFIG_IOSCHED
7445 if (object->io_tracking) {
7446 /* Check if we're dealing with the kernel object. We do not support expedite on kernel object UPLs */
7447 if (object != kernel_object)
7448 io_tracking_flag |= UPL_CREATE_EXPEDITE_SUP;
7449 }
7450 #endif
7451
7452 if (object->phys_contiguous)
7453 psize = PAGE_SIZE;
7454 else
7455 psize = size;
7456
7457 if (cntrl_flags & UPL_SET_INTERNAL) {
7458 upl = upl_create(UPL_CREATE_INTERNAL | UPL_CREATE_LITE | io_tracking_flag, UPL_IO_WIRE, psize);
7459
7460 user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl));
7461 lite_list = (wpl_array_t) (((uintptr_t)user_page_list) +
7462 ((psize / PAGE_SIZE) * sizeof(upl_page_info_t)));
7463 if (size == 0) {
7464 user_page_list = NULL;
7465 lite_list = NULL;
7466 }
7467 } else {
7468 upl = upl_create(UPL_CREATE_LITE | io_tracking_flag, UPL_IO_WIRE, psize);
7469
7470 lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl));
7471 if (size == 0) {
7472 lite_list = NULL;
7473 }
7474 }
7475 if (user_page_list)
7476 user_page_list[0].device = FALSE;
7477 *upl_ptr = upl;
7478
7479 upl->map_object = object;
7480 upl->size = size;
7481
7482 size_in_pages = size / PAGE_SIZE;
7483
7484 if (object == kernel_object &&
7485 !(cntrl_flags & (UPL_NEED_32BIT_ADDR | UPL_BLOCK_ACCESS))) {
7486 upl->flags |= UPL_KERNEL_OBJECT;
7487 #if UPL_DEBUG
7488 vm_object_lock(object);
7489 #else
7490 vm_object_lock_shared(object);
7491 #endif
7492 } else {
7493 vm_object_lock(object);
7494 vm_object_activity_begin(object);
7495 }
7496 /*
7497 * paging in progress also protects the paging_offset
7498 */
7499 upl->offset = offset + object->paging_offset;
7500
7501 if (cntrl_flags & UPL_BLOCK_ACCESS) {
7502 /*
7503 * The user requested that access to the pages in this UPL
7504 * be blocked until the UPL is commited or aborted.
7505 */
7506 upl->flags |= UPL_ACCESS_BLOCKED;
7507 }
7508
7509 if (!(cntrl_flags & (UPL_NEED_32BIT_ADDR | UPL_BLOCK_ACCESS)) &&
7510 object->purgable != VM_PURGABLE_VOLATILE &&
7511 object->purgable != VM_PURGABLE_EMPTY &&
7512 object->copy == NULL &&
7513 size == object->vo_size &&
7514 offset == 0 &&
7515 object->resident_page_count == 0 &&
7516 object->shadow == NULL &&
7517 object->pager == NULL)
7518 {
7519 fast_path_possible = 1;
7520 set_cache_attr_needed = TRUE;
7521 }
7522
7523 #if CONFIG_IOSCHED || UPL_DEBUG
7524 if (upl->flags & UPL_TRACKED_BY_OBJECT) {
7525 vm_object_activity_begin(object);
7526 queue_enter(&object->uplq, upl, upl_t, uplq);
7527 }
7528 #endif
7529
7530 if (object->phys_contiguous) {
7531
7532 if (upl->flags & UPL_ACCESS_BLOCKED) {
7533 assert(!object->blocked_access);
7534 object->blocked_access = TRUE;
7535 }
7536
7537 vm_object_unlock(object);
7538
7539 /*
7540 * don't need any shadow mappings for this one
7541 * since it is already I/O memory
7542 */
7543 upl->flags |= UPL_DEVICE_MEMORY;
7544
7545 upl->highest_page = (ppnum_t) ((offset + object->vo_shadow_offset + size - 1)>>PAGE_SHIFT);
7546
7547 if (user_page_list) {
7548 user_page_list[0].phys_addr = (ppnum_t) ((offset + object->vo_shadow_offset)>>PAGE_SHIFT);
7549 user_page_list[0].device = TRUE;
7550 }
7551 if (page_list_count != NULL) {
7552 if (upl->flags & UPL_INTERNAL)
7553 *page_list_count = 0;
7554 else
7555 *page_list_count = 1;
7556 }
7557 return KERN_SUCCESS;
7558 }
7559 if (object != kernel_object && object != compressor_object) {
7560 /*
7561 * Protect user space from future COW operations
7562 */
7563 #if VM_OBJECT_TRACKING_OP_TRUESHARE
7564 if (!object->true_share &&
7565 vm_object_tracking_inited) {
7566 void *bt[VM_OBJECT_TRACKING_BTDEPTH];
7567 int num = 0;
7568
7569 num = OSBacktrace(bt,
7570 VM_OBJECT_TRACKING_BTDEPTH);
7571 btlog_add_entry(vm_object_tracking_btlog,
7572 object,
7573 VM_OBJECT_TRACKING_OP_TRUESHARE,
7574 bt,
7575 num);
7576 }
7577 #endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */
7578
7579 object->true_share = TRUE;
7580
7581 if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC)
7582 object->copy_strategy = MEMORY_OBJECT_COPY_DELAY;
7583 }
7584
7585 if (!(cntrl_flags & UPL_COPYOUT_FROM) &&
7586 object->copy != VM_OBJECT_NULL) {
7587 /*
7588 * Honor copy-on-write obligations
7589 *
7590 * The caller is gathering these pages and
7591 * might modify their contents. We need to
7592 * make sure that the copy object has its own
7593 * private copies of these pages before we let
7594 * the caller modify them.
7595 *
7596 * NOTE: someone else could map the original object
7597 * after we've done this copy-on-write here, and they
7598 * could then see an inconsistent picture of the memory
7599 * while it's being modified via the UPL. To prevent this,
7600 * we would have to block access to these pages until the
7601 * UPL is released. We could use the UPL_BLOCK_ACCESS
7602 * code path for that...
7603 */
7604 vm_object_update(object,
7605 offset,
7606 size,
7607 NULL,
7608 NULL,
7609 FALSE, /* should_return */
7610 MEMORY_OBJECT_COPY_SYNC,
7611 VM_PROT_NO_CHANGE);
7612 #if DEVELOPMENT || DEBUG
7613 iopl_cow++;
7614 iopl_cow_pages += size >> PAGE_SHIFT;
7615 #endif
7616 }
7617 if (cntrl_flags & UPL_SET_INTERRUPTIBLE)
7618 interruptible = THREAD_ABORTSAFE;
7619 else
7620 interruptible = THREAD_UNINT;
7621
7622 entry = 0;
7623
7624 xfer_size = size;
7625 dst_offset = offset;
7626 dw_count = 0;
7627
7628 if (fast_path_possible) {
7629 int wired_count = 0;
7630
7631 while (xfer_size) {
7632
7633 while ( (dst_page = vm_page_grab()) == VM_PAGE_NULL) {
7634 OSAddAtomic(size_in_pages, &vm_upl_wait_for_pages);
7635
7636 VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_START, vm_upl_wait_for_pages, 0, 0, 0);
7637
7638 if (vm_page_wait(interruptible) == FALSE) {
7639 /*
7640 * interrupted case
7641 */
7642 OSAddAtomic(-size_in_pages, &vm_upl_wait_for_pages);
7643
7644 VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, -1);
7645
7646 if (wired_count) {
7647 vm_page_lockspin_queues();
7648 vm_page_wire_count += wired_count;
7649 vm_page_unlock_queues();
7650
7651 free_wired_pages = TRUE;
7652 }
7653 ret = MACH_SEND_INTERRUPTED;
7654
7655 goto return_err;
7656 }
7657 OSAddAtomic(-size_in_pages, &vm_upl_wait_for_pages);
7658
7659 VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, 0);
7660 }
7661 if (no_zero_fill == FALSE)
7662 vm_page_zero_fill(dst_page);
7663 else
7664 dst_page->absent = TRUE;
7665
7666 dst_page->reference = TRUE;
7667
7668 if (!(cntrl_flags & UPL_COPYOUT_FROM)) {
7669 SET_PAGE_DIRTY(dst_page, FALSE);
7670 }
7671 if (dst_page->absent == FALSE) {
7672 assert(object->purgable != VM_PURGABLE_VOLATILE);
7673 assert(object->purgable != VM_PURGABLE_EMPTY);
7674 dst_page->wire_count++;
7675 wired_count++;
7676
7677 PAGE_WAKEUP_DONE(dst_page);
7678 }
7679 vm_page_insert_internal(dst_page, object, dst_offset, FALSE, TRUE, TRUE);
7680
7681 lite_list[entry>>5] |= 1 << (entry & 31);
7682
7683 if (dst_page->phys_page > upl->highest_page)
7684 upl->highest_page = dst_page->phys_page;
7685
7686 if (user_page_list) {
7687 user_page_list[entry].phys_addr = dst_page->phys_page;
7688 user_page_list[entry].absent = dst_page->absent;
7689 user_page_list[entry].dirty = dst_page->dirty;
7690 user_page_list[entry].precious = FALSE;
7691 user_page_list[entry].pageout = FALSE;
7692 user_page_list[entry].device = FALSE;
7693 user_page_list[entry].needed = FALSE;
7694 user_page_list[entry].speculative = FALSE;
7695 user_page_list[entry].cs_validated = FALSE;
7696 user_page_list[entry].cs_tainted = FALSE;
7697 }
7698 entry++;
7699 dst_offset += PAGE_SIZE_64;
7700 xfer_size -= PAGE_SIZE;
7701 size_in_pages--;
7702 }
7703 if (wired_count) {
7704 vm_page_lockspin_queues();
7705 vm_page_wire_count += wired_count;
7706 vm_page_unlock_queues();
7707 }
7708 goto finish;
7709 }
7710
7711 fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL;
7712 fault_info.user_tag = 0;
7713 fault_info.lo_offset = offset;
7714 fault_info.hi_offset = offset + xfer_size;
7715 fault_info.no_cache = FALSE;
7716 fault_info.stealth = FALSE;
7717 fault_info.io_sync = FALSE;
7718 fault_info.cs_bypass = FALSE;
7719 fault_info.mark_zf_absent = TRUE;
7720 fault_info.interruptible = interruptible;
7721 fault_info.batch_pmap_op = TRUE;
7722
7723 dwp = &dw_array[0];
7724 dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
7725
7726 while (xfer_size) {
7727 vm_fault_return_t result;
7728 unsigned int pg_num;
7729
7730 dwp->dw_mask = 0;
7731
7732 dst_page = vm_page_lookup(object, dst_offset);
7733
7734 /*
7735 * ENCRYPTED SWAP:
7736 * If the page is encrypted, we need to decrypt it,
7737 * so force a soft page fault.
7738 */
7739 if (dst_page == VM_PAGE_NULL ||
7740 dst_page->busy ||
7741 dst_page->encrypted ||
7742 dst_page->error ||
7743 dst_page->restart ||
7744 dst_page->absent ||
7745 dst_page->fictitious) {
7746
7747 if (object == kernel_object)
7748 panic("vm_object_iopl_request: missing/bad page in kernel object\n");
7749 if (object == compressor_object)
7750 panic("vm_object_iopl_request: missing/bad page in compressor object\n");
7751
7752 if (cntrl_flags & UPL_REQUEST_NO_FAULT) {
7753 ret = KERN_MEMORY_ERROR;
7754 goto return_err;
7755 }
7756 set_cache_attr_needed = TRUE;
7757
7758 /*
7759 * We just looked up the page and the result remains valid
7760 * until the object lock is release, so send it to
7761 * vm_fault_page() (as "dst_page"), to avoid having to
7762 * look it up again there.
7763 */
7764 caller_lookup = TRUE;
7765
7766 do {
7767 vm_page_t top_page;
7768 kern_return_t error_code;
7769
7770 fault_info.cluster_size = xfer_size;
7771
7772 vm_object_paging_begin(object);
7773
7774 result = vm_fault_page(object, dst_offset,
7775 prot | VM_PROT_WRITE, FALSE,
7776 caller_lookup,
7777 &prot, &dst_page, &top_page,
7778 (int *)0,
7779 &error_code, no_zero_fill,
7780 FALSE, &fault_info);
7781
7782 /* our lookup is no longer valid at this point */
7783 caller_lookup = FALSE;
7784
7785 switch (result) {
7786
7787 case VM_FAULT_SUCCESS:
7788
7789 if ( !dst_page->absent) {
7790 PAGE_WAKEUP_DONE(dst_page);
7791 } else {
7792 /*
7793 * we only get back an absent page if we
7794 * requested that it not be zero-filled
7795 * because we are about to fill it via I/O
7796 *
7797 * absent pages should be left BUSY
7798 * to prevent them from being faulted
7799 * into an address space before we've
7800 * had a chance to complete the I/O on
7801 * them since they may contain info that
7802 * shouldn't be seen by the faulting task
7803 */
7804 }
7805 /*
7806 * Release paging references and
7807 * top-level placeholder page, if any.
7808 */
7809 if (top_page != VM_PAGE_NULL) {
7810 vm_object_t local_object;
7811
7812 local_object = top_page->object;
7813
7814 if (top_page->object != dst_page->object) {
7815 vm_object_lock(local_object);
7816 VM_PAGE_FREE(top_page);
7817 vm_object_paging_end(local_object);
7818 vm_object_unlock(local_object);
7819 } else {
7820 VM_PAGE_FREE(top_page);
7821 vm_object_paging_end(local_object);
7822 }
7823 }
7824 vm_object_paging_end(object);
7825 break;
7826
7827 case VM_FAULT_RETRY:
7828 vm_object_lock(object);
7829 break;
7830
7831 case VM_FAULT_MEMORY_SHORTAGE:
7832 OSAddAtomic(size_in_pages, &vm_upl_wait_for_pages);
7833
7834 VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_START, vm_upl_wait_for_pages, 0, 0, 0);
7835
7836 if (vm_page_wait(interruptible)) {
7837 OSAddAtomic(-size_in_pages, &vm_upl_wait_for_pages);
7838
7839 VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, 0);
7840 vm_object_lock(object);
7841
7842 break;
7843 }
7844 OSAddAtomic(-size_in_pages, &vm_upl_wait_for_pages);
7845
7846 VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, -1);
7847
7848 /* fall thru */
7849
7850 case VM_FAULT_INTERRUPTED:
7851 error_code = MACH_SEND_INTERRUPTED;
7852 case VM_FAULT_MEMORY_ERROR:
7853 memory_error:
7854 ret = (error_code ? error_code: KERN_MEMORY_ERROR);
7855
7856 vm_object_lock(object);
7857 goto return_err;
7858
7859 case VM_FAULT_SUCCESS_NO_VM_PAGE:
7860 /* success but no page: fail */
7861 vm_object_paging_end(object);
7862 vm_object_unlock(object);
7863 goto memory_error;
7864
7865 default:
7866 panic("vm_object_iopl_request: unexpected error"
7867 " 0x%x from vm_fault_page()\n", result);
7868 }
7869 } while (result != VM_FAULT_SUCCESS);
7870
7871 }
7872 if (upl->flags & UPL_KERNEL_OBJECT)
7873 goto record_phys_addr;
7874
7875 if (dst_page->compressor) {
7876 dst_page->busy = TRUE;
7877 goto record_phys_addr;
7878 }
7879
7880 if (dst_page->cleaning) {
7881 /*
7882 * Someone else is cleaning this page in place.
7883 * In theory, we should be able to proceed and use this
7884 * page but they'll probably end up clearing the "busy"
7885 * bit on it in upl_commit_range() but they didn't set
7886 * it, so they would clear our "busy" bit and open
7887 * us to race conditions.
7888 * We'd better wait for the cleaning to complete and
7889 * then try again.
7890 */
7891 vm_object_iopl_request_sleep_for_cleaning++;
7892 PAGE_SLEEP(object, dst_page, THREAD_UNINT);
7893 continue;
7894 }
7895 if (dst_page->laundry) {
7896 dst_page->pageout = FALSE;
7897
7898 vm_pageout_steal_laundry(dst_page, FALSE);
7899 }
7900 if ( (cntrl_flags & UPL_NEED_32BIT_ADDR) &&
7901 dst_page->phys_page >= (max_valid_dma_address >> PAGE_SHIFT) ) {
7902 vm_page_t low_page;
7903 int refmod;
7904
7905 /*
7906 * support devices that can't DMA above 32 bits
7907 * by substituting pages from a pool of low address
7908 * memory for any pages we find above the 4G mark
7909 * can't substitute if the page is already wired because
7910 * we don't know whether that physical address has been
7911 * handed out to some other 64 bit capable DMA device to use
7912 */
7913 if (VM_PAGE_WIRED(dst_page)) {
7914 ret = KERN_PROTECTION_FAILURE;
7915 goto return_err;
7916 }
7917 low_page = vm_page_grablo();
7918
7919 if (low_page == VM_PAGE_NULL) {
7920 ret = KERN_RESOURCE_SHORTAGE;
7921 goto return_err;
7922 }
7923 /*
7924 * from here until the vm_page_replace completes
7925 * we musn't drop the object lock... we don't
7926 * want anyone refaulting this page in and using
7927 * it after we disconnect it... we want the fault
7928 * to find the new page being substituted.
7929 */
7930 if (dst_page->pmapped)
7931 refmod = pmap_disconnect(dst_page->phys_page);
7932 else
7933 refmod = 0;
7934
7935 if (!dst_page->absent)
7936 vm_page_copy(dst_page, low_page);
7937
7938 low_page->reference = dst_page->reference;
7939 low_page->dirty = dst_page->dirty;
7940 low_page->absent = dst_page->absent;
7941
7942 if (refmod & VM_MEM_REFERENCED)
7943 low_page->reference = TRUE;
7944 if (refmod & VM_MEM_MODIFIED) {
7945 SET_PAGE_DIRTY(low_page, FALSE);
7946 }
7947
7948 vm_page_replace(low_page, object, dst_offset);
7949
7950 dst_page = low_page;
7951 /*
7952 * vm_page_grablo returned the page marked
7953 * BUSY... we don't need a PAGE_WAKEUP_DONE
7954 * here, because we've never dropped the object lock
7955 */
7956 if ( !dst_page->absent)
7957 dst_page->busy = FALSE;
7958 }
7959 if ( !dst_page->busy)
7960 dwp->dw_mask |= DW_vm_page_wire;
7961
7962 if (cntrl_flags & UPL_BLOCK_ACCESS) {
7963 /*
7964 * Mark the page "busy" to block any future page fault
7965 * on this page in addition to wiring it.
7966 * We'll also remove the mapping
7967 * of all these pages before leaving this routine.
7968 */
7969 assert(!dst_page->fictitious);
7970 dst_page->busy = TRUE;
7971 }
7972 /*
7973 * expect the page to be used
7974 * page queues lock must be held to set 'reference'
7975 */
7976 dwp->dw_mask |= DW_set_reference;
7977
7978 if (!(cntrl_flags & UPL_COPYOUT_FROM)) {
7979 SET_PAGE_DIRTY(dst_page, TRUE);
7980 }
7981 if ((cntrl_flags & UPL_REQUEST_FORCE_COHERENCY) && dst_page->written_by_kernel == TRUE) {
7982 pmap_sync_page_attributes_phys(dst_page->phys_page);
7983 dst_page->written_by_kernel = FALSE;
7984 }
7985
7986 record_phys_addr:
7987 if (dst_page->busy)
7988 upl->flags |= UPL_HAS_BUSY;
7989
7990 pg_num = (unsigned int) ((dst_offset-offset)/PAGE_SIZE);
7991 assert(pg_num == (dst_offset-offset)/PAGE_SIZE);
7992 lite_list[pg_num>>5] |= 1 << (pg_num & 31);
7993
7994 if (dst_page->phys_page > upl->highest_page)
7995 upl->highest_page = dst_page->phys_page;
7996
7997 if (user_page_list) {
7998 user_page_list[entry].phys_addr = dst_page->phys_page;
7999 user_page_list[entry].pageout = dst_page->pageout;
8000 user_page_list[entry].absent = dst_page->absent;
8001 user_page_list[entry].dirty = dst_page->dirty;
8002 user_page_list[entry].precious = dst_page->precious;
8003 user_page_list[entry].device = FALSE;
8004 user_page_list[entry].needed = FALSE;
8005 if (dst_page->clustered == TRUE)
8006 user_page_list[entry].speculative = dst_page->speculative;
8007 else
8008 user_page_list[entry].speculative = FALSE;
8009 user_page_list[entry].cs_validated = dst_page->cs_validated;
8010 user_page_list[entry].cs_tainted = dst_page->cs_tainted;
8011 }
8012 if (object != kernel_object && object != compressor_object) {
8013 /*
8014 * someone is explicitly grabbing this page...
8015 * update clustered and speculative state
8016 *
8017 */
8018 if (dst_page->clustered)
8019 VM_PAGE_CONSUME_CLUSTERED(dst_page);
8020 }
8021 entry++;
8022 dst_offset += PAGE_SIZE_64;
8023 xfer_size -= PAGE_SIZE;
8024 size_in_pages--;
8025
8026 if (dwp->dw_mask) {
8027 VM_PAGE_ADD_DELAYED_WORK(dwp, dst_page, dw_count);
8028
8029 if (dw_count >= dw_limit) {
8030 vm_page_do_delayed_work(object, &dw_array[0], dw_count);
8031
8032 dwp = &dw_array[0];
8033 dw_count = 0;
8034 }
8035 }
8036 }
8037 if (dw_count)
8038 vm_page_do_delayed_work(object, &dw_array[0], dw_count);
8039
8040 finish:
8041 if (user_page_list && set_cache_attr_needed == TRUE)
8042 vm_object_set_pmap_cache_attr(object, user_page_list, entry, TRUE);
8043
8044 if (page_list_count != NULL) {
8045 if (upl->flags & UPL_INTERNAL)
8046 *page_list_count = 0;
8047 else if (*page_list_count > entry)
8048 *page_list_count = entry;
8049 }
8050 vm_object_unlock(object);
8051
8052 if (cntrl_flags & UPL_BLOCK_ACCESS) {
8053 /*
8054 * We've marked all the pages "busy" so that future
8055 * page faults will block.
8056 * Now remove the mapping for these pages, so that they
8057 * can't be accessed without causing a page fault.
8058 */
8059 vm_object_pmap_protect(object, offset, (vm_object_size_t)size,
8060 PMAP_NULL, 0, VM_PROT_NONE);
8061 assert(!object->blocked_access);
8062 object->blocked_access = TRUE;
8063 }
8064 return KERN_SUCCESS;
8065
8066 return_err:
8067 dw_index = 0;
8068
8069 for (; offset < dst_offset; offset += PAGE_SIZE) {
8070 boolean_t need_unwire;
8071
8072 dst_page = vm_page_lookup(object, offset);
8073
8074 if (dst_page == VM_PAGE_NULL)
8075 panic("vm_object_iopl_request: Wired page missing. \n");
8076
8077 /*
8078 * if we've already processed this page in an earlier
8079 * dw_do_work, we need to undo the wiring... we will
8080 * leave the dirty and reference bits on if they
8081 * were set, since we don't have a good way of knowing
8082 * what the previous state was and we won't get here
8083 * under any normal circumstances... we will always
8084 * clear BUSY and wakeup any waiters via vm_page_free
8085 * or PAGE_WAKEUP_DONE
8086 */
8087 need_unwire = TRUE;
8088
8089 if (dw_count) {
8090 if (dw_array[dw_index].dw_m == dst_page) {
8091 /*
8092 * still in the deferred work list
8093 * which means we haven't yet called
8094 * vm_page_wire on this page
8095 */
8096 need_unwire = FALSE;
8097
8098 dw_index++;
8099 dw_count--;
8100 }
8101 }
8102 vm_page_lock_queues();
8103
8104 if (dst_page->absent || free_wired_pages == TRUE) {
8105 vm_page_free(dst_page);
8106
8107 need_unwire = FALSE;
8108 } else {
8109 if (need_unwire == TRUE)
8110 vm_page_unwire(dst_page, TRUE);
8111
8112 PAGE_WAKEUP_DONE(dst_page);
8113 }
8114 vm_page_unlock_queues();
8115
8116 if (need_unwire == TRUE)
8117 VM_STAT_INCR(reactivations);
8118 }
8119 #if UPL_DEBUG
8120 upl->upl_state = 2;
8121 #endif
8122 if (! (upl->flags & UPL_KERNEL_OBJECT)) {
8123 vm_object_activity_end(object);
8124 vm_object_collapse(object, 0, TRUE);
8125 }
8126 vm_object_unlock(object);
8127 upl_destroy(upl);
8128
8129 return ret;
8130 }
8131
8132 kern_return_t
8133 upl_transpose(
8134 upl_t upl1,
8135 upl_t upl2)
8136 {
8137 kern_return_t retval;
8138 boolean_t upls_locked;
8139 vm_object_t object1, object2;
8140
8141 if (upl1 == UPL_NULL || upl2 == UPL_NULL || upl1 == upl2 || ((upl1->flags & UPL_VECTOR)==UPL_VECTOR) || ((upl2->flags & UPL_VECTOR)==UPL_VECTOR)) {
8142 return KERN_INVALID_ARGUMENT;
8143 }
8144
8145 upls_locked = FALSE;
8146
8147 /*
8148 * Since we need to lock both UPLs at the same time,
8149 * avoid deadlocks by always taking locks in the same order.
8150 */
8151 if (upl1 < upl2) {
8152 upl_lock(upl1);
8153 upl_lock(upl2);
8154 } else {
8155 upl_lock(upl2);
8156 upl_lock(upl1);
8157 }
8158 upls_locked = TRUE; /* the UPLs will need to be unlocked */
8159
8160 object1 = upl1->map_object;
8161 object2 = upl2->map_object;
8162
8163 if (upl1->offset != 0 || upl2->offset != 0 ||
8164 upl1->size != upl2->size) {
8165 /*
8166 * We deal only with full objects, not subsets.
8167 * That's because we exchange the entire backing store info
8168 * for the objects: pager, resident pages, etc... We can't do
8169 * only part of it.
8170 */
8171 retval = KERN_INVALID_VALUE;
8172 goto done;
8173 }
8174
8175 /*
8176 * Tranpose the VM objects' backing store.
8177 */
8178 retval = vm_object_transpose(object1, object2,
8179 (vm_object_size_t) upl1->size);
8180
8181 if (retval == KERN_SUCCESS) {
8182 /*
8183 * Make each UPL point to the correct VM object, i.e. the
8184 * object holding the pages that the UPL refers to...
8185 */
8186 #if CONFIG_IOSCHED || UPL_DEBUG
8187 if ((upl1->flags & UPL_TRACKED_BY_OBJECT) || (upl2->flags & UPL_TRACKED_BY_OBJECT)) {
8188 vm_object_lock(object1);
8189 vm_object_lock(object2);
8190 }
8191 if (upl1->flags & UPL_TRACKED_BY_OBJECT)
8192 queue_remove(&object1->uplq, upl1, upl_t, uplq);
8193 if (upl2->flags & UPL_TRACKED_BY_OBJECT)
8194 queue_remove(&object2->uplq, upl2, upl_t, uplq);
8195 #endif
8196 upl1->map_object = object2;
8197 upl2->map_object = object1;
8198
8199 #if CONFIG_IOSCHED || UPL_DEBUG
8200 if (upl1->flags & UPL_TRACKED_BY_OBJECT)
8201 queue_enter(&object2->uplq, upl1, upl_t, uplq);
8202 if (upl2->flags & UPL_TRACKED_BY_OBJECT)
8203 queue_enter(&object1->uplq, upl2, upl_t, uplq);
8204 if ((upl1->flags & UPL_TRACKED_BY_OBJECT) || (upl2->flags & UPL_TRACKED_BY_OBJECT)) {
8205 vm_object_unlock(object2);
8206 vm_object_unlock(object1);
8207 }
8208 #endif
8209 }
8210
8211 done:
8212 /*
8213 * Cleanup.
8214 */
8215 if (upls_locked) {
8216 upl_unlock(upl1);
8217 upl_unlock(upl2);
8218 upls_locked = FALSE;
8219 }
8220
8221 return retval;
8222 }
8223
8224 void
8225 upl_range_needed(
8226 upl_t upl,
8227 int index,
8228 int count)
8229 {
8230 upl_page_info_t *user_page_list;
8231 int size_in_pages;
8232
8233 if ( !(upl->flags & UPL_INTERNAL) || count <= 0)
8234 return;
8235
8236 size_in_pages = upl->size / PAGE_SIZE;
8237
8238 user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl));
8239
8240 while (count-- && index < size_in_pages)
8241 user_page_list[index++].needed = TRUE;
8242 }
8243
8244
8245 /*
8246 * ENCRYPTED SWAP:
8247 *
8248 * Rationale: the user might have some encrypted data on disk (via
8249 * FileVault or any other mechanism). That data is then decrypted in
8250 * memory, which is safe as long as the machine is secure. But that
8251 * decrypted data in memory could be paged out to disk by the default
8252 * pager. The data would then be stored on disk in clear (not encrypted)
8253 * and it could be accessed by anyone who gets physical access to the
8254 * disk (if the laptop or the disk gets stolen for example). This weakens
8255 * the security offered by FileVault.
8256 *
8257 * Solution: the default pager will optionally request that all the
8258 * pages it gathers for pageout be encrypted, via the UPL interfaces,
8259 * before it sends this UPL to disk via the vnode_pageout() path.
8260 *
8261 * Notes:
8262 *
8263 * To avoid disrupting the VM LRU algorithms, we want to keep the
8264 * clean-in-place mechanisms, which allow us to send some extra pages to
8265 * swap (clustering) without actually removing them from the user's
8266 * address space. We don't want the user to unknowingly access encrypted
8267 * data, so we have to actually remove the encrypted pages from the page
8268 * table. When the user accesses the data, the hardware will fail to
8269 * locate the virtual page in its page table and will trigger a page
8270 * fault. We can then decrypt the page and enter it in the page table
8271 * again. Whenever we allow the user to access the contents of a page,
8272 * we have to make sure it's not encrypted.
8273 *
8274 *
8275 */
8276 /*
8277 * ENCRYPTED SWAP:
8278 * Reserve of virtual addresses in the kernel address space.
8279 * We need to map the physical pages in the kernel, so that we
8280 * can call the encryption/decryption routines with a kernel
8281 * virtual address. We keep this pool of pre-allocated kernel
8282 * virtual addresses so that we don't have to scan the kernel's
8283 * virtaul address space each time we need to encrypt or decrypt
8284 * a physical page.
8285 * It would be nice to be able to encrypt and decrypt in physical
8286 * mode but that might not always be more efficient...
8287 */
8288 decl_simple_lock_data(,vm_paging_lock)
8289 #define VM_PAGING_NUM_PAGES 64
8290 vm_map_offset_t vm_paging_base_address = 0;
8291 boolean_t vm_paging_page_inuse[VM_PAGING_NUM_PAGES] = { FALSE, };
8292 int vm_paging_max_index = 0;
8293 int vm_paging_page_waiter = 0;
8294 int vm_paging_page_waiter_total = 0;
8295 unsigned long vm_paging_no_kernel_page = 0;
8296 unsigned long vm_paging_objects_mapped = 0;
8297 unsigned long vm_paging_pages_mapped = 0;
8298 unsigned long vm_paging_objects_mapped_slow = 0;
8299 unsigned long vm_paging_pages_mapped_slow = 0;
8300
8301 void
8302 vm_paging_map_init(void)
8303 {
8304 kern_return_t kr;
8305 vm_map_offset_t page_map_offset;
8306 vm_map_entry_t map_entry;
8307
8308 assert(vm_paging_base_address == 0);
8309
8310 /*
8311 * Initialize our pool of pre-allocated kernel
8312 * virtual addresses.
8313 */
8314 page_map_offset = 0;
8315 kr = vm_map_find_space(kernel_map,
8316 &page_map_offset,
8317 VM_PAGING_NUM_PAGES * PAGE_SIZE,
8318 0,
8319 0,
8320 &map_entry);
8321 if (kr != KERN_SUCCESS) {
8322 panic("vm_paging_map_init: kernel_map full\n");
8323 }
8324 map_entry->object.vm_object = kernel_object;
8325 map_entry->offset = page_map_offset;
8326 map_entry->protection = VM_PROT_NONE;
8327 map_entry->max_protection = VM_PROT_NONE;
8328 map_entry->permanent = TRUE;
8329 vm_object_reference(kernel_object);
8330 vm_map_unlock(kernel_map);
8331
8332 assert(vm_paging_base_address == 0);
8333 vm_paging_base_address = page_map_offset;
8334 }
8335
8336 /*
8337 * ENCRYPTED SWAP:
8338 * vm_paging_map_object:
8339 * Maps part of a VM object's pages in the kernel
8340 * virtual address space, using the pre-allocated
8341 * kernel virtual addresses, if possible.
8342 * Context:
8343 * The VM object is locked. This lock will get
8344 * dropped and re-acquired though, so the caller
8345 * must make sure the VM object is kept alive
8346 * (by holding a VM map that has a reference
8347 * on it, for example, or taking an extra reference).
8348 * The page should also be kept busy to prevent
8349 * it from being reclaimed.
8350 */
8351 kern_return_t
8352 vm_paging_map_object(
8353 vm_page_t page,
8354 vm_object_t object,
8355 vm_object_offset_t offset,
8356 vm_prot_t protection,
8357 boolean_t can_unlock_object,
8358 vm_map_size_t *size, /* IN/OUT */
8359 vm_map_offset_t *address, /* OUT */
8360 boolean_t *need_unmap) /* OUT */
8361 {
8362 kern_return_t kr;
8363 vm_map_offset_t page_map_offset;
8364 vm_map_size_t map_size;
8365 vm_object_offset_t object_offset;
8366 int i;
8367
8368 if (page != VM_PAGE_NULL && *size == PAGE_SIZE) {
8369 /* use permanent 1-to-1 kernel mapping of physical memory ? */
8370 #if __x86_64__
8371 *address = (vm_map_offset_t)
8372 PHYSMAP_PTOV((pmap_paddr_t)page->phys_page <<
8373 PAGE_SHIFT);
8374 *need_unmap = FALSE;
8375 return KERN_SUCCESS;
8376 #else
8377 #warn "vm_paging_map_object: no 1-to-1 kernel mapping of physical memory..."
8378 #endif
8379
8380 assert(page->busy);
8381 /*
8382 * Use one of the pre-allocated kernel virtual addresses
8383 * and just enter the VM page in the kernel address space
8384 * at that virtual address.
8385 */
8386 simple_lock(&vm_paging_lock);
8387
8388 /*
8389 * Try and find an available kernel virtual address
8390 * from our pre-allocated pool.
8391 */
8392 page_map_offset = 0;
8393 for (;;) {
8394 for (i = 0; i < VM_PAGING_NUM_PAGES; i++) {
8395 if (vm_paging_page_inuse[i] == FALSE) {
8396 page_map_offset =
8397 vm_paging_base_address +
8398 (i * PAGE_SIZE);
8399 break;
8400 }
8401 }
8402 if (page_map_offset != 0) {
8403 /* found a space to map our page ! */
8404 break;
8405 }
8406
8407 if (can_unlock_object) {
8408 /*
8409 * If we can afford to unlock the VM object,
8410 * let's take the slow path now...
8411 */
8412 break;
8413 }
8414 /*
8415 * We can't afford to unlock the VM object, so
8416 * let's wait for a space to become available...
8417 */
8418 vm_paging_page_waiter_total++;
8419 vm_paging_page_waiter++;
8420 kr = assert_wait((event_t)&vm_paging_page_waiter, THREAD_UNINT);
8421 if (kr == THREAD_WAITING) {
8422 simple_unlock(&vm_paging_lock);
8423 kr = thread_block(THREAD_CONTINUE_NULL);
8424 simple_lock(&vm_paging_lock);
8425 }
8426 vm_paging_page_waiter--;
8427 /* ... and try again */
8428 }
8429
8430 if (page_map_offset != 0) {
8431 /*
8432 * We found a kernel virtual address;
8433 * map the physical page to that virtual address.
8434 */
8435 if (i > vm_paging_max_index) {
8436 vm_paging_max_index = i;
8437 }
8438 vm_paging_page_inuse[i] = TRUE;
8439 simple_unlock(&vm_paging_lock);
8440
8441 page->pmapped = TRUE;
8442
8443 /*
8444 * Keep the VM object locked over the PMAP_ENTER
8445 * and the actual use of the page by the kernel,
8446 * or this pmap mapping might get undone by a
8447 * vm_object_pmap_protect() call...
8448 */
8449 PMAP_ENTER(kernel_pmap,
8450 page_map_offset,
8451 page,
8452 protection,
8453 VM_PROT_NONE,
8454 0,
8455 TRUE);
8456 vm_paging_objects_mapped++;
8457 vm_paging_pages_mapped++;
8458 *address = page_map_offset;
8459 *need_unmap = TRUE;
8460
8461 /* all done and mapped, ready to use ! */
8462 return KERN_SUCCESS;
8463 }
8464
8465 /*
8466 * We ran out of pre-allocated kernel virtual
8467 * addresses. Just map the page in the kernel
8468 * the slow and regular way.
8469 */
8470 vm_paging_no_kernel_page++;
8471 simple_unlock(&vm_paging_lock);
8472 }
8473
8474 if (! can_unlock_object) {
8475 *address = 0;
8476 *size = 0;
8477 *need_unmap = FALSE;
8478 return KERN_NOT_SUPPORTED;
8479 }
8480
8481 object_offset = vm_object_trunc_page(offset);
8482 map_size = vm_map_round_page(*size,
8483 VM_MAP_PAGE_MASK(kernel_map));
8484
8485 /*
8486 * Try and map the required range of the object
8487 * in the kernel_map
8488 */
8489
8490 vm_object_reference_locked(object); /* for the map entry */
8491 vm_object_unlock(object);
8492
8493 kr = vm_map_enter(kernel_map,
8494 address,
8495 map_size,
8496 0,
8497 VM_FLAGS_ANYWHERE,
8498 object,
8499 object_offset,
8500 FALSE,
8501 protection,
8502 VM_PROT_ALL,
8503 VM_INHERIT_NONE);
8504 if (kr != KERN_SUCCESS) {
8505 *address = 0;
8506 *size = 0;
8507 *need_unmap = FALSE;
8508 vm_object_deallocate(object); /* for the map entry */
8509 vm_object_lock(object);
8510 return kr;
8511 }
8512
8513 *size = map_size;
8514
8515 /*
8516 * Enter the mapped pages in the page table now.
8517 */
8518 vm_object_lock(object);
8519 /*
8520 * VM object must be kept locked from before PMAP_ENTER()
8521 * until after the kernel is done accessing the page(s).
8522 * Otherwise, the pmap mappings in the kernel could be
8523 * undone by a call to vm_object_pmap_protect().
8524 */
8525
8526 for (page_map_offset = 0;
8527 map_size != 0;
8528 map_size -= PAGE_SIZE_64, page_map_offset += PAGE_SIZE_64) {
8529
8530 page = vm_page_lookup(object, offset + page_map_offset);
8531 if (page == VM_PAGE_NULL) {
8532 printf("vm_paging_map_object: no page !?");
8533 vm_object_unlock(object);
8534 kr = vm_map_remove(kernel_map, *address, *size,
8535 VM_MAP_NO_FLAGS);
8536 assert(kr == KERN_SUCCESS);
8537 *address = 0;
8538 *size = 0;
8539 *need_unmap = FALSE;
8540 vm_object_lock(object);
8541 return KERN_MEMORY_ERROR;
8542 }
8543 page->pmapped = TRUE;
8544
8545 //assert(pmap_verify_free(page->phys_page));
8546 PMAP_ENTER(kernel_pmap,
8547 *address + page_map_offset,
8548 page,
8549 protection,
8550 VM_PROT_NONE,
8551 0,
8552 TRUE);
8553 }
8554
8555 vm_paging_objects_mapped_slow++;
8556 vm_paging_pages_mapped_slow += (unsigned long) (map_size / PAGE_SIZE_64);
8557
8558 *need_unmap = TRUE;
8559
8560 return KERN_SUCCESS;
8561 }
8562
8563 /*
8564 * ENCRYPTED SWAP:
8565 * vm_paging_unmap_object:
8566 * Unmaps part of a VM object's pages from the kernel
8567 * virtual address space.
8568 * Context:
8569 * The VM object is locked. This lock will get
8570 * dropped and re-acquired though.
8571 */
8572 void
8573 vm_paging_unmap_object(
8574 vm_object_t object,
8575 vm_map_offset_t start,
8576 vm_map_offset_t end)
8577 {
8578 kern_return_t kr;
8579 int i;
8580
8581 if ((vm_paging_base_address == 0) ||
8582 (start < vm_paging_base_address) ||
8583 (end > (vm_paging_base_address
8584 + (VM_PAGING_NUM_PAGES * PAGE_SIZE)))) {
8585 /*
8586 * We didn't use our pre-allocated pool of
8587 * kernel virtual address. Deallocate the
8588 * virtual memory.
8589 */
8590 if (object != VM_OBJECT_NULL) {
8591 vm_object_unlock(object);
8592 }
8593 kr = vm_map_remove(kernel_map, start, end, VM_MAP_NO_FLAGS);
8594 if (object != VM_OBJECT_NULL) {
8595 vm_object_lock(object);
8596 }
8597 assert(kr == KERN_SUCCESS);
8598 } else {
8599 /*
8600 * We used a kernel virtual address from our
8601 * pre-allocated pool. Put it back in the pool
8602 * for next time.
8603 */
8604 assert(end - start == PAGE_SIZE);
8605 i = (int) ((start - vm_paging_base_address) >> PAGE_SHIFT);
8606 assert(i >= 0 && i < VM_PAGING_NUM_PAGES);
8607
8608 /* undo the pmap mapping */
8609 pmap_remove(kernel_pmap, start, end);
8610
8611 simple_lock(&vm_paging_lock);
8612 vm_paging_page_inuse[i] = FALSE;
8613 if (vm_paging_page_waiter) {
8614 thread_wakeup(&vm_paging_page_waiter);
8615 }
8616 simple_unlock(&vm_paging_lock);
8617 }
8618 }
8619
8620 #if ENCRYPTED_SWAP
8621 /*
8622 * Encryption data.
8623 * "iv" is the "initial vector". Ideally, we want to
8624 * have a different one for each page we encrypt, so that
8625 * crackers can't find encryption patterns too easily.
8626 */
8627 #define SWAP_CRYPT_AES_KEY_SIZE 128 /* XXX 192 and 256 don't work ! */
8628 boolean_t swap_crypt_ctx_initialized = FALSE;
8629 uint32_t swap_crypt_key[8]; /* big enough for a 256 key */
8630 aes_ctx swap_crypt_ctx;
8631 const unsigned char swap_crypt_null_iv[AES_BLOCK_SIZE] = {0xa, };
8632
8633 #if DEBUG
8634 boolean_t swap_crypt_ctx_tested = FALSE;
8635 unsigned char swap_crypt_test_page_ref[4096] __attribute__((aligned(4096)));
8636 unsigned char swap_crypt_test_page_encrypt[4096] __attribute__((aligned(4096)));
8637 unsigned char swap_crypt_test_page_decrypt[4096] __attribute__((aligned(4096)));
8638 #endif /* DEBUG */
8639
8640 /*
8641 * Initialize the encryption context: key and key size.
8642 */
8643 void swap_crypt_ctx_initialize(void); /* forward */
8644 void
8645 swap_crypt_ctx_initialize(void)
8646 {
8647 unsigned int i;
8648
8649 /*
8650 * No need for locking to protect swap_crypt_ctx_initialized
8651 * because the first use of encryption will come from the
8652 * pageout thread (we won't pagein before there's been a pageout)
8653 * and there's only one pageout thread.
8654 */
8655 if (swap_crypt_ctx_initialized == FALSE) {
8656 for (i = 0;
8657 i < (sizeof (swap_crypt_key) /
8658 sizeof (swap_crypt_key[0]));
8659 i++) {
8660 swap_crypt_key[i] = random();
8661 }
8662 aes_encrypt_key((const unsigned char *) swap_crypt_key,
8663 SWAP_CRYPT_AES_KEY_SIZE,
8664 &swap_crypt_ctx.encrypt);
8665 aes_decrypt_key((const unsigned char *) swap_crypt_key,
8666 SWAP_CRYPT_AES_KEY_SIZE,
8667 &swap_crypt_ctx.decrypt);
8668 swap_crypt_ctx_initialized = TRUE;
8669 }
8670
8671 #if DEBUG
8672 /*
8673 * Validate the encryption algorithms.
8674 */
8675 if (swap_crypt_ctx_tested == FALSE) {
8676 /* initialize */
8677 for (i = 0; i < 4096; i++) {
8678 swap_crypt_test_page_ref[i] = (char) i;
8679 }
8680 /* encrypt */
8681 aes_encrypt_cbc(swap_crypt_test_page_ref,
8682 swap_crypt_null_iv,
8683 PAGE_SIZE / AES_BLOCK_SIZE,
8684 swap_crypt_test_page_encrypt,
8685 &swap_crypt_ctx.encrypt);
8686 /* decrypt */
8687 aes_decrypt_cbc(swap_crypt_test_page_encrypt,
8688 swap_crypt_null_iv,
8689 PAGE_SIZE / AES_BLOCK_SIZE,
8690 swap_crypt_test_page_decrypt,
8691 &swap_crypt_ctx.decrypt);
8692 /* compare result with original */
8693 for (i = 0; i < 4096; i ++) {
8694 if (swap_crypt_test_page_decrypt[i] !=
8695 swap_crypt_test_page_ref[i]) {
8696 panic("encryption test failed");
8697 }
8698 }
8699
8700 /* encrypt again */
8701 aes_encrypt_cbc(swap_crypt_test_page_decrypt,
8702 swap_crypt_null_iv,
8703 PAGE_SIZE / AES_BLOCK_SIZE,
8704 swap_crypt_test_page_decrypt,
8705 &swap_crypt_ctx.encrypt);
8706 /* decrypt in place */
8707 aes_decrypt_cbc(swap_crypt_test_page_decrypt,
8708 swap_crypt_null_iv,
8709 PAGE_SIZE / AES_BLOCK_SIZE,
8710 swap_crypt_test_page_decrypt,
8711 &swap_crypt_ctx.decrypt);
8712 for (i = 0; i < 4096; i ++) {
8713 if (swap_crypt_test_page_decrypt[i] !=
8714 swap_crypt_test_page_ref[i]) {
8715 panic("in place encryption test failed");
8716 }
8717 }
8718
8719 swap_crypt_ctx_tested = TRUE;
8720 }
8721 #endif /* DEBUG */
8722 }
8723
8724 /*
8725 * ENCRYPTED SWAP:
8726 * vm_page_encrypt:
8727 * Encrypt the given page, for secure paging.
8728 * The page might already be mapped at kernel virtual
8729 * address "kernel_mapping_offset". Otherwise, we need
8730 * to map it.
8731 *
8732 * Context:
8733 * The page's object is locked, but this lock will be released
8734 * and re-acquired.
8735 * The page is busy and not accessible by users (not entered in any pmap).
8736 */
8737 void
8738 vm_page_encrypt(
8739 vm_page_t page,
8740 vm_map_offset_t kernel_mapping_offset)
8741 {
8742 kern_return_t kr;
8743 vm_map_size_t kernel_mapping_size;
8744 boolean_t kernel_mapping_needs_unmap;
8745 vm_offset_t kernel_vaddr;
8746 union {
8747 unsigned char aes_iv[AES_BLOCK_SIZE];
8748 struct {
8749 memory_object_t pager_object;
8750 vm_object_offset_t paging_offset;
8751 } vm;
8752 } encrypt_iv;
8753
8754 if (! vm_pages_encrypted) {
8755 vm_pages_encrypted = TRUE;
8756 }
8757
8758 assert(page->busy);
8759
8760 if (page->encrypted) {
8761 /*
8762 * Already encrypted: no need to do it again.
8763 */
8764 vm_page_encrypt_already_encrypted_counter++;
8765 return;
8766 }
8767 assert(page->dirty || page->precious);
8768
8769 ASSERT_PAGE_DECRYPTED(page);
8770
8771 /*
8772 * Take a paging-in-progress reference to keep the object
8773 * alive even if we have to unlock it (in vm_paging_map_object()
8774 * for example)...
8775 */
8776 vm_object_paging_begin(page->object);
8777
8778 if (kernel_mapping_offset == 0) {
8779 /*
8780 * The page hasn't already been mapped in kernel space
8781 * by the caller. Map it now, so that we can access
8782 * its contents and encrypt them.
8783 */
8784 kernel_mapping_size = PAGE_SIZE;
8785 kernel_mapping_needs_unmap = FALSE;
8786 kr = vm_paging_map_object(page,
8787 page->object,
8788 page->offset,
8789 VM_PROT_READ | VM_PROT_WRITE,
8790 FALSE,
8791 &kernel_mapping_size,
8792 &kernel_mapping_offset,
8793 &kernel_mapping_needs_unmap);
8794 if (kr != KERN_SUCCESS) {
8795 panic("vm_page_encrypt: "
8796 "could not map page in kernel: 0x%x\n",
8797 kr);
8798 }
8799 } else {
8800 kernel_mapping_size = 0;
8801 kernel_mapping_needs_unmap = FALSE;
8802 }
8803 kernel_vaddr = CAST_DOWN(vm_offset_t, kernel_mapping_offset);
8804
8805 if (swap_crypt_ctx_initialized == FALSE) {
8806 swap_crypt_ctx_initialize();
8807 }
8808 assert(swap_crypt_ctx_initialized);
8809
8810 /*
8811 * Prepare an "initial vector" for the encryption.
8812 * We use the "pager" and the "paging_offset" for that
8813 * page to obfuscate the encrypted data a bit more and
8814 * prevent crackers from finding patterns that they could
8815 * use to break the key.
8816 */
8817 bzero(&encrypt_iv.aes_iv[0], sizeof (encrypt_iv.aes_iv));
8818 encrypt_iv.vm.pager_object = page->object->pager;
8819 encrypt_iv.vm.paging_offset =
8820 page->object->paging_offset + page->offset;
8821
8822 /* encrypt the "initial vector" */
8823 aes_encrypt_cbc((const unsigned char *) &encrypt_iv.aes_iv[0],
8824 swap_crypt_null_iv,
8825 1,
8826 &encrypt_iv.aes_iv[0],
8827 &swap_crypt_ctx.encrypt);
8828
8829 /*
8830 * Encrypt the page.
8831 */
8832 aes_encrypt_cbc((const unsigned char *) kernel_vaddr,
8833 &encrypt_iv.aes_iv[0],
8834 PAGE_SIZE / AES_BLOCK_SIZE,
8835 (unsigned char *) kernel_vaddr,
8836 &swap_crypt_ctx.encrypt);
8837
8838 vm_page_encrypt_counter++;
8839
8840 /*
8841 * Unmap the page from the kernel's address space,
8842 * if we had to map it ourselves. Otherwise, let
8843 * the caller undo the mapping if needed.
8844 */
8845 if (kernel_mapping_needs_unmap) {
8846 vm_paging_unmap_object(page->object,
8847 kernel_mapping_offset,
8848 kernel_mapping_offset + kernel_mapping_size);
8849 }
8850
8851 /*
8852 * Clear the "reference" and "modified" bits.
8853 * This should clean up any impact the encryption had
8854 * on them.
8855 * The page was kept busy and disconnected from all pmaps,
8856 * so it can't have been referenced or modified from user
8857 * space.
8858 * The software bits will be reset later after the I/O
8859 * has completed (in upl_commit_range()).
8860 */
8861 pmap_clear_refmod(page->phys_page, VM_MEM_REFERENCED | VM_MEM_MODIFIED);
8862
8863 page->encrypted = TRUE;
8864
8865 vm_object_paging_end(page->object);
8866 }
8867
8868 /*
8869 * ENCRYPTED SWAP:
8870 * vm_page_decrypt:
8871 * Decrypt the given page.
8872 * The page might already be mapped at kernel virtual
8873 * address "kernel_mapping_offset". Otherwise, we need
8874 * to map it.
8875 *
8876 * Context:
8877 * The page's VM object is locked but will be unlocked and relocked.
8878 * The page is busy and not accessible by users (not entered in any pmap).
8879 */
8880 void
8881 vm_page_decrypt(
8882 vm_page_t page,
8883 vm_map_offset_t kernel_mapping_offset)
8884 {
8885 kern_return_t kr;
8886 vm_map_size_t kernel_mapping_size;
8887 vm_offset_t kernel_vaddr;
8888 boolean_t kernel_mapping_needs_unmap;
8889 union {
8890 unsigned char aes_iv[AES_BLOCK_SIZE];
8891 struct {
8892 memory_object_t pager_object;
8893 vm_object_offset_t paging_offset;
8894 } vm;
8895 } decrypt_iv;
8896 boolean_t was_dirty;
8897
8898 assert(page->busy);
8899 assert(page->encrypted);
8900
8901 was_dirty = page->dirty;
8902
8903 /*
8904 * Take a paging-in-progress reference to keep the object
8905 * alive even if we have to unlock it (in vm_paging_map_object()
8906 * for example)...
8907 */
8908 vm_object_paging_begin(page->object);
8909
8910 if (kernel_mapping_offset == 0) {
8911 /*
8912 * The page hasn't already been mapped in kernel space
8913 * by the caller. Map it now, so that we can access
8914 * its contents and decrypt them.
8915 */
8916 kernel_mapping_size = PAGE_SIZE;
8917 kernel_mapping_needs_unmap = FALSE;
8918 kr = vm_paging_map_object(page,
8919 page->object,
8920 page->offset,
8921 VM_PROT_READ | VM_PROT_WRITE,
8922 FALSE,
8923 &kernel_mapping_size,
8924 &kernel_mapping_offset,
8925 &kernel_mapping_needs_unmap);
8926 if (kr != KERN_SUCCESS) {
8927 panic("vm_page_decrypt: "
8928 "could not map page in kernel: 0x%x\n",
8929 kr);
8930 }
8931 } else {
8932 kernel_mapping_size = 0;
8933 kernel_mapping_needs_unmap = FALSE;
8934 }
8935 kernel_vaddr = CAST_DOWN(vm_offset_t, kernel_mapping_offset);
8936
8937 assert(swap_crypt_ctx_initialized);
8938
8939 /*
8940 * Prepare an "initial vector" for the decryption.
8941 * It has to be the same as the "initial vector" we
8942 * used to encrypt that page.
8943 */
8944 bzero(&decrypt_iv.aes_iv[0], sizeof (decrypt_iv.aes_iv));
8945 decrypt_iv.vm.pager_object = page->object->pager;
8946 decrypt_iv.vm.paging_offset =
8947 page->object->paging_offset + page->offset;
8948
8949 /* encrypt the "initial vector" */
8950 aes_encrypt_cbc((const unsigned char *) &decrypt_iv.aes_iv[0],
8951 swap_crypt_null_iv,
8952 1,
8953 &decrypt_iv.aes_iv[0],
8954 &swap_crypt_ctx.encrypt);
8955
8956 /*
8957 * Decrypt the page.
8958 */
8959 aes_decrypt_cbc((const unsigned char *) kernel_vaddr,
8960 &decrypt_iv.aes_iv[0],
8961 PAGE_SIZE / AES_BLOCK_SIZE,
8962 (unsigned char *) kernel_vaddr,
8963 &swap_crypt_ctx.decrypt);
8964 vm_page_decrypt_counter++;
8965
8966 /*
8967 * Unmap the page from the kernel's address space,
8968 * if we had to map it ourselves. Otherwise, let
8969 * the caller undo the mapping if needed.
8970 */
8971 if (kernel_mapping_needs_unmap) {
8972 vm_paging_unmap_object(page->object,
8973 kernel_vaddr,
8974 kernel_vaddr + PAGE_SIZE);
8975 }
8976
8977 if (was_dirty) {
8978 /*
8979 * The pager did not specify that the page would be
8980 * clean when it got paged in, so let's not clean it here
8981 * either.
8982 */
8983 } else {
8984 /*
8985 * After decryption, the page is actually still clean.
8986 * It was encrypted as part of paging, which "cleans"
8987 * the "dirty" pages.
8988 * Noone could access it after it was encrypted
8989 * and the decryption doesn't count.
8990 */
8991 page->dirty = FALSE;
8992 assert (page->cs_validated == FALSE);
8993 pmap_clear_refmod(page->phys_page, VM_MEM_MODIFIED | VM_MEM_REFERENCED);
8994 }
8995 page->encrypted = FALSE;
8996
8997 /*
8998 * We've just modified the page's contents via the data cache and part
8999 * of the new contents might still be in the cache and not yet in RAM.
9000 * Since the page is now available and might get gathered in a UPL to
9001 * be part of a DMA transfer from a driver that expects the memory to
9002 * be coherent at this point, we have to flush the data cache.
9003 */
9004 pmap_sync_page_attributes_phys(page->phys_page);
9005 /*
9006 * Since the page is not mapped yet, some code might assume that it
9007 * doesn't need to invalidate the instruction cache when writing to
9008 * that page. That code relies on "pmapped" being FALSE, so that the
9009 * caches get synchronized when the page is first mapped.
9010 */
9011 assert(pmap_verify_free(page->phys_page));
9012 page->pmapped = FALSE;
9013 page->wpmapped = FALSE;
9014
9015 vm_object_paging_end(page->object);
9016 }
9017
9018 #if DEVELOPMENT || DEBUG
9019 unsigned long upl_encrypt_upls = 0;
9020 unsigned long upl_encrypt_pages = 0;
9021 #endif
9022
9023 /*
9024 * ENCRYPTED SWAP:
9025 *
9026 * upl_encrypt:
9027 * Encrypts all the pages in the UPL, within the specified range.
9028 *
9029 */
9030 void
9031 upl_encrypt(
9032 upl_t upl,
9033 upl_offset_t crypt_offset,
9034 upl_size_t crypt_size)
9035 {
9036 upl_size_t upl_size, subupl_size=crypt_size;
9037 upl_offset_t offset_in_upl, subupl_offset=crypt_offset;
9038 vm_object_t upl_object;
9039 vm_object_offset_t upl_offset;
9040 vm_page_t page;
9041 vm_object_t shadow_object;
9042 vm_object_offset_t shadow_offset;
9043 vm_object_offset_t paging_offset;
9044 vm_object_offset_t base_offset;
9045 int isVectorUPL = 0;
9046 upl_t vector_upl = NULL;
9047
9048 if((isVectorUPL = vector_upl_is_valid(upl)))
9049 vector_upl = upl;
9050
9051 process_upl_to_encrypt:
9052 if(isVectorUPL) {
9053 crypt_size = subupl_size;
9054 crypt_offset = subupl_offset;
9055 upl = vector_upl_subupl_byoffset(vector_upl, &crypt_offset, &crypt_size);
9056 if(upl == NULL)
9057 panic("upl_encrypt: Accessing a sub-upl that doesn't exist\n");
9058 subupl_size -= crypt_size;
9059 subupl_offset += crypt_size;
9060 }
9061
9062 #if DEVELOPMENT || DEBUG
9063 upl_encrypt_upls++;
9064 upl_encrypt_pages += crypt_size / PAGE_SIZE;
9065 #endif
9066 upl_object = upl->map_object;
9067 upl_offset = upl->offset;
9068 upl_size = upl->size;
9069
9070 vm_object_lock(upl_object);
9071
9072 /*
9073 * Find the VM object that contains the actual pages.
9074 */
9075 if (upl_object->pageout) {
9076 shadow_object = upl_object->shadow;
9077 /*
9078 * The offset in the shadow object is actually also
9079 * accounted for in upl->offset. It possibly shouldn't be
9080 * this way, but for now don't account for it twice.
9081 */
9082 shadow_offset = 0;
9083 assert(upl_object->paging_offset == 0); /* XXX ? */
9084 vm_object_lock(shadow_object);
9085 } else {
9086 shadow_object = upl_object;
9087 shadow_offset = 0;
9088 }
9089
9090 paging_offset = shadow_object->paging_offset;
9091 vm_object_paging_begin(shadow_object);
9092
9093 if (shadow_object != upl_object)
9094 vm_object_unlock(upl_object);
9095
9096
9097 base_offset = shadow_offset;
9098 base_offset += upl_offset;
9099 base_offset += crypt_offset;
9100 base_offset -= paging_offset;
9101
9102 assert(crypt_offset + crypt_size <= upl_size);
9103
9104 for (offset_in_upl = 0;
9105 offset_in_upl < crypt_size;
9106 offset_in_upl += PAGE_SIZE) {
9107 page = vm_page_lookup(shadow_object,
9108 base_offset + offset_in_upl);
9109 if (page == VM_PAGE_NULL) {
9110 panic("upl_encrypt: "
9111 "no page for (obj=%p,off=0x%llx+0x%x)!\n",
9112 shadow_object,
9113 base_offset,
9114 offset_in_upl);
9115 }
9116 /*
9117 * Disconnect the page from all pmaps, so that nobody can
9118 * access it while it's encrypted. After that point, all
9119 * accesses to this page will cause a page fault and block
9120 * while the page is busy being encrypted. After the
9121 * encryption completes, any access will cause a
9122 * page fault and the page gets decrypted at that time.
9123 */
9124 pmap_disconnect(page->phys_page);
9125 vm_page_encrypt(page, 0);
9126
9127 if (vm_object_lock_avoid(shadow_object)) {
9128 /*
9129 * Give vm_pageout_scan() a chance to convert more
9130 * pages from "clean-in-place" to "clean-and-free",
9131 * if it's interested in the same pages we selected
9132 * in this cluster.
9133 */
9134 vm_object_unlock(shadow_object);
9135 mutex_pause(2);
9136 vm_object_lock(shadow_object);
9137 }
9138 }
9139
9140 vm_object_paging_end(shadow_object);
9141 vm_object_unlock(shadow_object);
9142
9143 if(isVectorUPL && subupl_size)
9144 goto process_upl_to_encrypt;
9145 }
9146
9147 #else /* ENCRYPTED_SWAP */
9148 void
9149 upl_encrypt(
9150 __unused upl_t upl,
9151 __unused upl_offset_t crypt_offset,
9152 __unused upl_size_t crypt_size)
9153 {
9154 }
9155
9156 void
9157 vm_page_encrypt(
9158 __unused vm_page_t page,
9159 __unused vm_map_offset_t kernel_mapping_offset)
9160 {
9161 }
9162
9163 void
9164 vm_page_decrypt(
9165 __unused vm_page_t page,
9166 __unused vm_map_offset_t kernel_mapping_offset)
9167 {
9168 }
9169
9170 #endif /* ENCRYPTED_SWAP */
9171
9172 /*
9173 * page->object must be locked
9174 */
9175 void
9176 vm_pageout_steal_laundry(vm_page_t page, boolean_t queues_locked)
9177 {
9178 if (!queues_locked) {
9179 vm_page_lockspin_queues();
9180 }
9181
9182 /*
9183 * need to drop the laundry count...
9184 * we may also need to remove it
9185 * from the I/O paging queue...
9186 * vm_pageout_throttle_up handles both cases
9187 *
9188 * the laundry and pageout_queue flags are cleared...
9189 */
9190 vm_pageout_throttle_up(page);
9191
9192 vm_page_steal_pageout_page++;
9193
9194 if (!queues_locked) {
9195 vm_page_unlock_queues();
9196 }
9197 }
9198
9199 upl_t
9200 vector_upl_create(vm_offset_t upl_offset)
9201 {
9202 int vector_upl_size = sizeof(struct _vector_upl);
9203 int i=0;
9204 upl_t upl;
9205 vector_upl_t vector_upl = (vector_upl_t)kalloc(vector_upl_size);
9206
9207 upl = upl_create(0,UPL_VECTOR,0);
9208 upl->vector_upl = vector_upl;
9209 upl->offset = upl_offset;
9210 vector_upl->size = 0;
9211 vector_upl->offset = upl_offset;
9212 vector_upl->invalid_upls=0;
9213 vector_upl->num_upls=0;
9214 vector_upl->pagelist = NULL;
9215
9216 for(i=0; i < MAX_VECTOR_UPL_ELEMENTS ; i++) {
9217 vector_upl->upl_iostates[i].size = 0;
9218 vector_upl->upl_iostates[i].offset = 0;
9219
9220 }
9221 return upl;
9222 }
9223
9224 void
9225 vector_upl_deallocate(upl_t upl)
9226 {
9227 if(upl) {
9228 vector_upl_t vector_upl = upl->vector_upl;
9229 if(vector_upl) {
9230 if(vector_upl->invalid_upls != vector_upl->num_upls)
9231 panic("Deallocating non-empty Vectored UPL\n");
9232 kfree(vector_upl->pagelist,(sizeof(struct upl_page_info)*(vector_upl->size/PAGE_SIZE)));
9233 vector_upl->invalid_upls=0;
9234 vector_upl->num_upls = 0;
9235 vector_upl->pagelist = NULL;
9236 vector_upl->size = 0;
9237 vector_upl->offset = 0;
9238 kfree(vector_upl, sizeof(struct _vector_upl));
9239 vector_upl = (vector_upl_t)0xfeedfeed;
9240 }
9241 else
9242 panic("vector_upl_deallocate was passed a non-vectored upl\n");
9243 }
9244 else
9245 panic("vector_upl_deallocate was passed a NULL upl\n");
9246 }
9247
9248 boolean_t
9249 vector_upl_is_valid(upl_t upl)
9250 {
9251 if(upl && ((upl->flags & UPL_VECTOR)==UPL_VECTOR)) {
9252 vector_upl_t vector_upl = upl->vector_upl;
9253 if(vector_upl == NULL || vector_upl == (vector_upl_t)0xfeedfeed || vector_upl == (vector_upl_t)0xfeedbeef)
9254 return FALSE;
9255 else
9256 return TRUE;
9257 }
9258 return FALSE;
9259 }
9260
9261 boolean_t
9262 vector_upl_set_subupl(upl_t upl,upl_t subupl, uint32_t io_size)
9263 {
9264 if(vector_upl_is_valid(upl)) {
9265 vector_upl_t vector_upl = upl->vector_upl;
9266
9267 if(vector_upl) {
9268 if(subupl) {
9269 if(io_size) {
9270 if(io_size < PAGE_SIZE)
9271 io_size = PAGE_SIZE;
9272 subupl->vector_upl = (void*)vector_upl;
9273 vector_upl->upl_elems[vector_upl->num_upls++] = subupl;
9274 vector_upl->size += io_size;
9275 upl->size += io_size;
9276 }
9277 else {
9278 uint32_t i=0,invalid_upls=0;
9279 for(i = 0; i < vector_upl->num_upls; i++) {
9280 if(vector_upl->upl_elems[i] == subupl)
9281 break;
9282 }
9283 if(i == vector_upl->num_upls)
9284 panic("Trying to remove sub-upl when none exists");
9285
9286 vector_upl->upl_elems[i] = NULL;
9287 invalid_upls = hw_atomic_add(&(vector_upl)->invalid_upls, 1);
9288 if(invalid_upls == vector_upl->num_upls)
9289 return TRUE;
9290 else
9291 return FALSE;
9292 }
9293 }
9294 else
9295 panic("vector_upl_set_subupl was passed a NULL upl element\n");
9296 }
9297 else
9298 panic("vector_upl_set_subupl was passed a non-vectored upl\n");
9299 }
9300 else
9301 panic("vector_upl_set_subupl was passed a NULL upl\n");
9302
9303 return FALSE;
9304 }
9305
9306 void
9307 vector_upl_set_pagelist(upl_t upl)
9308 {
9309 if(vector_upl_is_valid(upl)) {
9310 uint32_t i=0;
9311 vector_upl_t vector_upl = upl->vector_upl;
9312
9313 if(vector_upl) {
9314 vm_offset_t pagelist_size=0, cur_upl_pagelist_size=0;
9315
9316 vector_upl->pagelist = (upl_page_info_array_t)kalloc(sizeof(struct upl_page_info)*(vector_upl->size/PAGE_SIZE));
9317
9318 for(i=0; i < vector_upl->num_upls; i++) {
9319 cur_upl_pagelist_size = sizeof(struct upl_page_info) * vector_upl->upl_elems[i]->size/PAGE_SIZE;
9320 bcopy(UPL_GET_INTERNAL_PAGE_LIST_SIMPLE(vector_upl->upl_elems[i]), (char*)vector_upl->pagelist + pagelist_size, cur_upl_pagelist_size);
9321 pagelist_size += cur_upl_pagelist_size;
9322 if(vector_upl->upl_elems[i]->highest_page > upl->highest_page)
9323 upl->highest_page = vector_upl->upl_elems[i]->highest_page;
9324 }
9325 assert( pagelist_size == (sizeof(struct upl_page_info)*(vector_upl->size/PAGE_SIZE)) );
9326 }
9327 else
9328 panic("vector_upl_set_pagelist was passed a non-vectored upl\n");
9329 }
9330 else
9331 panic("vector_upl_set_pagelist was passed a NULL upl\n");
9332
9333 }
9334
9335 upl_t
9336 vector_upl_subupl_byindex(upl_t upl, uint32_t index)
9337 {
9338 if(vector_upl_is_valid(upl)) {
9339 vector_upl_t vector_upl = upl->vector_upl;
9340 if(vector_upl) {
9341 if(index < vector_upl->num_upls)
9342 return vector_upl->upl_elems[index];
9343 }
9344 else
9345 panic("vector_upl_subupl_byindex was passed a non-vectored upl\n");
9346 }
9347 return NULL;
9348 }
9349
9350 upl_t
9351 vector_upl_subupl_byoffset(upl_t upl, upl_offset_t *upl_offset, upl_size_t *upl_size)
9352 {
9353 if(vector_upl_is_valid(upl)) {
9354 uint32_t i=0;
9355 vector_upl_t vector_upl = upl->vector_upl;
9356
9357 if(vector_upl) {
9358 upl_t subupl = NULL;
9359 vector_upl_iostates_t subupl_state;
9360
9361 for(i=0; i < vector_upl->num_upls; i++) {
9362 subupl = vector_upl->upl_elems[i];
9363 subupl_state = vector_upl->upl_iostates[i];
9364 if( *upl_offset <= (subupl_state.offset + subupl_state.size - 1)) {
9365 /* We could have been passed an offset/size pair that belongs
9366 * to an UPL element that has already been committed/aborted.
9367 * If so, return NULL.
9368 */
9369 if(subupl == NULL)
9370 return NULL;
9371 if((subupl_state.offset + subupl_state.size) < (*upl_offset + *upl_size)) {
9372 *upl_size = (subupl_state.offset + subupl_state.size) - *upl_offset;
9373 if(*upl_size > subupl_state.size)
9374 *upl_size = subupl_state.size;
9375 }
9376 if(*upl_offset >= subupl_state.offset)
9377 *upl_offset -= subupl_state.offset;
9378 else if(i)
9379 panic("Vector UPL offset miscalculation\n");
9380 return subupl;
9381 }
9382 }
9383 }
9384 else
9385 panic("vector_upl_subupl_byoffset was passed a non-vectored UPL\n");
9386 }
9387 return NULL;
9388 }
9389
9390 void
9391 vector_upl_get_submap(upl_t upl, vm_map_t *v_upl_submap, vm_offset_t *submap_dst_addr)
9392 {
9393 *v_upl_submap = NULL;
9394
9395 if(vector_upl_is_valid(upl)) {
9396 vector_upl_t vector_upl = upl->vector_upl;
9397 if(vector_upl) {
9398 *v_upl_submap = vector_upl->submap;
9399 *submap_dst_addr = vector_upl->submap_dst_addr;
9400 }
9401 else
9402 panic("vector_upl_get_submap was passed a non-vectored UPL\n");
9403 }
9404 else
9405 panic("vector_upl_get_submap was passed a null UPL\n");
9406 }
9407
9408 void
9409 vector_upl_set_submap(upl_t upl, vm_map_t submap, vm_offset_t submap_dst_addr)
9410 {
9411 if(vector_upl_is_valid(upl)) {
9412 vector_upl_t vector_upl = upl->vector_upl;
9413 if(vector_upl) {
9414 vector_upl->submap = submap;
9415 vector_upl->submap_dst_addr = submap_dst_addr;
9416 }
9417 else
9418 panic("vector_upl_get_submap was passed a non-vectored UPL\n");
9419 }
9420 else
9421 panic("vector_upl_get_submap was passed a NULL UPL\n");
9422 }
9423
9424 void
9425 vector_upl_set_iostate(upl_t upl, upl_t subupl, upl_offset_t offset, upl_size_t size)
9426 {
9427 if(vector_upl_is_valid(upl)) {
9428 uint32_t i = 0;
9429 vector_upl_t vector_upl = upl->vector_upl;
9430
9431 if(vector_upl) {
9432 for(i = 0; i < vector_upl->num_upls; i++) {
9433 if(vector_upl->upl_elems[i] == subupl)
9434 break;
9435 }
9436
9437 if(i == vector_upl->num_upls)
9438 panic("setting sub-upl iostate when none exists");
9439
9440 vector_upl->upl_iostates[i].offset = offset;
9441 if(size < PAGE_SIZE)
9442 size = PAGE_SIZE;
9443 vector_upl->upl_iostates[i].size = size;
9444 }
9445 else
9446 panic("vector_upl_set_iostate was passed a non-vectored UPL\n");
9447 }
9448 else
9449 panic("vector_upl_set_iostate was passed a NULL UPL\n");
9450 }
9451
9452 void
9453 vector_upl_get_iostate(upl_t upl, upl_t subupl, upl_offset_t *offset, upl_size_t *size)
9454 {
9455 if(vector_upl_is_valid(upl)) {
9456 uint32_t i = 0;
9457 vector_upl_t vector_upl = upl->vector_upl;
9458
9459 if(vector_upl) {
9460 for(i = 0; i < vector_upl->num_upls; i++) {
9461 if(vector_upl->upl_elems[i] == subupl)
9462 break;
9463 }
9464
9465 if(i == vector_upl->num_upls)
9466 panic("getting sub-upl iostate when none exists");
9467
9468 *offset = vector_upl->upl_iostates[i].offset;
9469 *size = vector_upl->upl_iostates[i].size;
9470 }
9471 else
9472 panic("vector_upl_get_iostate was passed a non-vectored UPL\n");
9473 }
9474 else
9475 panic("vector_upl_get_iostate was passed a NULL UPL\n");
9476 }
9477
9478 void
9479 vector_upl_get_iostate_byindex(upl_t upl, uint32_t index, upl_offset_t *offset, upl_size_t *size)
9480 {
9481 if(vector_upl_is_valid(upl)) {
9482 vector_upl_t vector_upl = upl->vector_upl;
9483 if(vector_upl) {
9484 if(index < vector_upl->num_upls) {
9485 *offset = vector_upl->upl_iostates[index].offset;
9486 *size = vector_upl->upl_iostates[index].size;
9487 }
9488 else
9489 *offset = *size = 0;
9490 }
9491 else
9492 panic("vector_upl_get_iostate_byindex was passed a non-vectored UPL\n");
9493 }
9494 else
9495 panic("vector_upl_get_iostate_byindex was passed a NULL UPL\n");
9496 }
9497
9498 upl_page_info_t *
9499 upl_get_internal_vectorupl_pagelist(upl_t upl)
9500 {
9501 return ((vector_upl_t)(upl->vector_upl))->pagelist;
9502 }
9503
9504 void *
9505 upl_get_internal_vectorupl(upl_t upl)
9506 {
9507 return upl->vector_upl;
9508 }
9509
9510 vm_size_t
9511 upl_get_internal_pagelist_offset(void)
9512 {
9513 return sizeof(struct upl);
9514 }
9515
9516 void
9517 upl_clear_dirty(
9518 upl_t upl,
9519 boolean_t value)
9520 {
9521 if (value) {
9522 upl->flags |= UPL_CLEAR_DIRTY;
9523 } else {
9524 upl->flags &= ~UPL_CLEAR_DIRTY;
9525 }
9526 }
9527
9528 void
9529 upl_set_referenced(
9530 upl_t upl,
9531 boolean_t value)
9532 {
9533 upl_lock(upl);
9534 if (value) {
9535 upl->ext_ref_count++;
9536 } else {
9537 if (!upl->ext_ref_count) {
9538 panic("upl_set_referenced not %p\n", upl);
9539 }
9540 upl->ext_ref_count--;
9541 }
9542 upl_unlock(upl);
9543 }
9544
9545 #if CONFIG_IOSCHED
9546 void
9547 upl_set_blkno(
9548 upl_t upl,
9549 vm_offset_t upl_offset,
9550 int io_size,
9551 int64_t blkno)
9552 {
9553 int i,j;
9554 if ((upl->flags & UPL_EXPEDITE_SUPPORTED) == 0)
9555 return;
9556
9557 assert(upl->upl_reprio_info != 0);
9558 for(i = (int)(upl_offset / PAGE_SIZE), j = 0; j < io_size; i++, j += PAGE_SIZE) {
9559 UPL_SET_REPRIO_INFO(upl, i, blkno, io_size);
9560 }
9561 }
9562 #endif
9563
9564 boolean_t
9565 vm_page_is_slideable(vm_page_t m)
9566 {
9567 boolean_t result = FALSE;
9568 vm_shared_region_slide_info_t si;
9569
9570 vm_object_lock_assert_held(m->object);
9571
9572 /* make sure our page belongs to the one object allowed to do this */
9573 if (!m->object->object_slid) {
9574 goto done;
9575 }
9576
9577 si = m->object->vo_slide_info;
9578 if (si == NULL) {
9579 goto done;
9580 }
9581
9582 if(!m->slid && (si->start <= m->offset && si->end > m->offset)) {
9583 result = TRUE;
9584 }
9585
9586 done:
9587 return result;
9588 }
9589
9590 int vm_page_slide_counter = 0;
9591 int vm_page_slide_errors = 0;
9592 kern_return_t
9593 vm_page_slide(
9594 vm_page_t page,
9595 vm_map_offset_t kernel_mapping_offset)
9596 {
9597 kern_return_t kr;
9598 vm_map_size_t kernel_mapping_size;
9599 boolean_t kernel_mapping_needs_unmap;
9600 vm_offset_t kernel_vaddr;
9601 uint32_t pageIndex = 0;
9602
9603 assert(!page->slid);
9604 assert(page->object->object_slid);
9605 vm_object_lock_assert_exclusive(page->object);
9606
9607 if (page->error)
9608 return KERN_FAILURE;
9609
9610 /*
9611 * Take a paging-in-progress reference to keep the object
9612 * alive even if we have to unlock it (in vm_paging_map_object()
9613 * for example)...
9614 */
9615 vm_object_paging_begin(page->object);
9616
9617 if (kernel_mapping_offset == 0) {
9618 /*
9619 * The page hasn't already been mapped in kernel space
9620 * by the caller. Map it now, so that we can access
9621 * its contents and decrypt them.
9622 */
9623 kernel_mapping_size = PAGE_SIZE;
9624 kernel_mapping_needs_unmap = FALSE;
9625 kr = vm_paging_map_object(page,
9626 page->object,
9627 page->offset,
9628 VM_PROT_READ | VM_PROT_WRITE,
9629 FALSE,
9630 &kernel_mapping_size,
9631 &kernel_mapping_offset,
9632 &kernel_mapping_needs_unmap);
9633 if (kr != KERN_SUCCESS) {
9634 panic("vm_page_slide: "
9635 "could not map page in kernel: 0x%x\n",
9636 kr);
9637 }
9638 } else {
9639 kernel_mapping_size = 0;
9640 kernel_mapping_needs_unmap = FALSE;
9641 }
9642 kernel_vaddr = CAST_DOWN(vm_offset_t, kernel_mapping_offset);
9643
9644 /*
9645 * Slide the pointers on the page.
9646 */
9647
9648 /*assert that slide_file_info.start/end are page-aligned?*/
9649
9650 assert(!page->slid);
9651 assert(page->object->object_slid);
9652
9653 /* on some platforms this is an extern int, on others it's a cpp macro */
9654 __unreachable_ok_push
9655 /* TODO: Consider this */
9656 if (!TEST_PAGE_SIZE_4K) {
9657 for (int i = 0; i < 4; i++) {
9658 pageIndex = (uint32_t)((page->offset - page->object->vo_slide_info->start)/0x1000);
9659 kr = vm_shared_region_slide_page(page->object->vo_slide_info, kernel_vaddr + (0x1000*i), pageIndex + i);
9660 }
9661 } else {
9662 pageIndex = (uint32_t)((page->offset - page->object->vo_slide_info->start)/PAGE_SIZE);
9663 kr = vm_shared_region_slide_page(page->object->vo_slide_info, kernel_vaddr, pageIndex);
9664 }
9665 __unreachable_ok_pop
9666
9667 vm_page_slide_counter++;
9668
9669 /*
9670 * Unmap the page from the kernel's address space,
9671 */
9672 if (kernel_mapping_needs_unmap) {
9673 vm_paging_unmap_object(page->object,
9674 kernel_vaddr,
9675 kernel_vaddr + PAGE_SIZE);
9676 }
9677
9678 page->dirty = FALSE;
9679 pmap_clear_refmod(page->phys_page, VM_MEM_MODIFIED | VM_MEM_REFERENCED);
9680
9681 if (kr != KERN_SUCCESS || cs_debug > 1) {
9682 printf("vm_page_slide(%p): "
9683 "obj %p off 0x%llx mobj %p moff 0x%llx\n",
9684 page,
9685 page->object, page->offset,
9686 page->object->pager,
9687 page->offset + page->object->paging_offset);
9688 }
9689
9690 if (kr == KERN_SUCCESS) {
9691 page->slid = TRUE;
9692 } else {
9693 page->error = TRUE;
9694 vm_page_slide_errors++;
9695 }
9696
9697 vm_object_paging_end(page->object);
9698
9699 return kr;
9700 }
9701
9702 void inline memoryshot(unsigned int event, unsigned int control)
9703 {
9704 if (vm_debug_events) {
9705 KERNEL_DEBUG_CONSTANT1((MACHDBG_CODE(DBG_MACH_VM_PRESSURE, event)) | control,
9706 vm_page_active_count, vm_page_inactive_count,
9707 vm_page_free_count, vm_page_speculative_count,
9708 vm_page_throttled_count);
9709 } else {
9710 (void) event;
9711 (void) control;
9712 }
9713
9714 }
9715
9716 #ifdef MACH_BSD
9717
9718 boolean_t upl_device_page(upl_page_info_t *upl)
9719 {
9720 return(UPL_DEVICE_PAGE(upl));
9721 }
9722 boolean_t upl_page_present(upl_page_info_t *upl, int index)
9723 {
9724 return(UPL_PAGE_PRESENT(upl, index));
9725 }
9726 boolean_t upl_speculative_page(upl_page_info_t *upl, int index)
9727 {
9728 return(UPL_SPECULATIVE_PAGE(upl, index));
9729 }
9730 boolean_t upl_dirty_page(upl_page_info_t *upl, int index)
9731 {
9732 return(UPL_DIRTY_PAGE(upl, index));
9733 }
9734 boolean_t upl_valid_page(upl_page_info_t *upl, int index)
9735 {
9736 return(UPL_VALID_PAGE(upl, index));
9737 }
9738 ppnum_t upl_phys_page(upl_page_info_t *upl, int index)
9739 {
9740 return(UPL_PHYS_PAGE(upl, index));
9741 }
9742
9743 void
9744 vm_countdirtypages(void)
9745 {
9746 vm_page_t m;
9747 int dpages;
9748 int pgopages;
9749 int precpages;
9750
9751
9752 dpages=0;
9753 pgopages=0;
9754 precpages=0;
9755
9756 vm_page_lock_queues();
9757 m = (vm_page_t) queue_first(&vm_page_queue_inactive);
9758 do {
9759 if (m ==(vm_page_t )0) break;
9760
9761 if(m->dirty) dpages++;
9762 if(m->pageout) pgopages++;
9763 if(m->precious) precpages++;
9764
9765 assert(m->object != kernel_object);
9766 m = (vm_page_t) queue_next(&m->pageq);
9767 if (m ==(vm_page_t )0) break;
9768
9769 } while (!queue_end(&vm_page_queue_inactive,(queue_entry_t) m));
9770 vm_page_unlock_queues();
9771
9772 vm_page_lock_queues();
9773 m = (vm_page_t) queue_first(&vm_page_queue_throttled);
9774 do {
9775 if (m ==(vm_page_t )0) break;
9776
9777 dpages++;
9778 assert(m->dirty);
9779 assert(!m->pageout);
9780 assert(m->object != kernel_object);
9781 m = (vm_page_t) queue_next(&m->pageq);
9782 if (m ==(vm_page_t )0) break;
9783
9784 } while (!queue_end(&vm_page_queue_throttled,(queue_entry_t) m));
9785 vm_page_unlock_queues();
9786
9787 vm_page_lock_queues();
9788 m = (vm_page_t) queue_first(&vm_page_queue_anonymous);
9789 do {
9790 if (m ==(vm_page_t )0) break;
9791
9792 if(m->dirty) dpages++;
9793 if(m->pageout) pgopages++;
9794 if(m->precious) precpages++;
9795
9796 assert(m->object != kernel_object);
9797 m = (vm_page_t) queue_next(&m->pageq);
9798 if (m ==(vm_page_t )0) break;
9799
9800 } while (!queue_end(&vm_page_queue_anonymous,(queue_entry_t) m));
9801 vm_page_unlock_queues();
9802
9803 printf("IN Q: %d : %d : %d\n", dpages, pgopages, precpages);
9804
9805 dpages=0;
9806 pgopages=0;
9807 precpages=0;
9808
9809 vm_page_lock_queues();
9810 m = (vm_page_t) queue_first(&vm_page_queue_active);
9811
9812 do {
9813 if(m == (vm_page_t )0) break;
9814 if(m->dirty) dpages++;
9815 if(m->pageout) pgopages++;
9816 if(m->precious) precpages++;
9817
9818 assert(m->object != kernel_object);
9819 m = (vm_page_t) queue_next(&m->pageq);
9820 if(m == (vm_page_t )0) break;
9821
9822 } while (!queue_end(&vm_page_queue_active,(queue_entry_t) m));
9823 vm_page_unlock_queues();
9824
9825 printf("AC Q: %d : %d : %d\n", dpages, pgopages, precpages);
9826
9827 }
9828 #endif /* MACH_BSD */
9829
9830 ppnum_t upl_get_highest_page(
9831 upl_t upl)
9832 {
9833 return upl->highest_page;
9834 }
9835
9836 upl_size_t upl_get_size(
9837 upl_t upl)
9838 {
9839 return upl->size;
9840 }
9841
9842 #if UPL_DEBUG
9843 kern_return_t upl_ubc_alias_set(upl_t upl, uintptr_t alias1, uintptr_t alias2)
9844 {
9845 upl->ubc_alias1 = alias1;
9846 upl->ubc_alias2 = alias2;
9847 return KERN_SUCCESS;
9848 }
9849 int upl_ubc_alias_get(upl_t upl, uintptr_t * al, uintptr_t * al2)
9850 {
9851 if(al)
9852 *al = upl->ubc_alias1;
9853 if(al2)
9854 *al2 = upl->ubc_alias2;
9855 return KERN_SUCCESS;
9856 }
9857 #endif /* UPL_DEBUG */
9858
9859 #if VM_PRESSURE_EVENTS
9860 /*
9861 * Upward trajectory.
9862 */
9863 extern boolean_t vm_compressor_low_on_space(void);
9864
9865 boolean_t
9866 VM_PRESSURE_NORMAL_TO_WARNING(void) {
9867
9868 if (DEFAULT_PAGER_IS_ACTIVE || DEFAULT_FREEZER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_SWAPLESS) {
9869
9870 /* Available pages below our threshold */
9871 if (memorystatus_available_pages < memorystatus_available_pages_pressure) {
9872 /* No frozen processes to kill */
9873 if (memorystatus_frozen_count == 0) {
9874 /* Not enough suspended processes available. */
9875 if (memorystatus_suspended_count < MEMORYSTATUS_SUSPENDED_THRESHOLD) {
9876 return TRUE;
9877 }
9878 }
9879 }
9880 return FALSE;
9881
9882 } else {
9883 return ((AVAILABLE_NON_COMPRESSED_MEMORY < VM_PAGE_COMPRESSOR_COMPACT_THRESHOLD) ? 1 : 0);
9884 }
9885 }
9886
9887 boolean_t
9888 VM_PRESSURE_WARNING_TO_CRITICAL(void) {
9889
9890 if (DEFAULT_PAGER_IS_ACTIVE || DEFAULT_FREEZER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_SWAPLESS) {
9891 /* Available pages below our threshold */
9892 if (memorystatus_available_pages < memorystatus_available_pages_critical) {
9893 return TRUE;
9894 }
9895 return FALSE;
9896 } else {
9897 return (vm_compressor_low_on_space() || (AVAILABLE_NON_COMPRESSED_MEMORY < ((12 * VM_PAGE_COMPRESSOR_SWAP_UNTHROTTLE_THRESHOLD) / 10)) ? 1 : 0);
9898 }
9899 }
9900
9901 /*
9902 * Downward trajectory.
9903 */
9904 boolean_t
9905 VM_PRESSURE_WARNING_TO_NORMAL(void) {
9906
9907 if (DEFAULT_PAGER_IS_ACTIVE || DEFAULT_FREEZER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_SWAPLESS) {
9908 /* Available pages above our threshold */
9909 unsigned int target_threshold = memorystatus_available_pages_pressure + ((15 * memorystatus_available_pages_pressure) / 100);
9910 if (memorystatus_available_pages > target_threshold) {
9911 return TRUE;
9912 }
9913 return FALSE;
9914 } else {
9915 return ((AVAILABLE_NON_COMPRESSED_MEMORY > ((12 * VM_PAGE_COMPRESSOR_COMPACT_THRESHOLD) / 10)) ? 1 : 0);
9916 }
9917 }
9918
9919 boolean_t
9920 VM_PRESSURE_CRITICAL_TO_WARNING(void) {
9921
9922 if (DEFAULT_PAGER_IS_ACTIVE || DEFAULT_FREEZER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_SWAPLESS) {
9923 /* Available pages above our threshold */
9924 unsigned int target_threshold = memorystatus_available_pages_critical + ((15 * memorystatus_available_pages_critical) / 100);
9925 if (memorystatus_available_pages > target_threshold) {
9926 return TRUE;
9927 }
9928 return FALSE;
9929 } else {
9930 return ((AVAILABLE_NON_COMPRESSED_MEMORY > ((14 * VM_PAGE_COMPRESSOR_SWAP_UNTHROTTLE_THRESHOLD) / 10)) ? 1 : 0);
9931 }
9932 }
9933 #endif /* VM_PRESSURE_EVENTS */
9934