]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/kern_memorystatus.c
74a80dc55f7e843138d9794026dc58e9de4204e3
[apple/xnu.git] / bsd / kern / kern_memorystatus.c
1 /*
2 * Copyright (c) 2006 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 *
28 */
29
30 #include <kern/sched_prim.h>
31 #include <kern/kalloc.h>
32 #include <kern/assert.h>
33 #include <kern/debug.h>
34 #include <kern/locks.h>
35 #include <kern/task.h>
36 #include <kern/thread.h>
37 #include <kern/host.h>
38 #include <kern/policy_internal.h>
39 #include <kern/thread_group.h>
40
41 #include <IOKit/IOBSD.h>
42
43 #include <libkern/libkern.h>
44 #include <mach/coalition.h>
45 #include <mach/mach_time.h>
46 #include <mach/task.h>
47 #include <mach/host_priv.h>
48 #include <mach/mach_host.h>
49 #include <os/log.h>
50 #include <pexpert/pexpert.h>
51 #include <sys/coalition.h>
52 #include <sys/kern_event.h>
53 #include <sys/proc.h>
54 #include <sys/proc_info.h>
55 #include <sys/reason.h>
56 #include <sys/signal.h>
57 #include <sys/signalvar.h>
58 #include <sys/sysctl.h>
59 #include <sys/sysproto.h>
60 #include <sys/wait.h>
61 #include <sys/tree.h>
62 #include <sys/priv.h>
63 #include <vm/vm_pageout.h>
64 #include <vm/vm_protos.h>
65
66 #if CONFIG_FREEZE
67 #include <vm/vm_map.h>
68 #endif /* CONFIG_FREEZE */
69
70 #include <sys/kern_memorystatus.h>
71
72 #include <mach/machine/sdt.h>
73 #include <libkern/section_keywords.h>
74
75 /* For logging clarity */
76 static const char *memorystatus_kill_cause_name[] = {
77 "" ,
78 "jettisoned" , /* kMemorystatusKilled */
79 "highwater" , /* kMemorystatusKilledHiwat */
80 "vnode-limit" , /* kMemorystatusKilledVnodes */
81 "vm-pageshortage" , /* kMemorystatusKilledVMPageShortage */
82 "vm-thrashing" , /* kMemorystatusKilledVMThrashing */
83 "fc-thrashing" , /* kMemorystatusKilledFCThrashing */
84 "per-process-limit" , /* kMemorystatusKilledPerProcessLimit */
85 "diagnostic" , /* kMemorystatusKilledDiagnostic */
86 "idle-exit" , /* kMemorystatusKilledIdleExit */
87 "zone-map-exhaustion" , /* kMemorystatusKilledZoneMapExhaustion */
88 };
89
90 static const char *
91 memorystatus_priority_band_name(int32_t priority)
92 {
93 switch (priority) {
94 case JETSAM_PRIORITY_FOREGROUND:
95 return "FOREGROUND";
96 case JETSAM_PRIORITY_AUDIO_AND_ACCESSORY:
97 return "AUDIO_AND_ACCESSORY";
98 case JETSAM_PRIORITY_CONDUCTOR:
99 return "CONDUCTOR";
100 case JETSAM_PRIORITY_HOME:
101 return "HOME";
102 case JETSAM_PRIORITY_EXECUTIVE:
103 return "EXECUTIVE";
104 case JETSAM_PRIORITY_IMPORTANT:
105 return "IMPORTANT";
106 case JETSAM_PRIORITY_CRITICAL:
107 return "CRITICAL";
108 }
109
110 return ("?");
111 }
112
113 /* Does cause indicate vm or fc thrashing? */
114 static boolean_t
115 is_reason_thrashing(unsigned cause)
116 {
117 switch (cause) {
118 case kMemorystatusKilledVMThrashing:
119 case kMemorystatusKilledFCThrashing:
120 return TRUE;
121 default:
122 return FALSE;
123 }
124 }
125
126 /* Is the zone map almost full? */
127 static boolean_t
128 is_reason_zone_map_exhaustion(unsigned cause)
129 {
130 if (cause == kMemorystatusKilledZoneMapExhaustion)
131 return TRUE;
132 return FALSE;
133 }
134
135 /*
136 * Returns the current zone map size and capacity to include in the jetsam snapshot.
137 * Defined in zalloc.c
138 */
139 extern void get_zone_map_size(uint64_t *current_size, uint64_t *capacity);
140
141 /*
142 * Returns the name of the largest zone and its size to include in the jetsam snapshot.
143 * Defined in zalloc.c
144 */
145 extern void get_largest_zone_info(char *zone_name, size_t zone_name_len, uint64_t *zone_size);
146
147 /* These are very verbose printfs(), enable with
148 * MEMORYSTATUS_DEBUG_LOG
149 */
150 #if MEMORYSTATUS_DEBUG_LOG
151 #define MEMORYSTATUS_DEBUG(cond, format, ...) \
152 do { \
153 if (cond) { printf(format, ##__VA_ARGS__); } \
154 } while(0)
155 #else
156 #define MEMORYSTATUS_DEBUG(cond, format, ...)
157 #endif
158
159 /*
160 * Active / Inactive limit support
161 * proc list must be locked
162 *
163 * The SET_*** macros are used to initialize a limit
164 * for the first time.
165 *
166 * The CACHE_*** macros are use to cache the limit that will
167 * soon be in effect down in the ledgers.
168 */
169
170 #define SET_ACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \
171 MACRO_BEGIN \
172 (p)->p_memstat_memlimit_active = (limit); \
173 if (is_fatal) { \
174 (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \
175 } else { \
176 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \
177 } \
178 MACRO_END
179
180 #define SET_INACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \
181 MACRO_BEGIN \
182 (p)->p_memstat_memlimit_inactive = (limit); \
183 if (is_fatal) { \
184 (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \
185 } else { \
186 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \
187 } \
188 MACRO_END
189
190 #define CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal) \
191 MACRO_BEGIN \
192 (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_active; \
193 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL) { \
194 (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \
195 is_fatal = TRUE; \
196 } else { \
197 (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \
198 is_fatal = FALSE; \
199 } \
200 MACRO_END
201
202 #define CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal) \
203 MACRO_BEGIN \
204 (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_inactive; \
205 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) { \
206 (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \
207 is_fatal = TRUE; \
208 } else { \
209 (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \
210 is_fatal = FALSE; \
211 } \
212 MACRO_END
213
214
215 /* General tunables */
216
217 unsigned long delta_percentage = 5;
218 unsigned long critical_threshold_percentage = 5;
219 unsigned long idle_offset_percentage = 5;
220 unsigned long pressure_threshold_percentage = 15;
221 unsigned long freeze_threshold_percentage = 50;
222 unsigned long policy_more_free_offset_percentage = 5;
223
224 /* General memorystatus stuff */
225
226 struct klist memorystatus_klist;
227 static lck_mtx_t memorystatus_klist_mutex;
228
229 static void memorystatus_klist_lock(void);
230 static void memorystatus_klist_unlock(void);
231
232 static uint64_t memorystatus_sysprocs_idle_delay_time = 0;
233 static uint64_t memorystatus_apps_idle_delay_time = 0;
234
235 /*
236 * Memorystatus kevents
237 */
238
239 static int filt_memorystatusattach(struct knote *kn, struct kevent_internal_s *kev);
240 static void filt_memorystatusdetach(struct knote *kn);
241 static int filt_memorystatus(struct knote *kn, long hint);
242 static int filt_memorystatustouch(struct knote *kn, struct kevent_internal_s *kev);
243 static int filt_memorystatusprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev);
244
245 SECURITY_READ_ONLY_EARLY(struct filterops) memorystatus_filtops = {
246 .f_attach = filt_memorystatusattach,
247 .f_detach = filt_memorystatusdetach,
248 .f_event = filt_memorystatus,
249 .f_touch = filt_memorystatustouch,
250 .f_process = filt_memorystatusprocess,
251 };
252
253 enum {
254 kMemorystatusNoPressure = 0x1,
255 kMemorystatusPressure = 0x2,
256 kMemorystatusLowSwap = 0x4,
257 kMemorystatusProcLimitWarn = 0x8,
258 kMemorystatusProcLimitCritical = 0x10
259 };
260
261 /* Idle guard handling */
262
263 static int32_t memorystatus_scheduled_idle_demotions_sysprocs = 0;
264 static int32_t memorystatus_scheduled_idle_demotions_apps = 0;
265
266 static thread_call_t memorystatus_idle_demotion_call;
267
268 static void memorystatus_perform_idle_demotion(__unused void *spare1, __unused void *spare2);
269 static void memorystatus_schedule_idle_demotion_locked(proc_t p, boolean_t set_state);
270 static void memorystatus_invalidate_idle_demotion_locked(proc_t p, boolean_t clean_state);
271 static void memorystatus_reschedule_idle_demotion_locked(void);
272
273 static void memorystatus_update_priority_locked(proc_t p, int priority, boolean_t head_insert, boolean_t skip_demotion_check);
274
275 int memorystatus_update_priority_for_appnap(proc_t p, boolean_t is_appnap);
276
277 vm_pressure_level_t convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t);
278
279 boolean_t is_knote_registered_modify_task_pressure_bits(struct knote*, int, task_t, vm_pressure_level_t, vm_pressure_level_t);
280 void memorystatus_klist_reset_all_for_level(vm_pressure_level_t pressure_level_to_clear);
281 void memorystatus_send_low_swap_note(void);
282
283 int memorystatus_wakeup = 0;
284
285 unsigned int memorystatus_level = 0;
286
287 static int memorystatus_list_count = 0;
288
289 #define MEMSTAT_BUCKET_COUNT (JETSAM_PRIORITY_MAX + 1)
290
291 typedef struct memstat_bucket {
292 TAILQ_HEAD(, proc) list;
293 int count;
294 } memstat_bucket_t;
295
296 memstat_bucket_t memstat_bucket[MEMSTAT_BUCKET_COUNT];
297
298 int memorystatus_get_proccnt_upto_priority(int32_t max_bucket_index);
299
300 uint64_t memstat_idle_demotion_deadline = 0;
301
302 int system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1;
303 int applications_aging_band = JETSAM_PRIORITY_IDLE;
304
305 #define isProcessInAgingBands(p) ((isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) || (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)))
306 #define isApp(p) (! (p->p_memstat_dirty & P_DIRTY_TRACK))
307 #define isSysProc(p) ((p->p_memstat_dirty & P_DIRTY_TRACK))
308
309 #define kJetsamAgingPolicyNone (0)
310 #define kJetsamAgingPolicyLegacy (1)
311 #define kJetsamAgingPolicySysProcsReclaimedFirst (2)
312 #define kJetsamAgingPolicyAppsReclaimedFirst (3)
313 #define kJetsamAgingPolicyMax kJetsamAgingPolicyAppsReclaimedFirst
314
315 unsigned int jetsam_aging_policy = kJetsamAgingPolicyLegacy;
316
317 extern int corpse_for_fatal_memkill;
318 extern unsigned long total_corpses_count(void) __attribute__((pure));
319 extern void task_purge_all_corpses(void);
320 boolean_t memorystatus_allowed_vm_map_fork(__unused task_t);
321
322 #if 0
323
324 /* Keeping around for future use if we need a utility that can do this OR an app that needs a dynamic adjustment. */
325
326 static int
327 sysctl_set_jetsam_aging_policy SYSCTL_HANDLER_ARGS
328 {
329 #pragma unused(oidp, arg1, arg2)
330
331 int error = 0, val = 0;
332 memstat_bucket_t *old_bucket = 0;
333 int old_system_procs_aging_band = 0, new_system_procs_aging_band = 0;
334 int old_applications_aging_band = 0, new_applications_aging_band = 0;
335 proc_t p = NULL, next_proc = NULL;
336
337
338 error = sysctl_io_number(req, jetsam_aging_policy, sizeof(int), &val, NULL);
339 if (error || !req->newptr) {
340 return (error);
341 }
342
343 if ((val < 0) || (val > kJetsamAgingPolicyMax)) {
344 printf("jetsam: ordering policy sysctl has invalid value - %d\n", val);
345 return EINVAL;
346 }
347
348 /*
349 * We need to synchronize with any potential adding/removal from aging bands
350 * that might be in progress currently. We use the proc_list_lock() just for
351 * consistency with all the routines dealing with 'aging' processes. We need
352 * a lighterweight lock.
353 */
354 proc_list_lock();
355
356 old_system_procs_aging_band = system_procs_aging_band;
357 old_applications_aging_band = applications_aging_band;
358
359 switch (val) {
360
361 case kJetsamAgingPolicyNone:
362 new_system_procs_aging_band = JETSAM_PRIORITY_IDLE;
363 new_applications_aging_band = JETSAM_PRIORITY_IDLE;
364 break;
365
366 case kJetsamAgingPolicyLegacy:
367 /*
368 * Legacy behavior where some daemons get a 10s protection once and only before the first clean->dirty->clean transition before going into IDLE band.
369 */
370 new_system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1;
371 new_applications_aging_band = JETSAM_PRIORITY_IDLE;
372 break;
373
374 case kJetsamAgingPolicySysProcsReclaimedFirst:
375 new_system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1;
376 new_applications_aging_band = JETSAM_PRIORITY_AGING_BAND2;
377 break;
378
379 case kJetsamAgingPolicyAppsReclaimedFirst:
380 new_system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND2;
381 new_applications_aging_band = JETSAM_PRIORITY_AGING_BAND1;
382 break;
383
384 default:
385 break;
386 }
387
388 if (old_system_procs_aging_band && (old_system_procs_aging_band != new_system_procs_aging_band)) {
389
390 old_bucket = &memstat_bucket[old_system_procs_aging_band];
391 p = TAILQ_FIRST(&old_bucket->list);
392
393 while (p) {
394
395 next_proc = TAILQ_NEXT(p, p_memstat_list);
396
397 if (isSysProc(p)) {
398 if (new_system_procs_aging_band == JETSAM_PRIORITY_IDLE) {
399 memorystatus_invalidate_idle_demotion_locked(p, TRUE);
400 }
401
402 memorystatus_update_priority_locked(p, new_system_procs_aging_band, false, true);
403 }
404
405 p = next_proc;
406 continue;
407 }
408 }
409
410 if (old_applications_aging_band && (old_applications_aging_band != new_applications_aging_band)) {
411
412 old_bucket = &memstat_bucket[old_applications_aging_band];
413 p = TAILQ_FIRST(&old_bucket->list);
414
415 while (p) {
416
417 next_proc = TAILQ_NEXT(p, p_memstat_list);
418
419 if (isApp(p)) {
420 if (new_applications_aging_band == JETSAM_PRIORITY_IDLE) {
421 memorystatus_invalidate_idle_demotion_locked(p, TRUE);
422 }
423
424 memorystatus_update_priority_locked(p, new_applications_aging_band, false, true);
425 }
426
427 p = next_proc;
428 continue;
429 }
430 }
431
432 jetsam_aging_policy = val;
433 system_procs_aging_band = new_system_procs_aging_band;
434 applications_aging_band = new_applications_aging_band;
435
436 proc_list_unlock();
437
438 return (0);
439 }
440
441 SYSCTL_PROC(_kern, OID_AUTO, set_jetsam_aging_policy, CTLTYPE_INT|CTLFLAG_RW,
442 0, 0, sysctl_set_jetsam_aging_policy, "I", "Jetsam Aging Policy");
443 #endif /*0*/
444
445 static int
446 sysctl_jetsam_set_sysprocs_idle_delay_time SYSCTL_HANDLER_ARGS
447 {
448 #pragma unused(oidp, arg1, arg2)
449
450 int error = 0, val = 0, old_time_in_secs = 0;
451 uint64_t old_time_in_ns = 0;
452
453 absolutetime_to_nanoseconds(memorystatus_sysprocs_idle_delay_time, &old_time_in_ns);
454 old_time_in_secs = old_time_in_ns / NSEC_PER_SEC;
455
456 error = sysctl_io_number(req, old_time_in_secs, sizeof(int), &val, NULL);
457 if (error || !req->newptr) {
458 return (error);
459 }
460
461 if ((val < 0) || (val > INT32_MAX)) {
462 printf("jetsam: new idle delay interval has invalid value.\n");
463 return EINVAL;
464 }
465
466 nanoseconds_to_absolutetime((uint64_t)val * NSEC_PER_SEC, &memorystatus_sysprocs_idle_delay_time);
467
468 return(0);
469 }
470
471 SYSCTL_PROC(_kern, OID_AUTO, memorystatus_sysprocs_idle_delay_time, CTLTYPE_INT|CTLFLAG_RW,
472 0, 0, sysctl_jetsam_set_sysprocs_idle_delay_time, "I", "Aging window for system processes");
473
474
475 static int
476 sysctl_jetsam_set_apps_idle_delay_time SYSCTL_HANDLER_ARGS
477 {
478 #pragma unused(oidp, arg1, arg2)
479
480 int error = 0, val = 0, old_time_in_secs = 0;
481 uint64_t old_time_in_ns = 0;
482
483 absolutetime_to_nanoseconds(memorystatus_apps_idle_delay_time, &old_time_in_ns);
484 old_time_in_secs = old_time_in_ns / NSEC_PER_SEC;
485
486 error = sysctl_io_number(req, old_time_in_secs, sizeof(int), &val, NULL);
487 if (error || !req->newptr) {
488 return (error);
489 }
490
491 if ((val < 0) || (val > INT32_MAX)) {
492 printf("jetsam: new idle delay interval has invalid value.\n");
493 return EINVAL;
494 }
495
496 nanoseconds_to_absolutetime((uint64_t)val * NSEC_PER_SEC, &memorystatus_apps_idle_delay_time);
497
498 return(0);
499 }
500
501 SYSCTL_PROC(_kern, OID_AUTO, memorystatus_apps_idle_delay_time, CTLTYPE_INT|CTLFLAG_RW,
502 0, 0, sysctl_jetsam_set_apps_idle_delay_time, "I", "Aging window for applications");
503
504 SYSCTL_INT(_kern, OID_AUTO, jetsam_aging_policy, CTLTYPE_INT|CTLFLAG_RD, &jetsam_aging_policy, 0, "");
505
506 static unsigned int memorystatus_dirty_count = 0;
507
508 SYSCTL_INT(_kern, OID_AUTO, max_task_pmem, CTLFLAG_RD|CTLFLAG_LOCKED|CTLFLAG_MASKED, &max_task_footprint_mb, 0, "");
509
510 #if CONFIG_EMBEDDED
511
512 SYSCTL_INT(_kern, OID_AUTO, memorystatus_level, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_level, 0, "");
513
514 #endif /* CONFIG_EMBEDDED */
515
516 int
517 memorystatus_get_level(__unused struct proc *p, struct memorystatus_get_level_args *args, __unused int *ret)
518 {
519 user_addr_t level = 0;
520
521 level = args->level;
522
523 if (copyout(&memorystatus_level, level, sizeof(memorystatus_level)) != 0) {
524 return EFAULT;
525 }
526
527 return 0;
528 }
529
530 static proc_t memorystatus_get_first_proc_locked(unsigned int *bucket_index, boolean_t search);
531 static proc_t memorystatus_get_next_proc_locked(unsigned int *bucket_index, proc_t p, boolean_t search);
532
533 static void memorystatus_thread(void *param __unused, wait_result_t wr __unused);
534
535 /* Memory Limits */
536
537 static int memorystatus_highwater_enabled = 1; /* Update the cached memlimit data. */
538
539 static boolean_t proc_jetsam_state_is_active_locked(proc_t);
540 static boolean_t memorystatus_kill_specific_process(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason);
541 static boolean_t memorystatus_kill_process_sync(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason);
542
543
544 static int memorystatus_cmd_set_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval);
545
546 static int memorystatus_set_memlimit_properties(pid_t pid, memorystatus_memlimit_properties_t *entry);
547
548 static int memorystatus_cmd_get_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval);
549
550 static int memorystatus_cmd_get_memlimit_excess_np(pid_t pid, uint32_t flags, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval);
551
552 int proc_get_memstat_priority(proc_t, boolean_t);
553
554 static boolean_t memorystatus_idle_snapshot = 0;
555
556 unsigned int memorystatus_delta = 0;
557
558 /* Jetsam Loop Detection */
559 static boolean_t memorystatus_jld_enabled = FALSE; /* Enable jetsam loop detection */
560 static uint32_t memorystatus_jld_eval_period_msecs = 0; /* Init pass sets this based on device memory size */
561 static int memorystatus_jld_eval_aggressive_count = 3; /* Raise the priority max after 'n' aggressive loops */
562 static int memorystatus_jld_eval_aggressive_priority_band_max = 15; /* Kill aggressively up through this band */
563
564 /*
565 * A FG app can request that the aggressive jetsam mechanism display some leniency in the FG band. This 'lenient' mode is described as:
566 * --- if aggressive jetsam kills an app in the FG band and gets back >=AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD memory, it will stop the aggressive march further into and up the jetsam bands.
567 *
568 * RESTRICTIONS:
569 * - Such a request is respected/acknowledged only once while that 'requesting' app is in the FG band i.e. if aggressive jetsam was
570 * needed and the 'lenient' mode was deployed then that's it for this special mode while the app is in the FG band.
571 *
572 * - If the app is still in the FG band and aggressive jetsam is needed again, there will be no stop-and-check the next time around.
573 *
574 * - Also, the transition of the 'requesting' app away from the FG band will void this special behavior.
575 */
576
577 #define AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD 25
578 boolean_t memorystatus_aggressive_jetsam_lenient_allowed = FALSE;
579 boolean_t memorystatus_aggressive_jetsam_lenient = FALSE;
580
581 #if DEVELOPMENT || DEBUG
582 /*
583 * Jetsam Loop Detection tunables.
584 */
585
586 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_jld_eval_period_msecs, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_jld_eval_period_msecs, 0, "");
587 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_jld_eval_aggressive_count, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_jld_eval_aggressive_count, 0, "");
588 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_jld_eval_aggressive_priority_band_max, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_jld_eval_aggressive_priority_band_max, 0, "");
589 #endif /* DEVELOPMENT || DEBUG */
590
591 static uint32_t kill_under_pressure_cause = 0;
592
593 /*
594 * default jetsam snapshot support
595 */
596 static memorystatus_jetsam_snapshot_t *memorystatus_jetsam_snapshot;
597 #define memorystatus_jetsam_snapshot_list memorystatus_jetsam_snapshot->entries
598 static unsigned int memorystatus_jetsam_snapshot_count = 0;
599 static unsigned int memorystatus_jetsam_snapshot_max = 0;
600 static uint64_t memorystatus_jetsam_snapshot_last_timestamp = 0;
601 static uint64_t memorystatus_jetsam_snapshot_timeout = 0;
602 #define JETSAM_SNAPSHOT_TIMEOUT_SECS 30
603
604 /*
605 * snapshot support for memstats collected at boot.
606 */
607 static memorystatus_jetsam_snapshot_t memorystatus_at_boot_snapshot;
608
609 static void memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t *od_snapshot, uint32_t ods_list_count);
610 static boolean_t memorystatus_init_jetsam_snapshot_entry_locked(proc_t p, memorystatus_jetsam_snapshot_entry_t *entry, uint64_t gencount);
611 static void memorystatus_update_jetsam_snapshot_entry_locked(proc_t p, uint32_t kill_cause, uint64_t killtime);
612
613 static void memorystatus_clear_errors(void);
614 static void memorystatus_get_task_page_counts(task_t task, uint32_t *footprint, uint32_t *max_footprint, uint32_t *max_footprint_lifetime, uint32_t *purgeable_pages);
615 static void memorystatus_get_task_phys_footprint_page_counts(task_t task,
616 uint64_t *internal_pages, uint64_t *internal_compressed_pages,
617 uint64_t *purgeable_nonvolatile_pages, uint64_t *purgeable_nonvolatile_compressed_pages,
618 uint64_t *alternate_accounting_pages, uint64_t *alternate_accounting_compressed_pages,
619 uint64_t *iokit_mapped_pages, uint64_t *page_table_pages);
620
621 static void memorystatus_get_task_memory_region_count(task_t task, uint64_t *count);
622
623 static uint32_t memorystatus_build_state(proc_t p);
624 //static boolean_t memorystatus_issue_pressure_kevent(boolean_t pressured);
625
626 static boolean_t memorystatus_kill_top_process(boolean_t any, boolean_t sort_flag, uint32_t cause, os_reason_t jetsam_reason, int32_t *priority, uint32_t *errors);
627 static boolean_t memorystatus_kill_top_process_aggressive(uint32_t cause, int aggr_count, int32_t priority_max, uint32_t *errors);
628 static boolean_t memorystatus_kill_elevated_process(uint32_t cause, os_reason_t jetsam_reason, int aggr_count, uint32_t *errors);
629 static boolean_t memorystatus_kill_hiwat_proc(uint32_t *errors);
630
631 static boolean_t memorystatus_kill_process_async(pid_t victim_pid, uint32_t cause);
632
633 /* Priority Band Sorting Routines */
634 static int memorystatus_sort_bucket(unsigned int bucket_index, int sort_order);
635 static int memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index, int coal_sort_order);
636 static void memorystatus_sort_by_largest_process_locked(unsigned int bucket_index);
637 static int memorystatus_move_list_locked(unsigned int bucket_index, pid_t *pid_list, int list_sz);
638
639 /* qsort routines */
640 typedef int (*cmpfunc_t)(const void *a, const void *b);
641 extern void qsort(void *a, size_t n, size_t es, cmpfunc_t cmp);
642 static int memstat_asc_cmp(const void *a, const void *b);
643
644 /* VM pressure */
645
646 extern unsigned int vm_page_free_count;
647 extern unsigned int vm_page_active_count;
648 extern unsigned int vm_page_inactive_count;
649 extern unsigned int vm_page_throttled_count;
650 extern unsigned int vm_page_purgeable_count;
651 extern unsigned int vm_page_wire_count;
652 #if CONFIG_SECLUDED_MEMORY
653 extern unsigned int vm_page_secluded_count;
654 #endif /* CONFIG_SECLUDED_MEMORY */
655
656 #if CONFIG_JETSAM
657 unsigned int memorystatus_available_pages = (unsigned int)-1;
658 unsigned int memorystatus_available_pages_pressure = 0;
659 unsigned int memorystatus_available_pages_critical = 0;
660 static unsigned int memorystatus_available_pages_critical_base = 0;
661 static unsigned int memorystatus_available_pages_critical_idle_offset = 0;
662
663 #if DEVELOPMENT || DEBUG
664 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages, CTLFLAG_RD | CTLFLAG_LOCKED, &memorystatus_available_pages, 0, "");
665 #else
666 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages, CTLFLAG_RD | CTLFLAG_MASKED | CTLFLAG_LOCKED, &memorystatus_available_pages, 0, "");
667 #endif /* DEVELOPMENT || DEBUG */
668
669 static unsigned int memorystatus_jetsam_policy = kPolicyDefault;
670 unsigned int memorystatus_policy_more_free_offset_pages = 0;
671 static void memorystatus_update_levels_locked(boolean_t critical_only);
672 static unsigned int memorystatus_thread_wasted_wakeup = 0;
673
674 /* Callback into vm_compressor.c to signal that thrashing has been mitigated. */
675 extern void vm_thrashing_jetsam_done(void);
676 static int memorystatus_cmd_set_jetsam_memory_limit(pid_t pid, int32_t high_water_mark, __unused int32_t *retval, boolean_t is_fatal_limit);
677
678 int32_t max_kill_priority = JETSAM_PRIORITY_MAX;
679
680 #else /* CONFIG_JETSAM */
681
682 uint64_t memorystatus_available_pages = (uint64_t)-1;
683 uint64_t memorystatus_available_pages_pressure = (uint64_t)-1;
684 uint64_t memorystatus_available_pages_critical = (uint64_t)-1;
685
686 int32_t max_kill_priority = JETSAM_PRIORITY_IDLE;
687 #endif /* CONFIG_JETSAM */
688
689 unsigned int memorystatus_frozen_count = 0;
690 unsigned int memorystatus_suspended_count = 0;
691
692 #if VM_PRESSURE_EVENTS
693
694 boolean_t memorystatus_warn_process(pid_t pid, __unused boolean_t is_active, __unused boolean_t is_fatal, boolean_t exceeded);
695
696 vm_pressure_level_t memorystatus_vm_pressure_level = kVMPressureNormal;
697
698 /*
699 * We use this flag to signal if we have any HWM offenders
700 * on the system. This way we can reduce the number of wakeups
701 * of the memorystatus_thread when the system is between the
702 * "pressure" and "critical" threshold.
703 *
704 * The (re-)setting of this variable is done without any locks
705 * or synchronization simply because it is not possible (currently)
706 * to keep track of HWM offenders that drop down below their memory
707 * limit and/or exit. So, we choose to burn a couple of wasted wakeups
708 * by allowing the unguarded modification of this variable.
709 */
710 boolean_t memorystatus_hwm_candidates = 0;
711
712 static int memorystatus_send_note(int event_code, void *data, size_t data_length);
713
714 #endif /* VM_PRESSURE_EVENTS */
715
716
717 #if DEVELOPMENT || DEBUG
718
719 lck_grp_attr_t *disconnect_page_mappings_lck_grp_attr;
720 lck_grp_t *disconnect_page_mappings_lck_grp;
721 static lck_mtx_t disconnect_page_mappings_mutex;
722
723 extern boolean_t kill_on_no_paging_space;
724 #endif /* DEVELOPMENT || DEBUG */
725
726
727 /* Freeze */
728
729 #if CONFIG_FREEZE
730
731 boolean_t memorystatus_freeze_enabled = FALSE;
732 int memorystatus_freeze_wakeup = 0;
733
734 lck_grp_attr_t *freezer_lck_grp_attr;
735 lck_grp_t *freezer_lck_grp;
736 static lck_mtx_t freezer_mutex;
737
738 static inline boolean_t memorystatus_can_freeze_processes(void);
739 static boolean_t memorystatus_can_freeze(boolean_t *memorystatus_freeze_swap_low);
740
741 static void memorystatus_freeze_thread(void *param __unused, wait_result_t wr __unused);
742
743 /* Thresholds */
744 static unsigned int memorystatus_freeze_threshold = 0;
745
746 static unsigned int memorystatus_freeze_pages_min = 0;
747 static unsigned int memorystatus_freeze_pages_max = 0;
748
749 static unsigned int memorystatus_freeze_suspended_threshold = FREEZE_SUSPENDED_THRESHOLD_DEFAULT;
750
751 static unsigned int memorystatus_freeze_daily_mb_max = FREEZE_DAILY_MB_MAX_DEFAULT;
752
753 /* Stats */
754 static uint64_t memorystatus_freeze_count = 0;
755 static uint64_t memorystatus_freeze_pageouts = 0;
756
757 /* Throttling */
758 static throttle_interval_t throttle_intervals[] = {
759 { 60, 8, 0, 0, { 0, 0 }, FALSE }, /* 1 hour intermediate interval, 8x burst */
760 { 24 * 60, 1, 0, 0, { 0, 0 }, FALSE }, /* 24 hour long interval, no burst */
761 };
762
763 static uint64_t memorystatus_freeze_throttle_count = 0;
764
765 static unsigned int memorystatus_suspended_footprint_total = 0; /* pages */
766
767 extern uint64_t vm_swap_get_free_space(void);
768
769 static boolean_t memorystatus_freeze_update_throttle(void);
770
771 #endif /* CONFIG_FREEZE */
772
773 /* Debug */
774
775 extern struct knote *vm_find_knote_from_pid(pid_t, struct klist *);
776
777 #if DEVELOPMENT || DEBUG
778
779 static unsigned int memorystatus_debug_dump_this_bucket = 0;
780
781 static void
782 memorystatus_debug_dump_bucket_locked (unsigned int bucket_index)
783 {
784 proc_t p = NULL;
785 uint64_t bytes = 0;
786 int ledger_limit = 0;
787 unsigned int b = bucket_index;
788 boolean_t traverse_all_buckets = FALSE;
789
790 if (bucket_index >= MEMSTAT_BUCKET_COUNT) {
791 traverse_all_buckets = TRUE;
792 b = 0;
793 } else {
794 traverse_all_buckets = FALSE;
795 b = bucket_index;
796 }
797
798 /*
799 * footprint reported in [pages / MB ]
800 * limits reported as:
801 * L-limit proc's Ledger limit
802 * C-limit proc's Cached limit, should match Ledger
803 * A-limit proc's Active limit
804 * IA-limit proc's Inactive limit
805 * F==Fatal, NF==NonFatal
806 */
807
808 printf("memorystatus_debug_dump ***START*(PAGE_SIZE_64=%llu)**\n", PAGE_SIZE_64);
809 printf("bucket [pid] [pages / MB] [state] [EP / RP] dirty deadline [L-limit / C-limit / A-limit / IA-limit] name\n");
810 p = memorystatus_get_first_proc_locked(&b, traverse_all_buckets);
811 while (p) {
812 bytes = get_task_phys_footprint(p->task);
813 task_get_phys_footprint_limit(p->task, &ledger_limit);
814 printf("%2d [%5d] [%5lld /%3lldMB] 0x%-8x [%2d / %2d] 0x%-3x %10lld [%3d / %3d%s / %3d%s / %3d%s] %s\n",
815 b, p->p_pid,
816 (bytes / PAGE_SIZE_64), /* task's footprint converted from bytes to pages */
817 (bytes / (1024ULL * 1024ULL)), /* task's footprint converted from bytes to MB */
818 p->p_memstat_state, p->p_memstat_effectivepriority, p->p_memstat_requestedpriority, p->p_memstat_dirty, p->p_memstat_idledeadline,
819 ledger_limit,
820 p->p_memstat_memlimit,
821 (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF"),
822 p->p_memstat_memlimit_active,
823 (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL ? "F " : "NF"),
824 p->p_memstat_memlimit_inactive,
825 (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL ? "F " : "NF"),
826 (*p->p_name ? p->p_name : "unknown"));
827 p = memorystatus_get_next_proc_locked(&b, p, traverse_all_buckets);
828 }
829 printf("memorystatus_debug_dump ***END***\n");
830 }
831
832 static int
833 sysctl_memorystatus_debug_dump_bucket SYSCTL_HANDLER_ARGS
834 {
835 #pragma unused(oidp, arg2)
836 int bucket_index = 0;
837 int error;
838 error = SYSCTL_OUT(req, arg1, sizeof(int));
839 if (error || !req->newptr) {
840 return (error);
841 }
842 error = SYSCTL_IN(req, &bucket_index, sizeof(int));
843 if (error || !req->newptr) {
844 return (error);
845 }
846 if (bucket_index >= MEMSTAT_BUCKET_COUNT) {
847 /*
848 * All jetsam buckets will be dumped.
849 */
850 } else {
851 /*
852 * Only a single bucket will be dumped.
853 */
854 }
855
856 proc_list_lock();
857 memorystatus_debug_dump_bucket_locked(bucket_index);
858 proc_list_unlock();
859 memorystatus_debug_dump_this_bucket = bucket_index;
860 return (error);
861 }
862
863 /*
864 * Debug aid to look at jetsam buckets and proc jetsam fields.
865 * Use this sysctl to act on a particular jetsam bucket.
866 * Writing the sysctl triggers the dump.
867 * Usage: sysctl kern.memorystatus_debug_dump_this_bucket=<bucket_index>
868 */
869
870 SYSCTL_PROC(_kern, OID_AUTO, memorystatus_debug_dump_this_bucket, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_debug_dump_this_bucket, 0, sysctl_memorystatus_debug_dump_bucket, "I", "");
871
872
873 /* Debug aid to aid determination of limit */
874
875 static int
876 sysctl_memorystatus_highwater_enable SYSCTL_HANDLER_ARGS
877 {
878 #pragma unused(oidp, arg2)
879 proc_t p;
880 unsigned int b = 0;
881 int error, enable = 0;
882 boolean_t use_active; /* use the active limit and active limit attributes */
883 boolean_t is_fatal;
884
885 error = SYSCTL_OUT(req, arg1, sizeof(int));
886 if (error || !req->newptr) {
887 return (error);
888 }
889
890 error = SYSCTL_IN(req, &enable, sizeof(int));
891 if (error || !req->newptr) {
892 return (error);
893 }
894
895 if (!(enable == 0 || enable == 1)) {
896 return EINVAL;
897 }
898
899 proc_list_lock();
900
901 p = memorystatus_get_first_proc_locked(&b, TRUE);
902 while (p) {
903 use_active = proc_jetsam_state_is_active_locked(p);
904
905 if (enable) {
906
907 if (use_active == TRUE) {
908 CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal);
909 } else {
910 CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal);
911 }
912
913 } else {
914 /*
915 * Disabling limits does not touch the stored variants.
916 * Set the cached limit fields to system_wide defaults.
917 */
918 p->p_memstat_memlimit = -1;
919 p->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT;
920 is_fatal = TRUE;
921 }
922
923 /*
924 * Enforce the cached limit by writing to the ledger.
925 */
926 task_set_phys_footprint_limit_internal(p->task, (p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit: -1, NULL, use_active, is_fatal);
927
928 p = memorystatus_get_next_proc_locked(&b, p, TRUE);
929 }
930
931 memorystatus_highwater_enabled = enable;
932
933 proc_list_unlock();
934
935 return 0;
936
937 }
938
939 SYSCTL_PROC(_kern, OID_AUTO, memorystatus_highwater_enabled, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_highwater_enabled, 0, sysctl_memorystatus_highwater_enable, "I", "");
940
941 #if VM_PRESSURE_EVENTS
942
943 /*
944 * This routine is used for targeted notifications regardless of system memory pressure
945 * and regardless of whether or not the process has already been notified.
946 * It bypasses and has no effect on the only-one-notification per soft-limit policy.
947 *
948 * "memnote" is the current user.
949 */
950
951 static int
952 sysctl_memorystatus_vm_pressure_send SYSCTL_HANDLER_ARGS
953 {
954 #pragma unused(arg1, arg2)
955
956 int error = 0, pid = 0;
957 struct knote *kn = NULL;
958 boolean_t found_knote = FALSE;
959 int fflags = 0; /* filter flags for EVFILT_MEMORYSTATUS */
960 uint64_t value = 0;
961
962 error = sysctl_handle_quad(oidp, &value, 0, req);
963 if (error || !req->newptr)
964 return (error);
965
966 /*
967 * Find the pid in the low 32 bits of value passed in.
968 */
969 pid = (int)(value & 0xFFFFFFFF);
970
971 /*
972 * Find notification in the high 32 bits of the value passed in.
973 */
974 fflags = (int)((value >> 32) & 0xFFFFFFFF);
975
976 /*
977 * For backwards compatibility, when no notification is
978 * passed in, default to the NOTE_MEMORYSTATUS_PRESSURE_WARN
979 */
980 if (fflags == 0) {
981 fflags = NOTE_MEMORYSTATUS_PRESSURE_WARN;
982 // printf("memorystatus_vm_pressure_send: using default notification [0x%x]\n", fflags);
983 }
984
985 /*
986 * See event.h ... fflags for EVFILT_MEMORYSTATUS
987 */
988 if (!((fflags == NOTE_MEMORYSTATUS_PRESSURE_NORMAL)||
989 (fflags == NOTE_MEMORYSTATUS_PRESSURE_WARN) ||
990 (fflags == NOTE_MEMORYSTATUS_PRESSURE_CRITICAL) ||
991 (fflags == NOTE_MEMORYSTATUS_LOW_SWAP) ||
992 (fflags == NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) ||
993 (fflags == NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) ||
994 (((fflags & NOTE_MEMORYSTATUS_MSL_STATUS) != 0 &&
995 ((fflags & ~NOTE_MEMORYSTATUS_MSL_STATUS) == 0))))) {
996
997 printf("memorystatus_vm_pressure_send: notification [0x%x] not supported \n", fflags);
998 error = 1;
999 return (error);
1000 }
1001
1002 /*
1003 * Forcibly send pid a memorystatus notification.
1004 */
1005
1006 memorystatus_klist_lock();
1007
1008 SLIST_FOREACH(kn, &memorystatus_klist, kn_selnext) {
1009 proc_t knote_proc = knote_get_kq(kn)->kq_p;
1010 pid_t knote_pid = knote_proc->p_pid;
1011
1012 if (knote_pid == pid) {
1013 /*
1014 * Forcibly send this pid a memorystatus notification.
1015 */
1016 kn->kn_fflags = fflags;
1017 found_knote = TRUE;
1018 }
1019 }
1020
1021 if (found_knote) {
1022 KNOTE(&memorystatus_klist, 0);
1023 printf("memorystatus_vm_pressure_send: (value 0x%llx) notification [0x%x] sent to process [%d] \n", value, fflags, pid);
1024 error = 0;
1025 } else {
1026 printf("memorystatus_vm_pressure_send: (value 0x%llx) notification [0x%x] not sent to process [%d] (none registered?)\n", value, fflags, pid);
1027 error = 1;
1028 }
1029
1030 memorystatus_klist_unlock();
1031
1032 return (error);
1033 }
1034
1035 SYSCTL_PROC(_kern, OID_AUTO, memorystatus_vm_pressure_send, CTLTYPE_QUAD|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED,
1036 0, 0, &sysctl_memorystatus_vm_pressure_send, "Q", "");
1037
1038 #endif /* VM_PRESSURE_EVENTS */
1039
1040 SYSCTL_INT(_kern, OID_AUTO, memorystatus_idle_snapshot, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_idle_snapshot, 0, "");
1041
1042 #if CONFIG_JETSAM
1043 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_critical, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_available_pages_critical, 0, "");
1044 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_critical_base, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_available_pages_critical_base, 0, "");
1045 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_critical_idle_offset, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_available_pages_critical_idle_offset, 0, "");
1046 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_policy_more_free_offset_pages, CTLFLAG_RW, &memorystatus_policy_more_free_offset_pages, 0, "");
1047
1048 static unsigned int memorystatus_jetsam_panic_debug = 0;
1049 static unsigned int memorystatus_jetsam_policy_offset_pages_diagnostic = 0;
1050
1051 /* Diagnostic code */
1052
1053 enum {
1054 kJetsamDiagnosticModeNone = 0,
1055 kJetsamDiagnosticModeAll = 1,
1056 kJetsamDiagnosticModeStopAtFirstActive = 2,
1057 kJetsamDiagnosticModeCount
1058 } jetsam_diagnostic_mode = kJetsamDiagnosticModeNone;
1059
1060 static int jetsam_diagnostic_suspended_one_active_proc = 0;
1061
1062 static int
1063 sysctl_jetsam_diagnostic_mode SYSCTL_HANDLER_ARGS
1064 {
1065 #pragma unused(arg1, arg2)
1066
1067 const char *diagnosticStrings[] = {
1068 "jetsam: diagnostic mode: resetting critical level.",
1069 "jetsam: diagnostic mode: will examine all processes",
1070 "jetsam: diagnostic mode: will stop at first active process"
1071 };
1072
1073 int error, val = jetsam_diagnostic_mode;
1074 boolean_t changed = FALSE;
1075
1076 error = sysctl_handle_int(oidp, &val, 0, req);
1077 if (error || !req->newptr)
1078 return (error);
1079 if ((val < 0) || (val >= kJetsamDiagnosticModeCount)) {
1080 printf("jetsam: diagnostic mode: invalid value - %d\n", val);
1081 return EINVAL;
1082 }
1083
1084 proc_list_lock();
1085
1086 if ((unsigned int) val != jetsam_diagnostic_mode) {
1087 jetsam_diagnostic_mode = val;
1088
1089 memorystatus_jetsam_policy &= ~kPolicyDiagnoseActive;
1090
1091 switch (jetsam_diagnostic_mode) {
1092 case kJetsamDiagnosticModeNone:
1093 /* Already cleared */
1094 break;
1095 case kJetsamDiagnosticModeAll:
1096 memorystatus_jetsam_policy |= kPolicyDiagnoseAll;
1097 break;
1098 case kJetsamDiagnosticModeStopAtFirstActive:
1099 memorystatus_jetsam_policy |= kPolicyDiagnoseFirst;
1100 break;
1101 default:
1102 /* Already validated */
1103 break;
1104 }
1105
1106 memorystatus_update_levels_locked(FALSE);
1107 changed = TRUE;
1108 }
1109
1110 proc_list_unlock();
1111
1112 if (changed) {
1113 printf("%s\n", diagnosticStrings[val]);
1114 }
1115
1116 return (0);
1117 }
1118
1119 SYSCTL_PROC(_debug, OID_AUTO, jetsam_diagnostic_mode, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_LOCKED|CTLFLAG_ANYBODY,
1120 &jetsam_diagnostic_mode, 0, sysctl_jetsam_diagnostic_mode, "I", "Jetsam Diagnostic Mode");
1121
1122 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_jetsam_policy_offset_pages_diagnostic, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_jetsam_policy_offset_pages_diagnostic, 0, "");
1123
1124 #if VM_PRESSURE_EVENTS
1125
1126 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_pressure, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_available_pages_pressure, 0, "");
1127
1128 #endif /* VM_PRESSURE_EVENTS */
1129
1130 #endif /* CONFIG_JETSAM */
1131
1132 #if CONFIG_FREEZE
1133
1134 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_daily_mb_max, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_daily_mb_max, 0, "");
1135
1136 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_threshold, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_threshold, 0, "");
1137
1138 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_pages_min, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_pages_min, 0, "");
1139 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_pages_max, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_pages_max, 0, "");
1140
1141 SYSCTL_QUAD(_kern, OID_AUTO, memorystatus_freeze_count, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_freeze_count, "");
1142 SYSCTL_QUAD(_kern, OID_AUTO, memorystatus_freeze_pageouts, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_freeze_pageouts, "");
1143 SYSCTL_QUAD(_kern, OID_AUTO, memorystatus_freeze_throttle_count, CTLFLAG_RD|CTLFLAG_LOCKED, &memorystatus_freeze_throttle_count, "");
1144 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_min_processes, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_suspended_threshold, 0, "");
1145
1146 boolean_t memorystatus_freeze_throttle_enabled = TRUE;
1147 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_freeze_throttle_enabled, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_freeze_throttle_enabled, 0, "");
1148
1149 #define VM_PAGES_FOR_ALL_PROCS (2)
1150 /*
1151 * Manual trigger of freeze and thaw for dev / debug kernels only.
1152 */
1153 static int
1154 sysctl_memorystatus_freeze SYSCTL_HANDLER_ARGS
1155 {
1156 #pragma unused(arg1, arg2)
1157 int error, pid = 0;
1158 proc_t p;
1159
1160 if (memorystatus_freeze_enabled == FALSE) {
1161 return ENOTSUP;
1162 }
1163
1164 error = sysctl_handle_int(oidp, &pid, 0, req);
1165 if (error || !req->newptr)
1166 return (error);
1167
1168 if (pid == VM_PAGES_FOR_ALL_PROCS) {
1169 vm_pageout_anonymous_pages();
1170
1171 return 0;
1172 }
1173
1174 lck_mtx_lock(&freezer_mutex);
1175
1176 p = proc_find(pid);
1177 if (p != NULL) {
1178 uint32_t purgeable, wired, clean, dirty;
1179 boolean_t shared;
1180 uint32_t max_pages = 0;
1181
1182 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) {
1183
1184 unsigned int avail_swap_space = 0; /* in pages. */
1185
1186 /*
1187 * Freezer backed by the compressor and swap file(s)
1188 * while will hold compressed data.
1189 */
1190 avail_swap_space = vm_swap_get_free_space() / PAGE_SIZE_64;
1191
1192 max_pages = MIN(avail_swap_space, memorystatus_freeze_pages_max);
1193
1194 } else {
1195 /*
1196 * We only have the compressor without any swap.
1197 */
1198 max_pages = UINT32_MAX - 1;
1199 }
1200
1201 error = task_freeze(p->task, &purgeable, &wired, &clean, &dirty, max_pages, &shared, FALSE);
1202 proc_rele(p);
1203
1204 if (error)
1205 error = EIO;
1206
1207 lck_mtx_unlock(&freezer_mutex);
1208 return error;
1209 }
1210
1211 lck_mtx_unlock(&freezer_mutex);
1212 return EINVAL;
1213 }
1214
1215 SYSCTL_PROC(_kern, OID_AUTO, memorystatus_freeze, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED,
1216 0, 0, &sysctl_memorystatus_freeze, "I", "");
1217
1218 static int
1219 sysctl_memorystatus_available_pages_thaw SYSCTL_HANDLER_ARGS
1220 {
1221 #pragma unused(arg1, arg2)
1222
1223 int error, pid = 0;
1224 proc_t p;
1225
1226 if (memorystatus_freeze_enabled == FALSE) {
1227 return ENOTSUP;
1228 }
1229
1230 error = sysctl_handle_int(oidp, &pid, 0, req);
1231 if (error || !req->newptr)
1232 return (error);
1233
1234 if (pid == VM_PAGES_FOR_ALL_PROCS) {
1235 do_fastwake_warmup_all();
1236 return 0;
1237 } else {
1238 p = proc_find(pid);
1239 if (p != NULL) {
1240 error = task_thaw(p->task);
1241 proc_rele(p);
1242
1243 if (error)
1244 error = EIO;
1245 return error;
1246 }
1247 }
1248
1249 return EINVAL;
1250 }
1251
1252 SYSCTL_PROC(_kern, OID_AUTO, memorystatus_thaw, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED,
1253 0, 0, &sysctl_memorystatus_available_pages_thaw, "I", "");
1254
1255 #endif /* CONFIG_FREEZE */
1256
1257 #endif /* DEVELOPMENT || DEBUG */
1258
1259 extern kern_return_t kernel_thread_start_priority(thread_continue_t continuation,
1260 void *parameter,
1261 integer_t priority,
1262 thread_t *new_thread);
1263
1264 #if DEVELOPMENT || DEBUG
1265
1266 static int
1267 sysctl_memorystatus_disconnect_page_mappings SYSCTL_HANDLER_ARGS
1268 {
1269 #pragma unused(arg1, arg2)
1270 int error = 0, pid = 0;
1271 proc_t p;
1272
1273 error = sysctl_handle_int(oidp, &pid, 0, req);
1274 if (error || !req->newptr)
1275 return (error);
1276
1277 lck_mtx_lock(&disconnect_page_mappings_mutex);
1278
1279 if (pid == -1) {
1280 vm_pageout_disconnect_all_pages();
1281 } else {
1282 p = proc_find(pid);
1283
1284 if (p != NULL) {
1285 error = task_disconnect_page_mappings(p->task);
1286
1287 proc_rele(p);
1288
1289 if (error)
1290 error = EIO;
1291 } else
1292 error = EINVAL;
1293 }
1294 lck_mtx_unlock(&disconnect_page_mappings_mutex);
1295
1296 return error;
1297 }
1298
1299 SYSCTL_PROC(_kern, OID_AUTO, memorystatus_disconnect_page_mappings, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED,
1300 0, 0, &sysctl_memorystatus_disconnect_page_mappings, "I", "");
1301
1302 #endif /* DEVELOPMENT || DEBUG */
1303
1304
1305 /*
1306 * Picks the sorting routine for a given jetsam priority band.
1307 *
1308 * Input:
1309 * bucket_index - jetsam priority band to be sorted.
1310 * sort_order - JETSAM_SORT_xxx from kern_memorystatus.h
1311 * Currently sort_order is only meaningful when handling
1312 * coalitions.
1313 *
1314 * Return:
1315 * 0 on success
1316 * non-0 on failure
1317 */
1318 static int memorystatus_sort_bucket(unsigned int bucket_index, int sort_order)
1319 {
1320 int coal_sort_order;
1321
1322 /*
1323 * Verify the jetsam priority
1324 */
1325 if (bucket_index >= MEMSTAT_BUCKET_COUNT) {
1326 return(EINVAL);
1327 }
1328
1329 #if DEVELOPMENT || DEBUG
1330 if (sort_order == JETSAM_SORT_DEFAULT) {
1331 coal_sort_order = COALITION_SORT_DEFAULT;
1332 } else {
1333 coal_sort_order = sort_order; /* only used for testing scenarios */
1334 }
1335 #else
1336 /* Verify default */
1337 if (sort_order == JETSAM_SORT_DEFAULT) {
1338 coal_sort_order = COALITION_SORT_DEFAULT;
1339 } else {
1340 return(EINVAL);
1341 }
1342 #endif
1343
1344 proc_list_lock();
1345
1346 if (memstat_bucket[bucket_index].count == 0) {
1347 proc_list_unlock();
1348 return (0);
1349 }
1350
1351 switch (bucket_index) {
1352 case JETSAM_PRIORITY_FOREGROUND:
1353 if (memorystatus_sort_by_largest_coalition_locked(bucket_index, coal_sort_order) == 0) {
1354 /*
1355 * Fall back to per process sorting when zero coalitions are found.
1356 */
1357 memorystatus_sort_by_largest_process_locked(bucket_index);
1358 }
1359 break;
1360 default:
1361 memorystatus_sort_by_largest_process_locked(bucket_index);
1362 break;
1363 }
1364 proc_list_unlock();
1365
1366 return(0);
1367 }
1368
1369 /*
1370 * Sort processes by size for a single jetsam bucket.
1371 */
1372
1373 static void memorystatus_sort_by_largest_process_locked(unsigned int bucket_index)
1374 {
1375 proc_t p = NULL, insert_after_proc = NULL, max_proc = NULL;
1376 proc_t next_p = NULL, prev_max_proc = NULL;
1377 uint32_t pages = 0, max_pages = 0;
1378 memstat_bucket_t *current_bucket;
1379
1380 if (bucket_index >= MEMSTAT_BUCKET_COUNT) {
1381 return;
1382 }
1383
1384 current_bucket = &memstat_bucket[bucket_index];
1385
1386 p = TAILQ_FIRST(&current_bucket->list);
1387
1388 while (p) {
1389 memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL, NULL);
1390 max_pages = pages;
1391 max_proc = p;
1392 prev_max_proc = p;
1393
1394 while ((next_p = TAILQ_NEXT(p, p_memstat_list)) != NULL) {
1395 /* traversing list until we find next largest process */
1396 p=next_p;
1397 memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL, NULL);
1398 if (pages > max_pages) {
1399 max_pages = pages;
1400 max_proc = p;
1401 }
1402 }
1403
1404 if (prev_max_proc != max_proc) {
1405 /* found a larger process, place it in the list */
1406 TAILQ_REMOVE(&current_bucket->list, max_proc, p_memstat_list);
1407 if (insert_after_proc == NULL) {
1408 TAILQ_INSERT_HEAD(&current_bucket->list, max_proc, p_memstat_list);
1409 } else {
1410 TAILQ_INSERT_AFTER(&current_bucket->list, insert_after_proc, max_proc, p_memstat_list);
1411 }
1412 prev_max_proc = max_proc;
1413 }
1414
1415 insert_after_proc = max_proc;
1416
1417 p = TAILQ_NEXT(max_proc, p_memstat_list);
1418 }
1419 }
1420
1421 static proc_t memorystatus_get_first_proc_locked(unsigned int *bucket_index, boolean_t search) {
1422 memstat_bucket_t *current_bucket;
1423 proc_t next_p;
1424
1425 if ((*bucket_index) >= MEMSTAT_BUCKET_COUNT) {
1426 return NULL;
1427 }
1428
1429 current_bucket = &memstat_bucket[*bucket_index];
1430 next_p = TAILQ_FIRST(&current_bucket->list);
1431 if (!next_p && search) {
1432 while (!next_p && (++(*bucket_index) < MEMSTAT_BUCKET_COUNT)) {
1433 current_bucket = &memstat_bucket[*bucket_index];
1434 next_p = TAILQ_FIRST(&current_bucket->list);
1435 }
1436 }
1437
1438 return next_p;
1439 }
1440
1441 static proc_t memorystatus_get_next_proc_locked(unsigned int *bucket_index, proc_t p, boolean_t search) {
1442 memstat_bucket_t *current_bucket;
1443 proc_t next_p;
1444
1445 if (!p || ((*bucket_index) >= MEMSTAT_BUCKET_COUNT)) {
1446 return NULL;
1447 }
1448
1449 next_p = TAILQ_NEXT(p, p_memstat_list);
1450 while (!next_p && search && (++(*bucket_index) < MEMSTAT_BUCKET_COUNT)) {
1451 current_bucket = &memstat_bucket[*bucket_index];
1452 next_p = TAILQ_FIRST(&current_bucket->list);
1453 }
1454
1455 return next_p;
1456 }
1457
1458 __private_extern__ void
1459 memorystatus_init(void)
1460 {
1461 thread_t thread = THREAD_NULL;
1462 kern_return_t result;
1463 int i;
1464
1465 #if CONFIG_FREEZE
1466 memorystatus_freeze_pages_min = FREEZE_PAGES_MIN;
1467 memorystatus_freeze_pages_max = FREEZE_PAGES_MAX;
1468 #endif
1469
1470 #if DEVELOPMENT || DEBUG
1471 disconnect_page_mappings_lck_grp_attr = lck_grp_attr_alloc_init();
1472 disconnect_page_mappings_lck_grp = lck_grp_alloc_init("disconnect_page_mappings", disconnect_page_mappings_lck_grp_attr);
1473
1474 lck_mtx_init(&disconnect_page_mappings_mutex, disconnect_page_mappings_lck_grp, NULL);
1475
1476 if (kill_on_no_paging_space == TRUE) {
1477 max_kill_priority = JETSAM_PRIORITY_MAX;
1478 }
1479 #endif
1480
1481
1482 /* Init buckets */
1483 for (i = 0; i < MEMSTAT_BUCKET_COUNT; i++) {
1484 TAILQ_INIT(&memstat_bucket[i].list);
1485 memstat_bucket[i].count = 0;
1486 }
1487 memorystatus_idle_demotion_call = thread_call_allocate((thread_call_func_t)memorystatus_perform_idle_demotion, NULL);
1488
1489 #if CONFIG_JETSAM
1490 nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS * NSEC_PER_SEC, &memorystatus_sysprocs_idle_delay_time);
1491 nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS * NSEC_PER_SEC, &memorystatus_apps_idle_delay_time);
1492
1493 /* Apply overrides */
1494 PE_get_default("kern.jetsam_delta", &delta_percentage, sizeof(delta_percentage));
1495 if (delta_percentage == 0) {
1496 delta_percentage = 5;
1497 }
1498 assert(delta_percentage < 100);
1499 PE_get_default("kern.jetsam_critical_threshold", &critical_threshold_percentage, sizeof(critical_threshold_percentage));
1500 assert(critical_threshold_percentage < 100);
1501 PE_get_default("kern.jetsam_idle_offset", &idle_offset_percentage, sizeof(idle_offset_percentage));
1502 assert(idle_offset_percentage < 100);
1503 PE_get_default("kern.jetsam_pressure_threshold", &pressure_threshold_percentage, sizeof(pressure_threshold_percentage));
1504 assert(pressure_threshold_percentage < 100);
1505 PE_get_default("kern.jetsam_freeze_threshold", &freeze_threshold_percentage, sizeof(freeze_threshold_percentage));
1506 assert(freeze_threshold_percentage < 100);
1507
1508 if (!PE_parse_boot_argn("jetsam_aging_policy", &jetsam_aging_policy,
1509 sizeof (jetsam_aging_policy))) {
1510
1511 if (!PE_get_default("kern.jetsam_aging_policy", &jetsam_aging_policy,
1512 sizeof(jetsam_aging_policy))) {
1513
1514 jetsam_aging_policy = kJetsamAgingPolicyLegacy;
1515 }
1516 }
1517
1518 if (jetsam_aging_policy > kJetsamAgingPolicyMax) {
1519 jetsam_aging_policy = kJetsamAgingPolicyLegacy;
1520 }
1521
1522 switch (jetsam_aging_policy) {
1523
1524 case kJetsamAgingPolicyNone:
1525 system_procs_aging_band = JETSAM_PRIORITY_IDLE;
1526 applications_aging_band = JETSAM_PRIORITY_IDLE;
1527 break;
1528
1529 case kJetsamAgingPolicyLegacy:
1530 /*
1531 * Legacy behavior where some daemons get a 10s protection once
1532 * AND only before the first clean->dirty->clean transition before
1533 * going into IDLE band.
1534 */
1535 system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1;
1536 applications_aging_band = JETSAM_PRIORITY_IDLE;
1537 break;
1538
1539 case kJetsamAgingPolicySysProcsReclaimedFirst:
1540 system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1;
1541 applications_aging_band = JETSAM_PRIORITY_AGING_BAND2;
1542 break;
1543
1544 case kJetsamAgingPolicyAppsReclaimedFirst:
1545 system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND2;
1546 applications_aging_band = JETSAM_PRIORITY_AGING_BAND1;
1547 break;
1548
1549 default:
1550 break;
1551 }
1552
1553 /*
1554 * The aging bands cannot overlap with the JETSAM_PRIORITY_ELEVATED_INACTIVE
1555 * band and must be below it in priority. This is so that we don't have to make
1556 * our 'aging' code worry about a mix of processes, some of which need to age
1557 * and some others that need to stay elevated in the jetsam bands.
1558 */
1559 assert(JETSAM_PRIORITY_ELEVATED_INACTIVE > system_procs_aging_band);
1560 assert(JETSAM_PRIORITY_ELEVATED_INACTIVE > applications_aging_band);
1561
1562 /* Take snapshots for idle-exit kills by default? First check the boot-arg... */
1563 if (!PE_parse_boot_argn("jetsam_idle_snapshot", &memorystatus_idle_snapshot, sizeof (memorystatus_idle_snapshot))) {
1564 /* ...no boot-arg, so check the device tree */
1565 PE_get_default("kern.jetsam_idle_snapshot", &memorystatus_idle_snapshot, sizeof(memorystatus_idle_snapshot));
1566 }
1567
1568 memorystatus_delta = delta_percentage * atop_64(max_mem) / 100;
1569 memorystatus_available_pages_critical_idle_offset = idle_offset_percentage * atop_64(max_mem) / 100;
1570 memorystatus_available_pages_critical_base = (critical_threshold_percentage / delta_percentage) * memorystatus_delta;
1571 memorystatus_policy_more_free_offset_pages = (policy_more_free_offset_percentage / delta_percentage) * memorystatus_delta;
1572
1573 /* Jetsam Loop Detection */
1574 if (max_mem <= (512 * 1024 * 1024)) {
1575 /* 512 MB devices */
1576 memorystatus_jld_eval_period_msecs = 8000; /* 8000 msecs == 8 second window */
1577 } else {
1578 /* 1GB and larger devices */
1579 memorystatus_jld_eval_period_msecs = 6000; /* 6000 msecs == 6 second window */
1580 }
1581
1582 memorystatus_jld_enabled = TRUE;
1583
1584 /* No contention at this point */
1585 memorystatus_update_levels_locked(FALSE);
1586
1587 #endif /* CONFIG_JETSAM */
1588
1589 memorystatus_jetsam_snapshot_max = maxproc;
1590 memorystatus_jetsam_snapshot =
1591 (memorystatus_jetsam_snapshot_t*)kalloc(sizeof(memorystatus_jetsam_snapshot_t) +
1592 sizeof(memorystatus_jetsam_snapshot_entry_t) * memorystatus_jetsam_snapshot_max);
1593 if (!memorystatus_jetsam_snapshot) {
1594 panic("Could not allocate memorystatus_jetsam_snapshot");
1595 }
1596
1597 nanoseconds_to_absolutetime((uint64_t)JETSAM_SNAPSHOT_TIMEOUT_SECS * NSEC_PER_SEC, &memorystatus_jetsam_snapshot_timeout);
1598
1599 memset(&memorystatus_at_boot_snapshot, 0, sizeof(memorystatus_jetsam_snapshot_t));
1600
1601 #if CONFIG_FREEZE
1602 memorystatus_freeze_threshold = (freeze_threshold_percentage / delta_percentage) * memorystatus_delta;
1603 #endif
1604
1605 result = kernel_thread_start_priority(memorystatus_thread, NULL, 95 /* MAXPRI_KERNEL */, &thread);
1606 if (result == KERN_SUCCESS) {
1607 thread_deallocate(thread);
1608 } else {
1609 panic("Could not create memorystatus_thread");
1610 }
1611 }
1612
1613 /* Centralised for the purposes of allowing panic-on-jetsam */
1614 extern void
1615 vm_run_compactor(void);
1616
1617 /*
1618 * The jetsam no frills kill call
1619 * Return: 0 on success
1620 * error code on failure (EINVAL...)
1621 */
1622 static int
1623 jetsam_do_kill(proc_t p, int jetsam_flags, os_reason_t jetsam_reason) {
1624 int error = 0;
1625 error = exit_with_reason(p, W_EXITCODE(0, SIGKILL), (int *)NULL, FALSE, FALSE, jetsam_flags, jetsam_reason);
1626 return(error);
1627 }
1628
1629 /*
1630 * Wrapper for processes exiting with memorystatus details
1631 */
1632 static boolean_t
1633 memorystatus_do_kill(proc_t p, uint32_t cause, os_reason_t jetsam_reason) {
1634
1635 int error = 0;
1636 __unused pid_t victim_pid = p->p_pid;
1637
1638 KERNEL_DEBUG_CONSTANT( (BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DO_KILL)) | DBG_FUNC_START,
1639 victim_pid, cause, vm_page_free_count, 0, 0);
1640
1641 DTRACE_MEMORYSTATUS3(memorystatus_do_kill, proc_t, p, os_reason_t, jetsam_reason, uint32_t, cause);
1642 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
1643 if (memorystatus_jetsam_panic_debug & (1 << cause)) {
1644 panic("memorystatus_do_kill(): jetsam debug panic (cause: %d)", cause);
1645 }
1646 #else
1647 #pragma unused(cause)
1648 #endif
1649
1650 if (p->p_memstat_effectivepriority >= JETSAM_PRIORITY_FOREGROUND) {
1651 printf("memorystatus: killing process %d [%s] in high band %s (%d) - memorystatus_available_pages: %llu\n", p->p_pid,
1652 (*p->p_name ? p->p_name : "unknown"),
1653 memorystatus_priority_band_name(p->p_memstat_effectivepriority), p->p_memstat_effectivepriority,
1654 (uint64_t)memorystatus_available_pages);
1655 }
1656
1657 int jetsam_flags = P_LTERM_JETSAM;
1658 switch (cause) {
1659 case kMemorystatusKilledHiwat: jetsam_flags |= P_JETSAM_HIWAT; break;
1660 case kMemorystatusKilledVnodes: jetsam_flags |= P_JETSAM_VNODE; break;
1661 case kMemorystatusKilledVMPageShortage: jetsam_flags |= P_JETSAM_VMPAGESHORTAGE; break;
1662 case kMemorystatusKilledVMThrashing: jetsam_flags |= P_JETSAM_VMTHRASHING; break;
1663 case kMemorystatusKilledFCThrashing: jetsam_flags |= P_JETSAM_FCTHRASHING; break;
1664 case kMemorystatusKilledPerProcessLimit: jetsam_flags |= P_JETSAM_PID; break;
1665 case kMemorystatusKilledIdleExit: jetsam_flags |= P_JETSAM_IDLEEXIT; break;
1666 }
1667 error = jetsam_do_kill(p, jetsam_flags, jetsam_reason);
1668
1669 KERNEL_DEBUG_CONSTANT( (BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DO_KILL)) | DBG_FUNC_END,
1670 victim_pid, cause, vm_page_free_count, error, 0);
1671
1672 vm_run_compactor();
1673
1674 return (error == 0);
1675 }
1676
1677 /*
1678 * Node manipulation
1679 */
1680
1681 static void
1682 memorystatus_check_levels_locked(void) {
1683 #if CONFIG_JETSAM
1684 /* Update levels */
1685 memorystatus_update_levels_locked(TRUE);
1686 #else /* CONFIG_JETSAM */
1687 /*
1688 * Nothing to do here currently since we update
1689 * memorystatus_available_pages in vm_pressure_response.
1690 */
1691 #endif /* CONFIG_JETSAM */
1692 }
1693
1694 /*
1695 * Pin a process to a particular jetsam band when it is in the background i.e. not doing active work.
1696 * For an application: that means no longer in the FG band
1697 * For a daemon: that means no longer in its 'requested' jetsam priority band
1698 */
1699
1700 int
1701 memorystatus_update_inactive_jetsam_priority_band(pid_t pid, uint32_t op_flags, boolean_t effective_now)
1702 {
1703 int error = 0;
1704 boolean_t enable = FALSE;
1705 proc_t p = NULL;
1706
1707 if (op_flags == MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE) {
1708 enable = TRUE;
1709 } else if (op_flags == MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE) {
1710 enable = FALSE;
1711 } else {
1712 return EINVAL;
1713 }
1714
1715 p = proc_find(pid);
1716 if (p != NULL) {
1717
1718 if ((enable && ((p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) == P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND)) ||
1719 (!enable && ((p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) == 0))) {
1720 /*
1721 * No change in state.
1722 */
1723
1724 } else {
1725
1726 proc_list_lock();
1727
1728 if (enable) {
1729 p->p_memstat_state |= P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND;
1730 memorystatus_invalidate_idle_demotion_locked(p, TRUE);
1731
1732 if (effective_now) {
1733 if (p->p_memstat_effectivepriority < JETSAM_PRIORITY_ELEVATED_INACTIVE) {
1734 if(memorystatus_highwater_enabled) {
1735 /*
1736 * Process is about to transition from
1737 * inactive --> active
1738 * assign active state
1739 */
1740 boolean_t is_fatal;
1741 boolean_t use_active = TRUE;
1742 CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal);
1743 task_set_phys_footprint_limit_internal(p->task, (p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1, NULL, use_active, is_fatal);
1744 }
1745 memorystatus_update_priority_locked(p, JETSAM_PRIORITY_ELEVATED_INACTIVE, FALSE, FALSE);
1746 }
1747 } else {
1748 if (isProcessInAgingBands(p)) {
1749 memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE);
1750 }
1751 }
1752 } else {
1753
1754 p->p_memstat_state &= ~P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND;
1755 memorystatus_invalidate_idle_demotion_locked(p, TRUE);
1756
1757 if (effective_now) {
1758 if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_ELEVATED_INACTIVE) {
1759 memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE);
1760 }
1761 } else {
1762 if (isProcessInAgingBands(p)) {
1763 memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE);
1764 }
1765 }
1766 }
1767
1768 proc_list_unlock();
1769 }
1770 proc_rele(p);
1771 error = 0;
1772
1773 } else {
1774 error = ESRCH;
1775 }
1776
1777 return error;
1778 }
1779
1780 static void
1781 memorystatus_perform_idle_demotion(__unused void *spare1, __unused void *spare2)
1782 {
1783 proc_t p;
1784 uint64_t current_time = 0, idle_delay_time = 0;
1785 int demote_prio_band = 0;
1786 memstat_bucket_t *demotion_bucket;
1787
1788 MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion()\n");
1789
1790 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_IDLE_DEMOTE) | DBG_FUNC_START, 0, 0, 0, 0, 0);
1791
1792 current_time = mach_absolute_time();
1793
1794 proc_list_lock();
1795
1796 demote_prio_band = JETSAM_PRIORITY_IDLE + 1;
1797
1798 for (; demote_prio_band < JETSAM_PRIORITY_MAX; demote_prio_band++) {
1799
1800 if (demote_prio_band != system_procs_aging_band && demote_prio_band != applications_aging_band)
1801 continue;
1802
1803 demotion_bucket = &memstat_bucket[demote_prio_band];
1804 p = TAILQ_FIRST(&demotion_bucket->list);
1805
1806 while (p) {
1807 MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion() found %d\n", p->p_pid);
1808
1809 assert(p->p_memstat_idledeadline);
1810
1811 assert(p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS);
1812
1813 if (current_time >= p->p_memstat_idledeadline) {
1814
1815 if ((isSysProc(p) &&
1816 ((p->p_memstat_dirty & (P_DIRTY_IDLE_EXIT_ENABLED|P_DIRTY_IS_DIRTY)) != P_DIRTY_IDLE_EXIT_ENABLED)) || /* system proc marked dirty*/
1817 task_has_assertions((struct task *)(p->task))) { /* has outstanding assertions which might indicate outstanding work too */
1818 idle_delay_time = (isSysProc(p)) ? memorystatus_sysprocs_idle_delay_time : memorystatus_apps_idle_delay_time;
1819
1820 p->p_memstat_idledeadline += idle_delay_time;
1821 p = TAILQ_NEXT(p, p_memstat_list);
1822
1823 } else {
1824
1825 proc_t next_proc = NULL;
1826
1827 next_proc = TAILQ_NEXT(p, p_memstat_list);
1828 memorystatus_invalidate_idle_demotion_locked(p, TRUE);
1829
1830 memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, false, true);
1831
1832 p = next_proc;
1833 continue;
1834
1835 }
1836 } else {
1837 // No further candidates
1838 break;
1839 }
1840 }
1841
1842 }
1843
1844 memorystatus_reschedule_idle_demotion_locked();
1845
1846 proc_list_unlock();
1847
1848 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_IDLE_DEMOTE) | DBG_FUNC_END, 0, 0, 0, 0, 0);
1849 }
1850
1851 static void
1852 memorystatus_schedule_idle_demotion_locked(proc_t p, boolean_t set_state)
1853 {
1854 boolean_t present_in_sysprocs_aging_bucket = FALSE;
1855 boolean_t present_in_apps_aging_bucket = FALSE;
1856 uint64_t idle_delay_time = 0;
1857
1858 if (jetsam_aging_policy == kJetsamAgingPolicyNone) {
1859 return;
1860 }
1861
1862 if (p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) {
1863 /*
1864 * This process isn't going to be making the trip to the lower bands.
1865 */
1866 return;
1867 }
1868
1869 if (isProcessInAgingBands(p)){
1870
1871 if (jetsam_aging_policy != kJetsamAgingPolicyLegacy) {
1872 assert((p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) != P_DIRTY_AGING_IN_PROGRESS);
1873 }
1874
1875 if (isSysProc(p) && system_procs_aging_band) {
1876 present_in_sysprocs_aging_bucket = TRUE;
1877
1878 } else if (isApp(p) && applications_aging_band) {
1879 present_in_apps_aging_bucket = TRUE;
1880 }
1881 }
1882
1883 assert(!present_in_sysprocs_aging_bucket);
1884 assert(!present_in_apps_aging_bucket);
1885
1886 MEMORYSTATUS_DEBUG(1, "memorystatus_schedule_idle_demotion_locked: scheduling demotion to idle band for pid %d (dirty:0x%x, set_state %d, demotions %d).\n",
1887 p->p_pid, p->p_memstat_dirty, set_state, (memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps));
1888
1889 if(isSysProc(p)) {
1890 assert((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED);
1891 }
1892
1893 idle_delay_time = (isSysProc(p)) ? memorystatus_sysprocs_idle_delay_time : memorystatus_apps_idle_delay_time;
1894
1895 if (set_state) {
1896 p->p_memstat_dirty |= P_DIRTY_AGING_IN_PROGRESS;
1897 p->p_memstat_idledeadline = mach_absolute_time() + idle_delay_time;
1898 }
1899
1900 assert(p->p_memstat_idledeadline);
1901
1902 if (isSysProc(p) && present_in_sysprocs_aging_bucket == FALSE) {
1903 memorystatus_scheduled_idle_demotions_sysprocs++;
1904
1905 } else if (isApp(p) && present_in_apps_aging_bucket == FALSE) {
1906 memorystatus_scheduled_idle_demotions_apps++;
1907 }
1908 }
1909
1910 static void
1911 memorystatus_invalidate_idle_demotion_locked(proc_t p, boolean_t clear_state)
1912 {
1913 boolean_t present_in_sysprocs_aging_bucket = FALSE;
1914 boolean_t present_in_apps_aging_bucket = FALSE;
1915
1916 if (!system_procs_aging_band && !applications_aging_band) {
1917 return;
1918 }
1919
1920 if ((p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) == 0) {
1921 return;
1922 }
1923
1924 if (isProcessInAgingBands(p)) {
1925
1926 if (jetsam_aging_policy != kJetsamAgingPolicyLegacy) {
1927 assert((p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) == P_DIRTY_AGING_IN_PROGRESS);
1928 }
1929
1930 if (isSysProc(p) && system_procs_aging_band) {
1931 assert(p->p_memstat_effectivepriority == system_procs_aging_band);
1932 assert(p->p_memstat_idledeadline);
1933 present_in_sysprocs_aging_bucket = TRUE;
1934
1935 } else if (isApp(p) && applications_aging_band) {
1936 assert(p->p_memstat_effectivepriority == applications_aging_band);
1937 assert(p->p_memstat_idledeadline);
1938 present_in_apps_aging_bucket = TRUE;
1939 }
1940 }
1941
1942 MEMORYSTATUS_DEBUG(1, "memorystatus_invalidate_idle_demotion(): invalidating demotion to idle band for pid %d (clear_state %d, demotions %d).\n",
1943 p->p_pid, clear_state, (memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps));
1944
1945
1946 if (clear_state) {
1947 p->p_memstat_idledeadline = 0;
1948 p->p_memstat_dirty &= ~P_DIRTY_AGING_IN_PROGRESS;
1949 }
1950
1951 if (isSysProc(p) &&present_in_sysprocs_aging_bucket == TRUE) {
1952 memorystatus_scheduled_idle_demotions_sysprocs--;
1953 assert(memorystatus_scheduled_idle_demotions_sysprocs >= 0);
1954
1955 } else if (isApp(p) && present_in_apps_aging_bucket == TRUE) {
1956 memorystatus_scheduled_idle_demotions_apps--;
1957 assert(memorystatus_scheduled_idle_demotions_apps >= 0);
1958 }
1959
1960 assert((memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps) >= 0);
1961 }
1962
1963 static void
1964 memorystatus_reschedule_idle_demotion_locked(void) {
1965 if (0 == (memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps)) {
1966 if (memstat_idle_demotion_deadline) {
1967 /* Transitioned 1->0, so cancel next call */
1968 thread_call_cancel(memorystatus_idle_demotion_call);
1969 memstat_idle_demotion_deadline = 0;
1970 }
1971 } else {
1972 memstat_bucket_t *demotion_bucket;
1973 proc_t p = NULL, p1 = NULL, p2 = NULL;
1974
1975 if (system_procs_aging_band) {
1976
1977 demotion_bucket = &memstat_bucket[system_procs_aging_band];
1978 p1 = TAILQ_FIRST(&demotion_bucket->list);
1979
1980 p = p1;
1981 }
1982
1983 if (applications_aging_band) {
1984
1985 demotion_bucket = &memstat_bucket[applications_aging_band];
1986 p2 = TAILQ_FIRST(&demotion_bucket->list);
1987
1988 if (p1 && p2) {
1989 p = (p1->p_memstat_idledeadline > p2->p_memstat_idledeadline) ? p2 : p1;
1990 } else {
1991 p = (p1 == NULL) ? p2 : p1;
1992 }
1993
1994 }
1995
1996 assert(p);
1997
1998 if (p != NULL) {
1999 assert(p && p->p_memstat_idledeadline);
2000 if (memstat_idle_demotion_deadline != p->p_memstat_idledeadline){
2001 thread_call_enter_delayed(memorystatus_idle_demotion_call, p->p_memstat_idledeadline);
2002 memstat_idle_demotion_deadline = p->p_memstat_idledeadline;
2003 }
2004 }
2005 }
2006 }
2007
2008 /*
2009 * List manipulation
2010 */
2011
2012 int
2013 memorystatus_add(proc_t p, boolean_t locked)
2014 {
2015 memstat_bucket_t *bucket;
2016
2017 MEMORYSTATUS_DEBUG(1, "memorystatus_list_add(): adding pid %d with priority %d.\n", p->p_pid, p->p_memstat_effectivepriority);
2018
2019 if (!locked) {
2020 proc_list_lock();
2021 }
2022
2023 DTRACE_MEMORYSTATUS2(memorystatus_add, proc_t, p, int32_t, p->p_memstat_effectivepriority);
2024
2025 /* Processes marked internal do not have priority tracked */
2026 if (p->p_memstat_state & P_MEMSTAT_INTERNAL) {
2027 goto exit;
2028 }
2029
2030 bucket = &memstat_bucket[p->p_memstat_effectivepriority];
2031
2032 if (isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) {
2033 assert(bucket->count == memorystatus_scheduled_idle_demotions_sysprocs - 1);
2034
2035 } else if (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)) {
2036 assert(bucket->count == memorystatus_scheduled_idle_demotions_apps - 1);
2037
2038 } else if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) {
2039 /*
2040 * Entering the idle band.
2041 * Record idle start time.
2042 */
2043 p->p_memstat_idle_start = mach_absolute_time();
2044 }
2045
2046 TAILQ_INSERT_TAIL(&bucket->list, p, p_memstat_list);
2047 bucket->count++;
2048
2049 memorystatus_list_count++;
2050
2051 memorystatus_check_levels_locked();
2052
2053 exit:
2054 if (!locked) {
2055 proc_list_unlock();
2056 }
2057
2058 return 0;
2059 }
2060
2061 /*
2062 * Description:
2063 * Moves a process from one jetsam bucket to another.
2064 * which changes the LRU position of the process.
2065 *
2066 * Monitors transition between buckets and if necessary
2067 * will update cached memory limits accordingly.
2068 *
2069 * skip_demotion_check:
2070 * - if the 'jetsam aging policy' is NOT 'legacy':
2071 * When this flag is TRUE, it means we are going
2072 * to age the ripe processes out of the aging bands and into the
2073 * IDLE band and apply their inactive memory limits.
2074 *
2075 * - if the 'jetsam aging policy' is 'legacy':
2076 * When this flag is TRUE, it might mean the above aging mechanism
2077 * OR
2078 * It might be that we have a process that has used up its 'idle deferral'
2079 * stay that is given to it once per lifetime. And in this case, the process
2080 * won't be going through any aging codepaths. But we still need to apply
2081 * the right inactive limits and so we explicitly set this to TRUE if the
2082 * new priority for the process is the IDLE band.
2083 */
2084 void
2085 memorystatus_update_priority_locked(proc_t p, int priority, boolean_t head_insert, boolean_t skip_demotion_check)
2086 {
2087 memstat_bucket_t *old_bucket, *new_bucket;
2088
2089 assert(priority < MEMSTAT_BUCKET_COUNT);
2090
2091 /* Ensure that exit isn't underway, leaving the proc retained but removed from its bucket */
2092 if ((p->p_listflag & P_LIST_EXITED) != 0) {
2093 return;
2094 }
2095
2096 MEMORYSTATUS_DEBUG(1, "memorystatus_update_priority_locked(): setting %s(%d) to priority %d, inserting at %s\n",
2097 (*p->p_name ? p->p_name : "unknown"), p->p_pid, priority, head_insert ? "head" : "tail");
2098
2099 DTRACE_MEMORYSTATUS3(memorystatus_update_priority, proc_t, p, int32_t, p->p_memstat_effectivepriority, int, priority);
2100
2101 #if DEVELOPMENT || DEBUG
2102 if (priority == JETSAM_PRIORITY_IDLE && /* if the process is on its way into the IDLE band */
2103 skip_demotion_check == FALSE && /* and it isn't via the path that will set the INACTIVE memlimits */
2104 (p->p_memstat_dirty & P_DIRTY_TRACK) && /* and it has 'DIRTY' tracking enabled */
2105 ((p->p_memstat_memlimit != p->p_memstat_memlimit_inactive) || /* and we notice that the current limit isn't the right value (inactive) */
2106 ((p->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) ? ( ! (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT)) : (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT)))) /* OR type (fatal vs non-fatal) */
2107 panic("memorystatus_update_priority_locked: on %s with 0x%x, prio: %d and %d\n", p->p_name, p->p_memstat_state, priority, p->p_memstat_memlimit); /* then we must catch this */
2108 #endif /* DEVELOPMENT || DEBUG */
2109
2110 old_bucket = &memstat_bucket[p->p_memstat_effectivepriority];
2111
2112 if (skip_demotion_check == FALSE) {
2113
2114 if (isSysProc(p)) {
2115 /*
2116 * For system processes, the memorystatus_dirty_* routines take care of adding/removing
2117 * the processes from the aging bands and balancing the demotion counts.
2118 * We can, however, override that if the process has an 'elevated inactive jetsam band' attribute.
2119 */
2120
2121 if (priority <= JETSAM_PRIORITY_ELEVATED_INACTIVE && (p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND)) {
2122 priority = JETSAM_PRIORITY_ELEVATED_INACTIVE;
2123
2124 assert(! (p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS));
2125 }
2126 } else if (isApp(p)) {
2127
2128 /*
2129 * Check to see if the application is being lowered in jetsam priority. If so, and:
2130 * - it has an 'elevated inactive jetsam band' attribute, then put it in the JETSAM_PRIORITY_ELEVATED_INACTIVE band.
2131 * - it is a normal application, then let it age in the aging band if that policy is in effect.
2132 */
2133
2134 if (priority <= JETSAM_PRIORITY_ELEVATED_INACTIVE && (p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND)) {
2135 priority = JETSAM_PRIORITY_ELEVATED_INACTIVE;
2136 } else {
2137
2138 if (applications_aging_band) {
2139 if (p->p_memstat_effectivepriority == applications_aging_band) {
2140 assert(old_bucket->count == (memorystatus_scheduled_idle_demotions_apps + 1));
2141 }
2142
2143 if ((jetsam_aging_policy != kJetsamAgingPolicyLegacy) && (priority <= applications_aging_band)) {
2144 assert(! (p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS));
2145 priority = applications_aging_band;
2146 memorystatus_schedule_idle_demotion_locked(p, TRUE);
2147 }
2148 }
2149 }
2150 }
2151 }
2152
2153 if ((system_procs_aging_band && (priority == system_procs_aging_band)) || (applications_aging_band && (priority == applications_aging_band))) {
2154 assert(p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS);
2155 }
2156
2157 TAILQ_REMOVE(&old_bucket->list, p, p_memstat_list);
2158 old_bucket->count--;
2159
2160 new_bucket = &memstat_bucket[priority];
2161 if (head_insert)
2162 TAILQ_INSERT_HEAD(&new_bucket->list, p, p_memstat_list);
2163 else
2164 TAILQ_INSERT_TAIL(&new_bucket->list, p, p_memstat_list);
2165 new_bucket->count++;
2166
2167 if (memorystatus_highwater_enabled) {
2168 boolean_t is_fatal;
2169 boolean_t use_active;
2170
2171 /*
2172 * If cached limit data is updated, then the limits
2173 * will be enforced by writing to the ledgers.
2174 */
2175 boolean_t ledger_update_needed = TRUE;
2176
2177 /*
2178 * Here, we must update the cached memory limit if the task
2179 * is transitioning between:
2180 * active <--> inactive
2181 * FG <--> BG
2182 * but:
2183 * dirty <--> clean is ignored
2184 *
2185 * We bypass non-idle processes that have opted into dirty tracking because
2186 * a move between buckets does not imply a transition between the
2187 * dirty <--> clean state.
2188 */
2189
2190 if (p->p_memstat_dirty & P_DIRTY_TRACK) {
2191
2192 if (skip_demotion_check == TRUE && priority == JETSAM_PRIORITY_IDLE) {
2193 CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal);
2194 use_active = FALSE;
2195 } else {
2196 ledger_update_needed = FALSE;
2197 }
2198
2199 } else if ((priority >= JETSAM_PRIORITY_FOREGROUND) && (p->p_memstat_effectivepriority < JETSAM_PRIORITY_FOREGROUND)) {
2200 /*
2201 * inactive --> active
2202 * BG --> FG
2203 * assign active state
2204 */
2205 CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal);
2206 use_active = TRUE;
2207
2208 } else if ((priority < JETSAM_PRIORITY_FOREGROUND) && (p->p_memstat_effectivepriority >= JETSAM_PRIORITY_FOREGROUND)) {
2209 /*
2210 * active --> inactive
2211 * FG --> BG
2212 * assign inactive state
2213 */
2214 CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal);
2215 use_active = FALSE;
2216 } else {
2217 /*
2218 * The transition between jetsam priority buckets apparently did
2219 * not affect active/inactive state.
2220 * This is not unusual... especially during startup when
2221 * processes are getting established in their respective bands.
2222 */
2223 ledger_update_needed = FALSE;
2224 }
2225
2226 /*
2227 * Enforce the new limits by writing to the ledger
2228 */
2229 if (ledger_update_needed) {
2230 task_set_phys_footprint_limit_internal(p->task, (p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1, NULL, use_active, is_fatal);
2231
2232 MEMORYSTATUS_DEBUG(3, "memorystatus_update_priority_locked: new limit on pid %d (%dMB %s) priority old --> new (%d --> %d) dirty?=0x%x %s\n",
2233 p->p_pid, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1),
2234 (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF"), p->p_memstat_effectivepriority, priority, p->p_memstat_dirty,
2235 (p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean") : ""));
2236 }
2237 }
2238
2239 /*
2240 * Record idle start or idle delta.
2241 */
2242 if (p->p_memstat_effectivepriority == priority) {
2243 /*
2244 * This process is not transitioning between
2245 * jetsam priority buckets. Do nothing.
2246 */
2247 } else if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) {
2248 uint64_t now;
2249 /*
2250 * Transitioning out of the idle priority bucket.
2251 * Record idle delta.
2252 */
2253 assert(p->p_memstat_idle_start != 0);
2254 now = mach_absolute_time();
2255 if (now > p->p_memstat_idle_start) {
2256 p->p_memstat_idle_delta = now - p->p_memstat_idle_start;
2257 }
2258 } else if (priority == JETSAM_PRIORITY_IDLE) {
2259 /*
2260 * Transitioning into the idle priority bucket.
2261 * Record idle start.
2262 */
2263 p->p_memstat_idle_start = mach_absolute_time();
2264 }
2265
2266 p->p_memstat_effectivepriority = priority;
2267
2268 #if CONFIG_SECLUDED_MEMORY
2269 if (secluded_for_apps &&
2270 task_could_use_secluded_mem(p->task)) {
2271 task_set_can_use_secluded_mem(
2272 p->task,
2273 (priority >= JETSAM_PRIORITY_FOREGROUND));
2274 }
2275 #endif /* CONFIG_SECLUDED_MEMORY */
2276
2277 memorystatus_check_levels_locked();
2278 }
2279
2280 /*
2281 *
2282 * Description: Update the jetsam priority and memory limit attributes for a given process.
2283 *
2284 * Parameters:
2285 * p init this process's jetsam information.
2286 * priority The jetsam priority band
2287 * user_data user specific data, unused by the kernel
2288 * effective guards against race if process's update already occurred
2289 * update_memlimit When true we know this is the init step via the posix_spawn path.
2290 *
2291 * memlimit_active Value in megabytes; The monitored footprint level while the
2292 * process is active. Exceeding it may result in termination
2293 * based on it's associated fatal flag.
2294 *
2295 * memlimit_active_is_fatal When a process is active and exceeds its memory footprint,
2296 * this describes whether or not it should be immediately fatal.
2297 *
2298 * memlimit_inactive Value in megabytes; The monitored footprint level while the
2299 * process is inactive. Exceeding it may result in termination
2300 * based on it's associated fatal flag.
2301 *
2302 * memlimit_inactive_is_fatal When a process is inactive and exceeds its memory footprint,
2303 * this describes whether or not it should be immediatly fatal.
2304 *
2305 * Returns: 0 Success
2306 * non-0 Failure
2307 */
2308
2309 int
2310 memorystatus_update(proc_t p, int priority, uint64_t user_data, boolean_t effective, boolean_t update_memlimit,
2311 int32_t memlimit_active, boolean_t memlimit_active_is_fatal,
2312 int32_t memlimit_inactive, boolean_t memlimit_inactive_is_fatal)
2313 {
2314 int ret;
2315 boolean_t head_insert = false;
2316
2317 MEMORYSTATUS_DEBUG(1, "memorystatus_update: changing (%s) pid %d: priority %d, user_data 0x%llx\n", (*p->p_name ? p->p_name : "unknown"), p->p_pid, priority, user_data);
2318
2319 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_UPDATE) | DBG_FUNC_START, p->p_pid, priority, user_data, effective, 0);
2320
2321 if (priority == -1) {
2322 /* Use as shorthand for default priority */
2323 priority = JETSAM_PRIORITY_DEFAULT;
2324 } else if ((priority == system_procs_aging_band) || (priority == applications_aging_band)) {
2325 /* Both the aging bands are reserved for internal use; if requested, adjust to JETSAM_PRIORITY_IDLE. */
2326 priority = JETSAM_PRIORITY_IDLE;
2327 } else if (priority == JETSAM_PRIORITY_IDLE_HEAD) {
2328 /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle queue */
2329 priority = JETSAM_PRIORITY_IDLE;
2330 head_insert = TRUE;
2331 } else if ((priority < 0) || (priority >= MEMSTAT_BUCKET_COUNT)) {
2332 /* Sanity check */
2333 ret = EINVAL;
2334 goto out;
2335 }
2336
2337 proc_list_lock();
2338
2339 assert(!(p->p_memstat_state & P_MEMSTAT_INTERNAL));
2340
2341 if (effective && (p->p_memstat_state & P_MEMSTAT_PRIORITYUPDATED)) {
2342 ret = EALREADY;
2343 proc_list_unlock();
2344 MEMORYSTATUS_DEBUG(1, "memorystatus_update: effective change specified for pid %d, but change already occurred.\n", p->p_pid);
2345 goto out;
2346 }
2347
2348 if ((p->p_memstat_state & P_MEMSTAT_TERMINATED) || ((p->p_listflag & P_LIST_EXITED) != 0)) {
2349 /*
2350 * This could happen when a process calling posix_spawn() is exiting on the jetsam thread.
2351 */
2352 ret = EBUSY;
2353 proc_list_unlock();
2354 goto out;
2355 }
2356
2357 p->p_memstat_state |= P_MEMSTAT_PRIORITYUPDATED;
2358 p->p_memstat_userdata = user_data;
2359 p->p_memstat_requestedpriority = priority;
2360
2361 if (update_memlimit) {
2362 boolean_t is_fatal;
2363 boolean_t use_active;
2364
2365 /*
2366 * Posix_spawn'd processes come through this path to instantiate ledger limits.
2367 * Forked processes do not come through this path, so no ledger limits exist.
2368 * (That's why forked processes can consume unlimited memory.)
2369 */
2370
2371 MEMORYSTATUS_DEBUG(3, "memorystatus_update(enter): pid %d, priority %d, dirty=0x%x, Active(%dMB %s), Inactive(%dMB, %s)\n",
2372 p->p_pid, priority, p->p_memstat_dirty,
2373 memlimit_active, (memlimit_active_is_fatal ? "F " : "NF"),
2374 memlimit_inactive, (memlimit_inactive_is_fatal ? "F " : "NF"));
2375
2376 if (memlimit_active <= 0) {
2377 /*
2378 * This process will have a system_wide task limit when active.
2379 * System_wide task limit is always fatal.
2380 * It's quite common to see non-fatal flag passed in here.
2381 * It's not an error, we just ignore it.
2382 */
2383
2384 /*
2385 * For backward compatibility with some unexplained launchd behavior,
2386 * we allow a zero sized limit. But we still enforce system_wide limit
2387 * when written to the ledgers.
2388 */
2389
2390 if (memlimit_active < 0) {
2391 memlimit_active = -1; /* enforces system_wide task limit */
2392 }
2393 memlimit_active_is_fatal = TRUE;
2394 }
2395
2396 if (memlimit_inactive <= 0) {
2397 /*
2398 * This process will have a system_wide task limit when inactive.
2399 * System_wide task limit is always fatal.
2400 */
2401
2402 memlimit_inactive = -1;
2403 memlimit_inactive_is_fatal = TRUE;
2404 }
2405
2406 /*
2407 * Initialize the active limit variants for this process.
2408 */
2409 SET_ACTIVE_LIMITS_LOCKED(p, memlimit_active, memlimit_active_is_fatal);
2410
2411 /*
2412 * Initialize the inactive limit variants for this process.
2413 */
2414 SET_INACTIVE_LIMITS_LOCKED(p, memlimit_inactive, memlimit_inactive_is_fatal);
2415
2416 /*
2417 * Initialize the cached limits for target process.
2418 * When the target process is dirty tracked, it's typically
2419 * in a clean state. Non dirty tracked processes are
2420 * typically active (Foreground or above).
2421 * But just in case, we don't make assumptions...
2422 */
2423
2424 if (proc_jetsam_state_is_active_locked(p) == TRUE) {
2425 CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal);
2426 use_active = TRUE;
2427 } else {
2428 CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal);
2429 use_active = FALSE;
2430 }
2431
2432 /*
2433 * Enforce the cached limit by writing to the ledger.
2434 */
2435 if (memorystatus_highwater_enabled) {
2436 /* apply now */
2437 task_set_phys_footprint_limit_internal(p->task, ((p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1), NULL, use_active, is_fatal);
2438
2439 MEMORYSTATUS_DEBUG(3, "memorystatus_update: init: limit on pid %d (%dMB %s) targeting priority(%d) dirty?=0x%x %s\n",
2440 p->p_pid, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1),
2441 (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF"), priority, p->p_memstat_dirty,
2442 (p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean") : ""));
2443 }
2444 }
2445
2446 /*
2447 * We can't add to the aging bands buckets here.
2448 * But, we could be removing it from those buckets.
2449 * Check and take appropriate steps if so.
2450 */
2451
2452 if (isProcessInAgingBands(p)) {
2453
2454 memorystatus_invalidate_idle_demotion_locked(p, TRUE);
2455 memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE);
2456 } else {
2457 if (jetsam_aging_policy == kJetsamAgingPolicyLegacy && priority == JETSAM_PRIORITY_IDLE) {
2458 /*
2459 * Daemons with 'inactive' limits will go through the dirty tracking codepath.
2460 * This path deals with apps that may have 'inactive' limits e.g. WebContent processes.
2461 * If this is the legacy aging policy we explicitly need to apply those limits. If it
2462 * is any other aging policy, then we don't need to worry because all processes
2463 * will go through the aging bands and then the demotion thread will take care to
2464 * move them into the IDLE band and apply the required limits.
2465 */
2466 memorystatus_update_priority_locked(p, priority, head_insert, TRUE);
2467 }
2468 }
2469
2470 memorystatus_update_priority_locked(p, priority, head_insert, FALSE);
2471
2472 proc_list_unlock();
2473 ret = 0;
2474
2475 out:
2476 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_UPDATE) | DBG_FUNC_END, ret, 0, 0, 0, 0);
2477
2478 return ret;
2479 }
2480
2481 int
2482 memorystatus_remove(proc_t p, boolean_t locked)
2483 {
2484 int ret;
2485 memstat_bucket_t *bucket;
2486 boolean_t reschedule = FALSE;
2487
2488 MEMORYSTATUS_DEBUG(1, "memorystatus_list_remove: removing pid %d\n", p->p_pid);
2489
2490 if (!locked) {
2491 proc_list_lock();
2492 }
2493
2494 assert(!(p->p_memstat_state & P_MEMSTAT_INTERNAL));
2495
2496 bucket = &memstat_bucket[p->p_memstat_effectivepriority];
2497
2498 if (isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) {
2499
2500 assert(bucket->count == memorystatus_scheduled_idle_demotions_sysprocs);
2501 reschedule = TRUE;
2502
2503 } else if (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)) {
2504
2505 assert(bucket->count == memorystatus_scheduled_idle_demotions_apps);
2506 reschedule = TRUE;
2507 }
2508
2509 /*
2510 * Record idle delta
2511 */
2512
2513 if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) {
2514 uint64_t now = mach_absolute_time();
2515 if (now > p->p_memstat_idle_start) {
2516 p->p_memstat_idle_delta = now - p->p_memstat_idle_start;
2517 }
2518 }
2519
2520 TAILQ_REMOVE(&bucket->list, p, p_memstat_list);
2521 bucket->count--;
2522
2523 memorystatus_list_count--;
2524
2525 /* If awaiting demotion to the idle band, clean up */
2526 if (reschedule) {
2527 memorystatus_invalidate_idle_demotion_locked(p, TRUE);
2528 memorystatus_reschedule_idle_demotion_locked();
2529 }
2530
2531 memorystatus_check_levels_locked();
2532
2533 #if CONFIG_FREEZE
2534 if (p->p_memstat_state & (P_MEMSTAT_FROZEN)) {
2535 memorystatus_frozen_count--;
2536 }
2537
2538 if (p->p_memstat_state & P_MEMSTAT_SUSPENDED) {
2539 memorystatus_suspended_footprint_total -= p->p_memstat_suspendedfootprint;
2540 memorystatus_suspended_count--;
2541 }
2542 #endif
2543
2544 if (!locked) {
2545 proc_list_unlock();
2546 }
2547
2548 if (p) {
2549 ret = 0;
2550 } else {
2551 ret = ESRCH;
2552 }
2553
2554 return ret;
2555 }
2556
2557 /*
2558 * Validate dirty tracking flags with process state.
2559 *
2560 * Return:
2561 * 0 on success
2562 * non-0 on failure
2563 *
2564 * The proc_list_lock is held by the caller.
2565 */
2566
2567 static int
2568 memorystatus_validate_track_flags(struct proc *target_p, uint32_t pcontrol) {
2569 /* See that the process isn't marked for termination */
2570 if (target_p->p_memstat_dirty & P_DIRTY_TERMINATED) {
2571 return EBUSY;
2572 }
2573
2574 /* Idle exit requires that process be tracked */
2575 if ((pcontrol & PROC_DIRTY_ALLOW_IDLE_EXIT) &&
2576 !(pcontrol & PROC_DIRTY_TRACK)) {
2577 return EINVAL;
2578 }
2579
2580 /* 'Launch in progress' tracking requires that process have enabled dirty tracking too. */
2581 if ((pcontrol & PROC_DIRTY_LAUNCH_IN_PROGRESS) &&
2582 !(pcontrol & PROC_DIRTY_TRACK)) {
2583 return EINVAL;
2584 }
2585
2586 /* Deferral is only relevant if idle exit is specified */
2587 if ((pcontrol & PROC_DIRTY_DEFER) &&
2588 !(pcontrol & PROC_DIRTY_ALLOWS_IDLE_EXIT)) {
2589 return EINVAL;
2590 }
2591
2592 return(0);
2593 }
2594
2595 static void
2596 memorystatus_update_idle_priority_locked(proc_t p) {
2597 int32_t priority;
2598
2599 MEMORYSTATUS_DEBUG(1, "memorystatus_update_idle_priority_locked(): pid %d dirty 0x%X\n", p->p_pid, p->p_memstat_dirty);
2600
2601 assert(isSysProc(p));
2602
2603 if ((p->p_memstat_dirty & (P_DIRTY_IDLE_EXIT_ENABLED|P_DIRTY_IS_DIRTY)) == P_DIRTY_IDLE_EXIT_ENABLED) {
2604
2605 priority = (p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) ? system_procs_aging_band : JETSAM_PRIORITY_IDLE;
2606 } else {
2607 priority = p->p_memstat_requestedpriority;
2608 }
2609
2610 if (priority != p->p_memstat_effectivepriority) {
2611
2612 if ((jetsam_aging_policy == kJetsamAgingPolicyLegacy) &&
2613 (priority == JETSAM_PRIORITY_IDLE)) {
2614
2615 /*
2616 * This process is on its way into the IDLE band. The system is
2617 * using 'legacy' jetsam aging policy. That means, this process
2618 * has already used up its idle-deferral aging time that is given
2619 * once per its lifetime. So we need to set the INACTIVE limits
2620 * explicitly because it won't be going through the demotion paths
2621 * that take care to apply the limits appropriately.
2622 */
2623
2624 if (p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) {
2625
2626 /*
2627 * This process has the 'elevated inactive jetsam band' attribute.
2628 * So, there will be no trip to IDLE after all.
2629 * Instead, we pin the process in the elevated band,
2630 * where its ACTIVE limits will apply.
2631 */
2632
2633 priority = JETSAM_PRIORITY_ELEVATED_INACTIVE;
2634 }
2635
2636 memorystatus_update_priority_locked(p, priority, false, true);
2637
2638 } else {
2639 memorystatus_update_priority_locked(p, priority, false, false);
2640 }
2641 }
2642 }
2643
2644 /*
2645 * Processes can opt to have their state tracked by the kernel, indicating when they are busy (dirty) or idle
2646 * (clean). They may also indicate that they support termination when idle, with the result that they are promoted
2647 * to their desired, higher, jetsam priority when dirty (and are therefore killed later), and demoted to the low
2648 * priority idle band when clean (and killed earlier, protecting higher priority procesess).
2649 *
2650 * If the deferral flag is set, then newly tracked processes will be protected for an initial period (as determined by
2651 * memorystatus_sysprocs_idle_delay_time); if they go clean during this time, then they will be moved to a deferred-idle band
2652 * with a slightly higher priority, guarding against immediate termination under memory pressure and being unable to
2653 * make forward progress. Finally, when the guard expires, they will be moved to the standard, lowest-priority, idle
2654 * band. The deferral can be cleared early by clearing the appropriate flag.
2655 *
2656 * The deferral timer is active only for the duration that the process is marked as guarded and clean; if the process
2657 * is marked dirty, the timer will be cancelled. Upon being subsequently marked clean, the deferment will either be
2658 * re-enabled or the guard state cleared, depending on whether the guard deadline has passed.
2659 */
2660
2661 int
2662 memorystatus_dirty_track(proc_t p, uint32_t pcontrol) {
2663 unsigned int old_dirty;
2664 boolean_t reschedule = FALSE;
2665 boolean_t already_deferred = FALSE;
2666 boolean_t defer_now = FALSE;
2667 int ret = 0;
2668
2669 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DIRTY_TRACK),
2670 p->p_pid, p->p_memstat_dirty, pcontrol, 0, 0);
2671
2672 proc_list_lock();
2673
2674 if ((p->p_listflag & P_LIST_EXITED) != 0) {
2675 /*
2676 * Process is on its way out.
2677 */
2678 ret = EBUSY;
2679 goto exit;
2680 }
2681
2682 if (p->p_memstat_state & P_MEMSTAT_INTERNAL) {
2683 ret = EPERM;
2684 goto exit;
2685 }
2686
2687 if ((ret = memorystatus_validate_track_flags(p, pcontrol)) != 0) {
2688 /* error */
2689 goto exit;
2690 }
2691
2692 old_dirty = p->p_memstat_dirty;
2693
2694 /* These bits are cumulative, as per <rdar://problem/11159924> */
2695 if (pcontrol & PROC_DIRTY_TRACK) {
2696 p->p_memstat_dirty |= P_DIRTY_TRACK;
2697 }
2698
2699 if (pcontrol & PROC_DIRTY_ALLOW_IDLE_EXIT) {
2700 p->p_memstat_dirty |= P_DIRTY_ALLOW_IDLE_EXIT;
2701 }
2702
2703 if (pcontrol & PROC_DIRTY_LAUNCH_IN_PROGRESS) {
2704 p->p_memstat_dirty |= P_DIRTY_LAUNCH_IN_PROGRESS;
2705 }
2706
2707 if (old_dirty & P_DIRTY_AGING_IN_PROGRESS) {
2708 already_deferred = TRUE;
2709 }
2710
2711
2712 /* This can be set and cleared exactly once. */
2713 if (pcontrol & PROC_DIRTY_DEFER) {
2714
2715 if ( !(old_dirty & P_DIRTY_DEFER)) {
2716 p->p_memstat_dirty |= P_DIRTY_DEFER;
2717 }
2718
2719 defer_now = TRUE;
2720 }
2721
2722 MEMORYSTATUS_DEBUG(1, "memorystatus_on_track_dirty(): set idle-exit %s / defer %s / dirty %s for pid %d\n",
2723 ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) ? "Y" : "N",
2724 defer_now ? "Y" : "N",
2725 p->p_memstat_dirty & P_DIRTY ? "Y" : "N",
2726 p->p_pid);
2727
2728 /* Kick off or invalidate the idle exit deferment if there's a state transition. */
2729 if (!(p->p_memstat_dirty & P_DIRTY_IS_DIRTY)) {
2730 if ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) {
2731
2732 if (defer_now && !already_deferred) {
2733
2734 /*
2735 * Request to defer a clean process that's idle-exit enabled
2736 * and not already in the jetsam deferred band. Most likely a
2737 * new launch.
2738 */
2739 memorystatus_schedule_idle_demotion_locked(p, TRUE);
2740 reschedule = TRUE;
2741
2742 } else if (!defer_now) {
2743
2744 /*
2745 * The process isn't asking for the 'aging' facility.
2746 * Could be that it is:
2747 */
2748
2749 if (already_deferred) {
2750 /*
2751 * already in the aging bands. Traditionally,
2752 * some processes have tried to use this to
2753 * opt out of the 'aging' facility.
2754 */
2755
2756 memorystatus_invalidate_idle_demotion_locked(p, TRUE);
2757 } else {
2758 /*
2759 * agnostic to the 'aging' facility. In that case,
2760 * we'll go ahead and opt it in because this is likely
2761 * a new launch (clean process, dirty tracking enabled)
2762 */
2763
2764 memorystatus_schedule_idle_demotion_locked(p, TRUE);
2765 }
2766
2767 reschedule = TRUE;
2768 }
2769 }
2770 } else {
2771
2772 /*
2773 * We are trying to operate on a dirty process. Dirty processes have to
2774 * be removed from the deferred band. The question is do we reset the
2775 * deferred state or not?
2776 *
2777 * This could be a legal request like:
2778 * - this process had opted into the 'aging' band
2779 * - but it's now dirty and requests to opt out.
2780 * In this case, we remove the process from the band and reset its
2781 * state too. It'll opt back in properly when needed.
2782 *
2783 * OR, this request could be a user-space bug. E.g.:
2784 * - this process had opted into the 'aging' band when clean
2785 * - and, then issues another request to again put it into the band except
2786 * this time the process is dirty.
2787 * The process going dirty, as a transition in memorystatus_dirty_set(), will pull the process out of
2788 * the deferred band with its state intact. So our request below is no-op.
2789 * But we do it here anyways for coverage.
2790 *
2791 * memorystatus_update_idle_priority_locked()
2792 * single-mindedly treats a dirty process as "cannot be in the aging band".
2793 */
2794
2795 if (!defer_now && already_deferred) {
2796 memorystatus_invalidate_idle_demotion_locked(p, TRUE);
2797 reschedule = TRUE;
2798 } else {
2799
2800 boolean_t reset_state = (jetsam_aging_policy != kJetsamAgingPolicyLegacy) ? TRUE : FALSE;
2801
2802 memorystatus_invalidate_idle_demotion_locked(p, reset_state);
2803 reschedule = TRUE;
2804 }
2805 }
2806
2807 memorystatus_update_idle_priority_locked(p);
2808
2809 if (reschedule) {
2810 memorystatus_reschedule_idle_demotion_locked();
2811 }
2812
2813 ret = 0;
2814
2815 exit:
2816 proc_list_unlock();
2817
2818 return ret;
2819 }
2820
2821 int
2822 memorystatus_dirty_set(proc_t p, boolean_t self, uint32_t pcontrol) {
2823 int ret;
2824 boolean_t kill = false;
2825 boolean_t reschedule = FALSE;
2826 boolean_t was_dirty = FALSE;
2827 boolean_t now_dirty = FALSE;
2828
2829 MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_set(): %d %d 0x%x 0x%x\n", self, p->p_pid, pcontrol, p->p_memstat_dirty);
2830 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DIRTY_SET), p->p_pid, self, pcontrol, 0, 0);
2831
2832 proc_list_lock();
2833
2834 if ((p->p_listflag & P_LIST_EXITED) != 0) {
2835 /*
2836 * Process is on its way out.
2837 */
2838 ret = EBUSY;
2839 goto exit;
2840 }
2841
2842 if (p->p_memstat_state & P_MEMSTAT_INTERNAL) {
2843 ret = EPERM;
2844 goto exit;
2845 }
2846
2847 if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY)
2848 was_dirty = TRUE;
2849
2850 if (!(p->p_memstat_dirty & P_DIRTY_TRACK)) {
2851 /* Dirty tracking not enabled */
2852 ret = EINVAL;
2853 } else if (pcontrol && (p->p_memstat_dirty & P_DIRTY_TERMINATED)) {
2854 /*
2855 * Process is set to be terminated and we're attempting to mark it dirty.
2856 * Set for termination and marking as clean is OK - see <rdar://problem/10594349>.
2857 */
2858 ret = EBUSY;
2859 } else {
2860 int flag = (self == TRUE) ? P_DIRTY : P_DIRTY_SHUTDOWN;
2861 if (pcontrol && !(p->p_memstat_dirty & flag)) {
2862 /* Mark the process as having been dirtied at some point */
2863 p->p_memstat_dirty |= (flag | P_DIRTY_MARKED);
2864 memorystatus_dirty_count++;
2865 ret = 0;
2866 } else if ((pcontrol == 0) && (p->p_memstat_dirty & flag)) {
2867 if ((flag == P_DIRTY_SHUTDOWN) && (!(p->p_memstat_dirty & P_DIRTY))) {
2868 /* Clearing the dirty shutdown flag, and the process is otherwise clean - kill */
2869 p->p_memstat_dirty |= P_DIRTY_TERMINATED;
2870 kill = true;
2871 } else if ((flag == P_DIRTY) && (p->p_memstat_dirty & P_DIRTY_TERMINATED)) {
2872 /* Kill previously terminated processes if set clean */
2873 kill = true;
2874 }
2875 p->p_memstat_dirty &= ~flag;
2876 memorystatus_dirty_count--;
2877 ret = 0;
2878 } else {
2879 /* Already set */
2880 ret = EALREADY;
2881 }
2882 }
2883
2884 if (ret != 0) {
2885 goto exit;
2886 }
2887
2888 if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY)
2889 now_dirty = TRUE;
2890
2891 if ((was_dirty == TRUE && now_dirty == FALSE) ||
2892 (was_dirty == FALSE && now_dirty == TRUE)) {
2893
2894 /* Manage idle exit deferral, if applied */
2895 if ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) {
2896
2897 /*
2898 * Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band OR it might be heading back
2899 * there once it's clean again. For the legacy case, this only applies if it has some protection window left.
2900 *
2901 * Non-Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band. It will always stop over
2902 * in that band on it's way to IDLE.
2903 */
2904
2905 if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) {
2906 /*
2907 * New dirty process i.e. "was_dirty == FALSE && now_dirty == TRUE"
2908 *
2909 * The process will move from its aging band to its higher requested
2910 * jetsam band.
2911 */
2912 boolean_t reset_state = (jetsam_aging_policy != kJetsamAgingPolicyLegacy) ? TRUE : FALSE;
2913
2914 memorystatus_invalidate_idle_demotion_locked(p, reset_state);
2915 reschedule = TRUE;
2916 } else {
2917
2918 /*
2919 * Process is back from "dirty" to "clean".
2920 */
2921
2922 if (jetsam_aging_policy == kJetsamAgingPolicyLegacy) {
2923 if (mach_absolute_time() >= p->p_memstat_idledeadline) {
2924 /*
2925 * The process' deadline has expired. It currently
2926 * does not reside in any of the aging buckets.
2927 *
2928 * It's on its way to the JETSAM_PRIORITY_IDLE
2929 * bucket via memorystatus_update_idle_priority_locked()
2930 * below.
2931
2932 * So all we need to do is reset all the state on the
2933 * process that's related to the aging bucket i.e.
2934 * the AGING_IN_PROGRESS flag and the timer deadline.
2935 */
2936
2937 memorystatus_invalidate_idle_demotion_locked(p, TRUE);
2938 reschedule = TRUE;
2939 } else {
2940 /*
2941 * It still has some protection window left and so
2942 * we just re-arm the timer without modifying any
2943 * state on the process iff it still wants into that band.
2944 */
2945
2946 if (p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) {
2947 memorystatus_schedule_idle_demotion_locked(p, FALSE);
2948 reschedule = TRUE;
2949 }
2950 }
2951 } else {
2952
2953 memorystatus_schedule_idle_demotion_locked(p, TRUE);
2954 reschedule = TRUE;
2955 }
2956 }
2957 }
2958
2959 memorystatus_update_idle_priority_locked(p);
2960
2961 if (memorystatus_highwater_enabled) {
2962 boolean_t ledger_update_needed = TRUE;
2963 boolean_t use_active;
2964 boolean_t is_fatal;
2965 /*
2966 * We are in this path because this process transitioned between
2967 * dirty <--> clean state. Update the cached memory limits.
2968 */
2969
2970 if (proc_jetsam_state_is_active_locked(p) == TRUE) {
2971 /*
2972 * process is pinned in elevated band
2973 * or
2974 * process is dirty
2975 */
2976 CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal);
2977 use_active = TRUE;
2978 ledger_update_needed = TRUE;
2979 } else {
2980 /*
2981 * process is clean...but if it has opted into pressured-exit
2982 * we don't apply the INACTIVE limit till the process has aged
2983 * out and is entering the IDLE band.
2984 * See memorystatus_update_priority_locked() for that.
2985 */
2986
2987 if (p->p_memstat_dirty & P_DIRTY_ALLOW_IDLE_EXIT) {
2988 ledger_update_needed = FALSE;
2989 } else {
2990 CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal);
2991 use_active = FALSE;
2992 ledger_update_needed = TRUE;
2993 }
2994 }
2995
2996 /*
2997 * Enforce the new limits by writing to the ledger.
2998 *
2999 * This is a hot path and holding the proc_list_lock while writing to the ledgers,
3000 * (where the task lock is taken) is bad. So, we temporarily drop the proc_list_lock.
3001 * We aren't traversing the jetsam bucket list here, so we should be safe.
3002 * See rdar://21394491.
3003 */
3004
3005 if (ledger_update_needed && proc_ref_locked(p) == p) {
3006 int ledger_limit;
3007 if (p->p_memstat_memlimit > 0) {
3008 ledger_limit = p->p_memstat_memlimit;
3009 } else {
3010 ledger_limit = -1;
3011 }
3012 proc_list_unlock();
3013 task_set_phys_footprint_limit_internal(p->task, ledger_limit, NULL, use_active, is_fatal);
3014 proc_list_lock();
3015 proc_rele_locked(p);
3016
3017 MEMORYSTATUS_DEBUG(3, "memorystatus_dirty_set: new limit on pid %d (%dMB %s) priority(%d) dirty?=0x%x %s\n",
3018 p->p_pid, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1),
3019 (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF"), p->p_memstat_effectivepriority, p->p_memstat_dirty,
3020 (p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean") : ""));
3021 }
3022
3023 }
3024
3025 /* If the deferral state changed, reschedule the demotion timer */
3026 if (reschedule) {
3027 memorystatus_reschedule_idle_demotion_locked();
3028 }
3029 }
3030
3031 if (kill) {
3032 if (proc_ref_locked(p) == p) {
3033 proc_list_unlock();
3034 psignal(p, SIGKILL);
3035 proc_list_lock();
3036 proc_rele_locked(p);
3037 }
3038 }
3039
3040 exit:
3041 proc_list_unlock();
3042
3043 return ret;
3044 }
3045
3046 int
3047 memorystatus_dirty_clear(proc_t p, uint32_t pcontrol) {
3048
3049 int ret = 0;
3050
3051 MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_clear(): %d 0x%x 0x%x\n", p->p_pid, pcontrol, p->p_memstat_dirty);
3052
3053 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DIRTY_CLEAR), p->p_pid, pcontrol, 0, 0, 0);
3054
3055 proc_list_lock();
3056
3057 if ((p->p_listflag & P_LIST_EXITED) != 0) {
3058 /*
3059 * Process is on its way out.
3060 */
3061 ret = EBUSY;
3062 goto exit;
3063 }
3064
3065 if (p->p_memstat_state & P_MEMSTAT_INTERNAL) {
3066 ret = EPERM;
3067 goto exit;
3068 }
3069
3070 if (!(p->p_memstat_dirty & P_DIRTY_TRACK)) {
3071 /* Dirty tracking not enabled */
3072 ret = EINVAL;
3073 goto exit;
3074 }
3075
3076 if (!pcontrol || (pcontrol & (PROC_DIRTY_LAUNCH_IN_PROGRESS | PROC_DIRTY_DEFER)) == 0) {
3077 ret = EINVAL;
3078 goto exit;
3079 }
3080
3081 if (pcontrol & PROC_DIRTY_LAUNCH_IN_PROGRESS) {
3082 p->p_memstat_dirty &= ~P_DIRTY_LAUNCH_IN_PROGRESS;
3083 }
3084
3085 /* This can be set and cleared exactly once. */
3086 if (pcontrol & PROC_DIRTY_DEFER) {
3087
3088 if (p->p_memstat_dirty & P_DIRTY_DEFER) {
3089
3090 p->p_memstat_dirty &= ~P_DIRTY_DEFER;
3091
3092 memorystatus_invalidate_idle_demotion_locked(p, TRUE);
3093 memorystatus_update_idle_priority_locked(p);
3094 memorystatus_reschedule_idle_demotion_locked();
3095 }
3096 }
3097
3098 ret = 0;
3099 exit:
3100 proc_list_unlock();
3101
3102 return ret;
3103 }
3104
3105 int
3106 memorystatus_dirty_get(proc_t p) {
3107 int ret = 0;
3108
3109 proc_list_lock();
3110
3111 if (p->p_memstat_dirty & P_DIRTY_TRACK) {
3112 ret |= PROC_DIRTY_TRACKED;
3113 if (p->p_memstat_dirty & P_DIRTY_ALLOW_IDLE_EXIT) {
3114 ret |= PROC_DIRTY_ALLOWS_IDLE_EXIT;
3115 }
3116 if (p->p_memstat_dirty & P_DIRTY) {
3117 ret |= PROC_DIRTY_IS_DIRTY;
3118 }
3119 if (p->p_memstat_dirty & P_DIRTY_LAUNCH_IN_PROGRESS) {
3120 ret |= PROC_DIRTY_LAUNCH_IS_IN_PROGRESS;
3121 }
3122 }
3123
3124 proc_list_unlock();
3125
3126 return ret;
3127 }
3128
3129 int
3130 memorystatus_on_terminate(proc_t p) {
3131 int sig;
3132
3133 proc_list_lock();
3134
3135 p->p_memstat_dirty |= P_DIRTY_TERMINATED;
3136
3137 if ((p->p_memstat_dirty & (P_DIRTY_TRACK|P_DIRTY_IS_DIRTY)) == P_DIRTY_TRACK) {
3138 /* Clean; mark as terminated and issue SIGKILL */
3139 sig = SIGKILL;
3140 } else {
3141 /* Dirty, terminated, or state tracking is unsupported; issue SIGTERM to allow cleanup */
3142 sig = SIGTERM;
3143 }
3144
3145 proc_list_unlock();
3146
3147 return sig;
3148 }
3149
3150 void
3151 memorystatus_on_suspend(proc_t p)
3152 {
3153 #if CONFIG_FREEZE
3154 uint32_t pages;
3155 memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL, NULL);
3156 #endif
3157 proc_list_lock();
3158 #if CONFIG_FREEZE
3159 p->p_memstat_suspendedfootprint = pages;
3160 memorystatus_suspended_footprint_total += pages;
3161 memorystatus_suspended_count++;
3162 #endif
3163 p->p_memstat_state |= P_MEMSTAT_SUSPENDED;
3164 proc_list_unlock();
3165 }
3166
3167 void
3168 memorystatus_on_resume(proc_t p)
3169 {
3170 #if CONFIG_FREEZE
3171 boolean_t frozen;
3172 pid_t pid;
3173 #endif
3174
3175 proc_list_lock();
3176
3177 #if CONFIG_FREEZE
3178 frozen = (p->p_memstat_state & P_MEMSTAT_FROZEN);
3179 if (frozen) {
3180 memorystatus_frozen_count--;
3181 p->p_memstat_state |= P_MEMSTAT_PRIOR_THAW;
3182 }
3183
3184 memorystatus_suspended_footprint_total -= p->p_memstat_suspendedfootprint;
3185 memorystatus_suspended_count--;
3186
3187 pid = p->p_pid;
3188 #endif
3189
3190 p->p_memstat_state &= ~(P_MEMSTAT_SUSPENDED | P_MEMSTAT_FROZEN);
3191
3192 proc_list_unlock();
3193
3194 #if CONFIG_FREEZE
3195 if (frozen) {
3196 memorystatus_freeze_entry_t data = { pid, FALSE, 0 };
3197 memorystatus_send_note(kMemorystatusFreezeNote, &data, sizeof(data));
3198 }
3199 #endif
3200 }
3201
3202 void
3203 memorystatus_on_inactivity(proc_t p)
3204 {
3205 #pragma unused(p)
3206 #if CONFIG_FREEZE
3207 /* Wake the freeze thread */
3208 thread_wakeup((event_t)&memorystatus_freeze_wakeup);
3209 #endif
3210 }
3211
3212 /*
3213 * The proc_list_lock is held by the caller.
3214 */
3215 static uint32_t
3216 memorystatus_build_state(proc_t p) {
3217 uint32_t snapshot_state = 0;
3218
3219 /* General */
3220 if (p->p_memstat_state & P_MEMSTAT_SUSPENDED) {
3221 snapshot_state |= kMemorystatusSuspended;
3222 }
3223 if (p->p_memstat_state & P_MEMSTAT_FROZEN) {
3224 snapshot_state |= kMemorystatusFrozen;
3225 }
3226 if (p->p_memstat_state & P_MEMSTAT_PRIOR_THAW) {
3227 snapshot_state |= kMemorystatusWasThawed;
3228 }
3229
3230 /* Tracking */
3231 if (p->p_memstat_dirty & P_DIRTY_TRACK) {
3232 snapshot_state |= kMemorystatusTracked;
3233 }
3234 if ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) {
3235 snapshot_state |= kMemorystatusSupportsIdleExit;
3236 }
3237 if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) {
3238 snapshot_state |= kMemorystatusDirty;
3239 }
3240
3241 return snapshot_state;
3242 }
3243
3244 static boolean_t
3245 kill_idle_exit_proc(void)
3246 {
3247 proc_t p, victim_p = PROC_NULL;
3248 uint64_t current_time;
3249 boolean_t killed = FALSE;
3250 unsigned int i = 0;
3251 os_reason_t jetsam_reason = OS_REASON_NULL;
3252
3253 /* Pick next idle exit victim. */
3254 current_time = mach_absolute_time();
3255
3256 jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_IDLE_EXIT);
3257 if (jetsam_reason == OS_REASON_NULL) {
3258 printf("kill_idle_exit_proc: failed to allocate jetsam reason\n");
3259 }
3260
3261 proc_list_lock();
3262
3263 p = memorystatus_get_first_proc_locked(&i, FALSE);
3264 while (p) {
3265 /* No need to look beyond the idle band */
3266 if (p->p_memstat_effectivepriority != JETSAM_PRIORITY_IDLE) {
3267 break;
3268 }
3269
3270 if ((p->p_memstat_dirty & (P_DIRTY_ALLOW_IDLE_EXIT|P_DIRTY_IS_DIRTY|P_DIRTY_TERMINATED)) == (P_DIRTY_ALLOW_IDLE_EXIT)) {
3271 if (current_time >= p->p_memstat_idledeadline) {
3272 p->p_memstat_dirty |= P_DIRTY_TERMINATED;
3273 victim_p = proc_ref_locked(p);
3274 break;
3275 }
3276 }
3277
3278 p = memorystatus_get_next_proc_locked(&i, p, FALSE);
3279 }
3280
3281 proc_list_unlock();
3282
3283 if (victim_p) {
3284 printf("memorystatus: killing_idle_process pid %d [%s]\n", victim_p->p_pid, (*victim_p->p_name ? victim_p->p_name : "unknown"));
3285 killed = memorystatus_do_kill(victim_p, kMemorystatusKilledIdleExit, jetsam_reason);
3286 proc_rele(victim_p);
3287 } else {
3288 os_reason_free(jetsam_reason);
3289 }
3290
3291 return killed;
3292 }
3293
3294 static void
3295 memorystatus_thread_wake(void) {
3296 thread_wakeup((event_t)&memorystatus_wakeup);
3297 }
3298
3299 extern void vm_pressure_response(void);
3300
3301 static int
3302 memorystatus_thread_block(uint32_t interval_ms, thread_continue_t continuation)
3303 {
3304 if (interval_ms) {
3305 assert_wait_timeout(&memorystatus_wakeup, THREAD_UNINT, interval_ms, 1000 * NSEC_PER_USEC);
3306 } else {
3307 assert_wait(&memorystatus_wakeup, THREAD_UNINT);
3308 }
3309
3310 return thread_block(continuation);
3311 }
3312
3313 static boolean_t
3314 memorystatus_avail_pages_below_pressure(void)
3315 {
3316 #if CONFIG_EMBEDDED
3317 /*
3318 * Instead of CONFIG_EMBEDDED for these *avail_pages* routines, we should
3319 * key off of the system having dynamic swap support. With full swap support,
3320 * the system shouldn't really need to worry about various page thresholds.
3321 */
3322 return (memorystatus_available_pages <= memorystatus_available_pages_pressure);
3323 #else /* CONFIG_EMBEDDED */
3324 return FALSE;
3325 #endif /* CONFIG_EMBEDDED */
3326 }
3327
3328 static boolean_t
3329 memorystatus_avail_pages_below_critical(void)
3330 {
3331 #if CONFIG_EMBEDDED
3332 return (memorystatus_available_pages <= memorystatus_available_pages_critical);
3333 #else /* CONFIG_EMBEDDED */
3334 return FALSE;
3335 #endif /* CONFIG_EMBEDDED */
3336 }
3337
3338 static boolean_t
3339 memorystatus_post_snapshot(int32_t priority, uint32_t cause)
3340 {
3341 #if CONFIG_EMBEDDED
3342 #pragma unused(cause)
3343 /*
3344 * Don't generate logs for steady-state idle-exit kills,
3345 * unless it is overridden for debug or by the device
3346 * tree.
3347 */
3348
3349 return ((priority != JETSAM_PRIORITY_IDLE) || memorystatus_idle_snapshot);
3350
3351 #else /* CONFIG_EMBEDDED */
3352 /*
3353 * Don't generate logs for steady-state idle-exit kills,
3354 * unless
3355 * - it is overridden for debug or by the device
3356 * tree.
3357 * OR
3358 * - the kill causes are important i.e. not kMemorystatusKilledIdleExit
3359 */
3360
3361 boolean_t snapshot_eligible_kill_cause = (is_reason_thrashing(cause) || is_reason_zone_map_exhaustion(cause));
3362 return ((priority != JETSAM_PRIORITY_IDLE) || memorystatus_idle_snapshot || snapshot_eligible_kill_cause);
3363 #endif /* CONFIG_EMBEDDED */
3364 }
3365
3366 static boolean_t
3367 memorystatus_action_needed(void)
3368 {
3369 #if CONFIG_EMBEDDED
3370 return (is_reason_thrashing(kill_under_pressure_cause) ||
3371 is_reason_zone_map_exhaustion(kill_under_pressure_cause) ||
3372 memorystatus_available_pages <= memorystatus_available_pages_pressure);
3373 #else /* CONFIG_EMBEDDED */
3374 return (is_reason_thrashing(kill_under_pressure_cause) ||
3375 is_reason_zone_map_exhaustion(kill_under_pressure_cause));
3376 #endif /* CONFIG_EMBEDDED */
3377 }
3378
3379 static boolean_t
3380 memorystatus_act_on_hiwat_processes(uint32_t *errors, uint32_t *hwm_kill, boolean_t *post_snapshot, __unused boolean_t *is_critical)
3381 {
3382 boolean_t killed = memorystatus_kill_hiwat_proc(errors);
3383
3384 if (killed) {
3385 *hwm_kill = *hwm_kill + 1;
3386 *post_snapshot = TRUE;
3387 return TRUE;
3388 } else {
3389 memorystatus_hwm_candidates = FALSE;
3390 }
3391
3392 #if CONFIG_JETSAM
3393 /* No highwater processes to kill. Continue or stop for now? */
3394 if (!is_reason_thrashing(kill_under_pressure_cause) &&
3395 !is_reason_zone_map_exhaustion(kill_under_pressure_cause) &&
3396 (memorystatus_available_pages > memorystatus_available_pages_critical)) {
3397 /*
3398 * We are _not_ out of pressure but we are above the critical threshold and there's:
3399 * - no compressor thrashing
3400 * - enough zone memory
3401 * - no more HWM processes left.
3402 * For now, don't kill any other processes.
3403 */
3404
3405 if (*hwm_kill == 0) {
3406 memorystatus_thread_wasted_wakeup++;
3407 }
3408
3409 *is_critical = FALSE;
3410
3411 return TRUE;
3412 }
3413 #endif /* CONFIG_JETSAM */
3414
3415 return FALSE;
3416 }
3417
3418 static boolean_t
3419 memorystatus_act_aggressive(uint32_t cause, os_reason_t jetsam_reason, int *jld_idle_kills, boolean_t *corpse_list_purged, boolean_t *post_snapshot)
3420 {
3421 if (memorystatus_jld_enabled == TRUE) {
3422
3423 boolean_t killed;
3424 uint32_t errors = 0;
3425
3426 /* Jetsam Loop Detection - locals */
3427 memstat_bucket_t *bucket;
3428 int jld_bucket_count = 0;
3429 struct timeval jld_now_tstamp = {0,0};
3430 uint64_t jld_now_msecs = 0;
3431 int elevated_bucket_count = 0;
3432
3433 /* Jetsam Loop Detection - statics */
3434 static uint64_t jld_timestamp_msecs = 0;
3435 static int jld_idle_kill_candidates = 0; /* Number of available processes in band 0,1 at start */
3436 static int jld_eval_aggressive_count = 0; /* Bumps the max priority in aggressive loop */
3437 static int32_t jld_priority_band_max = JETSAM_PRIORITY_UI_SUPPORT;
3438 /*
3439 * Jetsam Loop Detection: attempt to detect
3440 * rapid daemon relaunches in the lower bands.
3441 */
3442
3443 microuptime(&jld_now_tstamp);
3444
3445 /*
3446 * Ignore usecs in this calculation.
3447 * msecs granularity is close enough.
3448 */
3449 jld_now_msecs = (jld_now_tstamp.tv_sec * 1000);
3450
3451 proc_list_lock();
3452 switch (jetsam_aging_policy) {
3453 case kJetsamAgingPolicyLegacy:
3454 bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE];
3455 jld_bucket_count = bucket->count;
3456 bucket = &memstat_bucket[JETSAM_PRIORITY_AGING_BAND1];
3457 jld_bucket_count += bucket->count;
3458 break;
3459 case kJetsamAgingPolicySysProcsReclaimedFirst:
3460 case kJetsamAgingPolicyAppsReclaimedFirst:
3461 bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE];
3462 jld_bucket_count = bucket->count;
3463 bucket = &memstat_bucket[system_procs_aging_band];
3464 jld_bucket_count += bucket->count;
3465 bucket = &memstat_bucket[applications_aging_band];
3466 jld_bucket_count += bucket->count;
3467 break;
3468 case kJetsamAgingPolicyNone:
3469 default:
3470 bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE];
3471 jld_bucket_count = bucket->count;
3472 break;
3473 }
3474
3475 bucket = &memstat_bucket[JETSAM_PRIORITY_ELEVATED_INACTIVE];
3476 elevated_bucket_count = bucket->count;
3477
3478 proc_list_unlock();
3479
3480 /*
3481 * memorystatus_jld_eval_period_msecs is a tunable
3482 * memorystatus_jld_eval_aggressive_count is a tunable
3483 * memorystatus_jld_eval_aggressive_priority_band_max is a tunable
3484 */
3485 if ( (jld_bucket_count == 0) ||
3486 (jld_now_msecs > (jld_timestamp_msecs + memorystatus_jld_eval_period_msecs))) {
3487
3488 /*
3489 * Refresh evaluation parameters
3490 */
3491 jld_timestamp_msecs = jld_now_msecs;
3492 jld_idle_kill_candidates = jld_bucket_count;
3493 *jld_idle_kills = 0;
3494 jld_eval_aggressive_count = 0;
3495 jld_priority_band_max = JETSAM_PRIORITY_UI_SUPPORT;
3496 }
3497
3498 if (*jld_idle_kills > jld_idle_kill_candidates) {
3499 jld_eval_aggressive_count++;
3500
3501 #if DEVELOPMENT || DEBUG
3502 printf("memorystatus: aggressive%d: beginning of window: %lld ms, : timestamp now: %lld ms\n",
3503 jld_eval_aggressive_count,
3504 jld_timestamp_msecs,
3505 jld_now_msecs);
3506 printf("memorystatus: aggressive%d: idle candidates: %d, idle kills: %d\n",
3507 jld_eval_aggressive_count,
3508 jld_idle_kill_candidates,
3509 *jld_idle_kills);
3510 #endif /* DEVELOPMENT || DEBUG */
3511
3512 if ((jld_eval_aggressive_count == memorystatus_jld_eval_aggressive_count) &&
3513 (total_corpses_count() > 0) && (*corpse_list_purged == FALSE)) {
3514 /*
3515 * If we reach this aggressive cycle, corpses might be causing memory pressure.
3516 * So, in an effort to avoid jetsams in the FG band, we will attempt to purge
3517 * corpse memory prior to this final march through JETSAM_PRIORITY_UI_SUPPORT.
3518 */
3519 task_purge_all_corpses();
3520 *corpse_list_purged = TRUE;
3521 }
3522 else if (jld_eval_aggressive_count > memorystatus_jld_eval_aggressive_count) {
3523 /*
3524 * Bump up the jetsam priority limit (eg: the bucket index)
3525 * Enforce bucket index sanity.
3526 */
3527 if ((memorystatus_jld_eval_aggressive_priority_band_max < 0) ||
3528 (memorystatus_jld_eval_aggressive_priority_band_max >= MEMSTAT_BUCKET_COUNT)) {
3529 /*
3530 * Do nothing. Stick with the default level.
3531 */
3532 } else {
3533 jld_priority_band_max = memorystatus_jld_eval_aggressive_priority_band_max;
3534 }
3535 }
3536
3537 /* Visit elevated processes first */
3538 while (elevated_bucket_count) {
3539
3540 elevated_bucket_count--;
3541
3542 /*
3543 * memorystatus_kill_elevated_process() drops a reference,
3544 * so take another one so we can continue to use this exit reason
3545 * even after it returns.
3546 */
3547
3548 os_reason_ref(jetsam_reason);
3549 killed = memorystatus_kill_elevated_process(
3550 cause,
3551 jetsam_reason,
3552 jld_eval_aggressive_count,
3553 &errors);
3554
3555 if (killed) {
3556 *post_snapshot = TRUE;
3557 if (memorystatus_avail_pages_below_pressure()) {
3558 /*
3559 * Still under pressure.
3560 * Find another pinned processes.
3561 */
3562 continue;
3563 } else {
3564 return TRUE;
3565 }
3566 } else {
3567 /*
3568 * No pinned processes left to kill.
3569 * Abandon elevated band.
3570 */
3571 break;
3572 }
3573 }
3574
3575 /*
3576 * memorystatus_kill_top_process_aggressive() allocates its own
3577 * jetsam_reason so the kMemorystatusKilledVMThrashing cause
3578 * is consistent throughout the aggressive march.
3579 */
3580 killed = memorystatus_kill_top_process_aggressive(
3581 kMemorystatusKilledVMThrashing,
3582 jld_eval_aggressive_count,
3583 jld_priority_band_max,
3584 &errors);
3585
3586 if (killed) {
3587 /* Always generate logs after aggressive kill */
3588 *post_snapshot = TRUE;
3589 *jld_idle_kills = 0;
3590 return TRUE;
3591 }
3592 }
3593
3594 return FALSE;
3595 }
3596
3597 return FALSE;
3598 }
3599
3600
3601 static void
3602 memorystatus_thread(void *param __unused, wait_result_t wr __unused)
3603 {
3604 static boolean_t is_vm_privileged = FALSE;
3605
3606 boolean_t post_snapshot = FALSE;
3607 uint32_t errors = 0;
3608 uint32_t hwm_kill = 0;
3609 boolean_t sort_flag = TRUE;
3610 boolean_t corpse_list_purged = FALSE;
3611 int jld_idle_kills = 0;
3612
3613 if (is_vm_privileged == FALSE) {
3614 /*
3615 * It's the first time the thread has run, so just mark the thread as privileged and block.
3616 * This avoids a spurious pass with unset variables, as set out in <rdar://problem/9609402>.
3617 */
3618 thread_wire(host_priv_self(), current_thread(), TRUE);
3619 is_vm_privileged = TRUE;
3620
3621 if (vm_restricted_to_single_processor == TRUE)
3622 thread_vm_bind_group_add();
3623 thread_set_thread_name(current_thread(), "VM_memorystatus");
3624 memorystatus_thread_block(0, memorystatus_thread);
3625 }
3626
3627 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_SCAN) | DBG_FUNC_START,
3628 memorystatus_available_pages, memorystatus_jld_enabled, memorystatus_jld_eval_period_msecs, memorystatus_jld_eval_aggressive_count,0);
3629
3630 /*
3631 * Jetsam aware version.
3632 *
3633 * The VM pressure notification thread is working it's way through clients in parallel.
3634 *
3635 * So, while the pressure notification thread is targeting processes in order of
3636 * increasing jetsam priority, we can hopefully reduce / stop it's work by killing
3637 * any processes that have exceeded their highwater mark.
3638 *
3639 * If we run out of HWM processes and our available pages drops below the critical threshold, then,
3640 * we target the least recently used process in order of increasing jetsam priority (exception: the FG band).
3641 */
3642 while (memorystatus_action_needed()) {
3643 boolean_t killed;
3644 int32_t priority;
3645 uint32_t cause;
3646 uint64_t jetsam_reason_code = JETSAM_REASON_INVALID;
3647 os_reason_t jetsam_reason = OS_REASON_NULL;
3648
3649 cause = kill_under_pressure_cause;
3650 switch (cause) {
3651 case kMemorystatusKilledFCThrashing:
3652 jetsam_reason_code = JETSAM_REASON_MEMORY_FCTHRASHING;
3653 break;
3654 case kMemorystatusKilledVMThrashing:
3655 jetsam_reason_code = JETSAM_REASON_MEMORY_VMTHRASHING;
3656 break;
3657 case kMemorystatusKilledZoneMapExhaustion:
3658 jetsam_reason_code = JETSAM_REASON_ZONE_MAP_EXHAUSTION;
3659 break;
3660 case kMemorystatusKilledVMPageShortage:
3661 /* falls through */
3662 default:
3663 jetsam_reason_code = JETSAM_REASON_MEMORY_VMPAGESHORTAGE;
3664 cause = kMemorystatusKilledVMPageShortage;
3665 break;
3666 }
3667
3668 /* Highwater */
3669 boolean_t is_critical = TRUE;
3670 if (memorystatus_act_on_hiwat_processes(&errors, &hwm_kill, &post_snapshot, &is_critical)) {
3671 if (is_critical == FALSE) {
3672 /*
3673 * For now, don't kill any other processes.
3674 */
3675 break;
3676 } else {
3677 goto done;
3678 }
3679 }
3680
3681 jetsam_reason = os_reason_create(OS_REASON_JETSAM, jetsam_reason_code);
3682 if (jetsam_reason == OS_REASON_NULL) {
3683 printf("memorystatus_thread: failed to allocate jetsam reason\n");
3684 }
3685
3686 if (memorystatus_act_aggressive(cause, jetsam_reason, &jld_idle_kills, &corpse_list_purged, &post_snapshot)) {
3687 goto done;
3688 }
3689
3690 /*
3691 * memorystatus_kill_top_process() drops a reference,
3692 * so take another one so we can continue to use this exit reason
3693 * even after it returns
3694 */
3695 os_reason_ref(jetsam_reason);
3696
3697 /* LRU */
3698 killed = memorystatus_kill_top_process(TRUE, sort_flag, cause, jetsam_reason, &priority, &errors);
3699 sort_flag = FALSE;
3700
3701 if (killed) {
3702 if (memorystatus_post_snapshot(priority, cause) == TRUE) {
3703
3704 post_snapshot = TRUE;
3705 }
3706
3707 /* Jetsam Loop Detection */
3708 if (memorystatus_jld_enabled == TRUE) {
3709 if ((priority == JETSAM_PRIORITY_IDLE) || (priority == system_procs_aging_band) || (priority == applications_aging_band)) {
3710 jld_idle_kills++;
3711 } else {
3712 /*
3713 * We've reached into bands beyond idle deferred.
3714 * We make no attempt to monitor them
3715 */
3716 }
3717 }
3718
3719 if ((priority >= JETSAM_PRIORITY_UI_SUPPORT) && (total_corpses_count() > 0) && (corpse_list_purged == FALSE)) {
3720 /*
3721 * If we have jetsammed a process in or above JETSAM_PRIORITY_UI_SUPPORT
3722 * then we attempt to relieve pressure by purging corpse memory.
3723 */
3724 task_purge_all_corpses();
3725 corpse_list_purged = TRUE;
3726 }
3727 goto done;
3728 }
3729
3730 if (memorystatus_avail_pages_below_critical()) {
3731 /*
3732 * Still under pressure and unable to kill a process - purge corpse memory
3733 */
3734 if (total_corpses_count() > 0) {
3735 task_purge_all_corpses();
3736 corpse_list_purged = TRUE;
3737 }
3738
3739 if (memorystatus_avail_pages_below_critical()) {
3740 /*
3741 * Still under pressure and unable to kill a process - panic
3742 */
3743 panic("memorystatus_jetsam_thread: no victim! available pages:%llu\n", (uint64_t)memorystatus_available_pages);
3744 }
3745 }
3746
3747 done:
3748
3749 /*
3750 * We do not want to over-kill when thrashing has been detected.
3751 * To avoid that, we reset the flag here and notify the
3752 * compressor.
3753 */
3754 if (is_reason_thrashing(kill_under_pressure_cause)) {
3755 kill_under_pressure_cause = 0;
3756 #if CONFIG_JETSAM
3757 vm_thrashing_jetsam_done();
3758 #endif /* CONFIG_JETSAM */
3759 } else if (is_reason_zone_map_exhaustion(kill_under_pressure_cause)) {
3760 kill_under_pressure_cause = 0;
3761 }
3762
3763 os_reason_free(jetsam_reason);
3764 }
3765
3766 kill_under_pressure_cause = 0;
3767
3768 if (errors) {
3769 memorystatus_clear_errors();
3770 }
3771
3772 if (post_snapshot) {
3773 proc_list_lock();
3774 size_t snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) +
3775 sizeof(memorystatus_jetsam_snapshot_entry_t) * (memorystatus_jetsam_snapshot_count);
3776 uint64_t timestamp_now = mach_absolute_time();
3777 memorystatus_jetsam_snapshot->notification_time = timestamp_now;
3778 memorystatus_jetsam_snapshot->js_gencount++;
3779 if (memorystatus_jetsam_snapshot_count > 0 && (memorystatus_jetsam_snapshot_last_timestamp == 0 ||
3780 timestamp_now > memorystatus_jetsam_snapshot_last_timestamp + memorystatus_jetsam_snapshot_timeout)) {
3781 proc_list_unlock();
3782 int ret = memorystatus_send_note(kMemorystatusSnapshotNote, &snapshot_size, sizeof(snapshot_size));
3783 if (!ret) {
3784 proc_list_lock();
3785 memorystatus_jetsam_snapshot_last_timestamp = timestamp_now;
3786 proc_list_unlock();
3787 }
3788 } else {
3789 proc_list_unlock();
3790 }
3791 }
3792
3793 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_SCAN) | DBG_FUNC_END,
3794 memorystatus_available_pages, 0, 0, 0, 0);
3795
3796 memorystatus_thread_block(0, memorystatus_thread);
3797 }
3798
3799 /*
3800 * Returns TRUE:
3801 * when an idle-exitable proc was killed
3802 * Returns FALSE:
3803 * when there are no more idle-exitable procs found
3804 * when the attempt to kill an idle-exitable proc failed
3805 */
3806 boolean_t memorystatus_idle_exit_from_VM(void) {
3807
3808 /*
3809 * This routine should no longer be needed since we are
3810 * now using jetsam bands on all platforms and so will deal
3811 * with IDLE processes within the memorystatus thread itself.
3812 *
3813 * But we still use it because we observed that macos systems
3814 * started heavy compression/swapping with a bunch of
3815 * idle-exitable processes alive and doing nothing. We decided
3816 * to rather kill those processes than start swapping earlier.
3817 */
3818
3819 return(kill_idle_exit_proc());
3820 }
3821
3822 /*
3823 * Callback invoked when allowable physical memory footprint exceeded
3824 * (dirty pages + IOKit mappings)
3825 *
3826 * This is invoked for both advisory, non-fatal per-task high watermarks,
3827 * as well as the fatal task memory limits.
3828 */
3829 void
3830 memorystatus_on_ledger_footprint_exceeded(boolean_t warning, boolean_t memlimit_is_active, boolean_t memlimit_is_fatal)
3831 {
3832 os_reason_t jetsam_reason = OS_REASON_NULL;
3833
3834 proc_t p = current_proc();
3835
3836 #if VM_PRESSURE_EVENTS
3837 if (warning == TRUE) {
3838 /*
3839 * This is a warning path which implies that the current process is close, but has
3840 * not yet exceeded its per-process memory limit.
3841 */
3842 if (memorystatus_warn_process(p->p_pid, memlimit_is_active, memlimit_is_fatal, FALSE /* not exceeded */) != TRUE) {
3843 /* Print warning, since it's possible that task has not registered for pressure notifications */
3844 os_log(OS_LOG_DEFAULT, "memorystatus_on_ledger_footprint_exceeded: failed to warn the current task (%d exiting, or no handler registered?).\n", p->p_pid);
3845 }
3846 return;
3847 }
3848 #endif /* VM_PRESSURE_EVENTS */
3849
3850 if (memlimit_is_fatal) {
3851 /*
3852 * If this process has no high watermark or has a fatal task limit, then we have been invoked because the task
3853 * has violated either the system-wide per-task memory limit OR its own task limit.
3854 */
3855 jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_PERPROCESSLIMIT);
3856 if (jetsam_reason == NULL) {
3857 printf("task_exceeded footprint: failed to allocate jetsam reason\n");
3858 } else if (corpse_for_fatal_memkill != 0) {
3859 /* Set OS_REASON_FLAG_GENERATE_CRASH_REPORT to generate corpse */
3860 jetsam_reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT;
3861 }
3862
3863 if (memorystatus_kill_process_sync(p->p_pid, kMemorystatusKilledPerProcessLimit, jetsam_reason) != TRUE) {
3864 printf("task_exceeded_footprint: failed to kill the current task (exiting?).\n");
3865 }
3866 } else {
3867 /*
3868 * HWM offender exists. Done without locks or synchronization.
3869 * See comment near its declaration for more details.
3870 */
3871 memorystatus_hwm_candidates = TRUE;
3872
3873 #if VM_PRESSURE_EVENTS
3874 /*
3875 * The current process is not in the warning path.
3876 * This path implies the current process has exceeded a non-fatal (soft) memory limit.
3877 * Failure to send note is ignored here.
3878 */
3879 (void)memorystatus_warn_process(p->p_pid, memlimit_is_active, memlimit_is_fatal, TRUE /* exceeded */);
3880
3881 #endif /* VM_PRESSURE_EVENTS */
3882 }
3883 }
3884
3885 void
3886 memorystatus_log_exception(const int max_footprint_mb, boolean_t memlimit_is_active, boolean_t memlimit_is_fatal)
3887 {
3888 proc_t p = current_proc();
3889
3890 /*
3891 * The limit violation is logged here, but only once per process per limit.
3892 * Soft memory limit is a non-fatal high-water-mark
3893 * Hard memory limit is a fatal custom-task-limit or system-wide per-task memory limit.
3894 */
3895
3896 os_log_with_startup_serial(OS_LOG_DEFAULT, "EXC_RESOURCE -> %s[%d] exceeded mem limit: %s%s %d MB (%s)\n",
3897 (*p->p_name ? p->p_name : "unknown"), p->p_pid, (memlimit_is_active ? "Active" : "Inactive"),
3898 (memlimit_is_fatal ? "Hard" : "Soft"), max_footprint_mb,
3899 (memlimit_is_fatal ? "fatal" : "non-fatal"));
3900
3901 return;
3902 }
3903
3904
3905 /*
3906 * Description:
3907 * Evaluates process state to determine which limit
3908 * should be applied (active vs. inactive limit).
3909 *
3910 * Processes that have the 'elevated inactive jetsam band' attribute
3911 * are first evaluated based on their current priority band.
3912 * presently elevated ==> active
3913 *
3914 * Processes that opt into dirty tracking are evaluated
3915 * based on clean vs dirty state.
3916 * dirty ==> active
3917 * clean ==> inactive
3918 *
3919 * Process that do not opt into dirty tracking are
3920 * evalulated based on priority level.
3921 * Foreground or above ==> active
3922 * Below Foreground ==> inactive
3923 *
3924 * Return: TRUE if active
3925 * False if inactive
3926 */
3927
3928 static boolean_t
3929 proc_jetsam_state_is_active_locked(proc_t p) {
3930
3931 if ((p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) &&
3932 (p->p_memstat_effectivepriority == JETSAM_PRIORITY_ELEVATED_INACTIVE)) {
3933 /*
3934 * process has the 'elevated inactive jetsam band' attribute
3935 * and process is present in the elevated band
3936 * implies active state
3937 */
3938 return TRUE;
3939 } else if (p->p_memstat_dirty & P_DIRTY_TRACK) {
3940 /*
3941 * process has opted into dirty tracking
3942 * active state is based on dirty vs. clean
3943 */
3944 if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) {
3945 /*
3946 * process is dirty
3947 * implies active state
3948 */
3949 return TRUE;
3950 } else {
3951 /*
3952 * process is clean
3953 * implies inactive state
3954 */
3955 return FALSE;
3956 }
3957 } else if (p->p_memstat_effectivepriority >= JETSAM_PRIORITY_FOREGROUND) {
3958 /*
3959 * process is Foreground or higher
3960 * implies active state
3961 */
3962 return TRUE;
3963 } else {
3964 /*
3965 * process found below Foreground
3966 * implies inactive state
3967 */
3968 return FALSE;
3969 }
3970 }
3971
3972 static boolean_t
3973 memorystatus_kill_process_sync(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason) {
3974 boolean_t res;
3975
3976 uint32_t errors = 0;
3977
3978 if (victim_pid == -1) {
3979 /* No pid, so kill first process */
3980 res = memorystatus_kill_top_process(TRUE, TRUE, cause, jetsam_reason, NULL, &errors);
3981 } else {
3982 res = memorystatus_kill_specific_process(victim_pid, cause, jetsam_reason);
3983 }
3984
3985 if (errors) {
3986 memorystatus_clear_errors();
3987 }
3988
3989 if (res == TRUE) {
3990 /* Fire off snapshot notification */
3991 proc_list_lock();
3992 size_t snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) +
3993 sizeof(memorystatus_jetsam_snapshot_entry_t) * memorystatus_jetsam_snapshot_count;
3994 uint64_t timestamp_now = mach_absolute_time();
3995 memorystatus_jetsam_snapshot->notification_time = timestamp_now;
3996 if (memorystatus_jetsam_snapshot_count > 0 && (memorystatus_jetsam_snapshot_last_timestamp == 0 ||
3997 timestamp_now > memorystatus_jetsam_snapshot_last_timestamp + memorystatus_jetsam_snapshot_timeout)) {
3998 proc_list_unlock();
3999 int ret = memorystatus_send_note(kMemorystatusSnapshotNote, &snapshot_size, sizeof(snapshot_size));
4000 if (!ret) {
4001 proc_list_lock();
4002 memorystatus_jetsam_snapshot_last_timestamp = timestamp_now;
4003 proc_list_unlock();
4004 }
4005 } else {
4006 proc_list_unlock();
4007 }
4008 }
4009
4010 return res;
4011 }
4012
4013 /*
4014 * Jetsam a specific process.
4015 */
4016 static boolean_t
4017 memorystatus_kill_specific_process(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason) {
4018 boolean_t killed;
4019 proc_t p;
4020 uint64_t killtime = 0;
4021 clock_sec_t tv_sec;
4022 clock_usec_t tv_usec;
4023 uint32_t tv_msec;
4024
4025 /* TODO - add a victim queue and push this into the main jetsam thread */
4026
4027 p = proc_find(victim_pid);
4028 if (!p) {
4029 os_reason_free(jetsam_reason);
4030 return FALSE;
4031 }
4032
4033 proc_list_lock();
4034
4035 if (memorystatus_jetsam_snapshot_count == 0) {
4036 memorystatus_init_jetsam_snapshot_locked(NULL,0);
4037 }
4038
4039 killtime = mach_absolute_time();
4040 absolutetime_to_microtime(killtime, &tv_sec, &tv_usec);
4041 tv_msec = tv_usec / 1000;
4042
4043 memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime);
4044
4045 proc_list_unlock();
4046
4047 os_log_with_startup_serial(OS_LOG_DEFAULT, "%lu.%03d memorystatus: killing_specific_process pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n",
4048 (unsigned long)tv_sec, tv_msec, victim_pid, (*p->p_name ? p->p_name : "unknown"),
4049 memorystatus_kill_cause_name[cause], p->p_memstat_effectivepriority, (uint64_t)memorystatus_available_pages);
4050
4051 killed = memorystatus_do_kill(p, cause, jetsam_reason);
4052 proc_rele(p);
4053
4054 return killed;
4055 }
4056
4057
4058 /*
4059 * Toggle the P_MEMSTAT_TERMINATED state.
4060 * Takes the proc_list_lock.
4061 */
4062 void
4063 proc_memstat_terminated(proc_t p, boolean_t set)
4064 {
4065 #if DEVELOPMENT || DEBUG
4066 if (p) {
4067 proc_list_lock();
4068 if (set == TRUE) {
4069 p->p_memstat_state |= P_MEMSTAT_TERMINATED;
4070 } else {
4071 p->p_memstat_state &= ~P_MEMSTAT_TERMINATED;
4072 }
4073 proc_list_unlock();
4074 }
4075 #else
4076 #pragma unused(p, set)
4077 /*
4078 * do nothing
4079 */
4080 #endif /* DEVELOPMENT || DEBUG */
4081 return;
4082 }
4083
4084
4085 #if CONFIG_JETSAM
4086 /*
4087 * This is invoked when cpulimits have been exceeded while in fatal mode.
4088 * The jetsam_flags do not apply as those are for memory related kills.
4089 * We call this routine so that the offending process is killed with
4090 * a non-zero exit status.
4091 */
4092 void
4093 jetsam_on_ledger_cpulimit_exceeded(void)
4094 {
4095 int retval = 0;
4096 int jetsam_flags = 0; /* make it obvious */
4097 proc_t p = current_proc();
4098 os_reason_t jetsam_reason = OS_REASON_NULL;
4099
4100 printf("task_exceeded_cpulimit: killing pid %d [%s]\n",
4101 p->p_pid, (*p->p_name ? p->p_name : "(unknown)"));
4102
4103 jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_CPULIMIT);
4104 if (jetsam_reason == OS_REASON_NULL) {
4105 printf("task_exceeded_cpulimit: unable to allocate memory for jetsam reason\n");
4106 }
4107
4108 retval = jetsam_do_kill(p, jetsam_flags, jetsam_reason);
4109
4110 if (retval) {
4111 printf("task_exceeded_cpulimit: failed to kill current task (exiting?).\n");
4112 }
4113 }
4114
4115 #endif /* CONFIG_JETSAM */
4116
4117 static void
4118 memorystatus_get_task_memory_region_count(task_t task, uint64_t *count)
4119 {
4120 assert(task);
4121 assert(count);
4122
4123 *count = get_task_memory_region_count(task);
4124 }
4125
4126 /*
4127 * Called during EXC_RESOURCE handling when a process exceeds a soft
4128 * memory limit. This is the corpse fork path and here we decide if
4129 * vm_map_fork will be allowed when creating the corpse.
4130 * The current task is suspended.
4131 *
4132 * By default, a vm_map_fork is allowed to proceed.
4133 *
4134 * A few simple policy assumptions:
4135 * Desktop platform is not considered in this path.
4136 * The vm_map_fork is always allowed.
4137 *
4138 * If the device has a zero system-wide task limit,
4139 * then the vm_map_fork is allowed.
4140 *
4141 * And if a process's memory footprint calculates less
4142 * than or equal to half of the system-wide task limit,
4143 * then the vm_map_fork is allowed. This calculation
4144 * is based on the assumption that a process can
4145 * munch memory up to the system-wide task limit.
4146 */
4147 boolean_t
4148 memorystatus_allowed_vm_map_fork(__unused task_t task)
4149 {
4150 boolean_t is_allowed = TRUE; /* default */
4151
4152 #if CONFIG_EMBEDDED
4153
4154 uint64_t footprint_in_bytes = 0;
4155 uint64_t purgeable_in_bytes = 0;
4156 uint64_t max_allowed_bytes = 0;
4157
4158 if (max_task_footprint_mb == 0) {
4159 return (is_allowed);
4160 }
4161
4162 purgeable_in_bytes = get_task_purgeable_size(task);
4163 footprint_in_bytes = get_task_phys_footprint(task);
4164
4165 /*
4166 * Maximum is half the system-wide task limit.
4167 */
4168 max_allowed_bytes = ((((uint64_t)max_task_footprint_mb) * 1024ULL * 1024ULL) >> 1);
4169
4170 if (footprint_in_bytes > purgeable_in_bytes) {
4171 footprint_in_bytes -= purgeable_in_bytes;
4172 }
4173
4174 if (footprint_in_bytes <= max_allowed_bytes) {
4175 return (is_allowed);
4176 } else {
4177 printf("memorystatus disallowed vm_map_fork %lld %lld\n", footprint_in_bytes, max_allowed_bytes);
4178 return (!is_allowed);
4179 }
4180
4181 #else /* CONFIG_EMBEDDED */
4182
4183 return (is_allowed);
4184
4185 #endif /* CONFIG_EMBEDDED */
4186
4187 }
4188
4189 static void
4190 memorystatus_get_task_page_counts(task_t task, uint32_t *footprint, uint32_t *max_footprint, uint32_t *max_footprint_lifetime, uint32_t *purgeable_pages)
4191 {
4192 assert(task);
4193 assert(footprint);
4194
4195 uint64_t pages;
4196
4197 pages = (get_task_phys_footprint(task) / PAGE_SIZE_64);
4198 assert(((uint32_t)pages) == pages);
4199 *footprint = (uint32_t)pages;
4200
4201 if (max_footprint) {
4202 pages = (get_task_phys_footprint_recent_max(task) / PAGE_SIZE_64);
4203 assert(((uint32_t)pages) == pages);
4204 *max_footprint = (uint32_t)pages;
4205 }
4206 if (max_footprint_lifetime) {
4207 pages = (get_task_resident_max(task) / PAGE_SIZE_64);
4208 assert(((uint32_t)pages) == pages);
4209 *max_footprint_lifetime = (uint32_t)pages;
4210 }
4211 if (purgeable_pages) {
4212 pages = (get_task_purgeable_size(task) / PAGE_SIZE_64);
4213 assert(((uint32_t)pages) == pages);
4214 *purgeable_pages = (uint32_t)pages;
4215 }
4216 }
4217
4218 static void
4219 memorystatus_get_task_phys_footprint_page_counts(task_t task,
4220 uint64_t *internal_pages, uint64_t *internal_compressed_pages,
4221 uint64_t *purgeable_nonvolatile_pages, uint64_t *purgeable_nonvolatile_compressed_pages,
4222 uint64_t *alternate_accounting_pages, uint64_t *alternate_accounting_compressed_pages,
4223 uint64_t *iokit_mapped_pages, uint64_t *page_table_pages)
4224 {
4225 assert(task);
4226
4227 if (internal_pages) {
4228 *internal_pages = (get_task_internal(task) / PAGE_SIZE_64);
4229 }
4230
4231 if (internal_compressed_pages) {
4232 *internal_compressed_pages = (get_task_internal_compressed(task) / PAGE_SIZE_64);
4233 }
4234
4235 if (purgeable_nonvolatile_pages) {
4236 *purgeable_nonvolatile_pages = (get_task_purgeable_nonvolatile(task) / PAGE_SIZE_64);
4237 }
4238
4239 if (purgeable_nonvolatile_compressed_pages) {
4240 *purgeable_nonvolatile_compressed_pages = (get_task_purgeable_nonvolatile_compressed(task) / PAGE_SIZE_64);
4241 }
4242
4243 if (alternate_accounting_pages) {
4244 *alternate_accounting_pages = (get_task_alternate_accounting(task) / PAGE_SIZE_64);
4245 }
4246
4247 if (alternate_accounting_compressed_pages) {
4248 *alternate_accounting_compressed_pages = (get_task_alternate_accounting_compressed(task) / PAGE_SIZE_64);
4249 }
4250
4251 if (iokit_mapped_pages) {
4252 *iokit_mapped_pages = (get_task_iokit_mapped(task) / PAGE_SIZE_64);
4253 }
4254
4255 if (page_table_pages) {
4256 *page_table_pages = (get_task_page_table(task) / PAGE_SIZE_64);
4257 }
4258 }
4259
4260 /*
4261 * This routine only acts on the global jetsam event snapshot.
4262 * Updating the process's entry can race when the memorystatus_thread
4263 * has chosen to kill a process that is racing to exit on another core.
4264 */
4265 static void
4266 memorystatus_update_jetsam_snapshot_entry_locked(proc_t p, uint32_t kill_cause, uint64_t killtime)
4267 {
4268 memorystatus_jetsam_snapshot_entry_t *entry = NULL;
4269 memorystatus_jetsam_snapshot_t *snapshot = NULL;
4270 memorystatus_jetsam_snapshot_entry_t *snapshot_list = NULL;
4271
4272 unsigned int i;
4273
4274 if (memorystatus_jetsam_snapshot_count == 0) {
4275 /*
4276 * No active snapshot.
4277 * Nothing to do.
4278 */
4279 return;
4280 }
4281
4282 /*
4283 * Sanity check as this routine should only be called
4284 * from a jetsam kill path.
4285 */
4286 assert(kill_cause != 0 && killtime != 0);
4287
4288 snapshot = memorystatus_jetsam_snapshot;
4289 snapshot_list = memorystatus_jetsam_snapshot->entries;
4290
4291 for (i = 0; i < memorystatus_jetsam_snapshot_count; i++) {
4292 if (snapshot_list[i].pid == p->p_pid) {
4293
4294 entry = &snapshot_list[i];
4295
4296 if (entry->killed || entry->jse_killtime) {
4297 /*
4298 * We apparently raced on the exit path
4299 * for this process, as it's snapshot entry
4300 * has already recorded a kill.
4301 */
4302 assert(entry->killed && entry->jse_killtime);
4303 break;
4304 }
4305
4306 /*
4307 * Update the entry we just found in the snapshot.
4308 */
4309
4310 entry->killed = kill_cause;
4311 entry->jse_killtime = killtime;
4312 entry->jse_gencount = snapshot->js_gencount;
4313 entry->jse_idle_delta = p->p_memstat_idle_delta;
4314
4315 /*
4316 * If a process has moved between bands since snapshot was
4317 * initialized, then likely these fields changed too.
4318 */
4319 if (entry->priority != p->p_memstat_effectivepriority) {
4320
4321 strlcpy(entry->name, p->p_name, sizeof(entry->name));
4322 entry->priority = p->p_memstat_effectivepriority;
4323 entry->state = memorystatus_build_state(p);
4324 entry->user_data = p->p_memstat_userdata;
4325 entry->fds = p->p_fd->fd_nfiles;
4326 }
4327
4328 /*
4329 * Always update the page counts on a kill.
4330 */
4331
4332 uint32_t pages = 0;
4333 uint32_t max_pages = 0;
4334 uint32_t max_pages_lifetime = 0;
4335 uint32_t purgeable_pages = 0;
4336
4337 memorystatus_get_task_page_counts(p->task, &pages, &max_pages, &max_pages_lifetime, &purgeable_pages);
4338 entry->pages = (uint64_t)pages;
4339 entry->max_pages = (uint64_t)max_pages;
4340 entry->max_pages_lifetime = (uint64_t)max_pages_lifetime;
4341 entry->purgeable_pages = (uint64_t)purgeable_pages;
4342
4343 uint64_t internal_pages = 0;
4344 uint64_t internal_compressed_pages = 0;
4345 uint64_t purgeable_nonvolatile_pages = 0;
4346 uint64_t purgeable_nonvolatile_compressed_pages = 0;
4347 uint64_t alternate_accounting_pages = 0;
4348 uint64_t alternate_accounting_compressed_pages = 0;
4349 uint64_t iokit_mapped_pages = 0;
4350 uint64_t page_table_pages = 0;
4351
4352 memorystatus_get_task_phys_footprint_page_counts(p->task, &internal_pages, &internal_compressed_pages,
4353 &purgeable_nonvolatile_pages, &purgeable_nonvolatile_compressed_pages,
4354 &alternate_accounting_pages, &alternate_accounting_compressed_pages,
4355 &iokit_mapped_pages, &page_table_pages);
4356
4357 entry->jse_internal_pages = internal_pages;
4358 entry->jse_internal_compressed_pages = internal_compressed_pages;
4359 entry->jse_purgeable_nonvolatile_pages = purgeable_nonvolatile_pages;
4360 entry->jse_purgeable_nonvolatile_compressed_pages = purgeable_nonvolatile_compressed_pages;
4361 entry->jse_alternate_accounting_pages = alternate_accounting_pages;
4362 entry->jse_alternate_accounting_compressed_pages = alternate_accounting_compressed_pages;
4363 entry->jse_iokit_mapped_pages = iokit_mapped_pages;
4364 entry->jse_page_table_pages = page_table_pages;
4365
4366 uint64_t region_count = 0;
4367 memorystatus_get_task_memory_region_count(p->task, &region_count);
4368 entry->jse_memory_region_count = region_count;
4369
4370 goto exit;
4371 }
4372 }
4373
4374 if (entry == NULL) {
4375 /*
4376 * The entry was not found in the snapshot, so the process must have
4377 * launched after the snapshot was initialized.
4378 * Let's try to append the new entry.
4379 */
4380 if (memorystatus_jetsam_snapshot_count < memorystatus_jetsam_snapshot_max) {
4381 /*
4382 * A populated snapshot buffer exists
4383 * and there is room to init a new entry.
4384 */
4385 assert(memorystatus_jetsam_snapshot_count == snapshot->entry_count);
4386
4387 unsigned int next = memorystatus_jetsam_snapshot_count;
4388
4389 if(memorystatus_init_jetsam_snapshot_entry_locked(p, &snapshot_list[next], (snapshot->js_gencount)) == TRUE) {
4390
4391 entry = &snapshot_list[next];
4392 entry->killed = kill_cause;
4393 entry->jse_killtime = killtime;
4394
4395 snapshot->entry_count = ++next;
4396 memorystatus_jetsam_snapshot_count = next;
4397
4398 if (memorystatus_jetsam_snapshot_count >= memorystatus_jetsam_snapshot_max) {
4399 /*
4400 * We just used the last slot in the snapshot buffer.
4401 * We only want to log it once... so we do it here
4402 * when we notice we've hit the max.
4403 */
4404 printf("memorystatus: WARNING snapshot buffer is full, count %d\n",
4405 memorystatus_jetsam_snapshot_count);
4406 }
4407 }
4408 }
4409 }
4410
4411 exit:
4412 if (entry == NULL) {
4413 /*
4414 * If we reach here, the snapshot buffer could not be updated.
4415 * Most likely, the buffer is full, in which case we would have
4416 * logged a warning in the previous call.
4417 *
4418 * For now, we will stop appending snapshot entries.
4419 * When the buffer is consumed, the snapshot state will reset.
4420 */
4421
4422 MEMORYSTATUS_DEBUG(4, "memorystatus_update_jetsam_snapshot_entry_locked: failed to update pid %d, priority %d, count %d\n",
4423 p->p_pid, p->p_memstat_effectivepriority, memorystatus_jetsam_snapshot_count);
4424 }
4425
4426 return;
4427 }
4428
4429 #if CONFIG_JETSAM
4430 void memorystatus_pages_update(unsigned int pages_avail)
4431 {
4432 memorystatus_available_pages = pages_avail;
4433
4434 #if VM_PRESSURE_EVENTS
4435 /*
4436 * Since memorystatus_available_pages changes, we should
4437 * re-evaluate the pressure levels on the system and
4438 * check if we need to wake the pressure thread.
4439 * We also update memorystatus_level in that routine.
4440 */
4441 vm_pressure_response();
4442
4443 if (memorystatus_available_pages <= memorystatus_available_pages_pressure) {
4444
4445 if (memorystatus_hwm_candidates || (memorystatus_available_pages <= memorystatus_available_pages_critical)) {
4446 memorystatus_thread_wake();
4447 }
4448 }
4449 #else /* VM_PRESSURE_EVENTS */
4450
4451 boolean_t critical, delta;
4452
4453 if (!memorystatus_delta) {
4454 return;
4455 }
4456
4457 critical = (pages_avail < memorystatus_available_pages_critical) ? TRUE : FALSE;
4458 delta = ((pages_avail >= (memorystatus_available_pages + memorystatus_delta))
4459 || (memorystatus_available_pages >= (pages_avail + memorystatus_delta))) ? TRUE : FALSE;
4460
4461 if (critical || delta) {
4462 unsigned int total_pages;
4463
4464 total_pages = (unsigned int) atop_64(max_mem);
4465 #if CONFIG_SECLUDED_MEMORY
4466 total_pages -= vm_page_secluded_count;
4467 #endif /* CONFIG_SECLUDED_MEMORY */
4468 memorystatus_level = memorystatus_available_pages * 100 / total_pages;
4469 memorystatus_thread_wake();
4470 }
4471 #endif /* VM_PRESSURE_EVENTS */
4472 }
4473 #endif /* CONFIG_JETSAM */
4474
4475 static boolean_t
4476 memorystatus_init_jetsam_snapshot_entry_locked(proc_t p, memorystatus_jetsam_snapshot_entry_t *entry, uint64_t gencount)
4477 {
4478 clock_sec_t tv_sec;
4479 clock_usec_t tv_usec;
4480 uint32_t pages = 0;
4481 uint32_t max_pages = 0;
4482 uint32_t max_pages_lifetime = 0;
4483 uint32_t purgeable_pages = 0;
4484 uint64_t internal_pages = 0;
4485 uint64_t internal_compressed_pages = 0;
4486 uint64_t purgeable_nonvolatile_pages = 0;
4487 uint64_t purgeable_nonvolatile_compressed_pages = 0;
4488 uint64_t alternate_accounting_pages = 0;
4489 uint64_t alternate_accounting_compressed_pages = 0;
4490 uint64_t iokit_mapped_pages = 0;
4491 uint64_t page_table_pages =0;
4492 uint64_t region_count = 0;
4493 uint64_t cids[COALITION_NUM_TYPES];
4494
4495 memset(entry, 0, sizeof(memorystatus_jetsam_snapshot_entry_t));
4496
4497 entry->pid = p->p_pid;
4498 strlcpy(&entry->name[0], p->p_name, sizeof(entry->name));
4499 entry->priority = p->p_memstat_effectivepriority;
4500
4501 memorystatus_get_task_page_counts(p->task, &pages, &max_pages, &max_pages_lifetime, &purgeable_pages);
4502 entry->pages = (uint64_t)pages;
4503 entry->max_pages = (uint64_t)max_pages;
4504 entry->max_pages_lifetime = (uint64_t)max_pages_lifetime;
4505 entry->purgeable_pages = (uint64_t)purgeable_pages;
4506
4507 memorystatus_get_task_phys_footprint_page_counts(p->task, &internal_pages, &internal_compressed_pages,
4508 &purgeable_nonvolatile_pages, &purgeable_nonvolatile_compressed_pages,
4509 &alternate_accounting_pages, &alternate_accounting_compressed_pages,
4510 &iokit_mapped_pages, &page_table_pages);
4511
4512 entry->jse_internal_pages = internal_pages;
4513 entry->jse_internal_compressed_pages = internal_compressed_pages;
4514 entry->jse_purgeable_nonvolatile_pages = purgeable_nonvolatile_pages;
4515 entry->jse_purgeable_nonvolatile_compressed_pages = purgeable_nonvolatile_compressed_pages;
4516 entry->jse_alternate_accounting_pages = alternate_accounting_pages;
4517 entry->jse_alternate_accounting_compressed_pages = alternate_accounting_compressed_pages;
4518 entry->jse_iokit_mapped_pages = iokit_mapped_pages;
4519 entry->jse_page_table_pages = page_table_pages;
4520
4521 memorystatus_get_task_memory_region_count(p->task, &region_count);
4522 entry->jse_memory_region_count = region_count;
4523
4524 entry->state = memorystatus_build_state(p);
4525 entry->user_data = p->p_memstat_userdata;
4526 memcpy(&entry->uuid[0], &p->p_uuid[0], sizeof(p->p_uuid));
4527 entry->fds = p->p_fd->fd_nfiles;
4528
4529 absolutetime_to_microtime(get_task_cpu_time(p->task), &tv_sec, &tv_usec);
4530 entry->cpu_time.tv_sec = tv_sec;
4531 entry->cpu_time.tv_usec = tv_usec;
4532
4533 assert(p->p_stats != NULL);
4534 entry->jse_starttime = p->p_stats->ps_start; /* abstime process started */
4535 entry->jse_killtime = 0; /* abstime jetsam chose to kill process */
4536 entry->killed = 0; /* the jetsam kill cause */
4537 entry->jse_gencount = gencount; /* indicates a pass through jetsam thread, when process was targeted to be killed */
4538
4539 entry->jse_idle_delta = p->p_memstat_idle_delta; /* Most recent timespan spent in idle-band */
4540
4541 proc_coalitionids(p, cids);
4542 entry->jse_coalition_jetsam_id = cids[COALITION_TYPE_JETSAM];
4543
4544 return TRUE;
4545 }
4546
4547 static void
4548 memorystatus_init_snapshot_vmstats(memorystatus_jetsam_snapshot_t *snapshot)
4549 {
4550 kern_return_t kr = KERN_SUCCESS;
4551 mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
4552 vm_statistics64_data_t vm_stat;
4553
4554 if ((kr = host_statistics64(host_self(), HOST_VM_INFO64, (host_info64_t)&vm_stat, &count) != KERN_SUCCESS)) {
4555 printf("memorystatus_init_jetsam_snapshot_stats: host_statistics64 failed with %d\n", kr);
4556 memset(&snapshot->stats, 0, sizeof(snapshot->stats));
4557 } else {
4558 snapshot->stats.free_pages = vm_stat.free_count;
4559 snapshot->stats.active_pages = vm_stat.active_count;
4560 snapshot->stats.inactive_pages = vm_stat.inactive_count;
4561 snapshot->stats.throttled_pages = vm_stat.throttled_count;
4562 snapshot->stats.purgeable_pages = vm_stat.purgeable_count;
4563 snapshot->stats.wired_pages = vm_stat.wire_count;
4564
4565 snapshot->stats.speculative_pages = vm_stat.speculative_count;
4566 snapshot->stats.filebacked_pages = vm_stat.external_page_count;
4567 snapshot->stats.anonymous_pages = vm_stat.internal_page_count;
4568 snapshot->stats.compressions = vm_stat.compressions;
4569 snapshot->stats.decompressions = vm_stat.decompressions;
4570 snapshot->stats.compressor_pages = vm_stat.compressor_page_count;
4571 snapshot->stats.total_uncompressed_pages_in_compressor = vm_stat.total_uncompressed_pages_in_compressor;
4572 }
4573
4574 get_zone_map_size(&snapshot->stats.zone_map_size, &snapshot->stats.zone_map_capacity);
4575 get_largest_zone_info(snapshot->stats.largest_zone_name, sizeof(snapshot->stats.largest_zone_name),
4576 &snapshot->stats.largest_zone_size);
4577 }
4578
4579 /*
4580 * Collect vm statistics at boot.
4581 * Called only once (see kern_exec.c)
4582 * Data can be consumed at any time.
4583 */
4584 void
4585 memorystatus_init_at_boot_snapshot() {
4586 memorystatus_init_snapshot_vmstats(&memorystatus_at_boot_snapshot);
4587 memorystatus_at_boot_snapshot.entry_count = 0;
4588 memorystatus_at_boot_snapshot.notification_time = 0; /* updated when consumed */
4589 memorystatus_at_boot_snapshot.snapshot_time = mach_absolute_time();
4590 }
4591
4592 static void
4593 memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t *od_snapshot, uint32_t ods_list_count )
4594 {
4595 proc_t p, next_p;
4596 unsigned int b = 0, i = 0;
4597
4598 memorystatus_jetsam_snapshot_t *snapshot = NULL;
4599 memorystatus_jetsam_snapshot_entry_t *snapshot_list = NULL;
4600 unsigned int snapshot_max = 0;
4601
4602 if (od_snapshot) {
4603 /*
4604 * This is an on_demand snapshot
4605 */
4606 snapshot = od_snapshot;
4607 snapshot_list = od_snapshot->entries;
4608 snapshot_max = ods_list_count;
4609 } else {
4610 /*
4611 * This is a jetsam event snapshot
4612 */
4613 snapshot = memorystatus_jetsam_snapshot;
4614 snapshot_list = memorystatus_jetsam_snapshot->entries;
4615 snapshot_max = memorystatus_jetsam_snapshot_max;
4616 }
4617
4618 /*
4619 * Init the snapshot header information
4620 */
4621 memorystatus_init_snapshot_vmstats(snapshot);
4622 snapshot->snapshot_time = mach_absolute_time();
4623 snapshot->notification_time = 0;
4624 snapshot->js_gencount = 0;
4625
4626 next_p = memorystatus_get_first_proc_locked(&b, TRUE);
4627 while (next_p) {
4628 p = next_p;
4629 next_p = memorystatus_get_next_proc_locked(&b, p, TRUE);
4630
4631 if (FALSE == memorystatus_init_jetsam_snapshot_entry_locked(p, &snapshot_list[i], snapshot->js_gencount)) {
4632 continue;
4633 }
4634
4635 MEMORYSTATUS_DEBUG(0, "jetsam snapshot pid %d, uuid = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4636 p->p_pid,
4637 p->p_uuid[0], p->p_uuid[1], p->p_uuid[2], p->p_uuid[3], p->p_uuid[4], p->p_uuid[5], p->p_uuid[6], p->p_uuid[7],
4638 p->p_uuid[8], p->p_uuid[9], p->p_uuid[10], p->p_uuid[11], p->p_uuid[12], p->p_uuid[13], p->p_uuid[14], p->p_uuid[15]);
4639
4640 if (++i == snapshot_max) {
4641 break;
4642 }
4643 }
4644
4645 snapshot->entry_count = i;
4646
4647 if (!od_snapshot) {
4648 /* update the system buffer count */
4649 memorystatus_jetsam_snapshot_count = i;
4650 }
4651 }
4652
4653 #if DEVELOPMENT || DEBUG
4654
4655 #if CONFIG_JETSAM
4656 static int
4657 memorystatus_cmd_set_panic_bits(user_addr_t buffer, uint32_t buffer_size) {
4658 int ret;
4659 memorystatus_jetsam_panic_options_t debug;
4660
4661 if (buffer_size != sizeof(memorystatus_jetsam_panic_options_t)) {
4662 return EINVAL;
4663 }
4664
4665 ret = copyin(buffer, &debug, buffer_size);
4666 if (ret) {
4667 return ret;
4668 }
4669
4670 /* Panic bits match kMemorystatusKilled* enum */
4671 memorystatus_jetsam_panic_debug = (memorystatus_jetsam_panic_debug & ~debug.mask) | (debug.data & debug.mask);
4672
4673 /* Copyout new value */
4674 debug.data = memorystatus_jetsam_panic_debug;
4675 ret = copyout(&debug, buffer, sizeof(memorystatus_jetsam_panic_options_t));
4676
4677 return ret;
4678 }
4679 #endif /* CONFIG_JETSAM */
4680
4681 /*
4682 * Triggers a sort_order on a specified jetsam priority band.
4683 * This is for testing only, used to force a path through the sort
4684 * function.
4685 */
4686 static int
4687 memorystatus_cmd_test_jetsam_sort(int priority, int sort_order) {
4688
4689 int error = 0;
4690
4691 unsigned int bucket_index = 0;
4692
4693 if (priority == -1) {
4694 /* Use as shorthand for default priority */
4695 bucket_index = JETSAM_PRIORITY_DEFAULT;
4696 } else {
4697 bucket_index = (unsigned int)priority;
4698 }
4699
4700 error = memorystatus_sort_bucket(bucket_index, sort_order);
4701
4702 return (error);
4703 }
4704
4705 #endif /* DEVELOPMENT || DEBUG */
4706
4707 /*
4708 * Jetsam the first process in the queue.
4709 */
4710 static boolean_t
4711 memorystatus_kill_top_process(boolean_t any, boolean_t sort_flag, uint32_t cause, os_reason_t jetsam_reason,
4712 int32_t *priority, uint32_t *errors)
4713 {
4714 pid_t aPid;
4715 proc_t p = PROC_NULL, next_p = PROC_NULL;
4716 boolean_t new_snapshot = FALSE, force_new_snapshot = FALSE, killed = FALSE;
4717 int kill_count = 0;
4718 unsigned int i = 0;
4719 uint32_t aPid_ep;
4720 uint64_t killtime = 0;
4721 clock_sec_t tv_sec;
4722 clock_usec_t tv_usec;
4723 uint32_t tv_msec;
4724 int32_t local_max_kill_prio = JETSAM_PRIORITY_IDLE;
4725
4726 #ifndef CONFIG_FREEZE
4727 #pragma unused(any)
4728 #endif
4729
4730 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_START,
4731 memorystatus_available_pages, 0, 0, 0, 0);
4732
4733
4734 #if CONFIG_JETSAM
4735 if (sort_flag == TRUE) {
4736 (void)memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND, JETSAM_SORT_DEFAULT);
4737 }
4738
4739 local_max_kill_prio = max_kill_priority;
4740
4741 force_new_snapshot = FALSE;
4742
4743 #else /* CONFIG_JETSAM */
4744
4745 if (sort_flag == TRUE) {
4746 (void)memorystatus_sort_bucket(JETSAM_PRIORITY_IDLE, JETSAM_SORT_DEFAULT);
4747 }
4748
4749 /*
4750 * On macos, we currently only have 2 reasons to be here:
4751 *
4752 * kMemorystatusKilledZoneMapExhaustion
4753 * AND
4754 * kMemorystatusKilledVMThrashing
4755 *
4756 * If we are here because of kMemorystatusKilledZoneMapExhaustion, we will consider
4757 * any and all processes as eligible kill candidates since we need to avoid a panic.
4758 *
4759 * Since this function can be called async. it is harder to toggle the max_kill_priority
4760 * value before and after a call. And so we use this local variable to set the upper band
4761 * on the eligible kill bands.
4762 */
4763 if (cause == kMemorystatusKilledZoneMapExhaustion) {
4764 local_max_kill_prio = JETSAM_PRIORITY_MAX;
4765 } else {
4766 local_max_kill_prio = max_kill_priority;
4767 }
4768
4769 /*
4770 * And, because we are here under extreme circumstances, we force a snapshot even for
4771 * IDLE kills.
4772 */
4773 force_new_snapshot = TRUE;
4774
4775 #endif /* CONFIG_JETSAM */
4776
4777 proc_list_lock();
4778
4779 next_p = memorystatus_get_first_proc_locked(&i, TRUE);
4780 while (next_p && (next_p->p_memstat_effectivepriority <= local_max_kill_prio)) {
4781 #if DEVELOPMENT || DEBUG
4782 int activeProcess;
4783 int procSuspendedForDiagnosis;
4784 #endif /* DEVELOPMENT || DEBUG */
4785
4786 p = next_p;
4787 next_p = memorystatus_get_next_proc_locked(&i, p, TRUE);
4788
4789 #if DEVELOPMENT || DEBUG
4790 activeProcess = p->p_memstat_state & P_MEMSTAT_FOREGROUND;
4791 procSuspendedForDiagnosis = p->p_memstat_state & P_MEMSTAT_DIAG_SUSPENDED;
4792 #endif /* DEVELOPMENT || DEBUG */
4793
4794 aPid = p->p_pid;
4795 aPid_ep = p->p_memstat_effectivepriority;
4796
4797 if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) {
4798 continue; /* with lock held */
4799 }
4800
4801 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
4802 if ((memorystatus_jetsam_policy & kPolicyDiagnoseActive) && procSuspendedForDiagnosis) {
4803 printf("jetsam: continuing after ignoring proc suspended already for diagnosis - %d\n", aPid);
4804 continue;
4805 }
4806 #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
4807
4808 if (cause == kMemorystatusKilledVnodes)
4809 {
4810 /*
4811 * If the system runs out of vnodes, we systematically jetsam
4812 * processes in hopes of stumbling onto a vnode gain that helps
4813 * the system recover. The process that happens to trigger
4814 * this path has no known relationship to the vnode shortage.
4815 * Deadlock avoidance: attempt to safeguard the caller.
4816 */
4817
4818 if (p == current_proc()) {
4819 /* do not jetsam the current process */
4820 continue;
4821 }
4822 }
4823
4824 #if CONFIG_FREEZE
4825 boolean_t skip;
4826 boolean_t reclaim_proc = !(p->p_memstat_state & (P_MEMSTAT_LOCKED | P_MEMSTAT_NORECLAIM));
4827 if (any || reclaim_proc) {
4828 skip = FALSE;
4829 } else {
4830 skip = TRUE;
4831 }
4832
4833 if (skip) {
4834 continue;
4835 } else
4836 #endif
4837 {
4838 /*
4839 * Capture a snapshot if none exists and:
4840 * - we are forcing a new snapshot creation, either because:
4841 * - on a particular platform we need these snapshots every time, OR
4842 * - a boot-arg/embedded device tree property has been set.
4843 * - priority was not requested (this is something other than an ambient kill)
4844 * - the priority was requested *and* the targeted process is not at idle priority
4845 */
4846 if ((memorystatus_jetsam_snapshot_count == 0) &&
4847 (force_new_snapshot || memorystatus_idle_snapshot || ((!priority) || (priority && (aPid_ep != JETSAM_PRIORITY_IDLE))))) {
4848 memorystatus_init_jetsam_snapshot_locked(NULL,0);
4849 new_snapshot = TRUE;
4850 }
4851
4852 /*
4853 * Mark as terminated so that if exit1() indicates success, but the process (for example)
4854 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
4855 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
4856 * acquisition of the proc lock.
4857 */
4858 p->p_memstat_state |= P_MEMSTAT_TERMINATED;
4859
4860 killtime = mach_absolute_time();
4861 absolutetime_to_microtime(killtime, &tv_sec, &tv_usec);
4862 tv_msec = tv_usec / 1000;
4863
4864 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
4865 if ((memorystatus_jetsam_policy & kPolicyDiagnoseActive) && activeProcess) {
4866 MEMORYSTATUS_DEBUG(1, "jetsam: suspending pid %d [%s] (active) for diagnosis - memory_status_level: %d\n",
4867 aPid, (*p->p_name ? p->p_name: "(unknown)"), memorystatus_level);
4868 memorystatus_update_jetsam_snapshot_entry_locked(p, kMemorystatusKilledDiagnostic, killtime);
4869 p->p_memstat_state |= P_MEMSTAT_DIAG_SUSPENDED;
4870 if (memorystatus_jetsam_policy & kPolicyDiagnoseFirst) {
4871 jetsam_diagnostic_suspended_one_active_proc = 1;
4872 printf("jetsam: returning after suspending first active proc - %d\n", aPid);
4873 }
4874
4875 p = proc_ref_locked(p);
4876 proc_list_unlock();
4877 if (p) {
4878 task_suspend(p->task);
4879 if (priority) {
4880 *priority = aPid_ep;
4881 }
4882 proc_rele(p);
4883 killed = TRUE;
4884 }
4885
4886 goto exit;
4887 } else
4888 #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
4889 {
4890 /* Shift queue, update stats */
4891 memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime);
4892
4893 if (proc_ref_locked(p) == p) {
4894 proc_list_unlock();
4895 os_log_with_startup_serial(OS_LOG_DEFAULT, "%lu.%03d memorystatus: %s pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n",
4896 (unsigned long)tv_sec, tv_msec,
4897 ((aPid_ep == JETSAM_PRIORITY_IDLE) ? "killing_idle_process" : "killing_top_process"),
4898 aPid, (*p->p_name ? p->p_name : "unknown"),
4899 memorystatus_kill_cause_name[cause], aPid_ep, (uint64_t)memorystatus_available_pages);
4900
4901 /*
4902 * memorystatus_do_kill() drops a reference, so take another one so we can
4903 * continue to use this exit reason even after memorystatus_do_kill()
4904 * returns.
4905 */
4906 os_reason_ref(jetsam_reason);
4907
4908 killed = memorystatus_do_kill(p, cause, jetsam_reason);
4909
4910 /* Success? */
4911 if (killed) {
4912 if (priority) {
4913 *priority = aPid_ep;
4914 }
4915 proc_rele(p);
4916 kill_count++;
4917 goto exit;
4918 }
4919
4920 /*
4921 * Failure - first unwind the state,
4922 * then fall through to restart the search.
4923 */
4924 proc_list_lock();
4925 proc_rele_locked(p);
4926 p->p_memstat_state &= ~P_MEMSTAT_TERMINATED;
4927 p->p_memstat_state |= P_MEMSTAT_ERROR;
4928 *errors += 1;
4929 }
4930
4931 /*
4932 * Failure - restart the search.
4933 *
4934 * We might have raced with "p" exiting on another core, resulting in no
4935 * ref on "p". Or, we may have failed to kill "p".
4936 *
4937 * Either way, we fall thru to here, leaving the proc in the
4938 * P_MEMSTAT_TERMINATED state.
4939 *
4940 * And, we hold the the proc_list_lock at this point.
4941 */
4942
4943 i = 0;
4944 next_p = memorystatus_get_first_proc_locked(&i, TRUE);
4945 }
4946 }
4947 }
4948
4949 proc_list_unlock();
4950
4951 exit:
4952 os_reason_free(jetsam_reason);
4953
4954 /* Clear snapshot if freshly captured and no target was found */
4955 if (new_snapshot && !killed) {
4956 proc_list_lock();
4957 memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0;
4958 proc_list_unlock();
4959 }
4960
4961 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_END,
4962 memorystatus_available_pages, killed ? aPid : 0, kill_count, 0, 0);
4963
4964 return killed;
4965 }
4966
4967 /*
4968 * Jetsam aggressively
4969 */
4970 static boolean_t
4971 memorystatus_kill_top_process_aggressive(uint32_t cause, int aggr_count,
4972 int32_t priority_max, uint32_t *errors)
4973 {
4974 pid_t aPid;
4975 proc_t p = PROC_NULL, next_p = PROC_NULL;
4976 boolean_t new_snapshot = FALSE, killed = FALSE;
4977 int kill_count = 0;
4978 unsigned int i = 0;
4979 int32_t aPid_ep = 0;
4980 unsigned int memorystatus_level_snapshot = 0;
4981 uint64_t killtime = 0;
4982 clock_sec_t tv_sec;
4983 clock_usec_t tv_usec;
4984 uint32_t tv_msec;
4985 os_reason_t jetsam_reason = OS_REASON_NULL;
4986
4987 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_START,
4988 memorystatus_available_pages, priority_max, 0, 0, 0);
4989
4990 memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND, JETSAM_SORT_DEFAULT);
4991
4992 jetsam_reason = os_reason_create(OS_REASON_JETSAM, cause);
4993 if (jetsam_reason == OS_REASON_NULL) {
4994 printf("memorystatus_kill_top_process_aggressive: failed to allocate exit reason\n");
4995 }
4996
4997 proc_list_lock();
4998
4999 next_p = memorystatus_get_first_proc_locked(&i, TRUE);
5000 while (next_p) {
5001 #if DEVELOPMENT || DEBUG
5002 int activeProcess;
5003 int procSuspendedForDiagnosis;
5004 #endif /* DEVELOPMENT || DEBUG */
5005
5006 if (((next_p->p_listflag & P_LIST_EXITED) != 0) ||
5007 ((unsigned int)(next_p->p_memstat_effectivepriority) != i)) {
5008
5009 /*
5010 * We have raced with next_p running on another core.
5011 * It may be exiting or it may have moved to a different
5012 * jetsam priority band. This means we have lost our
5013 * place in line while traversing the jetsam list. We
5014 * attempt to recover by rewinding to the beginning of the band
5015 * we were already traversing. By doing this, we do not guarantee
5016 * that no process escapes this aggressive march, but we can make
5017 * skipping an entire range of processes less likely. (PR-21069019)
5018 */
5019
5020 MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: rewinding band %d, %s(%d) moved or exiting.\n",
5021 aggr_count, i, (*next_p->p_name ? next_p->p_name : "unknown"), next_p->p_pid);
5022
5023 next_p = memorystatus_get_first_proc_locked(&i, TRUE);
5024 continue;
5025 }
5026
5027 p = next_p;
5028 next_p = memorystatus_get_next_proc_locked(&i, p, TRUE);
5029
5030 if (p->p_memstat_effectivepriority > priority_max) {
5031 /*
5032 * Bail out of this killing spree if we have
5033 * reached beyond the priority_max jetsam band.
5034 * That is, we kill up to and through the
5035 * priority_max jetsam band.
5036 */
5037 proc_list_unlock();
5038 goto exit;
5039 }
5040
5041 #if DEVELOPMENT || DEBUG
5042 activeProcess = p->p_memstat_state & P_MEMSTAT_FOREGROUND;
5043 procSuspendedForDiagnosis = p->p_memstat_state & P_MEMSTAT_DIAG_SUSPENDED;
5044 #endif /* DEVELOPMENT || DEBUG */
5045
5046 aPid = p->p_pid;
5047 aPid_ep = p->p_memstat_effectivepriority;
5048
5049 if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) {
5050 continue;
5051 }
5052
5053 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
5054 if ((memorystatus_jetsam_policy & kPolicyDiagnoseActive) && procSuspendedForDiagnosis) {
5055 printf("jetsam: continuing after ignoring proc suspended already for diagnosis - %d\n", aPid);
5056 continue;
5057 }
5058 #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
5059
5060 /*
5061 * Capture a snapshot if none exists.
5062 */
5063 if (memorystatus_jetsam_snapshot_count == 0) {
5064 memorystatus_init_jetsam_snapshot_locked(NULL,0);
5065 new_snapshot = TRUE;
5066 }
5067
5068 /*
5069 * Mark as terminated so that if exit1() indicates success, but the process (for example)
5070 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
5071 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
5072 * acquisition of the proc lock.
5073 */
5074 p->p_memstat_state |= P_MEMSTAT_TERMINATED;
5075
5076 killtime = mach_absolute_time();
5077 absolutetime_to_microtime(killtime, &tv_sec, &tv_usec);
5078 tv_msec = tv_usec / 1000;
5079
5080 /* Shift queue, update stats */
5081 memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime);
5082
5083 /*
5084 * In order to kill the target process, we will drop the proc_list_lock.
5085 * To guaranteee that p and next_p don't disappear out from under the lock,
5086 * we must take a ref on both.
5087 * If we cannot get a reference, then it's likely we've raced with
5088 * that process exiting on another core.
5089 */
5090 if (proc_ref_locked(p) == p) {
5091 if (next_p) {
5092 while (next_p && (proc_ref_locked(next_p) != next_p)) {
5093 proc_t temp_p;
5094
5095 /*
5096 * We must have raced with next_p exiting on another core.
5097 * Recover by getting the next eligible process in the band.
5098 */
5099
5100 MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: skipping %d [%s] (exiting?)\n",
5101 aggr_count, next_p->p_pid, (*next_p->p_name ? next_p->p_name : "(unknown)"));
5102
5103 temp_p = next_p;
5104 next_p = memorystatus_get_next_proc_locked(&i, temp_p, TRUE);
5105 }
5106 }
5107 proc_list_unlock();
5108
5109 printf("%lu.%03d memorystatus: %s%d pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n",
5110 (unsigned long)tv_sec, tv_msec,
5111 ((aPid_ep == JETSAM_PRIORITY_IDLE) ? "killing_idle_process_aggressive" : "killing_top_process_aggressive"),
5112 aggr_count, aPid, (*p->p_name ? p->p_name : "unknown"),
5113 memorystatus_kill_cause_name[cause], aPid_ep, (uint64_t)memorystatus_available_pages);
5114
5115 memorystatus_level_snapshot = memorystatus_level;
5116
5117 /*
5118 * memorystatus_do_kill() drops a reference, so take another one so we can
5119 * continue to use this exit reason even after memorystatus_do_kill()
5120 * returns.
5121 */
5122 os_reason_ref(jetsam_reason);
5123 killed = memorystatus_do_kill(p, cause, jetsam_reason);
5124
5125 /* Success? */
5126 if (killed) {
5127 proc_rele(p);
5128 kill_count++;
5129 p = NULL;
5130 killed = FALSE;
5131
5132 /*
5133 * Continue the killing spree.
5134 */
5135 proc_list_lock();
5136 if (next_p) {
5137 proc_rele_locked(next_p);
5138 }
5139
5140 if (aPid_ep == JETSAM_PRIORITY_FOREGROUND && memorystatus_aggressive_jetsam_lenient == TRUE) {
5141 if (memorystatus_level > memorystatus_level_snapshot && ((memorystatus_level - memorystatus_level_snapshot) >= AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD)) {
5142 #if DEVELOPMENT || DEBUG
5143 printf("Disabling Lenient mode after one-time deployment.\n");
5144 #endif /* DEVELOPMENT || DEBUG */
5145 memorystatus_aggressive_jetsam_lenient = FALSE;
5146 break;
5147 }
5148 }
5149
5150 continue;
5151 }
5152
5153 /*
5154 * Failure - first unwind the state,
5155 * then fall through to restart the search.
5156 */
5157 proc_list_lock();
5158 proc_rele_locked(p);
5159 if (next_p) {
5160 proc_rele_locked(next_p);
5161 }
5162 p->p_memstat_state &= ~P_MEMSTAT_TERMINATED;
5163 p->p_memstat_state |= P_MEMSTAT_ERROR;
5164 *errors += 1;
5165 p = NULL;
5166 }
5167
5168 /*
5169 * Failure - restart the search at the beginning of
5170 * the band we were already traversing.
5171 *
5172 * We might have raced with "p" exiting on another core, resulting in no
5173 * ref on "p". Or, we may have failed to kill "p".
5174 *
5175 * Either way, we fall thru to here, leaving the proc in the
5176 * P_MEMSTAT_TERMINATED or P_MEMSTAT_ERROR state.
5177 *
5178 * And, we hold the the proc_list_lock at this point.
5179 */
5180
5181 next_p = memorystatus_get_first_proc_locked(&i, TRUE);
5182 }
5183
5184 proc_list_unlock();
5185
5186 exit:
5187 os_reason_free(jetsam_reason);
5188
5189 /* Clear snapshot if freshly captured and no target was found */
5190 if (new_snapshot && (kill_count == 0)) {
5191 memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0;
5192 }
5193
5194 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_END,
5195 memorystatus_available_pages, killed ? aPid : 0, kill_count, 0, 0);
5196
5197 if (kill_count > 0) {
5198 return(TRUE);
5199 }
5200 else {
5201 return(FALSE);
5202 }
5203 }
5204
5205 static boolean_t
5206 memorystatus_kill_hiwat_proc(uint32_t *errors)
5207 {
5208 pid_t aPid = 0;
5209 proc_t p = PROC_NULL, next_p = PROC_NULL;
5210 boolean_t new_snapshot = FALSE, killed = FALSE;
5211 int kill_count = 0;
5212 unsigned int i = 0;
5213 uint32_t aPid_ep;
5214 uint64_t killtime = 0;
5215 clock_sec_t tv_sec;
5216 clock_usec_t tv_usec;
5217 uint32_t tv_msec;
5218 os_reason_t jetsam_reason = OS_REASON_NULL;
5219 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM_HIWAT) | DBG_FUNC_START,
5220 memorystatus_available_pages, 0, 0, 0, 0);
5221
5222 jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_HIGHWATER);
5223 if (jetsam_reason == OS_REASON_NULL) {
5224 printf("memorystatus_kill_hiwat_proc: failed to allocate exit reason\n");
5225 }
5226
5227 proc_list_lock();
5228
5229 next_p = memorystatus_get_first_proc_locked(&i, TRUE);
5230 while (next_p) {
5231 uint64_t footprint_in_bytes = 0;
5232 uint64_t memlimit_in_bytes = 0;
5233 boolean_t skip = 0;
5234
5235 p = next_p;
5236 next_p = memorystatus_get_next_proc_locked(&i, p, TRUE);
5237
5238 aPid = p->p_pid;
5239 aPid_ep = p->p_memstat_effectivepriority;
5240
5241 if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) {
5242 continue;
5243 }
5244
5245 /* skip if no limit set */
5246 if (p->p_memstat_memlimit <= 0) {
5247 continue;
5248 }
5249
5250 footprint_in_bytes = get_task_phys_footprint(p->task);
5251 memlimit_in_bytes = (((uint64_t)p->p_memstat_memlimit) * 1024ULL * 1024ULL); /* convert MB to bytes */
5252 skip = (footprint_in_bytes <= memlimit_in_bytes);
5253
5254 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
5255 if (!skip && (memorystatus_jetsam_policy & kPolicyDiagnoseActive)) {
5256 if (p->p_memstat_state & P_MEMSTAT_DIAG_SUSPENDED) {
5257 continue;
5258 }
5259 }
5260 #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
5261
5262 #if CONFIG_FREEZE
5263 if (!skip) {
5264 if (p->p_memstat_state & P_MEMSTAT_LOCKED) {
5265 skip = TRUE;
5266 } else {
5267 skip = FALSE;
5268 }
5269 }
5270 #endif
5271
5272 if (skip) {
5273 continue;
5274 } else {
5275 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
5276 MEMORYSTATUS_DEBUG(1, "jetsam: %s pid %d [%s] - %lld Mb > 1 (%d Mb)\n",
5277 (memorystatus_jetsam_policy & kPolicyDiagnoseActive) ? "suspending": "killing",
5278 aPid, (*p->p_name ? p->p_name : "unknown"),
5279 (footprint_in_bytes / (1024ULL * 1024ULL)), /* converted bytes to MB */
5280 p->p_memstat_memlimit);
5281 #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
5282
5283 if (memorystatus_jetsam_snapshot_count == 0) {
5284 memorystatus_init_jetsam_snapshot_locked(NULL,0);
5285 new_snapshot = TRUE;
5286 }
5287
5288 p->p_memstat_state |= P_MEMSTAT_TERMINATED;
5289
5290 killtime = mach_absolute_time();
5291 absolutetime_to_microtime(killtime, &tv_sec, &tv_usec);
5292 tv_msec = tv_usec / 1000;
5293
5294 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
5295 if (memorystatus_jetsam_policy & kPolicyDiagnoseActive) {
5296 MEMORYSTATUS_DEBUG(1, "jetsam: pid %d suspended for diagnosis - memorystatus_available_pages: %d\n", aPid, memorystatus_available_pages);
5297 memorystatus_update_jetsam_snapshot_entry_locked(p, kMemorystatusKilledDiagnostic, killtime);
5298 p->p_memstat_state |= P_MEMSTAT_DIAG_SUSPENDED;
5299
5300 p = proc_ref_locked(p);
5301 proc_list_unlock();
5302 if (p) {
5303 task_suspend(p->task);
5304 proc_rele(p);
5305 killed = TRUE;
5306 }
5307
5308 goto exit;
5309 } else
5310 #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
5311 {
5312 memorystatus_update_jetsam_snapshot_entry_locked(p, kMemorystatusKilledHiwat, killtime);
5313
5314 if (proc_ref_locked(p) == p) {
5315 proc_list_unlock();
5316
5317 os_log_with_startup_serial(OS_LOG_DEFAULT, "%lu.%03d memorystatus: killing_highwater_process pid %d [%s] (highwater %d) - memorystatus_available_pages: %llu\n",
5318 (unsigned long)tv_sec, tv_msec, aPid, (*p->p_name ? p->p_name : "unknown"), aPid_ep, (uint64_t)memorystatus_available_pages);
5319
5320 /*
5321 * memorystatus_do_kill drops a reference, so take another one so we can
5322 * continue to use this exit reason even after memorystatus_do_kill()
5323 * returns
5324 */
5325 os_reason_ref(jetsam_reason);
5326
5327 killed = memorystatus_do_kill(p, kMemorystatusKilledHiwat, jetsam_reason);
5328
5329 /* Success? */
5330 if (killed) {
5331 proc_rele(p);
5332 kill_count++;
5333 goto exit;
5334 }
5335
5336 /*
5337 * Failure - first unwind the state,
5338 * then fall through to restart the search.
5339 */
5340 proc_list_lock();
5341 proc_rele_locked(p);
5342 p->p_memstat_state &= ~P_MEMSTAT_TERMINATED;
5343 p->p_memstat_state |= P_MEMSTAT_ERROR;
5344 *errors += 1;
5345 }
5346
5347 /*
5348 * Failure - restart the search.
5349 *
5350 * We might have raced with "p" exiting on another core, resulting in no
5351 * ref on "p". Or, we may have failed to kill "p".
5352 *
5353 * Either way, we fall thru to here, leaving the proc in the
5354 * P_MEMSTAT_TERMINATED state.
5355 *
5356 * And, we hold the the proc_list_lock at this point.
5357 */
5358
5359 i = 0;
5360 next_p = memorystatus_get_first_proc_locked(&i, TRUE);
5361 }
5362 }
5363 }
5364
5365 proc_list_unlock();
5366
5367 exit:
5368 os_reason_free(jetsam_reason);
5369
5370 /* Clear snapshot if freshly captured and no target was found */
5371 if (new_snapshot && !killed) {
5372 proc_list_lock();
5373 memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0;
5374 proc_list_unlock();
5375 }
5376
5377 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM_HIWAT) | DBG_FUNC_END,
5378 memorystatus_available_pages, killed ? aPid : 0, kill_count, 0, 0);
5379
5380 return killed;
5381 }
5382
5383 /*
5384 * Jetsam a process pinned in the elevated band.
5385 *
5386 * Return: true -- at least one pinned process was jetsammed
5387 * false -- no pinned process was jetsammed
5388 */
5389 static boolean_t
5390 memorystatus_kill_elevated_process(uint32_t cause, os_reason_t jetsam_reason, int aggr_count, uint32_t *errors)
5391 {
5392 pid_t aPid = 0;
5393 proc_t p = PROC_NULL, next_p = PROC_NULL;
5394 boolean_t new_snapshot = FALSE, killed = FALSE;
5395 int kill_count = 0;
5396 unsigned int i = JETSAM_PRIORITY_ELEVATED_INACTIVE;
5397 uint32_t aPid_ep;
5398 uint64_t killtime = 0;
5399 clock_sec_t tv_sec;
5400 clock_usec_t tv_usec;
5401 uint32_t tv_msec;
5402
5403
5404 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_START,
5405 memorystatus_available_pages, 0, 0, 0, 0);
5406
5407 proc_list_lock();
5408
5409 next_p = memorystatus_get_first_proc_locked(&i, FALSE);
5410 while (next_p) {
5411
5412 p = next_p;
5413 next_p = memorystatus_get_next_proc_locked(&i, p, FALSE);
5414
5415 aPid = p->p_pid;
5416 aPid_ep = p->p_memstat_effectivepriority;
5417
5418 /*
5419 * Only pick a process pinned in this elevated band
5420 */
5421 if (!(p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND)) {
5422 continue;
5423 }
5424
5425 if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) {
5426 continue;
5427 }
5428
5429 #if CONFIG_FREEZE
5430 if (p->p_memstat_state & P_MEMSTAT_LOCKED) {
5431 continue;
5432 }
5433 #endif
5434
5435 #if DEVELOPMENT || DEBUG
5436 MEMORYSTATUS_DEBUG(1, "jetsam: elevated%d process pid %d [%s] - memorystatus_available_pages: %d\n",
5437 aggr_count,
5438 aPid, (*p->p_name ? p->p_name : "unknown"),
5439 memorystatus_available_pages);
5440 #endif /* DEVELOPMENT || DEBUG */
5441
5442 if (memorystatus_jetsam_snapshot_count == 0) {
5443 memorystatus_init_jetsam_snapshot_locked(NULL,0);
5444 new_snapshot = TRUE;
5445 }
5446
5447 p->p_memstat_state |= P_MEMSTAT_TERMINATED;
5448
5449 killtime = mach_absolute_time();
5450 absolutetime_to_microtime(killtime, &tv_sec, &tv_usec);
5451 tv_msec = tv_usec / 1000;
5452
5453 memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime);
5454
5455 if (proc_ref_locked(p) == p) {
5456
5457 proc_list_unlock();
5458
5459 os_log_with_startup_serial(OS_LOG_DEFAULT, "%lu.%03d memorystatus: killing_top_process_elevated%d pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n",
5460 (unsigned long)tv_sec, tv_msec,
5461 aggr_count,
5462 aPid, (*p->p_name ? p->p_name : "unknown"),
5463 memorystatus_kill_cause_name[cause], aPid_ep, (uint64_t)memorystatus_available_pages);
5464
5465 /*
5466 * memorystatus_do_kill drops a reference, so take another one so we can
5467 * continue to use this exit reason even after memorystatus_do_kill()
5468 * returns
5469 */
5470 os_reason_ref(jetsam_reason);
5471 killed = memorystatus_do_kill(p, cause, jetsam_reason);
5472
5473 /* Success? */
5474 if (killed) {
5475 proc_rele(p);
5476 kill_count++;
5477 goto exit;
5478 }
5479
5480 /*
5481 * Failure - first unwind the state,
5482 * then fall through to restart the search.
5483 */
5484 proc_list_lock();
5485 proc_rele_locked(p);
5486 p->p_memstat_state &= ~P_MEMSTAT_TERMINATED;
5487 p->p_memstat_state |= P_MEMSTAT_ERROR;
5488 *errors += 1;
5489 }
5490
5491 /*
5492 * Failure - restart the search.
5493 *
5494 * We might have raced with "p" exiting on another core, resulting in no
5495 * ref on "p". Or, we may have failed to kill "p".
5496 *
5497 * Either way, we fall thru to here, leaving the proc in the
5498 * P_MEMSTAT_TERMINATED state or P_MEMSTAT_ERROR state.
5499 *
5500 * And, we hold the the proc_list_lock at this point.
5501 */
5502
5503 next_p = memorystatus_get_first_proc_locked(&i, FALSE);
5504 }
5505
5506 proc_list_unlock();
5507
5508 exit:
5509 os_reason_free(jetsam_reason);
5510
5511 /* Clear snapshot if freshly captured and no target was found */
5512 if (new_snapshot && (kill_count == 0)) {
5513 proc_list_lock();
5514 memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0;
5515 proc_list_unlock();
5516 }
5517
5518 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_END,
5519 memorystatus_available_pages, killed ? aPid : 0, kill_count, 0, 0);
5520
5521 return (killed);
5522 }
5523
5524 static boolean_t
5525 memorystatus_kill_process_async(pid_t victim_pid, uint32_t cause) {
5526 /*
5527 * TODO: allow a general async path
5528 *
5529 * NOTE: If a new async kill cause is added, make sure to update memorystatus_thread() to
5530 * add the appropriate exit reason code mapping.
5531 */
5532 if ((victim_pid != -1) || (cause != kMemorystatusKilledVMPageShortage && cause != kMemorystatusKilledVMThrashing &&
5533 cause != kMemorystatusKilledFCThrashing && cause != kMemorystatusKilledZoneMapExhaustion)) {
5534 return FALSE;
5535 }
5536
5537 kill_under_pressure_cause = cause;
5538 memorystatus_thread_wake();
5539 return TRUE;
5540 }
5541
5542 boolean_t
5543 memorystatus_kill_on_VM_thrashing(boolean_t async) {
5544 if (async) {
5545 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMThrashing);
5546 } else {
5547 os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_VMTHRASHING);
5548 if (jetsam_reason == OS_REASON_NULL) {
5549 printf("memorystatus_kill_on_VM_thrashing -- sync: failed to allocate jetsam reason\n");
5550 }
5551
5552 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMThrashing, jetsam_reason);
5553 }
5554 }
5555
5556 #if CONFIG_JETSAM
5557 boolean_t
5558 memorystatus_kill_on_VM_page_shortage(boolean_t async) {
5559 if (async) {
5560 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMPageShortage);
5561 } else {
5562 os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_VMPAGESHORTAGE);
5563 if (jetsam_reason == OS_REASON_NULL) {
5564 printf("memorystatus_kill_on_VM_page_shortage -- sync: failed to allocate jetsam reason\n");
5565 }
5566
5567 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMPageShortage, jetsam_reason);
5568 }
5569 }
5570
5571 boolean_t
5572 memorystatus_kill_on_FC_thrashing(boolean_t async) {
5573
5574
5575 if (async) {
5576 return memorystatus_kill_process_async(-1, kMemorystatusKilledFCThrashing);
5577 } else {
5578 os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_FCTHRASHING);
5579 if (jetsam_reason == OS_REASON_NULL) {
5580 printf("memorystatus_kill_on_FC_thrashing -- sync: failed to allocate jetsam reason\n");
5581 }
5582
5583 return memorystatus_kill_process_sync(-1, kMemorystatusKilledFCThrashing, jetsam_reason);
5584 }
5585 }
5586
5587 boolean_t
5588 memorystatus_kill_on_vnode_limit(void) {
5589 os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_VNODE);
5590 if (jetsam_reason == OS_REASON_NULL) {
5591 printf("memorystatus_kill_on_vnode_limit: failed to allocate jetsam reason\n");
5592 }
5593
5594 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVnodes, jetsam_reason);
5595 }
5596
5597 #endif /* CONFIG_JETSAM */
5598
5599 boolean_t
5600 memorystatus_kill_on_zone_map_exhaustion(pid_t pid) {
5601 boolean_t res = FALSE;
5602 if (pid == -1) {
5603 res = memorystatus_kill_process_async(-1, kMemorystatusKilledZoneMapExhaustion);
5604 } else {
5605 os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_ZONE_MAP_EXHAUSTION);
5606 if (jetsam_reason == OS_REASON_NULL) {
5607 printf("memorystatus_kill_on_zone_map_exhaustion: failed to allocate jetsam reason\n");
5608 }
5609
5610 res = memorystatus_kill_process_sync(pid, kMemorystatusKilledZoneMapExhaustion, jetsam_reason);
5611 }
5612 return res;
5613 }
5614
5615 #if CONFIG_FREEZE
5616
5617 __private_extern__ void
5618 memorystatus_freeze_init(void)
5619 {
5620 kern_return_t result;
5621 thread_t thread;
5622
5623 freezer_lck_grp_attr = lck_grp_attr_alloc_init();
5624 freezer_lck_grp = lck_grp_alloc_init("freezer", freezer_lck_grp_attr);
5625
5626 lck_mtx_init(&freezer_mutex, freezer_lck_grp, NULL);
5627
5628 result = kernel_thread_start(memorystatus_freeze_thread, NULL, &thread);
5629 if (result == KERN_SUCCESS) {
5630 thread_deallocate(thread);
5631 } else {
5632 panic("Could not create memorystatus_freeze_thread");
5633 }
5634 }
5635
5636 /*
5637 * Synchronously freeze the passed proc. Called with a reference to the proc held.
5638 *
5639 * Returns EINVAL or the value returned by task_freeze().
5640 */
5641 int
5642 memorystatus_freeze_process_sync(proc_t p)
5643 {
5644 int ret = EINVAL;
5645 pid_t aPid = 0;
5646 boolean_t memorystatus_freeze_swap_low = FALSE;
5647
5648 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_FREEZE) | DBG_FUNC_START,
5649 memorystatus_available_pages, 0, 0, 0, 0);
5650
5651 lck_mtx_lock(&freezer_mutex);
5652
5653 if (p == NULL) {
5654 goto exit;
5655 }
5656
5657 if (memorystatus_freeze_enabled == FALSE) {
5658 goto exit;
5659 }
5660
5661 if (!memorystatus_can_freeze(&memorystatus_freeze_swap_low)) {
5662 goto exit;
5663 }
5664
5665 if (memorystatus_freeze_update_throttle()) {
5666 printf("memorystatus_freeze_process_sync: in throttle, ignorning freeze\n");
5667 memorystatus_freeze_throttle_count++;
5668 goto exit;
5669 }
5670
5671 proc_list_lock();
5672
5673 if (p != NULL) {
5674 uint32_t purgeable, wired, clean, dirty, state;
5675 uint32_t max_pages, pages, i;
5676 boolean_t shared;
5677
5678 aPid = p->p_pid;
5679 state = p->p_memstat_state;
5680
5681 /* Ensure the process is eligible for freezing */
5682 if ((state & (P_MEMSTAT_TERMINATED | P_MEMSTAT_LOCKED | P_MEMSTAT_FROZEN)) || !(state & P_MEMSTAT_SUSPENDED)) {
5683 proc_list_unlock();
5684 goto exit;
5685 }
5686
5687 /* Only freeze processes meeting our minimum resident page criteria */
5688 memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL, NULL);
5689 if (pages < memorystatus_freeze_pages_min) {
5690 proc_list_unlock();
5691 goto exit;
5692 }
5693
5694 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) {
5695
5696 unsigned int avail_swap_space = 0; /* in pages. */
5697
5698 /*
5699 * Freezer backed by the compressor and swap file(s)
5700 * while will hold compressed data.
5701 */
5702 avail_swap_space = vm_swap_get_free_space() / PAGE_SIZE_64;
5703
5704 max_pages = MIN(avail_swap_space, memorystatus_freeze_pages_max);
5705
5706 if (max_pages < memorystatus_freeze_pages_min) {
5707 proc_list_unlock();
5708 goto exit;
5709 }
5710 } else {
5711 /*
5712 * We only have the compressor without any swap.
5713 */
5714 max_pages = UINT32_MAX - 1;
5715 }
5716
5717 /* Mark as locked temporarily to avoid kill */
5718 p->p_memstat_state |= P_MEMSTAT_LOCKED;
5719 proc_list_unlock();
5720
5721 ret = task_freeze(p->task, &purgeable, &wired, &clean, &dirty, max_pages, &shared, FALSE);
5722
5723 DTRACE_MEMORYSTATUS6(memorystatus_freeze, proc_t, p, unsigned int, memorystatus_available_pages, boolean_t, purgeable, unsigned int, wired, uint32_t, clean, uint32_t, dirty);
5724
5725 MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_process_sync: task_freeze %s for pid %d [%s] - "
5726 "memorystatus_pages: %d, purgeable: %d, wired: %d, clean: %d, dirty: %d, max_pages %d, shared %d\n",
5727 (ret == KERN_SUCCESS) ? "SUCCEEDED" : "FAILED", aPid, (*p->p_name ? p->p_name : "(unknown)"),
5728 memorystatus_available_pages, purgeable, wired, clean, dirty, max_pages, shared);
5729
5730 proc_list_lock();
5731 p->p_memstat_state &= ~P_MEMSTAT_LOCKED;
5732
5733 if (ret == KERN_SUCCESS) {
5734 memorystatus_freeze_entry_t data = { aPid, TRUE, dirty };
5735
5736 memorystatus_frozen_count++;
5737
5738 p->p_memstat_state |= (P_MEMSTAT_FROZEN | (shared ? 0: P_MEMSTAT_NORECLAIM));
5739
5740 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) {
5741 /* Update stats */
5742 for (i = 0; i < sizeof(throttle_intervals) / sizeof(struct throttle_interval_t); i++) {
5743 throttle_intervals[i].pageouts += dirty;
5744 }
5745 }
5746
5747 memorystatus_freeze_pageouts += dirty;
5748 memorystatus_freeze_count++;
5749
5750 proc_list_unlock();
5751
5752 memorystatus_send_note(kMemorystatusFreezeNote, &data, sizeof(data));
5753 } else {
5754 proc_list_unlock();
5755 }
5756 }
5757
5758 exit:
5759 lck_mtx_unlock(&freezer_mutex);
5760 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_FREEZE) | DBG_FUNC_END,
5761 memorystatus_available_pages, aPid, 0, 0, 0);
5762
5763 return ret;
5764 }
5765
5766 static int
5767 memorystatus_freeze_top_process(boolean_t *memorystatus_freeze_swap_low)
5768 {
5769 pid_t aPid = 0;
5770 int ret = -1;
5771 proc_t p = PROC_NULL, next_p = PROC_NULL;
5772 unsigned int i = 0;
5773
5774 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_FREEZE) | DBG_FUNC_START,
5775 memorystatus_available_pages, 0, 0, 0, 0);
5776
5777 proc_list_lock();
5778
5779 next_p = memorystatus_get_first_proc_locked(&i, TRUE);
5780 while (next_p) {
5781 kern_return_t kr;
5782 uint32_t purgeable, wired, clean, dirty;
5783 boolean_t shared;
5784 uint32_t pages;
5785 uint32_t max_pages = 0;
5786 uint32_t state;
5787
5788 p = next_p;
5789 next_p = memorystatus_get_next_proc_locked(&i, p, TRUE);
5790
5791 aPid = p->p_pid;
5792 state = p->p_memstat_state;
5793
5794 /* Ensure the process is eligible for freezing */
5795 if ((state & (P_MEMSTAT_TERMINATED | P_MEMSTAT_LOCKED | P_MEMSTAT_FROZEN)) || !(state & P_MEMSTAT_SUSPENDED)) {
5796 continue; // with lock held
5797 }
5798
5799 /* Only freeze processes meeting our minimum resident page criteria */
5800 memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL, NULL);
5801 if (pages < memorystatus_freeze_pages_min) {
5802 continue; // with lock held
5803 }
5804
5805 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) {
5806
5807 /* Ensure there's enough free space to freeze this process. */
5808
5809 unsigned int avail_swap_space = 0; /* in pages. */
5810
5811 /*
5812 * Freezer backed by the compressor and swap file(s)
5813 * while will hold compressed data.
5814 */
5815 avail_swap_space = vm_swap_get_free_space() / PAGE_SIZE_64;
5816
5817 max_pages = MIN(avail_swap_space, memorystatus_freeze_pages_max);
5818
5819 if (max_pages < memorystatus_freeze_pages_min) {
5820 *memorystatus_freeze_swap_low = TRUE;
5821 proc_list_unlock();
5822 goto exit;
5823 }
5824 } else {
5825 /*
5826 * We only have the compressor pool.
5827 */
5828 max_pages = UINT32_MAX - 1;
5829 }
5830
5831 /* Mark as locked temporarily to avoid kill */
5832 p->p_memstat_state |= P_MEMSTAT_LOCKED;
5833
5834 p = proc_ref_locked(p);
5835 proc_list_unlock();
5836 if (!p) {
5837 goto exit;
5838 }
5839
5840 kr = task_freeze(p->task, &purgeable, &wired, &clean, &dirty, max_pages, &shared, FALSE);
5841
5842 MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_top_process: task_freeze %s for pid %d [%s] - "
5843 "memorystatus_pages: %d, purgeable: %d, wired: %d, clean: %d, dirty: %d, max_pages %d, shared %d\n",
5844 (kr == KERN_SUCCESS) ? "SUCCEEDED" : "FAILED", aPid, (*p->p_name ? p->p_name : "(unknown)"),
5845 memorystatus_available_pages, purgeable, wired, clean, dirty, max_pages, shared);
5846
5847 proc_list_lock();
5848 p->p_memstat_state &= ~P_MEMSTAT_LOCKED;
5849
5850 /* Success? */
5851 if (KERN_SUCCESS == kr) {
5852 memorystatus_freeze_entry_t data = { aPid, TRUE, dirty };
5853
5854 memorystatus_frozen_count++;
5855
5856 p->p_memstat_state |= (P_MEMSTAT_FROZEN | (shared ? 0: P_MEMSTAT_NORECLAIM));
5857
5858 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) {
5859 /* Update stats */
5860 for (i = 0; i < sizeof(throttle_intervals) / sizeof(struct throttle_interval_t); i++) {
5861 throttle_intervals[i].pageouts += dirty;
5862 }
5863 }
5864
5865 memorystatus_freeze_pageouts += dirty;
5866 memorystatus_freeze_count++;
5867
5868 proc_list_unlock();
5869
5870 memorystatus_send_note(kMemorystatusFreezeNote, &data, sizeof(data));
5871
5872 /* Return KERN_SUCESS */
5873 ret = kr;
5874
5875 } else {
5876 proc_list_unlock();
5877 }
5878
5879 proc_rele(p);
5880 goto exit;
5881 }
5882
5883 proc_list_unlock();
5884
5885 exit:
5886 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_FREEZE) | DBG_FUNC_END,
5887 memorystatus_available_pages, aPid, 0, 0, 0);
5888
5889 return ret;
5890 }
5891
5892 static inline boolean_t
5893 memorystatus_can_freeze_processes(void)
5894 {
5895 boolean_t ret;
5896
5897 proc_list_lock();
5898
5899 if (memorystatus_suspended_count) {
5900 uint32_t average_resident_pages, estimated_processes;
5901
5902 /* Estimate the number of suspended processes we can fit */
5903 average_resident_pages = memorystatus_suspended_footprint_total / memorystatus_suspended_count;
5904 estimated_processes = memorystatus_suspended_count +
5905 ((memorystatus_available_pages - memorystatus_available_pages_critical) / average_resident_pages);
5906
5907 /* If it's predicted that no freeze will occur, lower the threshold temporarily */
5908 if (estimated_processes <= FREEZE_SUSPENDED_THRESHOLD_DEFAULT) {
5909 memorystatus_freeze_suspended_threshold = FREEZE_SUSPENDED_THRESHOLD_LOW;
5910 } else {
5911 memorystatus_freeze_suspended_threshold = FREEZE_SUSPENDED_THRESHOLD_DEFAULT;
5912 }
5913
5914 MEMORYSTATUS_DEBUG(1, "memorystatus_can_freeze_processes: %d suspended processes, %d average resident pages / process, %d suspended processes estimated\n",
5915 memorystatus_suspended_count, average_resident_pages, estimated_processes);
5916
5917 if ((memorystatus_suspended_count - memorystatus_frozen_count) > memorystatus_freeze_suspended_threshold) {
5918 ret = TRUE;
5919 } else {
5920 ret = FALSE;
5921 }
5922 } else {
5923 ret = FALSE;
5924 }
5925
5926 proc_list_unlock();
5927
5928 return ret;
5929 }
5930
5931 static boolean_t
5932 memorystatus_can_freeze(boolean_t *memorystatus_freeze_swap_low)
5933 {
5934 boolean_t can_freeze = TRUE;
5935
5936 /* Only freeze if we're sufficiently low on memory; this holds off freeze right
5937 after boot, and is generally is a no-op once we've reached steady state. */
5938 if (memorystatus_available_pages > memorystatus_freeze_threshold) {
5939 return FALSE;
5940 }
5941
5942 /* Check minimum suspended process threshold. */
5943 if (!memorystatus_can_freeze_processes()) {
5944 return FALSE;
5945 }
5946 assert(VM_CONFIG_COMPRESSOR_IS_PRESENT);
5947
5948 if ( !VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) {
5949 /*
5950 * In-core compressor used for freezing WITHOUT on-disk swap support.
5951 */
5952 if (vm_compressor_low_on_space()) {
5953 if (*memorystatus_freeze_swap_low) {
5954 *memorystatus_freeze_swap_low = TRUE;
5955 }
5956
5957 can_freeze = FALSE;
5958
5959 } else {
5960 if (*memorystatus_freeze_swap_low) {
5961 *memorystatus_freeze_swap_low = FALSE;
5962 }
5963
5964 can_freeze = TRUE;
5965 }
5966 } else {
5967 /*
5968 * Freezing WITH on-disk swap support.
5969 *
5970 * In-core compressor fronts the swap.
5971 */
5972 if (vm_swap_low_on_space()) {
5973 if (*memorystatus_freeze_swap_low) {
5974 *memorystatus_freeze_swap_low = TRUE;
5975 }
5976
5977 can_freeze = FALSE;
5978 }
5979
5980 }
5981
5982 return can_freeze;
5983 }
5984
5985 static void
5986 memorystatus_freeze_update_throttle_interval(mach_timespec_t *ts, struct throttle_interval_t *interval)
5987 {
5988 unsigned int freeze_daily_pageouts_max = memorystatus_freeze_daily_mb_max * (1024 * 1024 / PAGE_SIZE);
5989 if (CMP_MACH_TIMESPEC(ts, &interval->ts) >= 0) {
5990 if (!interval->max_pageouts) {
5991 interval->max_pageouts = (interval->burst_multiple * (((uint64_t)interval->mins * freeze_daily_pageouts_max) / (24 * 60)));
5992 } else {
5993 printf("memorystatus_freeze_update_throttle_interval: %d minute throttle timeout, resetting\n", interval->mins);
5994 }
5995 interval->ts.tv_sec = interval->mins * 60;
5996 interval->ts.tv_nsec = 0;
5997 ADD_MACH_TIMESPEC(&interval->ts, ts);
5998 /* Since we update the throttle stats pre-freeze, adjust for overshoot here */
5999 if (interval->pageouts > interval->max_pageouts) {
6000 interval->pageouts -= interval->max_pageouts;
6001 } else {
6002 interval->pageouts = 0;
6003 }
6004 interval->throttle = FALSE;
6005 } else if (!interval->throttle && interval->pageouts >= interval->max_pageouts) {
6006 printf("memorystatus_freeze_update_throttle_interval: %d minute pageout limit exceeded; enabling throttle\n", interval->mins);
6007 interval->throttle = TRUE;
6008 }
6009
6010 MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_update_throttle_interval: throttle updated - %d frozen (%d max) within %dm; %dm remaining; throttle %s\n",
6011 interval->pageouts, interval->max_pageouts, interval->mins, (interval->ts.tv_sec - ts->tv_sec) / 60,
6012 interval->throttle ? "on" : "off");
6013 }
6014
6015 static boolean_t
6016 memorystatus_freeze_update_throttle(void)
6017 {
6018 clock_sec_t sec;
6019 clock_nsec_t nsec;
6020 mach_timespec_t ts;
6021 uint32_t i;
6022 boolean_t throttled = FALSE;
6023
6024 #if DEVELOPMENT || DEBUG
6025 if (!memorystatus_freeze_throttle_enabled)
6026 return FALSE;
6027 #endif
6028
6029 clock_get_system_nanotime(&sec, &nsec);
6030 ts.tv_sec = sec;
6031 ts.tv_nsec = nsec;
6032
6033 /* Check freeze pageouts over multiple intervals and throttle if we've exceeded our budget.
6034 *
6035 * This ensures that periods of inactivity can't be used as 'credit' towards freeze if the device has
6036 * remained dormant for a long period. We do, however, allow increased thresholds for shorter intervals in
6037 * order to allow for bursts of activity.
6038 */
6039 for (i = 0; i < sizeof(throttle_intervals) / sizeof(struct throttle_interval_t); i++) {
6040 memorystatus_freeze_update_throttle_interval(&ts, &throttle_intervals[i]);
6041 if (throttle_intervals[i].throttle == TRUE)
6042 throttled = TRUE;
6043 }
6044
6045 return throttled;
6046 }
6047
6048 static void
6049 memorystatus_freeze_thread(void *param __unused, wait_result_t wr __unused)
6050 {
6051 static boolean_t memorystatus_freeze_swap_low = FALSE;
6052
6053 lck_mtx_lock(&freezer_mutex);
6054 if (memorystatus_freeze_enabled) {
6055 if (memorystatus_can_freeze(&memorystatus_freeze_swap_low)) {
6056 /* Only freeze if we've not exceeded our pageout budgets.*/
6057 if (!memorystatus_freeze_update_throttle()) {
6058 memorystatus_freeze_top_process(&memorystatus_freeze_swap_low);
6059 } else {
6060 printf("memorystatus_freeze_thread: in throttle, ignoring freeze\n");
6061 memorystatus_freeze_throttle_count++; /* Throttled, update stats */
6062 }
6063 }
6064 }
6065 lck_mtx_unlock(&freezer_mutex);
6066
6067 assert_wait((event_t) &memorystatus_freeze_wakeup, THREAD_UNINT);
6068 thread_block((thread_continue_t) memorystatus_freeze_thread);
6069 }
6070
6071 static int
6072 sysctl_memorystatus_do_fastwake_warmup_all SYSCTL_HANDLER_ARGS
6073 {
6074 #pragma unused(oidp, req, arg1, arg2)
6075
6076 /* Need to be root or have entitlement */
6077 if (!kauth_cred_issuser(kauth_cred_get()) && !IOTaskHasEntitlement(current_task(), MEMORYSTATUS_ENTITLEMENT)) {
6078 return EPERM;
6079 }
6080
6081 if (memorystatus_freeze_enabled == FALSE) {
6082 return ENOTSUP;
6083 }
6084
6085 do_fastwake_warmup_all();
6086
6087 return 0;
6088 }
6089
6090 SYSCTL_PROC(_kern, OID_AUTO, memorystatus_do_fastwake_warmup_all, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED,
6091 0, 0, &sysctl_memorystatus_do_fastwake_warmup_all, "I", "");
6092
6093 #endif /* CONFIG_FREEZE */
6094
6095 #if VM_PRESSURE_EVENTS
6096
6097 #if CONFIG_MEMORYSTATUS
6098
6099 static int
6100 memorystatus_send_note(int event_code, void *data, size_t data_length) {
6101 int ret;
6102 struct kev_msg ev_msg;
6103
6104 ev_msg.vendor_code = KEV_VENDOR_APPLE;
6105 ev_msg.kev_class = KEV_SYSTEM_CLASS;
6106 ev_msg.kev_subclass = KEV_MEMORYSTATUS_SUBCLASS;
6107
6108 ev_msg.event_code = event_code;
6109
6110 ev_msg.dv[0].data_length = data_length;
6111 ev_msg.dv[0].data_ptr = data;
6112 ev_msg.dv[1].data_length = 0;
6113
6114 ret = kev_post_msg(&ev_msg);
6115 if (ret) {
6116 printf("%s: kev_post_msg() failed, err %d\n", __func__, ret);
6117 }
6118
6119 return ret;
6120 }
6121
6122 boolean_t
6123 memorystatus_warn_process(pid_t pid, __unused boolean_t is_active, __unused boolean_t is_fatal, boolean_t limit_exceeded) {
6124
6125 boolean_t ret = FALSE;
6126 boolean_t found_knote = FALSE;
6127 struct knote *kn = NULL;
6128 int send_knote_count = 0;
6129
6130 /*
6131 * See comment in sysctl_memorystatus_vm_pressure_send.
6132 */
6133
6134 memorystatus_klist_lock();
6135
6136 SLIST_FOREACH(kn, &memorystatus_klist, kn_selnext) {
6137 proc_t knote_proc = knote_get_kq(kn)->kq_p;
6138 pid_t knote_pid = knote_proc->p_pid;
6139
6140 if (knote_pid == pid) {
6141 /*
6142 * By setting the "fflags" here, we are forcing
6143 * a process to deal with the case where it's
6144 * bumping up into its memory limits. If we don't
6145 * do this here, we will end up depending on the
6146 * system pressure snapshot evaluation in
6147 * filt_memorystatus().
6148 */
6149
6150 #if CONFIG_EMBEDDED
6151 if (!limit_exceeded) {
6152 /*
6153 * Intentionally set either the unambiguous limit warning,
6154 * the system-wide critical or the system-wide warning
6155 * notification bit.
6156 */
6157
6158 if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) {
6159 kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_WARN;
6160 found_knote = TRUE;
6161 send_knote_count++;
6162 } else if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_CRITICAL) {
6163 kn->kn_fflags = NOTE_MEMORYSTATUS_PRESSURE_CRITICAL;
6164 found_knote = TRUE;
6165 send_knote_count++;
6166 } else if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_WARN) {
6167 kn->kn_fflags = NOTE_MEMORYSTATUS_PRESSURE_WARN;
6168 found_knote = TRUE;
6169 send_knote_count++;
6170 }
6171 } else {
6172 /*
6173 * Send this notification when a process has exceeded a soft limit.
6174 */
6175 if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) {
6176 kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL;
6177 found_knote = TRUE;
6178 send_knote_count++;
6179 }
6180 }
6181 #else /* CONFIG_EMBEDDED */
6182 if (!limit_exceeded) {
6183
6184 /*
6185 * Processes on desktop are not expecting to handle a system-wide
6186 * critical or system-wide warning notification from this path.
6187 * Intentionally set only the unambiguous limit warning here.
6188 *
6189 * If the limit is soft, however, limit this to one notification per
6190 * active/inactive limit (per each registered listener).
6191 */
6192
6193 if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) {
6194 found_knote=TRUE;
6195 if (!is_fatal) {
6196 /*
6197 * Restrict proc_limit_warn notifications when
6198 * non-fatal (soft) limit is at play.
6199 */
6200 if (is_active) {
6201 if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE) {
6202 /*
6203 * Mark this knote for delivery.
6204 */
6205 kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_WARN;
6206 /*
6207 * And suppress it from future notifications.
6208 */
6209 kn->kn_sfflags &= ~NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE;
6210 send_knote_count++;
6211 }
6212 } else {
6213 if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE) {
6214 /*
6215 * Mark this knote for delivery.
6216 */
6217 kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_WARN;
6218 /*
6219 * And suppress it from future notifications.
6220 */
6221 kn->kn_sfflags &= ~NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE;
6222 send_knote_count++;
6223 }
6224 }
6225 } else {
6226 /*
6227 * No restriction on proc_limit_warn notifications when
6228 * fatal (hard) limit is at play.
6229 */
6230 kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_WARN;
6231 send_knote_count++;
6232 }
6233 }
6234 } else {
6235 /*
6236 * Send this notification when a process has exceeded a soft limit,
6237 */
6238
6239 if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) {
6240 found_knote = TRUE;
6241 if (!is_fatal) {
6242 /*
6243 * Restrict critical notifications for soft limits.
6244 */
6245
6246 if (is_active) {
6247 if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE) {
6248 /*
6249 * Suppress future proc_limit_critical notifications
6250 * for the active soft limit.
6251 */
6252 kn->kn_sfflags &= ~NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE;
6253 kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL;
6254 send_knote_count++;
6255
6256 }
6257 } else {
6258 if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE) {
6259 /*
6260 * Suppress future proc_limit_critical_notifications
6261 * for the inactive soft limit.
6262 */
6263 kn->kn_sfflags &= ~NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE;
6264 kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL;
6265 send_knote_count++;
6266 }
6267 }
6268 } else {
6269 /*
6270 * We should never be trying to send a critical notification for
6271 * a hard limit... the process would be killed before it could be
6272 * received.
6273 */
6274 panic("Caught sending pid %d a critical warning for a fatal limit.\n", pid);
6275 }
6276 }
6277 }
6278 #endif /* CONFIG_EMBEDDED */
6279 }
6280 }
6281
6282 if (found_knote) {
6283 if (send_knote_count > 0) {
6284 KNOTE(&memorystatus_klist, 0);
6285 }
6286 ret = TRUE;
6287 }
6288
6289 memorystatus_klist_unlock();
6290
6291 return ret;
6292 }
6293
6294 /*
6295 * Can only be set by the current task on itself.
6296 */
6297 int
6298 memorystatus_low_mem_privileged_listener(uint32_t op_flags)
6299 {
6300 boolean_t set_privilege = FALSE;
6301 /*
6302 * Need an entitlement check here?
6303 */
6304 if (op_flags == MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_ENABLE) {
6305 set_privilege = TRUE;
6306 } else if (op_flags == MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_DISABLE) {
6307 set_privilege = FALSE;
6308 } else {
6309 return EINVAL;
6310 }
6311
6312 return (task_low_mem_privileged_listener(current_task(), set_privilege, NULL));
6313 }
6314
6315 int
6316 memorystatus_send_pressure_note(pid_t pid) {
6317 MEMORYSTATUS_DEBUG(1, "memorystatus_send_pressure_note(): pid %d\n", pid);
6318 return memorystatus_send_note(kMemorystatusPressureNote, &pid, sizeof(pid));
6319 }
6320
6321 void
6322 memorystatus_send_low_swap_note(void) {
6323
6324 struct knote *kn = NULL;
6325
6326 memorystatus_klist_lock();
6327 SLIST_FOREACH(kn, &memorystatus_klist, kn_selnext) {
6328 /* We call is_knote_registered_modify_task_pressure_bits to check if the sfflags for the
6329 * current note contain NOTE_MEMORYSTATUS_LOW_SWAP. Once we find one note in the memorystatus_klist
6330 * that has the NOTE_MEMORYSTATUS_LOW_SWAP flags in its sfflags set, we call KNOTE with
6331 * kMemoryStatusLowSwap as the hint to process and update all knotes on the memorystatus_klist accordingly. */
6332 if (is_knote_registered_modify_task_pressure_bits(kn, NOTE_MEMORYSTATUS_LOW_SWAP, NULL, 0, 0) == TRUE) {
6333 KNOTE(&memorystatus_klist, kMemorystatusLowSwap);
6334 break;
6335 }
6336 }
6337
6338 memorystatus_klist_unlock();
6339 }
6340
6341 boolean_t
6342 memorystatus_bg_pressure_eligible(proc_t p) {
6343 boolean_t eligible = FALSE;
6344
6345 proc_list_lock();
6346
6347 MEMORYSTATUS_DEBUG(1, "memorystatus_bg_pressure_eligible: pid %d, state 0x%x\n", p->p_pid, p->p_memstat_state);
6348
6349 /* Foreground processes have already been dealt with at this point, so just test for eligibility */
6350 if (!(p->p_memstat_state & (P_MEMSTAT_TERMINATED | P_MEMSTAT_LOCKED | P_MEMSTAT_SUSPENDED | P_MEMSTAT_FROZEN))) {
6351 eligible = TRUE;
6352 }
6353
6354 proc_list_unlock();
6355
6356 return eligible;
6357 }
6358
6359 boolean_t
6360 memorystatus_is_foreground_locked(proc_t p) {
6361 return ((p->p_memstat_effectivepriority == JETSAM_PRIORITY_FOREGROUND) ||
6362 (p->p_memstat_effectivepriority == JETSAM_PRIORITY_FOREGROUND_SUPPORT));
6363 }
6364
6365 /*
6366 * This is meant for stackshot and kperf -- it does not take the proc_list_lock
6367 * to access the p_memstat_dirty field.
6368 */
6369 boolean_t
6370 memorystatus_proc_is_dirty_unsafe(void *v)
6371 {
6372 if (!v) {
6373 return FALSE;
6374 }
6375 proc_t p = (proc_t)v;
6376 return (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) != 0;
6377 }
6378
6379 #endif /* CONFIG_MEMORYSTATUS */
6380
6381 /*
6382 * Trigger levels to test the mechanism.
6383 * Can be used via a sysctl.
6384 */
6385 #define TEST_LOW_MEMORY_TRIGGER_ONE 1
6386 #define TEST_LOW_MEMORY_TRIGGER_ALL 2
6387 #define TEST_PURGEABLE_TRIGGER_ONE 3
6388 #define TEST_PURGEABLE_TRIGGER_ALL 4
6389 #define TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE 5
6390 #define TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL 6
6391
6392 boolean_t memorystatus_manual_testing_on = FALSE;
6393 vm_pressure_level_t memorystatus_manual_testing_level = kVMPressureNormal;
6394
6395 extern struct knote *
6396 vm_pressure_select_optimal_candidate_to_notify(struct klist *, int, boolean_t);
6397
6398 /*
6399 * This value is the threshold that a process must meet to be considered for scavenging.
6400 */
6401 #if CONFIG_EMBEDDED
6402 #define VM_PRESSURE_MINIMUM_RSIZE 1 /* MB */
6403 #else /* CONFIG_EMBEDDED */
6404 #define VM_PRESSURE_MINIMUM_RSIZE 10 /* MB */
6405 #endif /* CONFIG_EMBEDDED */
6406
6407 #define VM_PRESSURE_NOTIFY_WAIT_PERIOD 10000 /* milliseconds */
6408
6409 #if DEBUG
6410 #define VM_PRESSURE_DEBUG(cond, format, ...) \
6411 do { \
6412 if (cond) { printf(format, ##__VA_ARGS__); } \
6413 } while(0)
6414 #else
6415 #define VM_PRESSURE_DEBUG(cond, format, ...)
6416 #endif
6417
6418 #define INTER_NOTIFICATION_DELAY (250000) /* .25 second */
6419
6420 void memorystatus_on_pageout_scan_end(void) {
6421 /* No-op */
6422 }
6423
6424 /*
6425 * kn_max - knote
6426 *
6427 * knote_pressure_level - to check if the knote is registered for this notification level.
6428 *
6429 * task - task whose bits we'll be modifying
6430 *
6431 * pressure_level_to_clear - if the task has been notified of this past level, clear that notification bit so that if/when we revert to that level, the task will be notified again.
6432 *
6433 * pressure_level_to_set - the task is about to be notified of this new level. Update the task's bit notification information appropriately.
6434 *
6435 */
6436
6437 boolean_t
6438 is_knote_registered_modify_task_pressure_bits(struct knote *kn_max, int knote_pressure_level, task_t task, vm_pressure_level_t pressure_level_to_clear, vm_pressure_level_t pressure_level_to_set)
6439 {
6440 if (kn_max->kn_sfflags & knote_pressure_level) {
6441
6442 if (pressure_level_to_clear && task_has_been_notified(task, pressure_level_to_clear) == TRUE) {
6443
6444 task_clear_has_been_notified(task, pressure_level_to_clear);
6445 }
6446
6447 task_mark_has_been_notified(task, pressure_level_to_set);
6448 return TRUE;
6449 }
6450
6451 return FALSE;
6452 }
6453
6454 void
6455 memorystatus_klist_reset_all_for_level(vm_pressure_level_t pressure_level_to_clear)
6456 {
6457 struct knote *kn = NULL;
6458
6459 memorystatus_klist_lock();
6460 SLIST_FOREACH(kn, &memorystatus_klist, kn_selnext) {
6461
6462 proc_t p = PROC_NULL;
6463 struct task* t = TASK_NULL;
6464
6465 p = knote_get_kq(kn)->kq_p;
6466 proc_list_lock();
6467 if (p != proc_ref_locked(p)) {
6468 p = PROC_NULL;
6469 proc_list_unlock();
6470 continue;
6471 }
6472 proc_list_unlock();
6473
6474 t = (struct task *)(p->task);
6475
6476 task_clear_has_been_notified(t, pressure_level_to_clear);
6477
6478 proc_rele(p);
6479 }
6480
6481 memorystatus_klist_unlock();
6482 }
6483
6484 extern kern_return_t vm_pressure_notify_dispatch_vm_clients(boolean_t target_foreground_process);
6485
6486 struct knote *
6487 vm_pressure_select_optimal_candidate_to_notify(struct klist *candidate_list, int level, boolean_t target_foreground_process);
6488
6489 /*
6490 * Used by the vm_pressure_thread which is
6491 * signalled from within vm_pageout_scan().
6492 */
6493 static void vm_dispatch_memory_pressure(void);
6494 void consider_vm_pressure_events(void);
6495
6496 void consider_vm_pressure_events(void)
6497 {
6498 vm_dispatch_memory_pressure();
6499 }
6500 static void vm_dispatch_memory_pressure(void)
6501 {
6502 memorystatus_update_vm_pressure(FALSE);
6503 }
6504
6505 extern vm_pressure_level_t
6506 convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t);
6507
6508 struct knote *
6509 vm_pressure_select_optimal_candidate_to_notify(struct klist *candidate_list, int level, boolean_t target_foreground_process)
6510 {
6511 struct knote *kn = NULL, *kn_max = NULL;
6512 uint64_t resident_max = 0; /* MB */
6513 struct timeval curr_tstamp = {0, 0};
6514 int elapsed_msecs = 0;
6515 int selected_task_importance = 0;
6516 static int pressure_snapshot = -1;
6517 boolean_t pressure_increase = FALSE;
6518
6519 if (pressure_snapshot == -1) {
6520 /*
6521 * Initial snapshot.
6522 */
6523 pressure_snapshot = level;
6524 pressure_increase = TRUE;
6525 } else {
6526
6527 if (level && (level >= pressure_snapshot)) {
6528 pressure_increase = TRUE;
6529 } else {
6530 pressure_increase = FALSE;
6531 }
6532
6533 pressure_snapshot = level;
6534 }
6535
6536 if (pressure_increase == TRUE) {
6537 /*
6538 * We'll start by considering the largest
6539 * unimportant task in our list.
6540 */
6541 selected_task_importance = INT_MAX;
6542 } else {
6543 /*
6544 * We'll start by considering the largest
6545 * important task in our list.
6546 */
6547 selected_task_importance = 0;
6548 }
6549
6550 microuptime(&curr_tstamp);
6551
6552 SLIST_FOREACH(kn, candidate_list, kn_selnext) {
6553
6554 uint64_t resident_size = 0; /* MB */
6555 proc_t p = PROC_NULL;
6556 struct task* t = TASK_NULL;
6557 int curr_task_importance = 0;
6558 boolean_t consider_knote = FALSE;
6559 boolean_t privileged_listener = FALSE;
6560
6561 p = knote_get_kq(kn)->kq_p;
6562 proc_list_lock();
6563 if (p != proc_ref_locked(p)) {
6564 p = PROC_NULL;
6565 proc_list_unlock();
6566 continue;
6567 }
6568 proc_list_unlock();
6569
6570 #if CONFIG_MEMORYSTATUS
6571 if (target_foreground_process == TRUE && !memorystatus_is_foreground_locked(p)) {
6572 /*
6573 * Skip process not marked foreground.
6574 */
6575 proc_rele(p);
6576 continue;
6577 }
6578 #endif /* CONFIG_MEMORYSTATUS */
6579
6580 t = (struct task *)(p->task);
6581
6582 timevalsub(&curr_tstamp, &p->vm_pressure_last_notify_tstamp);
6583 elapsed_msecs = curr_tstamp.tv_sec * 1000 + curr_tstamp.tv_usec / 1000;
6584
6585 vm_pressure_level_t dispatch_level = convert_internal_pressure_level_to_dispatch_level(level);
6586
6587 if ((kn->kn_sfflags & dispatch_level) == 0) {
6588 proc_rele(p);
6589 continue;
6590 }
6591
6592 #if CONFIG_MEMORYSTATUS
6593 if (target_foreground_process == FALSE && !memorystatus_bg_pressure_eligible(p)) {
6594 VM_PRESSURE_DEBUG(1, "[vm_pressure] skipping process %d\n", p->p_pid);
6595 proc_rele(p);
6596 continue;
6597 }
6598 #endif /* CONFIG_MEMORYSTATUS */
6599
6600 #if CONFIG_EMBEDDED
6601 curr_task_importance = p->p_memstat_effectivepriority;
6602 #else /* CONFIG_EMBEDDED */
6603 curr_task_importance = task_importance_estimate(t);
6604 #endif /* CONFIG_EMBEDDED */
6605
6606 /*
6607 * Privileged listeners are only considered in the multi-level pressure scheme
6608 * AND only if the pressure is increasing.
6609 */
6610 if (level > 0) {
6611
6612 if (task_has_been_notified(t, level) == FALSE) {
6613
6614 /*
6615 * Is this a privileged listener?
6616 */
6617 if (task_low_mem_privileged_listener(t, FALSE, &privileged_listener) == 0) {
6618
6619 if (privileged_listener) {
6620 kn_max = kn;
6621 proc_rele(p);
6622 goto done_scanning;
6623 }
6624 }
6625 } else {
6626 proc_rele(p);
6627 continue;
6628 }
6629 } else if (level == 0) {
6630
6631 /*
6632 * Task wasn't notified when the pressure was increasing and so
6633 * no need to notify it that the pressure is decreasing.
6634 */
6635 if ((task_has_been_notified(t, kVMPressureWarning) == FALSE) && (task_has_been_notified(t, kVMPressureCritical) == FALSE)) {
6636 proc_rele(p);
6637 continue;
6638 }
6639 }
6640
6641 /*
6642 * We don't want a small process to block large processes from
6643 * being notified again. <rdar://problem/7955532>
6644 */
6645 resident_size = (get_task_phys_footprint(t))/(1024*1024ULL); /* MB */
6646
6647 if (resident_size >= VM_PRESSURE_MINIMUM_RSIZE) {
6648
6649 if (level > 0) {
6650 /*
6651 * Warning or Critical Pressure.
6652 */
6653 if (pressure_increase) {
6654 if ((curr_task_importance < selected_task_importance) ||
6655 ((curr_task_importance == selected_task_importance) && (resident_size > resident_max))) {
6656
6657 /*
6658 * We have found a candidate process which is:
6659 * a) at a lower importance than the current selected process
6660 * OR
6661 * b) has importance equal to that of the current selected process but is larger
6662 */
6663
6664 consider_knote = TRUE;
6665 }
6666 } else {
6667 if ((curr_task_importance > selected_task_importance) ||
6668 ((curr_task_importance == selected_task_importance) && (resident_size > resident_max))) {
6669
6670 /*
6671 * We have found a candidate process which is:
6672 * a) at a higher importance than the current selected process
6673 * OR
6674 * b) has importance equal to that of the current selected process but is larger
6675 */
6676
6677 consider_knote = TRUE;
6678 }
6679 }
6680 } else if (level == 0) {
6681 /*
6682 * Pressure back to normal.
6683 */
6684 if ((curr_task_importance > selected_task_importance) ||
6685 ((curr_task_importance == selected_task_importance) && (resident_size > resident_max))) {
6686
6687 consider_knote = TRUE;
6688 }
6689 }
6690
6691 if (consider_knote) {
6692 resident_max = resident_size;
6693 kn_max = kn;
6694 selected_task_importance = curr_task_importance;
6695 consider_knote = FALSE; /* reset for the next candidate */
6696 }
6697 } else {
6698 /* There was no candidate with enough resident memory to scavenge */
6699 VM_PRESSURE_DEBUG(0, "[vm_pressure] threshold failed for pid %d with %llu resident...\n", p->p_pid, resident_size);
6700 }
6701 proc_rele(p);
6702 }
6703
6704 done_scanning:
6705 if (kn_max) {
6706 VM_DEBUG_CONSTANT_EVENT(vm_pressure_event, VM_PRESSURE_EVENT, DBG_FUNC_NONE, knote_get_kq(kn_max)->kq_p->p_pid, resident_max, 0, 0);
6707 VM_PRESSURE_DEBUG(1, "[vm_pressure] sending event to pid %d with %llu resident\n", knote_get_kq(kn_max)->kq_p->p_pid, resident_max);
6708 }
6709
6710 return kn_max;
6711 }
6712
6713 #define VM_PRESSURE_DECREASED_SMOOTHING_PERIOD 5000 /* milliseconds */
6714 #define WARNING_NOTIFICATION_RESTING_PERIOD 25 /* seconds */
6715 #define CRITICAL_NOTIFICATION_RESTING_PERIOD 25 /* seconds */
6716
6717 uint64_t next_warning_notification_sent_at_ts = 0;
6718 uint64_t next_critical_notification_sent_at_ts = 0;
6719
6720 kern_return_t
6721 memorystatus_update_vm_pressure(boolean_t target_foreground_process)
6722 {
6723 struct knote *kn_max = NULL;
6724 struct knote *kn_cur = NULL, *kn_temp = NULL; /* for safe list traversal */
6725 pid_t target_pid = -1;
6726 struct klist dispatch_klist = { NULL };
6727 proc_t target_proc = PROC_NULL;
6728 struct task *task = NULL;
6729 boolean_t found_candidate = FALSE;
6730
6731 static vm_pressure_level_t level_snapshot = kVMPressureNormal;
6732 static vm_pressure_level_t prev_level_snapshot = kVMPressureNormal;
6733 boolean_t smoothing_window_started = FALSE;
6734 struct timeval smoothing_window_start_tstamp = {0, 0};
6735 struct timeval curr_tstamp = {0, 0};
6736 int elapsed_msecs = 0;
6737 uint64_t curr_ts = mach_absolute_time();
6738
6739 #if !CONFIG_JETSAM
6740 #define MAX_IDLE_KILLS 100 /* limit the number of idle kills allowed */
6741
6742 int idle_kill_counter = 0;
6743
6744 /*
6745 * On desktop we take this opportunity to free up memory pressure
6746 * by immediately killing idle exitable processes. We use a delay
6747 * to avoid overkill. And we impose a max counter as a fail safe
6748 * in case daemons re-launch too fast.
6749 */
6750 while ((memorystatus_vm_pressure_level != kVMPressureNormal) && (idle_kill_counter < MAX_IDLE_KILLS)) {
6751 if (memorystatus_idle_exit_from_VM() == FALSE) {
6752 /* No idle exitable processes left to kill */
6753 break;
6754 }
6755 idle_kill_counter++;
6756
6757 if (memorystatus_manual_testing_on == TRUE) {
6758 /*
6759 * Skip the delay when testing
6760 * the pressure notification scheme.
6761 */
6762 } else {
6763 delay(1000000); /* 1 second */
6764 }
6765 }
6766 #endif /* !CONFIG_JETSAM */
6767
6768 if (level_snapshot != kVMPressureNormal) {
6769
6770 /*
6771 * Check to see if we are still in the 'resting' period
6772 * after having notified all clients interested in
6773 * a particular pressure level.
6774 */
6775
6776 level_snapshot = memorystatus_vm_pressure_level;
6777
6778 if (level_snapshot == kVMPressureWarning || level_snapshot == kVMPressureUrgent) {
6779
6780 if (next_warning_notification_sent_at_ts) {
6781 if (curr_ts < next_warning_notification_sent_at_ts) {
6782 delay(INTER_NOTIFICATION_DELAY * 4 /* 1 sec */);
6783 return KERN_SUCCESS;
6784 }
6785
6786 next_warning_notification_sent_at_ts = 0;
6787 memorystatus_klist_reset_all_for_level(kVMPressureWarning);
6788 }
6789 } else if (level_snapshot == kVMPressureCritical) {
6790
6791 if (next_critical_notification_sent_at_ts) {
6792 if (curr_ts < next_critical_notification_sent_at_ts) {
6793 delay(INTER_NOTIFICATION_DELAY * 4 /* 1 sec */);
6794 return KERN_SUCCESS;
6795 }
6796 next_critical_notification_sent_at_ts = 0;
6797 memorystatus_klist_reset_all_for_level(kVMPressureCritical);
6798 }
6799 }
6800 }
6801
6802 while (1) {
6803
6804 /*
6805 * There is a race window here. But it's not clear
6806 * how much we benefit from having extra synchronization.
6807 */
6808 level_snapshot = memorystatus_vm_pressure_level;
6809
6810 if (prev_level_snapshot > level_snapshot) {
6811 /*
6812 * Pressure decreased? Let's take a little breather
6813 * and see if this condition stays.
6814 */
6815 if (smoothing_window_started == FALSE) {
6816
6817 smoothing_window_started = TRUE;
6818 microuptime(&smoothing_window_start_tstamp);
6819 }
6820
6821 microuptime(&curr_tstamp);
6822 timevalsub(&curr_tstamp, &smoothing_window_start_tstamp);
6823 elapsed_msecs = curr_tstamp.tv_sec * 1000 + curr_tstamp.tv_usec / 1000;
6824
6825 if (elapsed_msecs < VM_PRESSURE_DECREASED_SMOOTHING_PERIOD) {
6826
6827 delay(INTER_NOTIFICATION_DELAY);
6828 continue;
6829 }
6830 }
6831
6832 prev_level_snapshot = level_snapshot;
6833 smoothing_window_started = FALSE;
6834
6835 memorystatus_klist_lock();
6836 kn_max = vm_pressure_select_optimal_candidate_to_notify(&memorystatus_klist, level_snapshot, target_foreground_process);
6837
6838 if (kn_max == NULL) {
6839 memorystatus_klist_unlock();
6840
6841 /*
6842 * No more level-based clients to notify.
6843 *
6844 * Start the 'resting' window within which clients will not be re-notified.
6845 */
6846
6847 if (level_snapshot != kVMPressureNormal) {
6848 if (level_snapshot == kVMPressureWarning || level_snapshot == kVMPressureUrgent) {
6849 nanoseconds_to_absolutetime(WARNING_NOTIFICATION_RESTING_PERIOD * NSEC_PER_SEC, &curr_ts);
6850
6851 /* Next warning notification (if nothing changes) won't be sent before...*/
6852 next_warning_notification_sent_at_ts = mach_absolute_time() + curr_ts;
6853 }
6854
6855 if (level_snapshot == kVMPressureCritical) {
6856 nanoseconds_to_absolutetime(CRITICAL_NOTIFICATION_RESTING_PERIOD * NSEC_PER_SEC, &curr_ts);
6857
6858 /* Next critical notification (if nothing changes) won't be sent before...*/
6859 next_critical_notification_sent_at_ts = mach_absolute_time() + curr_ts;
6860 }
6861 }
6862 return KERN_FAILURE;
6863 }
6864
6865 target_proc = knote_get_kq(kn_max)->kq_p;
6866
6867 proc_list_lock();
6868 if (target_proc != proc_ref_locked(target_proc)) {
6869 target_proc = PROC_NULL;
6870 proc_list_unlock();
6871 memorystatus_klist_unlock();
6872 continue;
6873 }
6874 proc_list_unlock();
6875
6876 target_pid = target_proc->p_pid;
6877
6878 task = (struct task *)(target_proc->task);
6879
6880 if (level_snapshot != kVMPressureNormal) {
6881
6882 if (level_snapshot == kVMPressureWarning || level_snapshot == kVMPressureUrgent) {
6883
6884 if (is_knote_registered_modify_task_pressure_bits(kn_max, NOTE_MEMORYSTATUS_PRESSURE_WARN, task, 0, kVMPressureWarning) == TRUE) {
6885 found_candidate = TRUE;
6886 }
6887 } else {
6888 if (level_snapshot == kVMPressureCritical) {
6889
6890 if (is_knote_registered_modify_task_pressure_bits(kn_max, NOTE_MEMORYSTATUS_PRESSURE_CRITICAL, task, 0, kVMPressureCritical) == TRUE) {
6891 found_candidate = TRUE;
6892 }
6893 }
6894 }
6895 } else {
6896 if (kn_max->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_NORMAL) {
6897
6898 task_clear_has_been_notified(task, kVMPressureWarning);
6899 task_clear_has_been_notified(task, kVMPressureCritical);
6900
6901 found_candidate = TRUE;
6902 }
6903 }
6904
6905 if (found_candidate == FALSE) {
6906 proc_rele(target_proc);
6907 memorystatus_klist_unlock();
6908 continue;
6909 }
6910
6911 SLIST_FOREACH_SAFE(kn_cur, &memorystatus_klist, kn_selnext, kn_temp) {
6912
6913 int knote_pressure_level = convert_internal_pressure_level_to_dispatch_level(level_snapshot);
6914
6915 if (is_knote_registered_modify_task_pressure_bits(kn_cur, knote_pressure_level, task, 0, level_snapshot) == TRUE) {
6916 proc_t knote_proc = knote_get_kq(kn_cur)->kq_p;
6917 pid_t knote_pid = knote_proc->p_pid;
6918 if (knote_pid == target_pid) {
6919 KNOTE_DETACH(&memorystatus_klist, kn_cur);
6920 KNOTE_ATTACH(&dispatch_klist, kn_cur);
6921 }
6922 }
6923 }
6924
6925 KNOTE(&dispatch_klist, (level_snapshot != kVMPressureNormal) ? kMemorystatusPressure : kMemorystatusNoPressure);
6926
6927 SLIST_FOREACH_SAFE(kn_cur, &dispatch_klist, kn_selnext, kn_temp) {
6928 KNOTE_DETACH(&dispatch_klist, kn_cur);
6929 KNOTE_ATTACH(&memorystatus_klist, kn_cur);
6930 }
6931
6932 memorystatus_klist_unlock();
6933
6934 microuptime(&target_proc->vm_pressure_last_notify_tstamp);
6935 proc_rele(target_proc);
6936
6937 if (memorystatus_manual_testing_on == TRUE && target_foreground_process == TRUE) {
6938 break;
6939 }
6940
6941 if (memorystatus_manual_testing_on == TRUE) {
6942 /*
6943 * Testing out the pressure notification scheme.
6944 * No need for delays etc.
6945 */
6946 } else {
6947
6948 uint32_t sleep_interval = INTER_NOTIFICATION_DELAY;
6949 #if CONFIG_JETSAM
6950 unsigned int page_delta = 0;
6951 unsigned int skip_delay_page_threshold = 0;
6952
6953 assert(memorystatus_available_pages_pressure >= memorystatus_available_pages_critical_base);
6954
6955 page_delta = (memorystatus_available_pages_pressure - memorystatus_available_pages_critical_base) / 2;
6956 skip_delay_page_threshold = memorystatus_available_pages_pressure - page_delta;
6957
6958 if (memorystatus_available_pages <= skip_delay_page_threshold) {
6959 /*
6960 * We are nearing the critcal mark fast and can't afford to wait between
6961 * notifications.
6962 */
6963 sleep_interval = 0;
6964 }
6965 #endif /* CONFIG_JETSAM */
6966
6967 if (sleep_interval) {
6968 delay(sleep_interval);
6969 }
6970 }
6971 }
6972
6973 return KERN_SUCCESS;
6974 }
6975
6976 vm_pressure_level_t
6977 convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t internal_pressure_level)
6978 {
6979 vm_pressure_level_t dispatch_level = NOTE_MEMORYSTATUS_PRESSURE_NORMAL;
6980
6981 switch (internal_pressure_level) {
6982
6983 case kVMPressureNormal:
6984 {
6985 dispatch_level = NOTE_MEMORYSTATUS_PRESSURE_NORMAL;
6986 break;
6987 }
6988
6989 case kVMPressureWarning:
6990 case kVMPressureUrgent:
6991 {
6992 dispatch_level = NOTE_MEMORYSTATUS_PRESSURE_WARN;
6993 break;
6994 }
6995
6996 case kVMPressureCritical:
6997 {
6998 dispatch_level = NOTE_MEMORYSTATUS_PRESSURE_CRITICAL;
6999 break;
7000 }
7001
7002 default:
7003 break;
7004 }
7005
7006 return dispatch_level;
7007 }
7008
7009 static int
7010 sysctl_memorystatus_vm_pressure_level SYSCTL_HANDLER_ARGS
7011 {
7012 #pragma unused(arg1, arg2, oidp)
7013 #if CONFIG_EMBEDDED
7014 int error = 0;
7015
7016 error = priv_check_cred(kauth_cred_get(), PRIV_VM_PRESSURE, 0);
7017 if (error)
7018 return (error);
7019
7020 #endif /* CONFIG_EMBEDDED */
7021 vm_pressure_level_t dispatch_level = convert_internal_pressure_level_to_dispatch_level(memorystatus_vm_pressure_level);
7022
7023 return SYSCTL_OUT(req, &dispatch_level, sizeof(dispatch_level));
7024 }
7025
7026 #if DEBUG || DEVELOPMENT
7027
7028 SYSCTL_PROC(_kern, OID_AUTO, memorystatus_vm_pressure_level, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_LOCKED,
7029 0, 0, &sysctl_memorystatus_vm_pressure_level, "I", "");
7030
7031 #else /* DEBUG || DEVELOPMENT */
7032
7033 SYSCTL_PROC(_kern, OID_AUTO, memorystatus_vm_pressure_level, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_LOCKED|CTLFLAG_MASKED,
7034 0, 0, &sysctl_memorystatus_vm_pressure_level, "I", "");
7035
7036 #endif /* DEBUG || DEVELOPMENT */
7037
7038 extern int memorystatus_purge_on_warning;
7039 extern int memorystatus_purge_on_critical;
7040
7041 static int
7042 sysctl_memorypressure_manual_trigger SYSCTL_HANDLER_ARGS
7043 {
7044 #pragma unused(arg1, arg2)
7045
7046 int level = 0;
7047 int error = 0;
7048 int pressure_level = 0;
7049 int trigger_request = 0;
7050 int force_purge;
7051
7052 error = sysctl_handle_int(oidp, &level, 0, req);
7053 if (error || !req->newptr) {
7054 return (error);
7055 }
7056
7057 memorystatus_manual_testing_on = TRUE;
7058
7059 trigger_request = (level >> 16) & 0xFFFF;
7060 pressure_level = (level & 0xFFFF);
7061
7062 if (trigger_request < TEST_LOW_MEMORY_TRIGGER_ONE ||
7063 trigger_request > TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL) {
7064 return EINVAL;
7065 }
7066 switch (pressure_level) {
7067 case NOTE_MEMORYSTATUS_PRESSURE_NORMAL:
7068 case NOTE_MEMORYSTATUS_PRESSURE_WARN:
7069 case NOTE_MEMORYSTATUS_PRESSURE_CRITICAL:
7070 break;
7071 default:
7072 return EINVAL;
7073 }
7074
7075 /*
7076 * The pressure level is being set from user-space.
7077 * And user-space uses the constants in sys/event.h
7078 * So we translate those events to our internal levels here.
7079 */
7080 if (pressure_level == NOTE_MEMORYSTATUS_PRESSURE_NORMAL) {
7081
7082 memorystatus_manual_testing_level = kVMPressureNormal;
7083 force_purge = 0;
7084
7085 } else if (pressure_level == NOTE_MEMORYSTATUS_PRESSURE_WARN) {
7086
7087 memorystatus_manual_testing_level = kVMPressureWarning;
7088 force_purge = memorystatus_purge_on_warning;
7089
7090 } else if (pressure_level == NOTE_MEMORYSTATUS_PRESSURE_CRITICAL) {
7091
7092 memorystatus_manual_testing_level = kVMPressureCritical;
7093 force_purge = memorystatus_purge_on_critical;
7094 }
7095
7096 memorystatus_vm_pressure_level = memorystatus_manual_testing_level;
7097
7098 /* purge according to the new pressure level */
7099 switch (trigger_request) {
7100 case TEST_PURGEABLE_TRIGGER_ONE:
7101 case TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE:
7102 if (force_purge == 0) {
7103 /* no purging requested */
7104 break;
7105 }
7106 vm_purgeable_object_purge_one_unlocked(force_purge);
7107 break;
7108 case TEST_PURGEABLE_TRIGGER_ALL:
7109 case TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL:
7110 if (force_purge == 0) {
7111 /* no purging requested */
7112 break;
7113 }
7114 while (vm_purgeable_object_purge_one_unlocked(force_purge));
7115 break;
7116 }
7117
7118 if ((trigger_request == TEST_LOW_MEMORY_TRIGGER_ONE) ||
7119 (trigger_request == TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE)) {
7120
7121 memorystatus_update_vm_pressure(TRUE);
7122 }
7123
7124 if ((trigger_request == TEST_LOW_MEMORY_TRIGGER_ALL) ||
7125 (trigger_request == TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL)) {
7126
7127 while (memorystatus_update_vm_pressure(FALSE) == KERN_SUCCESS) {
7128 continue;
7129 }
7130 }
7131
7132 if (pressure_level == NOTE_MEMORYSTATUS_PRESSURE_NORMAL) {
7133 memorystatus_manual_testing_on = FALSE;
7134 }
7135
7136 return 0;
7137 }
7138
7139 SYSCTL_PROC(_kern, OID_AUTO, memorypressure_manual_trigger, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED,
7140 0, 0, &sysctl_memorypressure_manual_trigger, "I", "");
7141
7142
7143 extern int memorystatus_purge_on_warning;
7144 extern int memorystatus_purge_on_urgent;
7145 extern int memorystatus_purge_on_critical;
7146
7147 SYSCTL_INT(_kern, OID_AUTO, memorystatus_purge_on_warning, CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_purge_on_warning, 0, "");
7148 SYSCTL_INT(_kern, OID_AUTO, memorystatus_purge_on_urgent, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_purge_on_urgent, 0, "");
7149 SYSCTL_INT(_kern, OID_AUTO, memorystatus_purge_on_critical, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_LOCKED, &memorystatus_purge_on_critical, 0, "");
7150
7151
7152 #endif /* VM_PRESSURE_EVENTS */
7153
7154 /* Return both allocated and actual size, since there's a race between allocation and list compilation */
7155 static int
7156 memorystatus_get_priority_list(memorystatus_priority_entry_t **list_ptr, size_t *buffer_size, size_t *list_size, boolean_t size_only)
7157 {
7158 uint32_t list_count, i = 0;
7159 memorystatus_priority_entry_t *list_entry;
7160 proc_t p;
7161
7162 list_count = memorystatus_list_count;
7163 *list_size = sizeof(memorystatus_priority_entry_t) * list_count;
7164
7165 /* Just a size check? */
7166 if (size_only) {
7167 return 0;
7168 }
7169
7170 /* Otherwise, validate the size of the buffer */
7171 if (*buffer_size < *list_size) {
7172 return EINVAL;
7173 }
7174
7175 *list_ptr = (memorystatus_priority_entry_t*)kalloc(*list_size);
7176 if (!list_ptr) {
7177 return ENOMEM;
7178 }
7179
7180 memset(*list_ptr, 0, *list_size);
7181
7182 *buffer_size = *list_size;
7183 *list_size = 0;
7184
7185 list_entry = *list_ptr;
7186
7187 proc_list_lock();
7188
7189 p = memorystatus_get_first_proc_locked(&i, TRUE);
7190 while (p && (*list_size < *buffer_size)) {
7191 list_entry->pid = p->p_pid;
7192 list_entry->priority = p->p_memstat_effectivepriority;
7193 list_entry->user_data = p->p_memstat_userdata;
7194
7195 if (p->p_memstat_memlimit <= 0) {
7196 task_get_phys_footprint_limit(p->task, &list_entry->limit);
7197 } else {
7198 list_entry->limit = p->p_memstat_memlimit;
7199 }
7200
7201 list_entry->state = memorystatus_build_state(p);
7202 list_entry++;
7203
7204 *list_size += sizeof(memorystatus_priority_entry_t);
7205
7206 p = memorystatus_get_next_proc_locked(&i, p, TRUE);
7207 }
7208
7209 proc_list_unlock();
7210
7211 MEMORYSTATUS_DEBUG(1, "memorystatus_get_priority_list: returning %lu for size\n", (unsigned long)*list_size);
7212
7213 return 0;
7214 }
7215
7216 static int
7217 memorystatus_get_priority_pid(pid_t pid, user_addr_t buffer, size_t buffer_size) {
7218 int error = 0;
7219 memorystatus_priority_entry_t mp_entry;
7220
7221 /* Validate inputs */
7222 if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(memorystatus_priority_entry_t))) {
7223 return EINVAL;
7224 }
7225
7226 proc_t p = proc_find(pid);
7227 if (!p) {
7228 return ESRCH;
7229 }
7230
7231 memset (&mp_entry, 0, sizeof(memorystatus_priority_entry_t));
7232
7233 mp_entry.pid = p->p_pid;
7234 mp_entry.priority = p->p_memstat_effectivepriority;
7235 mp_entry.user_data = p->p_memstat_userdata;
7236 if (p->p_memstat_memlimit <= 0) {
7237 task_get_phys_footprint_limit(p->task, &mp_entry.limit);
7238 } else {
7239 mp_entry.limit = p->p_memstat_memlimit;
7240 }
7241 mp_entry.state = memorystatus_build_state(p);
7242
7243 proc_rele(p);
7244
7245 error = copyout(&mp_entry, buffer, buffer_size);
7246
7247 return (error);
7248 }
7249
7250 static int
7251 memorystatus_cmd_get_priority_list(pid_t pid, user_addr_t buffer, size_t buffer_size, int32_t *retval) {
7252 int error = 0;
7253 boolean_t size_only;
7254 size_t list_size;
7255
7256 /*
7257 * When a non-zero pid is provided, the 'list' has only one entry.
7258 */
7259
7260 size_only = ((buffer == USER_ADDR_NULL) ? TRUE: FALSE);
7261
7262 if (pid != 0) {
7263 list_size = sizeof(memorystatus_priority_entry_t) * 1;
7264 if (!size_only) {
7265 error = memorystatus_get_priority_pid(pid, buffer, buffer_size);
7266 }
7267 } else {
7268 memorystatus_priority_entry_t *list = NULL;
7269 error = memorystatus_get_priority_list(&list, &buffer_size, &list_size, size_only);
7270
7271 if (error == 0) {
7272 if (!size_only) {
7273 error = copyout(list, buffer, list_size);
7274 }
7275 }
7276
7277 if (list) {
7278 kfree(list, buffer_size);
7279 }
7280 }
7281
7282 if (error == 0) {
7283 *retval = list_size;
7284 }
7285
7286 return (error);
7287 }
7288
7289 static void
7290 memorystatus_clear_errors(void)
7291 {
7292 proc_t p;
7293 unsigned int i = 0;
7294
7295 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_CLEAR_ERRORS) | DBG_FUNC_START, 0, 0, 0, 0, 0);
7296
7297 proc_list_lock();
7298
7299 p = memorystatus_get_first_proc_locked(&i, TRUE);
7300 while (p) {
7301 if (p->p_memstat_state & P_MEMSTAT_ERROR) {
7302 p->p_memstat_state &= ~P_MEMSTAT_ERROR;
7303 }
7304 p = memorystatus_get_next_proc_locked(&i, p, TRUE);
7305 }
7306
7307 proc_list_unlock();
7308
7309 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_CLEAR_ERRORS) | DBG_FUNC_END, 0, 0, 0, 0, 0);
7310 }
7311
7312 #if CONFIG_JETSAM
7313 static void
7314 memorystatus_update_levels_locked(boolean_t critical_only) {
7315
7316 memorystatus_available_pages_critical = memorystatus_available_pages_critical_base;
7317
7318 /*
7319 * If there's an entry in the first bucket, we have idle processes.
7320 */
7321
7322 memstat_bucket_t *first_bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE];
7323 if (first_bucket->count) {
7324 memorystatus_available_pages_critical += memorystatus_available_pages_critical_idle_offset;
7325
7326 if (memorystatus_available_pages_critical > memorystatus_available_pages_pressure ) {
7327 /*
7328 * The critical threshold must never exceed the pressure threshold
7329 */
7330 memorystatus_available_pages_critical = memorystatus_available_pages_pressure;
7331 }
7332 }
7333
7334 #if DEBUG || DEVELOPMENT
7335 if (memorystatus_jetsam_policy & kPolicyDiagnoseActive) {
7336 memorystatus_available_pages_critical += memorystatus_jetsam_policy_offset_pages_diagnostic;
7337
7338 if (memorystatus_available_pages_critical > memorystatus_available_pages_pressure ) {
7339 /*
7340 * The critical threshold must never exceed the pressure threshold
7341 */
7342 memorystatus_available_pages_critical = memorystatus_available_pages_pressure;
7343 }
7344 }
7345 #endif /* DEBUG || DEVELOPMENT */
7346
7347 if (memorystatus_jetsam_policy & kPolicyMoreFree) {
7348 memorystatus_available_pages_critical += memorystatus_policy_more_free_offset_pages;
7349 }
7350
7351 if (critical_only) {
7352 return;
7353 }
7354
7355 #if VM_PRESSURE_EVENTS
7356 memorystatus_available_pages_pressure = (pressure_threshold_percentage / delta_percentage) * memorystatus_delta;
7357 #if DEBUG || DEVELOPMENT
7358 if (memorystatus_jetsam_policy & kPolicyDiagnoseActive) {
7359 memorystatus_available_pages_pressure += memorystatus_jetsam_policy_offset_pages_diagnostic;
7360 }
7361 #endif
7362 #endif
7363 }
7364
7365
7366 static int
7367 sysctl_kern_memorystatus_policy_more_free SYSCTL_HANDLER_ARGS
7368 {
7369 #pragma unused(arg1, arg2, oidp)
7370 int error = 0, more_free = 0;
7371
7372 /*
7373 * TODO: Enable this privilege check?
7374 *
7375 * error = priv_check_cred(kauth_cred_get(), PRIV_VM_JETSAM, 0);
7376 * if (error)
7377 * return (error);
7378 */
7379
7380 error = sysctl_handle_int(oidp, &more_free, 0, req);
7381 if (error || !req->newptr)
7382 return (error);
7383
7384 if ((more_free && ((memorystatus_jetsam_policy & kPolicyMoreFree) == kPolicyMoreFree)) ||
7385 (!more_free && ((memorystatus_jetsam_policy & kPolicyMoreFree) == 0))) {
7386
7387 /*
7388 * No change in state.
7389 */
7390 return 0;
7391 }
7392
7393 proc_list_lock();
7394
7395 if (more_free) {
7396 memorystatus_jetsam_policy |= kPolicyMoreFree;
7397 } else {
7398 memorystatus_jetsam_policy &= ~kPolicyMoreFree;
7399 }
7400
7401 memorystatus_update_levels_locked(TRUE);
7402
7403 proc_list_unlock();
7404
7405 return 0;
7406 }
7407 SYSCTL_PROC(_kern, OID_AUTO, memorystatus_policy_more_free, CTLTYPE_INT|CTLFLAG_WR|CTLFLAG_LOCKED|CTLFLAG_MASKED,
7408 0, 0, &sysctl_kern_memorystatus_policy_more_free, "I", "");
7409
7410 #endif /* CONFIG_JETSAM */
7411
7412 /*
7413 * Get the at_boot snapshot
7414 */
7415 static int
7416 memorystatus_get_at_boot_snapshot(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only) {
7417 size_t input_size = *snapshot_size;
7418
7419 /*
7420 * The at_boot snapshot has no entry list.
7421 */
7422 *snapshot_size = sizeof(memorystatus_jetsam_snapshot_t);
7423
7424 if (size_only) {
7425 return 0;
7426 }
7427
7428 /*
7429 * Validate the size of the snapshot buffer
7430 */
7431 if (input_size < *snapshot_size) {
7432 return EINVAL;
7433 }
7434
7435 /*
7436 * Update the notification_time only
7437 */
7438 memorystatus_at_boot_snapshot.notification_time = mach_absolute_time();
7439 *snapshot = &memorystatus_at_boot_snapshot;
7440
7441 MEMORYSTATUS_DEBUG(7, "memorystatus_get_at_boot_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%d)\n",
7442 (long)input_size, (long)*snapshot_size, 0);
7443 return 0;
7444 }
7445
7446 static int
7447 memorystatus_get_on_demand_snapshot(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only) {
7448 size_t input_size = *snapshot_size;
7449 uint32_t ods_list_count = memorystatus_list_count;
7450 memorystatus_jetsam_snapshot_t *ods = NULL; /* The on_demand snapshot buffer */
7451
7452 *snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + (sizeof(memorystatus_jetsam_snapshot_entry_t) * (ods_list_count));
7453
7454 if (size_only) {
7455 return 0;
7456 }
7457
7458 /*
7459 * Validate the size of the snapshot buffer.
7460 * This is inherently racey. May want to revisit
7461 * this error condition and trim the output when
7462 * it doesn't fit.
7463 */
7464 if (input_size < *snapshot_size) {
7465 return EINVAL;
7466 }
7467
7468 /*
7469 * Allocate and initialize a snapshot buffer.
7470 */
7471 ods = (memorystatus_jetsam_snapshot_t *)kalloc(*snapshot_size);
7472 if (!ods) {
7473 return (ENOMEM);
7474 }
7475
7476 memset(ods, 0, *snapshot_size);
7477
7478 proc_list_lock();
7479 memorystatus_init_jetsam_snapshot_locked(ods, ods_list_count);
7480 proc_list_unlock();
7481
7482 /*
7483 * Return the kernel allocated, on_demand buffer.
7484 * The caller of this routine will copy the data out
7485 * to user space and then free the kernel allocated
7486 * buffer.
7487 */
7488 *snapshot = ods;
7489
7490 MEMORYSTATUS_DEBUG(7, "memorystatus_get_on_demand_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
7491 (long)input_size, (long)*snapshot_size, (long)ods_list_count);
7492
7493 return 0;
7494 }
7495
7496 static int
7497 memorystatus_get_jetsam_snapshot(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only) {
7498 size_t input_size = *snapshot_size;
7499
7500 if (memorystatus_jetsam_snapshot_count > 0) {
7501 *snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + (sizeof(memorystatus_jetsam_snapshot_entry_t) * (memorystatus_jetsam_snapshot_count));
7502 } else {
7503 *snapshot_size = 0;
7504 }
7505
7506 if (size_only) {
7507 return 0;
7508 }
7509
7510 if (input_size < *snapshot_size) {
7511 return EINVAL;
7512 }
7513
7514 *snapshot = memorystatus_jetsam_snapshot;
7515
7516 MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
7517 (long)input_size, (long)*snapshot_size, (long)memorystatus_jetsam_snapshot_count);
7518
7519 return 0;
7520 }
7521
7522
7523 static int
7524 memorystatus_cmd_get_jetsam_snapshot(int32_t flags, user_addr_t buffer, size_t buffer_size, int32_t *retval) {
7525 int error = EINVAL;
7526 boolean_t size_only;
7527 boolean_t is_default_snapshot = FALSE;
7528 boolean_t is_on_demand_snapshot = FALSE;
7529 boolean_t is_at_boot_snapshot = FALSE;
7530 memorystatus_jetsam_snapshot_t *snapshot;
7531
7532 size_only = ((buffer == USER_ADDR_NULL) ? TRUE : FALSE);
7533
7534 if (flags == 0) {
7535 /* Default */
7536 is_default_snapshot = TRUE;
7537 error = memorystatus_get_jetsam_snapshot(&snapshot, &buffer_size, size_only);
7538 } else {
7539 if (flags & ~(MEMORYSTATUS_SNAPSHOT_ON_DEMAND | MEMORYSTATUS_SNAPSHOT_AT_BOOT)) {
7540 /*
7541 * Unsupported bit set in flag.
7542 */
7543 return EINVAL;
7544 }
7545
7546 if ((flags & (MEMORYSTATUS_SNAPSHOT_ON_DEMAND | MEMORYSTATUS_SNAPSHOT_AT_BOOT)) ==
7547 (MEMORYSTATUS_SNAPSHOT_ON_DEMAND | MEMORYSTATUS_SNAPSHOT_AT_BOOT)) {
7548 /*
7549 * Can't have both set at the same time.
7550 */
7551 return EINVAL;
7552 }
7553
7554 if (flags & MEMORYSTATUS_SNAPSHOT_ON_DEMAND) {
7555 is_on_demand_snapshot = TRUE;
7556 /*
7557 * When not requesting the size only, the following call will allocate
7558 * an on_demand snapshot buffer, which is freed below.
7559 */
7560 error = memorystatus_get_on_demand_snapshot(&snapshot, &buffer_size, size_only);
7561
7562 } else if (flags & MEMORYSTATUS_SNAPSHOT_AT_BOOT) {
7563 is_at_boot_snapshot = TRUE;
7564 error = memorystatus_get_at_boot_snapshot(&snapshot, &buffer_size, size_only);
7565 } else {
7566 /*
7567 * Invalid flag setting.
7568 */
7569 return EINVAL;
7570 }
7571 }
7572
7573 if (error) {
7574 goto out;
7575 }
7576
7577 /*
7578 * Copy the data out to user space and clear the snapshot buffer.
7579 * If working with the jetsam snapshot,
7580 * clearing the buffer means, reset the count.
7581 * If working with an on_demand snapshot
7582 * clearing the buffer means, free it.
7583 * If working with the at_boot snapshot
7584 * there is nothing to clear or update.
7585 */
7586 if (!size_only) {
7587 if ((error = copyout(snapshot, buffer, buffer_size)) == 0) {
7588 if (is_default_snapshot) {
7589 /*
7590 * The jetsam snapshot is never freed, its count is simply reset.
7591 */
7592 proc_list_lock();
7593 snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0;
7594 memorystatus_jetsam_snapshot_last_timestamp = 0;
7595 proc_list_unlock();
7596 }
7597 }
7598
7599 if (is_on_demand_snapshot) {
7600 /*
7601 * The on_demand snapshot is always freed,
7602 * even if the copyout failed.
7603 */
7604 if(snapshot) {
7605 kfree(snapshot, buffer_size);
7606 }
7607 }
7608 }
7609
7610 if (error == 0) {
7611 *retval = buffer_size;
7612 }
7613 out:
7614 return error;
7615 }
7616
7617 /*
7618 * Routine: memorystatus_cmd_grp_set_properties
7619 * Purpose: Update properties for a group of processes.
7620 *
7621 * Supported Properties:
7622 * [priority]
7623 * Move each process out of its effective priority
7624 * band and into a new priority band.
7625 * Maintains relative order from lowest to highest priority.
7626 * In single band, maintains relative order from head to tail.
7627 *
7628 * eg: before [effectivepriority | pid]
7629 * [18 | p101 ]
7630 * [17 | p55, p67, p19 ]
7631 * [12 | p103 p10 ]
7632 * [ 7 | p25 ]
7633 * [ 0 | p71, p82, ]
7634 *
7635 * after [ new band | pid]
7636 * [ xxx | p71, p82, p25, p103, p10, p55, p67, p19, p101]
7637 *
7638 * Returns: 0 on success, else non-zero.
7639 *
7640 * Caveat: We know there is a race window regarding recycled pids.
7641 * A process could be killed before the kernel can act on it here.
7642 * If a pid cannot be found in any of the jetsam priority bands,
7643 * then we simply ignore it. No harm.
7644 * But, if the pid has been recycled then it could be an issue.
7645 * In that scenario, we might move an unsuspecting process to the new
7646 * priority band. It's not clear how the kernel can safeguard
7647 * against this, but it would be an extremely rare case anyway.
7648 * The caller of this api might avoid such race conditions by
7649 * ensuring that the processes passed in the pid list are suspended.
7650 */
7651
7652
7653 /* This internal structure can expand when we add support for more properties */
7654 typedef struct memorystatus_internal_properties
7655 {
7656 proc_t proc;
7657 int32_t priority; /* see memorytstatus_priority_entry_t : priority */
7658 } memorystatus_internal_properties_t;
7659
7660
7661 static int
7662 memorystatus_cmd_grp_set_properties(int32_t flags, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval) {
7663
7664 #pragma unused (flags)
7665
7666 /*
7667 * We only handle setting priority
7668 * per process
7669 */
7670
7671 int error = 0;
7672 memorystatus_priority_entry_t *entries = NULL;
7673 uint32_t entry_count = 0;
7674
7675 /* This will be the ordered proc list */
7676 memorystatus_internal_properties_t *table = NULL;
7677 size_t table_size = 0;
7678 uint32_t table_count = 0;
7679
7680 uint32_t i = 0;
7681 uint32_t bucket_index = 0;
7682 boolean_t head_insert;
7683 int32_t new_priority;
7684
7685 proc_t p;
7686
7687 /* Verify inputs */
7688 if ((buffer == USER_ADDR_NULL) || (buffer_size == 0) || ((buffer_size % sizeof(memorystatus_priority_entry_t)) != 0)) {
7689 error = EINVAL;
7690 goto out;
7691 }
7692
7693 entry_count = (buffer_size / sizeof(memorystatus_priority_entry_t));
7694 if ((entries = (memorystatus_priority_entry_t *)kalloc(buffer_size)) == NULL) {
7695 error = ENOMEM;
7696 goto out;
7697 }
7698
7699 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_GRP_SET_PROP) | DBG_FUNC_START, entry_count, 0, 0, 0, 0);
7700
7701 if ((error = copyin(buffer, entries, buffer_size)) != 0) {
7702 goto out;
7703 }
7704
7705 /* Verify sanity of input priorities */
7706 for (i=0; i < entry_count; i++) {
7707 if (entries[i].priority == -1) {
7708 /* Use as shorthand for default priority */
7709 entries[i].priority = JETSAM_PRIORITY_DEFAULT;
7710 } else if ((entries[i].priority == system_procs_aging_band) || (entries[i].priority == applications_aging_band)) {
7711 /* Both the aging bands are reserved for internal use;
7712 * if requested, adjust to JETSAM_PRIORITY_IDLE. */
7713 entries[i].priority = JETSAM_PRIORITY_IDLE;
7714 } else if (entries[i].priority == JETSAM_PRIORITY_IDLE_HEAD) {
7715 /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle
7716 * queue */
7717 /* Deal with this later */
7718 } else if ((entries[i].priority < 0) || (entries[i].priority >= MEMSTAT_BUCKET_COUNT)) {
7719 /* Sanity check */
7720 error = EINVAL;
7721 goto out;
7722 }
7723 }
7724
7725 table_size = sizeof(memorystatus_internal_properties_t) * entry_count;
7726 if ( (table = (memorystatus_internal_properties_t *)kalloc(table_size)) == NULL) {
7727 error = ENOMEM;
7728 goto out;
7729 }
7730 memset(table, 0, table_size);
7731
7732
7733 /*
7734 * For each jetsam bucket entry, spin through the input property list.
7735 * When a matching pid is found, populate an adjacent table with the
7736 * appropriate proc pointer and new property values.
7737 * This traversal automatically preserves order from lowest
7738 * to highest priority.
7739 */
7740
7741 bucket_index=0;
7742
7743 proc_list_lock();
7744
7745 /* Create the ordered table */
7746 p = memorystatus_get_first_proc_locked(&bucket_index, TRUE);
7747 while (p && (table_count < entry_count)) {
7748 for (i=0; i < entry_count; i++ ) {
7749 if (p->p_pid == entries[i].pid) {
7750 /* Build the table data */
7751 table[table_count].proc = p;
7752 table[table_count].priority = entries[i].priority;
7753 table_count++;
7754 break;
7755 }
7756 }
7757 p = memorystatus_get_next_proc_locked(&bucket_index, p, TRUE);
7758 }
7759
7760 /* We now have ordered list of procs ready to move */
7761 for (i=0; i < table_count; i++) {
7762 p = table[i].proc;
7763 assert(p != NULL);
7764
7765 /* Allow head inserts -- but relative order is now */
7766 if (table[i].priority == JETSAM_PRIORITY_IDLE_HEAD) {
7767 new_priority = JETSAM_PRIORITY_IDLE;
7768 head_insert = true;
7769 } else {
7770 new_priority = table[i].priority;
7771 head_insert = false;
7772 }
7773
7774 /* Not allowed */
7775 if (p->p_memstat_state & P_MEMSTAT_INTERNAL) {
7776 continue;
7777 }
7778
7779 /*
7780 * Take appropriate steps if moving proc out of
7781 * either of the aging bands.
7782 */
7783 if ((p->p_memstat_effectivepriority == system_procs_aging_band) || (p->p_memstat_effectivepriority == applications_aging_band)) {
7784 memorystatus_invalidate_idle_demotion_locked(p, TRUE);
7785 }
7786
7787 memorystatus_update_priority_locked(p, new_priority, head_insert, false);
7788 }
7789
7790 proc_list_unlock();
7791
7792 /*
7793 * if (table_count != entry_count)
7794 * then some pids were not found in a jetsam band.
7795 * harmless but interesting...
7796 */
7797 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_GRP_SET_PROP) | DBG_FUNC_END, entry_count, table_count, 0, 0, 0);
7798
7799 out:
7800 if (entries)
7801 kfree(entries, buffer_size);
7802 if (table)
7803 kfree(table, table_size);
7804
7805 return (error);
7806 }
7807
7808
7809 /*
7810 * This routine is used to update a process's jetsam priority position and stored user_data.
7811 * It is not used for the setting of memory limits, which is why the last 6 args to the
7812 * memorystatus_update() call are 0 or FALSE.
7813 */
7814
7815 static int
7816 memorystatus_cmd_set_priority_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval) {
7817 int error = 0;
7818 memorystatus_priority_properties_t mpp_entry;
7819
7820 /* Validate inputs */
7821 if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(memorystatus_priority_properties_t))) {
7822 return EINVAL;
7823 }
7824
7825 error = copyin(buffer, &mpp_entry, buffer_size);
7826
7827 if (error == 0) {
7828 proc_t p;
7829
7830 p = proc_find(pid);
7831 if (!p) {
7832 return ESRCH;
7833 }
7834
7835 if (p->p_memstat_state & P_MEMSTAT_INTERNAL) {
7836 proc_rele(p);
7837 return EPERM;
7838 }
7839
7840 error = memorystatus_update(p, mpp_entry.priority, mpp_entry.user_data, FALSE, FALSE, 0, 0, FALSE, FALSE);
7841 proc_rele(p);
7842 }
7843
7844 return(error);
7845 }
7846
7847 static int
7848 memorystatus_cmd_set_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval) {
7849 int error = 0;
7850 memorystatus_memlimit_properties_t mmp_entry;
7851
7852 /* Validate inputs */
7853 if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(memorystatus_memlimit_properties_t))) {
7854 return EINVAL;
7855 }
7856
7857 error = copyin(buffer, &mmp_entry, buffer_size);
7858
7859 if (error == 0) {
7860 error = memorystatus_set_memlimit_properties(pid, &mmp_entry);
7861 }
7862
7863 return(error);
7864 }
7865
7866 /*
7867 * When getting the memlimit settings, we can't simply call task_get_phys_footprint_limit().
7868 * That gets the proc's cached memlimit and there is no guarantee that the active/inactive
7869 * limits will be the same in the no-limit case. Instead we convert limits <= 0 using
7870 * task_convert_phys_footprint_limit(). It computes the same limit value that would be written
7871 * to the task's ledgers via task_set_phys_footprint_limit().
7872 */
7873 static int
7874 memorystatus_cmd_get_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval) {
7875 int error = 0;
7876 memorystatus_memlimit_properties_t mmp_entry;
7877
7878 /* Validate inputs */
7879 if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(memorystatus_memlimit_properties_t))) {
7880 return EINVAL;
7881 }
7882
7883 memset (&mmp_entry, 0, sizeof(memorystatus_memlimit_properties_t));
7884
7885 proc_t p = proc_find(pid);
7886 if (!p) {
7887 return ESRCH;
7888 }
7889
7890 /*
7891 * Get the active limit and attributes.
7892 * No locks taken since we hold a reference to the proc.
7893 */
7894
7895 if (p->p_memstat_memlimit_active > 0 ) {
7896 mmp_entry.memlimit_active = p->p_memstat_memlimit_active;
7897 } else {
7898 task_convert_phys_footprint_limit(-1, &mmp_entry.memlimit_active);
7899 }
7900
7901 if (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL) {
7902 mmp_entry.memlimit_active_attr |= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL;
7903 }
7904
7905 /*
7906 * Get the inactive limit and attributes
7907 */
7908 if (p->p_memstat_memlimit_inactive <= 0) {
7909 task_convert_phys_footprint_limit(-1, &mmp_entry.memlimit_inactive);
7910 } else {
7911 mmp_entry.memlimit_inactive = p->p_memstat_memlimit_inactive;
7912 }
7913 if (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) {
7914 mmp_entry.memlimit_inactive_attr |= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL;
7915 }
7916 proc_rele(p);
7917
7918 error = copyout(&mmp_entry, buffer, buffer_size);
7919
7920 return(error);
7921 }
7922
7923
7924 /*
7925 * SPI for kbd - pr24956468
7926 * This is a very simple snapshot that calculates how much a
7927 * process's phys_footprint exceeds a specific memory limit.
7928 * Only the inactive memory limit is supported for now.
7929 * The delta is returned as bytes in excess or zero.
7930 */
7931 static int
7932 memorystatus_cmd_get_memlimit_excess_np(pid_t pid, uint32_t flags, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval) {
7933 int error = 0;
7934 uint64_t footprint_in_bytes = 0;
7935 uint64_t delta_in_bytes = 0;
7936 int32_t memlimit_mb = 0;
7937 uint64_t memlimit_bytes = 0;
7938
7939 /* Validate inputs */
7940 if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(uint64_t)) || (flags != 0)) {
7941 return EINVAL;
7942 }
7943
7944 proc_t p = proc_find(pid);
7945 if (!p) {
7946 return ESRCH;
7947 }
7948
7949 /*
7950 * Get the inactive limit.
7951 * No locks taken since we hold a reference to the proc.
7952 */
7953
7954 if (p->p_memstat_memlimit_inactive <= 0) {
7955 task_convert_phys_footprint_limit(-1, &memlimit_mb);
7956 } else {
7957 memlimit_mb = p->p_memstat_memlimit_inactive;
7958 }
7959
7960 footprint_in_bytes = get_task_phys_footprint(p->task);
7961
7962 proc_rele(p);
7963
7964 memlimit_bytes = memlimit_mb * 1024 * 1024; /* MB to bytes */
7965
7966 /*
7967 * Computed delta always returns >= 0 bytes
7968 */
7969 if (footprint_in_bytes > memlimit_bytes) {
7970 delta_in_bytes = footprint_in_bytes - memlimit_bytes;
7971 }
7972
7973 error = copyout(&delta_in_bytes, buffer, sizeof(delta_in_bytes));
7974
7975 return(error);
7976 }
7977
7978
7979 static int
7980 memorystatus_cmd_get_pressure_status(int32_t *retval) {
7981 int error;
7982
7983 /* Need privilege for check */
7984 error = priv_check_cred(kauth_cred_get(), PRIV_VM_PRESSURE, 0);
7985 if (error) {
7986 return (error);
7987 }
7988
7989 /* Inherently racy, so it's not worth taking a lock here */
7990 *retval = (kVMPressureNormal != memorystatus_vm_pressure_level) ? 1 : 0;
7991
7992 return error;
7993 }
7994
7995 int
7996 memorystatus_get_pressure_status_kdp() {
7997 return (kVMPressureNormal != memorystatus_vm_pressure_level) ? 1 : 0;
7998 }
7999
8000 /*
8001 * Every process, including a P_MEMSTAT_INTERNAL process (currently only pid 1), is allowed to set a HWM.
8002 *
8003 * This call is inflexible -- it does not distinguish between active/inactive, fatal/non-fatal
8004 * So, with 2-level HWM preserving previous behavior will map as follows.
8005 * - treat the limit passed in as both an active and inactive limit.
8006 * - treat the is_fatal_limit flag as though it applies to both active and inactive limits.
8007 *
8008 * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK
8009 * - the is_fatal_limit is FALSE, meaning the active and inactive limits are non-fatal/soft
8010 * - so mapping is (active/non-fatal, inactive/non-fatal)
8011 *
8012 * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT
8013 * - the is_fatal_limit is TRUE, meaning the process's active and inactive limits are fatal/hard
8014 * - so mapping is (active/fatal, inactive/fatal)
8015 */
8016
8017 #if CONFIG_JETSAM
8018 static int
8019 memorystatus_cmd_set_jetsam_memory_limit(pid_t pid, int32_t high_water_mark, __unused int32_t *retval, boolean_t is_fatal_limit) {
8020 int error = 0;
8021 memorystatus_memlimit_properties_t entry;
8022
8023 entry.memlimit_active = high_water_mark;
8024 entry.memlimit_active_attr = 0;
8025 entry.memlimit_inactive = high_water_mark;
8026 entry.memlimit_inactive_attr = 0;
8027
8028 if (is_fatal_limit == TRUE) {
8029 entry.memlimit_active_attr |= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL;
8030 entry.memlimit_inactive_attr |= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL;
8031 }
8032
8033 error = memorystatus_set_memlimit_properties(pid, &entry);
8034 return (error);
8035 }
8036 #endif /* CONFIG_JETSAM */
8037
8038 static int
8039 memorystatus_set_memlimit_properties(pid_t pid, memorystatus_memlimit_properties_t *entry) {
8040
8041 int32_t memlimit_active;
8042 boolean_t memlimit_active_is_fatal;
8043 int32_t memlimit_inactive;
8044 boolean_t memlimit_inactive_is_fatal;
8045 uint32_t valid_attrs = 0;
8046 int error = 0;
8047
8048 proc_t p = proc_find(pid);
8049 if (!p) {
8050 return ESRCH;
8051 }
8052
8053 /*
8054 * Check for valid attribute flags.
8055 */
8056 valid_attrs |= (MEMORYSTATUS_MEMLIMIT_ATTR_FATAL);
8057 if ((entry->memlimit_active_attr & (~valid_attrs)) != 0) {
8058 proc_rele(p);
8059 return EINVAL;
8060 }
8061 if ((entry->memlimit_inactive_attr & (~valid_attrs)) != 0) {
8062 proc_rele(p);
8063 return EINVAL;
8064 }
8065
8066 /*
8067 * Setup the active memlimit properties
8068 */
8069 memlimit_active = entry->memlimit_active;
8070 if (entry->memlimit_active_attr & MEMORYSTATUS_MEMLIMIT_ATTR_FATAL) {
8071 memlimit_active_is_fatal = TRUE;
8072 } else {
8073 memlimit_active_is_fatal = FALSE;
8074 }
8075
8076 /*
8077 * Setup the inactive memlimit properties
8078 */
8079 memlimit_inactive = entry->memlimit_inactive;
8080 if (entry->memlimit_inactive_attr & MEMORYSTATUS_MEMLIMIT_ATTR_FATAL) {
8081 memlimit_inactive_is_fatal = TRUE;
8082 } else {
8083 memlimit_inactive_is_fatal = FALSE;
8084 }
8085
8086 /*
8087 * Setting a limit of <= 0 implies that the process has no
8088 * high-water-mark and has no per-task-limit. That means
8089 * the system_wide task limit is in place, which by the way,
8090 * is always fatal.
8091 */
8092
8093 if (memlimit_active <= 0) {
8094 /*
8095 * Enforce the fatal system_wide task limit while process is active.
8096 */
8097 memlimit_active = -1;
8098 memlimit_active_is_fatal = TRUE;
8099 }
8100
8101 if (memlimit_inactive <= 0) {
8102 /*
8103 * Enforce the fatal system_wide task limit while process is inactive.
8104 */
8105 memlimit_inactive = -1;
8106 memlimit_inactive_is_fatal = TRUE;
8107 }
8108
8109 proc_list_lock();
8110
8111 /*
8112 * Store the active limit variants in the proc.
8113 */
8114 SET_ACTIVE_LIMITS_LOCKED(p, memlimit_active, memlimit_active_is_fatal);
8115
8116 /*
8117 * Store the inactive limit variants in the proc.
8118 */
8119 SET_INACTIVE_LIMITS_LOCKED(p, memlimit_inactive, memlimit_inactive_is_fatal);
8120
8121 /*
8122 * Enforce appropriate limit variant by updating the cached values
8123 * and writing the ledger.
8124 * Limit choice is based on process active/inactive state.
8125 */
8126
8127 if (memorystatus_highwater_enabled) {
8128 boolean_t is_fatal;
8129 boolean_t use_active;
8130
8131 if (proc_jetsam_state_is_active_locked(p) == TRUE) {
8132 CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal);
8133 use_active = TRUE;
8134 } else {
8135 CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal);
8136 use_active = FALSE;
8137 }
8138
8139 /* Enforce the limit by writing to the ledgers */
8140 error = (task_set_phys_footprint_limit_internal(p->task, ((p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1), NULL, use_active, is_fatal) == 0) ? 0 : EINVAL;
8141
8142 MEMORYSTATUS_DEBUG(3, "memorystatus_set_memlimit_properties: new limit on pid %d (%dMB %s) current priority (%d) dirty_state?=0x%x %s\n",
8143 p->p_pid, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1),
8144 (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF"), p->p_memstat_effectivepriority, p->p_memstat_dirty,
8145 (p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean") : ""));
8146 DTRACE_MEMORYSTATUS2(memorystatus_set_memlimit, proc_t, p, int32_t, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1));
8147 }
8148
8149 proc_list_unlock();
8150 proc_rele(p);
8151
8152 return error;
8153 }
8154
8155 /*
8156 * Returns the jetsam priority (effective or requested) of the process
8157 * associated with this task.
8158 */
8159 int
8160 proc_get_memstat_priority(proc_t p, boolean_t effective_priority)
8161 {
8162 if (p) {
8163 if (effective_priority) {
8164 return p->p_memstat_effectivepriority;
8165 } else {
8166 return p->p_memstat_requestedpriority;
8167 }
8168 }
8169 return 0;
8170 }
8171
8172 int
8173 memorystatus_control(struct proc *p __unused, struct memorystatus_control_args *args, int *ret) {
8174 int error = EINVAL;
8175 os_reason_t jetsam_reason = OS_REASON_NULL;
8176
8177 #if !CONFIG_JETSAM
8178 #pragma unused(ret)
8179 #pragma unused(jetsam_reason)
8180 #endif
8181
8182 /* Need to be root or have entitlement */
8183 if (!kauth_cred_issuser(kauth_cred_get()) && !IOTaskHasEntitlement(current_task(), MEMORYSTATUS_ENTITLEMENT)) {
8184 error = EPERM;
8185 goto out;
8186 }
8187
8188 /*
8189 * Sanity check.
8190 * Do not enforce it for snapshots.
8191 */
8192 if (args->command != MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT) {
8193 if (args->buffersize > MEMORYSTATUS_BUFFERSIZE_MAX) {
8194 error = EINVAL;
8195 goto out;
8196 }
8197 }
8198
8199 switch (args->command) {
8200 case MEMORYSTATUS_CMD_GET_PRIORITY_LIST:
8201 error = memorystatus_cmd_get_priority_list(args->pid, args->buffer, args->buffersize, ret);
8202 break;
8203 case MEMORYSTATUS_CMD_SET_PRIORITY_PROPERTIES:
8204 error = memorystatus_cmd_set_priority_properties(args->pid, args->buffer, args->buffersize, ret);
8205 break;
8206 case MEMORYSTATUS_CMD_SET_MEMLIMIT_PROPERTIES:
8207 error = memorystatus_cmd_set_memlimit_properties(args->pid, args->buffer, args->buffersize, ret);
8208 break;
8209 case MEMORYSTATUS_CMD_GET_MEMLIMIT_PROPERTIES:
8210 error = memorystatus_cmd_get_memlimit_properties(args->pid, args->buffer, args->buffersize, ret);
8211 break;
8212 case MEMORYSTATUS_CMD_GET_MEMLIMIT_EXCESS:
8213 error = memorystatus_cmd_get_memlimit_excess_np(args->pid, args->flags, args->buffer, args->buffersize, ret);
8214 break;
8215 case MEMORYSTATUS_CMD_GRP_SET_PROPERTIES:
8216 error = memorystatus_cmd_grp_set_properties((int32_t)args->flags, args->buffer, args->buffersize, ret);
8217 break;
8218 case MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT:
8219 error = memorystatus_cmd_get_jetsam_snapshot((int32_t)args->flags, args->buffer, args->buffersize, ret);
8220 break;
8221 case MEMORYSTATUS_CMD_GET_PRESSURE_STATUS:
8222 error = memorystatus_cmd_get_pressure_status(ret);
8223 break;
8224 #if CONFIG_JETSAM
8225 case MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK:
8226 /*
8227 * This call does not distinguish between active and inactive limits.
8228 * Default behavior in 2-level HWM world is to set both.
8229 * Non-fatal limit is also assumed for both.
8230 */
8231 error = memorystatus_cmd_set_jetsam_memory_limit(args->pid, (int32_t)args->flags, ret, FALSE);
8232 break;
8233 case MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT:
8234 /*
8235 * This call does not distinguish between active and inactive limits.
8236 * Default behavior in 2-level HWM world is to set both.
8237 * Fatal limit is also assumed for both.
8238 */
8239 error = memorystatus_cmd_set_jetsam_memory_limit(args->pid, (int32_t)args->flags, ret, TRUE);
8240 break;
8241 #endif /* CONFIG_JETSAM */
8242 /* Test commands */
8243 #if DEVELOPMENT || DEBUG
8244 case MEMORYSTATUS_CMD_TEST_JETSAM:
8245 jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_GENERIC);
8246 if (jetsam_reason == OS_REASON_NULL) {
8247 printf("memorystatus_control: failed to allocate jetsam reason\n");
8248 }
8249
8250 error = memorystatus_kill_process_sync(args->pid, kMemorystatusKilled, jetsam_reason) ? 0 : EINVAL;
8251 break;
8252 case MEMORYSTATUS_CMD_TEST_JETSAM_SORT:
8253 error = memorystatus_cmd_test_jetsam_sort(args->pid, (int32_t)args->flags);
8254 break;
8255 #if CONFIG_JETSAM
8256 case MEMORYSTATUS_CMD_SET_JETSAM_PANIC_BITS:
8257 error = memorystatus_cmd_set_panic_bits(args->buffer, args->buffersize);
8258 break;
8259 #endif /* CONFIG_JETSAM */
8260 #else /* DEVELOPMENT || DEBUG */
8261 #pragma unused(jetsam_reason)
8262 #endif /* DEVELOPMENT || DEBUG */
8263 case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_ENABLE:
8264 if (memorystatus_aggressive_jetsam_lenient_allowed == FALSE) {
8265 #if DEVELOPMENT || DEBUG
8266 printf("Enabling Lenient Mode\n");
8267 #endif /* DEVELOPMENT || DEBUG */
8268
8269 memorystatus_aggressive_jetsam_lenient_allowed = TRUE;
8270 memorystatus_aggressive_jetsam_lenient = TRUE;
8271 error = 0;
8272 }
8273 break;
8274 case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_DISABLE:
8275 #if DEVELOPMENT || DEBUG
8276 printf("Disabling Lenient mode\n");
8277 #endif /* DEVELOPMENT || DEBUG */
8278 memorystatus_aggressive_jetsam_lenient_allowed = FALSE;
8279 memorystatus_aggressive_jetsam_lenient = FALSE;
8280 error = 0;
8281 break;
8282 case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_ENABLE:
8283 case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_DISABLE:
8284 error = memorystatus_low_mem_privileged_listener(args->command);
8285 break;
8286
8287 case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE:
8288 case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE:
8289 error = memorystatus_update_inactive_jetsam_priority_band(args->pid, args->command, args->flags ? TRUE : FALSE);
8290 break;
8291
8292 default:
8293 break;
8294 }
8295
8296 out:
8297 return error;
8298 }
8299
8300
8301 static int
8302 filt_memorystatusattach(struct knote *kn, __unused struct kevent_internal_s *kev)
8303 {
8304 int error;
8305
8306 kn->kn_flags |= EV_CLEAR;
8307 error = memorystatus_knote_register(kn);
8308 if (error) {
8309 kn->kn_flags = EV_ERROR;
8310 kn->kn_data = error;
8311 }
8312 return 0;
8313 }
8314
8315 static void
8316 filt_memorystatusdetach(struct knote *kn)
8317 {
8318 memorystatus_knote_unregister(kn);
8319 }
8320
8321 static int
8322 filt_memorystatus(struct knote *kn __unused, long hint)
8323 {
8324 if (hint) {
8325 switch (hint) {
8326 case kMemorystatusNoPressure:
8327 if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_NORMAL) {
8328 kn->kn_fflags = NOTE_MEMORYSTATUS_PRESSURE_NORMAL;
8329 }
8330 break;
8331 case kMemorystatusPressure:
8332 if (memorystatus_vm_pressure_level == kVMPressureWarning || memorystatus_vm_pressure_level == kVMPressureUrgent) {
8333 if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_WARN) {
8334 kn->kn_fflags = NOTE_MEMORYSTATUS_PRESSURE_WARN;
8335 }
8336 } else if (memorystatus_vm_pressure_level == kVMPressureCritical) {
8337
8338 if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PRESSURE_CRITICAL) {
8339 kn->kn_fflags = NOTE_MEMORYSTATUS_PRESSURE_CRITICAL;
8340 }
8341 }
8342 break;
8343 case kMemorystatusLowSwap:
8344 if (kn->kn_sfflags & NOTE_MEMORYSTATUS_LOW_SWAP) {
8345 kn->kn_fflags = NOTE_MEMORYSTATUS_LOW_SWAP;
8346 }
8347 break;
8348
8349 case kMemorystatusProcLimitWarn:
8350 if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) {
8351 kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_WARN;
8352 }
8353 break;
8354
8355 case kMemorystatusProcLimitCritical:
8356 if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) {
8357 kn->kn_fflags = NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL;
8358 }
8359 break;
8360
8361 default:
8362 break;
8363 }
8364 }
8365
8366 #if 0
8367 if (kn->kn_fflags != 0) {
8368 proc_t knote_proc = knote_get_kq(kn)->kq_p;
8369 pid_t knote_pid = knote_proc->p_pid;
8370
8371 printf("filt_memorystatus: sending kn 0x%lx (event 0x%x) for pid (%d)\n",
8372 (unsigned long)kn, kn->kn_fflags, knote_pid);
8373 }
8374 #endif
8375
8376 return (kn->kn_fflags != 0);
8377 }
8378
8379 static int
8380 filt_memorystatustouch(struct knote *kn, struct kevent_internal_s *kev)
8381 {
8382 int res;
8383 int prev_kn_sfflags = 0;
8384
8385 memorystatus_klist_lock();
8386
8387 /*
8388 * copy in new kevent settings
8389 * (saving the "desired" data and fflags).
8390 */
8391
8392 prev_kn_sfflags = kn->kn_sfflags;
8393 kn->kn_sfflags = (kev->fflags & EVFILT_MEMORYSTATUS_ALL_MASK);
8394
8395 #if !CONFIG_EMBEDDED
8396 /*
8397 * Only on desktop do we restrict notifications to
8398 * one per active/inactive state (soft limits only).
8399 */
8400 if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) {
8401 /*
8402 * Is there previous state to preserve?
8403 */
8404 if (prev_kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) {
8405 /*
8406 * This knote was previously interested in proc_limit_warn,
8407 * so yes, preserve previous state.
8408 */
8409 if (prev_kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE) {
8410 kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE;
8411 }
8412 if (prev_kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE) {
8413 kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE;
8414 }
8415 } else {
8416 /*
8417 * This knote was not previously interested in proc_limit_warn,
8418 * but it is now. Set both states.
8419 */
8420 kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE;
8421 kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE;
8422 }
8423 }
8424
8425 if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) {
8426 /*
8427 * Is there previous state to preserve?
8428 */
8429 if (prev_kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) {
8430 /*
8431 * This knote was previously interested in proc_limit_critical,
8432 * so yes, preserve previous state.
8433 */
8434 if (prev_kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE) {
8435 kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE;
8436 }
8437 if (prev_kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE) {
8438 kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE;
8439 }
8440 } else {
8441 /*
8442 * This knote was not previously interested in proc_limit_critical,
8443 * but it is now. Set both states.
8444 */
8445 kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE;
8446 kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE;
8447 }
8448 }
8449 #endif /* !CONFIG_EMBEDDED */
8450
8451 if ((kn->kn_status & KN_UDATA_SPECIFIC) == 0)
8452 kn->kn_udata = kev->udata;
8453
8454 /*
8455 * reset the output flags based on a
8456 * combination of the old events and
8457 * the new desired event list.
8458 */
8459 //kn->kn_fflags &= kn->kn_sfflags;
8460
8461 res = (kn->kn_fflags != 0);
8462
8463 memorystatus_klist_unlock();
8464
8465 return res;
8466 }
8467
8468 static int
8469 filt_memorystatusprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev)
8470 {
8471 #pragma unused(data)
8472 int res;
8473
8474 memorystatus_klist_lock();
8475 res = (kn->kn_fflags != 0);
8476 if (res) {
8477 *kev = kn->kn_kevent;
8478 kn->kn_flags |= EV_CLEAR; /* automatic */
8479 kn->kn_fflags = 0;
8480 kn->kn_data = 0;
8481 }
8482 memorystatus_klist_unlock();
8483
8484 return res;
8485 }
8486
8487 static void
8488 memorystatus_klist_lock(void) {
8489 lck_mtx_lock(&memorystatus_klist_mutex);
8490 }
8491
8492 static void
8493 memorystatus_klist_unlock(void) {
8494 lck_mtx_unlock(&memorystatus_klist_mutex);
8495 }
8496
8497 void
8498 memorystatus_kevent_init(lck_grp_t *grp, lck_attr_t *attr) {
8499 lck_mtx_init(&memorystatus_klist_mutex, grp, attr);
8500 klist_init(&memorystatus_klist);
8501 }
8502
8503 int
8504 memorystatus_knote_register(struct knote *kn) {
8505 int error = 0;
8506
8507 memorystatus_klist_lock();
8508
8509 /*
8510 * Support only userspace visible flags.
8511 */
8512 if ((kn->kn_sfflags & EVFILT_MEMORYSTATUS_ALL_MASK) == (unsigned int) kn->kn_sfflags) {
8513
8514 #if !CONFIG_EMBEDDED
8515 if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_WARN) {
8516 kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE;
8517 kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE;
8518 }
8519
8520 if (kn->kn_sfflags & NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL) {
8521 kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE;
8522 kn->kn_sfflags |= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE;
8523 }
8524 #endif /* !CONFIG_EMBEDDED */
8525
8526 KNOTE_ATTACH(&memorystatus_klist, kn);
8527
8528 } else {
8529 error = ENOTSUP;
8530 }
8531
8532 memorystatus_klist_unlock();
8533
8534 return error;
8535 }
8536
8537 void
8538 memorystatus_knote_unregister(struct knote *kn __unused) {
8539 memorystatus_klist_lock();
8540 KNOTE_DETACH(&memorystatus_klist, kn);
8541 memorystatus_klist_unlock();
8542 }
8543
8544
8545 #if 0
8546 #if CONFIG_JETSAM && VM_PRESSURE_EVENTS
8547 static boolean_t
8548 memorystatus_issue_pressure_kevent(boolean_t pressured) {
8549 memorystatus_klist_lock();
8550 KNOTE(&memorystatus_klist, pressured ? kMemorystatusPressure : kMemorystatusNoPressure);
8551 memorystatus_klist_unlock();
8552 return TRUE;
8553 }
8554 #endif /* CONFIG_JETSAM && VM_PRESSURE_EVENTS */
8555 #endif /* 0 */
8556
8557 /* Coalition support */
8558
8559 /* sorting info for a particular priority bucket */
8560 typedef struct memstat_sort_info {
8561 coalition_t msi_coal;
8562 uint64_t msi_page_count;
8563 pid_t msi_pid;
8564 int msi_ntasks;
8565 } memstat_sort_info_t;
8566
8567 /*
8568 * qsort from smallest page count to largest page count
8569 *
8570 * return < 0 for a < b
8571 * 0 for a == b
8572 * > 0 for a > b
8573 */
8574 static int memstat_asc_cmp(const void *a, const void *b)
8575 {
8576 const memstat_sort_info_t *msA = (const memstat_sort_info_t *)a;
8577 const memstat_sort_info_t *msB = (const memstat_sort_info_t *)b;
8578
8579 return (int)((uint64_t)msA->msi_page_count - (uint64_t)msB->msi_page_count);
8580 }
8581
8582 /*
8583 * Return the number of pids rearranged during this sort.
8584 */
8585 static int
8586 memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index, int coal_sort_order)
8587 {
8588 #define MAX_SORT_PIDS 80
8589 #define MAX_COAL_LEADERS 10
8590
8591 unsigned int b = bucket_index;
8592 int nleaders = 0;
8593 int ntasks = 0;
8594 proc_t p = NULL;
8595 coalition_t coal = COALITION_NULL;
8596 int pids_moved = 0;
8597 int total_pids_moved = 0;
8598 int i;
8599
8600 /*
8601 * The system is typically under memory pressure when in this
8602 * path, hence, we want to avoid dynamic memory allocation.
8603 */
8604 memstat_sort_info_t leaders[MAX_COAL_LEADERS];
8605 pid_t pid_list[MAX_SORT_PIDS];
8606
8607 if (bucket_index >= MEMSTAT_BUCKET_COUNT) {
8608 return(0);
8609 }
8610
8611 /*
8612 * Clear the array that holds coalition leader information
8613 */
8614 for (i=0; i < MAX_COAL_LEADERS; i++) {
8615 leaders[i].msi_coal = COALITION_NULL;
8616 leaders[i].msi_page_count = 0; /* will hold total coalition page count */
8617 leaders[i].msi_pid = 0; /* will hold coalition leader pid */
8618 leaders[i].msi_ntasks = 0; /* will hold the number of tasks in a coalition */
8619 }
8620
8621 p = memorystatus_get_first_proc_locked(&b, FALSE);
8622 while (p) {
8623 if (coalition_is_leader(p->task, COALITION_TYPE_JETSAM, &coal)) {
8624 if (nleaders < MAX_COAL_LEADERS) {
8625 int coal_ntasks = 0;
8626 uint64_t coal_page_count = coalition_get_page_count(coal, &coal_ntasks);
8627 leaders[nleaders].msi_coal = coal;
8628 leaders[nleaders].msi_page_count = coal_page_count;
8629 leaders[nleaders].msi_pid = p->p_pid; /* the coalition leader */
8630 leaders[nleaders].msi_ntasks = coal_ntasks;
8631 nleaders++;
8632 } else {
8633 /*
8634 * We've hit MAX_COAL_LEADERS meaning we can handle no more coalitions.
8635 * Abandoned coalitions will linger at the tail of the priority band
8636 * when this sort session ends.
8637 * TODO: should this be an assert?
8638 */
8639 printf("%s: WARNING: more than %d leaders in priority band [%d]\n",
8640 __FUNCTION__, MAX_COAL_LEADERS, bucket_index);
8641 break;
8642 }
8643 }
8644 p=memorystatus_get_next_proc_locked(&b, p, FALSE);
8645 }
8646
8647 if (nleaders == 0) {
8648 /* Nothing to sort */
8649 return(0);
8650 }
8651
8652 /*
8653 * Sort the coalition leader array, from smallest coalition page count
8654 * to largest coalition page count. When inserted in the priority bucket,
8655 * smallest coalition is handled first, resulting in the last to be jetsammed.
8656 */
8657 if (nleaders > 1) {
8658 qsort(leaders, nleaders, sizeof(memstat_sort_info_t), memstat_asc_cmp);
8659 }
8660
8661 #if 0
8662 for (i = 0; i < nleaders; i++) {
8663 printf("%s: coal_leader[%d of %d] pid[%d] pages[%llu] ntasks[%d]\n",
8664 __FUNCTION__, i, nleaders, leaders[i].msi_pid, leaders[i].msi_page_count,
8665 leaders[i].msi_ntasks);
8666 }
8667 #endif
8668
8669 /*
8670 * During coalition sorting, processes in a priority band are rearranged
8671 * by being re-inserted at the head of the queue. So, when handling a
8672 * list, the first process that gets moved to the head of the queue,
8673 * ultimately gets pushed toward the queue tail, and hence, jetsams last.
8674 *
8675 * So, for example, the coalition leader is expected to jetsam last,
8676 * after its coalition members. Therefore, the coalition leader is
8677 * inserted at the head of the queue first.
8678 *
8679 * After processing a coalition, the jetsam order is as follows:
8680 * undefs(jetsam first), extensions, xpc services, leader(jetsam last)
8681 */
8682
8683 /*
8684 * Coalition members are rearranged in the priority bucket here,
8685 * based on their coalition role.
8686 */
8687 total_pids_moved = 0;
8688 for (i=0; i < nleaders; i++) {
8689
8690 /* a bit of bookkeeping */
8691 pids_moved = 0;
8692
8693 /* Coalition leaders are jetsammed last, so move into place first */
8694 pid_list[0] = leaders[i].msi_pid;
8695 pids_moved += memorystatus_move_list_locked(bucket_index, pid_list, 1);
8696
8697 /* xpc services should jetsam after extensions */
8698 ntasks = coalition_get_pid_list (leaders[i].msi_coal, COALITION_ROLEMASK_XPC,
8699 coal_sort_order, pid_list, MAX_SORT_PIDS);
8700
8701 if (ntasks > 0) {
8702 pids_moved += memorystatus_move_list_locked(bucket_index, pid_list,
8703 (ntasks <= MAX_SORT_PIDS ? ntasks : MAX_SORT_PIDS));
8704 }
8705
8706 /* extensions should jetsam after unmarked processes */
8707 ntasks = coalition_get_pid_list (leaders[i].msi_coal, COALITION_ROLEMASK_EXT,
8708 coal_sort_order, pid_list, MAX_SORT_PIDS);
8709
8710 if (ntasks > 0) {
8711 pids_moved += memorystatus_move_list_locked(bucket_index, pid_list,
8712 (ntasks <= MAX_SORT_PIDS ? ntasks : MAX_SORT_PIDS));
8713 }
8714
8715 /* undefined coalition members should be the first to jetsam */
8716 ntasks = coalition_get_pid_list (leaders[i].msi_coal, COALITION_ROLEMASK_UNDEF,
8717 coal_sort_order, pid_list, MAX_SORT_PIDS);
8718
8719 if (ntasks > 0) {
8720 pids_moved += memorystatus_move_list_locked(bucket_index, pid_list,
8721 (ntasks <= MAX_SORT_PIDS ? ntasks : MAX_SORT_PIDS));
8722 }
8723
8724 #if 0
8725 if (pids_moved == leaders[i].msi_ntasks) {
8726 /*
8727 * All the pids in the coalition were found in this band.
8728 */
8729 printf("%s: pids_moved[%d] equal total coalition ntasks[%d] \n", __FUNCTION__,
8730 pids_moved, leaders[i].msi_ntasks);
8731 } else if (pids_moved > leaders[i].msi_ntasks) {
8732 /*
8733 * Apparently new coalition members showed up during the sort?
8734 */
8735 printf("%s: pids_moved[%d] were greater than expected coalition ntasks[%d] \n", __FUNCTION__,
8736 pids_moved, leaders[i].msi_ntasks);
8737 } else {
8738 /*
8739 * Apparently not all the pids in the coalition were found in this band?
8740 */
8741 printf("%s: pids_moved[%d] were less than expected coalition ntasks[%d] \n", __FUNCTION__,
8742 pids_moved, leaders[i].msi_ntasks);
8743 }
8744 #endif
8745
8746 total_pids_moved += pids_moved;
8747
8748 } /* end for */
8749
8750 return(total_pids_moved);
8751 }
8752
8753
8754 /*
8755 * Traverse a list of pids, searching for each within the priority band provided.
8756 * If pid is found, move it to the front of the priority band.
8757 * Never searches outside the priority band provided.
8758 *
8759 * Input:
8760 * bucket_index - jetsam priority band.
8761 * pid_list - pointer to a list of pids.
8762 * list_sz - number of pids in the list.
8763 *
8764 * Pid list ordering is important in that,
8765 * pid_list[n] is expected to jetsam ahead of pid_list[n+1].
8766 * The sort_order is set by the coalition default.
8767 *
8768 * Return:
8769 * the number of pids found and hence moved within the priority band.
8770 */
8771 static int
8772 memorystatus_move_list_locked(unsigned int bucket_index, pid_t *pid_list, int list_sz)
8773 {
8774 memstat_bucket_t *current_bucket;
8775 int i;
8776 int found_pids = 0;
8777
8778 if ((pid_list == NULL) || (list_sz <= 0)) {
8779 return(0);
8780 }
8781
8782 if (bucket_index >= MEMSTAT_BUCKET_COUNT) {
8783 return(0);
8784 }
8785
8786 current_bucket = &memstat_bucket[bucket_index];
8787 for (i=0; i < list_sz; i++) {
8788 unsigned int b = bucket_index;
8789 proc_t p = NULL;
8790 proc_t aProc = NULL;
8791 pid_t aPid;
8792 int list_index;
8793
8794 list_index = ((list_sz - 1) - i);
8795 aPid = pid_list[list_index];
8796
8797 /* never search beyond bucket_index provided */
8798 p = memorystatus_get_first_proc_locked(&b, FALSE);
8799 while (p) {
8800 if (p->p_pid == aPid) {
8801 aProc = p;
8802 break;
8803 }
8804 p = memorystatus_get_next_proc_locked(&b, p, FALSE);
8805 }
8806
8807 if (aProc == NULL) {
8808 /* pid not found in this band, just skip it */
8809 continue;
8810 } else {
8811 TAILQ_REMOVE(&current_bucket->list, aProc, p_memstat_list);
8812 TAILQ_INSERT_HEAD(&current_bucket->list, aProc, p_memstat_list);
8813 found_pids++;
8814 }
8815 }
8816 return(found_pids);
8817 }
8818
8819 int
8820 memorystatus_get_proccnt_upto_priority(int32_t max_bucket_index)
8821 {
8822 int32_t i = JETSAM_PRIORITY_IDLE;
8823 int count = 0;
8824
8825 if (max_bucket_index >= MEMSTAT_BUCKET_COUNT) {
8826 return(-1);
8827 }
8828
8829 while(i <= max_bucket_index) {
8830 count += memstat_bucket[i++].count;
8831 }
8832
8833 return count;
8834 }
8835
8836 int
8837 memorystatus_update_priority_for_appnap(proc_t p, boolean_t is_appnap)
8838 {
8839 #if !CONFIG_JETSAM
8840 if (!p || (!isApp(p)) || (p->p_memstat_state & P_MEMSTAT_INTERNAL)) {
8841 /*
8842 * Ineligible processes OR system processes e.g. launchd.
8843 */
8844 return -1;
8845 }
8846
8847 /*
8848 * For macOS only:
8849 * We would like to use memorystatus_update() here to move the processes
8850 * within the bands. Unfortunately memorystatus_update() calls
8851 * memorystatus_update_priority_locked() which uses any band transitions
8852 * as an indication to modify ledgers. For that it needs the task lock
8853 * and since we came into this function with the task lock held, we'll deadlock.
8854 *
8855 * Unfortunately we can't completely disable ledger updates because we still
8856 * need the ledger updates for a subset of processes i.e. daemons.
8857 * When all processes on all platforms support memory limits, we can simply call
8858 * memorystatus_update().
8859
8860 * It also has some logic to deal with 'aging' which, currently, is only applicable
8861 * on CONFIG_JETSAM configs. So, till every platform has CONFIG_JETSAM we'll need
8862 * to do this explicit band transition.
8863 */
8864
8865 memstat_bucket_t *current_bucket, *new_bucket;
8866 int32_t priority = 0;
8867
8868 proc_list_lock();
8869
8870 if (((p->p_listflag & P_LIST_EXITED) != 0) ||
8871 (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED))) {
8872 /*
8873 * If the process is on its way out OR
8874 * jetsam has alread tried and failed to kill this process,
8875 * let's skip the whole jetsam band transition.
8876 */
8877 proc_list_unlock();
8878 return(0);
8879 }
8880
8881 if (is_appnap) {
8882 current_bucket = &memstat_bucket[p->p_memstat_effectivepriority];
8883 new_bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE];
8884 priority = JETSAM_PRIORITY_IDLE;
8885 } else {
8886 if (p->p_memstat_effectivepriority != JETSAM_PRIORITY_IDLE) {
8887 /*
8888 * It is possible that someone pulled this process
8889 * out of the IDLE band without updating its app-nap
8890 * parameters.
8891 */
8892 proc_list_unlock();
8893 return (0);
8894 }
8895
8896 current_bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE];
8897 new_bucket = &memstat_bucket[p->p_memstat_requestedpriority];
8898 priority = p->p_memstat_requestedpriority;
8899 }
8900
8901 TAILQ_REMOVE(&current_bucket->list, p, p_memstat_list);
8902 current_bucket->count--;
8903
8904 TAILQ_INSERT_TAIL(&new_bucket->list, p, p_memstat_list);
8905 new_bucket->count++;
8906
8907 /*
8908 * Record idle start or idle delta.
8909 */
8910 if (p->p_memstat_effectivepriority == priority) {
8911 /*
8912 * This process is not transitioning between
8913 * jetsam priority buckets. Do nothing.
8914 */
8915 } else if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) {
8916 uint64_t now;
8917 /*
8918 * Transitioning out of the idle priority bucket.
8919 * Record idle delta.
8920 */
8921 assert(p->p_memstat_idle_start != 0);
8922 now = mach_absolute_time();
8923 if (now > p->p_memstat_idle_start) {
8924 p->p_memstat_idle_delta = now - p->p_memstat_idle_start;
8925 }
8926 } else if (priority == JETSAM_PRIORITY_IDLE) {
8927 /*
8928 * Transitioning into the idle priority bucket.
8929 * Record idle start.
8930 */
8931 p->p_memstat_idle_start = mach_absolute_time();
8932 }
8933
8934 p->p_memstat_effectivepriority = priority;
8935
8936 proc_list_unlock();
8937
8938 return (0);
8939
8940 #else /* !CONFIG_JETSAM */
8941 #pragma unused(p)
8942 #pragma unused(is_appnap)
8943 return -1;
8944 #endif /* !CONFIG_JETSAM */
8945 }