]>
git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/tcp_input.c
74493fdb740ded65aa26b04a76e5748172ecf82c
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
4 * @APPLE_LICENSE_HEADER_START@
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
20 * @APPLE_LICENSE_HEADER_END@
23 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
24 * The Regents of the University of California. All rights reserved.
26 * Redistribution and use in source and binary forms, with or without
27 * modification, are permitted provided that the following conditions
29 * 1. Redistributions of source code must retain the above copyright
30 * notice, this list of conditions and the following disclaimer.
31 * 2. Redistributions in binary form must reproduce the above copyright
32 * notice, this list of conditions and the following disclaimer in the
33 * documentation and/or other materials provided with the distribution.
34 * 3. All advertising materials mentioning features or use of this software
35 * must display the following acknowledgement:
36 * This product includes software developed by the University of
37 * California, Berkeley and its contributors.
38 * 4. Neither the name of the University nor the names of its contributors
39 * may be used to endorse or promote products derived from this software
40 * without specific prior written permission.
42 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
54 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
55 * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.16 2001/08/22 00:59:12 silby Exp $
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/kernel.h>
62 #include <sys/sysctl.h>
63 #include <sys/malloc.h>
65 #include <sys/proc.h> /* for proc0 declaration */
66 #include <sys/protosw.h>
67 #include <sys/socket.h>
68 #include <sys/socketvar.h>
69 #include <sys/syslog.h>
71 #include <kern/cpu_number.h> /* before tcp_seq.h, for tcp_random18() */
74 #include <net/if_types.h>
75 #include <net/route.h>
77 #include <netinet/in.h>
78 #include <netinet/in_systm.h>
79 #include <netinet/ip.h>
80 #include <netinet/ip_icmp.h> /* for ICMP_BANDLIM */
81 #include <netinet/in_var.h>
82 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
83 #include <netinet/in_pcb.h>
84 #include <netinet/ip_var.h>
86 #include <netinet/ip6.h>
87 #include <netinet/icmp6.h>
88 #include <netinet6/nd6.h>
89 #include <netinet6/ip6_var.h>
90 #include <netinet6/in6_pcb.h>
92 #include <netinet/tcp.h>
93 #include <netinet/tcp_fsm.h>
94 #include <netinet/tcp_seq.h>
95 #include <netinet/tcp_timer.h>
96 #include <netinet/tcp_var.h>
98 #include <netinet6/tcp6_var.h>
100 #include <netinet/tcpip.h>
102 #include <netinet/tcp_debug.h>
103 u_char tcp_saveipgen
[40]; /* the size must be of max ip header, now IPv6 */
104 struct tcphdr tcp_savetcp
;
105 #endif /* TCPDEBUG */
108 #include <netinet6/ipsec.h>
110 #include <netinet6/ipsec6.h>
112 #include <netkey/key.h>
115 #include <sys/kdebug.h>
118 MALLOC_DEFINE(M_TSEGQ
, "tseg_qent", "TCP segment queue entry");
121 #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETTCP, 0)
122 #define DBG_LAYER_END NETDBG_CODE(DBG_NETTCP, 2)
123 #define DBG_FNC_TCP_INPUT NETDBG_CODE(DBG_NETTCP, (3 << 8))
124 #define DBG_FNC_TCP_NEWCONN NETDBG_CODE(DBG_NETTCP, (7 << 8))
126 static int tcprexmtthresh
= 3;
128 extern int apple_hwcksum_rx
;
131 extern int ipsec_bypass
;
134 struct tcpstat tcpstat
;
135 SYSCTL_STRUCT(_net_inet_tcp
, TCPCTL_STATS
, stats
, CTLFLAG_RD
,
136 &tcpstat
, tcpstat
, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
138 static int log_in_vain
= 0;
139 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, log_in_vain
, CTLFLAG_RW
,
140 &log_in_vain
, 0, "Log all incoming TCP connections");
142 static int blackhole
= 0;
143 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, blackhole
, CTLFLAG_RW
,
144 &blackhole
, 0, "Do not send RST when dropping refused connections");
146 int tcp_delack_enabled
= 1;
147 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, delayed_ack
, CTLFLAG_RW
,
148 &tcp_delack_enabled
, 0,
149 "Delay ACK to try and piggyback it onto a data packet");
151 int tcp_lq_overflow
= 1;
152 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, tcp_lq_overflow
, CTLFLAG_RW
,
154 "Listen Queue Overflow");
157 static int drop_synfin
= 0;
158 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, drop_synfin
, CTLFLAG_RW
,
159 &drop_synfin
, 0, "Drop TCP packets with SYN+FIN set");
162 __private_extern__
int slowlink_wsize
= 8192;
163 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, slowlink_wsize
, CTLFLAG_RW
,
164 &slowlink_wsize
, 0, "Maximum advertised window size for slowlink");
168 struct inpcbhead tcb
;
169 #define tcb6 tcb /* for KAME src sync over BSD*'s */
170 struct inpcbinfo tcbinfo
;
172 static void tcp_dooptions
__P((struct tcpcb
*,
173 u_char
*, int, struct tcphdr
*, struct tcpopt
*));
174 static void tcp_pulloutofband
__P((struct socket
*,
175 struct tcphdr
*, struct mbuf
*, int));
176 static int tcp_reass
__P((struct tcpcb
*, struct tcphdr
*, int *,
178 static void tcp_xmit_timer
__P((struct tcpcb
*, int));
179 static int tcp_newreno
__P((struct tcpcb
*, struct tcphdr
*));
181 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
183 #define ND6_HINT(tp) \
185 if ((tp) && (tp)->t_inpcb && \
186 ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0 && \
187 (tp)->t_inpcb->in6p_route.ro_rt) \
188 nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
194 extern u_long
*delack_bitmask
;
197 * Indicate whether this ack should be delayed. We can delay the ack if
198 * - delayed acks are enabled and
199 * - there is no delayed ack timer in progress and
200 * - our last ack wasn't a 0-sized window. We never want to delay
201 * the ack that opens up a 0-sized window.
203 #define DELAY_ACK(tp) \
204 (tcp_delack_enabled && !callout_pending(tp->tt_delack) && \
205 (tp->t_flags & TF_RXWIN0SENT) == 0)
209 tcp_reass(tp
, th
, tlenp
, m
)
210 register struct tcpcb
*tp
;
211 register struct tcphdr
*th
;
216 struct tseg_qent
*p
= NULL
;
217 struct tseg_qent
*nq
;
218 struct tseg_qent
*te
;
219 struct socket
*so
= tp
->t_inpcb
->inp_socket
;
223 * Call with th==0 after become established to
224 * force pre-ESTABLISHED data up to user socket.
229 /* Allocate a new queue entry. If we can't, just drop the pkt. XXX */
230 MALLOC(te
, struct tseg_qent
*, sizeof (struct tseg_qent
), M_TSEGQ
,
233 tcpstat
.tcps_rcvmemdrop
++;
239 * Find a segment which begins after this one does.
241 LIST_FOREACH(q
, &tp
->t_segq
, tqe_q
) {
242 if (SEQ_GT(q
->tqe_th
->th_seq
, th
->th_seq
))
248 * If there is a preceding segment, it may provide some of
249 * our data already. If so, drop the data from the incoming
250 * segment. If it provides all of our data, drop us.
254 /* conversion to int (in i) handles seq wraparound */
255 i
= p
->tqe_th
->th_seq
+ p
->tqe_len
- th
->th_seq
;
258 tcpstat
.tcps_rcvduppack
++;
259 tcpstat
.tcps_rcvdupbyte
+= *tlenp
;
263 * Try to present any queued data
264 * at the left window edge to the user.
265 * This is needed after the 3-WHS
268 goto present
; /* ??? */
275 tcpstat
.tcps_rcvoopack
++;
276 tcpstat
.tcps_rcvoobyte
+= *tlenp
;
279 * While we overlap succeeding segments trim them or,
280 * if they are completely covered, dequeue them.
283 register int i
= (th
->th_seq
+ *tlenp
) - q
->tqe_th
->th_seq
;
286 if (i
< q
->tqe_len
) {
287 q
->tqe_th
->th_seq
+= i
;
293 nq
= LIST_NEXT(q
, tqe_q
);
294 LIST_REMOVE(q
, tqe_q
);
300 /* Insert the new segment queue entry into place. */
303 te
->tqe_len
= *tlenp
;
306 LIST_INSERT_HEAD(&tp
->t_segq
, te
, tqe_q
);
308 LIST_INSERT_AFTER(p
, te
, tqe_q
);
313 * Present data to user, advancing rcv_nxt through
314 * completed sequence space.
316 if (!TCPS_HAVEESTABLISHED(tp
->t_state
))
318 q
= LIST_FIRST(&tp
->t_segq
);
319 if (!q
|| q
->tqe_th
->th_seq
!= tp
->rcv_nxt
)
322 tp
->rcv_nxt
+= q
->tqe_len
;
323 flags
= q
->tqe_th
->th_flags
& TH_FIN
;
324 nq
= LIST_NEXT(q
, tqe_q
);
325 LIST_REMOVE(q
, tqe_q
);
326 if (so
->so_state
& SS_CANTRCVMORE
)
329 sbappend(&so
->so_rcv
, q
->tqe_m
);
332 } while (q
&& q
->tqe_th
->th_seq
== tp
->rcv_nxt
);
336 if ((tp
->t_inpcb
->inp_vflag
& INP_IPV6
) != 0) {
338 KERNEL_DEBUG(DBG_LAYER_BEG
,
339 ((tp
->t_inpcb
->inp_fport
<< 16) | tp
->t_inpcb
->inp_lport
),
340 (((tp
->t_inpcb
->in6p_laddr
.s6_addr16
[0] & 0xffff) << 16) |
341 (tp
->t_inpcb
->in6p_faddr
.s6_addr16
[0] & 0xffff)),
347 KERNEL_DEBUG(DBG_LAYER_BEG
,
348 ((tp
->t_inpcb
->inp_fport
<< 16) | tp
->t_inpcb
->inp_lport
),
349 (((tp
->t_inpcb
->inp_laddr
.s_addr
& 0xffff) << 16) |
350 (tp
->t_inpcb
->inp_faddr
.s_addr
& 0xffff)),
360 * TCP input routine, follows pages 65-76 of the
361 * protocol specification dated September, 1981 very closely.
365 tcp6_input(mp
, offp
, proto
)
369 register struct mbuf
*m
= *mp
;
370 struct in6_ifaddr
*ia6
;
372 IP6_EXTHDR_CHECK(m
, *offp
, sizeof(struct tcphdr
), IPPROTO_DONE
);
375 * draft-itojun-ipv6-tcp-to-anycast
376 * better place to put this in?
378 ia6
= ip6_getdstifaddr(m
);
379 if (ia6
&& (ia6
->ia6_flags
& IN6_IFF_ANYCAST
)) {
382 ip6
= mtod(m
, struct ip6_hdr
*);
383 icmp6_error(m
, ICMP6_DST_UNREACH
, ICMP6_DST_UNREACH_ADDR
,
384 (caddr_t
)&ip6
->ip6_dst
- (caddr_t
)ip6
);
398 register struct tcphdr
*th
;
399 register struct ip
*ip
= NULL
;
400 register struct ipovly
*ipov
;
401 register struct inpcb
*inp
;
406 register struct tcpcb
*tp
= 0;
407 register int thflags
;
408 struct socket
*so
= 0;
409 int todrop
, acked
, ourfinisacked
, needoutput
= 0;
410 struct in_addr laddr
;
412 struct in6_addr laddr6
;
417 struct tcpopt to
; /* options in this segment */
418 struct rmxp_tao
*taop
; /* pointer to our TAO cache entry */
419 struct rmxp_tao tao_noncached
; /* in case there's no cached entry */
424 struct ip6_hdr
*ip6
= NULL
;
427 int rstreason
; /* For badport_bandlim accounting purposes */
428 struct proc
*proc0
=current_proc();
430 KERNEL_DEBUG(DBG_FNC_TCP_INPUT
| DBG_FUNC_START
,0,0,0,0,0);
433 isipv6
= (mtod(m
, struct ip
*)->ip_v
== 6) ? 1 : 0;
435 bzero((char *)&to
, sizeof(to
));
437 tcpstat
.tcps_rcvtotal
++;
443 /* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
444 ip6
= mtod(m
, struct ip6_hdr
*);
445 tlen
= sizeof(*ip6
) + ntohs(ip6
->ip6_plen
) - off0
;
446 if (in6_cksum(m
, IPPROTO_TCP
, off0
, tlen
)) {
447 tcpstat
.tcps_rcvbadsum
++;
450 th
= (struct tcphdr
*)((caddr_t
)ip6
+ off0
);
452 KERNEL_DEBUG(DBG_LAYER_BEG
, ((th
->th_dport
<< 16) | th
->th_sport
),
453 (((ip6
->ip6_src
.s6_addr16
[0]) << 16) | (ip6
->ip6_dst
.s6_addr16
[0])),
454 th
->th_seq
, th
->th_ack
, th
->th_win
);
456 * Be proactive about unspecified IPv6 address in source.
457 * As we use all-zero to indicate unbounded/unconnected pcb,
458 * unspecified IPv6 address can be used to confuse us.
460 * Note that packets with unspecified IPv6 destination is
461 * already dropped in ip6_input.
463 if (IN6_IS_ADDR_UNSPECIFIED(&ip6
->ip6_src
)) {
471 * Get IP and TCP header together in first mbuf.
472 * Note: IP leaves IP header in first mbuf.
474 if (off0
> sizeof (struct ip
)) {
475 ip_stripoptions(m
, (struct mbuf
*)0);
476 off0
= sizeof(struct ip
);
477 if (m
->m_pkthdr
.csum_flags
& CSUM_TCP_SUM16
)
478 m
->m_pkthdr
.csum_flags
= 0; /* invalidate hwcksuming */
481 if (m
->m_len
< sizeof (struct tcpiphdr
)) {
482 if ((m
= m_pullup(m
, sizeof (struct tcpiphdr
))) == 0) {
483 tcpstat
.tcps_rcvshort
++;
487 ip
= mtod(m
, struct ip
*);
488 ipov
= (struct ipovly
*)ip
;
489 th
= (struct tcphdr
*)((caddr_t
)ip
+ off0
);
492 KERNEL_DEBUG(DBG_LAYER_BEG
, ((th
->th_dport
<< 16) | th
->th_sport
),
493 (((ip
->ip_src
.s_addr
& 0xffff) << 16) | (ip
->ip_dst
.s_addr
& 0xffff)),
494 th
->th_seq
, th
->th_ack
, th
->th_win
);
496 if (m
->m_pkthdr
.csum_flags
& CSUM_DATA_VALID
) {
497 if (apple_hwcksum_rx
&& (m
->m_pkthdr
.csum_flags
& CSUM_TCP_SUM16
)) {
499 bzero(ipov
->ih_x1
, sizeof(ipov
->ih_x1
));
500 ipov
->ih_len
= (u_short
)tlen
;
502 pseudo
= in_cksum(m
, sizeof (struct ip
));
503 th
->th_sum
= in_addword(pseudo
, (m
->m_pkthdr
.csum_data
& 0xFFFF));
505 if (m
->m_pkthdr
.csum_flags
& CSUM_PSEUDO_HDR
)
506 th
->th_sum
= m
->m_pkthdr
.csum_data
;
508 th
->th_sum
= in_pseudo(ip
->ip_src
.s_addr
,
509 ip
->ip_dst
.s_addr
, htonl(m
->m_pkthdr
.csum_data
+
510 ip
->ip_len
+ IPPROTO_TCP
));
512 th
->th_sum
^= 0xffff;
515 * Checksum extended TCP header and data.
517 len
= sizeof (struct ip
) + tlen
;
518 bzero(ipov
->ih_x1
, sizeof(ipov
->ih_x1
));
519 ipov
->ih_len
= (u_short
)tlen
;
521 th
->th_sum
= in_cksum(m
, len
);
524 tcpstat
.tcps_rcvbadsum
++;
528 /* Re-initialization for later version check */
529 ip
->ip_v
= IPVERSION
;
534 * Check that TCP offset makes sense,
535 * pull out TCP options and adjust length. XXX
537 off
= th
->th_off
<< 2;
538 if (off
< sizeof (struct tcphdr
) || off
> tlen
) {
539 tcpstat
.tcps_rcvbadoff
++;
542 tlen
-= off
; /* tlen is used instead of ti->ti_len */
543 if (off
> sizeof (struct tcphdr
)) {
546 IP6_EXTHDR_CHECK(m
, off0
, off
, );
547 ip6
= mtod(m
, struct ip6_hdr
*);
548 th
= (struct tcphdr
*)((caddr_t
)ip6
+ off0
);
552 if (m
->m_len
< sizeof(struct ip
) + off
) {
553 if ((m
= m_pullup(m
, sizeof (struct ip
) + off
)) == 0) {
554 tcpstat
.tcps_rcvshort
++;
557 ip
= mtod(m
, struct ip
*);
558 ipov
= (struct ipovly
*)ip
;
559 th
= (struct tcphdr
*)((caddr_t
)ip
+ off0
);
562 optlen
= off
- sizeof (struct tcphdr
);
563 optp
= (u_char
*)(th
+ 1);
565 * Do quick retrieval of timestamp options ("options
566 * prediction?"). If timestamp is the only option and it's
567 * formatted as recommended in RFC 1323 appendix A, we
568 * quickly get the values now and not bother calling
569 * tcp_dooptions(), etc.
571 if ((optlen
== TCPOLEN_TSTAMP_APPA
||
572 (optlen
> TCPOLEN_TSTAMP_APPA
&&
573 optp
[TCPOLEN_TSTAMP_APPA
] == TCPOPT_EOL
)) &&
574 *(u_int32_t
*)optp
== htonl(TCPOPT_TSTAMP_HDR
) &&
575 (th
->th_flags
& TH_SYN
) == 0) {
576 to
.to_flag
|= TOF_TS
;
577 to
.to_tsval
= ntohl(*(u_int32_t
*)(optp
+ 4));
578 to
.to_tsecr
= ntohl(*(u_int32_t
*)(optp
+ 8));
579 optp
= NULL
; /* we've parsed the options */
582 thflags
= th
->th_flags
;
586 * If the drop_synfin option is enabled, drop all packets with
587 * both the SYN and FIN bits set. This prevents e.g. nmap from
588 * identifying the TCP/IP stack.
590 * This is incompatible with RFC1644 extensions (T/TCP).
592 if (drop_synfin
&& (thflags
& (TH_SYN
|TH_FIN
)) == (TH_SYN
|TH_FIN
))
597 * Convert TCP protocol specific fields to host format.
605 * Delay droping TCP, IP headers, IPv6 ext headers, and TCP options,
606 * until after ip6_savecontrol() is called and before other functions
607 * which don't want those proto headers.
608 * Because ip6_savecontrol() is going to parse the mbuf to
609 * search for data to be passed up to user-land, it wants mbuf
610 * parameters to be unchanged.
612 drop_hdrlen
= off0
+ off
;
615 * Locate pcb for segment.
618 #if IPFIREWALL_FORWARD
619 if (ip_fw_fwd_addr
!= NULL
621 && isipv6
== NULL
/* IPv6 support is not yet */
625 * Diverted. Pretend to be the destination.
626 * already got one like this?
628 inp
= in_pcblookup_hash(&tcbinfo
, ip
->ip_src
, th
->th_sport
,
629 ip
->ip_dst
, th
->th_dport
, 0, m
->m_pkthdr
.rcvif
);
632 * No, then it's new. Try find the ambushing socket
634 if (!ip_fw_fwd_addr
->sin_port
) {
635 inp
= in_pcblookup_hash(&tcbinfo
, ip
->ip_src
,
636 th
->th_sport
, ip_fw_fwd_addr
->sin_addr
,
637 th
->th_dport
, 1, m
->m_pkthdr
.rcvif
);
639 inp
= in_pcblookup_hash(&tcbinfo
,
640 ip
->ip_src
, th
->th_sport
,
641 ip_fw_fwd_addr
->sin_addr
,
642 ntohs(ip_fw_fwd_addr
->sin_port
), 1,
646 ip_fw_fwd_addr
= NULL
;
648 #endif /* IPFIREWALL_FORWARD */
652 inp
= in6_pcblookup_hash(&tcbinfo
, &ip6
->ip6_src
, th
->th_sport
,
653 &ip6
->ip6_dst
, th
->th_dport
, 1,
657 inp
= in_pcblookup_hash(&tcbinfo
, ip
->ip_src
, th
->th_sport
,
658 ip
->ip_dst
, th
->th_dport
, 1, m
->m_pkthdr
.rcvif
);
664 if (ipsec_bypass
== 0 && inp
!= NULL
&& ipsec6_in_reject_so(m
, inp
->inp_socket
)) {
665 ipsec6stat
.in_polvio
++;
670 if (ipsec_bypass
== 0 && inp
!= NULL
&& ipsec4_in_reject_so(m
, inp
->inp_socket
)) {
671 ipsecstat
.in_polvio
++;
677 * If the state is CLOSED (i.e., TCB does not exist) then
678 * all data in the incoming segment is discarded.
679 * If the TCB exists but is in CLOSED state, it is embryonic,
680 * but should either do a listen or a connect soon.
685 char dbuf
[INET6_ADDRSTRLEN
], sbuf
[INET6_ADDRSTRLEN
];
687 char dbuf
[4*sizeof "123"], sbuf
[4*sizeof "123"];
692 strcpy(dbuf
, ip6_sprintf(&ip6
->ip6_dst
));
693 strcpy(sbuf
, ip6_sprintf(&ip6
->ip6_src
));
697 strcpy(dbuf
, inet_ntoa(ip
->ip_dst
));
698 strcpy(sbuf
, inet_ntoa(ip
->ip_src
));
700 switch (log_in_vain
) {
704 "Connection attempt to TCP %s:%d from %s:%d\n",
705 dbuf
, ntohs(th
->th_dport
),
707 ntohs(th
->th_sport
));
711 "Connection attempt to TCP %s:%d from %s:%d flags:0x%x\n",
712 dbuf
, ntohs(th
->th_dport
), sbuf
,
713 ntohs(th
->th_sport
), thflags
);
722 if (thflags
& TH_SYN
)
731 rstreason
= BANDLIM_RST_CLOSEDPORT
;
736 rstreason
= BANDLIM_RST_CLOSEDPORT
;
739 if (tp
->t_state
== TCPS_CLOSED
)
744 * Bogus state when listening port owned by SharedIP with loopback as the
745 * only configured interface: BlueBox does not filters loopback
747 if (tp
->t_state
== TCP_NSTATES
)
751 /* Unscale the window into a 32-bit value. */
752 if ((thflags
& TH_SYN
) == 0)
753 tiwin
= th
->th_win
<< tp
->snd_scale
;
757 so
= inp
->inp_socket
;
758 if (so
->so_options
& (SO_DEBUG
|SO_ACCEPTCONN
)) {
760 if (so
->so_options
& SO_DEBUG
) {
761 ostate
= tp
->t_state
;
764 bcopy((char *)ip6
, (char *)tcp_saveipgen
,
768 bcopy((char *)ip
, (char *)tcp_saveipgen
, sizeof(*ip
));
772 if (so
->so_options
& SO_ACCEPTCONN
) {
773 register struct tcpcb
*tp0
= tp
;
779 struct inpcb
*oinp
= sotoinpcb(so
);
784 * Current IPsec implementation makes incorrect IPsec
785 * cache if this check is done here.
786 * So delay this until duplicated socket is created.
788 if ((thflags
& (TH_RST
|TH_ACK
|TH_SYN
)) != TH_SYN
) {
790 * Note: dropwithreset makes sure we don't
791 * send a RST in response to a RST.
793 if (thflags
& TH_ACK
) {
794 tcpstat
.tcps_badsyn
++;
795 rstreason
= BANDLIM_RST_OPENPORT
;
801 KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN
| DBG_FUNC_START
,0,0,0,0,0);
805 * If deprecated address is forbidden,
806 * we do not accept SYN to deprecated interface
807 * address to prevent any new inbound connection from
808 * getting established.
809 * When we do not accept SYN, we send a TCP RST,
810 * with deprecated source address (instead of dropping
811 * it). We compromise it as it is much better for peer
812 * to send a RST, and RST will be the final packet
815 * If we do not forbid deprecated addresses, we accept
816 * the SYN packet. RFC2462 does not suggest dropping
818 * If we decipher RFC2462 5.5.4, it says like this:
819 * 1. use of deprecated addr with existing
820 * communication is okay - "SHOULD continue to be
822 * 2. use of it with new communication:
823 * (2a) "SHOULD NOT be used if alternate address
824 * with sufficient scope is available"
825 * (2b) nothing mentioned otherwise.
826 * Here we fall into (2b) case as we have no choice in
827 * our source address selection - we must obey the peer.
829 * The wording in RFC2462 is confusing, and there are
830 * multiple description text for deprecated address
831 * handling - worse, they are not exactly the same.
832 * I believe 5.5.4 is the best one, so we follow 5.5.4.
834 if (isipv6
&& !ip6_use_deprecated
) {
835 struct in6_ifaddr
*ia6
;
837 if ((ia6
= ip6_getdstifaddr(m
)) &&
838 (ia6
->ia6_flags
& IN6_IFF_DEPRECATED
)) {
840 rstreason
= BANDLIM_RST_OPENPORT
;
846 so2
= sonewconn(so
, 0);
848 tcpstat
.tcps_listendrop
++;
849 so2
= sodropablereq(so
);
852 sototcpcb(so2
)->t_flags
|=
854 tcp_drop(sototcpcb(so2
), ETIMEDOUT
);
855 so2
= sonewconn(so
, 0);
865 * This is ugly, but ....
867 * Mark socket as temporary until we're
868 * committed to keeping it. The code at
869 * ``drop'' and ``dropwithreset'' check the
870 * flag dropsocket to see if the temporary
871 * socket created here should be discarded.
872 * We mark the socket as discardable until
873 * we're committed to it below in TCPS_LISTEN.
876 inp
= (struct inpcb
*)so
->so_pcb
;
879 inp
->in6p_laddr
= ip6
->ip6_dst
;
881 inp
->inp_vflag
&= ~INP_IPV6
;
882 inp
->inp_vflag
|= INP_IPV4
;
884 inp
->inp_laddr
= ip
->ip_dst
;
888 inp
->inp_lport
= th
->th_dport
;
889 if (in_pcbinshash(inp
) != 0) {
891 * Undo the assignments above if we failed to
892 * put the PCB on the hash lists.
896 inp
->in6p_laddr
= in6addr_any
;
899 inp
->inp_laddr
.s_addr
= INADDR_ANY
;
905 * To avoid creating incorrectly cached IPsec
906 * association, this is need to be done here.
908 * Subject: (KAME-snap 748)
909 * From: Wayne Knowles <w.knowles@niwa.cri.nz>
910 * ftp://ftp.kame.net/pub/mail-list/snap-users/748
912 if ((thflags
& (TH_RST
|TH_ACK
|TH_SYN
)) != TH_SYN
) {
914 * Note: dropwithreset makes sure we don't
915 * send a RST in response to a RST.
917 if (thflags
& TH_ACK
) {
918 tcpstat
.tcps_badsyn
++;
919 rstreason
= BANDLIM_RST_OPENPORT
;
928 * Inherit socket options from the listening
930 * Note that in6p_inputopts are not (even
931 * should not be) copied, since it stores
932 * previously received options and is used to
933 * detect if each new option is different than
934 * the previous one and hence should be passed
936 * If we copied in6p_inputopts, a user would
937 * not be able to receive options just after
938 * calling the accept system call.
941 oinp
->inp_flags
& INP_CONTROLOPTS
;
942 if (oinp
->in6p_outputopts
)
943 inp
->in6p_outputopts
=
944 ip6_copypktopts(oinp
->in6p_outputopts
,
948 inp
->inp_options
= ip_srcroute();
950 /* copy old policy into new socket's */
951 if (sotoinpcb(oso
)->inp_sp
)
954 /* Is it a security hole here to silently fail to copy the policy? */
955 if (inp
->inp_sp
!= NULL
)
956 error
= ipsec_init_policy(so
, &inp
->inp_sp
);
957 if (error
!= 0 || ipsec_copy_policy(sotoinpcb(oso
)->inp_sp
, inp
->inp_sp
))
958 printf("tcp_input: could not copy policy\n");
962 tp
->t_state
= TCPS_LISTEN
;
963 tp
->t_flags
|= tp0
->t_flags
& (TF_NOPUSH
|TF_NOOPT
|TF_NODELAY
);
965 /* Compute proper scaling value from buffer space */
966 while (tp
->request_r_scale
< TCP_MAX_WINSHIFT
&&
967 TCP_MAXWIN
<< tp
->request_r_scale
<
969 tp
->request_r_scale
++;
971 KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN
| DBG_FUNC_END
,0,0,0,0,0);
976 * Segment received on connection.
977 * Reset idle time and keep-alive timer.
980 if (TCPS_HAVEESTABLISHED(tp
->t_state
))
981 tp
->t_timer
[TCPT_KEEP
] = tcp_keepidle
;
984 * Process options if not in LISTEN state,
985 * else do it below (after getting remote address).
987 if (tp
->t_state
!= TCPS_LISTEN
&& optp
)
988 tcp_dooptions(tp
, optp
, optlen
, th
, &to
);
991 * Header prediction: check for the two common cases
992 * of a uni-directional data xfer. If the packet has
993 * no control flags, is in-sequence, the window didn't
994 * change and we're not retransmitting, it's a
995 * candidate. If the length is zero and the ack moved
996 * forward, we're the sender side of the xfer. Just
997 * free the data acked & wake any higher level process
998 * that was blocked waiting for space. If the length
999 * is non-zero and the ack didn't move, we're the
1000 * receiver side. If we're getting packets in-order
1001 * (the reassembly queue is empty), add the data to
1002 * the socket buffer and note that we need a delayed ack.
1003 * Make sure that the hidden state-flags are also off.
1004 * Since we check for TCPS_ESTABLISHED above, it can only
1007 if (tp
->t_state
== TCPS_ESTABLISHED
&&
1008 (thflags
& (TH_SYN
|TH_FIN
|TH_RST
|TH_URG
|TH_ACK
)) == TH_ACK
&&
1009 ((tp
->t_flags
& (TF_NEEDSYN
|TF_NEEDFIN
)) == 0) &&
1010 ((to
.to_flag
& TOF_TS
) == 0 ||
1011 TSTMP_GEQ(to
.to_tsval
, tp
->ts_recent
)) &&
1013 * Using the CC option is compulsory if once started:
1014 * the segment is OK if no T/TCP was negotiated or
1015 * if the segment has a CC option equal to CCrecv
1017 ((tp
->t_flags
& (TF_REQ_CC
|TF_RCVD_CC
)) != (TF_REQ_CC
|TF_RCVD_CC
) ||
1018 ((to
.to_flag
& TOF_CC
) != 0 && to
.to_cc
== tp
->cc_recv
)) &&
1019 th
->th_seq
== tp
->rcv_nxt
&&
1020 tiwin
&& tiwin
== tp
->snd_wnd
&&
1021 tp
->snd_nxt
== tp
->snd_max
) {
1024 * If last ACK falls within this segment's sequence numbers,
1025 * record the timestamp.
1026 * NOTE that the test is modified according to the latest
1027 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1029 if ((to
.to_flag
& TOF_TS
) != 0 &&
1030 SEQ_LEQ(th
->th_seq
, tp
->last_ack_sent
)) {
1031 tp
->ts_recent_age
= tcp_now
;
1032 tp
->ts_recent
= to
.to_tsval
;
1036 if (SEQ_GT(th
->th_ack
, tp
->snd_una
) &&
1037 SEQ_LEQ(th
->th_ack
, tp
->snd_max
) &&
1038 tp
->snd_cwnd
>= tp
->snd_wnd
&&
1039 tp
->t_dupacks
< tcprexmtthresh
) {
1041 * this is a pure ack for outstanding data.
1043 ++tcpstat
.tcps_predack
;
1045 * "bad retransmit" recovery
1047 if (tp
->t_rxtshift
== 1 &&
1048 tcp_now
< tp
->t_badrxtwin
) {
1049 tp
->snd_cwnd
= tp
->snd_cwnd_prev
;
1051 tp
->snd_ssthresh_prev
;
1052 tp
->snd_nxt
= tp
->snd_max
;
1053 tp
->t_badrxtwin
= 0;
1055 if (((to
.to_flag
& TOF_TS
) != 0) && (to
.to_tsecr
!= 0)) /* Makes sure we already have a TS */
1057 tcp_now
- to
.to_tsecr
+ 1);
1058 else if (tp
->t_rtttime
&&
1059 SEQ_GT(th
->th_ack
, tp
->t_rtseq
))
1060 tcp_xmit_timer(tp
, tp
->t_rtttime
);
1061 acked
= th
->th_ack
- tp
->snd_una
;
1062 tcpstat
.tcps_rcvackpack
++;
1063 tcpstat
.tcps_rcvackbyte
+= acked
;
1064 sbdrop(&so
->so_snd
, acked
);
1065 tp
->snd_una
= th
->th_ack
;
1067 ND6_HINT(tp
); /* some progress has been done */
1070 * If all outstanding data are acked, stop
1071 * retransmit timer, otherwise restart timer
1072 * using current (possibly backed-off) value.
1073 * If process is waiting for space,
1074 * wakeup/selwakeup/signal. If data
1075 * are ready to send, let tcp_output
1076 * decide between more output or persist.
1078 if (tp
->snd_una
== tp
->snd_max
)
1079 tp
->t_timer
[TCPT_REXMT
] = 0;
1080 else if (tp
->t_timer
[TCPT_PERSIST
] == 0)
1081 tp
->t_timer
[TCPT_REXMT
] = tp
->t_rxtcur
;
1083 if (so
->so_snd
.sb_cc
)
1084 (void) tcp_output(tp
);
1086 KERNEL_DEBUG(DBG_FNC_TCP_INPUT
| DBG_FUNC_END
,0,0,0,0,0);
1089 } else if (th
->th_ack
== tp
->snd_una
&&
1090 LIST_EMPTY(&tp
->t_segq
) &&
1091 tlen
<= sbspace(&so
->so_rcv
)) {
1093 * this is a pure, in-sequence data packet
1094 * with nothing on the reassembly queue and
1095 * we have enough buffer space to take it.
1097 ++tcpstat
.tcps_preddat
;
1098 tp
->rcv_nxt
+= tlen
;
1099 tcpstat
.tcps_rcvpack
++;
1100 tcpstat
.tcps_rcvbyte
+= tlen
;
1101 ND6_HINT(tp
); /* some progress has been done */
1103 * Add data to socket buffer.
1105 m_adj(m
, drop_hdrlen
); /* delayed header drop */
1106 sbappend(&so
->so_rcv
, m
);
1109 KERNEL_DEBUG(DBG_LAYER_END
, ((th
->th_dport
<< 16) | th
->th_sport
),
1110 (((ip6
->ip6_src
.s6_addr16
[0]) << 16) | (ip6
->ip6_dst
.s6_addr16
[0])),
1111 th
->th_seq
, th
->th_ack
, th
->th_win
);
1116 KERNEL_DEBUG(DBG_LAYER_END
, ((th
->th_dport
<< 16) | th
->th_sport
),
1117 (((ip
->ip_src
.s_addr
& 0xffff) << 16) | (ip
->ip_dst
.s_addr
& 0xffff)),
1118 th
->th_seq
, th
->th_ack
, th
->th_win
);
1120 if (tcp_delack_enabled
) {
1121 TCP_DELACK_BITSET(tp
->t_inpcb
->hash_element
);
1122 tp
->t_flags
|= TF_DELACK
;
1124 tp
->t_flags
|= TF_ACKNOW
;
1128 KERNEL_DEBUG(DBG_FNC_TCP_INPUT
| DBG_FUNC_END
,0,0,0,0,0);
1134 * Calculate amount of space in receive window,
1135 * and then do TCP input processing.
1136 * Receive window is amount of space in rcv queue,
1137 * but not less than advertised window.
1141 win
= sbspace(&so
->so_rcv
);
1144 else { /* clip rcv window to 4K for modems */
1145 if (tp
->t_flags
& TF_SLOWLINK
&& slowlink_wsize
> 0)
1146 win
= min(win
, slowlink_wsize
);
1148 tp
->rcv_wnd
= imax(win
, (int)(tp
->rcv_adv
- tp
->rcv_nxt
));
1151 switch (tp
->t_state
) {
1154 * If the state is LISTEN then ignore segment if it contains an RST.
1155 * If the segment contains an ACK then it is bad and send a RST.
1156 * If it does not contain a SYN then it is not interesting; drop it.
1157 * If it is from this socket, drop it, it must be forged.
1158 * Don't bother responding if the destination was a broadcast.
1159 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
1160 * tp->iss, and send a segment:
1161 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1162 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
1163 * Fill in remote peer address fields if not previously specified.
1164 * Enter SYN_RECEIVED state, and process any other fields of this
1165 * segment in this state.
1168 register struct sockaddr_in
*sin
;
1170 register struct sockaddr_in6
*sin6
;
1173 if (thflags
& TH_RST
)
1175 if (thflags
& TH_ACK
) {
1176 rstreason
= BANDLIM_RST_OPENPORT
;
1179 if ((thflags
& TH_SYN
) == 0)
1181 if (th
->th_dport
== th
->th_sport
) {
1184 if (IN6_ARE_ADDR_EQUAL(&ip6
->ip6_dst
,
1189 if (ip
->ip_dst
.s_addr
== ip
->ip_src
.s_addr
)
1193 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1194 * in_broadcast() should never return true on a received
1195 * packet with M_BCAST not set.
1197 * Packets with a multicast source address should also
1200 if (m
->m_flags
& (M_BCAST
|M_MCAST
))
1204 if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
) ||
1205 IN6_IS_ADDR_MULTICAST(&ip6
->ip6_src
))
1209 if (IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
)) ||
1210 IN_MULTICAST(ntohl(ip
->ip_src
.s_addr
)) ||
1211 ip
->ip_src
.s_addr
== htonl(INADDR_BROADCAST
) ||
1212 in_broadcast(ip
->ip_dst
, m
->m_pkthdr
.rcvif
))
1216 MALLOC(sin6
, struct sockaddr_in6
*, sizeof *sin6
,
1217 M_SONAME
, M_NOWAIT
);
1220 bzero(sin6
, sizeof(*sin6
));
1221 sin6
->sin6_family
= AF_INET6
;
1222 sin6
->sin6_len
= sizeof(*sin6
);
1223 sin6
->sin6_addr
= ip6
->ip6_src
;
1224 sin6
->sin6_port
= th
->th_sport
;
1225 laddr6
= inp
->in6p_laddr
;
1226 if (IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_laddr
))
1227 inp
->in6p_laddr
= ip6
->ip6_dst
;
1228 if (in6_pcbconnect(inp
, (struct sockaddr
*)sin6
,
1230 inp
->in6p_laddr
= laddr6
;
1231 FREE(sin6
, M_SONAME
);
1234 FREE(sin6
, M_SONAME
);
1238 MALLOC(sin
, struct sockaddr_in
*, sizeof *sin
, M_SONAME
,
1242 sin
->sin_family
= AF_INET
;
1243 sin
->sin_len
= sizeof(*sin
);
1244 sin
->sin_addr
= ip
->ip_src
;
1245 sin
->sin_port
= th
->th_sport
;
1246 bzero((caddr_t
)sin
->sin_zero
, sizeof(sin
->sin_zero
));
1247 laddr
= inp
->inp_laddr
;
1248 if (inp
->inp_laddr
.s_addr
== INADDR_ANY
)
1249 inp
->inp_laddr
= ip
->ip_dst
;
1250 if (in_pcbconnect(inp
, (struct sockaddr
*)sin
, proc0
)) {
1251 inp
->inp_laddr
= laddr
;
1252 FREE(sin
, M_SONAME
);
1255 FREE(sin
, M_SONAME
);
1257 if ((taop
= tcp_gettaocache(inp
)) == NULL
) {
1258 taop
= &tao_noncached
;
1259 bzero(taop
, sizeof(*taop
));
1261 tcp_dooptions(tp
, optp
, optlen
, th
, &to
);
1265 tp
->iss
= tcp_new_isn(tp
);
1267 tp
->irs
= th
->th_seq
;
1268 tcp_sendseqinit(tp
);
1270 tp
->snd_recover
= tp
->snd_una
;
1272 * Initialization of the tcpcb for transaction;
1273 * set SND.WND = SEG.WND,
1274 * initialize CCsend and CCrecv.
1276 tp
->snd_wnd
= tiwin
; /* initial send-window */
1277 tp
->cc_send
= CC_INC(tcp_ccgen
);
1278 tp
->cc_recv
= to
.to_cc
;
1280 * Perform TAO test on incoming CC (SEG.CC) option, if any.
1281 * - compare SEG.CC against cached CC from the same host,
1283 * - if SEG.CC > chached value, SYN must be new and is accepted
1284 * immediately: save new CC in the cache, mark the socket
1285 * connected, enter ESTABLISHED state, turn on flag to
1286 * send a SYN in the next segment.
1287 * A virtual advertised window is set in rcv_adv to
1288 * initialize SWS prevention. Then enter normal segment
1289 * processing: drop SYN, process data and FIN.
1290 * - otherwise do a normal 3-way handshake.
1292 if ((to
.to_flag
& TOF_CC
) != 0) {
1293 if (((tp
->t_flags
& TF_NOPUSH
) != 0) &&
1294 taop
->tao_cc
!= 0 && CC_GT(to
.to_cc
, taop
->tao_cc
)) {
1296 taop
->tao_cc
= to
.to_cc
;
1298 tp
->t_state
= TCPS_ESTABLISHED
;
1301 * If there is a FIN, or if there is data and the
1302 * connection is local, then delay SYN,ACK(SYN) in
1303 * the hope of piggy-backing it on a response
1304 * segment. Otherwise must send ACK now in case
1305 * the other side is slow starting.
1307 if (tcp_delack_enabled
&& ((thflags
& TH_FIN
) ||
1310 (isipv6
&& in6_localaddr(&inp
->in6p_faddr
))
1314 in_localaddr(inp
->inp_faddr
)
1319 TCP_DELACK_BITSET(tp
->t_inpcb
->hash_element
);
1320 tp
->t_flags
|= (TF_DELACK
| TF_NEEDSYN
);
1323 tp
->t_flags
|= (TF_ACKNOW
| TF_NEEDSYN
);
1326 * Limit the `virtual advertised window' to TCP_MAXWIN
1327 * here. Even if we requested window scaling, it will
1328 * become effective only later when our SYN is acked.
1330 if (tp
->t_flags
& TF_SLOWLINK
&& slowlink_wsize
> 0) /* clip window size for for slow link */
1331 tp
->rcv_adv
+= min(tp
->rcv_wnd
, slowlink_wsize
);
1333 tp
->rcv_adv
+= min(tp
->rcv_wnd
, TCP_MAXWIN
);
1334 tcpstat
.tcps_connects
++;
1336 tp
->t_timer
[TCPT_KEEP
] = tcp_keepinit
;
1337 dropsocket
= 0; /* committed to socket */
1338 tcpstat
.tcps_accepts
++;
1341 /* else do standard 3-way handshake */
1344 * No CC option, but maybe CC.NEW:
1345 * invalidate cached value.
1350 * TAO test failed or there was no CC option,
1351 * do a standard 3-way handshake.
1353 tp
->t_flags
|= TF_ACKNOW
;
1354 tp
->t_state
= TCPS_SYN_RECEIVED
;
1355 tp
->t_timer
[TCPT_KEEP
] = tcp_keepinit
;
1356 dropsocket
= 0; /* committed to socket */
1357 tcpstat
.tcps_accepts
++;
1362 * If the state is SYN_RECEIVED:
1363 * if seg contains an ACK, but not for our SYN/ACK, send a RST.
1365 case TCPS_SYN_RECEIVED
:
1366 if ((thflags
& TH_ACK
) &&
1367 (SEQ_LEQ(th
->th_ack
, tp
->snd_una
) ||
1368 SEQ_GT(th
->th_ack
, tp
->snd_max
))) {
1369 rstreason
= BANDLIM_RST_OPENPORT
;
1375 * If the state is SYN_SENT:
1376 * if seg contains an ACK, but not for our SYN, drop the input.
1377 * if seg contains a RST, then drop the connection.
1378 * if seg does not contain SYN, then drop it.
1379 * Otherwise this is an acceptable SYN segment
1380 * initialize tp->rcv_nxt and tp->irs
1381 * if seg contains ack then advance tp->snd_una
1382 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1383 * arrange for segment to be acked (eventually)
1384 * continue processing rest of data/controls, beginning with URG
1387 if ((taop
= tcp_gettaocache(inp
)) == NULL
) {
1388 taop
= &tao_noncached
;
1389 bzero(taop
, sizeof(*taop
));
1392 if ((thflags
& TH_ACK
) &&
1393 (SEQ_LEQ(th
->th_ack
, tp
->iss
) ||
1394 SEQ_GT(th
->th_ack
, tp
->snd_max
))) {
1396 * If we have a cached CCsent for the remote host,
1397 * hence we haven't just crashed and restarted,
1398 * do not send a RST. This may be a retransmission
1399 * from the other side after our earlier ACK was lost.
1400 * Our new SYN, when it arrives, will serve as the
1403 if (taop
->tao_ccsent
!= 0)
1406 rstreason
= BANDLIM_UNLIMITED
;
1410 if (thflags
& TH_RST
) {
1411 if (thflags
& TH_ACK
) {
1412 tp
= tcp_drop(tp
, ECONNREFUSED
);
1413 postevent(so
, 0, EV_RESET
);
1417 if ((thflags
& TH_SYN
) == 0)
1419 tp
->snd_wnd
= th
->th_win
; /* initial send window */
1420 tp
->cc_recv
= to
.to_cc
; /* foreign CC */
1422 tp
->irs
= th
->th_seq
;
1424 if (thflags
& TH_ACK
) {
1426 * Our SYN was acked. If segment contains CC.ECHO
1427 * option, check it to make sure this segment really
1428 * matches our SYN. If not, just drop it as old
1429 * duplicate, but send an RST if we're still playing
1430 * by the old rules. If no CC.ECHO option, make sure
1431 * we don't get fooled into using T/TCP.
1433 if (to
.to_flag
& TOF_CCECHO
) {
1434 if (tp
->cc_send
!= to
.to_ccecho
) {
1435 if (taop
->tao_ccsent
!= 0)
1438 rstreason
= BANDLIM_UNLIMITED
;
1443 tp
->t_flags
&= ~TF_RCVD_CC
;
1444 tcpstat
.tcps_connects
++;
1446 /* Do window scaling on this connection? */
1447 if ((tp
->t_flags
& (TF_RCVD_SCALE
|TF_REQ_SCALE
)) ==
1448 (TF_RCVD_SCALE
|TF_REQ_SCALE
)) {
1449 tp
->snd_scale
= tp
->requested_s_scale
;
1450 tp
->rcv_scale
= tp
->request_r_scale
;
1452 /* Segment is acceptable, update cache if undefined. */
1453 if (taop
->tao_ccsent
== 0)
1454 taop
->tao_ccsent
= to
.to_ccecho
;
1456 tp
->rcv_adv
+= tp
->rcv_wnd
;
1457 tp
->snd_una
++; /* SYN is acked */
1459 * If there's data, delay ACK; if there's also a FIN
1460 * ACKNOW will be turned on later.
1462 if (tcp_delack_enabled
&& tlen
!= 0) {
1463 TCP_DELACK_BITSET(tp
->t_inpcb
->hash_element
);
1464 tp
->t_flags
|= TF_DELACK
;
1467 tp
->t_flags
|= TF_ACKNOW
;
1469 * Received <SYN,ACK> in SYN_SENT[*] state.
1471 * SYN_SENT --> ESTABLISHED
1472 * SYN_SENT* --> FIN_WAIT_1
1474 if (tp
->t_flags
& TF_NEEDFIN
) {
1475 tp
->t_state
= TCPS_FIN_WAIT_1
;
1476 tp
->t_flags
&= ~TF_NEEDFIN
;
1479 tp
->t_state
= TCPS_ESTABLISHED
;
1480 tp
->t_timer
[TCPT_KEEP
] = tcp_keepidle
;
1484 * Received initial SYN in SYN-SENT[*] state => simul-
1485 * taneous open. If segment contains CC option and there is
1486 * a cached CC, apply TAO test; if it succeeds, connection is
1487 * half-synchronized. Otherwise, do 3-way handshake:
1488 * SYN-SENT -> SYN-RECEIVED
1489 * SYN-SENT* -> SYN-RECEIVED*
1490 * If there was no CC option, clear cached CC value.
1492 tp
->t_flags
|= TF_ACKNOW
;
1493 tp
->t_timer
[TCPT_REXMT
] = 0;
1494 if (to
.to_flag
& TOF_CC
) {
1495 if (taop
->tao_cc
!= 0 &&
1496 CC_GT(to
.to_cc
, taop
->tao_cc
)) {
1498 * update cache and make transition:
1499 * SYN-SENT -> ESTABLISHED*
1500 * SYN-SENT* -> FIN-WAIT-1*
1502 taop
->tao_cc
= to
.to_cc
;
1503 if (tp
->t_flags
& TF_NEEDFIN
) {
1504 tp
->t_state
= TCPS_FIN_WAIT_1
;
1505 tp
->t_flags
&= ~TF_NEEDFIN
;
1507 tp
->t_state
= TCPS_ESTABLISHED
;
1508 tp
->t_timer
[TCPT_KEEP
] = tcp_keepidle
;
1510 tp
->t_flags
|= TF_NEEDSYN
;
1512 tp
->t_state
= TCPS_SYN_RECEIVED
;
1514 /* CC.NEW or no option => invalidate cache */
1516 tp
->t_state
= TCPS_SYN_RECEIVED
;
1522 * Advance th->th_seq to correspond to first data byte.
1523 * If data, trim to stay within window,
1524 * dropping FIN if necessary.
1527 if (tlen
> tp
->rcv_wnd
) {
1528 todrop
= tlen
- tp
->rcv_wnd
;
1532 tcpstat
.tcps_rcvpackafterwin
++;
1533 tcpstat
.tcps_rcvbyteafterwin
+= todrop
;
1535 tp
->snd_wl1
= th
->th_seq
- 1;
1536 tp
->rcv_up
= th
->th_seq
;
1538 * Client side of transaction: already sent SYN and data.
1539 * If the remote host used T/TCP to validate the SYN,
1540 * our data will be ACK'd; if so, enter normal data segment
1541 * processing in the middle of step 5, ack processing.
1542 * Otherwise, goto step 6.
1544 if (thflags
& TH_ACK
)
1548 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1549 * if segment contains a SYN and CC [not CC.NEW] option:
1550 * if state == TIME_WAIT and connection duration > MSL,
1551 * drop packet and send RST;
1553 * if SEG.CC > CCrecv then is new SYN, and can implicitly
1554 * ack the FIN (and data) in retransmission queue.
1555 * Complete close and delete TCPCB. Then reprocess
1556 * segment, hoping to find new TCPCB in LISTEN state;
1558 * else must be old SYN; drop it.
1559 * else do normal processing.
1563 case TCPS_TIME_WAIT
:
1564 if ((thflags
& TH_SYN
) &&
1565 (to
.to_flag
& TOF_CC
) && tp
->cc_recv
!= 0) {
1566 if (tp
->t_state
== TCPS_TIME_WAIT
&&
1567 tp
->t_starttime
> tcp_msl
) {
1568 rstreason
= BANDLIM_UNLIMITED
;
1571 if (CC_GT(to
.to_cc
, tp
->cc_recv
)) {
1578 break; /* continue normal processing */
1582 * States other than LISTEN or SYN_SENT.
1583 * First check the RST flag and sequence number since reset segments
1584 * are exempt from the timestamp and connection count tests. This
1585 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1586 * below which allowed reset segments in half the sequence space
1587 * to fall though and be processed (which gives forged reset
1588 * segments with a random sequence number a 50 percent chance of
1589 * killing a connection).
1590 * Then check timestamp, if present.
1591 * Then check the connection count, if present.
1592 * Then check that at least some bytes of segment are within
1593 * receive window. If segment begins before rcv_nxt,
1594 * drop leading data (and SYN); if nothing left, just ack.
1597 * If the RST bit is set, check the sequence number to see
1598 * if this is a valid reset segment.
1600 * In all states except SYN-SENT, all reset (RST) segments
1601 * are validated by checking their SEQ-fields. A reset is
1602 * valid if its sequence number is in the window.
1603 * Note: this does not take into account delayed ACKs, so
1604 * we should test against last_ack_sent instead of rcv_nxt.
1605 * The sequence number in the reset segment is normally an
1606 * echo of our outgoing acknowlegement numbers, but some hosts
1607 * send a reset with the sequence number at the rightmost edge
1608 * of our receive window, and we have to handle this case.
1609 * If we have multiple segments in flight, the intial reset
1610 * segment sequence numbers will be to the left of last_ack_sent,
1611 * but they will eventually catch up.
1612 * In any case, it never made sense to trim reset segments to
1613 * fit the receive window since RFC 1122 says:
1614 * 4.2.2.12 RST Segment: RFC-793 Section 3.4
1616 * A TCP SHOULD allow a received RST segment to include data.
1619 * It has been suggested that a RST segment could contain
1620 * ASCII text that encoded and explained the cause of the
1621 * RST. No standard has yet been established for such
1624 * If the reset segment passes the sequence number test examine
1626 * SYN_RECEIVED STATE:
1627 * If passive open, return to LISTEN state.
1628 * If active open, inform user that connection was refused.
1629 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1630 * Inform user that connection was reset, and close tcb.
1631 * CLOSING, LAST_ACK STATES:
1634 * Drop the segment - see Stevens, vol. 2, p. 964 and
1637 if (thflags
& TH_RST
) {
1638 if (SEQ_GEQ(th
->th_seq
, tp
->last_ack_sent
) &&
1639 SEQ_LT(th
->th_seq
, tp
->last_ack_sent
+ tp
->rcv_wnd
)) {
1640 switch (tp
->t_state
) {
1642 case TCPS_SYN_RECEIVED
:
1643 so
->so_error
= ECONNREFUSED
;
1646 case TCPS_ESTABLISHED
:
1647 case TCPS_FIN_WAIT_1
:
1648 case TCPS_CLOSE_WAIT
:
1652 case TCPS_FIN_WAIT_2
:
1653 so
->so_error
= ECONNRESET
;
1655 postevent(so
, 0, EV_RESET
);
1656 tp
->t_state
= TCPS_CLOSED
;
1657 tcpstat
.tcps_drops
++;
1666 case TCPS_TIME_WAIT
:
1674 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1675 * and it's less than ts_recent, drop it.
1677 if ((to
.to_flag
& TOF_TS
) != 0 && tp
->ts_recent
&&
1678 TSTMP_LT(to
.to_tsval
, tp
->ts_recent
)) {
1680 /* Check to see if ts_recent is over 24 days old. */
1681 if ((int)(tcp_now
- tp
->ts_recent_age
) > TCP_PAWS_IDLE
) {
1683 * Invalidate ts_recent. If this segment updates
1684 * ts_recent, the age will be reset later and ts_recent
1685 * will get a valid value. If it does not, setting
1686 * ts_recent to zero will at least satisfy the
1687 * requirement that zero be placed in the timestamp
1688 * echo reply when ts_recent isn't valid. The
1689 * age isn't reset until we get a valid ts_recent
1690 * because we don't want out-of-order segments to be
1691 * dropped when ts_recent is old.
1695 tcpstat
.tcps_rcvduppack
++;
1696 tcpstat
.tcps_rcvdupbyte
+= tlen
;
1697 tcpstat
.tcps_pawsdrop
++;
1704 * If T/TCP was negotiated and the segment doesn't have CC,
1705 * or if its CC is wrong then drop the segment.
1706 * RST segments do not have to comply with this.
1708 if ((tp
->t_flags
& (TF_REQ_CC
|TF_RCVD_CC
)) == (TF_REQ_CC
|TF_RCVD_CC
) &&
1709 ((to
.to_flag
& TOF_CC
) == 0 || tp
->cc_recv
!= to
.to_cc
))
1713 * In the SYN-RECEIVED state, validate that the packet belongs to
1714 * this connection before trimming the data to fit the receive
1715 * window. Check the sequence number versus IRS since we know
1716 * the sequence numbers haven't wrapped. This is a partial fix
1717 * for the "LAND" DoS attack.
1719 if (tp
->t_state
== TCPS_SYN_RECEIVED
&& SEQ_LT(th
->th_seq
, tp
->irs
)) {
1720 rstreason
= BANDLIM_RST_OPENPORT
;
1724 todrop
= tp
->rcv_nxt
- th
->th_seq
;
1726 if (thflags
& TH_SYN
) {
1736 * Following if statement from Stevens, vol. 2, p. 960.
1739 || (todrop
== tlen
&& (thflags
& TH_FIN
) == 0)) {
1741 * Any valid FIN must be to the left of the window.
1742 * At this point the FIN must be a duplicate or out
1743 * of sequence; drop it.
1748 * Send an ACK to resynchronize and drop any data.
1749 * But keep on processing for RST or ACK.
1751 tp
->t_flags
|= TF_ACKNOW
;
1753 tcpstat
.tcps_rcvduppack
++;
1754 tcpstat
.tcps_rcvdupbyte
+= todrop
;
1756 tcpstat
.tcps_rcvpartduppack
++;
1757 tcpstat
.tcps_rcvpartdupbyte
+= todrop
;
1759 drop_hdrlen
+= todrop
; /* drop from the top afterwards */
1760 th
->th_seq
+= todrop
;
1762 if (th
->th_urp
> todrop
)
1763 th
->th_urp
-= todrop
;
1771 * If new data are received on a connection after the
1772 * user processes are gone, then RST the other end.
1774 if ((so
->so_state
& SS_NOFDREF
) &&
1775 tp
->t_state
> TCPS_CLOSE_WAIT
&& tlen
) {
1777 tcpstat
.tcps_rcvafterclose
++;
1778 rstreason
= BANDLIM_UNLIMITED
;
1783 * If segment ends after window, drop trailing data
1784 * (and PUSH and FIN); if nothing left, just ACK.
1786 todrop
= (th
->th_seq
+tlen
) - (tp
->rcv_nxt
+tp
->rcv_wnd
);
1788 tcpstat
.tcps_rcvpackafterwin
++;
1789 if (todrop
>= tlen
) {
1790 tcpstat
.tcps_rcvbyteafterwin
+= tlen
;
1792 * If a new connection request is received
1793 * while in TIME_WAIT, drop the old connection
1794 * and start over if the sequence numbers
1795 * are above the previous ones.
1797 if (thflags
& TH_SYN
&&
1798 tp
->t_state
== TCPS_TIME_WAIT
&&
1799 SEQ_GT(th
->th_seq
, tp
->rcv_nxt
)) {
1800 iss
= tcp_new_isn(tp
);
1805 * If window is closed can only take segments at
1806 * window edge, and have to drop data and PUSH from
1807 * incoming segments. Continue processing, but
1808 * remember to ack. Otherwise, drop segment
1811 if (tp
->rcv_wnd
== 0 && th
->th_seq
== tp
->rcv_nxt
) {
1812 tp
->t_flags
|= TF_ACKNOW
;
1813 tcpstat
.tcps_rcvwinprobe
++;
1817 tcpstat
.tcps_rcvbyteafterwin
+= todrop
;
1820 thflags
&= ~(TH_PUSH
|TH_FIN
);
1824 * If last ACK falls within this segment's sequence numbers,
1825 * record its timestamp.
1826 * NOTE that the test is modified according to the latest
1827 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1829 if ((to
.to_flag
& TOF_TS
) != 0 &&
1830 SEQ_LEQ(th
->th_seq
, tp
->last_ack_sent
)) {
1831 tp
->ts_recent_age
= tcp_now
;
1832 tp
->ts_recent
= to
.to_tsval
;
1836 * If a SYN is in the window, then this is an
1837 * error and we send an RST and drop the connection.
1839 if (thflags
& TH_SYN
) {
1840 tp
= tcp_drop(tp
, ECONNRESET
);
1841 rstreason
= BANDLIM_UNLIMITED
;
1842 postevent(so
, 0, EV_RESET
);
1847 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN
1848 * flag is on (half-synchronized state), then queue data for
1849 * later processing; else drop segment and return.
1851 if ((thflags
& TH_ACK
) == 0) {
1852 if (tp
->t_state
== TCPS_SYN_RECEIVED
||
1853 (tp
->t_flags
& TF_NEEDSYN
))
1862 switch (tp
->t_state
) {
1865 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1866 * ESTABLISHED state and continue processing.
1867 * The ACK was checked above.
1869 case TCPS_SYN_RECEIVED
:
1871 tcpstat
.tcps_connects
++;
1874 /* Do window scaling? */
1875 if ((tp
->t_flags
& (TF_RCVD_SCALE
|TF_REQ_SCALE
)) ==
1876 (TF_RCVD_SCALE
|TF_REQ_SCALE
)) {
1877 tp
->snd_scale
= tp
->requested_s_scale
;
1878 tp
->rcv_scale
= tp
->request_r_scale
;
1881 * Upon successful completion of 3-way handshake,
1882 * update cache.CC if it was undefined, pass any queued
1883 * data to the user, and advance state appropriately.
1885 if ((taop
= tcp_gettaocache(inp
)) != NULL
&&
1887 taop
->tao_cc
= tp
->cc_recv
;
1891 * SYN-RECEIVED -> ESTABLISHED
1892 * SYN-RECEIVED* -> FIN-WAIT-1
1894 if (tp
->t_flags
& TF_NEEDFIN
) {
1895 tp
->t_state
= TCPS_FIN_WAIT_1
;
1896 tp
->t_flags
&= ~TF_NEEDFIN
;
1898 tp
->t_state
= TCPS_ESTABLISHED
;
1899 tp
->t_timer
[TCPT_KEEP
] = tcp_keepidle
;
1902 * If segment contains data or ACK, will call tcp_reass()
1903 * later; if not, do so now to pass queued data to user.
1905 if (tlen
== 0 && (thflags
& TH_FIN
) == 0)
1906 (void) tcp_reass(tp
, (struct tcphdr
*)0, 0,
1908 tp
->snd_wl1
= th
->th_seq
- 1;
1912 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1913 * ACKs. If the ack is in the range
1914 * tp->snd_una < th->th_ack <= tp->snd_max
1915 * then advance tp->snd_una to th->th_ack and drop
1916 * data from the retransmission queue. If this ACK reflects
1917 * more up to date window information we update our window information.
1919 case TCPS_ESTABLISHED
:
1920 case TCPS_FIN_WAIT_1
:
1921 case TCPS_FIN_WAIT_2
:
1922 case TCPS_CLOSE_WAIT
:
1925 case TCPS_TIME_WAIT
:
1927 if (SEQ_LEQ(th
->th_ack
, tp
->snd_una
)) {
1928 if (tlen
== 0 && tiwin
== tp
->snd_wnd
) {
1929 tcpstat
.tcps_rcvdupack
++;
1931 * If we have outstanding data (other than
1932 * a window probe), this is a completely
1933 * duplicate ack (ie, window info didn't
1934 * change), the ack is the biggest we've
1935 * seen and we've seen exactly our rexmt
1936 * threshhold of them, assume a packet
1937 * has been dropped and retransmit it.
1938 * Kludge snd_nxt & the congestion
1939 * window so we send only this one
1942 * We know we're losing at the current
1943 * window size so do congestion avoidance
1944 * (set ssthresh to half the current window
1945 * and pull our congestion window back to
1946 * the new ssthresh).
1948 * Dup acks mean that packets have left the
1949 * network (they're now cached at the receiver)
1950 * so bump cwnd by the amount in the receiver
1951 * to keep a constant cwnd packets in the
1954 if (tp
->t_timer
[TCPT_REXMT
] == 0 ||
1955 th
->th_ack
!= tp
->snd_una
)
1957 else if (++tp
->t_dupacks
== tcprexmtthresh
) {
1958 tcp_seq onxt
= tp
->snd_nxt
;
1960 min(tp
->snd_wnd
, tp
->snd_cwnd
) / 2 /
1962 if (tcp_do_newreno
&& SEQ_LT(th
->th_ack
,
1964 /* False retransmit, should not
1967 tp
->snd_cwnd
+= tp
->t_maxseg
;
1969 (void) tcp_output(tp
);
1974 tp
->snd_ssthresh
= win
* tp
->t_maxseg
;
1975 tp
->snd_recover
= tp
->snd_max
;
1976 tp
->t_timer
[TCPT_REXMT
] = 0;
1978 tp
->snd_nxt
= th
->th_ack
;
1979 tp
->snd_cwnd
= tp
->t_maxseg
;
1980 (void) tcp_output(tp
);
1981 tp
->snd_cwnd
= tp
->snd_ssthresh
+
1982 tp
->t_maxseg
* tp
->t_dupacks
;
1983 if (SEQ_GT(onxt
, tp
->snd_nxt
))
1986 } else if (tp
->t_dupacks
> tcprexmtthresh
) {
1987 tp
->snd_cwnd
+= tp
->t_maxseg
;
1988 (void) tcp_output(tp
);
1996 * If the congestion window was inflated to account
1997 * for the other side's cached packets, retract it.
1999 if (tcp_do_newreno
== 0) {
2000 if (tp
->t_dupacks
>= tcprexmtthresh
&&
2001 tp
->snd_cwnd
> tp
->snd_ssthresh
)
2002 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2004 } else if (tp
->t_dupacks
>= tcprexmtthresh
&&
2005 !tcp_newreno(tp
, th
)) {
2007 * Window inflation should have left us with approx.
2008 * snd_ssthresh outstanding data. But in case we
2009 * would be inclined to send a burst, better to do
2010 * it via the slow start mechanism.
2012 if (SEQ_GT(th
->th_ack
+ tp
->snd_ssthresh
, tp
->snd_max
))
2014 tp
->snd_max
- th
->th_ack
+ tp
->t_maxseg
;
2016 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2020 if (tp
->t_dupacks
< tcprexmtthresh
)
2023 if (SEQ_GT(th
->th_ack
, tp
->snd_max
)) {
2024 tcpstat
.tcps_rcvacktoomuch
++;
2028 * If we reach this point, ACK is not a duplicate,
2029 * i.e., it ACKs something we sent.
2031 if (tp
->t_flags
& TF_NEEDSYN
) {
2033 * T/TCP: Connection was half-synchronized, and our
2034 * SYN has been ACK'd (so connection is now fully
2035 * synchronized). Go to non-starred state,
2036 * increment snd_una for ACK of SYN, and check if
2037 * we can do window scaling.
2039 tp
->t_flags
&= ~TF_NEEDSYN
;
2041 /* Do window scaling? */
2042 if ((tp
->t_flags
& (TF_RCVD_SCALE
|TF_REQ_SCALE
)) ==
2043 (TF_RCVD_SCALE
|TF_REQ_SCALE
)) {
2044 tp
->snd_scale
= tp
->requested_s_scale
;
2045 tp
->rcv_scale
= tp
->request_r_scale
;
2050 acked
= th
->th_ack
- tp
->snd_una
;
2051 tcpstat
.tcps_rcvackpack
++;
2052 tcpstat
.tcps_rcvackbyte
+= acked
;
2055 * If we just performed our first retransmit, and the ACK
2056 * arrives within our recovery window, then it was a mistake
2057 * to do the retransmit in the first place. Recover our
2058 * original cwnd and ssthresh, and proceed to transmit where
2061 if (tp
->t_rxtshift
== 1 && tcp_now
< tp
->t_badrxtwin
) {
2062 tp
->snd_cwnd
= tp
->snd_cwnd_prev
;
2063 tp
->snd_ssthresh
= tp
->snd_ssthresh_prev
;
2064 tp
->snd_nxt
= tp
->snd_max
;
2065 tp
->t_badrxtwin
= 0; /* XXX probably not required */
2069 * If we have a timestamp reply, update smoothed
2070 * round trip time. If no timestamp is present but
2071 * transmit timer is running and timed sequence
2072 * number was acked, update smoothed round trip time.
2073 * Since we now have an rtt measurement, cancel the
2074 * timer backoff (cf., Phil Karn's retransmit alg.).
2075 * Recompute the initial retransmit timer.
2076 * Also makes sure we have a valid time stamp in hand
2078 if (((to
.to_flag
& TOF_TS
) != 0) && (to
.to_tsecr
!= 0))
2079 tcp_xmit_timer(tp
, tcp_now
- to
.to_tsecr
+ 1);
2080 else if (tp
->t_rtttime
&& SEQ_GT(th
->th_ack
, tp
->t_rtseq
))
2081 tcp_xmit_timer(tp
, tp
->t_rtttime
);
2084 * If all outstanding data is acked, stop retransmit
2085 * timer and remember to restart (more output or persist).
2086 * If there is more data to be acked, restart retransmit
2087 * timer, using current (possibly backed-off) value.
2089 if (th
->th_ack
== tp
->snd_max
) {
2090 tp
->t_timer
[TCPT_REXMT
] = 0;
2092 } else if (tp
->t_timer
[TCPT_PERSIST
] == 0)
2093 tp
->t_timer
[TCPT_REXMT
] = tp
->t_rxtcur
;
2096 * If no data (only SYN) was ACK'd,
2097 * skip rest of ACK processing.
2103 * When new data is acked, open the congestion window.
2104 * If the window gives us less than ssthresh packets
2105 * in flight, open exponentially (maxseg per packet).
2106 * Otherwise open linearly: maxseg per window
2107 * (maxseg^2 / cwnd per packet).
2110 register u_int cw
= tp
->snd_cwnd
;
2111 register u_int incr
= tp
->t_maxseg
;
2113 if (cw
> tp
->snd_ssthresh
)
2114 incr
= incr
* incr
/ cw
;
2116 * If t_dupacks != 0 here, it indicates that we are still
2117 * in NewReno fast recovery mode, so we leave the congestion
2120 if (tcp_do_newreno
== 0 || tp
->t_dupacks
== 0)
2121 tp
->snd_cwnd
= min(cw
+ incr
,TCP_MAXWIN
<<tp
->snd_scale
);
2123 if (acked
> so
->so_snd
.sb_cc
) {
2124 tp
->snd_wnd
-= so
->so_snd
.sb_cc
;
2125 sbdrop(&so
->so_snd
, (int)so
->so_snd
.sb_cc
);
2128 sbdrop(&so
->so_snd
, acked
);
2129 tp
->snd_wnd
-= acked
;
2132 tp
->snd_una
= th
->th_ack
;
2133 if (SEQ_LT(tp
->snd_nxt
, tp
->snd_una
))
2134 tp
->snd_nxt
= tp
->snd_una
;
2137 switch (tp
->t_state
) {
2140 * In FIN_WAIT_1 STATE in addition to the processing
2141 * for the ESTABLISHED state if our FIN is now acknowledged
2142 * then enter FIN_WAIT_2.
2144 case TCPS_FIN_WAIT_1
:
2145 if (ourfinisacked
) {
2147 * If we can't receive any more
2148 * data, then closing user can proceed.
2149 * Starting the timer is contrary to the
2150 * specification, but if we don't get a FIN
2151 * we'll hang forever.
2153 if (so
->so_state
& SS_CANTRCVMORE
) {
2154 soisdisconnected(so
);
2155 tp
->t_timer
[TCPT_2MSL
] = tcp_maxidle
;
2157 add_to_time_wait(tp
);
2158 tp
->t_state
= TCPS_FIN_WAIT_2
;
2163 * In CLOSING STATE in addition to the processing for
2164 * the ESTABLISHED state if the ACK acknowledges our FIN
2165 * then enter the TIME-WAIT state, otherwise ignore
2169 if (ourfinisacked
) {
2170 tp
->t_state
= TCPS_TIME_WAIT
;
2171 tcp_canceltimers(tp
);
2172 /* Shorten TIME_WAIT [RFC-1644, p.28] */
2173 if (tp
->cc_recv
!= 0 &&
2174 tp
->t_starttime
< tcp_msl
)
2175 tp
->t_timer
[TCPT_2MSL
] =
2176 tp
->t_rxtcur
* TCPTV_TWTRUNC
;
2178 tp
->t_timer
[TCPT_2MSL
] = 2 * tcp_msl
;
2179 add_to_time_wait(tp
);
2180 soisdisconnected(so
);
2185 * In LAST_ACK, we may still be waiting for data to drain
2186 * and/or to be acked, as well as for the ack of our FIN.
2187 * If our FIN is now acknowledged, delete the TCB,
2188 * enter the closed state and return.
2191 if (ourfinisacked
) {
2198 * In TIME_WAIT state the only thing that should arrive
2199 * is a retransmission of the remote FIN. Acknowledge
2200 * it and restart the finack timer.
2202 case TCPS_TIME_WAIT
:
2203 tp
->t_timer
[TCPT_2MSL
] = 2 * tcp_msl
;
2204 add_to_time_wait(tp
);
2211 * Update window information.
2212 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2214 if ((thflags
& TH_ACK
) &&
2215 (SEQ_LT(tp
->snd_wl1
, th
->th_seq
) ||
2216 (tp
->snd_wl1
== th
->th_seq
&& (SEQ_LT(tp
->snd_wl2
, th
->th_ack
) ||
2217 (tp
->snd_wl2
== th
->th_ack
&& tiwin
> tp
->snd_wnd
))))) {
2218 /* keep track of pure window updates */
2220 tp
->snd_wl2
== th
->th_ack
&& tiwin
> tp
->snd_wnd
)
2221 tcpstat
.tcps_rcvwinupd
++;
2222 tp
->snd_wnd
= tiwin
;
2223 tp
->snd_wl1
= th
->th_seq
;
2224 tp
->snd_wl2
= th
->th_ack
;
2225 if (tp
->snd_wnd
> tp
->max_sndwnd
)
2226 tp
->max_sndwnd
= tp
->snd_wnd
;
2231 * Process segments with URG.
2233 if ((thflags
& TH_URG
) && th
->th_urp
&&
2234 TCPS_HAVERCVDFIN(tp
->t_state
) == 0) {
2236 * This is a kludge, but if we receive and accept
2237 * random urgent pointers, we'll crash in
2238 * soreceive. It's hard to imagine someone
2239 * actually wanting to send this much urgent data.
2241 if (th
->th_urp
+ so
->so_rcv
.sb_cc
> sb_max
) {
2242 th
->th_urp
= 0; /* XXX */
2243 thflags
&= ~TH_URG
; /* XXX */
2244 goto dodata
; /* XXX */
2247 * If this segment advances the known urgent pointer,
2248 * then mark the data stream. This should not happen
2249 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2250 * a FIN has been received from the remote side.
2251 * In these states we ignore the URG.
2253 * According to RFC961 (Assigned Protocols),
2254 * the urgent pointer points to the last octet
2255 * of urgent data. We continue, however,
2256 * to consider it to indicate the first octet
2257 * of data past the urgent section as the original
2258 * spec states (in one of two places).
2260 if (SEQ_GT(th
->th_seq
+th
->th_urp
, tp
->rcv_up
)) {
2261 tp
->rcv_up
= th
->th_seq
+ th
->th_urp
;
2262 so
->so_oobmark
= so
->so_rcv
.sb_cc
+
2263 (tp
->rcv_up
- tp
->rcv_nxt
) - 1;
2264 if (so
->so_oobmark
== 0) {
2265 so
->so_state
|= SS_RCVATMARK
;
2266 postevent(so
, 0, EV_OOB
);
2269 tp
->t_oobflags
&= ~(TCPOOB_HAVEDATA
| TCPOOB_HADDATA
);
2272 * Remove out of band data so doesn't get presented to user.
2273 * This can happen independent of advancing the URG pointer,
2274 * but if two URG's are pending at once, some out-of-band
2275 * data may creep in... ick.
2277 if (th
->th_urp
<= (u_long
)tlen
2279 && (so
->so_options
& SO_OOBINLINE
) == 0
2282 tcp_pulloutofband(so
, th
, m
,
2283 drop_hdrlen
); /* hdr drop is delayed */
2286 * If no out of band data is expected,
2287 * pull receive urgent pointer along
2288 * with the receive window.
2290 if (SEQ_GT(tp
->rcv_nxt
, tp
->rcv_up
))
2291 tp
->rcv_up
= tp
->rcv_nxt
;
2295 * Process the segment text, merging it into the TCP sequencing queue,
2296 * and arranging for acknowledgment of receipt if necessary.
2297 * This process logically involves adjusting tp->rcv_wnd as data
2298 * is presented to the user (this happens in tcp_usrreq.c,
2299 * case PRU_RCVD). If a FIN has already been received on this
2300 * connection then we just ignore the text.
2302 if ((tlen
|| (thflags
&TH_FIN
)) &&
2303 TCPS_HAVERCVDFIN(tp
->t_state
) == 0) {
2304 m_adj(m
, drop_hdrlen
); /* delayed header drop */
2306 * Insert segment which inludes th into reassembly queue of tcp with
2307 * control block tp. Return TH_FIN if reassembly now includes
2308 * a segment with FIN. This handle the common case inline (segment
2309 * is the next to be received on an established connection, and the
2310 * queue is empty), avoiding linkage into and removal from the queue
2311 * and repetition of various conversions.
2312 * Set DELACK for segments received in order, but ack immediately
2313 * when segments are out of order (so fast retransmit can work).
2315 if (th
->th_seq
== tp
->rcv_nxt
&&
2316 LIST_EMPTY(&tp
->t_segq
) &&
2317 TCPS_HAVEESTABLISHED(tp
->t_state
)) {
2319 if (tcp_delack_enabled
) {
2320 TCP_DELACK_BITSET(tp
->t_inpcb
->hash_element
);
2321 tp
->t_flags
|= TF_DELACK
;
2325 callout_reset(tp
->tt_delack
, tcp_delacktime
,
2326 tcp_timer_delack
, tp
);
2329 tp
->t_flags
|= TF_ACKNOW
;
2330 tp
->rcv_nxt
+= tlen
;
2331 thflags
= th
->th_flags
& TH_FIN
;
2332 tcpstat
.tcps_rcvpack
++;
2333 tcpstat
.tcps_rcvbyte
+= tlen
;
2335 sbappend(&so
->so_rcv
, m
);
2338 thflags
= tcp_reass(tp
, th
, &tlen
, m
);
2339 tp
->t_flags
|= TF_ACKNOW
;
2342 if (tp
->t_flags
& TF_DELACK
)
2346 KERNEL_DEBUG(DBG_LAYER_END
, ((th
->th_dport
<< 16) | th
->th_sport
),
2347 (((ip6
->ip6_src
.s6_addr16
[0]) << 16) | (ip6
->ip6_dst
.s6_addr16
[0])),
2348 th
->th_seq
, th
->th_ack
, th
->th_win
);
2353 KERNEL_DEBUG(DBG_LAYER_END
, ((th
->th_dport
<< 16) | th
->th_sport
),
2354 (((ip
->ip_src
.s_addr
& 0xffff) << 16) | (ip
->ip_dst
.s_addr
& 0xffff)),
2355 th
->th_seq
, th
->th_ack
, th
->th_win
);
2360 * Note the amount of data that peer has sent into
2361 * our window, in order to estimate the sender's
2364 len
= so
->so_rcv
.sb_hiwat
- (tp
->rcv_adv
- tp
->rcv_nxt
);
2371 * If FIN is received ACK the FIN and let the user know
2372 * that the connection is closing.
2374 if (thflags
& TH_FIN
) {
2375 if (TCPS_HAVERCVDFIN(tp
->t_state
) == 0) {
2377 postevent(so
, 0, EV_FIN
);
2379 * If connection is half-synchronized
2380 * (ie NEEDSYN flag on) then delay ACK,
2381 * so it may be piggybacked when SYN is sent.
2382 * Otherwise, since we received a FIN then no
2383 * more input can be expected, send ACK now.
2385 if (tcp_delack_enabled
&& (tp
->t_flags
& TF_NEEDSYN
)) {
2386 TCP_DELACK_BITSET(tp
->t_inpcb
->hash_element
);
2387 tp
->t_flags
|= TF_DELACK
;
2390 tp
->t_flags
|= TF_ACKNOW
;
2393 switch (tp
->t_state
) {
2396 * In SYN_RECEIVED and ESTABLISHED STATES
2397 * enter the CLOSE_WAIT state.
2399 case TCPS_SYN_RECEIVED
:
2401 case TCPS_ESTABLISHED
:
2402 tp
->t_state
= TCPS_CLOSE_WAIT
;
2406 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2407 * enter the CLOSING state.
2409 case TCPS_FIN_WAIT_1
:
2410 tp
->t_state
= TCPS_CLOSING
;
2414 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2415 * starting the time-wait timer, turning off the other
2418 case TCPS_FIN_WAIT_2
:
2419 tp
->t_state
= TCPS_TIME_WAIT
;
2420 tcp_canceltimers(tp
);
2421 /* Shorten TIME_WAIT [RFC-1644, p.28] */
2422 if (tp
->cc_recv
!= 0 &&
2423 tp
->t_starttime
< tcp_msl
) {
2424 tp
->t_timer
[TCPT_2MSL
] =
2425 tp
->t_rxtcur
* TCPTV_TWTRUNC
;
2426 /* For transaction client, force ACK now. */
2427 tp
->t_flags
|= TF_ACKNOW
;
2430 tp
->t_timer
[TCPT_2MSL
] = 2 * tcp_msl
;
2432 add_to_time_wait(tp
);
2433 soisdisconnected(so
);
2437 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2439 case TCPS_TIME_WAIT
:
2440 tp
->t_timer
[TCPT_2MSL
] = 2 * tcp_msl
;
2441 add_to_time_wait(tp
);
2446 if (so
->so_options
& SO_DEBUG
)
2447 tcp_trace(TA_INPUT
, ostate
, tp
, (void *)tcp_saveipgen
,
2452 * Return any desired output.
2454 if (needoutput
|| (tp
->t_flags
& TF_ACKNOW
))
2455 (void) tcp_output(tp
);
2456 KERNEL_DEBUG(DBG_FNC_TCP_INPUT
| DBG_FUNC_END
,0,0,0,0,0);
2461 * Generate an ACK dropping incoming segment if it occupies
2462 * sequence space, where the ACK reflects our state.
2464 * We can now skip the test for the RST flag since all
2465 * paths to this code happen after packets containing
2466 * RST have been dropped.
2468 * In the SYN-RECEIVED state, don't send an ACK unless the
2469 * segment we received passes the SYN-RECEIVED ACK test.
2470 * If it fails send a RST. This breaks the loop in the
2471 * "LAND" DoS attack, and also prevents an ACK storm
2472 * between two listening ports that have been sent forged
2473 * SYN segments, each with the source address of the other.
2475 if (tp
->t_state
== TCPS_SYN_RECEIVED
&& (thflags
& TH_ACK
) &&
2476 (SEQ_GT(tp
->snd_una
, th
->th_ack
) ||
2477 SEQ_GT(th
->th_ack
, tp
->snd_max
)) ) {
2478 rstreason
= BANDLIM_RST_OPENPORT
;
2482 if (so
->so_options
& SO_DEBUG
)
2483 tcp_trace(TA_DROP
, ostate
, tp
, (void *)tcp_saveipgen
,
2487 tp
->t_flags
|= TF_ACKNOW
;
2488 (void) tcp_output(tp
);
2489 KERNEL_DEBUG(DBG_FNC_TCP_INPUT
| DBG_FUNC_END
,0,0,0,0,0);
2494 * Generate a RST, dropping incoming segment.
2495 * Make ACK acceptable to originator of segment.
2496 * Don't bother to respond if destination was broadcast/multicast.
2498 if ((thflags
& TH_RST
) || m
->m_flags
& (M_BCAST
|M_MCAST
))
2502 if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
) ||
2503 IN6_IS_ADDR_MULTICAST(&ip6
->ip6_src
))
2507 if (IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
)) ||
2508 IN_MULTICAST(ntohl(ip
->ip_src
.s_addr
)) ||
2509 ip
->ip_src
.s_addr
== htonl(INADDR_BROADCAST
) ||
2510 in_broadcast(ip
->ip_dst
, m
->m_pkthdr
.rcvif
))
2512 /* IPv6 anycast check is done at tcp6_input() */
2515 * Perform bandwidth limiting.
2518 if (badport_bandlim(rstreason
) < 0)
2523 if (tp
== 0 || (tp
->t_inpcb
->inp_socket
->so_options
& SO_DEBUG
))
2524 tcp_trace(TA_DROP
, ostate
, tp
, (void *)tcp_saveipgen
,
2527 if (thflags
& TH_ACK
)
2528 /* mtod() below is safe as long as hdr dropping is delayed */
2529 tcp_respond(tp
, mtod(m
, void *), th
, m
, (tcp_seq
)0, th
->th_ack
,
2532 if (thflags
& TH_SYN
)
2534 /* mtod() below is safe as long as hdr dropping is delayed */
2535 tcp_respond(tp
, mtod(m
, void *), th
, m
, th
->th_seq
+tlen
,
2536 (tcp_seq
)0, TH_RST
|TH_ACK
);
2538 /* destroy temporarily created socket */
2541 KERNEL_DEBUG(DBG_FNC_TCP_INPUT
| DBG_FUNC_END
,0,0,0,0,0);
2546 * Drop space held by incoming segment and return.
2549 if (tp
== 0 || (tp
->t_inpcb
->inp_socket
->so_options
& SO_DEBUG
))
2550 tcp_trace(TA_DROP
, ostate
, tp
, (void *)tcp_saveipgen
,
2554 /* destroy temporarily created socket */
2557 KERNEL_DEBUG(DBG_FNC_TCP_INPUT
| DBG_FUNC_END
,0,0,0,0,0);
2562 tcp_dooptions(tp
, cp
, cnt
, th
, to
)
2572 for (; cnt
> 0; cnt
-= optlen
, cp
+= optlen
) {
2574 if (opt
== TCPOPT_EOL
)
2576 if (opt
== TCPOPT_NOP
)
2582 if (optlen
< 2 || optlen
> cnt
)
2591 if (optlen
!= TCPOLEN_MAXSEG
)
2593 if (!(th
->th_flags
& TH_SYN
))
2595 bcopy((char *) cp
+ 2, (char *) &mss
, sizeof(mss
));
2600 if (optlen
!= TCPOLEN_WINDOW
)
2602 if (!(th
->th_flags
& TH_SYN
))
2604 tp
->t_flags
|= TF_RCVD_SCALE
;
2605 tp
->requested_s_scale
= min(cp
[2], TCP_MAX_WINSHIFT
);
2608 case TCPOPT_TIMESTAMP
:
2609 if (optlen
!= TCPOLEN_TIMESTAMP
)
2611 to
->to_flag
|= TOF_TS
;
2612 bcopy((char *)cp
+ 2,
2613 (char *)&to
->to_tsval
, sizeof(to
->to_tsval
));
2614 NTOHL(to
->to_tsval
);
2615 bcopy((char *)cp
+ 6,
2616 (char *)&to
->to_tsecr
, sizeof(to
->to_tsecr
));
2617 NTOHL(to
->to_tsecr
);
2620 * A timestamp received in a SYN makes
2621 * it ok to send timestamp requests and replies.
2623 if (th
->th_flags
& TH_SYN
) {
2624 tp
->t_flags
|= TF_RCVD_TSTMP
;
2625 tp
->ts_recent
= to
->to_tsval
;
2626 tp
->ts_recent_age
= tcp_now
;
2630 if (optlen
!= TCPOLEN_CC
)
2632 to
->to_flag
|= TOF_CC
;
2633 bcopy((char *)cp
+ 2,
2634 (char *)&to
->to_cc
, sizeof(to
->to_cc
));
2637 * A CC or CC.new option received in a SYN makes
2638 * it ok to send CC in subsequent segments.
2640 if (th
->th_flags
& TH_SYN
)
2641 tp
->t_flags
|= TF_RCVD_CC
;
2644 if (optlen
!= TCPOLEN_CC
)
2646 if (!(th
->th_flags
& TH_SYN
))
2648 to
->to_flag
|= TOF_CCNEW
;
2649 bcopy((char *)cp
+ 2,
2650 (char *)&to
->to_cc
, sizeof(to
->to_cc
));
2653 * A CC or CC.new option received in a SYN makes
2654 * it ok to send CC in subsequent segments.
2656 tp
->t_flags
|= TF_RCVD_CC
;
2659 if (optlen
!= TCPOLEN_CC
)
2661 if (!(th
->th_flags
& TH_SYN
))
2663 to
->to_flag
|= TOF_CCECHO
;
2664 bcopy((char *)cp
+ 2,
2665 (char *)&to
->to_ccecho
, sizeof(to
->to_ccecho
));
2666 NTOHL(to
->to_ccecho
);
2670 if (th
->th_flags
& TH_SYN
)
2671 tcp_mss(tp
, mss
); /* sets t_maxseg */
2675 * Pull out of band byte out of a segment so
2676 * it doesn't appear in the user's data queue.
2677 * It is still reflected in the segment length for
2678 * sequencing purposes.
2681 tcp_pulloutofband(so
, th
, m
, off
)
2684 register struct mbuf
*m
;
2685 int off
; /* delayed to be droped hdrlen */
2687 int cnt
= off
+ th
->th_urp
- 1;
2690 if (m
->m_len
> cnt
) {
2691 char *cp
= mtod(m
, caddr_t
) + cnt
;
2692 struct tcpcb
*tp
= sototcpcb(so
);
2695 tp
->t_oobflags
|= TCPOOB_HAVEDATA
;
2696 bcopy(cp
+1, cp
, (unsigned)(m
->m_len
- cnt
- 1));
2698 if (m
->m_flags
& M_PKTHDR
)
2707 panic("tcp_pulloutofband");
2711 * Collect new round-trip time estimate
2712 * and update averages and current timeout.
2715 tcp_xmit_timer(tp
, rtt
)
2716 register struct tcpcb
*tp
;
2721 tcpstat
.tcps_rttupdated
++;
2723 if (tp
->t_srtt
!= 0) {
2725 * srtt is stored as fixed point with 5 bits after the
2726 * binary point (i.e., scaled by 8). The following magic
2727 * is equivalent to the smoothing algorithm in rfc793 with
2728 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2729 * point). Adjust rtt to origin 0.
2731 delta
= ((rtt
- 1) << TCP_DELTA_SHIFT
)
2732 - (tp
->t_srtt
>> (TCP_RTT_SHIFT
- TCP_DELTA_SHIFT
));
2734 if ((tp
->t_srtt
+= delta
) <= 0)
2738 * We accumulate a smoothed rtt variance (actually, a
2739 * smoothed mean difference), then set the retransmit
2740 * timer to smoothed rtt + 4 times the smoothed variance.
2741 * rttvar is stored as fixed point with 4 bits after the
2742 * binary point (scaled by 16). The following is
2743 * equivalent to rfc793 smoothing with an alpha of .75
2744 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2745 * rfc793's wired-in beta.
2749 delta
-= tp
->t_rttvar
>> (TCP_RTTVAR_SHIFT
- TCP_DELTA_SHIFT
);
2750 if ((tp
->t_rttvar
+= delta
) <= 0)
2754 * No rtt measurement yet - use the unsmoothed rtt.
2755 * Set the variance to half the rtt (so our first
2756 * retransmit happens at 3*rtt).
2758 tp
->t_srtt
= rtt
<< TCP_RTT_SHIFT
;
2759 tp
->t_rttvar
= rtt
<< (TCP_RTTVAR_SHIFT
- 1);
2765 * the retransmit should happen at rtt + 4 * rttvar.
2766 * Because of the way we do the smoothing, srtt and rttvar
2767 * will each average +1/2 tick of bias. When we compute
2768 * the retransmit timer, we want 1/2 tick of rounding and
2769 * 1 extra tick because of +-1/2 tick uncertainty in the
2770 * firing of the timer. The bias will give us exactly the
2771 * 1.5 tick we need. But, because the bias is
2772 * statistical, we have to test that we don't drop below
2773 * the minimum feasible timer (which is 2 ticks).
2775 TCPT_RANGESET(tp
->t_rxtcur
, TCP_REXMTVAL(tp
),
2776 max(tp
->t_rttmin
, rtt
+ 2), TCPTV_REXMTMAX
);
2779 * We received an ack for a packet that wasn't retransmitted;
2780 * it is probably safe to discard any error indications we've
2781 * received recently. This isn't quite right, but close enough
2782 * for now (a route might have failed after we sent a segment,
2783 * and the return path might not be symmetrical).
2785 tp
->t_softerror
= 0;
2789 * Determine a reasonable value for maxseg size.
2790 * If the route is known, check route for mtu.
2791 * If none, use an mss that can be handled on the outgoing
2792 * interface without forcing IP to fragment; if bigger than
2793 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2794 * to utilize large mbufs. If no route is found, route has no mtu,
2795 * or the destination isn't local, use a default, hopefully conservative
2796 * size (usually 512 or the default IP max size, but no more than the mtu
2797 * of the interface), as we can't discover anything about intervening
2798 * gateways or networks. We also initialize the congestion/slow start
2799 * window to be a single segment if the destination isn't local.
2800 * While looking at the routing entry, we also initialize other path-dependent
2801 * parameters from pre-set or cached values in the routing entry.
2803 * Also take into account the space needed for options that we
2804 * send regularly. Make maxseg shorter by that amount to assure
2805 * that we can send maxseg amount of data even when the options
2806 * are present. Store the upper limit of the length of options plus
2809 * NOTE that this routine is only called when we process an incoming
2810 * segment, for outgoing segments only tcp_mssopt is called.
2812 * In case of T/TCP, we call this routine during implicit connection
2813 * setup as well (offer = -1), to initialize maxseg from the cached
2821 register struct rtentry
*rt
;
2823 register int rtt
, mss
;
2827 struct rmxp_tao
*taop
;
2828 int origoffer
= offer
;
2836 isipv6
= ((inp
->inp_vflag
& INP_IPV6
) != 0) ? 1 : 0;
2837 min_protoh
= isipv6
? sizeof (struct ip6_hdr
) + sizeof (struct tcphdr
)
2838 : sizeof (struct tcpiphdr
);
2840 #define min_protoh (sizeof (struct tcpiphdr))
2844 rt
= tcp_rtlookup6(inp
);
2847 rt
= tcp_rtlookup(inp
);
2849 tp
->t_maxopd
= tp
->t_maxseg
=
2851 isipv6
? tcp_v6mssdflt
:
2858 * Slower link window correction:
2859 * If a value is specificied for slowlink_wsize use it for PPP links
2860 * believed to be on a serial modem (speed <128Kbps). Excludes 9600bps as
2861 * it is the default value adversized by pseudo-devices over ppp.
2863 if (ifp
->if_type
== IFT_PPP
&& slowlink_wsize
> 0 &&
2864 ifp
->if_baudrate
> 9600 && ifp
->if_baudrate
<= 128000) {
2865 tp
->t_flags
|= TF_SLOWLINK
;
2867 so
= inp
->inp_socket
;
2869 taop
= rmx_taop(rt
->rt_rmx
);
2871 * Offer == -1 means that we didn't receive SYN yet,
2872 * use cached value in that case;
2875 offer
= taop
->tao_mssopt
;
2877 * Offer == 0 means that there was no MSS on the SYN segment,
2878 * in this case we use tcp_mssdflt.
2883 isipv6
? tcp_v6mssdflt
:
2888 * Sanity check: make sure that maxopd will be large
2889 * enough to allow some data on segments even is the
2890 * all the option space is used (40bytes). Otherwise
2891 * funny things may happen in tcp_output.
2893 offer
= max(offer
, 64);
2894 taop
->tao_mssopt
= offer
;
2897 * While we're here, check if there's an initial rtt
2898 * or rttvar. Convert from the route-table units
2899 * to scaled multiples of the slow timeout timer.
2901 if (tp
->t_srtt
== 0 && (rtt
= rt
->rt_rmx
.rmx_rtt
)) {
2903 * XXX the lock bit for RTT indicates that the value
2904 * is also a minimum value; this is subject to time.
2906 if (rt
->rt_rmx
.rmx_locks
& RTV_RTT
)
2907 tp
->t_rttmin
= rtt
/ (RTM_RTTUNIT
/ PR_SLOWHZ
);
2908 tp
->t_srtt
= rtt
/ (RTM_RTTUNIT
/ (PR_SLOWHZ
* TCP_RTT_SCALE
));
2909 tcpstat
.tcps_usedrtt
++;
2910 if (rt
->rt_rmx
.rmx_rttvar
) {
2911 tp
->t_rttvar
= rt
->rt_rmx
.rmx_rttvar
/
2912 (RTM_RTTUNIT
/ (PR_SLOWHZ
* TCP_RTTVAR_SCALE
));
2913 tcpstat
.tcps_usedrttvar
++;
2915 /* default variation is +- 1 rtt */
2917 tp
->t_srtt
* TCP_RTTVAR_SCALE
/ TCP_RTT_SCALE
;
2919 TCPT_RANGESET(tp
->t_rxtcur
,
2920 ((tp
->t_srtt
>> 2) + tp
->t_rttvar
) >> 1,
2921 tp
->t_rttmin
, TCPTV_REXMTMAX
);
2924 * if there's an mtu associated with the route, use it
2925 * else, use the link mtu.
2927 if (rt
->rt_rmx
.rmx_mtu
)
2928 mss
= rt
->rt_rmx
.rmx_mtu
- min_protoh
;
2933 (isipv6
? nd_ifinfo
[rt
->rt_ifp
->if_index
].linkmtu
:
2942 if (!in6_localaddr(&inp
->in6p_faddr
))
2943 mss
= min(mss
, tcp_v6mssdflt
);
2946 if (!in_localaddr(inp
->inp_faddr
))
2947 mss
= min(mss
, tcp_mssdflt
);
2949 mss
= min(mss
, offer
);
2951 * maxopd stores the maximum length of data AND options
2952 * in a segment; maxseg is the amount of data in a normal
2953 * segment. We need to store this value (maxopd) apart
2954 * from maxseg, because now every segment carries options
2955 * and thus we normally have somewhat less data in segments.
2960 * In case of T/TCP, origoffer==-1 indicates, that no segments
2961 * were received yet. In this case we just guess, otherwise
2962 * we do the same as before T/TCP.
2964 if ((tp
->t_flags
& (TF_REQ_TSTMP
|TF_NOOPT
)) == TF_REQ_TSTMP
&&
2966 (tp
->t_flags
& TF_RCVD_TSTMP
) == TF_RCVD_TSTMP
))
2967 mss
-= TCPOLEN_TSTAMP_APPA
;
2968 if ((tp
->t_flags
& (TF_REQ_CC
|TF_NOOPT
)) == TF_REQ_CC
&&
2970 (tp
->t_flags
& TF_RCVD_CC
) == TF_RCVD_CC
))
2971 mss
-= TCPOLEN_CC_APPA
;
2973 #if (MCLBYTES & (MCLBYTES - 1)) == 0
2975 mss
&= ~(MCLBYTES
-1);
2978 mss
= mss
/ MCLBYTES
* MCLBYTES
;
2981 * If there's a pipesize, change the socket buffer
2982 * to that size. Make the socket buffers an integral
2983 * number of mss units; if the mss is larger than
2984 * the socket buffer, decrease the mss.
2987 if ((bufsize
= rt
->rt_rmx
.rmx_sendpipe
) == 0)
2989 bufsize
= so
->so_snd
.sb_hiwat
;
2993 bufsize
= roundup(bufsize
, mss
);
2994 if (bufsize
> sb_max
)
2996 (void)sbreserve(&so
->so_snd
, bufsize
);
3001 if ((bufsize
= rt
->rt_rmx
.rmx_recvpipe
) == 0)
3003 bufsize
= so
->so_rcv
.sb_hiwat
;
3004 if (bufsize
> mss
) {
3005 bufsize
= roundup(bufsize
, mss
);
3006 if (bufsize
> sb_max
)
3008 (void)sbreserve(&so
->so_rcv
, bufsize
);
3012 * Set the slow-start flight size depending on whether this
3013 * is a local network or not.
3017 (isipv6
&& in6_localaddr(&inp
->in6p_faddr
)) ||
3020 in_localaddr(inp
->inp_faddr
)
3025 tp
->snd_cwnd
= mss
* ss_fltsz_local
;
3027 tp
->snd_cwnd
= mss
* ss_fltsz
;
3029 if (rt
->rt_rmx
.rmx_ssthresh
) {
3031 * There's some sort of gateway or interface
3032 * buffer limit on the path. Use this to set
3033 * the slow start threshhold, but set the
3034 * threshold to no less than 2*mss.
3036 tp
->snd_ssthresh
= max(2 * mss
, rt
->rt_rmx
.rmx_ssthresh
);
3037 tcpstat
.tcps_usedssthresh
++;
3042 * Determine the MSS option to send on an outgoing SYN.
3055 isipv6
= ((tp
->t_inpcb
->inp_vflag
& INP_IPV6
) != 0) ? 1 : 0;
3056 min_protoh
= isipv6
? sizeof (struct ip6_hdr
) + sizeof (struct tcphdr
)
3057 : sizeof (struct tcpiphdr
);
3059 #define min_protoh (sizeof (struct tcpiphdr))
3063 rt
= tcp_rtlookup6(tp
->t_inpcb
);
3066 rt
= tcp_rtlookup(tp
->t_inpcb
);
3070 isipv6
? tcp_v6mssdflt
:
3074 * Slower link window correction:
3075 * If a value is specificied for slowlink_wsize use it for PPP links
3076 * believed to be on a serial modem (speed <128Kbps). Excludes 9600bps as
3077 * it is the default value adversized by pseudo-devices over ppp.
3079 if (rt
->rt_ifp
->if_type
== IFT_PPP
&& slowlink_wsize
> 0 &&
3080 rt
->rt_ifp
->if_baudrate
> 9600 && rt
->rt_ifp
->if_baudrate
<= 128000) {
3081 tp
->t_flags
|= TF_SLOWLINK
;
3084 return rt
->rt_ifp
->if_mtu
- min_protoh
;
3089 * Checks for partial ack. If partial ack arrives, force the retransmission
3090 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
3091 * 1. By setting snd_nxt to ti_ack, this forces retransmission timer to
3092 * be started again. If the ack advances at least to tp->snd_recover, return 0.
3099 if (SEQ_LT(th
->th_ack
, tp
->snd_recover
)) {
3100 tcp_seq onxt
= tp
->snd_nxt
;
3101 u_long ocwnd
= tp
->snd_cwnd
;
3103 tp
->t_timer
[TCPT_REXMT
] = 0;
3105 callout_stop(tp
->tt_rexmt
);
3108 tp
->snd_nxt
= th
->th_ack
;
3110 * Set snd_cwnd to one segment beyond acknowledged offset
3111 * (tp->snd_una has not yet been updated when this function
3114 tp
->snd_cwnd
= tp
->t_maxseg
+ (th
->th_ack
- tp
->snd_una
);
3115 (void) tcp_output(tp
);
3116 tp
->snd_cwnd
= ocwnd
;
3117 if (SEQ_GT(onxt
, tp
->snd_nxt
))
3120 * Partial window deflation. Relies on fact that tp->snd_una
3123 tp
->snd_cwnd
-= (th
->th_ack
- tp
->snd_una
- tp
->t_maxseg
);