]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kern/clock.c
740f16340aeb9d43a531fc7694b9958f0ed7e779
[apple/xnu.git] / osfmk / kern / clock.c
1 /*
2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 */
33
34 #include <mach/mach_types.h>
35
36 #include <kern/lock.h>
37 #include <kern/spl.h>
38 #include <kern/sched_prim.h>
39 #include <kern/thread.h>
40 #include <kern/clock.h>
41 #include <kern/host_notify.h>
42
43 #include <IOKit/IOPlatformExpert.h>
44
45 #include <machine/commpage.h>
46
47 #include <mach/mach_traps.h>
48 #include <mach/mach_time.h>
49
50 uint32_t hz_tick_interval = 1;
51
52
53 decl_simple_lock_data(,clock_lock)
54
55 #define clock_lock() \
56 simple_lock(&clock_lock)
57
58 #define clock_unlock() \
59 simple_unlock(&clock_lock)
60
61 #define clock_lock_init() \
62 simple_lock_init(&clock_lock, 0)
63
64
65 /*
66 * Time of day (calendar) variables.
67 *
68 * Algorithm:
69 *
70 * TOD <- (seconds + epoch, fraction) <- CONV(current absolute time + offset)
71 *
72 * where CONV converts absolute time units into seconds and a fraction.
73 */
74 static struct clock_calend {
75 uint64_t epoch;
76 uint64_t offset;
77
78 int32_t adjdelta; /* Nanosecond time delta for this adjustment period */
79 uint64_t adjstart; /* Absolute time value for start of this adjustment period */
80 uint32_t adjoffset; /* Absolute time offset for this adjustment period as absolute value */
81 } clock_calend;
82
83 #if CONFIG_DTRACE
84
85 /*
86 * Unlocked calendar flipflop; this is used to track a clock_calend such
87 * that we can safely access a snapshot of a valid clock_calend structure
88 * without needing to take any locks to do it.
89 *
90 * The trick is to use a generation count and set the low bit when it is
91 * being updated/read; by doing this, we guarantee, through use of the
92 * hw_atomic functions, that the generation is incremented when the bit
93 * is cleared atomically (by using a 1 bit add).
94 */
95 static struct unlocked_clock_calend {
96 struct clock_calend calend; /* copy of calendar */
97 uint32_t gen; /* generation count */
98 } flipflop[ 2];
99
100 static void clock_track_calend_nowait(void);
101
102 #endif
103
104 /*
105 * Calendar adjustment variables and values.
106 */
107 #define calend_adjperiod (NSEC_PER_SEC / 100) /* adjustment period, ns */
108 #define calend_adjskew (40 * NSEC_PER_USEC) /* "standard" skew, ns / period */
109 #define calend_adjbig (NSEC_PER_SEC) /* use 10x skew above adjbig ns */
110
111 static int64_t calend_adjtotal; /* Nanosecond remaining total adjustment */
112 static uint64_t calend_adjdeadline; /* Absolute time value for next adjustment period */
113 static uint32_t calend_adjinterval; /* Absolute time interval of adjustment period */
114
115 static timer_call_data_t calend_adjcall;
116 static uint32_t calend_adjactive;
117
118 static uint32_t calend_set_adjustment(
119 long *secs,
120 int *microsecs);
121
122 static void calend_adjust_call(void);
123 static uint32_t calend_adjust(void);
124
125 static thread_call_data_t calend_wakecall;
126
127 extern void IOKitResetTime(void);
128
129 void _clock_delay_until_deadline(uint64_t interval,
130 uint64_t deadline);
131
132 static uint64_t clock_boottime; /* Seconds boottime epoch */
133
134 #define TIME_ADD(rsecs, secs, rfrac, frac, unit) \
135 MACRO_BEGIN \
136 if (((rfrac) += (frac)) >= (unit)) { \
137 (rfrac) -= (unit); \
138 (rsecs) += 1; \
139 } \
140 (rsecs) += (secs); \
141 MACRO_END
142
143 #define TIME_SUB(rsecs, secs, rfrac, frac, unit) \
144 MACRO_BEGIN \
145 if ((int)((rfrac) -= (frac)) < 0) { \
146 (rfrac) += (unit); \
147 (rsecs) -= 1; \
148 } \
149 (rsecs) -= (secs); \
150 MACRO_END
151
152 /*
153 * clock_config:
154 *
155 * Called once at boot to configure the clock subsystem.
156 */
157 void
158 clock_config(void)
159 {
160 clock_lock_init();
161
162 timer_call_setup(&calend_adjcall, (timer_call_func_t)calend_adjust_call, NULL);
163 thread_call_setup(&calend_wakecall, (thread_call_func_t)IOKitResetTime, NULL);
164
165 clock_oldconfig();
166 }
167
168 /*
169 * clock_init:
170 *
171 * Called on a processor each time started.
172 */
173 void
174 clock_init(void)
175 {
176 clock_oldinit();
177 }
178
179 /*
180 * clock_timebase_init:
181 *
182 * Called by machine dependent code
183 * to initialize areas dependent on the
184 * timebase value. May be called multiple
185 * times during start up.
186 */
187 void
188 clock_timebase_init(void)
189 {
190 uint64_t abstime;
191
192 nanoseconds_to_absolutetime(calend_adjperiod, &abstime);
193 calend_adjinterval = (uint32_t)abstime;
194
195 nanoseconds_to_absolutetime(NSEC_PER_SEC / 100, &abstime);
196 hz_tick_interval = (uint32_t)abstime;
197
198 sched_timebase_init();
199 }
200
201 /*
202 * mach_timebase_info_trap:
203 *
204 * User trap returns timebase constant.
205 */
206 kern_return_t
207 mach_timebase_info_trap(
208 struct mach_timebase_info_trap_args *args)
209 {
210 mach_vm_address_t out_info_addr = args->info;
211 mach_timebase_info_data_t info;
212
213 clock_timebase_info(&info);
214
215 copyout((void *)&info, out_info_addr, sizeof (info));
216
217 return (KERN_SUCCESS);
218 }
219
220 /*
221 * Calendar routines.
222 */
223
224 /*
225 * clock_get_calendar_microtime:
226 *
227 * Returns the current calendar value,
228 * microseconds as the fraction.
229 */
230 void
231 clock_get_calendar_microtime(
232 clock_sec_t *secs,
233 clock_usec_t *microsecs)
234 {
235 clock_get_calendar_absolute_and_microtime(secs, microsecs, NULL);
236 }
237
238 /*
239 * clock_get_calendar_absolute_and_microtime:
240 *
241 * Returns the current calendar value,
242 * microseconds as the fraction. Also
243 * returns mach_absolute_time if abstime
244 * is not NULL.
245 */
246 void
247 clock_get_calendar_absolute_and_microtime(
248 clock_sec_t *secs,
249 clock_usec_t *microsecs,
250 uint64_t *abstime)
251 {
252 uint64_t now;
253 spl_t s;
254
255 s = splclock();
256 clock_lock();
257
258 now = mach_absolute_time();
259 if (abstime)
260 *abstime = now;
261
262 if (clock_calend.adjdelta < 0) {
263 uint32_t t32;
264
265 /*
266 * Since offset is decremented during a negative adjustment,
267 * ensure that time increases monotonically without going
268 * temporarily backwards.
269 * If the delta has not yet passed, now is set to the start
270 * of the current adjustment period; otherwise, we're between
271 * the expiry of the delta and the next call to calend_adjust(),
272 * and we offset accordingly.
273 */
274 if (now > clock_calend.adjstart) {
275 t32 = (uint32_t)(now - clock_calend.adjstart);
276
277 if (t32 > clock_calend.adjoffset)
278 now -= clock_calend.adjoffset;
279 else
280 now = clock_calend.adjstart;
281 }
282 }
283
284 now += clock_calend.offset;
285
286 absolutetime_to_microtime(now, secs, microsecs);
287
288 *secs += (clock_sec_t)clock_calend.epoch;
289
290 clock_unlock();
291 splx(s);
292 }
293
294 /*
295 * clock_get_calendar_nanotime:
296 *
297 * Returns the current calendar value,
298 * nanoseconds as the fraction.
299 *
300 * Since we do not have an interface to
301 * set the calendar with resolution greater
302 * than a microsecond, we honor that here.
303 */
304 void
305 clock_get_calendar_nanotime(
306 clock_sec_t *secs,
307 clock_nsec_t *nanosecs)
308 {
309 uint64_t now;
310 spl_t s;
311
312 s = splclock();
313 clock_lock();
314
315 now = mach_absolute_time();
316
317 if (clock_calend.adjdelta < 0) {
318 uint32_t t32;
319
320 if (now > clock_calend.adjstart) {
321 t32 = (uint32_t)(now - clock_calend.adjstart);
322
323 if (t32 > clock_calend.adjoffset)
324 now -= clock_calend.adjoffset;
325 else
326 now = clock_calend.adjstart;
327 }
328 }
329
330 now += clock_calend.offset;
331
332 absolutetime_to_microtime(now, secs, nanosecs);
333
334 *nanosecs *= NSEC_PER_USEC;
335
336 *secs += (clock_sec_t)clock_calend.epoch;
337
338 clock_unlock();
339 splx(s);
340 }
341
342 /*
343 * clock_gettimeofday:
344 *
345 * Kernel interface for commpage implementation of
346 * gettimeofday() syscall.
347 *
348 * Returns the current calendar value, and updates the
349 * commpage info as appropriate. Because most calls to
350 * gettimeofday() are handled in user mode by the commpage,
351 * this routine should be used infrequently.
352 */
353 void
354 clock_gettimeofday(
355 clock_sec_t *secs,
356 clock_usec_t *microsecs)
357 {
358 uint64_t now;
359 spl_t s;
360
361 s = splclock();
362 clock_lock();
363
364 now = mach_absolute_time();
365
366 if (clock_calend.adjdelta >= 0) {
367 clock_gettimeofday_set_commpage(now, clock_calend.epoch, clock_calend.offset, secs, microsecs);
368 }
369 else {
370 uint32_t t32;
371
372 if (now > clock_calend.adjstart) {
373 t32 = (uint32_t)(now - clock_calend.adjstart);
374
375 if (t32 > clock_calend.adjoffset)
376 now -= clock_calend.adjoffset;
377 else
378 now = clock_calend.adjstart;
379 }
380
381 now += clock_calend.offset;
382
383 absolutetime_to_microtime(now, secs, microsecs);
384
385 *secs += (clock_sec_t)clock_calend.epoch;
386 }
387
388 clock_unlock();
389 splx(s);
390 }
391
392 /*
393 * clock_set_calendar_microtime:
394 *
395 * Sets the current calendar value by
396 * recalculating the epoch and offset
397 * from the system clock.
398 *
399 * Also adjusts the boottime to keep the
400 * value consistent, writes the new
401 * calendar value to the platform clock,
402 * and sends calendar change notifications.
403 */
404 void
405 clock_set_calendar_microtime(
406 clock_sec_t secs,
407 clock_usec_t microsecs)
408 {
409 clock_sec_t sys;
410 clock_usec_t microsys;
411 clock_sec_t newsecs;
412 spl_t s;
413
414 newsecs = (microsecs < 500*USEC_PER_SEC)? secs: secs + 1;
415
416 s = splclock();
417 clock_lock();
418
419 commpage_disable_timestamp();
420
421 /*
422 * Calculate the new calendar epoch based on
423 * the new value and the system clock.
424 */
425 clock_get_system_microtime(&sys, &microsys);
426 TIME_SUB(secs, sys, microsecs, microsys, USEC_PER_SEC);
427
428 /*
429 * Adjust the boottime based on the delta.
430 */
431 clock_boottime += secs - clock_calend.epoch;
432
433 /*
434 * Set the new calendar epoch.
435 */
436 clock_calend.epoch = secs;
437
438 nanoseconds_to_absolutetime((uint64_t)microsecs * NSEC_PER_USEC, &clock_calend.offset);
439
440 /*
441 * Cancel any adjustment in progress.
442 */
443 calend_adjtotal = clock_calend.adjdelta = 0;
444
445 clock_unlock();
446
447 /*
448 * Set the new value for the platform clock.
449 */
450 PESetGMTTimeOfDay(newsecs);
451
452 splx(s);
453
454 /*
455 * Send host notifications.
456 */
457 host_notify_calendar_change();
458
459 #if CONFIG_DTRACE
460 clock_track_calend_nowait();
461 #endif
462 }
463
464 /*
465 * clock_initialize_calendar:
466 *
467 * Set the calendar and related clocks
468 * from the platform clock at boot or
469 * wake event.
470 *
471 * Also sends host notifications.
472 */
473 void
474 clock_initialize_calendar(void)
475 {
476 clock_sec_t sys, secs = PEGetGMTTimeOfDay();
477 clock_usec_t microsys, microsecs = 0;
478 spl_t s;
479
480 s = splclock();
481 clock_lock();
482
483 commpage_disable_timestamp();
484
485 if ((long)secs >= (long)clock_boottime) {
486 /*
487 * Initialize the boot time based on the platform clock.
488 */
489 if (clock_boottime == 0)
490 clock_boottime = secs;
491
492 /*
493 * Calculate the new calendar epoch based on
494 * the platform clock and the system clock.
495 */
496 clock_get_system_microtime(&sys, &microsys);
497 TIME_SUB(secs, sys, microsecs, microsys, USEC_PER_SEC);
498
499 /*
500 * Set the new calendar epoch.
501 */
502 clock_calend.epoch = secs;
503
504 nanoseconds_to_absolutetime((uint64_t)microsecs * NSEC_PER_USEC, &clock_calend.offset);
505
506 /*
507 * Cancel any adjustment in progress.
508 */
509 calend_adjtotal = clock_calend.adjdelta = 0;
510 }
511
512 clock_unlock();
513 splx(s);
514
515 /*
516 * Send host notifications.
517 */
518 host_notify_calendar_change();
519
520 #if CONFIG_DTRACE
521 clock_track_calend_nowait();
522 #endif
523 }
524
525 /*
526 * clock_get_boottime_nanotime:
527 *
528 * Return the boottime, used by sysctl.
529 */
530 void
531 clock_get_boottime_nanotime(
532 clock_sec_t *secs,
533 clock_nsec_t *nanosecs)
534 {
535 spl_t s;
536
537 s = splclock();
538 clock_lock();
539
540 *secs = (clock_sec_t)clock_boottime;
541 *nanosecs = 0;
542
543 clock_unlock();
544 splx(s);
545 }
546
547 /*
548 * clock_adjtime:
549 *
550 * Interface to adjtime() syscall.
551 *
552 * Calculates adjustment variables and
553 * initiates adjustment.
554 */
555 void
556 clock_adjtime(
557 long *secs,
558 int *microsecs)
559 {
560 uint32_t interval;
561 spl_t s;
562
563 s = splclock();
564 clock_lock();
565
566 interval = calend_set_adjustment(secs, microsecs);
567 if (interval != 0) {
568 calend_adjdeadline = mach_absolute_time() + interval;
569 if (!timer_call_enter(&calend_adjcall, calend_adjdeadline, TIMER_CALL_SYS_CRITICAL))
570 calend_adjactive++;
571 }
572 else
573 if (timer_call_cancel(&calend_adjcall))
574 calend_adjactive--;
575
576 clock_unlock();
577 splx(s);
578 }
579
580 static uint32_t
581 calend_set_adjustment(
582 long *secs,
583 int *microsecs)
584 {
585 uint64_t now, t64;
586 int64_t total, ototal;
587 uint32_t interval = 0;
588
589 /*
590 * Compute the total adjustment time in nanoseconds.
591 */
592 total = ((int64_t)*secs * (int64_t)NSEC_PER_SEC) + (*microsecs * (int64_t)NSEC_PER_USEC);
593
594 /*
595 * Disable commpage gettimeofday().
596 */
597 commpage_disable_timestamp();
598
599 /*
600 * Get current absolute time.
601 */
602 now = mach_absolute_time();
603
604 /*
605 * Save the old adjustment total for later return.
606 */
607 ototal = calend_adjtotal;
608
609 /*
610 * Is a new correction specified?
611 */
612 if (total != 0) {
613 /*
614 * Set delta to the standard, small, adjustment skew.
615 */
616 int32_t delta = calend_adjskew;
617
618 if (total > 0) {
619 /*
620 * Positive adjustment. If greater than the preset 'big'
621 * threshold, slew at a faster rate, capping if necessary.
622 */
623 if (total > (int64_t) calend_adjbig)
624 delta *= 10;
625 if (delta > total)
626 delta = (int32_t)total;
627
628 /*
629 * Convert the delta back from ns to absolute time and store in adjoffset.
630 */
631 nanoseconds_to_absolutetime((uint64_t)delta, &t64);
632 clock_calend.adjoffset = (uint32_t)t64;
633 }
634 else {
635 /*
636 * Negative adjustment; therefore, negate the delta. If
637 * greater than the preset 'big' threshold, slew at a faster
638 * rate, capping if necessary.
639 */
640 if (total < (int64_t) -calend_adjbig)
641 delta *= 10;
642 delta = -delta;
643 if (delta < total)
644 delta = (int32_t)total;
645
646 /*
647 * Save the current absolute time. Subsequent time operations occuring
648 * during this negative correction can make use of this value to ensure
649 * that time increases monotonically.
650 */
651 clock_calend.adjstart = now;
652
653 /*
654 * Convert the delta back from ns to absolute time and store in adjoffset.
655 */
656 nanoseconds_to_absolutetime((uint64_t)-delta, &t64);
657 clock_calend.adjoffset = (uint32_t)t64;
658 }
659
660 /*
661 * Store the total adjustment time in ns.
662 */
663 calend_adjtotal = total;
664
665 /*
666 * Store the delta for this adjustment period in ns.
667 */
668 clock_calend.adjdelta = delta;
669
670 /*
671 * Set the interval in absolute time for later return.
672 */
673 interval = calend_adjinterval;
674 }
675 else {
676 /*
677 * No change; clear any prior adjustment.
678 */
679 calend_adjtotal = clock_calend.adjdelta = 0;
680 }
681
682 /*
683 * If an prior correction was in progress, return the
684 * remaining uncorrected time from it.
685 */
686 if (ototal != 0) {
687 *secs = (long)(ototal / (long)NSEC_PER_SEC);
688 *microsecs = (int)((ototal % (int)NSEC_PER_SEC) / (int)NSEC_PER_USEC);
689 }
690 else
691 *secs = *microsecs = 0;
692
693 #if CONFIG_DTRACE
694 clock_track_calend_nowait();
695 #endif
696
697 return (interval);
698 }
699
700 static void
701 calend_adjust_call(void)
702 {
703 uint32_t interval;
704 spl_t s;
705
706 s = splclock();
707 clock_lock();
708
709 if (--calend_adjactive == 0) {
710 interval = calend_adjust();
711 if (interval != 0) {
712 clock_deadline_for_periodic_event(interval, mach_absolute_time(), &calend_adjdeadline);
713
714 if (!timer_call_enter(&calend_adjcall, calend_adjdeadline, TIMER_CALL_SYS_CRITICAL))
715 calend_adjactive++;
716 }
717 }
718
719 clock_unlock();
720 splx(s);
721 }
722
723 static uint32_t
724 calend_adjust(void)
725 {
726 uint64_t now, t64;
727 int32_t delta;
728 uint32_t interval = 0;
729
730 commpage_disable_timestamp();
731
732 now = mach_absolute_time();
733
734 delta = clock_calend.adjdelta;
735
736 if (delta > 0) {
737 clock_calend.offset += clock_calend.adjoffset;
738
739 calend_adjtotal -= delta;
740 if (delta > calend_adjtotal) {
741 clock_calend.adjdelta = delta = (int32_t)calend_adjtotal;
742
743 nanoseconds_to_absolutetime((uint64_t)delta, &t64);
744 clock_calend.adjoffset = (uint32_t)t64;
745 }
746 }
747 else
748 if (delta < 0) {
749 clock_calend.offset -= clock_calend.adjoffset;
750
751 calend_adjtotal -= delta;
752 if (delta < calend_adjtotal) {
753 clock_calend.adjdelta = delta = (int32_t)calend_adjtotal;
754
755 nanoseconds_to_absolutetime((uint64_t)-delta, &t64);
756 clock_calend.adjoffset = (uint32_t)t64;
757 }
758
759 if (clock_calend.adjdelta != 0)
760 clock_calend.adjstart = now;
761 }
762
763 if (clock_calend.adjdelta != 0)
764 interval = calend_adjinterval;
765
766 #if CONFIG_DTRACE
767 clock_track_calend_nowait();
768 #endif
769
770 return (interval);
771 }
772
773 /*
774 * clock_wakeup_calendar:
775 *
776 * Interface to power management, used
777 * to initiate the reset of the calendar
778 * on wake from sleep event.
779 */
780 void
781 clock_wakeup_calendar(void)
782 {
783 thread_call_enter(&calend_wakecall);
784 }
785
786 /*
787 * Wait / delay routines.
788 */
789 static void
790 mach_wait_until_continue(
791 __unused void *parameter,
792 wait_result_t wresult)
793 {
794 thread_syscall_return((wresult == THREAD_INTERRUPTED)? KERN_ABORTED: KERN_SUCCESS);
795 /*NOTREACHED*/
796 }
797
798 /*
799 * mach_wait_until_trap: Suspend execution of calling thread until the specified time has passed
800 *
801 * Parameters: args->deadline Amount of time to wait
802 *
803 * Returns: 0 Success
804 * !0 Not success
805 *
806 */
807 kern_return_t
808 mach_wait_until_trap(
809 struct mach_wait_until_trap_args *args)
810 {
811 uint64_t deadline = args->deadline;
812 wait_result_t wresult;
813
814 wresult = assert_wait_deadline_with_leeway((event_t)mach_wait_until_trap, THREAD_ABORTSAFE,
815 TIMEOUT_URGENCY_USER_NORMAL, deadline, 0);
816 if (wresult == THREAD_WAITING)
817 wresult = thread_block(mach_wait_until_continue);
818
819 return ((wresult == THREAD_INTERRUPTED)? KERN_ABORTED: KERN_SUCCESS);
820 }
821
822 void
823 clock_delay_until(
824 uint64_t deadline)
825 {
826 uint64_t now = mach_absolute_time();
827
828 if (now >= deadline)
829 return;
830
831 _clock_delay_until_deadline(deadline - now, deadline);
832 }
833
834 /*
835 * Preserve the original precise interval that the client
836 * requested for comparison to the spin threshold.
837 */
838 void
839 _clock_delay_until_deadline(
840 uint64_t interval,
841 uint64_t deadline)
842 {
843
844 if (interval == 0)
845 return;
846
847 if ( ml_delay_should_spin(interval) ||
848 get_preemption_level() != 0 ||
849 ml_get_interrupts_enabled() == FALSE ) {
850 machine_delay_until(interval, deadline);
851 } else {
852 assert_wait_deadline((event_t)clock_delay_until, THREAD_UNINT, deadline);
853
854 thread_block(THREAD_CONTINUE_NULL);
855 }
856 }
857
858
859 void
860 delay_for_interval(
861 uint32_t interval,
862 uint32_t scale_factor)
863 {
864 uint64_t abstime;
865
866 clock_interval_to_absolutetime_interval(interval, scale_factor, &abstime);
867
868 _clock_delay_until_deadline(abstime, mach_absolute_time() + abstime);
869 }
870
871 void
872 delay(
873 int usec)
874 {
875 delay_for_interval((usec < 0)? -usec: usec, NSEC_PER_USEC);
876 }
877
878 /*
879 * Miscellaneous routines.
880 */
881 void
882 clock_interval_to_deadline(
883 uint32_t interval,
884 uint32_t scale_factor,
885 uint64_t *result)
886 {
887 uint64_t abstime;
888
889 clock_interval_to_absolutetime_interval(interval, scale_factor, &abstime);
890
891 *result = mach_absolute_time() + abstime;
892 }
893
894 void
895 clock_absolutetime_interval_to_deadline(
896 uint64_t abstime,
897 uint64_t *result)
898 {
899 *result = mach_absolute_time() + abstime;
900 }
901
902 void
903 clock_get_uptime(
904 uint64_t *result)
905 {
906 *result = mach_absolute_time();
907 }
908
909 void
910 clock_deadline_for_periodic_event(
911 uint64_t interval,
912 uint64_t abstime,
913 uint64_t *deadline)
914 {
915 assert(interval != 0);
916
917 *deadline += interval;
918
919 if (*deadline <= abstime) {
920 *deadline = abstime + interval;
921 abstime = mach_absolute_time();
922
923 if (*deadline <= abstime)
924 *deadline = abstime + interval;
925 }
926 }
927
928 #if CONFIG_DTRACE
929
930 /*
931 * clock_get_calendar_nanotime_nowait
932 *
933 * Description: Non-blocking version of clock_get_calendar_nanotime()
934 *
935 * Notes: This function operates by separately tracking calendar time
936 * updates using a two element structure to copy the calendar
937 * state, which may be asynchronously modified. It utilizes
938 * barrier instructions in the tracking process and in the local
939 * stable snapshot process in order to ensure that a consistent
940 * snapshot is used to perform the calculation.
941 */
942 void
943 clock_get_calendar_nanotime_nowait(
944 clock_sec_t *secs,
945 clock_nsec_t *nanosecs)
946 {
947 int i = 0;
948 uint64_t now;
949 struct unlocked_clock_calend stable;
950
951 for (;;) {
952 stable = flipflop[i]; /* take snapshot */
953
954 /*
955 * Use a barrier instructions to ensure atomicity. We AND
956 * off the "in progress" bit to get the current generation
957 * count.
958 */
959 (void)hw_atomic_and(&stable.gen, ~(uint32_t)1);
960
961 /*
962 * If an update _is_ in progress, the generation count will be
963 * off by one, if it _was_ in progress, it will be off by two,
964 * and if we caught it at a good time, it will be equal (and
965 * our snapshot is threfore stable).
966 */
967 if (flipflop[i].gen == stable.gen)
968 break;
969
970 /* Switch to the oher element of the flipflop, and try again. */
971 i ^= 1;
972 }
973
974 now = mach_absolute_time();
975
976 if (stable.calend.adjdelta < 0) {
977 uint32_t t32;
978
979 if (now > stable.calend.adjstart) {
980 t32 = (uint32_t)(now - stable.calend.adjstart);
981
982 if (t32 > stable.calend.adjoffset)
983 now -= stable.calend.adjoffset;
984 else
985 now = stable.calend.adjstart;
986 }
987 }
988
989 now += stable.calend.offset;
990
991 absolutetime_to_microtime(now, secs, nanosecs);
992 *nanosecs *= NSEC_PER_USEC;
993
994 *secs += (clock_sec_t)stable.calend.epoch;
995 }
996
997 static void
998 clock_track_calend_nowait(void)
999 {
1000 int i;
1001
1002 for (i = 0; i < 2; i++) {
1003 struct clock_calend tmp = clock_calend;
1004
1005 /*
1006 * Set the low bit if the generation count; since we use a
1007 * barrier instruction to do this, we are guaranteed that this
1008 * will flag an update in progress to an async caller trying
1009 * to examine the contents.
1010 */
1011 (void)hw_atomic_or(&flipflop[i].gen, 1);
1012
1013 flipflop[i].calend = tmp;
1014
1015 /*
1016 * Increment the generation count to clear the low bit to
1017 * signal completion. If a caller compares the generation
1018 * count after taking a copy while in progress, the count
1019 * will be off by two.
1020 */
1021 (void)hw_atomic_add(&flipflop[i].gen, 1);
1022 }
1023 }
1024
1025 #endif /* CONFIG_DTRACE */