2 * Copyright (c) 2000-2017 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
31 * All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the project nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
45 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * Copyright (c) 1982, 1986, 1988, 1990, 1993
60 * The Regents of the University of California. All rights reserved.
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in the
69 * documentation and/or other materials provided with the distribution.
70 * 3. All advertising materials mentioning features or use of this software
71 * must display the following acknowledgement:
72 * This product includes software developed by the University of
73 * California, Berkeley and its contributors.
74 * 4. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
93 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
94 * support for mandatory and extensible security protections. This notice
95 * is included in support of clause 2.2 (b) of the Apple Public License,
99 #include <sys/param.h>
100 #include <sys/malloc.h>
101 #include <sys/mbuf.h>
102 #include <sys/errno.h>
103 #include <sys/protosw.h>
104 #include <sys/socket.h>
105 #include <sys/socketvar.h>
106 #include <sys/systm.h>
107 #include <sys/kernel.h>
108 #include <sys/proc.h>
109 #include <sys/kauth.h>
110 #include <sys/mcache.h>
111 #include <sys/sysctl.h>
112 #include <kern/zalloc.h>
113 #include <libkern/OSByteOrder.h>
115 #include <pexpert/pexpert.h>
116 #include <mach/sdt.h>
119 #include <net/route.h>
120 #include <net/dlil.h>
121 #include <net/net_api_stats.h>
122 #include <net/net_osdep.h>
123 #include <net/net_perf.h>
125 #include <netinet/in.h>
126 #include <netinet/in_var.h>
127 #include <netinet/ip_var.h>
128 #include <netinet6/in6_var.h>
129 #include <netinet/ip6.h>
130 #include <netinet/kpi_ipfilter_var.h>
131 #include <netinet/in_tclass.h>
133 #include <netinet6/ip6protosw.h>
134 #include <netinet/icmp6.h>
135 #include <netinet6/ip6_var.h>
136 #include <netinet/in_pcb.h>
137 #include <netinet6/nd6.h>
138 #include <netinet6/scope6_var.h>
140 #include <netinet6/ipsec.h>
141 #include <netinet6/ipsec6.h>
142 #include <netkey/key.h>
143 extern int ipsec_bypass
;
147 #include <net/necp.h>
151 #include <security/mac.h>
152 #endif /* CONFIG_MACF_NET */
155 #include <netinet/ip_fw.h>
156 #include <netinet/ip_dummynet.h>
157 #endif /* DUMMYNET */
160 #include <net/pfvar.h>
163 static int sysctl_reset_ip6_output_stats SYSCTL_HANDLER_ARGS
;
164 static int sysctl_ip6_output_measure_bins SYSCTL_HANDLER_ARGS
;
165 static int sysctl_ip6_output_getperf SYSCTL_HANDLER_ARGS
;
166 static int ip6_copyexthdr(struct mbuf
**, caddr_t
, int);
167 static void ip6_out_cksum_stats(int, u_int32_t
);
168 static int ip6_insert_jumboopt(struct ip6_exthdrs
*, u_int32_t
);
169 static int ip6_insertfraghdr(struct mbuf
*, struct mbuf
*, int,
171 static int ip6_getpmtu(struct route_in6
*, struct route_in6
*,
172 struct ifnet
*, struct in6_addr
*, u_int32_t
*, boolean_t
*);
173 static int ip6_pcbopts(struct ip6_pktopts
**, struct mbuf
*, struct socket
*,
174 struct sockopt
*sopt
);
175 static int ip6_pcbopt(int, u_char
*, int, struct ip6_pktopts
**, int);
176 static int ip6_getpcbopt(struct ip6_pktopts
*, int, struct sockopt
*);
177 static int copypktopts(struct ip6_pktopts
*, struct ip6_pktopts
*, int);
178 static void im6o_trace(struct ip6_moptions
*, int);
179 static int ip6_setpktopt(int, u_char
*, int, struct ip6_pktopts
*, int,
181 static int ip6_splithdr(struct mbuf
*, struct ip6_exthdrs
*);
182 static void ip6_output_checksum(struct ifnet
*, uint32_t, struct mbuf
*,
183 int, uint32_t, uint32_t);
184 extern int udp_ctloutput(struct socket
*, struct sockopt
*);
185 static int ip6_fragment_packet(struct mbuf
**m
,
186 struct ip6_pktopts
*opt
, struct ip6_exthdrs
*exthdrsp
, struct ifnet
*ifp
,
187 uint32_t mtu
, boolean_t alwaysfrag
, uint32_t unfragpartlen
,
188 struct route_in6
*ro_pmtu
, int nxt0
, uint32_t optlen
);
190 SYSCTL_DECL(_net_inet6_ip6
);
192 static int ip6_output_measure
= 0;
193 SYSCTL_PROC(_net_inet6_ip6
, OID_AUTO
, output_perf
,
194 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
195 &ip6_output_measure
, 0, sysctl_reset_ip6_output_stats
, "I", "Do time measurement");
197 static uint64_t ip6_output_measure_bins
= 0;
198 SYSCTL_PROC(_net_inet6_ip6
, OID_AUTO
, output_perf_bins
,
199 CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip6_output_measure_bins
, 0,
200 sysctl_ip6_output_measure_bins
, "I",
201 "bins for chaining performance data histogram");
203 static net_perf_t net_perf
;
204 SYSCTL_PROC(_net_inet6_ip6
, OID_AUTO
, output_perf_data
,
205 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
206 0, 0, sysctl_ip6_output_getperf
, "S,net_perf",
207 "IP6 output performance data (struct net_perf, net/net_perf.h)");
209 #define IM6O_TRACE_HIST_SIZE 32 /* size of trace history */
212 __private_extern__
unsigned int im6o_trace_hist_size
= IM6O_TRACE_HIST_SIZE
;
214 struct ip6_moptions_dbg
{
215 struct ip6_moptions im6o
; /* ip6_moptions */
216 u_int16_t im6o_refhold_cnt
; /* # of IM6O_ADDREF */
217 u_int16_t im6o_refrele_cnt
; /* # of IM6O_REMREF */
219 * Alloc and free callers.
224 * Circular lists of IM6O_ADDREF and IM6O_REMREF callers.
226 ctrace_t im6o_refhold
[IM6O_TRACE_HIST_SIZE
];
227 ctrace_t im6o_refrele
[IM6O_TRACE_HIST_SIZE
];
231 static unsigned int im6o_debug
= 1; /* debugging (enabled) */
233 static unsigned int im6o_debug
; /* debugging (disabled) */
236 static unsigned int im6o_size
; /* size of zone element */
237 static struct zone
*im6o_zone
; /* zone for ip6_moptions */
239 #define IM6O_ZONE_MAX 64 /* maximum elements in zone */
240 #define IM6O_ZONE_NAME "ip6_moptions" /* zone name */
243 * ip6_output() calls ip6_output_list() to do the work
246 ip6_output(struct mbuf
*m0
, struct ip6_pktopts
*opt
,
247 struct route_in6
*ro
, int flags
, struct ip6_moptions
*im6o
,
248 struct ifnet
**ifpp
, struct ip6_out_args
*ip6oa
)
250 return ip6_output_list(m0
, 0, opt
, ro
, flags
, im6o
, ifpp
, ip6oa
);
254 * IP6 output. Each packet in mbuf chain m contains a skeletal IP6
255 * header (with pri, len, nxt, hlim, src, dst).
256 * This function may modify ver and hlim only.
257 * The mbuf chain containing the packet will be freed.
258 * The mbuf opt, if present, will not be freed.
260 * If ro is non-NULL and has valid ro->ro_rt, route lookup would be
261 * skipped and ro->ro_rt would be used. Otherwise the result of route
262 * lookup is stored in ro->ro_rt.
264 * type of "mtu": rt_rmx.rmx_mtu is u_int32_t, ifnet.ifr_mtu is int, and
265 * nd_ifinfo.linkmtu is u_int32_t. so we use u_int32_t to hold largest one,
266 * which is rt_rmx.rmx_mtu.
269 ip6_output_list(struct mbuf
*m0
, int packetchain
, struct ip6_pktopts
*opt
,
270 struct route_in6
*ro
, int flags
, struct ip6_moptions
*im6o
,
271 struct ifnet
**ifpp
, struct ip6_out_args
*ip6oa
)
275 struct ifnet
*ifp
= NULL
, *origifp
= NULL
; /* refcnt'd */
276 struct ifnet
**ifpp_save
= ifpp
;
277 struct mbuf
*m
, *mprev
;
278 struct mbuf
*sendchain
= NULL
, *sendchain_last
= NULL
;
279 struct mbuf
*inputchain
= NULL
;
281 struct route_in6
*ro_pmtu
= NULL
;
282 struct rtentry
*rt
= NULL
;
283 struct sockaddr_in6
*dst
= NULL
, src_sa
, dst_sa
;
285 struct in6_ifaddr
*ia
= NULL
, *src_ia
= NULL
;
287 boolean_t alwaysfrag
= FALSE
;
288 u_int32_t optlen
= 0, plen
= 0, unfragpartlen
= 0;
289 struct ip6_rthdr
*rh
;
290 struct in6_addr finaldst
;
291 ipfilter_t inject_filter_ref
;
292 struct ipf_pktopts
*ippo
= NULL
;
293 struct flowadv
*adv
= NULL
;
295 uint32_t packets_processed
= 0;
296 struct timeval start_tv
;
299 struct ip6_out_args saved_ip6oa
;
300 struct sockaddr_in6 dst_buf
;
301 #endif /* DUMMYNET */
303 struct socket
*so
= NULL
;
304 struct secpolicy
*sp
= NULL
;
305 struct route_in6
*ipsec_saved_route
= NULL
;
306 boolean_t needipsectun
= FALSE
;
309 necp_kernel_policy_result necp_result
= 0;
310 necp_kernel_policy_result_parameter necp_result_parameter
;
311 necp_kernel_policy_id necp_matched_policy_id
= 0;
314 struct ipf_pktopts ipf_pktopts
;
315 struct ip6_exthdrs exthdrs
;
316 struct route_in6 ip6route
;
318 struct ipsec_output_state ipsec_state
;
321 struct route_in6 necp_route
;
324 struct route_in6 saved_route
;
325 struct route_in6 saved_ro_pmtu
;
326 struct ip_fw_args args
;
327 #endif /* DUMMYNET */
329 #define ipf_pktopts ip6obz.ipf_pktopts
330 #define exthdrs ip6obz.exthdrs
331 #define ip6route ip6obz.ip6route
332 #define ipsec_state ip6obz.ipsec_state
333 #define necp_route ip6obz.necp_route
334 #define saved_route ip6obz.saved_route
335 #define saved_ro_pmtu ip6obz.saved_ro_pmtu
336 #define args ip6obz.args
339 boolean_t select_srcif
: 1;
340 boolean_t hdrsplit
: 1;
341 boolean_t route_selected
: 1;
342 boolean_t dontfrag
: 1;
344 boolean_t needipsec
: 1;
345 boolean_t noipsec
: 1;
349 } ip6obf
= { .raw
= 0 };
351 if (ip6_output_measure
)
352 net_perf_start_time(&net_perf
, &start_tv
);
354 VERIFY(m0
->m_flags
& M_PKTHDR
);
356 /* zero out {saved_route, saved_ro_pmtu, ip6route, exthdrs, args} */
357 bzero(&ip6obz
, sizeof (ip6obz
));
360 if (SLIST_EMPTY(&m0
->m_pkthdr
.tags
))
363 /* Grab info from mtags prepended to the chain */
364 if ((tag
= m_tag_locate(m0
, KERNEL_MODULE_TAG_ID
,
365 KERNEL_TAG_TYPE_DUMMYNET
, NULL
)) != NULL
) {
366 struct dn_pkt_tag
*dn_tag
;
369 * ip6_output_list() cannot handle chains of packets reinjected
370 * by dummynet. The same restriction applies to
373 VERIFY(0 == packetchain
);
375 dn_tag
= (struct dn_pkt_tag
*)(tag
+1);
376 args
.fwa_pf_rule
= dn_tag
->dn_pf_rule
;
378 bcopy(&dn_tag
->dn_dst6
, &dst_buf
, sizeof (dst_buf
));
380 ifp
= dn_tag
->dn_ifp
;
382 ifnet_reference(ifp
);
383 flags
= dn_tag
->dn_flags
;
384 if (dn_tag
->dn_flags
& IPV6_OUTARGS
) {
385 saved_ip6oa
= dn_tag
->dn_ip6oa
;
386 ip6oa
= &saved_ip6oa
;
389 saved_route
= dn_tag
->dn_ro6
;
391 saved_ro_pmtu
= dn_tag
->dn_ro6_pmtu
;
392 ro_pmtu
= &saved_ro_pmtu
;
393 origifp
= dn_tag
->dn_origifp
;
395 ifnet_reference(origifp
);
396 mtu
= dn_tag
->dn_mtu
;
397 alwaysfrag
= (dn_tag
->dn_alwaysfrag
!= 0);
398 unfragpartlen
= dn_tag
->dn_unfragpartlen
;
400 bcopy(&dn_tag
->dn_exthdrs
, &exthdrs
, sizeof (exthdrs
));
402 m_tag_delete(m0
, tag
);
406 #endif /* DUMMYNET */
411 if (ipsec_bypass
== 0) {
412 so
= ipsec_getsocket(m
);
414 (void) ipsec_setsocket(m
, NULL
);
416 /* If packet is bound to an interface, check bound policies */
417 if ((flags
& IPV6_OUTARGS
) &&
418 (ip6oa
->ip6oa_flags
& IP6OAF_BOUND_IF
) &&
419 ip6oa
->ip6oa_boundif
!= IFSCOPE_NONE
) {
420 /* ip6obf.noipsec is a bitfield, use temp integer */
423 if (ipsec6_getpolicybyinterface(m
, IPSEC_DIR_OUTBOUND
,
424 flags
, ip6oa
, &noipsec
, &sp
) != 0)
427 ip6obf
.noipsec
= (noipsec
!= 0);
434 if (flags
& IPV6_OUTARGS
) {
436 * In the forwarding case, only the ifscope value is used,
437 * as source interface selection doesn't take place.
439 if ((ip6obf
.select_srcif
= (!(flags
& (IPV6_FORWARDING
|
440 IPV6_UNSPECSRC
| IPV6_FLAG_NOSRCIFSEL
)) &&
441 (ip6oa
->ip6oa_flags
& IP6OAF_SELECT_SRCIF
))))
442 ipf_pktopts
.ippo_flags
|= IPPOF_SELECT_SRCIF
;
444 if ((ip6oa
->ip6oa_flags
& IP6OAF_BOUND_IF
) &&
445 ip6oa
->ip6oa_boundif
!= IFSCOPE_NONE
) {
446 ipf_pktopts
.ippo_flags
|= (IPPOF_BOUND_IF
|
447 (ip6oa
->ip6oa_boundif
<< IPPOF_SHIFT_IFSCOPE
));
450 if (ip6oa
->ip6oa_flags
& IP6OAF_BOUND_SRCADDR
)
451 ipf_pktopts
.ippo_flags
|= IPPOF_BOUND_SRCADDR
;
453 ip6obf
.select_srcif
= FALSE
;
454 if (flags
& IPV6_OUTARGS
) {
455 ip6oa
->ip6oa_boundif
= IFSCOPE_NONE
;
456 ip6oa
->ip6oa_flags
&= ~(IP6OAF_SELECT_SRCIF
|
457 IP6OAF_BOUND_IF
| IP6OAF_BOUND_SRCADDR
);
461 if (flags
& IPV6_OUTARGS
) {
462 if (ip6oa
->ip6oa_flags
& IP6OAF_NO_CELLULAR
)
463 ipf_pktopts
.ippo_flags
|= IPPOF_NO_IFT_CELLULAR
;
464 if (ip6oa
->ip6oa_flags
& IP6OAF_NO_EXPENSIVE
)
465 ipf_pktopts
.ippo_flags
|= IPPOF_NO_IFF_EXPENSIVE
;
466 adv
= &ip6oa
->ip6oa_flowadv
;
467 adv
->code
= FADV_SUCCESS
;
468 ip6oa
->ip6oa_retflags
= 0;
472 * Clear out ifpp to be filled in after determining route. ifpp_save is
473 * used to keep old value to release reference properly and dtrace
474 * ipsec tunnel traffic properly.
476 if (ifpp
!= NULL
&& *ifpp
!= NULL
)
480 if (args
.fwa_pf_rule
) {
481 ip6
= mtod(m
, struct ip6_hdr
*);
482 VERIFY(ro
!= NULL
); /* ro == saved_route */
485 #endif /* DUMMYNET */
489 * Since all packets are assumed to come from same socket, necp lookup
490 * only needs to happen once per function entry.
492 necp_matched_policy_id
= necp_ip6_output_find_policy_match(m
, flags
,
493 (flags
& IPV6_OUTARGS
) ? ip6oa
: NULL
, &necp_result
,
494 &necp_result_parameter
);
498 * If a chain was passed in, prepare for ther first iteration. For all
499 * other iterations, this work will be done at evaluateloop: label.
503 * Remove m from the chain during processing to avoid
504 * accidental frees on entire list.
506 inputchain
= m
->m_nextpkt
;
512 m
->m_pkthdr
.pkt_flags
&= ~(PKTF_LOOP
|PKTF_IFAINFO
);
513 ip6
= mtod(m
, struct ip6_hdr
*);
515 finaldst
= ip6
->ip6_dst
;
516 ip6obf
.hdrsplit
= FALSE
;
519 if (!SLIST_EMPTY(&m
->m_pkthdr
.tags
))
520 inject_filter_ref
= ipf_get_inject_filter(m
);
522 inject_filter_ref
= NULL
;
524 #define MAKE_EXTHDR(hp, mp) do { \
526 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
527 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
528 ((eh)->ip6e_len + 1) << 3); \
535 /* Hop-by-Hop options header */
536 MAKE_EXTHDR(opt
->ip6po_hbh
, &exthdrs
.ip6e_hbh
);
537 /* Destination options header(1st part) */
538 if (opt
->ip6po_rthdr
) {
540 * Destination options header(1st part)
541 * This only makes sense with a routing header.
542 * See Section 9.2 of RFC 3542.
543 * Disabling this part just for MIP6 convenience is
544 * a bad idea. We need to think carefully about a
545 * way to make the advanced API coexist with MIP6
546 * options, which might automatically be inserted in
549 MAKE_EXTHDR(opt
->ip6po_dest1
, &exthdrs
.ip6e_dest1
);
552 MAKE_EXTHDR(opt
->ip6po_rthdr
, &exthdrs
.ip6e_rthdr
);
553 /* Destination options header(2nd part) */
554 MAKE_EXTHDR(opt
->ip6po_dest2
, &exthdrs
.ip6e_dest2
);
560 if (necp_matched_policy_id
) {
561 necp_mark_packet_from_ip(m
, necp_matched_policy_id
);
563 switch (necp_result
) {
564 case NECP_KERNEL_POLICY_RESULT_PASS
:
566 case NECP_KERNEL_POLICY_RESULT_DROP
:
567 case NECP_KERNEL_POLICY_RESULT_SOCKET_DIVERT
:
569 * Flow divert packets should be blocked at the IP
572 error
= EHOSTUNREACH
;
573 ip6stat
.ip6s_necp_policy_drop
++;
575 case NECP_KERNEL_POLICY_RESULT_IP_TUNNEL
: {
577 * Verify that the packet is being routed to the tunnel
579 struct ifnet
*policy_ifp
=
580 necp_get_ifnet_from_result_parameter(
581 &necp_result_parameter
);
583 if (policy_ifp
== ifp
) {
586 if (necp_packet_can_rebind_to_ifnet(m
,
587 policy_ifp
, (struct route
*)&necp_route
,
590 * Set scoped index to the tunnel
591 * interface, since it is compatible
592 * with the packet. This will only work
593 * for callers who pass IPV6_OUTARGS,
594 * but that covers all of the clients
595 * we care about today.
597 if (flags
& IPV6_OUTARGS
) {
598 ip6oa
->ip6oa_boundif
=
599 policy_ifp
->if_index
;
600 ip6oa
->ip6oa_flags
|=
604 && opt
->ip6po_pktinfo
!= NULL
) {
607 policy_ifp
->if_index
;
613 ip6stat
.ip6s_necp_policy_drop
++;
625 if (ipsec_bypass
!= 0 || ip6obf
.noipsec
)
629 /* get a security policy for this packet */
631 sp
= ipsec6_getpolicybysock(m
, IPSEC_DIR_OUTBOUND
,
634 sp
= ipsec6_getpolicybyaddr(m
, IPSEC_DIR_OUTBOUND
,
638 IPSEC_STAT_INCREMENT(ipsec6stat
.out_inval
);
646 switch (sp
->policy
) {
647 case IPSEC_POLICY_DISCARD
:
648 case IPSEC_POLICY_GENERATE
:
650 * This packet is just discarded.
652 IPSEC_STAT_INCREMENT(ipsec6stat
.out_polvio
);
655 case IPSEC_POLICY_BYPASS
:
656 case IPSEC_POLICY_NONE
:
657 /* no need to do IPsec. */
658 ip6obf
.needipsec
= FALSE
;
661 case IPSEC_POLICY_IPSEC
:
662 if (sp
->req
== NULL
) {
663 /* acquire a policy */
664 error
= key_spdacquire(sp
);
670 ip6obf
.needipsec
= TRUE
;
674 case IPSEC_POLICY_ENTRUST
:
676 printf("%s: Invalid policy found: %d\n", __func__
, sp
->policy
);
683 * Calculate the total length of the extension header chain.
684 * Keep the length of the unfragmentable part for fragmentation.
687 if (exthdrs
.ip6e_hbh
!= NULL
)
688 optlen
+= exthdrs
.ip6e_hbh
->m_len
;
689 if (exthdrs
.ip6e_dest1
!= NULL
)
690 optlen
+= exthdrs
.ip6e_dest1
->m_len
;
691 if (exthdrs
.ip6e_rthdr
!= NULL
)
692 optlen
+= exthdrs
.ip6e_rthdr
->m_len
;
693 unfragpartlen
= optlen
+ sizeof (struct ip6_hdr
);
695 /* NOTE: we don't add AH/ESP length here. do that later. */
696 if (exthdrs
.ip6e_dest2
!= NULL
)
697 optlen
+= exthdrs
.ip6e_dest2
->m_len
;
700 * If we need IPsec, or there is at least one extension header,
701 * separate IP6 header from the payload.
707 optlen
) && !ip6obf
.hdrsplit
) {
708 if ((error
= ip6_splithdr(m
, &exthdrs
)) != 0) {
712 m
= exthdrs
.ip6e_ip6
;
713 ip6obf
.hdrsplit
= TRUE
;
717 ip6
= mtod(m
, struct ip6_hdr
*);
719 /* adjust mbuf packet header length */
720 m
->m_pkthdr
.len
+= optlen
;
721 plen
= m
->m_pkthdr
.len
- sizeof (*ip6
);
723 /* If this is a jumbo payload, insert a jumbo payload option. */
724 if (plen
> IPV6_MAXPACKET
) {
725 if (!ip6obf
.hdrsplit
) {
726 if ((error
= ip6_splithdr(m
, &exthdrs
)) != 0) {
730 m
= exthdrs
.ip6e_ip6
;
731 ip6obf
.hdrsplit
= TRUE
;
734 ip6
= mtod(m
, struct ip6_hdr
*);
735 if ((error
= ip6_insert_jumboopt(&exthdrs
, plen
)) != 0)
739 ip6
->ip6_plen
= htons(plen
);
742 * Concatenate headers and fill in next header fields.
743 * Here we have, on "m"
745 * and we insert headers accordingly. Finally, we should be getting:
746 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
748 * during the header composing process, "m" points to IPv6 header.
749 * "mprev" points to an extension header prior to esp.
751 nexthdrp
= &ip6
->ip6_nxt
;
755 * we treat dest2 specially. this makes IPsec processing
756 * much easier. the goal here is to make mprev point the
757 * mbuf prior to dest2.
759 * result: IPv6 dest2 payload
760 * m and mprev will point to IPv6 header.
762 if (exthdrs
.ip6e_dest2
!= NULL
) {
763 if (!ip6obf
.hdrsplit
) {
764 panic("assumption failed: hdr not split");
767 exthdrs
.ip6e_dest2
->m_next
= m
->m_next
;
768 m
->m_next
= exthdrs
.ip6e_dest2
;
769 *mtod(exthdrs
.ip6e_dest2
, u_char
*) = ip6
->ip6_nxt
;
770 ip6
->ip6_nxt
= IPPROTO_DSTOPTS
;
773 #define MAKE_CHAIN(m, mp, p, i) do { \
775 if (!ip6obf.hdrsplit) { \
776 panic("assumption failed: hdr not split"); \
779 *mtod((m), u_char *) = *(p); \
781 p = mtod((m), u_char *); \
782 (m)->m_next = (mp)->m_next; \
783 (mp)->m_next = (m); \
788 * result: IPv6 hbh dest1 rthdr dest2 payload
789 * m will point to IPv6 header. mprev will point to the
790 * extension header prior to dest2 (rthdr in the above case).
792 MAKE_CHAIN(exthdrs
.ip6e_hbh
, mprev
, nexthdrp
, IPPROTO_HOPOPTS
);
793 MAKE_CHAIN(exthdrs
.ip6e_dest1
, mprev
, nexthdrp
, IPPROTO_DSTOPTS
);
794 MAKE_CHAIN(exthdrs
.ip6e_rthdr
, mprev
, nexthdrp
, IPPROTO_ROUTING
);
796 /* It is no longer safe to free the pointers in exthdrs. */
797 exthdrs
.merged
= TRUE
;
802 if (ip6obf
.needipsec
&& (m
->m_pkthdr
.csum_flags
& CSUM_DELAY_IPV6_DATA
))
803 in6_delayed_cksum_offset(m
, 0, optlen
, nxt0
);
806 if (!TAILQ_EMPTY(&ipv6_filters
) &&
807 !((flags
& IPV6_OUTARGS
) &&
808 (ip6oa
->ip6oa_flags
& IP6OAF_INTCOPROC_ALLOWED
))) {
809 struct ipfilter
*filter
;
810 int seen
= (inject_filter_ref
== NULL
);
813 if (im6o
!= NULL
&& IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
)) {
814 ippo
->ippo_flags
|= IPPOF_MCAST_OPTS
;
816 ippo
->ippo_mcast_ifnet
= im6o
->im6o_multicast_ifp
;
817 ippo
->ippo_mcast_ttl
= im6o
->im6o_multicast_hlim
;
818 ippo
->ippo_mcast_loop
= im6o
->im6o_multicast_loop
;
822 /* Hack: embed the scope_id in the destination */
823 if (IN6_IS_SCOPE_LINKLOCAL(&ip6
->ip6_dst
) &&
824 (ip6
->ip6_dst
.s6_addr16
[1] == 0) && (ro
!= NULL
)) {
826 ip6
->ip6_dst
.s6_addr16
[1] =
827 htons(ro
->ro_dst
.sin6_scope_id
);
831 TAILQ_FOREACH(filter
, &ipv6_filters
, ipf_link
) {
833 * Don't process packet twice if we've already seen it.
836 if ((struct ipfilter
*)inject_filter_ref
==
839 } else if (filter
->ipf_filter
.ipf_output
!= NULL
) {
842 result
= filter
->ipf_filter
.ipf_output(
843 filter
->ipf_filter
.cookie
,
845 if (result
== EJUSTRETURN
) {
858 ip6
= mtod(m
, struct ip6_hdr
*);
859 /* Hack: cleanup embedded scope_id if we put it there */
861 ip6
->ip6_dst
.s6_addr16
[1] = 0;
865 if (ip6obf
.needipsec
) {
869 * pointers after IPsec headers are not valid any more.
870 * other pointers need a great care too.
871 * (IPsec routines should not mangle mbufs prior to AH/ESP)
873 exthdrs
.ip6e_dest2
= NULL
;
875 if (exthdrs
.ip6e_rthdr
!= NULL
) {
876 rh
= mtod(exthdrs
.ip6e_rthdr
, struct ip6_rthdr
*);
877 segleft_org
= rh
->ip6r_segleft
;
878 rh
->ip6r_segleft
= 0;
885 error
= ipsec6_output_trans(&ipsec_state
, nexthdrp
, mprev
,
886 sp
, flags
, &needipsectun
);
889 /* mbuf is already reclaimed in ipsec6_output_trans. */
899 printf("ip6_output (ipsec): error code %d\n",
903 /* don't show these error codes to the user */
909 if (exthdrs
.ip6e_rthdr
!= NULL
) {
910 /* ah6_output doesn't modify mbuf chain */
911 rh
->ip6r_segleft
= segleft_org
;
917 * If there is a routing header, replace the destination address field
918 * with the first hop of the routing header.
920 if (exthdrs
.ip6e_rthdr
!= NULL
) {
921 struct ip6_rthdr0
*rh0
;
922 struct in6_addr
*addr
;
923 struct sockaddr_in6 sa
;
925 rh
= (struct ip6_rthdr
*)
926 (mtod(exthdrs
.ip6e_rthdr
, struct ip6_rthdr
*));
927 switch (rh
->ip6r_type
) {
928 case IPV6_RTHDR_TYPE_0
:
929 rh0
= (struct ip6_rthdr0
*)rh
;
930 addr
= (struct in6_addr
*)(void *)(rh0
+ 1);
933 * construct a sockaddr_in6 form of
936 * XXX: we may not have enough
937 * information about its scope zone;
938 * there is no standard API to pass
939 * the information from the
942 bzero(&sa
, sizeof (sa
));
943 sa
.sin6_family
= AF_INET6
;
944 sa
.sin6_len
= sizeof (sa
);
945 sa
.sin6_addr
= addr
[0];
946 if ((error
= sa6_embedscope(&sa
,
947 ip6_use_defzone
)) != 0) {
950 ip6
->ip6_dst
= sa
.sin6_addr
;
951 bcopy(&addr
[1], &addr
[0], sizeof (struct in6_addr
) *
952 (rh0
->ip6r0_segleft
- 1));
953 addr
[rh0
->ip6r0_segleft
- 1] = finaldst
;
955 in6_clearscope(addr
+ rh0
->ip6r0_segleft
- 1);
957 default: /* is it possible? */
963 /* Source address validation */
964 if (IN6_IS_ADDR_UNSPECIFIED(&ip6
->ip6_src
) &&
965 !(flags
& IPV6_UNSPECSRC
)) {
967 ip6stat
.ip6s_badscope
++;
970 if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_src
)) {
972 ip6stat
.ip6s_badscope
++;
976 ip6stat
.ip6s_localout
++;
983 bzero((caddr_t
)ro
, sizeof (*ro
));
986 if (opt
!= NULL
&& opt
->ip6po_rthdr
)
987 ro
= &opt
->ip6po_route
;
988 dst
= SIN6(&ro
->ro_dst
);
990 if (ro
->ro_rt
!= NULL
)
991 RT_LOCK_ASSERT_NOTHELD(ro
->ro_rt
);
993 * if specified, try to fill in the traffic class field.
994 * do not override if a non-zero value is already set.
995 * we check the diffserv field and the ecn field separately.
997 if (opt
!= NULL
&& opt
->ip6po_tclass
>= 0) {
1000 if ((ip6
->ip6_flow
& htonl(0xfc << 20)) == 0)
1002 if ((ip6
->ip6_flow
& htonl(0x03 << 20)) == 0)
1006 htonl((opt
->ip6po_tclass
& mask
) << 20);
1010 /* fill in or override the hop limit field, if necessary. */
1011 if (opt
&& opt
->ip6po_hlim
!= -1) {
1012 ip6
->ip6_hlim
= opt
->ip6po_hlim
& 0xff;
1013 } else if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
)) {
1016 ip6
->ip6_hlim
= im6o
->im6o_multicast_hlim
;
1019 ip6
->ip6_hlim
= ip6_defmcasthlim
;
1024 * If there is a cached route, check that it is to the same
1025 * destination and is still up. If not, free it and try again.
1026 * Test rt_flags without holding rt_lock for performance reasons;
1027 * if the route is down it will hopefully be caught by the layer
1028 * below (since it uses this route as a hint) or during the
1031 if (ROUTE_UNUSABLE(ro
) || dst
->sin6_family
!= AF_INET6
||
1032 !IN6_ARE_ADDR_EQUAL(&dst
->sin6_addr
, &ip6
->ip6_dst
))
1035 if (ro
->ro_rt
== NULL
) {
1036 bzero(dst
, sizeof (*dst
));
1037 dst
->sin6_family
= AF_INET6
;
1038 dst
->sin6_len
= sizeof (struct sockaddr_in6
);
1039 dst
->sin6_addr
= ip6
->ip6_dst
;
1042 if (ip6obf
.needipsec
&& needipsectun
) {
1044 struct ifnet
*trace_ifp
= (ifpp_save
!= NULL
) ? (*ifpp_save
) : NULL
;
1045 #endif /* CONFIG_DTRACE */
1047 * All the extension headers will become inaccessible
1048 * (since they can be encrypted).
1049 * Don't panic, we need no more updates to extension headers
1050 * on inner IPv6 packet (since they are now encapsulated).
1052 * IPv6 [ESP|AH] IPv6 [extension headers] payload
1054 bzero(&exthdrs
, sizeof (exthdrs
));
1055 exthdrs
.ip6e_ip6
= m
;
1058 route_copyout((struct route
*)&ipsec_state
.ro
, (struct route
*)ro
,
1059 sizeof (struct route_in6
));
1060 ipsec_state
.dst
= SA(dst
);
1062 /* So that we can see packets inside the tunnel */
1063 DTRACE_IP6(send
, struct mbuf
*, m
, struct inpcb
*, NULL
,
1064 struct ip6_hdr
*, ip6
, struct ifnet
*, trace_ifp
,
1065 struct ip
*, NULL
, struct ip6_hdr
*, ip6
);
1067 error
= ipsec6_output_tunnel(&ipsec_state
, sp
, flags
);
1068 /* tunneled in IPv4? packet is gone */
1069 if (ipsec_state
.tunneled
== 4) {
1074 ipsec_saved_route
= ro
;
1075 ro
= (struct route_in6
*)&ipsec_state
.ro
;
1076 dst
= SIN6(ipsec_state
.dst
);
1078 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
1088 printf("ip6_output (ipsec): error code %d\n",
1092 /* don't show these error codes to the user */
1099 * The packet has been encapsulated so the ifscope
1100 * is no longer valid since it does not apply to the
1101 * outer address: ignore the ifscope.
1103 if (flags
& IPV6_OUTARGS
) {
1104 ip6oa
->ip6oa_boundif
= IFSCOPE_NONE
;
1105 ip6oa
->ip6oa_flags
&= ~IP6OAF_BOUND_IF
;
1107 if (opt
!= NULL
&& opt
->ip6po_pktinfo
!= NULL
) {
1108 if (opt
->ip6po_pktinfo
->ipi6_ifindex
!= IFSCOPE_NONE
)
1109 opt
->ip6po_pktinfo
->ipi6_ifindex
= IFSCOPE_NONE
;
1111 exthdrs
.ip6e_ip6
= m
;
1116 * ifp should only be filled in for dummy net packets which will jump
1117 * to check_with_pf label.
1120 VERIFY(ip6obf
.route_selected
);
1123 /* adjust pointer */
1124 ip6
= mtod(m
, struct ip6_hdr
*);
1126 if (ip6obf
.select_srcif
) {
1127 bzero(&src_sa
, sizeof (src_sa
));
1128 src_sa
.sin6_family
= AF_INET6
;
1129 src_sa
.sin6_len
= sizeof (src_sa
);
1130 src_sa
.sin6_addr
= ip6
->ip6_src
;
1132 bzero(&dst_sa
, sizeof (dst_sa
));
1133 dst_sa
.sin6_family
= AF_INET6
;
1134 dst_sa
.sin6_len
= sizeof (dst_sa
);
1135 dst_sa
.sin6_addr
= ip6
->ip6_dst
;
1138 * Only call in6_selectroute() on first iteration to avoid taking
1139 * multiple references on ifp and rt.
1141 * in6_selectroute() might return an ifp with its reference held
1142 * even in the error case, so make sure to release its reference.
1143 * ip6oa may be NULL if IPV6_OUTARGS isn't set.
1145 if (!ip6obf
.route_selected
) {
1146 error
= in6_selectroute( ip6obf
.select_srcif
? &src_sa
: NULL
,
1147 &dst_sa
, opt
, im6o
, &src_ia
, ro
, &ifp
, &rt
, 0, ip6oa
);
1152 ip6stat
.ip6s_noroute
++;
1156 break; /* XXX statistics? */
1159 in6_ifstat_inc(ifp
, ifs6_out_discard
);
1160 /* ifp (if non-NULL) will be released at the end */
1163 ip6obf
.route_selected
= TRUE
;
1167 * If in6_selectroute() does not return a route entry,
1168 * dst may not have been updated.
1170 *dst
= dst_sa
; /* XXX */
1174 /* Catch-all to check if the interface is allowed */
1175 if (!necp_packet_is_allowed_over_interface(m
, ifp
)) {
1176 error
= EHOSTUNREACH
;
1177 ip6stat
.ip6s_necp_policy_drop
++;
1183 * then rt (for unicast) and ifp must be non-NULL valid values.
1185 if (!(flags
& IPV6_FORWARDING
)) {
1186 in6_ifstat_inc_na(ifp
, ifs6_out_request
);
1191 ia
= (struct in6_ifaddr
*)(rt
->rt_ifa
);
1193 IFA_ADDREF(&ia
->ia_ifa
);
1200 * The outgoing interface must be in the zone of source and
1201 * destination addresses (except local/loopback). We should
1202 * use ia_ifp to support the case of sending packets to an
1203 * address of our own.
1205 if (ia
!= NULL
&& ia
->ia_ifp
) {
1206 ifnet_reference(ia
->ia_ifp
); /* for origifp */
1207 if (origifp
!= NULL
)
1208 ifnet_release(origifp
);
1209 origifp
= ia
->ia_ifp
;
1212 ifnet_reference(ifp
); /* for origifp */
1213 if (origifp
!= NULL
)
1214 ifnet_release(origifp
);
1218 /* skip scope enforcements for local/loopback route */
1219 if (rt
== NULL
|| !(rt
->rt_ifp
->if_flags
& IFF_LOOPBACK
)) {
1220 struct in6_addr src0
, dst0
;
1223 src0
= ip6
->ip6_src
;
1224 if (in6_setscope(&src0
, origifp
, &zone
))
1226 bzero(&src_sa
, sizeof (src_sa
));
1227 src_sa
.sin6_family
= AF_INET6
;
1228 src_sa
.sin6_len
= sizeof (src_sa
);
1229 src_sa
.sin6_addr
= ip6
->ip6_src
;
1230 if ((sa6_recoverscope(&src_sa
, TRUE
) ||
1231 zone
!= src_sa
.sin6_scope_id
))
1234 dst0
= ip6
->ip6_dst
;
1235 if ((in6_setscope(&dst0
, origifp
, &zone
)))
1237 /* re-initialize to be sure */
1238 bzero(&dst_sa
, sizeof (dst_sa
));
1239 dst_sa
.sin6_family
= AF_INET6
;
1240 dst_sa
.sin6_len
= sizeof (dst_sa
);
1241 dst_sa
.sin6_addr
= ip6
->ip6_dst
;
1242 if ((sa6_recoverscope(&dst_sa
, TRUE
) ||
1243 zone
!= dst_sa
.sin6_scope_id
))
1246 /* scope check is done. */
1250 ip6stat
.ip6s_badscope
++;
1251 in6_ifstat_inc(origifp
, ifs6_out_discard
);
1253 error
= EHOSTUNREACH
; /* XXX */
1258 if (rt
!= NULL
&& !IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
)) {
1259 if (opt
!= NULL
&& opt
->ip6po_nextroute
.ro_rt
) {
1261 * The nexthop is explicitly specified by the
1262 * application. We assume the next hop is an IPv6
1265 dst
= SIN6(opt
->ip6po_nexthop
);
1266 } else if ((rt
->rt_flags
& RTF_GATEWAY
)) {
1267 dst
= SIN6(rt
->rt_gateway
);
1270 * For packets destined to local/loopback, record the
1271 * source the source interface (which owns the source
1272 * address), as well as the output interface. This is
1273 * needed to reconstruct the embedded zone for the
1274 * link-local address case in ip6_input().
1276 if (ia
!= NULL
&& (ifp
->if_flags
& IFF_LOOPBACK
)) {
1280 srcidx
= src_ia
->ia_ifp
->if_index
;
1281 else if (ro
->ro_srcia
!= NULL
)
1282 srcidx
= ro
->ro_srcia
->ifa_ifp
->if_index
;
1286 ip6_setsrcifaddr_info(m
, srcidx
, NULL
);
1287 ip6_setdstifaddr_info(m
, 0, ia
);
1291 if (!IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
)) {
1292 m
->m_flags
&= ~(M_BCAST
| M_MCAST
); /* just in case */
1294 struct in6_multi
*in6m
;
1296 m
->m_flags
= (m
->m_flags
& ~M_BCAST
) | M_MCAST
;
1297 in6_ifstat_inc_na(ifp
, ifs6_out_mcast
);
1300 * Confirm that the outgoing interface supports multicast.
1302 if (!(ifp
->if_flags
& IFF_MULTICAST
)) {
1303 ip6stat
.ip6s_noroute
++;
1304 in6_ifstat_inc(ifp
, ifs6_out_discard
);
1305 error
= ENETUNREACH
;
1308 in6_multihead_lock_shared();
1309 IN6_LOOKUP_MULTI(&ip6
->ip6_dst
, ifp
, in6m
);
1310 in6_multihead_lock_done();
1314 (im6o
== NULL
|| im6o
->im6o_multicast_loop
)) {
1318 * If we belong to the destination multicast group
1319 * on the outgoing interface, and the caller did not
1320 * forbid loopback, loop back a copy.
1322 ip6_mloopback(NULL
, ifp
, m
, dst
, optlen
, nxt0
);
1323 } else if (im6o
!= NULL
)
1328 * Multicasts with a hoplimit of zero may be looped back,
1329 * above, but must not be transmitted on a network.
1330 * Also, multicasts addressed to the loopback interface
1331 * are not sent -- the above call to ip6_mloopback() will
1332 * loop back a copy if this host actually belongs to the
1333 * destination group on the loopback interface.
1335 if (ip6
->ip6_hlim
== 0 || (ifp
->if_flags
& IFF_LOOPBACK
) ||
1336 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6
->ip6_dst
)) {
1337 /* remove m from the packetchain and continue looping */
1346 * Fill the outgoing inteface to tell the upper layer
1347 * to increment per-interface statistics.
1349 if (ifpp
!= NULL
&& *ifpp
== NULL
) {
1350 ifnet_reference(ifp
); /* for caller */
1354 /* Determine path MTU. */
1355 if ((error
= ip6_getpmtu(ro_pmtu
, ro
, ifp
, &finaldst
, &mtu
,
1360 * The caller of this function may specify to use the minimum MTU
1362 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
1363 * setting. The logic is a bit complicated; by default, unicast
1364 * packets will follow path MTU while multicast packets will be sent at
1365 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
1366 * including unicast ones will be sent at the minimum MTU. Multicast
1367 * packets will always be sent at the minimum MTU unless
1368 * IP6PO_MINMTU_DISABLE is explicitly specified.
1369 * See RFC 3542 for more details.
1371 if (mtu
> IPV6_MMTU
) {
1372 if ((flags
& IPV6_MINMTU
)) {
1374 } else if (opt
&& opt
->ip6po_minmtu
== IP6PO_MINMTU_ALL
) {
1376 } else if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
) &&
1378 opt
->ip6po_minmtu
!= IP6PO_MINMTU_DISABLE
)) {
1384 * clear embedded scope identifiers if necessary.
1385 * in6_clearscope will touch the addresses only when necessary.
1387 in6_clearscope(&ip6
->ip6_src
);
1388 in6_clearscope(&ip6
->ip6_dst
);
1390 * If the outgoing packet contains a hop-by-hop options header,
1391 * it must be examined and processed even by the source node.
1392 * (RFC 2460, section 4.)
1394 if (exthdrs
.ip6e_hbh
!= NULL
) {
1395 struct ip6_hbh
*hbh
= mtod(exthdrs
.ip6e_hbh
, struct ip6_hbh
*);
1396 u_int32_t dummy
; /* XXX unused */
1397 uint32_t oplen
= 0; /* for ip6_process_hopopts() */
1399 if ((hbh
->ip6h_len
+ 1) << 3 > exthdrs
.ip6e_hbh
->m_len
)
1400 panic("ip6e_hbh is not continuous");
1403 * XXX: If we have to send an ICMPv6 error to the sender,
1404 * we need the M_LOOP flag since icmp6_error() expects
1405 * the IPv6 and the hop-by-hop options header are
1406 * continuous unless the flag is set.
1408 m
->m_flags
|= M_LOOP
;
1409 m
->m_pkthdr
.rcvif
= ifp
;
1410 if (ip6_process_hopopts(m
, (u_int8_t
*)(hbh
+ 1),
1411 ((hbh
->ip6h_len
+ 1) << 3) - sizeof (struct ip6_hbh
),
1412 &dummy
, &oplen
) < 0) {
1414 * m was already freed at this point. Set to NULL so it
1415 * is not re-freed at end of ip6_output_list.
1418 error
= EINVAL
; /* better error? */
1421 m
->m_flags
&= ~M_LOOP
; /* XXX */
1422 m
->m_pkthdr
.rcvif
= NULL
;
1427 #endif /* DUMMYNET */
1429 if (PF_IS_ENABLED
) {
1433 * TODO: Need to save opt->ip6po_flags for reinjection
1438 args
.fwa_oflags
= flags
;
1439 if (flags
& IPV6_OUTARGS
)
1440 args
.fwa_ip6oa
= ip6oa
;
1442 args
.fwa_dst6
= dst
;
1443 args
.fwa_ro6_pmtu
= ro_pmtu
;
1444 args
.fwa_origifp
= origifp
;
1446 args
.fwa_alwaysfrag
= alwaysfrag
;
1447 args
.fwa_unfragpartlen
= unfragpartlen
;
1448 args
.fwa_exthdrs
= &exthdrs
;
1449 /* Invoke outbound packet filter */
1450 error
= pf_af_hook(ifp
, NULL
, &m
, AF_INET6
, FALSE
, &args
);
1451 #else /* !DUMMYNET */
1452 error
= pf_af_hook(ifp
, NULL
, &m
, AF_INET6
, FALSE
, NULL
);
1453 #endif /* !DUMMYNET */
1455 if (error
!= 0 || m
== NULL
) {
1457 panic("%s: unexpected packet %p\n",
1461 /* m was already freed by callee and is now NULL. */
1464 ip6
= mtod(m
, struct ip6_hdr
*);
1469 /* clean ipsec history before fragmentation */
1473 if (ip6oa
!= NULL
) {
1476 dscp
= (ntohl(ip6
->ip6_flow
) & IP6FLOW_DSCP_MASK
) >> IP6FLOW_DSCP_SHIFT
;
1478 error
= set_packet_qos(m
, ifp
,
1479 ip6oa
->ip6oa_flags
& IP6OAF_QOSMARKING_ALLOWED
? TRUE
: FALSE
,
1480 ip6oa
->ip6oa_sotc
, ip6oa
->ip6oa_netsvctype
, &dscp
);
1482 ip6
->ip6_flow
&= ~htonl(IP6FLOW_DSCP_MASK
);
1483 ip6
->ip6_flow
|= htonl((u_int32_t
)dscp
<< IP6FLOW_DSCP_SHIFT
);
1485 printf("%s if_dscp_for_mbuf() error %d\n", __func__
, error
);
1490 * Determine whether fragmentation is necessary. If so, m is passed
1491 * back as a chain of packets and original mbuf is freed. Otherwise, m
1494 error
= ip6_fragment_packet(&m
, opt
,
1495 &exthdrs
, ifp
, mtu
, alwaysfrag
, unfragpartlen
, ro_pmtu
, nxt0
,
1502 * The evaluateloop label is where we decide whether to continue looping over
1503 * packets or call into nd code to send.
1508 * m may be NULL when we jump to the evaluateloop label from PF or
1509 * other code that can drop packets.
1513 * If we already have a chain to send, tack m onto the end.
1514 * Otherwise make m the start and end of the to-be-sent chain.
1516 if (sendchain
!= NULL
) {
1517 sendchain_last
->m_nextpkt
= m
;
1522 /* Fragmentation may mean m is a chain. Find the last packet. */
1523 while (m
->m_nextpkt
)
1529 /* Fill in next m from inputchain as appropriate. */
1532 /* Isolate m from rest of input chain. */
1533 inputchain
= m
->m_nextpkt
;
1534 m
->m_nextpkt
= NULL
;
1537 * Clear exthdrs and ipsec_state so stale contents are not
1538 * reused. Note this also clears the exthdrs.merged flag.
1540 bzero(&exthdrs
, sizeof(exthdrs
));
1541 bzero(&ipsec_state
, sizeof(ipsec_state
));
1543 /* Continue looping. */
1548 * If we get here, there's no more mbufs in inputchain, so send the
1549 * sendchain if there is one.
1552 error
= nd6_output_list(ifp
, origifp
, sendchain
, dst
,
1555 * Fall through to done label even in error case because
1556 * nd6_output_list frees packetchain in both success and
1562 if (ifpp_save
!= NULL
&& *ifpp_save
!= NULL
) {
1563 ifnet_release(*ifpp_save
);
1566 ROUTE_RELEASE(&ip6route
);
1568 ROUTE_RELEASE(&ipsec_state
.ro
);
1570 key_freesp(sp
, KEY_SADB_UNLOCKED
);
1573 ROUTE_RELEASE(&necp_route
);
1576 ROUTE_RELEASE(&saved_route
);
1577 ROUTE_RELEASE(&saved_ro_pmtu
);
1578 #endif /* DUMMYNET */
1581 IFA_REMREF(&ia
->ia_ifa
);
1583 IFA_REMREF(&src_ia
->ia_ifa
);
1586 if (origifp
!= NULL
)
1587 ifnet_release(origifp
);
1588 if (ip6_output_measure
) {
1589 net_perf_measure_time(&net_perf
, &start_tv
, packets_processed
);
1590 net_perf_histogram(&net_perf
, packets_processed
);
1595 if (exthdrs
.ip6e_hbh
!= NULL
) {
1597 panic("Double free of ip6e_hbh");
1598 m_freem(exthdrs
.ip6e_hbh
);
1600 if (exthdrs
.ip6e_dest1
!= NULL
) {
1602 panic("Double free of ip6e_dest1");
1603 m_freem(exthdrs
.ip6e_dest1
);
1605 if (exthdrs
.ip6e_rthdr
!= NULL
) {
1607 panic("Double free of ip6e_rthdr");
1608 m_freem(exthdrs
.ip6e_rthdr
);
1610 if (exthdrs
.ip6e_dest2
!= NULL
) {
1612 panic("Double free of ip6e_dest2");
1613 m_freem(exthdrs
.ip6e_dest2
);
1617 if (inputchain
!= NULL
)
1618 m_freem_list(inputchain
);
1619 if (sendchain
!= NULL
)
1620 m_freem_list(sendchain
);
1631 #undef saved_ro_pmtu
1635 /* ip6_fragment_packet
1637 * The fragmentation logic is rather complex:
1638 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
1639 * 1-a: send as is if tlen <= path mtu
1640 * 1-b: fragment if tlen > path mtu
1642 * 2: if user asks us not to fragment (dontfrag == 1)
1643 * 2-a: send as is if tlen <= interface mtu
1644 * 2-b: error if tlen > interface mtu
1646 * 3: if we always need to attach fragment header (alwaysfrag == 1)
1649 * 4: if dontfrag == 1 && alwaysfrag == 1
1650 * error, as we cannot handle this conflicting request
1654 ip6_fragment_packet(struct mbuf
**mptr
, struct ip6_pktopts
*opt
,
1655 struct ip6_exthdrs
*exthdrsp
, struct ifnet
*ifp
, uint32_t mtu
,
1656 boolean_t alwaysfrag
, uint32_t unfragpartlen
, struct route_in6
*ro_pmtu
,
1657 int nxt0
, uint32_t optlen
)
1659 VERIFY(NULL
!= mptr
);
1660 struct mbuf
*m
= *mptr
;
1662 size_t tlen
= m
->m_pkthdr
.len
;
1663 boolean_t dontfrag
= (opt
!= NULL
&& (opt
->ip6po_flags
& IP6PO_DONTFRAG
));
1665 if (m
->m_pkthdr
.pkt_flags
& PKTF_FORWARDED
) {
1668 * Discard partial sum information if this packet originated
1669 * from another interface; the packet would already have the
1670 * final checksum and we shouldn't recompute it.
1672 if ((m
->m_pkthdr
.csum_flags
& (CSUM_DATA_VALID
|CSUM_PARTIAL
)) ==
1673 (CSUM_DATA_VALID
|CSUM_PARTIAL
)) {
1674 m
->m_pkthdr
.csum_flags
&= ~CSUM_TX_FLAGS
;
1675 m
->m_pkthdr
.csum_data
= 0;
1679 if (dontfrag
&& alwaysfrag
) { /* case 4 */
1680 /* conflicting request - can't transmit */
1684 /* Access without acquiring nd_ifinfo lock for performance */
1685 if (dontfrag
&& tlen
> IN6_LINKMTU(ifp
)) { /* case 2-b */
1687 * Even if the DONTFRAG option is specified, we cannot send the
1688 * packet when the data length is larger than the MTU of the
1689 * outgoing interface.
1690 * Notify the error by sending IPV6_PATHMTU ancillary data as
1691 * well as returning an error code (the latter is not described
1695 struct ip6ctlparam ip6cp
;
1697 mtu32
= (u_int32_t
)mtu
;
1698 bzero(&ip6cp
, sizeof (ip6cp
));
1699 ip6cp
.ip6c_cmdarg
= (void *)&mtu32
;
1700 pfctlinput2(PRC_MSGSIZE
, SA(&ro_pmtu
->ro_dst
), (void *)&ip6cp
);
1705 * transmit packet without fragmentation
1707 if (dontfrag
|| (!alwaysfrag
&& /* case 1-a and 2-a */
1708 (tlen
<= mtu
|| TSO_IPV6_OK(ifp
, m
) ||
1709 (ifp
->if_hwassist
& CSUM_FRAGMENT_IPV6
)))) {
1711 * mppn not updated in this case because no new chain is formed
1714 ip6_output_checksum(ifp
, mtu
, m
, nxt0
, tlen
, optlen
);
1717 * time to fragment - cases 1-b and 3 are handled inside
1718 * ip6_do_fragmentation().
1719 * mppn is passed down to be updated to point at fragment chain.
1721 error
= ip6_do_fragmentation(mptr
, optlen
, ifp
,
1722 unfragpartlen
, mtod(m
, struct ip6_hdr
*), exthdrsp
, mtu
, nxt0
);
1729 * ip6_do_fragmentation() is called by ip6_fragment_packet() after determining
1730 * the packet needs to be fragmented. on success, morig is freed and a chain
1731 * of fragments is linked into the packet chain where morig existed. Otherwise,
1732 * an errno is returned.
1735 ip6_do_fragmentation(struct mbuf
**mptr
, uint32_t optlen
, struct ifnet
*ifp
,
1736 uint32_t unfragpartlen
, struct ip6_hdr
*ip6
, struct ip6_exthdrs
*exthdrsp
,
1737 uint32_t mtu
, int nxt0
)
1739 VERIFY(NULL
!= mptr
);
1742 struct mbuf
*morig
= *mptr
;
1743 struct mbuf
*first_mbufp
= NULL
;
1744 struct mbuf
*last_mbufp
= NULL
;
1746 size_t tlen
= morig
->m_pkthdr
.len
;
1749 * try to fragment the packet. case 1-b and 3
1751 if ((morig
->m_pkthdr
.csum_flags
& CSUM_TSO_IPV6
)) {
1752 /* TSO and fragment aren't compatible */
1753 in6_ifstat_inc(ifp
, ifs6_out_fragfail
);
1755 } else if (mtu
< IPV6_MMTU
) {
1756 /* path MTU cannot be less than IPV6_MMTU */
1757 in6_ifstat_inc(ifp
, ifs6_out_fragfail
);
1759 } else if (ip6
->ip6_plen
== 0) {
1760 /* jumbo payload cannot be fragmented */
1761 in6_ifstat_inc(ifp
, ifs6_out_fragfail
);
1764 size_t hlen
, len
, off
;
1765 struct mbuf
**mnext
= NULL
;
1766 struct ip6_frag
*ip6f
;
1767 u_int32_t id
= htonl(ip6_randomid());
1771 * Too large for the destination or interface;
1772 * fragment if possible.
1773 * Must be able to put at least 8 bytes per fragment.
1775 hlen
= unfragpartlen
;
1776 if (mtu
> IPV6_MAXPACKET
)
1777 mtu
= IPV6_MAXPACKET
;
1779 len
= (mtu
- hlen
- sizeof (struct ip6_frag
)) & ~7;
1781 in6_ifstat_inc(ifp
, ifs6_out_fragfail
);
1786 * Change the next header field of the last header in the
1787 * unfragmentable part.
1789 if (exthdrsp
->ip6e_rthdr
!= NULL
) {
1790 nextproto
= *mtod(exthdrsp
->ip6e_rthdr
, u_char
*);
1791 *mtod(exthdrsp
->ip6e_rthdr
, u_char
*) = IPPROTO_FRAGMENT
;
1792 } else if (exthdrsp
->ip6e_dest1
!= NULL
) {
1793 nextproto
= *mtod(exthdrsp
->ip6e_dest1
, u_char
*);
1794 *mtod(exthdrsp
->ip6e_dest1
, u_char
*) = IPPROTO_FRAGMENT
;
1795 } else if (exthdrsp
->ip6e_hbh
!= NULL
) {
1796 nextproto
= *mtod(exthdrsp
->ip6e_hbh
, u_char
*);
1797 *mtod(exthdrsp
->ip6e_hbh
, u_char
*) = IPPROTO_FRAGMENT
;
1799 nextproto
= ip6
->ip6_nxt
;
1800 ip6
->ip6_nxt
= IPPROTO_FRAGMENT
;
1803 if (morig
->m_pkthdr
.csum_flags
& CSUM_DELAY_IPV6_DATA
)
1804 in6_delayed_cksum_offset(morig
, 0, optlen
, nxt0
);
1807 * Loop through length of segment after first fragment,
1808 * make new header and copy data of each part and link onto
1811 for (off
= hlen
; off
< tlen
; off
+= len
) {
1812 struct ip6_hdr
*new_mhip6
;
1814 struct mbuf
*m_frgpart
;
1816 MGETHDR(new_m
, M_DONTWAIT
, MT_HEADER
); /* MAC-OK */
1817 if (new_m
== NULL
) {
1819 ip6stat
.ip6s_odropped
++;
1822 new_m
->m_pkthdr
.rcvif
= NULL
;
1823 new_m
->m_flags
= morig
->m_flags
& M_COPYFLAGS
;
1825 if (first_mbufp
!= NULL
) {
1826 /* Every pass through loop but first */
1830 /* This is the first element of the fragment chain */
1831 first_mbufp
= new_m
;
1834 mnext
= &new_m
->m_nextpkt
;
1836 new_m
->m_data
+= max_linkhdr
;
1837 new_mhip6
= mtod(new_m
, struct ip6_hdr
*);
1839 new_m
->m_len
= sizeof (*new_mhip6
);
1841 error
= ip6_insertfraghdr(morig
, new_m
, hlen
, &ip6f
);
1843 ip6stat
.ip6s_odropped
++;
1847 ip6f
->ip6f_offlg
= htons((u_short
)((off
- hlen
) & ~7));
1848 if (off
+ len
>= tlen
)
1851 ip6f
->ip6f_offlg
|= IP6F_MORE_FRAG
;
1852 new_mhip6
->ip6_plen
= htons((u_short
)(len
+ hlen
+
1853 sizeof (*ip6f
) - sizeof (struct ip6_hdr
)));
1855 if ((m_frgpart
= m_copy(morig
, off
, len
)) == NULL
) {
1857 ip6stat
.ip6s_odropped
++;
1860 m_cat(new_m
, m_frgpart
);
1861 new_m
->m_pkthdr
.len
= len
+ hlen
+ sizeof (*ip6f
);
1862 new_m
->m_pkthdr
.rcvif
= NULL
;
1864 M_COPY_CLASSIFIER(new_m
, morig
);
1865 M_COPY_PFTAG(new_m
, morig
);
1869 mac_create_fragment(morig
, new_m
);
1870 #endif /* CONFIG_MACF_NET */
1873 ip6f
->ip6f_reserved
= 0;
1874 ip6f
->ip6f_ident
= id
;
1875 ip6f
->ip6f_nxt
= nextproto
;
1876 ip6stat
.ip6s_ofragments
++;
1877 in6_ifstat_inc(ifp
, ifs6_out_fragcreat
);
1881 /* free all the fragments created */
1882 if (first_mbufp
!= NULL
) {
1883 m_freem_list(first_mbufp
);
1888 /* successful fragmenting */
1890 *mptr
= first_mbufp
;
1891 last_mbufp
->m_nextpkt
= NULL
;
1892 ip6stat
.ip6s_fragmented
++;
1893 in6_ifstat_inc(ifp
, ifs6_out_fragok
);
1900 ip6_copyexthdr(struct mbuf
**mp
, caddr_t hdr
, int hlen
)
1904 if (hlen
> MCLBYTES
)
1905 return (ENOBUFS
); /* XXX */
1907 MGET(m
, M_DONTWAIT
, MT_DATA
);
1912 MCLGET(m
, M_DONTWAIT
);
1913 if (!(m
->m_flags
& M_EXT
)) {
1920 bcopy(hdr
, mtod(m
, caddr_t
), hlen
);
1927 ip6_out_cksum_stats(int proto
, u_int32_t len
)
1931 tcp_out6_cksum_stats(len
);
1934 udp_out6_cksum_stats(len
);
1937 /* keep only TCP or UDP stats for now */
1943 * Process a delayed payload checksum calculation (outbound path.)
1945 * hoff is the number of bytes beyond the mbuf data pointer which
1946 * points to the IPv6 header. optlen is the number of bytes, if any,
1947 * between the end of IPv6 header and the beginning of the ULP payload
1948 * header, which represents the extension headers. If optlen is less
1949 * than zero, this routine will bail when it detects extension headers.
1951 * Returns a bitmask representing all the work done in software.
1954 in6_finalize_cksum(struct mbuf
*m
, uint32_t hoff
, int32_t optlen
,
1955 int32_t nxt0
, uint32_t csum_flags
)
1957 unsigned char buf
[sizeof (struct ip6_hdr
)] __attribute__((aligned(8)));
1958 struct ip6_hdr
*ip6
;
1959 uint32_t offset
, mlen
, hlen
, olen
, sw_csum
;
1960 uint16_t csum
, ulpoff
, plen
;
1963 _CASSERT(sizeof (csum
) == sizeof (uint16_t));
1964 VERIFY(m
->m_flags
& M_PKTHDR
);
1966 sw_csum
= (csum_flags
& m
->m_pkthdr
.csum_flags
);
1968 if ((sw_csum
&= CSUM_DELAY_IPV6_DATA
) == 0)
1971 mlen
= m
->m_pkthdr
.len
; /* total mbuf len */
1972 hlen
= sizeof (*ip6
); /* IPv6 header len */
1974 /* sanity check (need at least IPv6 header) */
1975 if (mlen
< (hoff
+ hlen
)) {
1976 panic("%s: mbuf %p pkt len (%u) < hoff+ip6_hdr "
1977 "(%u+%u)\n", __func__
, m
, mlen
, hoff
, hlen
);
1982 * In case the IPv6 header is not contiguous, or not 32-bit
1983 * aligned, copy it to a local buffer.
1985 if ((hoff
+ hlen
) > m
->m_len
||
1986 !IP6_HDR_ALIGNED_P(mtod(m
, caddr_t
) + hoff
)) {
1987 m_copydata(m
, hoff
, hlen
, (caddr_t
)buf
);
1988 ip6
= (struct ip6_hdr
*)(void *)buf
;
1990 ip6
= (struct ip6_hdr
*)(void *)(m
->m_data
+ hoff
);
1994 plen
= ntohs(ip6
->ip6_plen
);
1995 if (plen
!= (mlen
- (hoff
+ hlen
))) {
1996 plen
= OSSwapInt16(plen
);
1997 if (plen
!= (mlen
- (hoff
+ hlen
))) {
1998 /* Don't complain for jumbograms */
1999 if (plen
!= 0 || nxt
!= IPPROTO_HOPOPTS
) {
2000 printf("%s: mbuf 0x%llx proto %d IPv6 "
2001 "plen %d (%x) [swapped %d (%x)] doesn't "
2002 "match actual packet length; %d is used "
2003 "instead\n", __func__
,
2004 (uint64_t)VM_KERNEL_ADDRPERM(m
), nxt
,
2005 ip6
->ip6_plen
, ip6
->ip6_plen
, plen
, plen
,
2006 (mlen
- (hoff
+ hlen
)));
2008 plen
= mlen
- (hoff
+ hlen
);
2013 /* next header isn't TCP/UDP and we don't know optlen, bail */
2014 if (nxt
!= IPPROTO_TCP
&& nxt
!= IPPROTO_UDP
) {
2020 /* caller supplied the original transport number; use it */
2026 offset
= hoff
+ hlen
+ olen
; /* ULP header */
2029 if (mlen
< offset
) {
2030 panic("%s: mbuf %p pkt len (%u) < hoff+ip6_hdr+ext_hdr "
2031 "(%u+%u+%u)\n", __func__
, m
, mlen
, hoff
, hlen
, olen
);
2036 * offset is added to the lower 16-bit value of csum_data,
2037 * which is expected to contain the ULP offset; therefore
2038 * CSUM_PARTIAL offset adjustment must be undone.
2040 if ((m
->m_pkthdr
.csum_flags
& (CSUM_PARTIAL
|CSUM_DATA_VALID
)) ==
2041 (CSUM_PARTIAL
|CSUM_DATA_VALID
)) {
2043 * Get back the original ULP offset (this will
2044 * undo the CSUM_PARTIAL logic in ip6_output.)
2046 m
->m_pkthdr
.csum_data
= (m
->m_pkthdr
.csum_tx_stuff
-
2047 m
->m_pkthdr
.csum_tx_start
);
2050 ulpoff
= (m
->m_pkthdr
.csum_data
& 0xffff); /* ULP csum offset */
2052 if (mlen
< (ulpoff
+ sizeof (csum
))) {
2053 panic("%s: mbuf %p pkt len (%u) proto %d invalid ULP "
2054 "cksum offset (%u) cksum flags 0x%x\n", __func__
,
2055 m
, mlen
, nxt
, ulpoff
, m
->m_pkthdr
.csum_flags
);
2059 csum
= inet6_cksum(m
, 0, offset
, plen
- olen
);
2062 ip6_out_cksum_stats(nxt
, plen
- olen
);
2064 /* RFC1122 4.1.3.4 */
2066 (m
->m_pkthdr
.csum_flags
& (CSUM_UDPIPV6
|CSUM_ZERO_INVERT
)))
2069 /* Insert the checksum in the ULP csum field */
2071 if ((offset
+ sizeof (csum
)) > m
->m_len
) {
2072 m_copyback(m
, offset
, sizeof (csum
), &csum
);
2073 } else if (IP6_HDR_ALIGNED_P(mtod(m
, char *) + hoff
)) {
2074 *(uint16_t *)(void *)(mtod(m
, char *) + offset
) = csum
;
2076 bcopy(&csum
, (mtod(m
, char *) + offset
), sizeof (csum
));
2078 m
->m_pkthdr
.csum_flags
&= ~(CSUM_DELAY_IPV6_DATA
| CSUM_DATA_VALID
|
2079 CSUM_PARTIAL
| CSUM_ZERO_INVERT
);
2086 * Insert jumbo payload option.
2089 ip6_insert_jumboopt(struct ip6_exthdrs
*exthdrs
, u_int32_t plen
)
2095 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
2098 * If there is no hop-by-hop options header, allocate new one.
2099 * If there is one but it doesn't have enough space to store the
2100 * jumbo payload option, allocate a cluster to store the whole options.
2101 * Otherwise, use it to store the options.
2103 if (exthdrs
->ip6e_hbh
== NULL
) {
2104 MGET(mopt
, M_DONTWAIT
, MT_DATA
);
2107 mopt
->m_len
= JUMBOOPTLEN
;
2108 optbuf
= mtod(mopt
, u_char
*);
2109 optbuf
[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
2110 exthdrs
->ip6e_hbh
= mopt
;
2112 struct ip6_hbh
*hbh
;
2114 mopt
= exthdrs
->ip6e_hbh
;
2115 if (M_TRAILINGSPACE(mopt
) < JUMBOOPTLEN
) {
2118 * - exthdrs->ip6e_hbh is not referenced from places
2119 * other than exthdrs.
2120 * - exthdrs->ip6e_hbh is not an mbuf chain.
2122 u_int32_t oldoptlen
= mopt
->m_len
;
2126 * XXX: give up if the whole (new) hbh header does
2127 * not fit even in an mbuf cluster.
2129 if (oldoptlen
+ JUMBOOPTLEN
> MCLBYTES
)
2133 * As a consequence, we must always prepare a cluster
2136 MGET(n
, M_DONTWAIT
, MT_DATA
);
2138 MCLGET(n
, M_DONTWAIT
);
2139 if (!(n
->m_flags
& M_EXT
)) {
2146 n
->m_len
= oldoptlen
+ JUMBOOPTLEN
;
2147 bcopy(mtod(mopt
, caddr_t
), mtod(n
, caddr_t
),
2149 optbuf
= mtod(n
, u_char
*) + oldoptlen
;
2151 mopt
= exthdrs
->ip6e_hbh
= n
;
2153 optbuf
= mtod(mopt
, u_char
*) + mopt
->m_len
;
2154 mopt
->m_len
+= JUMBOOPTLEN
;
2156 optbuf
[0] = IP6OPT_PADN
;
2160 * Adjust the header length according to the pad and
2161 * the jumbo payload option.
2163 hbh
= mtod(mopt
, struct ip6_hbh
*);
2164 hbh
->ip6h_len
+= (JUMBOOPTLEN
>> 3);
2167 /* fill in the option. */
2168 optbuf
[2] = IP6OPT_JUMBO
;
2170 v
= (u_int32_t
)htonl(plen
+ JUMBOOPTLEN
);
2171 bcopy(&v
, &optbuf
[4], sizeof (u_int32_t
));
2173 /* finally, adjust the packet header length */
2174 exthdrs
->ip6e_ip6
->m_pkthdr
.len
+= JUMBOOPTLEN
;
2181 * Insert fragment header and copy unfragmentable header portions.
2184 ip6_insertfraghdr(struct mbuf
*m0
, struct mbuf
*m
, int hlen
,
2185 struct ip6_frag
**frghdrp
)
2187 struct mbuf
*n
, *mlast
;
2189 if (hlen
> sizeof (struct ip6_hdr
)) {
2190 n
= m_copym(m0
, sizeof (struct ip6_hdr
),
2191 hlen
- sizeof (struct ip6_hdr
), M_DONTWAIT
);
2198 /* Search for the last mbuf of unfragmentable part. */
2199 for (mlast
= n
; mlast
->m_next
; mlast
= mlast
->m_next
)
2202 if (!(mlast
->m_flags
& M_EXT
) &&
2203 M_TRAILINGSPACE(mlast
) >= sizeof (struct ip6_frag
)) {
2204 /* use the trailing space of the last mbuf for the frag hdr */
2205 *frghdrp
= (struct ip6_frag
*)(mtod(mlast
, caddr_t
) +
2207 mlast
->m_len
+= sizeof (struct ip6_frag
);
2208 m
->m_pkthdr
.len
+= sizeof (struct ip6_frag
);
2210 /* allocate a new mbuf for the fragment header */
2213 MGET(mfrg
, M_DONTWAIT
, MT_DATA
);
2216 mfrg
->m_len
= sizeof (struct ip6_frag
);
2217 *frghdrp
= mtod(mfrg
, struct ip6_frag
*);
2218 mlast
->m_next
= mfrg
;
2225 ip6_getpmtu(struct route_in6
*ro_pmtu
, struct route_in6
*ro
,
2226 struct ifnet
*ifp
, struct in6_addr
*dst
, u_int32_t
*mtup
,
2227 boolean_t
*alwaysfragp
)
2230 boolean_t alwaysfrag
= FALSE
;
2232 boolean_t is_local
= FALSE
;
2234 if (IN6_IS_SCOPE_LINKLOCAL(dst
))
2237 if (ro_pmtu
!= ro
) {
2238 /* The first hop and the final destination may differ. */
2239 struct sockaddr_in6
*sa6_dst
= SIN6(&ro_pmtu
->ro_dst
);
2240 if (ROUTE_UNUSABLE(ro_pmtu
) ||
2241 !IN6_ARE_ADDR_EQUAL(&sa6_dst
->sin6_addr
, dst
))
2242 ROUTE_RELEASE(ro_pmtu
);
2244 if (ro_pmtu
->ro_rt
== NULL
) {
2245 bzero(sa6_dst
, sizeof (*sa6_dst
));
2246 sa6_dst
->sin6_family
= AF_INET6
;
2247 sa6_dst
->sin6_len
= sizeof (struct sockaddr_in6
);
2248 sa6_dst
->sin6_addr
= *dst
;
2250 rtalloc_scoped((struct route
*)ro_pmtu
,
2251 ifp
!= NULL
? ifp
->if_index
: IFSCOPE_NONE
);
2255 if (ro_pmtu
->ro_rt
!= NULL
) {
2259 ifp
= ro_pmtu
->ro_rt
->rt_ifp
;
2260 /* Access without acquiring nd_ifinfo lock for performance */
2261 ifmtu
= IN6_LINKMTU(ifp
);
2264 * Access rmx_mtu without holding the route entry lock,
2265 * for performance; this isn't something that changes
2266 * often, so optimize.
2268 mtu
= ro_pmtu
->ro_rt
->rt_rmx
.rmx_mtu
;
2269 if (mtu
> ifmtu
|| mtu
== 0) {
2271 * The MTU on the route is larger than the MTU on
2272 * the interface! This shouldn't happen, unless the
2273 * MTU of the interface has been changed after the
2274 * interface was brought up. Change the MTU in the
2275 * route to match the interface MTU (as long as the
2276 * field isn't locked).
2278 * if MTU on the route is 0, we need to fix the MTU.
2279 * this case happens with path MTU discovery timeouts.
2282 if (!(ro_pmtu
->ro_rt
->rt_rmx
.rmx_locks
& RTV_MTU
))
2283 ro_pmtu
->ro_rt
->rt_rmx
.rmx_mtu
= mtu
; /* XXX */
2284 } else if (mtu
< IPV6_MMTU
) {
2286 * RFC2460 section 5, last paragraph:
2287 * if we record ICMPv6 too big message with
2288 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
2289 * or smaller, with framgent header attached.
2290 * (fragment header is needed regardless from the
2291 * packet size, for translators to identify packets)
2298 /* Don't hold nd_ifinfo lock for performance */
2299 mtu
= IN6_LINKMTU(ifp
);
2301 error
= EHOSTUNREACH
; /* XXX */
2306 if ((alwaysfragp
!= NULL
) && !is_local
)
2307 *alwaysfragp
= alwaysfrag
;
2312 * IP6 socket option processing.
2315 ip6_ctloutput(struct socket
*so
, struct sockopt
*sopt
)
2317 int optdatalen
, uproto
;
2320 struct inpcb
*in6p
= sotoinpcb(so
);
2321 int error
= 0, optval
= 0;
2322 int level
, op
= -1, optname
= 0;
2326 VERIFY(sopt
!= NULL
);
2328 level
= sopt
->sopt_level
;
2329 op
= sopt
->sopt_dir
;
2330 optname
= sopt
->sopt_name
;
2331 optlen
= sopt
->sopt_valsize
;
2333 uproto
= (int)SOCK_PROTO(so
);
2335 privileged
= (proc_suser(p
) == 0);
2337 if (level
== IPPROTO_IPV6
) {
2338 boolean_t capture_exthdrstat_in
= FALSE
;
2342 case IPV6_2292PKTOPTIONS
: {
2345 error
= soopt_getm(sopt
, &m
);
2348 error
= soopt_mcopyin(sopt
, m
);
2351 error
= ip6_pcbopts(&in6p
->in6p_outputopts
,
2358 * Use of some Hop-by-Hop options or some
2359 * Destination options, might require special
2360 * privilege. That is, normal applications
2361 * (without special privilege) might be forbidden
2362 * from setting certain options in outgoing packets,
2363 * and might never see certain options in received
2364 * packets. [RFC 2292 Section 6]
2365 * KAME specific note:
2366 * KAME prevents non-privileged users from sending or
2367 * receiving ANY hbh/dst options in order to avoid
2368 * overhead of parsing options in the kernel.
2370 case IPV6_RECVHOPOPTS
:
2371 case IPV6_RECVDSTOPTS
:
2372 case IPV6_RECVRTHDRDSTOPTS
:
2376 case IPV6_UNICAST_HOPS
:
2378 case IPV6_RECVPKTINFO
:
2379 case IPV6_RECVHOPLIMIT
:
2380 case IPV6_RECVRTHDR
:
2381 case IPV6_RECVPATHMTU
:
2382 case IPV6_RECVTCLASS
:
2384 case IPV6_AUTOFLOWLABEL
:
2385 if (optlen
!= sizeof (int)) {
2389 error
= sooptcopyin(sopt
, &optval
,
2390 sizeof (optval
), sizeof (optval
));
2395 case IPV6_UNICAST_HOPS
:
2396 if (optval
< -1 || optval
>= 256) {
2399 /* -1 = kernel default */
2400 in6p
->in6p_hops
= optval
;
2401 if (in6p
->inp_vflag
&
2408 #define OPTSET(bit) do { \
2410 in6p->inp_flags |= (bit); \
2412 in6p->inp_flags &= ~(bit); \
2415 #define OPTSET2292(bit) do { \
2416 in6p->inp_flags |= IN6P_RFC2292; \
2418 in6p->inp_flags |= (bit); \
2420 in6p->inp_flags &= ~(bit); \
2423 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0)
2425 case IPV6_RECVPKTINFO
:
2426 /* cannot mix with RFC2292 */
2427 if (OPTBIT(IN6P_RFC2292
)) {
2431 OPTSET(IN6P_PKTINFO
);
2434 case IPV6_HOPLIMIT
: {
2435 struct ip6_pktopts
**optp
;
2437 /* cannot mix with RFC2292 */
2438 if (OPTBIT(IN6P_RFC2292
)) {
2442 optp
= &in6p
->in6p_outputopts
;
2443 error
= ip6_pcbopt(IPV6_HOPLIMIT
,
2444 (u_char
*)&optval
, sizeof (optval
),
2449 case IPV6_RECVHOPLIMIT
:
2450 /* cannot mix with RFC2292 */
2451 if (OPTBIT(IN6P_RFC2292
)) {
2455 OPTSET(IN6P_HOPLIMIT
);
2458 case IPV6_RECVHOPOPTS
:
2459 /* cannot mix with RFC2292 */
2460 if (OPTBIT(IN6P_RFC2292
)) {
2464 OPTSET(IN6P_HOPOPTS
);
2465 capture_exthdrstat_in
= TRUE
;
2468 case IPV6_RECVDSTOPTS
:
2469 /* cannot mix with RFC2292 */
2470 if (OPTBIT(IN6P_RFC2292
)) {
2474 OPTSET(IN6P_DSTOPTS
);
2475 capture_exthdrstat_in
= TRUE
;
2478 case IPV6_RECVRTHDRDSTOPTS
:
2479 /* cannot mix with RFC2292 */
2480 if (OPTBIT(IN6P_RFC2292
)) {
2484 OPTSET(IN6P_RTHDRDSTOPTS
);
2485 capture_exthdrstat_in
= TRUE
;
2488 case IPV6_RECVRTHDR
:
2489 /* cannot mix with RFC2292 */
2490 if (OPTBIT(IN6P_RFC2292
)) {
2495 capture_exthdrstat_in
= TRUE
;
2498 case IPV6_RECVPATHMTU
:
2500 * We ignore this option for TCP
2502 * (RFC3542 leaves this case
2505 if (uproto
!= IPPROTO_TCP
)
2511 * make setsockopt(IPV6_V6ONLY)
2512 * available only prior to bind(2).
2513 * see ipng mailing list, Jun 22 2001.
2515 if (in6p
->inp_lport
||
2516 !IN6_IS_ADDR_UNSPECIFIED(
2517 &in6p
->in6p_laddr
)) {
2521 OPTSET(IN6P_IPV6_V6ONLY
);
2523 in6p
->inp_vflag
&= ~INP_IPV4
;
2525 in6p
->inp_vflag
|= INP_IPV4
;
2528 case IPV6_RECVTCLASS
:
2529 /* we can mix with RFC2292 */
2530 OPTSET(IN6P_TCLASS
);
2533 case IPV6_AUTOFLOWLABEL
:
2534 OPTSET(IN6P_AUTOFLOWLABEL
);
2542 case IPV6_USE_MIN_MTU
:
2543 case IPV6_PREFER_TEMPADDR
: {
2544 struct ip6_pktopts
**optp
;
2546 if (optlen
!= sizeof (optval
)) {
2550 error
= sooptcopyin(sopt
, &optval
,
2551 sizeof (optval
), sizeof (optval
));
2555 optp
= &in6p
->in6p_outputopts
;
2556 error
= ip6_pcbopt(optname
, (u_char
*)&optval
,
2557 sizeof (optval
), optp
, uproto
);
2561 case IPV6_2292PKTINFO
:
2562 case IPV6_2292HOPLIMIT
:
2563 case IPV6_2292HOPOPTS
:
2564 case IPV6_2292DSTOPTS
:
2565 case IPV6_2292RTHDR
:
2567 if (optlen
!= sizeof (int)) {
2571 error
= sooptcopyin(sopt
, &optval
,
2572 sizeof (optval
), sizeof (optval
));
2576 case IPV6_2292PKTINFO
:
2577 OPTSET2292(IN6P_PKTINFO
);
2579 case IPV6_2292HOPLIMIT
:
2580 OPTSET2292(IN6P_HOPLIMIT
);
2582 case IPV6_2292HOPOPTS
:
2584 * Check super-user privilege.
2585 * See comments for IPV6_RECVHOPOPTS.
2589 OPTSET2292(IN6P_HOPOPTS
);
2590 capture_exthdrstat_in
= TRUE
;
2592 case IPV6_2292DSTOPTS
:
2595 OPTSET2292(IN6P_DSTOPTS
|
2596 IN6P_RTHDRDSTOPTS
); /* XXX */
2597 capture_exthdrstat_in
= TRUE
;
2599 case IPV6_2292RTHDR
:
2600 OPTSET2292(IN6P_RTHDR
);
2601 capture_exthdrstat_in
= TRUE
;
2606 case IPV6_3542PKTINFO
:
2607 case IPV6_3542HOPOPTS
:
2608 case IPV6_3542RTHDR
:
2609 case IPV6_3542DSTOPTS
:
2610 case IPV6_RTHDRDSTOPTS
:
2611 case IPV6_3542NEXTHOP
: {
2612 struct ip6_pktopts
**optp
;
2613 /* new advanced API (RFC3542) */
2616 /* cannot mix with RFC2292 */
2617 if (OPTBIT(IN6P_RFC2292
)) {
2621 error
= soopt_getm(sopt
, &m
);
2624 error
= soopt_mcopyin(sopt
, m
);
2628 optp
= &in6p
->in6p_outputopts
;
2629 error
= ip6_pcbopt(optname
, mtod(m
, u_char
*),
2630 m
->m_len
, optp
, uproto
);
2635 case IPV6_MULTICAST_IF
:
2636 case IPV6_MULTICAST_HOPS
:
2637 case IPV6_MULTICAST_LOOP
:
2638 case IPV6_JOIN_GROUP
:
2639 case IPV6_LEAVE_GROUP
:
2641 case MCAST_BLOCK_SOURCE
:
2642 case MCAST_UNBLOCK_SOURCE
:
2643 case MCAST_JOIN_GROUP
:
2644 case MCAST_LEAVE_GROUP
:
2645 case MCAST_JOIN_SOURCE_GROUP
:
2646 case MCAST_LEAVE_SOURCE_GROUP
:
2647 error
= ip6_setmoptions(in6p
, sopt
);
2650 case IPV6_PORTRANGE
:
2651 error
= sooptcopyin(sopt
, &optval
,
2652 sizeof (optval
), sizeof (optval
));
2657 case IPV6_PORTRANGE_DEFAULT
:
2658 in6p
->inp_flags
&= ~(INP_LOWPORT
);
2659 in6p
->inp_flags
&= ~(INP_HIGHPORT
);
2662 case IPV6_PORTRANGE_HIGH
:
2663 in6p
->inp_flags
&= ~(INP_LOWPORT
);
2664 in6p
->inp_flags
|= INP_HIGHPORT
;
2667 case IPV6_PORTRANGE_LOW
:
2668 in6p
->inp_flags
&= ~(INP_HIGHPORT
);
2669 in6p
->inp_flags
|= INP_LOWPORT
;
2678 case IPV6_IPSEC_POLICY
: {
2683 if ((error
= soopt_getm(sopt
, &m
)) != 0)
2685 if ((error
= soopt_mcopyin(sopt
, m
)) != 0)
2688 req
= mtod(m
, caddr_t
);
2690 error
= ipsec6_set_policy(in6p
, optname
, req
,
2697 * IPv6 variant of IP_BOUND_IF; for details see
2698 * comments on IP_BOUND_IF in ip_ctloutput().
2701 /* This option is settable only on IPv6 */
2702 if (!(in6p
->inp_vflag
& INP_IPV6
)) {
2707 error
= sooptcopyin(sopt
, &optval
,
2708 sizeof (optval
), sizeof (optval
));
2713 error
= inp_bindif(in6p
, optval
, NULL
);
2716 case IPV6_NO_IFT_CELLULAR
:
2717 /* This option is settable only for IPv6 */
2718 if (!(in6p
->inp_vflag
& INP_IPV6
)) {
2723 error
= sooptcopyin(sopt
, &optval
,
2724 sizeof (optval
), sizeof (optval
));
2729 /* once set, it cannot be unset */
2730 if (!optval
&& INP_NO_CELLULAR(in6p
)) {
2735 error
= so_set_restrictions(so
,
2736 SO_RESTRICT_DENY_CELLULAR
);
2740 /* This option is not settable */
2745 error
= ENOPROTOOPT
;
2748 if (capture_exthdrstat_in
) {
2749 if (uproto
== IPPROTO_TCP
) {
2750 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_sock_inet6_stream_exthdr_in
);
2751 } else if (uproto
== IPPROTO_UDP
) {
2752 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_sock_inet6_dgram_exthdr_in
);
2760 case IPV6_2292PKTOPTIONS
:
2762 * RFC3542 (effectively) deprecated the
2763 * semantics of the 2292-style pktoptions.
2764 * Since it was not reliable in nature (i.e.,
2765 * applications had to expect the lack of some
2766 * information after all), it would make sense
2767 * to simplify this part by always returning
2770 sopt
->sopt_valsize
= 0;
2773 case IPV6_RECVHOPOPTS
:
2774 case IPV6_RECVDSTOPTS
:
2775 case IPV6_RECVRTHDRDSTOPTS
:
2776 case IPV6_UNICAST_HOPS
:
2777 case IPV6_RECVPKTINFO
:
2778 case IPV6_RECVHOPLIMIT
:
2779 case IPV6_RECVRTHDR
:
2780 case IPV6_RECVPATHMTU
:
2782 case IPV6_PORTRANGE
:
2783 case IPV6_RECVTCLASS
:
2784 case IPV6_AUTOFLOWLABEL
:
2787 case IPV6_RECVHOPOPTS
:
2788 optval
= OPTBIT(IN6P_HOPOPTS
);
2791 case IPV6_RECVDSTOPTS
:
2792 optval
= OPTBIT(IN6P_DSTOPTS
);
2795 case IPV6_RECVRTHDRDSTOPTS
:
2796 optval
= OPTBIT(IN6P_RTHDRDSTOPTS
);
2799 case IPV6_UNICAST_HOPS
:
2800 optval
= in6p
->in6p_hops
;
2803 case IPV6_RECVPKTINFO
:
2804 optval
= OPTBIT(IN6P_PKTINFO
);
2807 case IPV6_RECVHOPLIMIT
:
2808 optval
= OPTBIT(IN6P_HOPLIMIT
);
2811 case IPV6_RECVRTHDR
:
2812 optval
= OPTBIT(IN6P_RTHDR
);
2815 case IPV6_RECVPATHMTU
:
2816 optval
= OPTBIT(IN6P_MTU
);
2820 optval
= OPTBIT(IN6P_IPV6_V6ONLY
);
2823 case IPV6_PORTRANGE
: {
2825 flags
= in6p
->inp_flags
;
2826 if (flags
& INP_HIGHPORT
)
2827 optval
= IPV6_PORTRANGE_HIGH
;
2828 else if (flags
& INP_LOWPORT
)
2829 optval
= IPV6_PORTRANGE_LOW
;
2834 case IPV6_RECVTCLASS
:
2835 optval
= OPTBIT(IN6P_TCLASS
);
2838 case IPV6_AUTOFLOWLABEL
:
2839 optval
= OPTBIT(IN6P_AUTOFLOWLABEL
);
2844 error
= sooptcopyout(sopt
, &optval
,
2848 case IPV6_PATHMTU
: {
2850 struct ip6_mtuinfo mtuinfo
;
2851 struct route_in6 sro
;
2853 bzero(&sro
, sizeof (sro
));
2855 if (!(so
->so_state
& SS_ISCONNECTED
))
2858 * XXX: we dot not consider the case of source
2859 * routing, or optional information to specify
2860 * the outgoing interface.
2862 error
= ip6_getpmtu(&sro
, NULL
, NULL
,
2863 &in6p
->in6p_faddr
, &pmtu
, NULL
);
2864 ROUTE_RELEASE(&sro
);
2867 if (pmtu
> IPV6_MAXPACKET
)
2868 pmtu
= IPV6_MAXPACKET
;
2870 bzero(&mtuinfo
, sizeof (mtuinfo
));
2871 mtuinfo
.ip6m_mtu
= (u_int32_t
)pmtu
;
2872 optdata
= (void *)&mtuinfo
;
2873 optdatalen
= sizeof (mtuinfo
);
2874 error
= sooptcopyout(sopt
, optdata
,
2879 case IPV6_2292PKTINFO
:
2880 case IPV6_2292HOPLIMIT
:
2881 case IPV6_2292HOPOPTS
:
2882 case IPV6_2292RTHDR
:
2883 case IPV6_2292DSTOPTS
:
2885 case IPV6_2292PKTINFO
:
2886 optval
= OPTBIT(IN6P_PKTINFO
);
2888 case IPV6_2292HOPLIMIT
:
2889 optval
= OPTBIT(IN6P_HOPLIMIT
);
2891 case IPV6_2292HOPOPTS
:
2892 optval
= OPTBIT(IN6P_HOPOPTS
);
2894 case IPV6_2292RTHDR
:
2895 optval
= OPTBIT(IN6P_RTHDR
);
2897 case IPV6_2292DSTOPTS
:
2898 optval
= OPTBIT(IN6P_DSTOPTS
|
2902 error
= sooptcopyout(sopt
, &optval
,
2910 case IPV6_RTHDRDSTOPTS
:
2914 case IPV6_USE_MIN_MTU
:
2915 case IPV6_PREFER_TEMPADDR
:
2916 error
= ip6_getpcbopt(in6p
->in6p_outputopts
,
2920 case IPV6_MULTICAST_IF
:
2921 case IPV6_MULTICAST_HOPS
:
2922 case IPV6_MULTICAST_LOOP
:
2924 error
= ip6_getmoptions(in6p
, sopt
);
2927 case IPV6_IPSEC_POLICY
: {
2928 error
= 0; /* This option is no longer supported */
2933 if (in6p
->inp_flags
& INP_BOUND_IF
)
2934 optval
= in6p
->inp_boundifp
->if_index
;
2935 error
= sooptcopyout(sopt
, &optval
,
2939 case IPV6_NO_IFT_CELLULAR
:
2940 optval
= INP_NO_CELLULAR(in6p
) ? 1 : 0;
2941 error
= sooptcopyout(sopt
, &optval
,
2946 optval
= (in6p
->in6p_last_outifp
!= NULL
) ?
2947 in6p
->in6p_last_outifp
->if_index
: 0;
2948 error
= sooptcopyout(sopt
, &optval
,
2953 error
= ENOPROTOOPT
;
2958 } else if (level
== IPPROTO_UDP
) {
2959 error
= udp_ctloutput(so
, sopt
);
2967 ip6_raw_ctloutput(struct socket
*so
, struct sockopt
*sopt
)
2969 int error
= 0, optval
, optlen
;
2970 const int icmp6off
= offsetof(struct icmp6_hdr
, icmp6_cksum
);
2971 struct inpcb
*in6p
= sotoinpcb(so
);
2972 int level
, op
, optname
;
2974 level
= sopt
->sopt_level
;
2975 op
= sopt
->sopt_dir
;
2976 optname
= sopt
->sopt_name
;
2977 optlen
= sopt
->sopt_valsize
;
2979 if (level
!= IPPROTO_IPV6
)
2985 * For ICMPv6 sockets, no modification allowed for checksum
2986 * offset, permit "no change" values to help existing apps.
2988 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
2989 * for an ICMPv6 socket will fail."
2990 * The current behavior does not meet RFC3542.
2994 if (optlen
!= sizeof (int)) {
2998 error
= sooptcopyin(sopt
, &optval
, sizeof (optval
),
3002 if ((optval
% 2) != 0) {
3003 /* the API assumes even offset values */
3005 } else if (SOCK_PROTO(so
) == IPPROTO_ICMPV6
) {
3006 if (optval
!= icmp6off
)
3009 in6p
->in6p_cksum
= optval
;
3014 if (SOCK_PROTO(so
) == IPPROTO_ICMPV6
)
3017 optval
= in6p
->in6p_cksum
;
3019 error
= sooptcopyout(sopt
, &optval
, sizeof (optval
));
3029 error
= ENOPROTOOPT
;
3037 * Set up IP6 options in pcb for insertion in output packets or
3038 * specifying behavior of outgoing packets.
3041 ip6_pcbopts(struct ip6_pktopts
**pktopt
, struct mbuf
*m
, struct socket
*so
,
3042 struct sockopt
*sopt
)
3044 #pragma unused(sopt)
3045 struct ip6_pktopts
*opt
= *pktopt
;
3048 /* turn off any old options. */
3051 if (opt
->ip6po_pktinfo
|| opt
->ip6po_nexthop
||
3052 opt
->ip6po_hbh
|| opt
->ip6po_dest1
|| opt
->ip6po_dest2
||
3053 opt
->ip6po_rhinfo
.ip6po_rhi_rthdr
)
3054 printf("%s: all specified options are cleared.\n",
3057 ip6_clearpktopts(opt
, -1);
3059 opt
= _MALLOC(sizeof (*opt
), M_IP6OPT
, M_WAITOK
);
3065 if (m
== NULL
|| m
->m_len
== 0) {
3067 * Only turning off any previous options, regardless of
3068 * whether the opt is just created or given.
3071 FREE(opt
, M_IP6OPT
);
3075 /* set options specified by user. */
3076 if ((error
= ip6_setpktopts(m
, opt
, NULL
, SOCK_PROTO(so
))) != 0) {
3077 ip6_clearpktopts(opt
, -1); /* XXX: discard all options */
3078 FREE(opt
, M_IP6OPT
);
3086 * initialize ip6_pktopts. beware that there are non-zero default values in
3090 ip6_initpktopts(struct ip6_pktopts
*opt
)
3093 bzero(opt
, sizeof (*opt
));
3094 opt
->ip6po_hlim
= -1; /* -1 means default hop limit */
3095 opt
->ip6po_tclass
= -1; /* -1 means default traffic class */
3096 opt
->ip6po_minmtu
= IP6PO_MINMTU_MCASTONLY
;
3097 opt
->ip6po_prefer_tempaddr
= IP6PO_TEMPADDR_SYSTEM
;
3101 ip6_pcbopt(int optname
, u_char
*buf
, int len
, struct ip6_pktopts
**pktopt
,
3104 struct ip6_pktopts
*opt
;
3108 opt
= _MALLOC(sizeof (*opt
), M_IP6OPT
, M_WAITOK
);
3111 ip6_initpktopts(opt
);
3115 return (ip6_setpktopt(optname
, buf
, len
, opt
, 1, 0, uproto
));
3119 ip6_getpcbopt(struct ip6_pktopts
*pktopt
, int optname
, struct sockopt
*sopt
)
3121 void *optdata
= NULL
;
3123 struct ip6_ext
*ip6e
;
3124 struct in6_pktinfo null_pktinfo
;
3125 int deftclass
= 0, on
;
3126 int defminmtu
= IP6PO_MINMTU_MCASTONLY
;
3127 int defpreftemp
= IP6PO_TEMPADDR_SYSTEM
;
3132 if (pktopt
&& pktopt
->ip6po_pktinfo
)
3133 optdata
= (void *)pktopt
->ip6po_pktinfo
;
3135 /* XXX: we don't have to do this every time... */
3136 bzero(&null_pktinfo
, sizeof (null_pktinfo
));
3137 optdata
= (void *)&null_pktinfo
;
3139 optdatalen
= sizeof (struct in6_pktinfo
);
3143 if (pktopt
&& pktopt
->ip6po_tclass
>= 0)
3144 optdata
= (void *)&pktopt
->ip6po_tclass
;
3146 optdata
= (void *)&deftclass
;
3147 optdatalen
= sizeof (int);
3151 if (pktopt
&& pktopt
->ip6po_hbh
) {
3152 optdata
= (void *)pktopt
->ip6po_hbh
;
3153 ip6e
= (struct ip6_ext
*)pktopt
->ip6po_hbh
;
3154 optdatalen
= (ip6e
->ip6e_len
+ 1) << 3;
3159 if (pktopt
&& pktopt
->ip6po_rthdr
) {
3160 optdata
= (void *)pktopt
->ip6po_rthdr
;
3161 ip6e
= (struct ip6_ext
*)pktopt
->ip6po_rthdr
;
3162 optdatalen
= (ip6e
->ip6e_len
+ 1) << 3;
3166 case IPV6_RTHDRDSTOPTS
:
3167 if (pktopt
&& pktopt
->ip6po_dest1
) {
3168 optdata
= (void *)pktopt
->ip6po_dest1
;
3169 ip6e
= (struct ip6_ext
*)pktopt
->ip6po_dest1
;
3170 optdatalen
= (ip6e
->ip6e_len
+ 1) << 3;
3175 if (pktopt
&& pktopt
->ip6po_dest2
) {
3176 optdata
= (void *)pktopt
->ip6po_dest2
;
3177 ip6e
= (struct ip6_ext
*)pktopt
->ip6po_dest2
;
3178 optdatalen
= (ip6e
->ip6e_len
+ 1) << 3;
3183 if (pktopt
&& pktopt
->ip6po_nexthop
) {
3184 optdata
= (void *)pktopt
->ip6po_nexthop
;
3185 optdatalen
= pktopt
->ip6po_nexthop
->sa_len
;
3189 case IPV6_USE_MIN_MTU
:
3191 optdata
= (void *)&pktopt
->ip6po_minmtu
;
3193 optdata
= (void *)&defminmtu
;
3194 optdatalen
= sizeof (int);
3198 if (pktopt
&& ((pktopt
->ip6po_flags
) & IP6PO_DONTFRAG
))
3202 optdata
= (void *)&on
;
3203 optdatalen
= sizeof (on
);
3206 case IPV6_PREFER_TEMPADDR
:
3208 optdata
= (void *)&pktopt
->ip6po_prefer_tempaddr
;
3210 optdata
= (void *)&defpreftemp
;
3211 optdatalen
= sizeof (int);
3214 default: /* should not happen */
3216 panic("ip6_getpcbopt: unexpected option\n");
3218 return (ENOPROTOOPT
);
3221 return (sooptcopyout(sopt
, optdata
, optdatalen
));
3225 ip6_clearpktopts(struct ip6_pktopts
*pktopt
, int optname
)
3230 if (optname
== -1 || optname
== IPV6_PKTINFO
) {
3231 if (pktopt
->ip6po_pktinfo
)
3232 FREE(pktopt
->ip6po_pktinfo
, M_IP6OPT
);
3233 pktopt
->ip6po_pktinfo
= NULL
;
3235 if (optname
== -1 || optname
== IPV6_HOPLIMIT
)
3236 pktopt
->ip6po_hlim
= -1;
3237 if (optname
== -1 || optname
== IPV6_TCLASS
)
3238 pktopt
->ip6po_tclass
= -1;
3239 if (optname
== -1 || optname
== IPV6_NEXTHOP
) {
3240 ROUTE_RELEASE(&pktopt
->ip6po_nextroute
);
3241 if (pktopt
->ip6po_nexthop
)
3242 FREE(pktopt
->ip6po_nexthop
, M_IP6OPT
);
3243 pktopt
->ip6po_nexthop
= NULL
;
3245 if (optname
== -1 || optname
== IPV6_HOPOPTS
) {
3246 if (pktopt
->ip6po_hbh
)
3247 FREE(pktopt
->ip6po_hbh
, M_IP6OPT
);
3248 pktopt
->ip6po_hbh
= NULL
;
3250 if (optname
== -1 || optname
== IPV6_RTHDRDSTOPTS
) {
3251 if (pktopt
->ip6po_dest1
)
3252 FREE(pktopt
->ip6po_dest1
, M_IP6OPT
);
3253 pktopt
->ip6po_dest1
= NULL
;
3255 if (optname
== -1 || optname
== IPV6_RTHDR
) {
3256 if (pktopt
->ip6po_rhinfo
.ip6po_rhi_rthdr
)
3257 FREE(pktopt
->ip6po_rhinfo
.ip6po_rhi_rthdr
, M_IP6OPT
);
3258 pktopt
->ip6po_rhinfo
.ip6po_rhi_rthdr
= NULL
;
3259 ROUTE_RELEASE(&pktopt
->ip6po_route
);
3261 if (optname
== -1 || optname
== IPV6_DSTOPTS
) {
3262 if (pktopt
->ip6po_dest2
)
3263 FREE(pktopt
->ip6po_dest2
, M_IP6OPT
);
3264 pktopt
->ip6po_dest2
= NULL
;
3268 #define PKTOPT_EXTHDRCPY(type) do { \
3271 (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3; \
3272 dst->type = _MALLOC(hlen, M_IP6OPT, canwait); \
3273 if (dst->type == NULL && canwait == M_NOWAIT) \
3275 bcopy(src->type, dst->type, hlen); \
3280 copypktopts(struct ip6_pktopts
*dst
, struct ip6_pktopts
*src
, int canwait
)
3282 if (dst
== NULL
|| src
== NULL
) {
3283 printf("copypktopts: invalid argument\n");
3287 dst
->ip6po_hlim
= src
->ip6po_hlim
;
3288 dst
->ip6po_tclass
= src
->ip6po_tclass
;
3289 dst
->ip6po_flags
= src
->ip6po_flags
;
3290 if (src
->ip6po_pktinfo
) {
3291 dst
->ip6po_pktinfo
= _MALLOC(sizeof (*dst
->ip6po_pktinfo
),
3293 if (dst
->ip6po_pktinfo
== NULL
&& canwait
== M_NOWAIT
)
3295 *dst
->ip6po_pktinfo
= *src
->ip6po_pktinfo
;
3297 if (src
->ip6po_nexthop
) {
3298 dst
->ip6po_nexthop
= _MALLOC(src
->ip6po_nexthop
->sa_len
,
3300 if (dst
->ip6po_nexthop
== NULL
&& canwait
== M_NOWAIT
)
3302 bcopy(src
->ip6po_nexthop
, dst
->ip6po_nexthop
,
3303 src
->ip6po_nexthop
->sa_len
);
3305 PKTOPT_EXTHDRCPY(ip6po_hbh
);
3306 PKTOPT_EXTHDRCPY(ip6po_dest1
);
3307 PKTOPT_EXTHDRCPY(ip6po_dest2
);
3308 PKTOPT_EXTHDRCPY(ip6po_rthdr
); /* not copy the cached route */
3312 ip6_clearpktopts(dst
, -1);
3315 #undef PKTOPT_EXTHDRCPY
3317 struct ip6_pktopts
*
3318 ip6_copypktopts(struct ip6_pktopts
*src
, int canwait
)
3321 struct ip6_pktopts
*dst
;
3323 dst
= _MALLOC(sizeof (*dst
), M_IP6OPT
, canwait
);
3326 ip6_initpktopts(dst
);
3328 if ((error
= copypktopts(dst
, src
, canwait
)) != 0) {
3329 FREE(dst
, M_IP6OPT
);
3337 ip6_freepcbopts(struct ip6_pktopts
*pktopt
)
3342 ip6_clearpktopts(pktopt
, -1);
3344 FREE(pktopt
, M_IP6OPT
);
3348 ip6_moptions_init(void)
3350 PE_parse_boot_argn("ifa_debug", &im6o_debug
, sizeof (im6o_debug
));
3352 im6o_size
= (im6o_debug
== 0) ? sizeof (struct ip6_moptions
) :
3353 sizeof (struct ip6_moptions_dbg
);
3355 im6o_zone
= zinit(im6o_size
, IM6O_ZONE_MAX
* im6o_size
, 0,
3357 if (im6o_zone
== NULL
) {
3358 panic("%s: failed allocating %s", __func__
, IM6O_ZONE_NAME
);
3361 zone_change(im6o_zone
, Z_EXPAND
, TRUE
);
3365 im6o_addref(struct ip6_moptions
*im6o
, int locked
)
3370 IM6O_LOCK_ASSERT_HELD(im6o
);
3372 if (++im6o
->im6o_refcnt
== 0) {
3373 panic("%s: im6o %p wraparound refcnt\n", __func__
, im6o
);
3375 } else if (im6o
->im6o_trace
!= NULL
) {
3376 (*im6o
->im6o_trace
)(im6o
, TRUE
);
3384 im6o_remref(struct ip6_moptions
*im6o
)
3389 if (im6o
->im6o_refcnt
== 0) {
3390 panic("%s: im6o %p negative refcnt", __func__
, im6o
);
3392 } else if (im6o
->im6o_trace
!= NULL
) {
3393 (*im6o
->im6o_trace
)(im6o
, FALSE
);
3396 --im6o
->im6o_refcnt
;
3397 if (im6o
->im6o_refcnt
> 0) {
3402 for (i
= 0; i
< im6o
->im6o_num_memberships
; ++i
) {
3403 struct in6_mfilter
*imf
;
3405 imf
= im6o
->im6o_mfilters
? &im6o
->im6o_mfilters
[i
] : NULL
;
3409 (void) in6_mc_leave(im6o
->im6o_membership
[i
], imf
);
3414 IN6M_REMREF(im6o
->im6o_membership
[i
]);
3415 im6o
->im6o_membership
[i
] = NULL
;
3417 im6o
->im6o_num_memberships
= 0;
3418 if (im6o
->im6o_mfilters
!= NULL
) {
3419 FREE(im6o
->im6o_mfilters
, M_IN6MFILTER
);
3420 im6o
->im6o_mfilters
= NULL
;
3422 if (im6o
->im6o_membership
!= NULL
) {
3423 FREE(im6o
->im6o_membership
, M_IP6MOPTS
);
3424 im6o
->im6o_membership
= NULL
;
3428 lck_mtx_destroy(&im6o
->im6o_lock
, ifa_mtx_grp
);
3430 if (!(im6o
->im6o_debug
& IFD_ALLOC
)) {
3431 panic("%s: im6o %p cannot be freed", __func__
, im6o
);
3434 zfree(im6o_zone
, im6o
);
3438 im6o_trace(struct ip6_moptions
*im6o
, int refhold
)
3440 struct ip6_moptions_dbg
*im6o_dbg
= (struct ip6_moptions_dbg
*)im6o
;
3445 if (!(im6o
->im6o_debug
& IFD_DEBUG
)) {
3446 panic("%s: im6o %p has no debug structure", __func__
, im6o
);
3450 cnt
= &im6o_dbg
->im6o_refhold_cnt
;
3451 tr
= im6o_dbg
->im6o_refhold
;
3453 cnt
= &im6o_dbg
->im6o_refrele_cnt
;
3454 tr
= im6o_dbg
->im6o_refrele
;
3457 idx
= atomic_add_16_ov(cnt
, 1) % IM6O_TRACE_HIST_SIZE
;
3458 ctrace_record(&tr
[idx
]);
3461 struct ip6_moptions
*
3462 ip6_allocmoptions(int how
)
3464 struct ip6_moptions
*im6o
;
3466 im6o
= (how
== M_WAITOK
) ?
3467 zalloc(im6o_zone
) : zalloc_noblock(im6o_zone
);
3469 bzero(im6o
, im6o_size
);
3470 lck_mtx_init(&im6o
->im6o_lock
, ifa_mtx_grp
, ifa_mtx_attr
);
3471 im6o
->im6o_debug
|= IFD_ALLOC
;
3472 if (im6o_debug
!= 0) {
3473 im6o
->im6o_debug
|= IFD_DEBUG
;
3474 im6o
->im6o_trace
= im6o_trace
;
3483 * Set IPv6 outgoing packet options based on advanced API.
3486 ip6_setpktopts(struct mbuf
*control
, struct ip6_pktopts
*opt
,
3487 struct ip6_pktopts
*stickyopt
, int uproto
)
3489 struct cmsghdr
*cm
= NULL
;
3491 if (control
== NULL
|| opt
== NULL
)
3494 ip6_initpktopts(opt
);
3499 * If stickyopt is provided, make a local copy of the options
3500 * for this particular packet, then override them by ancillary
3502 * XXX: copypktopts() does not copy the cached route to a next
3503 * hop (if any). This is not very good in terms of efficiency,
3504 * but we can allow this since this option should be rarely
3507 if ((error
= copypktopts(opt
, stickyopt
, M_NOWAIT
)) != 0)
3512 * XXX: Currently, we assume all the optional information is stored
3515 if (control
->m_next
)
3518 if (control
->m_len
< CMSG_LEN(0))
3521 for (cm
= M_FIRST_CMSGHDR(control
); cm
!= NULL
;
3522 cm
= M_NXT_CMSGHDR(control
, cm
)) {
3525 if (cm
->cmsg_len
< sizeof (struct cmsghdr
) ||
3526 cm
->cmsg_len
> control
->m_len
)
3528 if (cm
->cmsg_level
!= IPPROTO_IPV6
)
3531 error
= ip6_setpktopt(cm
->cmsg_type
, CMSG_DATA(cm
),
3532 cm
->cmsg_len
- CMSG_LEN(0), opt
, 0, 1, uproto
);
3540 * Set a particular packet option, as a sticky option or an ancillary data
3541 * item. "len" can be 0 only when it's a sticky option.
3542 * We have 4 cases of combination of "sticky" and "cmsg":
3543 * "sticky=0, cmsg=0": impossible
3544 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
3545 * "sticky=1, cmsg=0": RFC3542 socket option
3546 * "sticky=1, cmsg=1": RFC2292 socket option
3549 ip6_setpktopt(int optname
, u_char
*buf
, int len
, struct ip6_pktopts
*opt
,
3550 int sticky
, int cmsg
, int uproto
)
3552 int minmtupolicy
, preftemp
;
3554 boolean_t capture_exthdrstat_out
= FALSE
;
3556 if (!sticky
&& !cmsg
) {
3558 printf("ip6_setpktopt: impossible case\n");
3564 * Caller must have ensured that the buffer is at least
3565 * aligned on 32-bit boundary.
3567 VERIFY(IS_P2ALIGNED(buf
, sizeof (u_int32_t
)));
3570 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
3571 * not be specified in the context of RFC3542. Conversely,
3572 * RFC3542 types should not be specified in the context of RFC2292.
3576 case IPV6_2292PKTINFO
:
3577 case IPV6_2292HOPLIMIT
:
3578 case IPV6_2292NEXTHOP
:
3579 case IPV6_2292HOPOPTS
:
3580 case IPV6_2292DSTOPTS
:
3581 case IPV6_2292RTHDR
:
3582 case IPV6_2292PKTOPTIONS
:
3583 return (ENOPROTOOPT
);
3586 if (sticky
&& cmsg
) {
3593 case IPV6_RTHDRDSTOPTS
:
3595 case IPV6_USE_MIN_MTU
:
3598 case IPV6_PREFER_TEMPADDR
: /* XXX: not an RFC3542 option */
3599 return (ENOPROTOOPT
);
3604 case IPV6_2292PKTINFO
:
3605 case IPV6_PKTINFO
: {
3606 struct ifnet
*ifp
= NULL
;
3607 struct in6_pktinfo
*pktinfo
;
3609 if (len
!= sizeof (struct in6_pktinfo
))
3612 pktinfo
= (struct in6_pktinfo
*)(void *)buf
;
3615 * An application can clear any sticky IPV6_PKTINFO option by
3616 * doing a "regular" setsockopt with ipi6_addr being
3617 * in6addr_any and ipi6_ifindex being zero.
3618 * [RFC 3542, Section 6]
3620 if (optname
== IPV6_PKTINFO
&& opt
->ip6po_pktinfo
&&
3621 pktinfo
->ipi6_ifindex
== 0 &&
3622 IN6_IS_ADDR_UNSPECIFIED(&pktinfo
->ipi6_addr
)) {
3623 ip6_clearpktopts(opt
, optname
);
3627 if (uproto
== IPPROTO_TCP
&& optname
== IPV6_PKTINFO
&&
3628 sticky
&& !IN6_IS_ADDR_UNSPECIFIED(&pktinfo
->ipi6_addr
)) {
3632 /* validate the interface index if specified. */
3633 ifnet_head_lock_shared();
3635 if (pktinfo
->ipi6_ifindex
> if_index
) {
3640 if (pktinfo
->ipi6_ifindex
) {
3641 ifp
= ifindex2ifnet
[pktinfo
->ipi6_ifindex
];
3651 * We store the address anyway, and let in6_selectsrc()
3652 * validate the specified address. This is because ipi6_addr
3653 * may not have enough information about its scope zone, and
3654 * we may need additional information (such as outgoing
3655 * interface or the scope zone of a destination address) to
3656 * disambiguate the scope.
3657 * XXX: the delay of the validation may confuse the
3658 * application when it is used as a sticky option.
3660 if (opt
->ip6po_pktinfo
== NULL
) {
3661 opt
->ip6po_pktinfo
= _MALLOC(sizeof (*pktinfo
),
3662 M_IP6OPT
, M_NOWAIT
);
3663 if (opt
->ip6po_pktinfo
== NULL
)
3666 bcopy(pktinfo
, opt
->ip6po_pktinfo
, sizeof (*pktinfo
));
3670 case IPV6_2292HOPLIMIT
:
3671 case IPV6_HOPLIMIT
: {
3675 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
3676 * to simplify the ordering among hoplimit options.
3678 if (optname
== IPV6_HOPLIMIT
&& sticky
)
3679 return (ENOPROTOOPT
);
3681 if (len
!= sizeof (int))
3683 hlimp
= (int *)(void *)buf
;
3684 if (*hlimp
< -1 || *hlimp
> 255)
3687 opt
->ip6po_hlim
= *hlimp
;
3694 if (len
!= sizeof (int))
3696 tclass
= *(int *)(void *)buf
;
3697 if (tclass
< -1 || tclass
> 255)
3700 opt
->ip6po_tclass
= tclass
;
3704 case IPV6_2292NEXTHOP
:
3706 error
= suser(kauth_cred_get(), 0);
3710 if (len
== 0) { /* just remove the option */
3711 ip6_clearpktopts(opt
, IPV6_NEXTHOP
);
3715 /* check if cmsg_len is large enough for sa_len */
3716 if (len
< sizeof (struct sockaddr
) || len
< *buf
)
3719 switch (SA(buf
)->sa_family
) {
3721 struct sockaddr_in6
*sa6
= SIN6(buf
);
3723 if (sa6
->sin6_len
!= sizeof (struct sockaddr_in6
))
3726 if (IN6_IS_ADDR_UNSPECIFIED(&sa6
->sin6_addr
) ||
3727 IN6_IS_ADDR_MULTICAST(&sa6
->sin6_addr
)) {
3730 if ((error
= sa6_embedscope(sa6
, ip6_use_defzone
))
3736 case AF_LINK
: /* should eventually be supported */
3738 return (EAFNOSUPPORT
);
3741 /* turn off the previous option, then set the new option. */
3742 ip6_clearpktopts(opt
, IPV6_NEXTHOP
);
3743 opt
->ip6po_nexthop
= _MALLOC(*buf
, M_IP6OPT
, M_NOWAIT
);
3744 if (opt
->ip6po_nexthop
== NULL
)
3746 bcopy(buf
, opt
->ip6po_nexthop
, *buf
);
3749 case IPV6_2292HOPOPTS
:
3750 case IPV6_HOPOPTS
: {
3751 struct ip6_hbh
*hbh
;
3755 * XXX: We don't allow a non-privileged user to set ANY HbH
3756 * options, since per-option restriction has too much
3759 error
= suser(kauth_cred_get(), 0);
3764 ip6_clearpktopts(opt
, IPV6_HOPOPTS
);
3765 break; /* just remove the option */
3768 /* message length validation */
3769 if (len
< sizeof (struct ip6_hbh
))
3771 hbh
= (struct ip6_hbh
*)(void *)buf
;
3772 hbhlen
= (hbh
->ip6h_len
+ 1) << 3;
3776 /* turn off the previous option, then set the new option. */
3777 ip6_clearpktopts(opt
, IPV6_HOPOPTS
);
3778 opt
->ip6po_hbh
= _MALLOC(hbhlen
, M_IP6OPT
, M_NOWAIT
);
3779 if (opt
->ip6po_hbh
== NULL
)
3781 bcopy(hbh
, opt
->ip6po_hbh
, hbhlen
);
3782 capture_exthdrstat_out
= TRUE
;
3786 case IPV6_2292DSTOPTS
:
3788 case IPV6_RTHDRDSTOPTS
: {
3789 struct ip6_dest
*dest
, **newdest
= NULL
;
3792 error
= suser(kauth_cred_get(), 0);
3797 ip6_clearpktopts(opt
, optname
);
3798 break; /* just remove the option */
3801 /* message length validation */
3802 if (len
< sizeof (struct ip6_dest
))
3804 dest
= (struct ip6_dest
*)(void *)buf
;
3805 destlen
= (dest
->ip6d_len
+ 1) << 3;
3810 * Determine the position that the destination options header
3811 * should be inserted; before or after the routing header.
3814 case IPV6_2292DSTOPTS
:
3816 * The old advacned API is ambiguous on this point.
3817 * Our approach is to determine the position based
3818 * according to the existence of a routing header.
3819 * Note, however, that this depends on the order of the
3820 * extension headers in the ancillary data; the 1st
3821 * part of the destination options header must appear
3822 * before the routing header in the ancillary data,
3824 * RFC3542 solved the ambiguity by introducing
3825 * separate ancillary data or option types.
3827 if (opt
->ip6po_rthdr
== NULL
)
3828 newdest
= &opt
->ip6po_dest1
;
3830 newdest
= &opt
->ip6po_dest2
;
3832 case IPV6_RTHDRDSTOPTS
:
3833 newdest
= &opt
->ip6po_dest1
;
3836 newdest
= &opt
->ip6po_dest2
;
3840 /* turn off the previous option, then set the new option. */
3841 ip6_clearpktopts(opt
, optname
);
3842 *newdest
= _MALLOC(destlen
, M_IP6OPT
, M_NOWAIT
);
3843 if (*newdest
== NULL
)
3845 bcopy(dest
, *newdest
, destlen
);
3846 capture_exthdrstat_out
= TRUE
;
3850 case IPV6_2292RTHDR
:
3852 struct ip6_rthdr
*rth
;
3856 ip6_clearpktopts(opt
, IPV6_RTHDR
);
3857 break; /* just remove the option */
3860 /* message length validation */
3861 if (len
< sizeof (struct ip6_rthdr
))
3863 rth
= (struct ip6_rthdr
*)(void *)buf
;
3864 rthlen
= (rth
->ip6r_len
+ 1) << 3;
3868 switch (rth
->ip6r_type
) {
3869 case IPV6_RTHDR_TYPE_0
:
3870 if (rth
->ip6r_len
== 0) /* must contain one addr */
3872 if (rth
->ip6r_len
% 2) /* length must be even */
3874 if (rth
->ip6r_len
/ 2 != rth
->ip6r_segleft
)
3878 return (EINVAL
); /* not supported */
3881 /* turn off the previous option */
3882 ip6_clearpktopts(opt
, IPV6_RTHDR
);
3883 opt
->ip6po_rthdr
= _MALLOC(rthlen
, M_IP6OPT
, M_NOWAIT
);
3884 if (opt
->ip6po_rthdr
== NULL
)
3886 bcopy(rth
, opt
->ip6po_rthdr
, rthlen
);
3887 capture_exthdrstat_out
= TRUE
;
3891 case IPV6_USE_MIN_MTU
:
3892 if (len
!= sizeof (int))
3894 minmtupolicy
= *(int *)(void *)buf
;
3895 if (minmtupolicy
!= IP6PO_MINMTU_MCASTONLY
&&
3896 minmtupolicy
!= IP6PO_MINMTU_DISABLE
&&
3897 minmtupolicy
!= IP6PO_MINMTU_ALL
) {
3900 opt
->ip6po_minmtu
= minmtupolicy
;
3904 if (len
!= sizeof (int))
3907 if (uproto
== IPPROTO_TCP
|| *(int *)(void *)buf
== 0) {
3909 * we ignore this option for TCP sockets.
3910 * (RFC3542 leaves this case unspecified.)
3912 opt
->ip6po_flags
&= ~IP6PO_DONTFRAG
;
3914 opt
->ip6po_flags
|= IP6PO_DONTFRAG
;
3918 case IPV6_PREFER_TEMPADDR
:
3919 if (len
!= sizeof (int))
3921 preftemp
= *(int *)(void *)buf
;
3922 if (preftemp
!= IP6PO_TEMPADDR_SYSTEM
&&
3923 preftemp
!= IP6PO_TEMPADDR_NOTPREFER
&&
3924 preftemp
!= IP6PO_TEMPADDR_PREFER
) {
3927 opt
->ip6po_prefer_tempaddr
= preftemp
;
3931 return (ENOPROTOOPT
);
3932 } /* end of switch */
3934 if (capture_exthdrstat_out
) {
3935 if (uproto
== IPPROTO_TCP
) {
3936 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_sock_inet6_stream_exthdr_out
);
3937 } else if (uproto
== IPPROTO_UDP
) {
3938 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_sock_inet6_dgram_exthdr_out
);
3946 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3947 * packet to the input queue of a specified interface. Note that this
3948 * calls the output routine of the loopback "driver", but with an interface
3949 * pointer that might NOT be &loif -- easier than replicating that code here.
3952 ip6_mloopback(struct ifnet
*srcifp
, struct ifnet
*origifp
, struct mbuf
*m
,
3953 struct sockaddr_in6
*dst
, uint32_t optlen
, int32_t nxt0
)
3956 struct ip6_hdr
*ip6
;
3957 struct in6_addr src
;
3963 * Copy the packet header as it's needed for the checksum.
3964 * Make sure to deep-copy IPv6 header portion in case the data
3965 * is in an mbuf cluster, so that we can safely override the IPv6
3966 * header portion later.
3968 copym
= m_copym_mode(m
, 0, M_COPYALL
, M_DONTWAIT
, M_COPYM_COPY_HDR
);
3969 if (copym
!= NULL
&& ((copym
->m_flags
& M_EXT
) ||
3970 copym
->m_len
< sizeof (struct ip6_hdr
)))
3971 copym
= m_pullup(copym
, sizeof (struct ip6_hdr
));
3976 ip6
= mtod(copym
, struct ip6_hdr
*);
3979 * clear embedded scope identifiers if necessary.
3980 * in6_clearscope will touch the addresses only when necessary.
3982 in6_clearscope(&ip6
->ip6_src
);
3983 in6_clearscope(&ip6
->ip6_dst
);
3985 if (copym
->m_pkthdr
.csum_flags
& CSUM_DELAY_IPV6_DATA
)
3986 in6_delayed_cksum_offset(copym
, 0, optlen
, nxt0
);
3989 * Stuff the 'real' ifp into the pkthdr, to be used in matching
3990 * in ip6_input(); we need the loopback ifp/dl_tag passed as args
3991 * to make the loopback driver compliant with the data link
3994 copym
->m_pkthdr
.rcvif
= origifp
;
3997 * Also record the source interface (which owns the source address).
3998 * This is basically a stripped down version of ifa_foraddr6().
4000 if (srcifp
== NULL
) {
4001 struct in6_ifaddr
*ia
;
4003 lck_rw_lock_shared(&in6_ifaddr_rwlock
);
4004 for (ia
= in6_ifaddrs
; ia
!= NULL
; ia
= ia
->ia_next
) {
4005 IFA_LOCK_SPIN(&ia
->ia_ifa
);
4006 /* compare against src addr with embedded scope */
4007 if (IN6_ARE_ADDR_EQUAL(&ia
->ia_addr
.sin6_addr
, &src
)) {
4008 srcifp
= ia
->ia_ifp
;
4009 IFA_UNLOCK(&ia
->ia_ifa
);
4012 IFA_UNLOCK(&ia
->ia_ifa
);
4014 lck_rw_done(&in6_ifaddr_rwlock
);
4017 ip6_setsrcifaddr_info(copym
, srcifp
->if_index
, NULL
);
4018 ip6_setdstifaddr_info(copym
, origifp
->if_index
, NULL
);
4020 dlil_output(lo_ifp
, PF_INET6
, copym
, NULL
, SA(dst
), 0, NULL
);
4024 * Chop IPv6 header off from the payload.
4027 ip6_splithdr(struct mbuf
*m
, struct ip6_exthdrs
*exthdrs
)
4030 struct ip6_hdr
*ip6
;
4032 ip6
= mtod(m
, struct ip6_hdr
*);
4033 if (m
->m_len
> sizeof (*ip6
)) {
4034 MGETHDR(mh
, M_DONTWAIT
, MT_HEADER
); /* MAC-OK */
4039 M_COPY_PKTHDR(mh
, m
);
4040 MH_ALIGN(mh
, sizeof (*ip6
));
4041 m
->m_flags
&= ~M_PKTHDR
;
4042 m
->m_len
-= sizeof (*ip6
);
4043 m
->m_data
+= sizeof (*ip6
);
4046 m
->m_len
= sizeof (*ip6
);
4047 bcopy((caddr_t
)ip6
, mtod(m
, caddr_t
), sizeof (*ip6
));
4049 exthdrs
->ip6e_ip6
= m
;
4054 ip6_output_checksum(struct ifnet
*ifp
, uint32_t mtu
, struct mbuf
*m
,
4055 int nxt0
, uint32_t tlen
, uint32_t optlen
)
4057 uint32_t sw_csum
, hwcap
= ifp
->if_hwassist
;
4058 int tso
= TSO_IPV6_OK(ifp
, m
);
4061 /* do all in software; checksum offload is disabled */
4062 sw_csum
= CSUM_DELAY_IPV6_DATA
& m
->m_pkthdr
.csum_flags
;
4064 /* do in software what the hardware cannot */
4065 sw_csum
= m
->m_pkthdr
.csum_flags
&
4066 ~IF_HWASSIST_CSUM_FLAGS(hwcap
);
4070 sw_csum
|= (CSUM_DELAY_IPV6_DATA
&
4071 m
->m_pkthdr
.csum_flags
);
4072 } else if (!(sw_csum
& CSUM_DELAY_IPV6_DATA
) &&
4073 (hwcap
& CSUM_PARTIAL
)) {
4075 * Partial checksum offload, ere), if no extension headers,
4076 * and TCP only (no UDP support, as the hardware may not be
4077 * able to convert +0 to -0 (0xffff) per RFC1122 4.1.3.4.
4078 * unless the interface supports "invert zero" capability.)
4080 if (hwcksum_tx
&& !tso
&&
4081 ((m
->m_pkthdr
.csum_flags
& CSUM_TCPIPV6
) ||
4082 ((hwcap
& CSUM_ZERO_INVERT
) &&
4083 (m
->m_pkthdr
.csum_flags
& CSUM_ZERO_INVERT
))) &&
4085 uint16_t start
= sizeof (struct ip6_hdr
);
4087 m
->m_pkthdr
.csum_data
& 0xffff;
4088 m
->m_pkthdr
.csum_flags
|=
4089 (CSUM_DATA_VALID
| CSUM_PARTIAL
);
4090 m
->m_pkthdr
.csum_tx_stuff
= (ulpoff
+ start
);
4091 m
->m_pkthdr
.csum_tx_start
= start
;
4094 sw_csum
|= (CSUM_DELAY_IPV6_DATA
&
4095 m
->m_pkthdr
.csum_flags
);
4099 if (sw_csum
& CSUM_DELAY_IPV6_DATA
) {
4100 in6_delayed_cksum_offset(m
, 0, optlen
, nxt0
);
4101 sw_csum
&= ~CSUM_DELAY_IPV6_DATA
;
4106 * Drop off bits that aren't supported by hardware;
4107 * also make sure to preserve non-checksum related bits.
4109 m
->m_pkthdr
.csum_flags
=
4110 ((m
->m_pkthdr
.csum_flags
&
4111 (IF_HWASSIST_CSUM_FLAGS(hwcap
) | CSUM_DATA_VALID
)) |
4112 (m
->m_pkthdr
.csum_flags
& ~IF_HWASSIST_CSUM_MASK
));
4114 /* drop all bits; checksum offload is disabled */
4115 m
->m_pkthdr
.csum_flags
= 0;
4120 * Compute IPv6 extension header length.
4123 ip6_optlen(struct in6pcb
*in6p
)
4127 if (!in6p
->in6p_outputopts
)
4132 (((struct ip6_ext *)(x)) ? \
4133 (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
4135 len
+= elen(in6p
->in6p_outputopts
->ip6po_hbh
);
4136 if (in6p
->in6p_outputopts
->ip6po_rthdr
) {
4137 /* dest1 is valid with rthdr only */
4138 len
+= elen(in6p
->in6p_outputopts
->ip6po_dest1
);
4140 len
+= elen(in6p
->in6p_outputopts
->ip6po_rthdr
);
4141 len
+= elen(in6p
->in6p_outputopts
->ip6po_dest2
);
4147 sysctl_reset_ip6_output_stats SYSCTL_HANDLER_ARGS
4149 #pragma unused(arg1, arg2)
4152 i
= ip6_output_measure
;
4153 error
= sysctl_handle_int(oidp
, &i
, 0, req
);
4154 if (error
|| req
->newptr
== USER_ADDR_NULL
)
4157 if (i
< 0 || i
> 1) {
4161 if (ip6_output_measure
!= i
&& i
== 1) {
4162 net_perf_initialize(&net_perf
, ip6_output_measure_bins
);
4164 ip6_output_measure
= i
;
4170 sysctl_ip6_output_measure_bins SYSCTL_HANDLER_ARGS
4172 #pragma unused(arg1, arg2)
4176 i
= ip6_output_measure_bins
;
4177 error
= sysctl_handle_quad(oidp
, &i
, 0, req
);
4178 if (error
|| req
->newptr
== USER_ADDR_NULL
)
4181 if (!net_perf_validate_bins(i
)) {
4185 ip6_output_measure_bins
= i
;
4191 sysctl_ip6_output_getperf SYSCTL_HANDLER_ARGS
4193 #pragma unused(oidp, arg1, arg2)
4194 if (req
->oldptr
== USER_ADDR_NULL
)
4195 req
->oldlen
= (size_t)sizeof (struct ipstat
);
4197 return (SYSCTL_OUT(req
, &net_perf
, MIN(sizeof (net_perf
), req
->oldlen
)));