]> git.saurik.com Git - apple/xnu.git/blob - bsd/nfs/gss/gss_krb5_mech.c
70f4971013a7783e9f97563b71589d27741dd9c4
[apple/xnu.git] / bsd / nfs / gss / gss_krb5_mech.c
1 /*
2 * Copyright (c) 2015 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /*
30 * Copyright (c) 1999 Kungliga Tekniska Högskolan
31 * (Royal Institute of Technology, Stockholm, Sweden).
32 * All rights reserved.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 *
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 *
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 *
45 * 3. Neither the name of KTH nor the names of its contributors may be
46 * used to endorse or promote products derived from this software without
47 * specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY KTH AND ITS CONTRIBUTORS ``AS IS'' AND ANY
50 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KTH OR ITS CONTRIBUTORS BE
53 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
56 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
57 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
58 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
59 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 #include <stdint.h>
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/malloc.h>
67 #include <sys/kpi_mbuf.h>
68 #include <sys/random.h>
69 #include <mach_assert.h>
70 #include <kern/assert.h>
71 #include <libkern/OSAtomic.h>
72 #include "gss_krb5_mech.h"
73
74 lck_grp_t *gss_krb5_mech_grp;
75
76 typedef struct crypt_walker_ctx {
77 size_t length;
78 const struct ccmode_cbc *ccmode;
79 cccbc_ctx *crypt_ctx;
80 cccbc_iv *iv;
81 } *crypt_walker_ctx_t;
82
83 typedef struct hmac_walker_ctx {
84 const struct ccdigest_info *di;
85 struct cchmac_ctx *hmac_ctx;
86 } *hmac_walker_ctx_t;
87
88 typedef size_t (*ccpad_func)(const struct ccmode_cbc *, cccbc_ctx *, cccbc_iv *,
89 size_t nbytes, const void *, void *);
90
91 static int krb5_n_fold(const void *instr, size_t len, void *foldstr, size_t size);
92
93 size_t gss_mbuf_len(mbuf_t, size_t);
94 errno_t gss_prepend_mbuf(mbuf_t *, uint8_t *, size_t);
95 errno_t gss_append_mbuf(mbuf_t, uint8_t *, size_t);
96 errno_t gss_strip_mbuf(mbuf_t, ssize_t);
97 int mbuf_walk(mbuf_t, size_t, size_t, size_t, int (*)(void *, uint8_t *, uint32_t), void *);
98
99 void do_crypt_init(crypt_walker_ctx_t, int, crypto_ctx_t, cccbc_ctx *);
100 int do_crypt(void *, uint8_t *, uint32_t);
101 void do_hmac_init(hmac_walker_ctx_t, crypto_ctx_t, void *);
102 int do_hmac(void *, uint8_t *, uint32_t);
103
104 void krb5_make_usage(uint32_t, uint8_t, uint8_t[KRB5_USAGE_LEN]);
105 void krb5_key_derivation(crypto_ctx_t, const void *, size_t, void **, size_t);
106 void cc_key_schedule_create(crypto_ctx_t);
107 void gss_crypto_ctx_free(crypto_ctx_t);
108 int gss_crypto_ctx_init(struct crypto_ctx *, lucid_context_t);
109
110 errno_t krb5_crypt_mbuf(crypto_ctx_t, mbuf_t *, uint32_t, int, cccbc_ctx *);
111 int krb5_mic(crypto_ctx_t, gss_buffer_t, gss_buffer_t, gss_buffer_t, uint8_t *, int *, int, int);
112 int krb5_mic_mbuf(crypto_ctx_t, gss_buffer_t, mbuf_t, uint32_t, uint32_t, gss_buffer_t, uint8_t *, int *, int, int);
113
114 uint32_t gss_krb5_cfx_get_mic(uint32_t *, gss_ctx_id_t, gss_qop_t, gss_buffer_t, gss_buffer_t);
115 uint32_t gss_krb5_cfx_verify_mic(uint32_t *, gss_ctx_id_t, gss_buffer_t, gss_buffer_t, gss_qop_t *);
116 uint32_t gss_krb5_cfx_get_mic_mbuf(uint32_t *, gss_ctx_id_t, gss_qop_t, mbuf_t, size_t, size_t, gss_buffer_t);
117 uint32_t gss_krb5_cfx_verify_mic_mbuf(uint32_t *, gss_ctx_id_t, mbuf_t, size_t, size_t, gss_buffer_t, gss_qop_t *);
118 errno_t krb5_cfx_crypt_mbuf(crypto_ctx_t, mbuf_t *, size_t *, int, int);
119 uint32_t gss_krb5_cfx_wrap_mbuf(uint32_t *, gss_ctx_id_t, int, gss_qop_t, mbuf_t *, size_t, int *);
120 uint32_t gss_krb5_cfx_unwrap_mbuf(uint32_t *, gss_ctx_id_t, mbuf_t *, size_t, int *, gss_qop_t *);
121
122 int gss_krb5_mech_is_initialized(void);
123 void gss_krb5_mech_init(void);
124
125 /* Debugging routines */
126 void
127 printmbuf(const char *str, mbuf_t mb, uint32_t offset, uint32_t len)
128 {
129 size_t i;
130 int cout = 1;
131
132 len = len ? len : ~0;
133 printf("%s mbuf = %p offset = %d len = %d:\n", str ? str : "mbuf", mb, offset, len);
134 for (; mb && len; mb = mbuf_next(mb)) {
135 if (offset >= mbuf_len(mb)) {
136 offset -= mbuf_len(mb);
137 continue;
138 }
139 for (i = offset; len && i < mbuf_len(mb); i++) {
140 const char *s = (cout % 8) ? " " : (cout % 16) ? " " : "\n";
141 printf("%02x%s", ((uint8_t *)mbuf_data(mb))[i], s);
142 len--;
143 cout++;
144 }
145 offset = 0;
146 }
147 if ((cout - 1) % 16) {
148 printf("\n");
149 }
150 printf("Count chars %d\n", cout - 1);
151 }
152
153 void
154 printgbuf(const char *str, gss_buffer_t buf)
155 {
156 size_t i;
157 size_t len = buf->length > 128 ? 128 : buf->length;
158
159 printf("%s: len = %d value = %p\n", str ? str : "buffer", (int)buf->length, buf->value);
160 for (i = 0; i < len; i++) {
161 const char *s = ((i + 1) % 8) ? " " : ((i + 1) % 16) ? " " : "\n";
162 printf("%02x%s", ((uint8_t *)buf->value)[i], s);
163 }
164 if (i % 16) {
165 printf("\n");
166 }
167 }
168
169 /*
170 * Initialize the data structures for the gss kerberos mech.
171 */
172 #define GSS_KRB5_NOT_INITIALIZED 0
173 #define GSS_KRB5_INITIALIZING 1
174 #define GSS_KRB5_INITIALIZED 2
175 static volatile uint32_t gss_krb5_mech_initted = GSS_KRB5_NOT_INITIALIZED;
176
177 int
178 gss_krb5_mech_is_initialized(void)
179 {
180 return gss_krb5_mech_initted == GSS_KRB5_NOT_INITIALIZED;
181 }
182
183 void
184 gss_krb5_mech_init(void)
185 {
186 extern void IOSleep(int);
187
188 /* Once initted always initted */
189 if (gss_krb5_mech_initted == GSS_KRB5_INITIALIZED) {
190 return;
191 }
192
193 /* make sure we init only once */
194 if (!OSCompareAndSwap(GSS_KRB5_NOT_INITIALIZED, GSS_KRB5_INITIALIZING, &gss_krb5_mech_initted)) {
195 /* wait until initialization is complete */
196 while (!gss_krb5_mech_is_initialized()) {
197 IOSleep(10);
198 }
199 return;
200 }
201 gss_krb5_mech_grp = lck_grp_alloc_init("gss_krb5_mech", LCK_GRP_ATTR_NULL);
202 gss_krb5_mech_initted = GSS_KRB5_INITIALIZED;
203 }
204
205 uint32_t
206 gss_release_buffer(uint32_t *minor, gss_buffer_t buf)
207 {
208 if (minor) {
209 *minor = 0;
210 }
211 if (buf->value) {
212 FREE(buf->value, M_TEMP);
213 }
214 buf->value = NULL;
215 buf->length = 0;
216 return GSS_S_COMPLETE;
217 }
218
219 /*
220 * GSS mbuf routines
221 */
222
223 size_t
224 gss_mbuf_len(mbuf_t mb, size_t offset)
225 {
226 size_t len;
227
228 for (len = 0; mb; mb = mbuf_next(mb)) {
229 len += mbuf_len(mb);
230 }
231 return (offset > len) ? 0 : len - offset;
232 }
233
234 /*
235 * Split an mbuf in a chain into two mbufs such that the original mbuf
236 * points to the original mbuf and the new mbuf points to the rest of the
237 * chain. The first mbuf length is the first len bytes and the second
238 * mbuf contains the remaining bytes. if len is zero or equals
239 * mbuf_len(mb) the don't create a new mbuf. We are already at an mbuf
240 * boundary. Return the mbuf that starts at the offset.
241 */
242 static errno_t
243 split_one_mbuf(mbuf_t mb, size_t offset, mbuf_t *nmb, int join)
244 {
245 errno_t error;
246
247 *nmb = mb;
248 /* We don't have an mbuf or we're alread on an mbuf boundary */
249 if (mb == NULL || offset == 0) {
250 return 0;
251 }
252
253 /* If the mbuf length is offset then the next mbuf is the one we want */
254 if (mbuf_len(mb) == offset) {
255 *nmb = mbuf_next(mb);
256 if (!join) {
257 mbuf_setnext(mb, NULL);
258 }
259 return 0;
260 }
261
262 if (offset > mbuf_len(mb)) {
263 return EINVAL;
264 }
265
266 error = mbuf_split(mb, offset, MBUF_WAITOK, nmb);
267 if (error) {
268 return error;
269 }
270
271 if (mbuf_flags(*nmb) & MBUF_PKTHDR) {
272 /* We don't want to copy the pkthdr. mbuf_split does that. */
273 error = mbuf_setflags_mask(*nmb, ~MBUF_PKTHDR, MBUF_PKTHDR);
274 }
275
276 if (join) {
277 /* Join the chain again */
278 mbuf_setnext(mb, *nmb);
279 }
280
281 return 0;
282 }
283
284 /*
285 * Given an mbuf with an offset and length return the chain such that
286 * offset and offset + *subchain_length are on mbuf boundaries. If
287 * *mbuf_length is less that the length of the chain after offset
288 * return that length in *mbuf_length. The mbuf sub chain starting at
289 * offset is returned in *subchain. If an error occurs return the
290 * corresponding errno. Note if there are less than offset bytes then
291 * subchain will be set to NULL and *subchain_length will be set to
292 * zero. If *subchain_length is 0; then set it to the length of the
293 * chain starting at offset. Join parameter is used to indicate whether
294 * the mbuf chain will be joined again as on chain, just rearranged so
295 * that offset and subchain_length are on mbuf boundaries.
296 */
297
298 errno_t
299 gss_normalize_mbuf(mbuf_t chain, size_t offset, size_t *subchain_length, mbuf_t *subchain, mbuf_t *tail, int join)
300 {
301 size_t length = *subchain_length ? *subchain_length : ~0;
302 size_t len;
303 mbuf_t mb, nmb;
304 errno_t error;
305
306 if (tail == NULL) {
307 tail = &nmb;
308 }
309 *tail = NULL;
310 *subchain = NULL;
311
312 for (len = offset, mb = chain; mb && len > mbuf_len(mb); mb = mbuf_next(mb)) {
313 len -= mbuf_len(mb);
314 }
315
316 /* if we don't have offset bytes just return */
317 if (mb == NULL) {
318 return 0;
319 }
320
321 error = split_one_mbuf(mb, len, subchain, join);
322 if (error) {
323 return error;
324 }
325
326 assert(subchain != NULL && *subchain != NULL);
327 assert(offset == 0 ? mb == *subchain : 1);
328
329 len = gss_mbuf_len(*subchain, 0);
330 length = (length > len) ? len : length;
331 *subchain_length = length;
332
333 for (len = length, mb = *subchain; mb && len > mbuf_len(mb); mb = mbuf_next(mb)) {
334 len -= mbuf_len(mb);
335 }
336
337 error = split_one_mbuf(mb, len, tail, join);
338
339 return error;
340 }
341
342 mbuf_t
343 gss_join_mbuf(mbuf_t head, mbuf_t body, mbuf_t tail)
344 {
345 mbuf_t mb;
346
347 for (mb = head; mb && mbuf_next(mb); mb = mbuf_next(mb)) {
348 ;
349 }
350 if (mb) {
351 mbuf_setnext(mb, body);
352 }
353 for (mb = body; mb && mbuf_next(mb); mb = mbuf_next(mb)) {
354 ;
355 }
356 if (mb) {
357 mbuf_setnext(mb, tail);
358 }
359 mb = head ? head : (body ? body : tail);
360 return mb;
361 }
362
363 /*
364 * Prepend size bytes to the mbuf chain.
365 */
366 errno_t
367 gss_prepend_mbuf(mbuf_t *chain, uint8_t *bytes, size_t size)
368 {
369 uint8_t *data = mbuf_data(*chain);
370 size_t leading = mbuf_leadingspace(*chain);
371 size_t trailing = mbuf_trailingspace(*chain);
372 size_t mlen = mbuf_len(*chain);
373 errno_t error;
374
375 if (size > leading && size <= leading + trailing) {
376 data = memmove(data + size - leading, data, mlen);
377 mbuf_setdata(*chain, data, mlen);
378 }
379
380 error = mbuf_prepend(chain, size, MBUF_WAITOK);
381 if (error) {
382 return error;
383 }
384 data = mbuf_data(*chain);
385 memcpy(data, bytes, size);
386
387 return 0;
388 }
389
390 errno_t
391 gss_append_mbuf(mbuf_t chain, uint8_t *bytes, size_t size)
392 {
393 size_t len = 0;
394 mbuf_t mb;
395
396 if (chain == NULL) {
397 return EINVAL;
398 }
399
400 for (mb = chain; mb; mb = mbuf_next(mb)) {
401 len += mbuf_len(mb);
402 }
403
404 return mbuf_copyback(chain, len, size, bytes, MBUF_WAITOK);
405 }
406
407 errno_t
408 gss_strip_mbuf(mbuf_t chain, ssize_t size)
409 {
410 if (chain == NULL) {
411 return EINVAL;
412 }
413
414 mbuf_adj(chain, size);
415
416 return 0;
417 }
418
419
420 /*
421 * Kerberos mech generic crypto support for mbufs
422 */
423
424 /*
425 * Walk the mbuf after the given offset calling the passed in crypto function
426 * for len bytes. Note the length, len should be a multiple of the blocksize and
427 * there should be at least len bytes available after the offset in the mbuf chain.
428 * padding should be done before calling this routine.
429 */
430 int
431 mbuf_walk(mbuf_t mbp, size_t offset, size_t len, size_t blocksize, int (*crypto_fn)(void *, uint8_t *data, uint32_t length), void *ctx)
432 {
433 mbuf_t mb;
434 size_t mlen, residue;
435 uint8_t *ptr;
436 int error = 0;
437
438 /* Move to the start of the chain */
439 for (mb = mbp; mb && len > 0; mb = mbuf_next(mb)) {
440 ptr = mbuf_data(mb);
441 mlen = mbuf_len(mb);
442 if (offset >= mlen) {
443 /* Offset not yet reached */
444 offset -= mlen;
445 continue;
446 }
447 /* Found starting point in chain */
448 ptr += offset;
449 mlen -= offset;
450 offset = 0;
451
452 /*
453 * Handle the data in this mbuf. If the length to
454 * walk is less than the data in the mbuf, set
455 * the mbuf length left to be the length left
456 */
457 mlen = mlen < len ? mlen : len;
458 /* Figure out how much is a multple of blocksize */
459 residue = mlen % blocksize;
460 /* And addjust the mleft length to be the largest multiple of blocksized */
461 mlen -= residue;
462 /* run our hash/encrypt/decrpyt function */
463 if (mlen > 0) {
464 error = crypto_fn(ctx, ptr, mlen);
465 if (error) {
466 break;
467 }
468 ptr += mlen;
469 len -= mlen;
470 }
471 /*
472 * If we have a residue then to get a full block for our crypto
473 * function, we need to copy the residue into our block size
474 * block and use the next mbuf to get the rest of the data for
475 * the block. N.B. We generally assume that from the offset
476 * passed in, that the total length, len, is a multple of
477 * blocksize and that there are at least len bytes in the chain
478 * from the offset. We also assume there is at least (blocksize
479 * - residue) size data in any next mbuf for residue > 0. If not
480 * we attemp to pullup bytes from down the chain.
481 */
482 if (residue) {
483 mbuf_t nmb = mbuf_next(mb);
484 uint8_t *nptr = NULL, block[blocksize];
485
486 assert(nmb);
487 len -= residue;
488 offset = blocksize - residue;
489 if (len < offset) {
490 offset = len;
491 /*
492 * We don't have enough bytes so zero the block
493 * so that any trailing bytes will be zero.
494 */
495 cc_clear(sizeof(block), block);
496 }
497 memcpy(block, ptr, residue);
498 if (len && nmb) {
499 mlen = mbuf_len(nmb);
500 if (mlen < offset) {
501 error = mbuf_pullup(&nmb, offset - mlen);
502 if (error) {
503 mbuf_setnext(mb, NULL);
504 return error;
505 }
506 }
507 nptr = mbuf_data(nmb);
508 memcpy(block + residue, nptr, offset);
509 }
510 len -= offset;
511 error = crypto_fn(ctx, block, sizeof(block));
512 if (error) {
513 break;
514 }
515 memcpy(ptr, block, residue);
516 if (nptr) {
517 memcpy(nptr, block + residue, offset);
518 }
519 }
520 }
521
522 return error;
523 }
524
525 void
526 do_crypt_init(crypt_walker_ctx_t wctx, int encrypt, crypto_ctx_t cctx, cccbc_ctx *ks)
527 {
528 wctx->ccmode = encrypt ? cctx->enc_mode : cctx->dec_mode;
529
530 wctx->crypt_ctx = ks;
531 MALLOC(wctx->iv, cccbc_iv *, wctx->ccmode->block_size, M_TEMP, M_WAITOK | M_ZERO);
532 cccbc_set_iv(wctx->ccmode, wctx->iv, NULL);
533 }
534
535 int
536 do_crypt(void *walker, uint8_t *data, uint32_t len)
537 {
538 struct crypt_walker_ctx *wctx = (crypt_walker_ctx_t)walker;
539 uint32_t nblocks;
540
541 nblocks = len / wctx->ccmode->block_size;
542 assert(len % wctx->ccmode->block_size == 0);
543 cccbc_update(wctx->ccmode, wctx->crypt_ctx, wctx->iv, nblocks, data, data);
544 wctx->length += len;
545
546 return 0;
547 }
548
549 void
550 do_hmac_init(hmac_walker_ctx_t wctx, crypto_ctx_t cctx, void *key)
551 {
552 size_t alloc_size = cchmac_di_size(cctx->di);
553
554 wctx->di = cctx->di;
555 MALLOC(wctx->hmac_ctx, struct cchmac_ctx *, alloc_size, M_TEMP, M_WAITOK | M_ZERO);
556 cchmac_init(cctx->di, wctx->hmac_ctx, cctx->keylen, key);
557 }
558
559 int
560 do_hmac(void *walker, uint8_t *data, uint32_t len)
561 {
562 hmac_walker_ctx_t wctx = (hmac_walker_ctx_t)walker;
563
564 cchmac_update(wctx->di, wctx->hmac_ctx, len, data);
565
566 return 0;
567 }
568
569
570 int
571 krb5_mic(crypto_ctx_t ctx, gss_buffer_t header, gss_buffer_t bp, gss_buffer_t trailer, uint8_t *mic, int *verify, int ikey, int reverse)
572 {
573 uint8_t digest[ctx->di->output_size];
574 cchmac_di_decl(ctx->di, hmac_ctx);
575 int kdx = (verify == NULL) ? (reverse ? GSS_RCV : GSS_SND) : (reverse ? GSS_SND : GSS_RCV);
576 void *key2use;
577
578 if (ikey) {
579 if (!(ctx->flags & CRYPTO_KS_ALLOCED)) {
580 lck_mtx_lock(ctx->lock);
581 if (!(ctx->flags & CRYPTO_KS_ALLOCED)) {
582 cc_key_schedule_create(ctx);
583 }
584 ctx->flags |= CRYPTO_KS_ALLOCED;
585 lck_mtx_unlock(ctx->lock);
586 }
587 key2use = ctx->ks.ikey[kdx];
588 } else {
589 key2use = ctx->ckey[kdx];
590 }
591
592 cchmac_init(ctx->di, hmac_ctx, ctx->keylen, key2use);
593
594 if (header) {
595 cchmac_update(ctx->di, hmac_ctx, header->length, header->value);
596 }
597
598 cchmac_update(ctx->di, hmac_ctx, bp->length, bp->value);
599
600 if (trailer) {
601 cchmac_update(ctx->di, hmac_ctx, trailer->length, trailer->value);
602 }
603
604 cchmac_final(ctx->di, hmac_ctx, digest);
605
606 if (verify) {
607 *verify = (memcmp(mic, digest, ctx->digest_size) == 0);
608 } else {
609 memcpy(mic, digest, ctx->digest_size);
610 }
611
612 return 0;
613 }
614
615 int
616 krb5_mic_mbuf(crypto_ctx_t ctx, gss_buffer_t header,
617 mbuf_t mbp, uint32_t offset, uint32_t len, gss_buffer_t trailer, uint8_t *mic, int *verify, int ikey, int reverse)
618 {
619 struct hmac_walker_ctx wctx;
620 uint8_t digest[ctx->di->output_size];
621 int error;
622 int kdx = (verify == NULL) ? (reverse ? GSS_RCV : GSS_SND) : (reverse ? GSS_SND : GSS_RCV);
623 void *key2use;
624
625 if (ikey) {
626 if (!(ctx->flags & CRYPTO_KS_ALLOCED)) {
627 lck_mtx_lock(ctx->lock);
628 if (!(ctx->flags & CRYPTO_KS_ALLOCED)) {
629 cc_key_schedule_create(ctx);
630 }
631 ctx->flags |= CRYPTO_KS_ALLOCED;
632 lck_mtx_unlock(ctx->lock);
633 }
634 key2use = ctx->ks.ikey[kdx];
635 } else {
636 key2use = ctx->ckey[kdx];
637 }
638
639 do_hmac_init(&wctx, ctx, key2use);
640
641 if (header) {
642 cchmac_update(ctx->di, wctx.hmac_ctx, header->length, header->value);
643 }
644
645 error = mbuf_walk(mbp, offset, len, 1, do_hmac, &wctx);
646
647 if (error) {
648 return error;
649 }
650 if (trailer) {
651 cchmac_update(ctx->di, wctx.hmac_ctx, trailer->length, trailer->value);
652 }
653
654 cchmac_final(ctx->di, wctx.hmac_ctx, digest);
655 FREE(wctx.hmac_ctx, M_TEMP);
656
657 if (verify) {
658 *verify = (memcmp(mic, digest, ctx->digest_size) == 0);
659 if (!*verify) {
660 return EBADRPC;
661 }
662 } else {
663 memcpy(mic, digest, ctx->digest_size);
664 }
665
666 return 0;
667 }
668
669 errno_t
670 /* __attribute__((optnone)) */
671 krb5_crypt_mbuf(crypto_ctx_t ctx, mbuf_t *mbp, uint32_t len, int encrypt, cccbc_ctx *ks)
672 {
673 struct crypt_walker_ctx wctx;
674 const struct ccmode_cbc *ccmode = encrypt ? ctx->enc_mode : ctx->dec_mode;
675 size_t plen = len;
676 size_t cts_len = 0;
677 mbuf_t mb, lmb;
678 int error;
679
680 if (!(ctx->flags & CRYPTO_KS_ALLOCED)) {
681 lck_mtx_lock(ctx->lock);
682 if (!(ctx->flags & CRYPTO_KS_ALLOCED)) {
683 cc_key_schedule_create(ctx);
684 }
685 ctx->flags |= CRYPTO_KS_ALLOCED;
686 lck_mtx_unlock(ctx->lock);
687 }
688 if (!ks) {
689 ks = encrypt ? ctx->ks.enc : ctx->ks.dec;
690 }
691
692 if ((ctx->flags & CRYPTO_CTS_ENABLE) && ctx->mpad == 1) {
693 uint8_t block[ccmode->block_size];
694 /* if the length is less than or equal to a blocksize. We just encrypt the block */
695 if (len <= ccmode->block_size) {
696 if (len < ccmode->block_size) {
697 memset(block, 0, sizeof(block));
698 gss_append_mbuf(*mbp, block, ccmode->block_size);
699 }
700 plen = ccmode->block_size;
701 } else {
702 /* determine where the last two blocks are */
703 uint32_t r = len % ccmode->block_size;
704
705 cts_len = r ? r + ccmode->block_size : 2 * ccmode->block_size;
706 plen = len - cts_len;
707 /* If plen is 0 we only have two blocks to crypt with ccpad below */
708 if (plen == 0) {
709 lmb = *mbp;
710 } else {
711 gss_normalize_mbuf(*mbp, 0, &plen, &mb, &lmb, 0);
712 assert(*mbp == mb);
713 assert(plen == len - cts_len);
714 assert(gss_mbuf_len(mb, 0) == plen);
715 assert(gss_mbuf_len(lmb, 0) == cts_len);
716 }
717 }
718 } else if (len % ctx->mpad) {
719 uint8_t pad_block[ctx->mpad];
720 size_t padlen = ctx->mpad - (len % ctx->mpad);
721
722 memset(pad_block, 0, padlen);
723 error = gss_append_mbuf(*mbp, pad_block, padlen);
724 if (error) {
725 return error;
726 }
727 plen = len + padlen;
728 }
729 do_crypt_init(&wctx, encrypt, ctx, ks);
730 if (plen) {
731 error = mbuf_walk(*mbp, 0, plen, ccmode->block_size, do_crypt, &wctx);
732 if (error) {
733 return error;
734 }
735 }
736
737 if ((ctx->flags & CRYPTO_CTS_ENABLE) && cts_len) {
738 uint8_t cts_pad[2 * ccmode->block_size];
739 ccpad_func do_ccpad = encrypt ? ccpad_cts3_encrypt : ccpad_cts3_decrypt;
740
741 assert(cts_len <= 2 * ccmode->block_size && cts_len > ccmode->block_size);
742 memset(cts_pad, 0, sizeof(cts_pad));
743 mbuf_copydata(lmb, 0, cts_len, cts_pad);
744 mbuf_freem(lmb);
745 do_ccpad(ccmode, wctx.crypt_ctx, wctx.iv, cts_len, cts_pad, cts_pad);
746 gss_append_mbuf(*mbp, cts_pad, cts_len);
747 }
748 FREE(wctx.iv, M_TEMP);
749
750 return 0;
751 }
752
753 /*
754 * Key derivation routines
755 */
756
757 static int
758 rr13(unsigned char *buf, size_t len)
759 {
760 size_t bytes = (len + 7) / 8;
761 unsigned char tmp[bytes];
762 size_t i;
763
764 if (len == 0) {
765 return 0;
766 }
767
768 {
769 const int bits = 13 % len;
770 const int lbit = len % 8;
771
772 memcpy(tmp, buf, bytes);
773 if (lbit) {
774 /* pad final byte with inital bits */
775 tmp[bytes - 1] &= 0xff << (8 - lbit);
776 for (i = lbit; i < 8; i += len) {
777 tmp[bytes - 1] |= buf[0] >> i;
778 }
779 }
780 for (i = 0; i < bytes; i++) {
781 ssize_t bb;
782 ssize_t b1, s1, b2, s2;
783
784 /* calculate first bit position of this byte */
785 bb = 8 * i - bits;
786 while (bb < 0) {
787 bb += len;
788 }
789 /* byte offset and shift count */
790 b1 = bb / 8;
791 s1 = bb % 8;
792 if ((size_t)bb + 8 > bytes * 8) {
793 /* watch for wraparound */
794 s2 = (len + 8 - s1) % 8;
795 } else {
796 s2 = 8 - s1;
797 }
798 b2 = (b1 + 1) % bytes;
799 buf[i] = (tmp[b1] << s1) | (tmp[b2] >> s2);
800 }
801 }
802 return 0;
803 }
804
805
806 /* Add `b' to `a', both being one's complement numbers. */
807 static void
808 add1(unsigned char *a, unsigned char *b, size_t len)
809 {
810 ssize_t i;
811 int carry = 0;
812
813 for (i = len - 1; i >= 0; i--) {
814 int x = a[i] + b[i] + carry;
815 carry = x > 0xff;
816 a[i] = x & 0xff;
817 }
818 for (i = len - 1; carry && i >= 0; i--) {
819 int x = a[i] + carry;
820 carry = x > 0xff;
821 a[i] = x & 0xff;
822 }
823 }
824
825
826 static int
827 krb5_n_fold(const void *instr, size_t len, void *foldstr, size_t size)
828 {
829 /* if len < size we need at most N * len bytes, ie < 2 * size;
830 * if len > size we need at most 2 * len */
831 int ret = 0;
832 size_t maxlen = 2 * max(size, len);
833 size_t l = 0;
834 unsigned char tmp[maxlen];
835 unsigned char buf[len];
836
837 memcpy(buf, instr, len);
838 memset(foldstr, 0, size);
839 do {
840 memcpy(tmp + l, buf, len);
841 l += len;
842 ret = rr13(buf, len * 8);
843 if (ret) {
844 goto out;
845 }
846 while (l >= size) {
847 add1(foldstr, tmp, size);
848 l -= size;
849 if (l == 0) {
850 break;
851 }
852 memmove(tmp, tmp + size, l);
853 }
854 } while (l != 0);
855 out:
856
857 return ret;
858 }
859
860 void
861 krb5_make_usage(uint32_t usage_no, uint8_t suffix, uint8_t usage_string[KRB5_USAGE_LEN])
862 {
863 uint32_t i;
864
865 for (i = 0; i < 4; i++) {
866 usage_string[i] = ((usage_no >> 8 * (3 - i)) & 0xff);
867 }
868 usage_string[i] = suffix;
869 }
870
871 void
872 krb5_key_derivation(crypto_ctx_t ctx, const void *cons, size_t conslen, void **dkey, size_t dklen)
873 {
874 size_t blocksize = ctx->enc_mode->block_size;
875 cccbc_iv_decl(blocksize, iv);
876 cccbc_ctx_decl(ctx->enc_mode->size, enc_ctx);
877 size_t ksize = 8 * dklen;
878 size_t nblocks = (ksize + 8 * blocksize - 1) / (8 * blocksize);
879 uint8_t *dkptr;
880 uint8_t block[blocksize];
881
882 MALLOC(*dkey, void *, nblocks * blocksize, M_TEMP, M_WAITOK | M_ZERO);
883 dkptr = *dkey;
884
885 krb5_n_fold(cons, conslen, block, blocksize);
886 cccbc_init(ctx->enc_mode, enc_ctx, ctx->keylen, ctx->key);
887 for (size_t i = 0; i < nblocks; i++) {
888 cccbc_set_iv(ctx->enc_mode, iv, NULL);
889 cccbc_update(ctx->enc_mode, enc_ctx, iv, 1, block, block);
890 memcpy(dkptr, block, blocksize);
891 dkptr += blocksize;
892 }
893 }
894
895 static void
896 des_make_key(const uint8_t rawkey[7], uint8_t deskey[8])
897 {
898 uint8_t val = 0;
899
900 memcpy(deskey, rawkey, 7);
901 for (int i = 0; i < 7; i++) {
902 val |= ((deskey[i] & 1) << (i + 1));
903 }
904 deskey[7] = val;
905 ccdes_key_set_odd_parity(deskey, 8);
906 }
907
908 static void
909 krb5_3des_key_derivation(crypto_ctx_t ctx, const void *cons, size_t conslen, void **des3key)
910 {
911 const struct ccmode_cbc *cbcmode = ctx->enc_mode;
912 void *rawkey;
913 uint8_t *kptr, *rptr;
914
915 MALLOC(*des3key, void *, 3 * cbcmode->block_size, M_TEMP, M_WAITOK | M_ZERO);
916 krb5_key_derivation(ctx, cons, conslen, &rawkey, 3 * (cbcmode->block_size - 1));
917 kptr = (uint8_t *)*des3key;
918 rptr = (uint8_t *)rawkey;
919
920 for (int i = 0; i < 3; i++) {
921 des_make_key(rptr, kptr);
922 rptr += cbcmode->block_size - 1;
923 kptr += cbcmode->block_size;
924 }
925
926 cc_clear(3 * (cbcmode->block_size - 1), rawkey);
927 FREE(rawkey, M_TEMP);
928 }
929
930 /*
931 * Create a key schecule
932 *
933 */
934 void
935 cc_key_schedule_create(crypto_ctx_t ctx)
936 {
937 uint8_t usage_string[KRB5_USAGE_LEN];
938 lucid_context_t lctx = ctx->gss_ctx;
939 void *ekey;
940
941 switch (lctx->key_data.proto) {
942 case 0: {
943 if (ctx->ks.enc == NULL) {
944 MALLOC(ctx->ks.enc, cccbc_ctx *, ctx->enc_mode->size, M_TEMP, M_WAITOK | M_ZERO);
945 cccbc_init(ctx->enc_mode, ctx->ks.enc, ctx->keylen, ctx->key);
946 }
947 if (ctx->ks.dec == NULL) {
948 MALLOC(ctx->ks.dec, cccbc_ctx *, ctx->dec_mode->size, M_TEMP, M_WAITOK | M_ZERO);
949 cccbc_init(ctx->dec_mode, ctx->ks.dec, ctx->keylen, ctx->key);
950 }
951 }
952 case 1: {
953 if (ctx->ks.enc == NULL) {
954 krb5_make_usage(lctx->initiate ?
955 KRB5_USAGE_INITIATOR_SEAL : KRB5_USAGE_ACCEPTOR_SEAL,
956 0xAA, usage_string);
957 krb5_key_derivation(ctx, usage_string, KRB5_USAGE_LEN, &ekey, ctx->keylen);
958 MALLOC(ctx->ks.enc, cccbc_ctx *, ctx->enc_mode->size, M_TEMP, M_WAITOK | M_ZERO);
959 cccbc_init(ctx->enc_mode, ctx->ks.enc, ctx->keylen, ekey);
960 FREE(ekey, M_TEMP);
961 }
962 if (ctx->ks.dec == NULL) {
963 krb5_make_usage(lctx->initiate ?
964 KRB5_USAGE_ACCEPTOR_SEAL : KRB5_USAGE_INITIATOR_SEAL,
965 0xAA, usage_string);
966 krb5_key_derivation(ctx, usage_string, KRB5_USAGE_LEN, &ekey, ctx->keylen);
967 MALLOC(ctx->ks.dec, cccbc_ctx *, ctx->dec_mode->size, M_TEMP, M_WAITOK | M_ZERO);
968 cccbc_init(ctx->dec_mode, ctx->ks.dec, ctx->keylen, ekey);
969 FREE(ekey, M_TEMP);
970 }
971 if (ctx->ks.ikey[GSS_SND] == NULL) {
972 krb5_make_usage(lctx->initiate ?
973 KRB5_USAGE_INITIATOR_SEAL : KRB5_USAGE_ACCEPTOR_SEAL,
974 0x55, usage_string);
975 krb5_key_derivation(ctx, usage_string, KRB5_USAGE_LEN, &ctx->ks.ikey[GSS_SND], ctx->keylen);
976 }
977 if (ctx->ks.ikey[GSS_RCV] == NULL) {
978 krb5_make_usage(lctx->initiate ?
979 KRB5_USAGE_ACCEPTOR_SEAL : KRB5_USAGE_INITIATOR_SEAL,
980 0x55, usage_string);
981 krb5_key_derivation(ctx, usage_string, KRB5_USAGE_LEN, &ctx->ks.ikey[GSS_RCV], ctx->keylen);
982 }
983 }
984 }
985 }
986
987 void
988 gss_crypto_ctx_free(crypto_ctx_t ctx)
989 {
990 ctx->ks.ikey[GSS_SND] = NULL;
991 if (ctx->ks.ikey[GSS_RCV] && ctx->key != ctx->ks.ikey[GSS_RCV]) {
992 cc_clear(ctx->keylen, ctx->ks.ikey[GSS_RCV]);
993 FREE(ctx->ks.ikey[GSS_RCV], M_TEMP);
994 }
995 ctx->ks.ikey[GSS_RCV] = NULL;
996 if (ctx->ks.enc) {
997 cccbc_ctx_clear(ctx->enc_mode->size, ctx->ks.enc);
998 FREE(ctx->ks.enc, M_TEMP);
999 ctx->ks.enc = NULL;
1000 }
1001 if (ctx->ks.dec) {
1002 cccbc_ctx_clear(ctx->dec_mode->size, ctx->ks.dec);
1003 FREE(ctx->ks.dec, M_TEMP);
1004 ctx->ks.dec = NULL;
1005 }
1006 if (ctx->ckey[GSS_SND] && ctx->ckey[GSS_SND] != ctx->key) {
1007 cc_clear(ctx->keylen, ctx->ckey[GSS_SND]);
1008 FREE(ctx->ckey[GSS_SND], M_TEMP);
1009 }
1010 ctx->ckey[GSS_SND] = NULL;
1011 if (ctx->ckey[GSS_RCV] && ctx->ckey[GSS_RCV] != ctx->key) {
1012 cc_clear(ctx->keylen, ctx->ckey[GSS_RCV]);
1013 FREE(ctx->ckey[GSS_RCV], M_TEMP);
1014 }
1015 ctx->ckey[GSS_RCV] = NULL;
1016 ctx->key = NULL;
1017 ctx->keylen = 0;
1018 }
1019
1020 int
1021 gss_crypto_ctx_init(struct crypto_ctx *ctx, lucid_context_t lucid)
1022 {
1023 ctx->gss_ctx = lucid;
1024 void *key;
1025 uint8_t usage_string[KRB5_USAGE_LEN];
1026
1027 ctx->keylen = ctx->gss_ctx->ctx_key.key.key_len;
1028 key = ctx->gss_ctx->ctx_key.key.key_val;
1029 ctx->etype = ctx->gss_ctx->ctx_key.etype;
1030 ctx->key = key;
1031
1032 switch (ctx->etype) {
1033 case AES128_CTS_HMAC_SHA1_96:
1034 case AES256_CTS_HMAC_SHA1_96:
1035 ctx->enc_mode = ccaes_cbc_encrypt_mode();
1036 assert(ctx->enc_mode);
1037 ctx->dec_mode = ccaes_cbc_decrypt_mode();
1038 assert(ctx->dec_mode);
1039 ctx->ks.enc = NULL;
1040 ctx->ks.dec = NULL;
1041 ctx->di = ccsha1_di();
1042 assert(ctx->di);
1043 ctx->flags = CRYPTO_CTS_ENABLE;
1044 ctx->mpad = 1;
1045 ctx->digest_size = 12; /* 96 bits */
1046 krb5_make_usage(ctx->gss_ctx->initiate ?
1047 KRB5_USAGE_INITIATOR_SIGN : KRB5_USAGE_ACCEPTOR_SIGN,
1048 0x99, usage_string);
1049 krb5_key_derivation(ctx, usage_string, KRB5_USAGE_LEN, &ctx->ckey[GSS_SND], ctx->keylen);
1050 krb5_make_usage(ctx->gss_ctx->initiate ?
1051 KRB5_USAGE_ACCEPTOR_SIGN : KRB5_USAGE_INITIATOR_SIGN,
1052 0x99, usage_string);
1053 krb5_key_derivation(ctx, usage_string, KRB5_USAGE_LEN, &ctx->ckey[GSS_RCV], ctx->keylen);
1054 break;
1055 case DES3_CBC_SHA1_KD:
1056 ctx->enc_mode = ccdes3_cbc_encrypt_mode();
1057 assert(ctx->enc_mode);
1058 ctx->dec_mode = ccdes3_cbc_decrypt_mode();
1059 assert(ctx->dec_mode);
1060 ctx->ks.ikey[GSS_SND] = ctx->key;
1061 ctx->ks.ikey[GSS_RCV] = ctx->key;
1062 ctx->di = ccsha1_di();
1063 assert(ctx->di);
1064 ctx->flags = 0;
1065 ctx->mpad = ctx->enc_mode->block_size;
1066 ctx->digest_size = 20; /* 160 bits */
1067 krb5_make_usage(KRB5_USAGE_ACCEPTOR_SIGN, 0x99, usage_string);
1068 krb5_3des_key_derivation(ctx, usage_string, KRB5_USAGE_LEN, &ctx->ckey[GSS_SND]);
1069 krb5_3des_key_derivation(ctx, usage_string, KRB5_USAGE_LEN, &ctx->ckey[GSS_RCV]);
1070 break;
1071 default:
1072 return ENOTSUP;
1073 }
1074
1075 ctx->lock = lck_mtx_alloc_init(gss_krb5_mech_grp, LCK_ATTR_NULL);
1076
1077 return 0;
1078 }
1079
1080 /*
1081 * CFX gss support routines
1082 */
1083 /* From Heimdal cfx.h file RFC 4121 Cryptoo framework extensions */
1084 typedef struct gss_cfx_mic_token_desc_struct {
1085 uint8_t TOK_ID[2]; /* 04 04 */
1086 uint8_t Flags;
1087 uint8_t Filler[5];
1088 uint8_t SND_SEQ[8];
1089 } gss_cfx_mic_token_desc, *gss_cfx_mic_token;
1090
1091 typedef struct gss_cfx_wrap_token_desc_struct {
1092 uint8_t TOK_ID[2]; /* 05 04 */
1093 uint8_t Flags;
1094 uint8_t Filler;
1095 uint8_t EC[2];
1096 uint8_t RRC[2];
1097 uint8_t SND_SEQ[8];
1098 } gss_cfx_wrap_token_desc, *gss_cfx_wrap_token;
1099
1100 /* End of cfx.h file */
1101
1102 #define CFXSentByAcceptor (1 << 0)
1103 #define CFXSealed (1 << 1)
1104 #define CFXAcceptorSubkey (1 << 2)
1105
1106 const gss_cfx_mic_token_desc mic_cfx_token = {
1107 .TOK_ID = "\x04\x04",
1108 .Flags = 0,
1109 .Filler = "\xff\xff\xff\xff\xff",
1110 .SND_SEQ = "\x00\x00\x00\x00\x00\x00\x00\x00"
1111 };
1112
1113 const gss_cfx_wrap_token_desc wrap_cfx_token = {
1114 .TOK_ID = "\x05\04",
1115 .Flags = 0,
1116 .Filler = '\xff',
1117 .EC = "\x00\x00",
1118 .RRC = "\x00\x00",
1119 .SND_SEQ = "\x00\x00\x00\x00\x00\x00\x00\x00"
1120 };
1121
1122 static int
1123 gss_krb5_cfx_verify_mic_token(gss_ctx_id_t ctx, gss_cfx_mic_token token)
1124 {
1125 int i;
1126 lucid_context_t lctx = &ctx->gss_lucid_ctx;
1127 uint8_t flags = 0;
1128
1129 if (token->TOK_ID[0] != mic_cfx_token.TOK_ID[0] || token->TOK_ID[1] != mic_cfx_token.TOK_ID[1]) {
1130 printf("Bad mic TOK_ID %x %x\n", token->TOK_ID[0], token->TOK_ID[1]);
1131 return EBADRPC;
1132 }
1133 if (lctx->initiate) {
1134 flags |= CFXSentByAcceptor;
1135 }
1136 if (lctx->key_data.lucid_protocol_u.data_4121.acceptor_subkey) {
1137 flags |= CFXAcceptorSubkey;
1138 }
1139 if (token->Flags != flags) {
1140 printf("Bad flags received %x exptect %x\n", token->Flags, flags);
1141 return EBADRPC;
1142 }
1143 for (i = 0; i < 5; i++) {
1144 if (token->Filler[i] != mic_cfx_token.Filler[i]) {
1145 break;
1146 }
1147 }
1148
1149 if (i != 5) {
1150 printf("Bad mic filler %x @ %d\n", token->Filler[i], i);
1151 return EBADRPC;
1152 }
1153
1154 return 0;
1155 }
1156
1157 uint32_t
1158 gss_krb5_cfx_get_mic(uint32_t *minor, /* minor_status */
1159 gss_ctx_id_t ctx, /* context_handle */
1160 gss_qop_t qop __unused, /* qop_req (ignored) */
1161 gss_buffer_t mbp, /* message mbuf */
1162 gss_buffer_t mic /* message_token */)
1163 {
1164 gss_cfx_mic_token_desc token;
1165 lucid_context_t lctx = &ctx->gss_lucid_ctx;
1166 crypto_ctx_t cctx = &ctx->gss_cryptor;
1167 gss_buffer_desc header;
1168 uint32_t rv;
1169 uint64_t seq = htonll(lctx->send_seq);
1170
1171 if (minor == NULL) {
1172 minor = &rv;
1173 }
1174 *minor = 0;
1175 token = mic_cfx_token;
1176 mic->length = sizeof(token) + cctx->digest_size;
1177 MALLOC(mic->value, void *, mic->length, M_TEMP, M_WAITOK | M_ZERO);
1178 if (!lctx->initiate) {
1179 token.Flags |= CFXSentByAcceptor;
1180 }
1181 if (lctx->key_data.lucid_protocol_u.data_4121.acceptor_subkey) {
1182 token.Flags |= CFXAcceptorSubkey;
1183 }
1184 memcpy(&token.SND_SEQ, &seq, sizeof(lctx->send_seq));
1185 lctx->send_seq++; //XXX should only update this below on success? Heimdal seems to do it this way
1186 header.value = &token;
1187 header.length = sizeof(gss_cfx_mic_token_desc);
1188
1189 *minor = krb5_mic(cctx, NULL, mbp, &header, (uint8_t *)mic->value + sizeof(token), NULL, 0, 0);
1190
1191 if (*minor) {
1192 mic->length = 0;
1193 FREE(mic->value, M_TEMP);
1194 mic->value = NULL;
1195 } else {
1196 memcpy(mic->value, &token, sizeof(token));
1197 }
1198
1199 return *minor ? GSS_S_FAILURE : GSS_S_COMPLETE;
1200 }
1201
1202 uint32_t
1203 gss_krb5_cfx_verify_mic(uint32_t *minor, /* minor_status */
1204 gss_ctx_id_t ctx, /* context_handle */
1205 gss_buffer_t mbp, /* message_buffer */
1206 gss_buffer_t mic, /* message_token */
1207 gss_qop_t *qop /* qop_state */)
1208 {
1209 gss_cfx_mic_token token = mic->value;
1210 lucid_context_t lctx = &ctx->gss_lucid_ctx;
1211 crypto_ctx_t cctx = &ctx->gss_cryptor;
1212 uint8_t *digest = (uint8_t *)mic->value + sizeof(gss_cfx_mic_token_desc);
1213 int verified = 0;
1214 uint64_t seq;
1215 uint32_t rv;
1216 gss_buffer_desc header;
1217
1218 if (qop) {
1219 *qop = GSS_C_QOP_DEFAULT;
1220 }
1221 if (minor == NULL) {
1222 minor = &rv;
1223 }
1224
1225 if (mic->length != sizeof(gss_cfx_mic_token_desc) + cctx->digest_size) {
1226 printf("mic token wrong length\n");
1227 *minor = EBADRPC;
1228 goto out;
1229 }
1230 *minor = gss_krb5_cfx_verify_mic_token(ctx, token);
1231 if (*minor) {
1232 return GSS_S_FAILURE;
1233 }
1234 header.value = token;
1235 header.length = sizeof(gss_cfx_mic_token_desc);
1236 *minor = krb5_mic(cctx, NULL, mbp, &header, digest, &verified, 0, 0);
1237
1238 if (verified) {
1239 //XXX errors and such? Sequencing and replay? Not supported in RPCSEC_GSS
1240 memcpy(&seq, token->SND_SEQ, sizeof(uint64_t));
1241 seq = ntohll(seq);
1242 lctx->recv_seq = seq;
1243 }
1244
1245 out:
1246 return verified ? GSS_S_COMPLETE : GSS_S_BAD_SIG;
1247 }
1248
1249 uint32_t
1250 gss_krb5_cfx_get_mic_mbuf(uint32_t *minor, /* minor_status */
1251 gss_ctx_id_t ctx, /* context_handle */
1252 gss_qop_t qop __unused, /* qop_req (ignored) */
1253 mbuf_t mbp, /* message mbuf */
1254 size_t offset, /* offest */
1255 size_t len, /* length */
1256 gss_buffer_t mic /* message_token */)
1257 {
1258 gss_cfx_mic_token_desc token;
1259 lucid_context_t lctx = &ctx->gss_lucid_ctx;
1260 crypto_ctx_t cctx = &ctx->gss_cryptor;
1261 uint32_t rv;
1262 uint64_t seq = htonll(lctx->send_seq);
1263 gss_buffer_desc header;
1264
1265 if (minor == NULL) {
1266 minor = &rv;
1267 }
1268 *minor = 0;
1269
1270 token = mic_cfx_token;
1271 mic->length = sizeof(token) + cctx->digest_size;
1272 MALLOC(mic->value, void *, mic->length, M_TEMP, M_WAITOK | M_ZERO);
1273 if (!lctx->initiate) {
1274 token.Flags |= CFXSentByAcceptor;
1275 }
1276 if (lctx->key_data.lucid_protocol_u.data_4121.acceptor_subkey) {
1277 token.Flags |= CFXAcceptorSubkey;
1278 }
1279
1280 memcpy(&token.SND_SEQ, &seq, sizeof(lctx->send_seq));
1281 lctx->send_seq++; //XXX should only update this below on success? Heimdal seems to do it this way
1282
1283 header.length = sizeof(token);
1284 header.value = &token;
1285
1286 len = len ? len : gss_mbuf_len(mbp, offset);
1287 *minor = krb5_mic_mbuf(cctx, NULL, mbp, offset, len, &header, (uint8_t *)mic->value + sizeof(token), NULL, 0, 0);
1288
1289 if (*minor) {
1290 mic->length = 0;
1291 FREE(mic->value, M_TEMP);
1292 mic->value = NULL;
1293 } else {
1294 memcpy(mic->value, &token, sizeof(token));
1295 }
1296
1297 return *minor ? GSS_S_FAILURE : GSS_S_COMPLETE;
1298 }
1299
1300
1301 uint32_t
1302 gss_krb5_cfx_verify_mic_mbuf(uint32_t *minor, /* minor_status */
1303 gss_ctx_id_t ctx, /* context_handle */
1304 mbuf_t mbp, /* message_buffer */
1305 size_t offset, /* offset */
1306 size_t len, /* length */
1307 gss_buffer_t mic, /* message_token */
1308 gss_qop_t *qop /* qop_state */)
1309 {
1310 gss_cfx_mic_token token = mic->value;
1311 lucid_context_t lctx = &ctx->gss_lucid_ctx;
1312 crypto_ctx_t cctx = &ctx->gss_cryptor;
1313 uint8_t *digest = (uint8_t *)mic->value + sizeof(gss_cfx_mic_token_desc);
1314 int verified;
1315 uint64_t seq;
1316 uint32_t rv;
1317 gss_buffer_desc header;
1318
1319 if (qop) {
1320 *qop = GSS_C_QOP_DEFAULT;
1321 }
1322
1323 if (minor == NULL) {
1324 minor = &rv;
1325 }
1326
1327 *minor = gss_krb5_cfx_verify_mic_token(ctx, token);
1328 if (*minor) {
1329 return GSS_S_FAILURE;
1330 }
1331
1332 header.length = sizeof(gss_cfx_mic_token_desc);
1333 header.value = mic->value;
1334
1335 *minor = krb5_mic_mbuf(cctx, NULL, mbp, offset, len, &header, digest, &verified, 0, 0);
1336
1337 //XXX errors and such? Sequencing and replay? Not Supported RPCSEC_GSS
1338 memcpy(&seq, token->SND_SEQ, sizeof(uint64_t));
1339 seq = ntohll(seq);
1340 lctx->recv_seq = seq;
1341
1342 return verified ? GSS_S_COMPLETE : GSS_S_BAD_SIG;
1343 }
1344
1345 errno_t
1346 krb5_cfx_crypt_mbuf(crypto_ctx_t ctx, mbuf_t *mbp, size_t *len, int encrypt, int reverse)
1347 {
1348 const struct ccmode_cbc *ccmode = encrypt ? ctx->enc_mode : ctx->dec_mode;
1349 uint8_t confounder[ccmode->block_size];
1350 uint8_t digest[ctx->digest_size];
1351 size_t tlen, r = 0;
1352 errno_t error;
1353
1354 if (encrypt) {
1355 read_random(confounder, ccmode->block_size);
1356 error = gss_prepend_mbuf(mbp, confounder, ccmode->block_size);
1357 if (error) {
1358 return error;
1359 }
1360 tlen = *len + ccmode->block_size;
1361 if (ctx->mpad > 1) {
1362 r = ctx->mpad - (tlen % ctx->mpad);
1363 }
1364 /* We expect that r == 0 from krb5_cfx_wrap */
1365 if (r != 0) {
1366 uint8_t mpad[r];
1367 memset(mpad, 0, r);
1368 error = gss_append_mbuf(*mbp, mpad, r);
1369 if (error) {
1370 return error;
1371 }
1372 }
1373 tlen += r;
1374 error = krb5_mic_mbuf(ctx, NULL, *mbp, 0, tlen, NULL, digest, NULL, 1, 0);
1375 if (error) {
1376 return error;
1377 }
1378 error = krb5_crypt_mbuf(ctx, mbp, tlen, 1, NULL);
1379 if (error) {
1380 return error;
1381 }
1382 error = gss_append_mbuf(*mbp, digest, ctx->digest_size);
1383 if (error) {
1384 return error;
1385 }
1386 *len = tlen + ctx->digest_size;
1387 return 0;
1388 } else {
1389 int verf;
1390 cccbc_ctx *ks = NULL;
1391
1392 if (*len < ctx->digest_size + sizeof(confounder)) {
1393 return EBADRPC;
1394 }
1395 tlen = *len - ctx->digest_size;
1396 /* get the digest */
1397 error = mbuf_copydata(*mbp, tlen, ctx->digest_size, digest);
1398 /* Remove the digest from the mbuffer */
1399 error = gss_strip_mbuf(*mbp, -ctx->digest_size);
1400 if (error) {
1401 return error;
1402 }
1403
1404 if (reverse) {
1405 /*
1406 * Derive a key schedule that the sender can unwrap with. This
1407 * is so that RPCSEC_GSS can restore encrypted arguments for
1408 * resending. We do that because the RPCSEC_GSS sequence number in
1409 * the rpc header is prepended to the body of the message before wrapping.
1410 */
1411 void *ekey;
1412 uint8_t usage_string[KRB5_USAGE_LEN];
1413 lucid_context_t lctx = ctx->gss_ctx;
1414
1415 krb5_make_usage(lctx->initiate ?
1416 KRB5_USAGE_INITIATOR_SEAL : KRB5_USAGE_ACCEPTOR_SEAL,
1417 0xAA, usage_string);
1418 krb5_key_derivation(ctx, usage_string, KRB5_USAGE_LEN, &ekey, ctx->keylen);
1419 MALLOC(ks, cccbc_ctx *, ctx->dec_mode->size, M_TEMP, M_WAITOK | M_ZERO);
1420 cccbc_init(ctx->dec_mode, ks, ctx->keylen, ekey);
1421 FREE(ekey, M_TEMP);
1422 }
1423 error = krb5_crypt_mbuf(ctx, mbp, tlen, 0, ks);
1424 FREE(ks, M_TEMP);
1425 if (error) {
1426 return error;
1427 }
1428 error = krb5_mic_mbuf(ctx, NULL, *mbp, 0, tlen, NULL, digest, &verf, 1, reverse);
1429 if (error) {
1430 return error;
1431 }
1432 if (!verf) {
1433 return EBADRPC;
1434 }
1435 /* strip off the confounder */
1436 error = gss_strip_mbuf(*mbp, ccmode->block_size);
1437 if (error) {
1438 return error;
1439 }
1440 *len = tlen - ccmode->block_size;
1441 }
1442 return 0;
1443 }
1444
1445 uint32_t
1446 gss_krb5_cfx_wrap_mbuf(uint32_t *minor, /* minor_status */
1447 gss_ctx_id_t ctx, /* context_handle */
1448 int conf_flag, /* conf_req_flag */
1449 gss_qop_t qop __unused, /* qop_req */
1450 mbuf_t *mbp, /* input/output message_buffer */
1451 size_t len, /* mbuf chain length */
1452 int *conf /* conf_state */)
1453 {
1454 gss_cfx_wrap_token_desc token;
1455 lucid_context_t lctx = &ctx->gss_lucid_ctx;
1456 crypto_ctx_t cctx = &ctx->gss_cryptor;
1457 int error = 0;
1458 uint32_t mv;
1459 uint64_t seq = htonll(lctx->send_seq);
1460
1461 if (minor == NULL) {
1462 minor = &mv;
1463 }
1464 if (conf) {
1465 *conf = conf_flag;
1466 }
1467
1468 *minor = 0;
1469 token = wrap_cfx_token;
1470 if (!lctx->initiate) {
1471 token.Flags |= CFXSentByAcceptor;
1472 }
1473 if (lctx->key_data.lucid_protocol_u.data_4121.acceptor_subkey) {
1474 token.Flags |= CFXAcceptorSubkey;
1475 }
1476 memcpy(&token.SND_SEQ, &seq, sizeof(uint64_t));
1477 lctx->send_seq++;
1478 if (conf_flag) {
1479 uint8_t pad[cctx->mpad];
1480 uint16_t plen = 0;
1481
1482 token.Flags |= CFXSealed;
1483 memset(pad, 0, cctx->mpad);
1484 if (cctx->mpad > 1) {
1485 plen = htons(cctx->mpad - ((len + sizeof(gss_cfx_wrap_token_desc)) % cctx->mpad));
1486 token.EC[0] = ((plen >> 8) & 0xff);
1487 token.EC[1] = (plen & 0xff);
1488 }
1489 if (plen) {
1490 error = gss_append_mbuf(*mbp, pad, plen);
1491 len += plen;
1492 }
1493 if (error == 0) {
1494 error = gss_append_mbuf(*mbp, (uint8_t *)&token, sizeof(gss_cfx_wrap_token_desc));
1495 len += sizeof(gss_cfx_wrap_token_desc);
1496 }
1497 if (error == 0) {
1498 error = krb5_cfx_crypt_mbuf(cctx, mbp, &len, 1, 0);
1499 }
1500 if (error == 0) {
1501 error = gss_prepend_mbuf(mbp, (uint8_t *)&token, sizeof(gss_cfx_wrap_token_desc));
1502 }
1503 } else {
1504 uint8_t digest[cctx->digest_size];
1505 gss_buffer_desc header;
1506
1507 header.length = sizeof(token);
1508 header.value = &token;
1509
1510 error = krb5_mic_mbuf(cctx, NULL, *mbp, 0, len, &header, digest, NULL, 1, 0);
1511 if (error == 0) {
1512 error = gss_append_mbuf(*mbp, digest, cctx->digest_size);
1513 if (error == 0) {
1514 uint16_t plen = htons(cctx->digest_size);
1515 memcpy(token.EC, &plen, 2);
1516 error = gss_prepend_mbuf(mbp, (uint8_t *)&token, sizeof(gss_cfx_wrap_token_desc));
1517 }
1518 }
1519 }
1520 if (error) {
1521 *minor = error;
1522 return GSS_S_FAILURE;
1523 }
1524
1525 return GSS_S_COMPLETE;
1526 }
1527
1528 /*
1529 * Given a wrap token the has a rrc, move the trailer back to the end.
1530 */
1531 static void
1532 gss_krb5_cfx_unwrap_rrc_mbuf(mbuf_t header, size_t rrc)
1533 {
1534 mbuf_t body, trailer;
1535
1536 gss_normalize_mbuf(header, sizeof(gss_cfx_wrap_token_desc), &rrc, &trailer, &body, 0);
1537 gss_join_mbuf(header, body, trailer);
1538 }
1539
1540 uint32_t
1541 gss_krb5_cfx_unwrap_mbuf(uint32_t * minor, /* minor_status */
1542 gss_ctx_id_t ctx, /* context_handle */
1543 mbuf_t *mbp, /* input/output message_buffer */
1544 size_t len, /* mbuf chain length */
1545 int *conf_flag, /* conf_state */
1546 gss_qop_t *qop /* qop state */)
1547 {
1548 gss_cfx_wrap_token_desc token;
1549 lucid_context_t lctx = &ctx->gss_lucid_ctx;
1550 crypto_ctx_t cctx = &ctx->gss_cryptor;
1551 int error, conf;
1552 uint16_t ec = 0, rrc = 0;
1553 uint64_t seq;
1554 int reverse = (*qop == GSS_C_QOP_REVERSE);
1555 int initiate = lctx->initiate ? (reverse ? 0 : 1) : (reverse ? 1 : 0);
1556
1557 error = mbuf_copydata(*mbp, 0, sizeof(gss_cfx_wrap_token_desc), &token);
1558 gss_strip_mbuf(*mbp, sizeof(gss_cfx_wrap_token_desc));
1559 len -= sizeof(gss_cfx_wrap_token_desc);
1560
1561 /* Check for valid token */
1562 if (token.TOK_ID[0] != wrap_cfx_token.TOK_ID[0] ||
1563 token.TOK_ID[1] != wrap_cfx_token.TOK_ID[1] ||
1564 token.Filler != wrap_cfx_token.Filler) {
1565 printf("Token id does not match\n");
1566 goto badrpc;
1567 }
1568 if ((initiate && !(token.Flags & CFXSentByAcceptor)) ||
1569 (lctx->key_data.lucid_protocol_u.data_4121.acceptor_subkey && !(token.Flags & CFXAcceptorSubkey))) {
1570 printf("Bad flags %x\n", token.Flags);
1571 goto badrpc;
1572 }
1573
1574 /* XXX Sequence replay detection */
1575 memcpy(&seq, token.SND_SEQ, sizeof(seq));
1576 seq = ntohll(seq);
1577 lctx->recv_seq = seq;
1578
1579 ec = (token.EC[0] << 8) | token.EC[1];
1580 rrc = (token.RRC[0] << 8) | token.RRC[1];
1581 *qop = GSS_C_QOP_DEFAULT;
1582 conf = ((token.Flags & CFXSealed) == CFXSealed);
1583 if (conf_flag) {
1584 *conf_flag = conf;
1585 }
1586 if (conf) {
1587 gss_cfx_wrap_token_desc etoken;
1588
1589 if (rrc) { /* Handle Right rotation count */
1590 gss_krb5_cfx_unwrap_rrc_mbuf(*mbp, rrc);
1591 }
1592 error = krb5_cfx_crypt_mbuf(cctx, mbp, &len, 0, reverse);
1593 if (error) {
1594 printf("krb5_cfx_crypt_mbuf %d\n", error);
1595 *minor = error;
1596 return GSS_S_FAILURE;
1597 }
1598 if (len >= sizeof(gss_cfx_wrap_token_desc)) {
1599 len -= sizeof(gss_cfx_wrap_token_desc);
1600 } else {
1601 goto badrpc;
1602 }
1603 mbuf_copydata(*mbp, len, sizeof(gss_cfx_wrap_token_desc), &etoken);
1604 /* Verify etoken with the token wich should be the same, except the rc field is always zero */
1605 token.RRC[0] = token.RRC[1] = 0;
1606 if (memcmp(&token, &etoken, sizeof(gss_cfx_wrap_token_desc)) != 0) {
1607 printf("Encrypted token mismach\n");
1608 goto badrpc;
1609 }
1610 /* strip the encrypted token and any pad bytes */
1611 gss_strip_mbuf(*mbp, -(sizeof(gss_cfx_wrap_token_desc) + ec));
1612 len -= (sizeof(gss_cfx_wrap_token_desc) + ec);
1613 } else {
1614 uint8_t digest[cctx->digest_size];
1615 int verf;
1616 gss_buffer_desc header;
1617
1618 if (ec != cctx->digest_size || len >= cctx->digest_size) {
1619 goto badrpc;
1620 }
1621 len -= cctx->digest_size;
1622 mbuf_copydata(*mbp, len, cctx->digest_size, digest);
1623 gss_strip_mbuf(*mbp, -cctx->digest_size);
1624 /* When calculating the mic header fields ec and rcc must be zero */
1625 token.EC[0] = token.EC[1] = token.RRC[0] = token.RRC[1] = 0;
1626 header.value = &token;
1627 header.length = sizeof(gss_cfx_wrap_token_desc);
1628 error = krb5_mic_mbuf(cctx, NULL, *mbp, 0, len, &header, digest, &verf, 1, reverse);
1629 if (error) {
1630 goto badrpc;
1631 }
1632 }
1633 return GSS_S_COMPLETE;
1634
1635 badrpc:
1636 *minor = EBADRPC;
1637 return GSS_S_FAILURE;
1638 }
1639
1640 /*
1641 * RFC 1964 3DES support
1642 */
1643
1644 typedef struct gss_1964_mic_token_desc_struct {
1645 uint8_t TOK_ID[2]; /* 01 01 */
1646 uint8_t Sign_Alg[2];
1647 uint8_t Filler[4]; /* ff ff ff ff */
1648 } gss_1964_mic_token_desc, *gss_1964_mic_token;
1649
1650 typedef struct gss_1964_wrap_token_desc_struct {
1651 uint8_t TOK_ID[2]; /* 02 01 */
1652 uint8_t Sign_Alg[2];
1653 uint8_t Seal_Alg[2];
1654 uint8_t Filler[2]; /* ff ff */
1655 } gss_1964_wrap_token_desc, *gss_1964_wrap_token;
1656
1657 typedef struct gss_1964_delete_token_desc_struct {
1658 uint8_t TOK_ID[2]; /* 01 02 */
1659 uint8_t Sign_Alg[2];
1660 uint8_t Filler[4]; /* ff ff ff ff */
1661 } gss_1964_delete_token_desc, *gss_1964_delete_token;
1662
1663 typedef struct gss_1964_header_desc_struct {
1664 uint8_t App0; /* 0x60 Application 0 constructed */
1665 uint8_t AppLen[]; /* Variable Der length */
1666 } gss_1964_header_desc, *gss_1964_header;
1667
1668 typedef union {
1669 gss_1964_mic_token_desc mic_tok;
1670 gss_1964_wrap_token_desc wrap_tok;
1671 gss_1964_delete_token_desc del_tok;
1672 } gss_1964_tok_type __attribute__((transparent_union));
1673
1674 typedef struct gss_1964_token_body_struct {
1675 uint8_t OIDType; /* 0x06 */
1676 uint8_t OIDLen; /* 0x09 */
1677 uint8_t kerb_mech[9]; /* Der Encode kerberos mech 1.2.840.113554.1.2.2
1678 * 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x01, 0x02, 0x02 */
1679 gss_1964_tok_type body;
1680 uint8_t SND_SEQ[8];
1681 uint8_t Hash[]; /* Mic */
1682 } gss_1964_token_body_desc, *gss_1964_token_body;
1683
1684
1685 gss_1964_header_desc tok_1964_header = {
1686 .App0 = 0x60
1687 };
1688
1689 gss_1964_mic_token_desc mic_1964_token = {
1690 .TOK_ID = "\x01\x01",
1691 .Filler = "\xff\xff\xff\xff"
1692 };
1693
1694 gss_1964_wrap_token_desc wrap_1964_token = {
1695 .TOK_ID = "\x02\x01",
1696 .Filler = "\xff\xff"
1697 };
1698
1699 gss_1964_delete_token_desc del_1964_token = {
1700 .TOK_ID = "\x01\x01",
1701 .Filler = "\xff\xff\xff\xff"
1702 };
1703
1704 gss_1964_token_body_desc body_1964_token = {
1705 .OIDType = 0x06,
1706 .OIDLen = 0x09,
1707 .kerb_mech = "\x2a\x86\x48\x86\xf7\x12\x01\x02\x02",
1708 };
1709
1710 #define GSS_KRB5_3DES_MAXTOKSZ (sizeof(gss_1964_header_desc) + 5 /* max der length supported */ + sizeof(gss_1964_token_body_desc))
1711
1712 uint32_t gss_krb5_3des_get_mic(uint32_t *, gss_ctx_id_t, gss_qop_t, gss_buffer_t, gss_buffer_t);
1713 uint32_t gss_krb5_3des_verify_mic(uint32_t *, gss_ctx_id_t, gss_buffer_t, gss_buffer_t, gss_qop_t *);
1714 uint32_t gss_krb5_3des_get_mic_mbuf(uint32_t *, gss_ctx_id_t, gss_qop_t, mbuf_t, size_t, size_t, gss_buffer_t);
1715 uint32_t gss_krb5_3des_verify_mic_mbuf(uint32_t *, gss_ctx_id_t, mbuf_t, size_t, size_t, gss_buffer_t, gss_qop_t *);
1716 uint32_t gss_krb5_3des_wrap_mbuf(uint32_t *, gss_ctx_id_t, int, gss_qop_t, mbuf_t *, size_t, int *);
1717 uint32_t gss_krb5_3des_unwrap_mbuf(uint32_t *, gss_ctx_id_t, mbuf_t *, size_t, int *, gss_qop_t *);
1718
1719 /*
1720 * Decode an ASN.1 DER length field
1721 */
1722 static ssize_t
1723 gss_krb5_der_length_get(uint8_t **pp)
1724 {
1725 uint8_t *p = *pp;
1726 uint32_t flen, len = 0;
1727
1728 flen = *p & 0x7f;
1729
1730 if (*p++ & 0x80) {
1731 if (flen > sizeof(uint32_t)) {
1732 return -1;
1733 }
1734 while (flen--) {
1735 len = (len << 8) + *p++;
1736 }
1737 } else {
1738 len = flen;
1739 }
1740 *pp = p;
1741 return len;
1742 }
1743
1744 /*
1745 * Determine size of ASN.1 DER length
1746 */
1747 static int
1748 gss_krb5_der_length_size(int len)
1749 {
1750 return
1751 len < (1 << 7) ? 1 :
1752 len < (1 << 8) ? 2 :
1753 len < (1 << 16) ? 3 :
1754 len < (1 << 24) ? 4 : 5;
1755 }
1756
1757 /*
1758 * Encode an ASN.1 DER length field
1759 */
1760 static void
1761 gss_krb5_der_length_put(uint8_t **pp, int len)
1762 {
1763 int sz = gss_krb5_der_length_size(len);
1764 uint8_t *p = *pp;
1765
1766 if (sz == 1) {
1767 *p++ = (uint8_t) len;
1768 } else {
1769 *p++ = (uint8_t) ((sz - 1) | 0x80);
1770 sz -= 1;
1771 while (sz--) {
1772 *p++ = (uint8_t) ((len >> (sz * 8)) & 0xff);
1773 }
1774 }
1775
1776 *pp = p;
1777 }
1778
1779 static void
1780 gss_krb5_3des_token_put(gss_ctx_id_t ctx, gss_1964_tok_type body, gss_buffer_t hash, size_t datalen, gss_buffer_t des3_token)
1781 {
1782 gss_1964_header token;
1783 gss_1964_token_body tokbody;
1784 lucid_context_t lctx = &ctx->gss_lucid_ctx;
1785 crypto_ctx_t cctx = &ctx->gss_cryptor;
1786 uint32_t seq = (uint32_t) (lctx->send_seq++ & 0xffff);
1787 size_t toklen = sizeof(gss_1964_token_body_desc) + cctx->digest_size;
1788 size_t alloclen = toklen + sizeof(gss_1964_header_desc) + gss_krb5_der_length_size(toklen + datalen);
1789 uint8_t *tokptr;
1790
1791 MALLOC(token, gss_1964_header, alloclen, M_TEMP, M_WAITOK | M_ZERO);
1792 *token = tok_1964_header;
1793 tokptr = token->AppLen;
1794 gss_krb5_der_length_put(&tokptr, toklen + datalen);
1795 tokbody = (gss_1964_token_body)tokptr;
1796 *tokbody = body_1964_token; /* Initalize the token body */
1797 tokbody->body = body; /* and now set the body to the token type passed in */
1798 seq = htonl(seq);
1799 for (int i = 0; i < 4; i++) {
1800 tokbody->SND_SEQ[i] = (uint8_t)((seq >> (i * 8)) & 0xff);
1801 }
1802 for (int i = 4; i < 8; i++) {
1803 tokbody->SND_SEQ[i] = lctx->initiate ? 0x00 : 0xff;
1804 }
1805
1806 size_t blocksize = cctx->enc_mode->block_size;
1807 cccbc_iv_decl(blocksize, iv);
1808 cccbc_ctx_decl(cctx->enc_mode->size, enc_ctx);
1809 cccbc_set_iv(cctx->enc_mode, iv, hash->value);
1810 cccbc_init(cctx->enc_mode, enc_ctx, cctx->keylen, cctx->key);
1811 cccbc_update(cctx->enc_mode, enc_ctx, iv, 1, tokbody->SND_SEQ, tokbody->SND_SEQ);
1812
1813 assert(hash->length == cctx->digest_size);
1814 memcpy(tokbody->Hash, hash->value, hash->length);
1815 des3_token->length = alloclen;
1816 des3_token->value = token;
1817 }
1818
1819 static int
1820 gss_krb5_3des_token_get(gss_ctx_id_t ctx, gss_buffer_t intok,
1821 gss_1964_tok_type body, gss_buffer_t hash, size_t *offset, size_t *len, int reverse)
1822 {
1823 gss_1964_header token = intok->value;
1824 gss_1964_token_body tokbody;
1825 lucid_context_t lctx = &ctx->gss_lucid_ctx;
1826 crypto_ctx_t cctx = &ctx->gss_cryptor;
1827 ssize_t length;
1828 size_t toklen;
1829 uint8_t *tokptr;
1830 uint32_t seq;
1831 int initiate;
1832
1833 if (token->App0 != tok_1964_header.App0) {
1834 printf("%s: bad framing\n", __func__);
1835 printgbuf(__func__, intok);
1836 return EBADRPC;
1837 }
1838 tokptr = token->AppLen;
1839 length = gss_krb5_der_length_get(&tokptr);
1840 if (length < 0) {
1841 printf("%s: invalid length\n", __func__);
1842 printgbuf(__func__, intok);
1843 return EBADRPC;
1844 }
1845 toklen = sizeof(gss_1964_header_desc) + gss_krb5_der_length_size(length)
1846 + sizeof(gss_1964_token_body_desc);
1847
1848 if (intok->length < toklen + cctx->digest_size) {
1849 printf("%s: token to short", __func__);
1850 printf("toklen = %d, length = %d\n", (int)toklen, (int)length);
1851 printgbuf(__func__, intok);
1852 return EBADRPC;
1853 }
1854
1855 if (offset) {
1856 *offset = toklen + cctx->digest_size;
1857 }
1858
1859 if (len) {
1860 *len = length - sizeof(gss_1964_token_body_desc) - cctx->digest_size;
1861 }
1862
1863 tokbody = (gss_1964_token_body)tokptr;
1864 if (tokbody->OIDType != body_1964_token.OIDType ||
1865 tokbody->OIDLen != body_1964_token.OIDLen ||
1866 memcmp(tokbody->kerb_mech, body_1964_token.kerb_mech, tokbody->OIDLen) != 0) {
1867 printf("%s: Invalid mechanism\n", __func__);
1868 printgbuf(__func__, intok);
1869 return EBADRPC;
1870 }
1871 if (memcmp(&tokbody->body, &body, sizeof(gss_1964_tok_type)) != 0) {
1872 printf("%s: Invalid body\n", __func__);
1873 printgbuf(__func__, intok);
1874 return EBADRPC;
1875 }
1876 size_t blocksize = cctx->enc_mode->block_size;
1877 uint8_t *block = tokbody->SND_SEQ;
1878
1879 assert(blocksize == sizeof(tokbody->SND_SEQ));
1880 cccbc_iv_decl(blocksize, iv);
1881 cccbc_ctx_decl(cctx->dec_mode->size, dec_ctx);
1882 cccbc_set_iv(cctx->dec_mode, iv, tokbody->Hash);
1883 cccbc_init(cctx->dec_mode, dec_ctx, cctx->keylen, cctx->key);
1884 cccbc_update(cctx->dec_mode, dec_ctx, iv, 1, block, block);
1885
1886 initiate = lctx->initiate ? (reverse ? 0 : 1) : (reverse ? 1 : 0);
1887 for (int i = 4; i < 8; i++) {
1888 if (tokbody->SND_SEQ[i] != (initiate ? 0xff : 0x00)) {
1889 printf("%s: Invalid des mac\n", __func__);
1890 printgbuf(__func__, intok);
1891 return EAUTH;
1892 }
1893 }
1894
1895 memcpy(&seq, tokbody->SND_SEQ, sizeof(uint32_t));
1896
1897 lctx->recv_seq = ntohl(seq);
1898
1899 assert(hash->length >= cctx->digest_size);
1900 memcpy(hash->value, tokbody->Hash, cctx->digest_size);
1901
1902 return 0;
1903 }
1904
1905 uint32_t
1906 gss_krb5_3des_get_mic(uint32_t *minor, /* minor status */
1907 gss_ctx_id_t ctx, /* krb5 context id */
1908 gss_qop_t qop __unused, /* qop_req (ignored) */
1909 gss_buffer_t mbp, /* message buffer in */
1910 gss_buffer_t mic) /* mic token out */
1911 {
1912 gss_1964_mic_token_desc tokbody = mic_1964_token;
1913 crypto_ctx_t cctx = &ctx->gss_cryptor;
1914 gss_buffer_desc hash;
1915 gss_buffer_desc header;
1916 uint8_t hashval[cctx->digest_size];
1917
1918 hash.length = cctx->digest_size;
1919 hash.value = hashval;
1920 tokbody.Sign_Alg[0] = 0x04; /* lctx->keydata.lucid_protocol_u.data_1964.sign_alg */
1921 tokbody.Sign_Alg[1] = 0x00;
1922 header.length = sizeof(gss_1964_mic_token_desc);
1923 header.value = &tokbody;
1924
1925 /* Hash the data */
1926 *minor = krb5_mic(cctx, &header, mbp, NULL, hashval, NULL, 0, 0);
1927 if (*minor) {
1928 return GSS_S_FAILURE;
1929 }
1930
1931 /* Make the token */
1932 gss_krb5_3des_token_put(ctx, tokbody, &hash, 0, mic);
1933
1934 return GSS_S_COMPLETE;
1935 }
1936
1937 uint32_t
1938 gss_krb5_3des_verify_mic(uint32_t *minor,
1939 gss_ctx_id_t ctx,
1940 gss_buffer_t mbp,
1941 gss_buffer_t mic,
1942 gss_qop_t *qop)
1943 {
1944 crypto_ctx_t cctx = &ctx->gss_cryptor;
1945 uint8_t hashval[cctx->digest_size];
1946 gss_buffer_desc hash;
1947 gss_1964_mic_token_desc mtok = mic_1964_token;
1948 gss_buffer_desc header;
1949 int verf;
1950
1951 mtok.Sign_Alg[0] = 0x04; /* lctx->key_data.lucid_protocol_u.data_1964.sign_alg */
1952 mtok.Sign_Alg[1] = 0x00;
1953 hash.length = cctx->digest_size;
1954 hash.value = hashval;
1955 header.length = sizeof(gss_1964_mic_token_desc);
1956 header.value = &mtok;
1957
1958 if (qop) {
1959 *qop = GSS_C_QOP_DEFAULT;
1960 }
1961
1962 *minor = gss_krb5_3des_token_get(ctx, mic, mtok, &hash, NULL, NULL, 0);
1963 if (*minor) {
1964 return GSS_S_FAILURE;
1965 }
1966
1967 *minor = krb5_mic(cctx, &header, mbp, NULL, hashval, &verf, 0, 0);
1968 if (*minor) {
1969 return GSS_S_FAILURE;
1970 }
1971
1972 return verf ? GSS_S_COMPLETE : GSS_S_BAD_SIG;
1973 }
1974
1975 uint32_t
1976 gss_krb5_3des_get_mic_mbuf(uint32_t *minor,
1977 gss_ctx_id_t ctx,
1978 gss_qop_t qop __unused,
1979 mbuf_t mbp,
1980 size_t offset,
1981 size_t len,
1982 gss_buffer_t mic)
1983 {
1984 gss_1964_mic_token_desc tokbody = mic_1964_token;
1985 crypto_ctx_t cctx = &ctx->gss_cryptor;
1986 gss_buffer_desc header;
1987 gss_buffer_desc hash;
1988 uint8_t hashval[cctx->digest_size];
1989
1990 hash.length = cctx->digest_size;
1991 hash.value = hashval;
1992 tokbody.Sign_Alg[0] = 0x04; /* lctx->key_data.lucid_protocol_u.data_4121.sign_alg */
1993 tokbody.Sign_Alg[1] = 0x00;
1994 header.length = sizeof(gss_1964_mic_token_desc);
1995 header.value = &tokbody;
1996
1997 /* Hash the data */
1998 *minor = krb5_mic_mbuf(cctx, &header, mbp, offset, len, NULL, hashval, NULL, 0, 0);
1999 if (*minor) {
2000 return GSS_S_FAILURE;
2001 }
2002
2003 /* Make the token */
2004 gss_krb5_3des_token_put(ctx, tokbody, &hash, 0, mic);
2005
2006 return GSS_S_COMPLETE;
2007 }
2008
2009 uint32_t
2010 gss_krb5_3des_verify_mic_mbuf(uint32_t *minor,
2011 gss_ctx_id_t ctx,
2012 mbuf_t mbp,
2013 size_t offset,
2014 size_t len,
2015 gss_buffer_t mic,
2016 gss_qop_t *qop)
2017 {
2018 crypto_ctx_t cctx = &ctx->gss_cryptor;
2019 uint8_t hashval[cctx->digest_size];
2020 gss_buffer_desc header;
2021 gss_buffer_desc hash;
2022 gss_1964_mic_token_desc mtok = mic_1964_token;
2023 int verf;
2024
2025 mtok.Sign_Alg[0] = 0x04; /* lctx->key_data.lucic_protocol_u.data1964.sign_alg */
2026 mtok.Sign_Alg[1] = 0x00;
2027 hash.length = cctx->digest_size;
2028 hash.value = hashval;
2029 header.length = sizeof(gss_1964_mic_token_desc);
2030 header.value = &mtok;
2031
2032 if (qop) {
2033 *qop = GSS_C_QOP_DEFAULT;
2034 }
2035
2036 *minor = gss_krb5_3des_token_get(ctx, mic, mtok, &hash, NULL, NULL, 0);
2037 if (*minor) {
2038 return GSS_S_FAILURE;
2039 }
2040
2041 *minor = krb5_mic_mbuf(cctx, &header, mbp, offset, len, NULL, hashval, &verf, 0, 0);
2042 if (*minor) {
2043 return GSS_S_FAILURE;
2044 }
2045
2046 return verf ? GSS_S_COMPLETE : GSS_S_BAD_SIG;
2047 }
2048
2049 uint32_t
2050 gss_krb5_3des_wrap_mbuf(uint32_t *minor,
2051 gss_ctx_id_t ctx,
2052 int conf_flag,
2053 gss_qop_t qop __unused,
2054 mbuf_t *mbp,
2055 size_t len,
2056 int *conf_state)
2057 {
2058 crypto_ctx_t cctx = &ctx->gss_cryptor;
2059 const struct ccmode_cbc *ccmode = cctx->enc_mode;
2060 uint8_t padlen;
2061 uint8_t pad[8];
2062 uint8_t confounder[ccmode->block_size];
2063 gss_1964_wrap_token_desc tokbody = wrap_1964_token;
2064 gss_buffer_desc header;
2065 gss_buffer_desc mic;
2066 gss_buffer_desc hash;
2067 uint8_t hashval[cctx->digest_size];
2068
2069 if (conf_state) {
2070 *conf_state = conf_flag;
2071 }
2072
2073 hash.length = cctx->digest_size;
2074 hash.value = hashval;
2075 tokbody.Sign_Alg[0] = 0x04; /* lctx->key_data.lucid_protocol_u.data_1964.sign_alg */
2076 tokbody.Sign_Alg[1] = 0x00;
2077 /* conf_flag ? lctx->key_data.lucid_protocol_u.data_1964.seal_alg : 0xffff */
2078 tokbody.Seal_Alg[0] = conf_flag ? 0x02 : 0xff;
2079 tokbody.Seal_Alg[1] = conf_flag ? 0x00 : 0xff;
2080 header.length = sizeof(gss_1964_wrap_token_desc);
2081 header.value = &tokbody;
2082
2083 /* Prepend confounder */
2084 read_random(confounder, ccmode->block_size);
2085 *minor = gss_prepend_mbuf(mbp, confounder, ccmode->block_size);
2086 if (*minor) {
2087 return GSS_S_FAILURE;
2088 }
2089
2090 /* Append trailer of up to 8 bytes and set pad length in each trailer byte */
2091 padlen = 8 - len % 8;
2092 for (int i = 0; i < padlen; i++) {
2093 pad[i] = padlen;
2094 }
2095 *minor = gss_append_mbuf(*mbp, pad, padlen);
2096 if (*minor) {
2097 return GSS_S_FAILURE;
2098 }
2099
2100 len += ccmode->block_size + padlen;
2101
2102 /* Hash the data */
2103 *minor = krb5_mic_mbuf(cctx, &header, *mbp, 0, len, NULL, hashval, NULL, 0, 0);
2104 if (*minor) {
2105 return GSS_S_FAILURE;
2106 }
2107
2108 /* Make the token */
2109 gss_krb5_3des_token_put(ctx, tokbody, &hash, len, &mic);
2110
2111 if (conf_flag) {
2112 *minor = krb5_crypt_mbuf(cctx, mbp, len, 1, 0);
2113 if (*minor) {
2114 return GSS_S_FAILURE;
2115 }
2116 }
2117
2118 *minor = gss_prepend_mbuf(mbp, mic.value, mic.length);
2119
2120 return *minor ? GSS_S_FAILURE : GSS_S_COMPLETE;
2121 }
2122
2123 uint32_t
2124 gss_krb5_3des_unwrap_mbuf(uint32_t *minor,
2125 gss_ctx_id_t ctx,
2126 mbuf_t *mbp,
2127 size_t len,
2128 int *conf_state,
2129 gss_qop_t *qop)
2130 {
2131 crypto_ctx_t cctx = &ctx->gss_cryptor;
2132 const struct ccmode_cbc *ccmode = cctx->dec_mode;
2133 size_t length = 0, offset;
2134 gss_buffer_desc hash;
2135 uint8_t hashval[cctx->digest_size];
2136 gss_buffer_desc itoken;
2137 uint8_t tbuffer[GSS_KRB5_3DES_MAXTOKSZ + cctx->digest_size];
2138 itoken.length = GSS_KRB5_3DES_MAXTOKSZ + cctx->digest_size;
2139 itoken.value = tbuffer;
2140 gss_1964_wrap_token_desc wrap = wrap_1964_token;
2141 gss_buffer_desc header;
2142 uint8_t padlen;
2143 mbuf_t smb, tmb;
2144 int cflag, verified, reverse = 0;
2145
2146 if (len < GSS_KRB5_3DES_MAXTOKSZ) {
2147 *minor = EBADRPC;
2148 return GSS_S_FAILURE;
2149 }
2150
2151 if (*qop == GSS_C_QOP_REVERSE) {
2152 reverse = 1;
2153 }
2154 *qop = GSS_C_QOP_DEFAULT;
2155
2156 *minor = mbuf_copydata(*mbp, 0, itoken.length, itoken.value);
2157 if (*minor) {
2158 return GSS_S_FAILURE;
2159 }
2160
2161 hash.length = cctx->digest_size;
2162 hash.value = hashval;
2163 wrap.Sign_Alg[0] = 0x04;
2164 wrap.Sign_Alg[1] = 0x00;
2165 wrap.Seal_Alg[0] = 0x02;
2166 wrap.Seal_Alg[1] = 0x00;
2167
2168 for (cflag = 1; cflag >= 0; cflag--) {
2169 *minor = gss_krb5_3des_token_get(ctx, &itoken, wrap, &hash, &offset, &length, reverse);
2170 if (*minor == 0) {
2171 break;
2172 }
2173 wrap.Seal_Alg[0] = 0xff;
2174 wrap.Seal_Alg[0] = 0xff;
2175 }
2176 if (*minor) {
2177 return GSS_S_FAILURE;
2178 }
2179
2180 if (conf_state) {
2181 *conf_state = cflag;
2182 }
2183
2184 /*
2185 * Seperate off the header
2186 */
2187 *minor = gss_normalize_mbuf(*mbp, offset, &length, &smb, &tmb, 0);
2188 if (*minor) {
2189 return GSS_S_FAILURE;
2190 }
2191
2192 assert(tmb == NULL);
2193
2194 /* Decrypt the chain if needed */
2195 if (cflag) {
2196 *minor = krb5_crypt_mbuf(cctx, &smb, length, 0, NULL);
2197 if (*minor) {
2198 return GSS_S_FAILURE;
2199 }
2200 }
2201
2202 /* Verify the mic */
2203 header.length = sizeof(gss_1964_wrap_token_desc);
2204 header.value = &wrap;
2205
2206 *minor = krb5_mic_mbuf(cctx, &header, smb, 0, length, NULL, hashval, &verified, 0, 0);
2207 if (!verified) {
2208 return GSS_S_BAD_SIG;
2209 }
2210 if (*minor) {
2211 return GSS_S_FAILURE;
2212 }
2213
2214 /* Get the pad bytes */
2215 *minor = mbuf_copydata(smb, length - 1, 1, &padlen);
2216 if (*minor) {
2217 return GSS_S_FAILURE;
2218 }
2219
2220 /* Strip the confounder and trailing pad bytes */
2221 gss_strip_mbuf(smb, -padlen);
2222 gss_strip_mbuf(smb, ccmode->block_size);
2223
2224 if (*mbp != smb) {
2225 mbuf_freem(*mbp);
2226 *mbp = smb;
2227 }
2228
2229 return GSS_S_COMPLETE;
2230 }
2231
2232 static const char *
2233 etype_name(etypes etype)
2234 {
2235 switch (etype) {
2236 case DES3_CBC_SHA1_KD:
2237 return "des3-cbc-sha1";
2238 case AES128_CTS_HMAC_SHA1_96:
2239 return "aes128-cts-hmac-sha1-96";
2240 case AES256_CTS_HMAC_SHA1_96:
2241 return "aes-cts-hmac-sha1-96";
2242 default:
2243 return "unknown enctype";
2244 }
2245 }
2246
2247 static int
2248 supported_etype(uint32_t proto, etypes etype)
2249 {
2250 const char *proto_name;
2251
2252 switch (proto) {
2253 case 0:
2254 /* RFC 1964 */
2255 proto_name = "RFC 1964 krb5 gss mech";
2256 switch (etype) {
2257 case DES3_CBC_SHA1_KD:
2258 return 1;
2259 default:
2260 break;
2261 }
2262 break;
2263 case 1:
2264 /* RFC 4121 */
2265 proto_name = "RFC 4121 krb5 gss mech";
2266 switch (etype) {
2267 case AES256_CTS_HMAC_SHA1_96:
2268 case AES128_CTS_HMAC_SHA1_96:
2269 return 1;
2270 default:
2271 break;
2272 }
2273 break;
2274 default:
2275 proto_name = "Unknown krb5 gss mech";
2276 break;
2277 }
2278 printf("%s: Non supported encryption %s (%d) type for protocol %s (%d)\n",
2279 __func__, etype_name(etype), etype, proto_name, proto);
2280 return 0;
2281 }
2282
2283 /*
2284 * Kerberos gss mech entry points
2285 */
2286 uint32_t
2287 gss_krb5_get_mic(uint32_t *minor, /* minor_status */
2288 gss_ctx_id_t ctx, /* context_handle */
2289 gss_qop_t qop, /* qop_req */
2290 gss_buffer_t mbp, /* message buffer */
2291 gss_buffer_t mic /* message_token */)
2292 {
2293 uint32_t minor_stat = 0;
2294
2295 if (minor == NULL) {
2296 minor = &minor_stat;
2297 }
2298 *minor = 0;
2299
2300 /* Validate context */
2301 if (ctx == NULL || ((lucid_context_version_t)ctx)->version != 1) {
2302 return GSS_S_NO_CONTEXT;
2303 }
2304
2305 if (!supported_etype(ctx->gss_lucid_ctx.key_data.proto, ctx->gss_cryptor.etype)) {
2306 *minor = ENOTSUP;
2307 return GSS_S_FAILURE;
2308 }
2309
2310 switch (ctx->gss_lucid_ctx.key_data.proto) {
2311 case 0:
2312 /* RFC 1964 DES3 case */
2313 return gss_krb5_3des_get_mic(minor, ctx, qop, mbp, mic);
2314 case 1:
2315 /* RFC 4121 CFX case */
2316 return gss_krb5_cfx_get_mic(minor, ctx, qop, mbp, mic);
2317 }
2318
2319 return GSS_S_COMPLETE;
2320 }
2321
2322 uint32_t
2323 gss_krb5_verify_mic(uint32_t *minor, /* minor_status */
2324 gss_ctx_id_t ctx, /* context_handle */
2325 gss_buffer_t mbp, /* message_buffer */
2326 gss_buffer_t mic, /* message_token */
2327 gss_qop_t *qop /* qop_state */)
2328 {
2329 uint32_t minor_stat = 0;
2330 gss_qop_t qop_val = GSS_C_QOP_DEFAULT;
2331
2332 if (minor == NULL) {
2333 minor = &minor_stat;
2334 }
2335 if (qop == NULL) {
2336 qop = &qop_val;
2337 }
2338
2339 *minor = 0;
2340
2341 /* Validate context */
2342 if (ctx == NULL || ((lucid_context_version_t)ctx)->version != 1) {
2343 return GSS_S_NO_CONTEXT;
2344 }
2345
2346 if (!supported_etype(ctx->gss_lucid_ctx.key_data.proto, ctx->gss_cryptor.etype)) {
2347 *minor = ENOTSUP;
2348 return GSS_S_FAILURE;
2349 }
2350
2351 switch (ctx->gss_lucid_ctx.key_data.proto) {
2352 case 0:
2353 /* RFC 1964 DES3 case */
2354 return gss_krb5_3des_verify_mic(minor, ctx, mbp, mic, qop);
2355 case 1:
2356 /* RFC 4121 CFX case */
2357 return gss_krb5_cfx_verify_mic(minor, ctx, mbp, mic, qop);
2358 }
2359 return GSS_S_COMPLETE;
2360 }
2361
2362 uint32_t
2363 gss_krb5_get_mic_mbuf(uint32_t *minor, /* minor_status */
2364 gss_ctx_id_t ctx, /* context_handle */
2365 gss_qop_t qop, /* qop_req */
2366 mbuf_t mbp, /* message mbuf */
2367 size_t offset, /* offest */
2368 size_t len, /* length */
2369 gss_buffer_t mic /* message_token */)
2370 {
2371 uint32_t minor_stat = 0;
2372
2373 if (minor == NULL) {
2374 minor = &minor_stat;
2375 }
2376 *minor = 0;
2377
2378 if (len == 0) {
2379 len = ~(size_t)0;
2380 }
2381
2382 /* Validate context */
2383 if (ctx == NULL || ((lucid_context_version_t)ctx)->version != 1) {
2384 return GSS_S_NO_CONTEXT;
2385 }
2386
2387 if (!supported_etype(ctx->gss_lucid_ctx.key_data.proto, ctx->gss_cryptor.etype)) {
2388 *minor = ENOTSUP;
2389 return GSS_S_FAILURE;
2390 }
2391
2392 switch (ctx->gss_lucid_ctx.key_data.proto) {
2393 case 0:
2394 /* RFC 1964 DES3 case */
2395 return gss_krb5_3des_get_mic_mbuf(minor, ctx, qop, mbp, offset, len, mic);
2396 case 1:
2397 /* RFC 4121 CFX case */
2398 return gss_krb5_cfx_get_mic_mbuf(minor, ctx, qop, mbp, offset, len, mic);
2399 }
2400
2401 return GSS_S_COMPLETE;
2402 }
2403
2404 uint32_t
2405 gss_krb5_verify_mic_mbuf(uint32_t *minor, /* minor_status */
2406 gss_ctx_id_t ctx, /* context_handle */
2407 mbuf_t mbp, /* message_buffer */
2408 size_t offset, /* offset */
2409 size_t len, /* length */
2410 gss_buffer_t mic, /* message_token */
2411 gss_qop_t *qop /* qop_state */)
2412 {
2413 uint32_t minor_stat = 0;
2414 gss_qop_t qop_val = GSS_C_QOP_DEFAULT;
2415
2416 if (minor == NULL) {
2417 minor = &minor_stat;
2418 }
2419 if (qop == NULL) {
2420 qop = &qop_val;
2421 }
2422
2423 *minor = 0;
2424
2425 if (len == 0) {
2426 len = ~(size_t)0;
2427 }
2428
2429 /* Validate context */
2430 if (ctx == NULL || ((lucid_context_version_t)ctx)->version != 1) {
2431 return GSS_S_NO_CONTEXT;
2432 }
2433
2434 if (!supported_etype(ctx->gss_lucid_ctx.key_data.proto, ctx->gss_cryptor.etype)) {
2435 *minor = ENOTSUP;
2436 return GSS_S_FAILURE;
2437 }
2438
2439 switch (ctx->gss_lucid_ctx.key_data.proto) {
2440 case 0:
2441 /* RFC 1964 DES3 case */
2442 return gss_krb5_3des_verify_mic_mbuf(minor, ctx, mbp, offset, len, mic, qop);
2443 case 1:
2444 /* RFC 4121 CFX case */
2445 return gss_krb5_cfx_verify_mic_mbuf(minor, ctx, mbp, offset, len, mic, qop);
2446 }
2447
2448 return GSS_S_COMPLETE;
2449 }
2450
2451 uint32_t
2452 gss_krb5_wrap_mbuf(uint32_t *minor, /* minor_status */
2453 gss_ctx_id_t ctx, /* context_handle */
2454 int conf_flag, /* conf_req_flag */
2455 gss_qop_t qop, /* qop_req */
2456 mbuf_t *mbp, /* input/output message_buffer */
2457 size_t offset, /* offset */
2458 size_t len, /* length */
2459 int *conf_state /* conf state */)
2460 {
2461 uint32_t major, minor_stat = 0;
2462 mbuf_t smb, tmb;
2463 int conf_val = 0;
2464
2465 if (minor == NULL) {
2466 minor = &minor_stat;
2467 }
2468 if (conf_state == NULL) {
2469 conf_state = &conf_val;
2470 }
2471
2472 *minor = 0;
2473
2474 /* Validate context */
2475 if (ctx == NULL || ((lucid_context_version_t)ctx)->version != 1) {
2476 return GSS_S_NO_CONTEXT;
2477 }
2478
2479 if (!supported_etype(ctx->gss_lucid_ctx.key_data.proto, ctx->gss_cryptor.etype)) {
2480 *minor = ENOTSUP;
2481 return GSS_S_FAILURE;
2482 }
2483
2484 gss_normalize_mbuf(*mbp, offset, &len, &smb, &tmb, 0);
2485
2486 switch (ctx->gss_lucid_ctx.key_data.proto) {
2487 case 0:
2488 /* RFC 1964 DES3 case */
2489 major = gss_krb5_3des_wrap_mbuf(minor, ctx, conf_flag, qop, &smb, len, conf_state);
2490 break;
2491 case 1:
2492 /* RFC 4121 CFX case */
2493 major = gss_krb5_cfx_wrap_mbuf(minor, ctx, conf_flag, qop, &smb, len, conf_state);
2494 break;
2495 }
2496
2497 if (offset) {
2498 gss_join_mbuf(*mbp, smb, tmb);
2499 } else {
2500 *mbp = smb;
2501 gss_join_mbuf(smb, tmb, NULL);
2502 }
2503
2504 return major;
2505 }
2506
2507 uint32_t
2508 gss_krb5_unwrap_mbuf(uint32_t * minor, /* minor_status */
2509 gss_ctx_id_t ctx, /* context_handle */
2510 mbuf_t *mbp, /* input/output message_buffer */
2511 size_t offset, /* offset */
2512 size_t len, /* length */
2513 int *conf_flag, /* conf_state */
2514 gss_qop_t *qop /* qop state */)
2515 {
2516 uint32_t major, minor_stat = 0;
2517 gss_qop_t qop_val = GSS_C_QOP_DEFAULT;
2518 int conf_val = 0;
2519 mbuf_t smb, tmb;
2520
2521 if (minor == NULL) {
2522 minor = &minor_stat;
2523 }
2524 if (qop == NULL) {
2525 qop = &qop_val;
2526 }
2527 if (conf_flag == NULL) {
2528 conf_flag = &conf_val;
2529 }
2530
2531 /* Validate context */
2532 if (ctx == NULL || ((lucid_context_version_t)ctx)->version != 1) {
2533 return GSS_S_NO_CONTEXT;
2534 }
2535
2536 if (!supported_etype(ctx->gss_lucid_ctx.key_data.proto, ctx->gss_cryptor.etype)) {
2537 *minor = ENOTSUP;
2538 return GSS_S_FAILURE;
2539 }
2540
2541 gss_normalize_mbuf(*mbp, offset, &len, &smb, &tmb, 0);
2542
2543 switch (ctx->gss_lucid_ctx.key_data.proto) {
2544 case 0:
2545 /* RFC 1964 DES3 case */
2546 major = gss_krb5_3des_unwrap_mbuf(minor, ctx, &smb, len, conf_flag, qop);
2547 break;
2548 case 1:
2549 /* RFC 4121 CFX case */
2550 major = gss_krb5_cfx_unwrap_mbuf(minor, ctx, &smb, len, conf_flag, qop);
2551 break;
2552 }
2553
2554 if (offset) {
2555 gss_join_mbuf(*mbp, smb, tmb);
2556 } else {
2557 *mbp = smb;
2558 gss_join_mbuf(smb, tmb, NULL);
2559 }
2560
2561 return major;
2562 }
2563
2564 #include <nfs/xdr_subs.h>
2565
2566 static int
2567 xdr_lucid_context(void *data, size_t length, lucid_context_t lctx)
2568 {
2569 struct xdrbuf xb;
2570 int error = 0;
2571 uint32_t keylen = 0;
2572
2573 xb_init_buffer(&xb, data, length);
2574 xb_get_32(error, &xb, lctx->vers);
2575 if (!error && lctx->vers != 1) {
2576 error = EINVAL;
2577 printf("%s: invalid version %d\n", __func__, (int)lctx->vers);
2578 goto out;
2579 }
2580 xb_get_32(error, &xb, lctx->initiate);
2581 if (error) {
2582 printf("%s: Could not decode initiate\n", __func__);
2583 goto out;
2584 }
2585 xb_get_32(error, &xb, lctx->endtime);
2586 if (error) {
2587 printf("%s: Could not decode endtime\n", __func__);
2588 goto out;
2589 }
2590 xb_get_64(error, &xb, lctx->send_seq);
2591 if (error) {
2592 printf("%s: Could not decode send_seq\n", __func__);
2593 goto out;
2594 }
2595 xb_get_64(error, &xb, lctx->recv_seq);
2596 if (error) {
2597 printf("%s: Could not decode recv_seq\n", __func__);
2598 goto out;
2599 }
2600 xb_get_32(error, &xb, lctx->key_data.proto);
2601 if (error) {
2602 printf("%s: Could not decode mech protocol\n", __func__);
2603 goto out;
2604 }
2605 switch (lctx->key_data.proto) {
2606 case 0:
2607 xb_get_32(error, &xb, lctx->key_data.lucid_protocol_u.data_1964.sign_alg);
2608 xb_get_32(error, &xb, lctx->key_data.lucid_protocol_u.data_1964.seal_alg);
2609 if (error) {
2610 printf("%s: Could not decode rfc1964 sign and seal\n", __func__);
2611 }
2612 break;
2613 case 1:
2614 xb_get_32(error, &xb, lctx->key_data.lucid_protocol_u.data_4121.acceptor_subkey);
2615 if (error) {
2616 printf("%s: Could not decode rfc4121 acceptor_subkey", __func__);
2617 }
2618 break;
2619 default:
2620 printf("%s: Invalid mech protocol %d\n", __func__, (int)lctx->key_data.proto);
2621 error = EINVAL;
2622 }
2623 if (error) {
2624 goto out;
2625 }
2626 xb_get_32(error, &xb, lctx->ctx_key.etype);
2627 if (error) {
2628 printf("%s: Could not decode key enctype\n", __func__);
2629 goto out;
2630 }
2631 switch (lctx->ctx_key.etype) {
2632 case DES3_CBC_SHA1_KD:
2633 keylen = 24;
2634 break;
2635 case AES128_CTS_HMAC_SHA1_96:
2636 keylen = 16;
2637 break;
2638 case AES256_CTS_HMAC_SHA1_96:
2639 keylen = 32;
2640 break;
2641 default:
2642 error = ENOTSUP;
2643 goto out;
2644 }
2645 xb_get_32(error, &xb, lctx->ctx_key.key.key_len);
2646 if (error) {
2647 printf("%s: could not decode key length\n", __func__);
2648 goto out;
2649 }
2650 if (lctx->ctx_key.key.key_len != keylen) {
2651 error = EINVAL;
2652 printf("%s: etype = %d keylen = %d expected keylen = %d\n", __func__,
2653 lctx->ctx_key.etype, lctx->ctx_key.key.key_len, keylen);
2654 goto out;
2655 }
2656
2657 lctx->ctx_key.key.key_val = xb_malloc(keylen);
2658 if (lctx->ctx_key.key.key_val == NULL) {
2659 printf("%s: could not get memory for key\n", __func__);
2660 error = ENOMEM;
2661 goto out;
2662 }
2663 error = xb_get_bytes(&xb, (char *)lctx->ctx_key.key.key_val, keylen, 1);
2664 if (error) {
2665 printf("%s: could get key value\n", __func__);
2666 xb_free(lctx->ctx_key.key.key_val);
2667 }
2668 out:
2669 return error;
2670 }
2671
2672 gss_ctx_id_t
2673 gss_krb5_make_context(void *data, uint32_t datalen)
2674 {
2675 gss_ctx_id_t ctx;
2676
2677 if (!corecrypto_available()) {
2678 return NULL;
2679 }
2680
2681 gss_krb5_mech_init();
2682 MALLOC(ctx, gss_ctx_id_t, sizeof(struct gss_ctx_id_desc), M_TEMP, M_WAITOK | M_ZERO);
2683 if (xdr_lucid_context(data, datalen, &ctx->gss_lucid_ctx) ||
2684 !supported_etype(ctx->gss_lucid_ctx.key_data.proto, ctx->gss_lucid_ctx.ctx_key.etype)) {
2685 FREE(ctx, M_TEMP);
2686 FREE(data, M_TEMP);
2687 return NULL;
2688 }
2689
2690 /* Set up crypto context */
2691 gss_crypto_ctx_init(&ctx->gss_cryptor, &ctx->gss_lucid_ctx);
2692 FREE(data, M_TEMP);
2693
2694 return ctx;
2695 }
2696
2697 void
2698 gss_krb5_destroy_context(gss_ctx_id_t ctx)
2699 {
2700 if (ctx == NULL) {
2701 return;
2702 }
2703 gss_crypto_ctx_free(&ctx->gss_cryptor);
2704 FREE(ctx->gss_lucid_ctx.ctx_key.key.key_val, M_TEMP);
2705 cc_clear(sizeof(lucid_context_t), &ctx->gss_lucid_ctx);
2706 FREE(ctx, M_TEMP);
2707 }