]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet6/ip6_input.c
6ca8bba66dfb6022a7ab740e870af74efcb1462f
[apple/xnu.git] / bsd / netinet6 / ip6_input.c
1 /*
2 * Copyright (c) 2003-2017 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /*
30 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
31 * All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the project nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58 /*
59 * Copyright (c) 1982, 1986, 1988, 1993
60 * The Regents of the University of California. All rights reserved.
61 *
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions
64 * are met:
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in the
69 * documentation and/or other materials provided with the distribution.
70 * 3. All advertising materials mentioning features or use of this software
71 * must display the following acknowledgement:
72 * This product includes software developed by the University of
73 * California, Berkeley and its contributors.
74 * 4. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
91 */
92
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/malloc.h>
96 #include <sys/mbuf.h>
97 #include <sys/domain.h>
98 #include <sys/protosw.h>
99 #include <sys/socket.h>
100 #include <sys/socketvar.h>
101 #include <sys/errno.h>
102 #include <sys/time.h>
103 #include <sys/kernel.h>
104 #include <sys/syslog.h>
105 #include <sys/sysctl.h>
106 #include <sys/proc.h>
107 #include <sys/kauth.h>
108 #include <sys/mcache.h>
109
110 #include <mach/mach_time.h>
111 #include <mach/sdt.h>
112 #include <pexpert/pexpert.h>
113 #include <dev/random/randomdev.h>
114
115 #include <net/if.h>
116 #include <net/if_var.h>
117 #include <net/if_types.h>
118 #include <net/if_dl.h>
119 #include <net/route.h>
120 #include <net/kpi_protocol.h>
121 #include <net/ntstat.h>
122 #include <net/init.h>
123 #include <net/net_osdep.h>
124 #include <net/net_perf.h>
125
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
128 #if INET
129 #include <netinet/ip.h>
130 #include <netinet/ip_icmp.h>
131 #endif /* INET */
132 #include <netinet/kpi_ipfilter_var.h>
133 #include <netinet/ip6.h>
134 #include <netinet6/in6_var.h>
135 #include <netinet6/ip6_var.h>
136 #include <netinet/in_pcb.h>
137 #include <netinet/icmp6.h>
138 #include <netinet6/in6_ifattach.h>
139 #include <netinet6/nd6.h>
140 #include <netinet6/scope6_var.h>
141 #include <netinet6/ip6protosw.h>
142
143 #if IPSEC
144 #include <netinet6/ipsec.h>
145 #include <netinet6/ipsec6.h>
146 extern int ipsec_bypass;
147 #endif /* IPSEC */
148
149 #if DUMMYNET
150 #include <netinet/ip_fw.h>
151 #include <netinet/ip_dummynet.h>
152 #endif /* DUMMYNET */
153
154 /* we need it for NLOOP. */
155 #include "loop.h"
156
157 #if PF
158 #include <net/pfvar.h>
159 #endif /* PF */
160
161 struct ip6protosw *ip6_protox[IPPROTO_MAX];
162
163 static lck_grp_attr_t *in6_ifaddr_rwlock_grp_attr;
164 static lck_grp_t *in6_ifaddr_rwlock_grp;
165 static lck_attr_t *in6_ifaddr_rwlock_attr;
166 decl_lck_rw_data(, in6_ifaddr_rwlock);
167
168 /* Protected by in6_ifaddr_rwlock */
169 struct in6_ifaddr *in6_ifaddrs = NULL;
170
171 #define IN6_IFSTAT_REQUIRE_ALIGNED_64(f) \
172 _CASSERT(!(offsetof(struct in6_ifstat, f) % sizeof (uint64_t)))
173
174 #define ICMP6_IFSTAT_REQUIRE_ALIGNED_64(f) \
175 _CASSERT(!(offsetof(struct icmp6_ifstat, f) % sizeof (uint64_t)))
176
177 struct ip6stat ip6stat;
178
179 decl_lck_mtx_data(, proxy6_lock);
180 decl_lck_mtx_data(static, dad6_mutex_data);
181 decl_lck_mtx_data(static, nd6_mutex_data);
182 decl_lck_mtx_data(static, prefix6_mutex_data);
183 lck_mtx_t *dad6_mutex = &dad6_mutex_data;
184 lck_mtx_t *nd6_mutex = &nd6_mutex_data;
185 lck_mtx_t *prefix6_mutex = &prefix6_mutex_data;
186 #ifdef ENABLE_ADDRSEL
187 decl_lck_mtx_data(static, addrsel_mutex_data);
188 lck_mtx_t *addrsel_mutex = &addrsel_mutex_data;
189 #endif
190 static lck_attr_t *ip6_mutex_attr;
191 static lck_grp_t *ip6_mutex_grp;
192 static lck_grp_attr_t *ip6_mutex_grp_attr;
193
194 extern int loopattach_done;
195 extern void addrsel_policy_init(void);
196
197 static int sysctl_reset_ip6_input_stats SYSCTL_HANDLER_ARGS;
198 static int sysctl_ip6_input_measure_bins SYSCTL_HANDLER_ARGS;
199 static int sysctl_ip6_input_getperf SYSCTL_HANDLER_ARGS;
200 static void ip6_init_delayed(void);
201 static int ip6_hopopts_input(u_int32_t *, u_int32_t *, struct mbuf **, int *);
202
203 #if NSTF
204 extern void stfattach(void);
205 #endif /* NSTF */
206
207 SYSCTL_DECL(_net_inet6_ip6);
208
209 static uint32_t ip6_adj_clear_hwcksum = 0;
210 SYSCTL_UINT(_net_inet6_ip6, OID_AUTO, adj_clear_hwcksum,
211 CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_adj_clear_hwcksum, 0,
212 "Invalidate hwcksum info when adjusting length");
213
214 static uint32_t ip6_adj_partial_sum = 1;
215 SYSCTL_UINT(_net_inet6_ip6, OID_AUTO, adj_partial_sum,
216 CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_adj_partial_sum, 0,
217 "Perform partial sum adjustment of trailing bytes at IP layer");
218
219 static int ip6_input_measure = 0;
220 SYSCTL_PROC(_net_inet6_ip6, OID_AUTO, input_perf,
221 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
222 &ip6_input_measure, 0, sysctl_reset_ip6_input_stats, "I", "Do time measurement");
223
224 static uint64_t ip6_input_measure_bins = 0;
225 SYSCTL_PROC(_net_inet6_ip6, OID_AUTO, input_perf_bins,
226 CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_input_measure_bins, 0,
227 sysctl_ip6_input_measure_bins, "I",
228 "bins for chaining performance data histogram");
229
230 static net_perf_t net_perf;
231 SYSCTL_PROC(_net_inet6_ip6, OID_AUTO, input_perf_data,
232 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
233 0, 0, sysctl_ip6_input_getperf, "S,net_perf",
234 "IP6 input performance data (struct net_perf, net/net_perf.h)");
235
236 /*
237 * On platforms which require strict alignment (currently for anything but
238 * i386 or x86_64), check if the IP header pointer is 32-bit aligned; if not,
239 * copy the contents of the mbuf chain into a new chain, and free the original
240 * one. Create some head room in the first mbuf of the new chain, in case
241 * it's needed later on.
242 *
243 * RFC 2460 says that IPv6 headers are 64-bit aligned, but network interfaces
244 * mostly align to 32-bit boundaries. Care should be taken never to use 64-bit
245 * load/store operations on the fields in IPv6 headers.
246 */
247 #if defined(__i386__) || defined(__x86_64__)
248 #define IP6_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do { } while (0)
249 #else /* !__i386__ && !__x86_64__ */
250 #define IP6_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do { \
251 if (!IP6_HDR_ALIGNED_P(mtod(_m, caddr_t))) { \
252 struct mbuf *_n; \
253 struct ifnet *__ifp = (_ifp); \
254 atomic_add_64(&(__ifp)->if_alignerrs, 1); \
255 if (((_m)->m_flags & M_PKTHDR) && \
256 (_m)->m_pkthdr.pkt_hdr != NULL) \
257 (_m)->m_pkthdr.pkt_hdr = NULL; \
258 _n = m_defrag_offset(_m, max_linkhdr, M_NOWAIT); \
259 if (_n == NULL) { \
260 ip6stat.ip6s_toosmall++; \
261 m_freem(_m); \
262 (_m) = NULL; \
263 _action; \
264 } else { \
265 VERIFY(_n != (_m)); \
266 (_m) = _n; \
267 } \
268 } \
269 } while (0)
270 #endif /* !__i386__ && !__x86_64__ */
271
272 static void
273 ip6_proto_input(protocol_family_t protocol, mbuf_t packet)
274 {
275 #pragma unused(protocol)
276 #if INET
277 struct timeval start_tv;
278 if (ip6_input_measure)
279 net_perf_start_time(&net_perf, &start_tv);
280 #endif /* INET */
281 ip6_input(packet);
282 #if INET
283 if (ip6_input_measure) {
284 net_perf_measure_time(&net_perf, &start_tv, 1);
285 net_perf_histogram(&net_perf, 1);
286 }
287 #endif /* INET */
288 }
289
290 /*
291 * IP6 initialization: fill in IP6 protocol switch table.
292 * All protocols not implemented in kernel go to raw IP6 protocol handler.
293 */
294 void
295 ip6_init(struct ip6protosw *pp, struct domain *dp)
296 {
297 static int ip6_initialized = 0;
298 struct protosw *pr;
299 struct timeval tv;
300 int i;
301 domain_unguard_t unguard;
302
303 domain_proto_mtx_lock_assert_held();
304 VERIFY((pp->pr_flags & (PR_INITIALIZED|PR_ATTACHED)) == PR_ATTACHED);
305
306 _CASSERT((sizeof (struct ip6_hdr) +
307 sizeof (struct icmp6_hdr)) <= _MHLEN);
308
309 if (ip6_initialized)
310 return;
311 ip6_initialized = 1;
312
313 eventhandler_lists_ctxt_init(&in6_evhdlr_ctxt);
314 (void)EVENTHANDLER_REGISTER(&in6_evhdlr_ctxt, in6_event,
315 in6_eventhdlr_callback, eventhandler_entry_dummy_arg,
316 EVENTHANDLER_PRI_ANY);
317
318 for (i = 0; i < IN6_EVENT_MAX; i++)
319 VERIFY(in6_event2kev_array[i].in6_event_code == i);
320
321 pr = pffindproto_locked(PF_INET6, IPPROTO_RAW, SOCK_RAW);
322 if (pr == NULL) {
323 panic("%s: Unable to find [PF_INET6,IPPROTO_RAW,SOCK_RAW]\n",
324 __func__);
325 /* NOTREACHED */
326 }
327
328 /* Initialize the entire ip6_protox[] array to IPPROTO_RAW. */
329 for (i = 0; i < IPPROTO_MAX; i++)
330 ip6_protox[i] = (struct ip6protosw *)pr;
331 /*
332 * Cycle through IP protocols and put them into the appropriate place
333 * in ip6_protox[], skipping protocols IPPROTO_{IP,RAW}.
334 */
335 VERIFY(dp == inet6domain && dp->dom_family == PF_INET6);
336 TAILQ_FOREACH(pr, &dp->dom_protosw, pr_entry) {
337 VERIFY(pr->pr_domain == dp);
338 if (pr->pr_protocol != 0 && pr->pr_protocol != IPPROTO_RAW) {
339 /* Be careful to only index valid IP protocols. */
340 if (pr->pr_protocol < IPPROTO_MAX)
341 ip6_protox[pr->pr_protocol] =
342 (struct ip6protosw *)pr;
343 }
344 }
345
346 ip6_mutex_grp_attr = lck_grp_attr_alloc_init();
347
348 ip6_mutex_grp = lck_grp_alloc_init("ip6", ip6_mutex_grp_attr);
349 ip6_mutex_attr = lck_attr_alloc_init();
350
351 lck_mtx_init(dad6_mutex, ip6_mutex_grp, ip6_mutex_attr);
352 lck_mtx_init(nd6_mutex, ip6_mutex_grp, ip6_mutex_attr);
353 lck_mtx_init(prefix6_mutex, ip6_mutex_grp, ip6_mutex_attr);
354 scope6_init(ip6_mutex_grp, ip6_mutex_attr);
355
356 #ifdef ENABLE_ADDRSEL
357 lck_mtx_init(addrsel_mutex, ip6_mutex_grp, ip6_mutex_attr);
358 #endif
359
360 lck_mtx_init(&proxy6_lock, ip6_mutex_grp, ip6_mutex_attr);
361
362 in6_ifaddr_rwlock_grp_attr = lck_grp_attr_alloc_init();
363 in6_ifaddr_rwlock_grp = lck_grp_alloc_init("in6_ifaddr_rwlock",
364 in6_ifaddr_rwlock_grp_attr);
365 in6_ifaddr_rwlock_attr = lck_attr_alloc_init();
366 lck_rw_init(&in6_ifaddr_rwlock, in6_ifaddr_rwlock_grp,
367 in6_ifaddr_rwlock_attr);
368
369 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_receive);
370 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_hdrerr);
371 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_toobig);
372 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_noroute);
373 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_addrerr);
374 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_protounknown);
375 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_truncated);
376 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_discard);
377 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_deliver);
378 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_forward);
379 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_request);
380 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_discard);
381 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_fragok);
382 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_fragfail);
383 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_fragcreat);
384 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_reass_reqd);
385 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_reass_ok);
386 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_reass_fail);
387 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mcast);
388 IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mcast);
389
390 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_msg);
391 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_error);
392 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_dstunreach);
393 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_adminprohib);
394 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_timeexceed);
395 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_paramprob);
396 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_pkttoobig);
397 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_echo);
398 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_echoreply);
399 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_routersolicit);
400 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_routeradvert);
401 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_neighborsolicit);
402 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_neighboradvert);
403 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_redirect);
404 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mldquery);
405 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mldreport);
406 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mlddone);
407
408 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_msg);
409 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_error);
410 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_dstunreach);
411 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_adminprohib);
412 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_timeexceed);
413 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_paramprob);
414 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_pkttoobig);
415 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_echo);
416 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_echoreply);
417 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_routersolicit);
418 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_routeradvert);
419 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_neighborsolicit);
420 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_neighboradvert);
421 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_redirect);
422 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mldquery);
423 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mldreport);
424 ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mlddone);
425
426 getmicrotime(&tv);
427 ip6_desync_factor =
428 (RandomULong() ^ tv.tv_usec) % MAX_TEMP_DESYNC_FACTOR;
429
430 in6_ifaddr_init();
431 ip6_moptions_init();
432 nd6_init();
433 frag6_init();
434 icmp6_init(NULL, dp);
435 addrsel_policy_init();
436
437 /*
438 * P2P interfaces often route the local address to the loopback
439 * interface. At this point, lo0 hasn't been initialized yet, which
440 * means that we need to delay the IPv6 configuration of lo0.
441 */
442 net_init_add(ip6_init_delayed);
443
444 unguard = domain_unguard_deploy();
445 i = proto_register_input(PF_INET6, ip6_proto_input, NULL, 0);
446 if (i != 0) {
447 panic("%s: failed to register PF_INET6 protocol: %d\n",
448 __func__, i);
449 /* NOTREACHED */
450 }
451 domain_unguard_release(unguard);
452 }
453
454 static void
455 ip6_init_delayed(void)
456 {
457 (void) in6_ifattach_prelim(lo_ifp);
458
459 /* timer for regeneranation of temporary addresses randomize ID */
460 timeout(in6_tmpaddrtimer, NULL,
461 (ip6_temp_preferred_lifetime - ip6_desync_factor -
462 ip6_temp_regen_advance) * hz);
463
464 #if NSTF
465 stfattach();
466 #endif /* NSTF */
467 }
468
469 static void
470 ip6_input_adjust(struct mbuf *m, struct ip6_hdr *ip6, uint32_t plen,
471 struct ifnet *inifp)
472 {
473 boolean_t adjust = TRUE;
474 uint32_t tot_len = sizeof (*ip6) + plen;
475
476 ASSERT(m_pktlen(m) > tot_len);
477
478 /*
479 * Invalidate hardware checksum info if ip6_adj_clear_hwcksum
480 * is set; useful to handle buggy drivers. Note that this
481 * should not be enabled by default, as we may get here due
482 * to link-layer padding.
483 */
484 if (ip6_adj_clear_hwcksum &&
485 (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
486 !(inifp->if_flags & IFF_LOOPBACK) &&
487 !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
488 m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
489 m->m_pkthdr.csum_data = 0;
490 ip6stat.ip6s_adj_hwcsum_clr++;
491 }
492
493 /*
494 * If partial checksum information is available, subtract
495 * out the partial sum of postpended extraneous bytes, and
496 * update the checksum metadata accordingly. By doing it
497 * here, the upper layer transport only needs to adjust any
498 * prepended extraneous bytes (else it will do both.)
499 */
500 if (ip6_adj_partial_sum &&
501 (m->m_pkthdr.csum_flags & (CSUM_DATA_VALID|CSUM_PARTIAL)) ==
502 (CSUM_DATA_VALID|CSUM_PARTIAL)) {
503 m->m_pkthdr.csum_rx_val = m_adj_sum16(m,
504 m->m_pkthdr.csum_rx_start, m->m_pkthdr.csum_rx_start,
505 (tot_len - m->m_pkthdr.csum_rx_start),
506 m->m_pkthdr.csum_rx_val);
507 } else if ((m->m_pkthdr.csum_flags &
508 (CSUM_DATA_VALID|CSUM_PARTIAL)) ==
509 (CSUM_DATA_VALID|CSUM_PARTIAL)) {
510 /*
511 * If packet has partial checksum info and we decided not
512 * to subtract the partial sum of postpended extraneous
513 * bytes here (not the default case), leave that work to
514 * be handled by the other layers. For now, only TCP, UDP
515 * layers are capable of dealing with this. For all other
516 * protocols (including fragments), trim and ditch the
517 * partial sum as those layers might not implement partial
518 * checksumming (or adjustment) at all.
519 */
520 if (ip6->ip6_nxt == IPPROTO_TCP ||
521 ip6->ip6_nxt == IPPROTO_UDP) {
522 adjust = FALSE;
523 } else {
524 m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
525 m->m_pkthdr.csum_data = 0;
526 ip6stat.ip6s_adj_hwcsum_clr++;
527 }
528 }
529
530 if (adjust) {
531 ip6stat.ip6s_adj++;
532 if (m->m_len == m->m_pkthdr.len) {
533 m->m_len = tot_len;
534 m->m_pkthdr.len = tot_len;
535 } else {
536 m_adj(m, tot_len - m->m_pkthdr.len);
537 }
538 }
539 }
540
541 void
542 ip6_input(struct mbuf *m)
543 {
544 struct ip6_hdr *ip6;
545 int off = sizeof (struct ip6_hdr), nest;
546 u_int32_t plen;
547 u_int32_t rtalert = ~0;
548 int nxt = 0, ours = 0;
549 struct ifnet *inifp, *deliverifp = NULL;
550 ipfilter_t inject_ipfref = NULL;
551 int seen = 1;
552 struct in6_ifaddr *ia6 = NULL;
553 struct sockaddr_in6 *dst6;
554 #if DUMMYNET
555 struct m_tag *tag;
556 #endif /* DUMMYNET */
557 struct {
558 struct route_in6 rin6;
559 #if DUMMYNET
560 struct ip_fw_args args;
561 #endif /* DUMMYNET */
562 } ip6ibz;
563 #define rin6 ip6ibz.rin6
564 #define args ip6ibz.args
565
566 /* zero out {rin6, args} */
567 bzero(&ip6ibz, sizeof (ip6ibz));
568
569 /*
570 * Check if the packet we received is valid after interface filter
571 * processing
572 */
573 MBUF_INPUT_CHECK(m, m->m_pkthdr.rcvif);
574 inifp = m->m_pkthdr.rcvif;
575 VERIFY(inifp != NULL);
576
577 /* Perform IP header alignment fixup, if needed */
578 IP6_HDR_ALIGNMENT_FIXUP(m, inifp, return);
579
580 m->m_pkthdr.pkt_flags &= ~PKTF_FORWARDED;
581 #if IPSEC
582 /*
583 * should the inner packet be considered authentic?
584 * see comment in ah4_input().
585 */
586 m->m_flags &= ~M_AUTHIPHDR;
587 m->m_flags &= ~M_AUTHIPDGM;
588 #endif /* IPSEC */
589
590 /*
591 * make sure we don't have onion peering information into m_aux.
592 */
593 ip6_delaux(m);
594
595 #if DUMMYNET
596 if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
597 KERNEL_TAG_TYPE_DUMMYNET, NULL)) != NULL) {
598 struct dn_pkt_tag *dn_tag;
599
600 dn_tag = (struct dn_pkt_tag *)(tag+1);
601
602 args.fwa_pf_rule = dn_tag->dn_pf_rule;
603
604 m_tag_delete(m, tag);
605 }
606
607 if (args.fwa_pf_rule) {
608 ip6 = mtod(m, struct ip6_hdr *); /* In case PF got disabled */
609
610 goto check_with_pf;
611 }
612 #endif /* DUMMYNET */
613
614 /*
615 * No need to proccess packet twice if we've already seen it.
616 */
617 inject_ipfref = ipf_get_inject_filter(m);
618 if (inject_ipfref != NULL) {
619 ip6 = mtod(m, struct ip6_hdr *);
620 nxt = ip6->ip6_nxt;
621 seen = 0;
622 goto injectit;
623 } else {
624 seen = 1;
625 }
626
627 /*
628 * mbuf statistics
629 */
630 if (m->m_flags & M_EXT) {
631 if (m->m_next != NULL)
632 ip6stat.ip6s_mext2m++;
633 else
634 ip6stat.ip6s_mext1++;
635 } else {
636 #define M2MMAX (sizeof (ip6stat.ip6s_m2m) / sizeof (ip6stat.ip6s_m2m[0]))
637 if (m->m_next != NULL) {
638 if (m->m_pkthdr.pkt_flags & PKTF_LOOP) {
639 /* XXX */
640 ip6stat.ip6s_m2m[ifnet_index(lo_ifp)]++;
641 } else if (inifp->if_index < M2MMAX) {
642 ip6stat.ip6s_m2m[inifp->if_index]++;
643 } else {
644 ip6stat.ip6s_m2m[0]++;
645 }
646 } else {
647 ip6stat.ip6s_m1++;
648 }
649 #undef M2MMAX
650 }
651
652 /*
653 * Drop the packet if IPv6 operation is disabled on the interface.
654 */
655 if (inifp->if_eflags & IFEF_IPV6_DISABLED)
656 goto bad;
657
658 in6_ifstat_inc_na(inifp, ifs6_in_receive);
659 ip6stat.ip6s_total++;
660
661 /*
662 * L2 bridge code and some other code can return mbuf chain
663 * that does not conform to KAME requirement. too bad.
664 * XXX: fails to join if interface MTU > MCLBYTES. jumbogram?
665 */
666 if (m->m_next != NULL && m->m_pkthdr.len < MCLBYTES) {
667 struct mbuf *n;
668
669 MGETHDR(n, M_DONTWAIT, MT_HEADER); /* MAC-OK */
670 if (n)
671 M_COPY_PKTHDR(n, m);
672 if (n && m->m_pkthdr.len > MHLEN) {
673 MCLGET(n, M_DONTWAIT);
674 if ((n->m_flags & M_EXT) == 0) {
675 m_freem(n);
676 n = NULL;
677 }
678 }
679 if (n == NULL)
680 goto bad;
681
682 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
683 n->m_len = m->m_pkthdr.len;
684 m_freem(m);
685 m = n;
686 }
687 IP6_EXTHDR_CHECK(m, 0, sizeof (struct ip6_hdr), { goto done; });
688
689 if (m->m_len < sizeof (struct ip6_hdr)) {
690 if ((m = m_pullup(m, sizeof (struct ip6_hdr))) == 0) {
691 ip6stat.ip6s_toosmall++;
692 in6_ifstat_inc(inifp, ifs6_in_hdrerr);
693 goto done;
694 }
695 }
696
697 ip6 = mtod(m, struct ip6_hdr *);
698
699 if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) {
700 ip6stat.ip6s_badvers++;
701 in6_ifstat_inc(inifp, ifs6_in_hdrerr);
702 goto bad;
703 }
704
705 ip6stat.ip6s_nxthist[ip6->ip6_nxt]++;
706
707 /*
708 * Check against address spoofing/corruption.
709 */
710 if (!(m->m_pkthdr.pkt_flags & PKTF_LOOP) &&
711 IN6_IS_ADDR_LOOPBACK(&ip6->ip6_src)) {
712 ip6stat.ip6s_badscope++;
713 in6_ifstat_inc(inifp, ifs6_in_addrerr);
714 goto bad;
715 }
716 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src) ||
717 IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_dst)) {
718 /*
719 * XXX: "badscope" is not very suitable for a multicast source.
720 */
721 ip6stat.ip6s_badscope++;
722 in6_ifstat_inc(inifp, ifs6_in_addrerr);
723 goto bad;
724 }
725 if (IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst) &&
726 !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
727 /*
728 * In this case, the packet should come from the loopback
729 * interface. However, we cannot just check the if_flags,
730 * because ip6_mloopback() passes the "actual" interface
731 * as the outgoing/incoming interface.
732 */
733 ip6stat.ip6s_badscope++;
734 in6_ifstat_inc(inifp, ifs6_in_addrerr);
735 goto bad;
736 }
737
738 /*
739 * The following check is not documented in specs. A malicious
740 * party may be able to use IPv4 mapped addr to confuse tcp/udp stack
741 * and bypass security checks (act as if it was from 127.0.0.1 by using
742 * IPv6 src ::ffff:127.0.0.1). Be cautious.
743 *
744 * This check chokes if we are in an SIIT cloud. As none of BSDs
745 * support IPv4-less kernel compilation, we cannot support SIIT
746 * environment at all. So, it makes more sense for us to reject any
747 * malicious packets for non-SIIT environment, than try to do a
748 * partial support for SIIT environment.
749 */
750 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
751 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
752 ip6stat.ip6s_badscope++;
753 in6_ifstat_inc(inifp, ifs6_in_addrerr);
754 goto bad;
755 }
756 #if 0
757 /*
758 * Reject packets with IPv4 compatible addresses (auto tunnel).
759 *
760 * The code forbids auto tunnel relay case in RFC1933 (the check is
761 * stronger than RFC1933). We may want to re-enable it if mech-xx
762 * is revised to forbid relaying case.
763 */
764 if (IN6_IS_ADDR_V4COMPAT(&ip6->ip6_src) ||
765 IN6_IS_ADDR_V4COMPAT(&ip6->ip6_dst)) {
766 ip6stat.ip6s_badscope++;
767 in6_ifstat_inc(inifp, ifs6_in_addrerr);
768 goto bad;
769 }
770 #endif
771
772 /*
773 * Naively assume we can attribute inbound data to the route we would
774 * use to send to this destination. Asymetric routing breaks this
775 * assumption, but it still allows us to account for traffic from
776 * a remote node in the routing table.
777 * this has a very significant performance impact so we bypass
778 * if nstat_collect is disabled. We may also bypass if the
779 * protocol is tcp in the future because tcp will have a route that
780 * we can use to attribute the data to. That does mean we would not
781 * account for forwarded tcp traffic.
782 */
783 if (nstat_collect) {
784 struct rtentry *rte =
785 ifnet_cached_rtlookup_inet6(inifp, &ip6->ip6_src);
786 if (rte != NULL) {
787 nstat_route_rx(rte, 1, m->m_pkthdr.len, 0);
788 rtfree(rte);
789 }
790 }
791
792 /* for consistency */
793 m->m_pkthdr.pkt_proto = ip6->ip6_nxt;
794
795 #if DUMMYNET
796 check_with_pf:
797 #endif /* DUMMYNET */
798 #if PF
799 /* Invoke inbound packet filter */
800 if (PF_IS_ENABLED) {
801 int error;
802 #if DUMMYNET
803 error = pf_af_hook(inifp, NULL, &m, AF_INET6, TRUE, &args);
804 #else /* !DUMMYNET */
805 error = pf_af_hook(inifp, NULL, &m, AF_INET6, TRUE, NULL);
806 #endif /* !DUMMYNET */
807 if (error != 0 || m == NULL) {
808 if (m != NULL) {
809 panic("%s: unexpected packet %p\n",
810 __func__, m);
811 /* NOTREACHED */
812 }
813 /* Already freed by callee */
814 goto done;
815 }
816 ip6 = mtod(m, struct ip6_hdr *);
817 }
818 #endif /* PF */
819
820 /* drop packets if interface ID portion is already filled */
821 if (!(inifp->if_flags & IFF_LOOPBACK) &&
822 !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
823 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src) &&
824 ip6->ip6_src.s6_addr16[1]) {
825 ip6stat.ip6s_badscope++;
826 goto bad;
827 }
828 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst) &&
829 ip6->ip6_dst.s6_addr16[1]) {
830 ip6stat.ip6s_badscope++;
831 goto bad;
832 }
833 }
834
835 if (m->m_pkthdr.pkt_flags & PKTF_IFAINFO) {
836 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
837 ip6->ip6_src.s6_addr16[1] =
838 htons(m->m_pkthdr.src_ifindex);
839 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst))
840 ip6->ip6_dst.s6_addr16[1] =
841 htons(m->m_pkthdr.dst_ifindex);
842 } else {
843 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
844 ip6->ip6_src.s6_addr16[1] = htons(inifp->if_index);
845 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst))
846 ip6->ip6_dst.s6_addr16[1] = htons(inifp->if_index);
847 }
848
849 /*
850 * Multicast check
851 */
852 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
853 struct in6_multi *in6m = NULL;
854
855 in6_ifstat_inc_na(inifp, ifs6_in_mcast);
856 /*
857 * See if we belong to the destination multicast group on the
858 * arrival interface.
859 */
860 in6_multihead_lock_shared();
861 IN6_LOOKUP_MULTI(&ip6->ip6_dst, inifp, in6m);
862 in6_multihead_lock_done();
863 if (in6m != NULL) {
864 IN6M_REMREF(in6m);
865 ours = 1;
866 } else if (!nd6_prproxy) {
867 ip6stat.ip6s_notmember++;
868 ip6stat.ip6s_cantforward++;
869 in6_ifstat_inc(inifp, ifs6_in_discard);
870 goto bad;
871 }
872 deliverifp = inifp;
873 VERIFY(ia6 == NULL);
874 goto hbhcheck;
875 }
876
877 /*
878 * Unicast check
879 *
880 * Fast path: see if the target is ourselves.
881 */
882 lck_rw_lock_shared(&in6_ifaddr_rwlock);
883 for (ia6 = in6_ifaddrs; ia6 != NULL; ia6 = ia6->ia_next) {
884 /*
885 * No reference is held on the address, as we just need
886 * to test for a few things while holding the RW lock.
887 */
888 if (IN6_ARE_ADDR_EQUAL(&ia6->ia_addr.sin6_addr, &ip6->ip6_dst))
889 break;
890 }
891
892 if (ia6 != NULL) {
893 /*
894 * For performance, test without acquiring the address lock;
895 * a lot of things in the address are set once and never
896 * changed (e.g. ia_ifp.)
897 */
898 if (!(ia6->ia6_flags & IN6_IFF_NOTREADY)) {
899 /* this address is ready */
900 ours = 1;
901 deliverifp = ia6->ia_ifp;
902 /*
903 * record dst address information into mbuf.
904 */
905 (void) ip6_setdstifaddr_info(m, 0, ia6);
906 lck_rw_done(&in6_ifaddr_rwlock);
907 goto hbhcheck;
908 }
909 lck_rw_done(&in6_ifaddr_rwlock);
910 ia6 = NULL;
911 /* address is not ready, so discard the packet. */
912 nd6log((LOG_INFO, "%s: packet to an unready address %s->%s\n",
913 __func__, ip6_sprintf(&ip6->ip6_src),
914 ip6_sprintf(&ip6->ip6_dst)));
915 goto bad;
916 }
917 lck_rw_done(&in6_ifaddr_rwlock);
918
919 /*
920 * Slow path: route lookup.
921 */
922 dst6 = SIN6(&rin6.ro_dst);
923 dst6->sin6_len = sizeof (struct sockaddr_in6);
924 dst6->sin6_family = AF_INET6;
925 dst6->sin6_addr = ip6->ip6_dst;
926
927 rtalloc_scoped_ign((struct route *)&rin6,
928 RTF_PRCLONING, IFSCOPE_NONE);
929 if (rin6.ro_rt != NULL)
930 RT_LOCK_SPIN(rin6.ro_rt);
931
932 #define rt6_key(r) (SIN6((r)->rt_nodes->rn_key))
933
934 /*
935 * Accept the packet if the forwarding interface to the destination
936 * according to the routing table is the loopback interface,
937 * unless the associated route has a gateway.
938 * Note that this approach causes to accept a packet if there is a
939 * route to the loopback interface for the destination of the packet.
940 * But we think it's even useful in some situations, e.g. when using
941 * a special daemon which wants to intercept the packet.
942 *
943 * XXX: some OSes automatically make a cloned route for the destination
944 * of an outgoing packet. If the outgoing interface of the packet
945 * is a loopback one, the kernel would consider the packet to be
946 * accepted, even if we have no such address assinged on the interface.
947 * We check the cloned flag of the route entry to reject such cases,
948 * assuming that route entries for our own addresses are not made by
949 * cloning (it should be true because in6_addloop explicitly installs
950 * the host route). However, we might have to do an explicit check
951 * while it would be less efficient. Or, should we rather install a
952 * reject route for such a case?
953 */
954 if (rin6.ro_rt != NULL &&
955 (rin6.ro_rt->rt_flags & (RTF_HOST|RTF_GATEWAY)) == RTF_HOST &&
956 #if RTF_WASCLONED
957 !(rin6.ro_rt->rt_flags & RTF_WASCLONED) &&
958 #endif
959 rin6.ro_rt->rt_ifp->if_type == IFT_LOOP) {
960 ia6 = (struct in6_ifaddr *)rin6.ro_rt->rt_ifa;
961 /*
962 * Packets to a tentative, duplicated, or somehow invalid
963 * address must not be accepted.
964 *
965 * For performance, test without acquiring the address lock;
966 * a lot of things in the address are set once and never
967 * changed (e.g. ia_ifp.)
968 */
969 if (!(ia6->ia6_flags & IN6_IFF_NOTREADY)) {
970 /* this address is ready */
971 ours = 1;
972 deliverifp = ia6->ia_ifp; /* correct? */
973 /*
974 * record dst address information into mbuf.
975 */
976 (void) ip6_setdstifaddr_info(m, 0, ia6);
977 RT_UNLOCK(rin6.ro_rt);
978 goto hbhcheck;
979 }
980 RT_UNLOCK(rin6.ro_rt);
981 ia6 = NULL;
982 /* address is not ready, so discard the packet. */
983 nd6log((LOG_INFO, "%s: packet to an unready address %s->%s\n",
984 __func__, ip6_sprintf(&ip6->ip6_src),
985 ip6_sprintf(&ip6->ip6_dst)));
986 goto bad;
987 }
988
989 if (rin6.ro_rt != NULL)
990 RT_UNLOCK(rin6.ro_rt);
991
992 /*
993 * Now there is no reason to process the packet if it's not our own
994 * and we're not a router.
995 */
996 if (!ip6_forwarding) {
997 ip6stat.ip6s_cantforward++;
998 in6_ifstat_inc(inifp, ifs6_in_discard);
999 /*
1000 * Raise a kernel event if the packet received on cellular
1001 * interface is not intended for local host.
1002 * For now limit it to ICMPv6 packets.
1003 */
1004 if (inifp->if_type == IFT_CELLULAR &&
1005 ip6->ip6_nxt == IPPROTO_ICMPV6)
1006 in6_ifstat_inc(inifp, ifs6_cantfoward_icmp6);
1007 goto bad;
1008 }
1009
1010 hbhcheck:
1011 /*
1012 * record dst address information into mbuf, if we don't have one yet.
1013 * note that we are unable to record it, if the address is not listed
1014 * as our interface address (e.g. multicast addresses, etc.)
1015 */
1016 if (deliverifp != NULL && ia6 == NULL) {
1017 ia6 = in6_ifawithifp(deliverifp, &ip6->ip6_dst);
1018 if (ia6 != NULL) {
1019 (void) ip6_setdstifaddr_info(m, 0, ia6);
1020 IFA_REMREF(&ia6->ia_ifa);
1021 }
1022 }
1023
1024 /*
1025 * Process Hop-by-Hop options header if it's contained.
1026 * m may be modified in ip6_hopopts_input().
1027 * If a JumboPayload option is included, plen will also be modified.
1028 */
1029 plen = (u_int32_t)ntohs(ip6->ip6_plen);
1030 if (ip6->ip6_nxt == IPPROTO_HOPOPTS) {
1031 struct ip6_hbh *hbh;
1032
1033 /*
1034 * Mark the packet to imply that HBH option has been checked.
1035 * This can only be true is the packet came in unfragmented
1036 * or if the option is in the first fragment
1037 */
1038 m->m_pkthdr.pkt_flags |= PKTF_HBH_CHKED;
1039 if (ip6_hopopts_input(&plen, &rtalert, &m, &off)) {
1040 #if 0 /* touches NULL pointer */
1041 in6_ifstat_inc(inifp, ifs6_in_discard);
1042 #endif
1043 goto done; /* m have already been freed */
1044 }
1045
1046 /* adjust pointer */
1047 ip6 = mtod(m, struct ip6_hdr *);
1048
1049 /*
1050 * if the payload length field is 0 and the next header field
1051 * indicates Hop-by-Hop Options header, then a Jumbo Payload
1052 * option MUST be included.
1053 */
1054 if (ip6->ip6_plen == 0 && plen == 0) {
1055 /*
1056 * Note that if a valid jumbo payload option is
1057 * contained, ip6_hopopts_input() must set a valid
1058 * (non-zero) payload length to the variable plen.
1059 */
1060 ip6stat.ip6s_badoptions++;
1061 in6_ifstat_inc(inifp, ifs6_in_discard);
1062 in6_ifstat_inc(inifp, ifs6_in_hdrerr);
1063 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
1064 (caddr_t)&ip6->ip6_plen - (caddr_t)ip6);
1065 goto done;
1066 }
1067 /* ip6_hopopts_input() ensures that mbuf is contiguous */
1068 hbh = (struct ip6_hbh *)(ip6 + 1);
1069 nxt = hbh->ip6h_nxt;
1070
1071 /*
1072 * If we are acting as a router and the packet contains a
1073 * router alert option, see if we know the option value.
1074 * Currently, we only support the option value for MLD, in which
1075 * case we should pass the packet to the multicast routing
1076 * daemon.
1077 */
1078 if (rtalert != ~0 && ip6_forwarding) {
1079 switch (rtalert) {
1080 case IP6OPT_RTALERT_MLD:
1081 ours = 1;
1082 break;
1083 default:
1084 /*
1085 * RFC2711 requires unrecognized values must be
1086 * silently ignored.
1087 */
1088 break;
1089 }
1090 }
1091 } else
1092 nxt = ip6->ip6_nxt;
1093
1094 /*
1095 * Check that the amount of data in the buffers
1096 * is as at least much as the IPv6 header would have us expect.
1097 * Trim mbufs if longer than we expect.
1098 * Drop packet if shorter than we expect.
1099 */
1100 if (m->m_pkthdr.len - sizeof (struct ip6_hdr) < plen) {
1101 ip6stat.ip6s_tooshort++;
1102 in6_ifstat_inc(inifp, ifs6_in_truncated);
1103 goto bad;
1104 }
1105 if (m->m_pkthdr.len > sizeof (struct ip6_hdr) + plen) {
1106 ip6_input_adjust(m, ip6, plen, inifp);
1107 }
1108
1109 /*
1110 * Forward if desirable.
1111 */
1112 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1113 if (!ours && nd6_prproxy) {
1114 /*
1115 * If this isn't for us, this might be a Neighbor
1116 * Solicitation (dst is solicited-node multicast)
1117 * against an address in one of the proxied prefixes;
1118 * if so, claim the packet and let icmp6_input()
1119 * handle the rest.
1120 */
1121 ours = nd6_prproxy_isours(m, ip6, NULL, IFSCOPE_NONE);
1122 VERIFY(!ours ||
1123 (m->m_pkthdr.pkt_flags & PKTF_PROXY_DST));
1124 }
1125 if (!ours)
1126 goto bad;
1127 } else if (!ours) {
1128 /*
1129 * The unicast forwarding function might return the packet
1130 * if we are proxying prefix(es), and if the packet is an
1131 * ICMPv6 packet that has failed the zone checks, but is
1132 * targetted towards a proxied address (this is optimized by
1133 * way of RTF_PROXY test.) If so, claim the packet as ours
1134 * and let icmp6_input() handle the rest. The packet's hop
1135 * limit value is kept intact (it's not decremented). This
1136 * is for supporting Neighbor Unreachability Detection between
1137 * proxied nodes on different links (src is link-local, dst
1138 * is target address.)
1139 */
1140 if ((m = ip6_forward(m, &rin6, 0)) == NULL)
1141 goto done;
1142 VERIFY(rin6.ro_rt != NULL);
1143 VERIFY(m->m_pkthdr.pkt_flags & PKTF_PROXY_DST);
1144 deliverifp = rin6.ro_rt->rt_ifp;
1145 ours = 1;
1146 }
1147
1148 ip6 = mtod(m, struct ip6_hdr *);
1149
1150 /*
1151 * Malicious party may be able to use IPv4 mapped addr to confuse
1152 * tcp/udp stack and bypass security checks (act as if it was from
1153 * 127.0.0.1 by using IPv6 src ::ffff:127.0.0.1). Be cautious.
1154 *
1155 * For SIIT end node behavior, you may want to disable the check.
1156 * However, you will become vulnerable to attacks using IPv4 mapped
1157 * source.
1158 */
1159 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1160 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1161 ip6stat.ip6s_badscope++;
1162 in6_ifstat_inc(inifp, ifs6_in_addrerr);
1163 goto bad;
1164 }
1165
1166 /*
1167 * Tell launch routine the next header
1168 */
1169 ip6stat.ip6s_delivered++;
1170 in6_ifstat_inc_na(deliverifp, ifs6_in_deliver);
1171
1172 injectit:
1173 nest = 0;
1174
1175 /*
1176 * Perform IP header alignment fixup again, if needed. Note that
1177 * we do it once for the outermost protocol, and we assume each
1178 * protocol handler wouldn't mess with the alignment afterwards.
1179 */
1180 IP6_HDR_ALIGNMENT_FIXUP(m, inifp, return);
1181
1182 while (nxt != IPPROTO_DONE) {
1183 struct ipfilter *filter;
1184 int (*pr_input)(struct mbuf **, int *, int);
1185
1186 /*
1187 * This would imply either IPPROTO_HOPOPTS was not the first
1188 * option or it did not come in the first fragment.
1189 */
1190 if (nxt == IPPROTO_HOPOPTS &&
1191 (m->m_pkthdr.pkt_flags & PKTF_HBH_CHKED) == 0) {
1192 /*
1193 * This implies that HBH option was not contained
1194 * in the first fragment
1195 */
1196 ip6stat.ip6s_badoptions++;
1197 goto bad;
1198 }
1199
1200 if (ip6_hdrnestlimit && (++nest > ip6_hdrnestlimit)) {
1201 ip6stat.ip6s_toomanyhdr++;
1202 goto bad;
1203 }
1204
1205 /*
1206 * protection against faulty packet - there should be
1207 * more sanity checks in header chain processing.
1208 */
1209 if (m->m_pkthdr.len < off) {
1210 ip6stat.ip6s_tooshort++;
1211 in6_ifstat_inc(inifp, ifs6_in_truncated);
1212 goto bad;
1213 }
1214
1215 #if IPSEC
1216 /*
1217 * enforce IPsec policy checking if we are seeing last header.
1218 * note that we do not visit this with protocols with pcb layer
1219 * code - like udp/tcp/raw ip.
1220 */
1221 if ((ipsec_bypass == 0) &&
1222 (ip6_protox[nxt]->pr_flags & PR_LASTHDR) != 0) {
1223 if (ipsec6_in_reject(m, NULL)) {
1224 IPSEC_STAT_INCREMENT(ipsec6stat.in_polvio);
1225 goto bad;
1226 }
1227 }
1228 #endif /* IPSEC */
1229
1230 /*
1231 * Call IP filter
1232 */
1233 if (!TAILQ_EMPTY(&ipv6_filters) && !IFNET_IS_INTCOPROC(inifp)) {
1234 ipf_ref();
1235 TAILQ_FOREACH(filter, &ipv6_filters, ipf_link) {
1236 if (seen == 0) {
1237 if ((struct ipfilter *)inject_ipfref ==
1238 filter)
1239 seen = 1;
1240 } else if (filter->ipf_filter.ipf_input) {
1241 errno_t result;
1242
1243 result = filter->ipf_filter.ipf_input(
1244 filter->ipf_filter.cookie,
1245 (mbuf_t *)&m, off, nxt);
1246 if (result == EJUSTRETURN) {
1247 ipf_unref();
1248 goto done;
1249 }
1250 if (result != 0) {
1251 ipf_unref();
1252 goto bad;
1253 }
1254 }
1255 }
1256 ipf_unref();
1257 }
1258
1259 DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL,
1260 struct ip6_hdr *, ip6, struct ifnet *, inifp,
1261 struct ip *, NULL, struct ip6_hdr *, ip6);
1262
1263 if ((pr_input = ip6_protox[nxt]->pr_input) == NULL) {
1264 m_freem(m);
1265 m = NULL;
1266 nxt = IPPROTO_DONE;
1267 } else if (!(ip6_protox[nxt]->pr_flags & PR_PROTOLOCK)) {
1268 lck_mtx_lock(inet6_domain_mutex);
1269 nxt = pr_input(&m, &off, nxt);
1270 lck_mtx_unlock(inet6_domain_mutex);
1271 } else {
1272 nxt = pr_input(&m, &off, nxt);
1273 }
1274 }
1275 done:
1276 ROUTE_RELEASE(&rin6);
1277 return;
1278 bad:
1279 m_freem(m);
1280 goto done;
1281 }
1282
1283 void
1284 ip6_setsrcifaddr_info(struct mbuf *m, uint32_t src_idx, struct in6_ifaddr *ia6)
1285 {
1286 VERIFY(m->m_flags & M_PKTHDR);
1287
1288 /*
1289 * If the source ifaddr is specified, pick up the information
1290 * from there; otherwise just grab the passed-in ifindex as the
1291 * caller may not have the ifaddr available.
1292 */
1293 if (ia6 != NULL) {
1294 m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
1295 m->m_pkthdr.src_ifindex = ia6->ia_ifp->if_index;
1296
1297 /* See IN6_IFF comments in in6_var.h */
1298 m->m_pkthdr.src_iff = (ia6->ia6_flags & 0xffff);
1299 } else {
1300 m->m_pkthdr.src_iff = 0;
1301 m->m_pkthdr.src_ifindex = src_idx;
1302 if (src_idx != 0)
1303 m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
1304 }
1305 }
1306
1307 void
1308 ip6_setdstifaddr_info(struct mbuf *m, uint32_t dst_idx, struct in6_ifaddr *ia6)
1309 {
1310 VERIFY(m->m_flags & M_PKTHDR);
1311
1312 /*
1313 * If the destination ifaddr is specified, pick up the information
1314 * from there; otherwise just grab the passed-in ifindex as the
1315 * caller may not have the ifaddr available.
1316 */
1317 if (ia6 != NULL) {
1318 m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
1319 m->m_pkthdr.dst_ifindex = ia6->ia_ifp->if_index;
1320
1321 /* See IN6_IFF comments in in6_var.h */
1322 m->m_pkthdr.dst_iff = (ia6->ia6_flags & 0xffff);
1323 } else {
1324 m->m_pkthdr.dst_iff = 0;
1325 m->m_pkthdr.dst_ifindex = dst_idx;
1326 if (dst_idx != 0)
1327 m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
1328 }
1329 }
1330
1331 int
1332 ip6_getsrcifaddr_info(struct mbuf *m, uint32_t *src_idx, uint32_t *ia6f)
1333 {
1334 VERIFY(m->m_flags & M_PKTHDR);
1335
1336 if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO))
1337 return (-1);
1338
1339 if (src_idx != NULL)
1340 *src_idx = m->m_pkthdr.src_ifindex;
1341
1342 if (ia6f != NULL)
1343 *ia6f = m->m_pkthdr.src_iff;
1344
1345 return (0);
1346 }
1347
1348 int
1349 ip6_getdstifaddr_info(struct mbuf *m, uint32_t *dst_idx, uint32_t *ia6f)
1350 {
1351 VERIFY(m->m_flags & M_PKTHDR);
1352
1353 if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO))
1354 return (-1);
1355
1356 if (dst_idx != NULL)
1357 *dst_idx = m->m_pkthdr.dst_ifindex;
1358
1359 if (ia6f != NULL)
1360 *ia6f = m->m_pkthdr.dst_iff;
1361
1362 return (0);
1363 }
1364
1365 /*
1366 * Hop-by-Hop options header processing. If a valid jumbo payload option is
1367 * included, the real payload length will be stored in plenp.
1368 */
1369 static int
1370 ip6_hopopts_input(uint32_t *plenp, uint32_t *rtalertp, struct mbuf **mp,
1371 int *offp)
1372 {
1373 struct mbuf *m = *mp;
1374 int off = *offp, hbhlen;
1375 struct ip6_hbh *hbh;
1376 u_int8_t *opt;
1377
1378 /* validation of the length of the header */
1379 IP6_EXTHDR_CHECK(m, off, sizeof (*hbh), return (-1));
1380 hbh = (struct ip6_hbh *)(mtod(m, caddr_t) + off);
1381 hbhlen = (hbh->ip6h_len + 1) << 3;
1382
1383 IP6_EXTHDR_CHECK(m, off, hbhlen, return (-1));
1384 hbh = (struct ip6_hbh *)(mtod(m, caddr_t) + off);
1385 off += hbhlen;
1386 hbhlen -= sizeof (struct ip6_hbh);
1387 opt = (u_int8_t *)hbh + sizeof (struct ip6_hbh);
1388
1389 if (ip6_process_hopopts(m, (u_int8_t *)hbh + sizeof (struct ip6_hbh),
1390 hbhlen, rtalertp, plenp) < 0)
1391 return (-1);
1392
1393 *offp = off;
1394 *mp = m;
1395 return (0);
1396 }
1397
1398 /*
1399 * Search header for all Hop-by-hop options and process each option.
1400 * This function is separate from ip6_hopopts_input() in order to
1401 * handle a case where the sending node itself process its hop-by-hop
1402 * options header. In such a case, the function is called from ip6_output().
1403 *
1404 * The function assumes that hbh header is located right after the IPv6 header
1405 * (RFC2460 p7), opthead is pointer into data content in m, and opthead to
1406 * opthead + hbhlen is located in continuous memory region.
1407 */
1408 int
1409 ip6_process_hopopts(struct mbuf *m, u_int8_t *opthead, int hbhlen,
1410 u_int32_t *rtalertp, u_int32_t *plenp)
1411 {
1412 struct ip6_hdr *ip6;
1413 int optlen = 0;
1414 u_int8_t *opt = opthead;
1415 u_int16_t rtalert_val;
1416 u_int32_t jumboplen;
1417 const int erroff = sizeof (struct ip6_hdr) + sizeof (struct ip6_hbh);
1418
1419 for (; hbhlen > 0; hbhlen -= optlen, opt += optlen) {
1420 switch (*opt) {
1421 case IP6OPT_PAD1:
1422 optlen = 1;
1423 break;
1424 case IP6OPT_PADN:
1425 if (hbhlen < IP6OPT_MINLEN) {
1426 ip6stat.ip6s_toosmall++;
1427 goto bad;
1428 }
1429 optlen = *(opt + 1) + 2;
1430 break;
1431 case IP6OPT_ROUTER_ALERT:
1432 /* XXX may need check for alignment */
1433 if (hbhlen < IP6OPT_RTALERT_LEN) {
1434 ip6stat.ip6s_toosmall++;
1435 goto bad;
1436 }
1437 if (*(opt + 1) != IP6OPT_RTALERT_LEN - 2) {
1438 /* XXX stat */
1439 icmp6_error(m, ICMP6_PARAM_PROB,
1440 ICMP6_PARAMPROB_HEADER,
1441 erroff + opt + 1 - opthead);
1442 return (-1);
1443 }
1444 optlen = IP6OPT_RTALERT_LEN;
1445 bcopy((caddr_t)(opt + 2), (caddr_t)&rtalert_val, 2);
1446 *rtalertp = ntohs(rtalert_val);
1447 break;
1448 case IP6OPT_JUMBO:
1449 /* XXX may need check for alignment */
1450 if (hbhlen < IP6OPT_JUMBO_LEN) {
1451 ip6stat.ip6s_toosmall++;
1452 goto bad;
1453 }
1454 if (*(opt + 1) != IP6OPT_JUMBO_LEN - 2) {
1455 /* XXX stat */
1456 icmp6_error(m, ICMP6_PARAM_PROB,
1457 ICMP6_PARAMPROB_HEADER,
1458 erroff + opt + 1 - opthead);
1459 return (-1);
1460 }
1461 optlen = IP6OPT_JUMBO_LEN;
1462
1463 /*
1464 * IPv6 packets that have non 0 payload length
1465 * must not contain a jumbo payload option.
1466 */
1467 ip6 = mtod(m, struct ip6_hdr *);
1468 if (ip6->ip6_plen) {
1469 ip6stat.ip6s_badoptions++;
1470 icmp6_error(m, ICMP6_PARAM_PROB,
1471 ICMP6_PARAMPROB_HEADER,
1472 erroff + opt - opthead);
1473 return (-1);
1474 }
1475
1476 /*
1477 * We may see jumbolen in unaligned location, so
1478 * we'd need to perform bcopy().
1479 */
1480 bcopy(opt + 2, &jumboplen, sizeof (jumboplen));
1481 jumboplen = (u_int32_t)htonl(jumboplen);
1482
1483 #if 1
1484 /*
1485 * if there are multiple jumbo payload options,
1486 * *plenp will be non-zero and the packet will be
1487 * rejected.
1488 * the behavior may need some debate in ipngwg -
1489 * multiple options does not make sense, however,
1490 * there's no explicit mention in specification.
1491 */
1492 if (*plenp != 0) {
1493 ip6stat.ip6s_badoptions++;
1494 icmp6_error(m, ICMP6_PARAM_PROB,
1495 ICMP6_PARAMPROB_HEADER,
1496 erroff + opt + 2 - opthead);
1497 return (-1);
1498 }
1499 #endif
1500
1501 /*
1502 * jumbo payload length must be larger than 65535.
1503 */
1504 if (jumboplen <= IPV6_MAXPACKET) {
1505 ip6stat.ip6s_badoptions++;
1506 icmp6_error(m, ICMP6_PARAM_PROB,
1507 ICMP6_PARAMPROB_HEADER,
1508 erroff + opt + 2 - opthead);
1509 return (-1);
1510 }
1511 *plenp = jumboplen;
1512
1513 break;
1514 default: /* unknown option */
1515 if (hbhlen < IP6OPT_MINLEN) {
1516 ip6stat.ip6s_toosmall++;
1517 goto bad;
1518 }
1519 optlen = ip6_unknown_opt(opt, m,
1520 erroff + opt - opthead);
1521 if (optlen == -1) {
1522 return (-1);
1523 }
1524 optlen += 2;
1525 break;
1526 }
1527 }
1528
1529 return (0);
1530
1531 bad:
1532 m_freem(m);
1533 return (-1);
1534 }
1535
1536 /*
1537 * Unknown option processing.
1538 * The third argument `off' is the offset from the IPv6 header to the option,
1539 * which is necessary if the IPv6 header the and option header and IPv6 header
1540 * is not continuous in order to return an ICMPv6 error.
1541 */
1542 int
1543 ip6_unknown_opt(uint8_t *optp, struct mbuf *m, int off)
1544 {
1545 struct ip6_hdr *ip6;
1546
1547 switch (IP6OPT_TYPE(*optp)) {
1548 case IP6OPT_TYPE_SKIP: /* ignore the option */
1549 return ((int)*(optp + 1));
1550
1551 case IP6OPT_TYPE_DISCARD: /* silently discard */
1552 m_freem(m);
1553 return (-1);
1554
1555 case IP6OPT_TYPE_FORCEICMP: /* send ICMP even if multicasted */
1556 ip6stat.ip6s_badoptions++;
1557 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_OPTION, off);
1558 return (-1);
1559
1560 case IP6OPT_TYPE_ICMP: /* send ICMP if not multicasted */
1561 ip6stat.ip6s_badoptions++;
1562 ip6 = mtod(m, struct ip6_hdr *);
1563 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1564 (m->m_flags & (M_BCAST|M_MCAST))) {
1565 m_freem(m);
1566 } else {
1567 icmp6_error(m, ICMP6_PARAM_PROB,
1568 ICMP6_PARAMPROB_OPTION, off);
1569 }
1570 return (-1);
1571 }
1572
1573 m_freem(m); /* XXX: NOTREACHED */
1574 return (-1);
1575 }
1576
1577 /*
1578 * Create the "control" list for this pcb.
1579 * These functions will not modify mbuf chain at all.
1580 *
1581 * With KAME mbuf chain restriction:
1582 * The routine will be called from upper layer handlers like tcp6_input().
1583 * Thus the routine assumes that the caller (tcp6_input) have already
1584 * called IP6_EXTHDR_CHECK() and all the extension headers are located in the
1585 * very first mbuf on the mbuf chain.
1586 *
1587 * ip6_savecontrol_v4 will handle those options that are possible to be
1588 * set on a v4-mapped socket.
1589 * ip6_savecontrol will directly call ip6_savecontrol_v4 to handle those
1590 * options and handle the v6-only ones itself.
1591 */
1592 struct mbuf **
1593 ip6_savecontrol_v4(struct inpcb *inp, struct mbuf *m, struct mbuf **mp,
1594 int *v4only)
1595 {
1596 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1597
1598 if ((inp->inp_socket->so_options & SO_TIMESTAMP) != 0) {
1599 struct timeval tv;
1600
1601 getmicrotime(&tv);
1602 mp = sbcreatecontrol_mbuf((caddr_t)&tv, sizeof (tv),
1603 SCM_TIMESTAMP, SOL_SOCKET, mp);
1604 if (*mp == NULL)
1605 return (NULL);
1606 }
1607 if ((inp->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0) {
1608 uint64_t time;
1609
1610 time = mach_absolute_time();
1611 mp = sbcreatecontrol_mbuf((caddr_t)&time, sizeof (time),
1612 SCM_TIMESTAMP_MONOTONIC, SOL_SOCKET, mp);
1613 if (*mp == NULL)
1614 return (NULL);
1615 }
1616 if ((inp->inp_socket->so_flags & SOF_RECV_TRAFFIC_CLASS) != 0) {
1617 int tc = m_get_traffic_class(m);
1618
1619 mp = sbcreatecontrol_mbuf((caddr_t)&tc, sizeof (tc),
1620 SO_TRAFFIC_CLASS, SOL_SOCKET, mp);
1621 if (*mp == NULL)
1622 return (NULL);
1623 }
1624
1625 if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) {
1626 if (v4only != NULL)
1627 *v4only = 1;
1628 return (mp);
1629 }
1630
1631 #define IS2292(inp, x, y) (((inp)->inp_flags & IN6P_RFC2292) ? (x) : (y))
1632 /* RFC 2292 sec. 5 */
1633 if ((inp->inp_flags & IN6P_PKTINFO) != 0) {
1634 struct in6_pktinfo pi6;
1635
1636 bcopy(&ip6->ip6_dst, &pi6.ipi6_addr, sizeof (struct in6_addr));
1637 in6_clearscope(&pi6.ipi6_addr); /* XXX */
1638 pi6.ipi6_ifindex =
1639 (m && m->m_pkthdr.rcvif) ? m->m_pkthdr.rcvif->if_index : 0;
1640
1641 mp = sbcreatecontrol_mbuf((caddr_t)&pi6,
1642 sizeof (struct in6_pktinfo),
1643 IS2292(inp, IPV6_2292PKTINFO, IPV6_PKTINFO),
1644 IPPROTO_IPV6, mp);
1645 if (*mp == NULL)
1646 return (NULL);
1647 }
1648
1649 if ((inp->inp_flags & IN6P_HOPLIMIT) != 0) {
1650 int hlim = ip6->ip6_hlim & 0xff;
1651
1652 mp = sbcreatecontrol_mbuf((caddr_t)&hlim, sizeof (int),
1653 IS2292(inp, IPV6_2292HOPLIMIT, IPV6_HOPLIMIT),
1654 IPPROTO_IPV6, mp);
1655 if (*mp == NULL)
1656 return (NULL);
1657 }
1658
1659 if (v4only != NULL)
1660 *v4only = 0;
1661 return (mp);
1662 }
1663
1664 int
1665 ip6_savecontrol(struct inpcb *in6p, struct mbuf *m, struct mbuf **mp)
1666 {
1667 struct mbuf **np;
1668 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1669 int v4only = 0;
1670
1671 *mp = NULL;
1672 np = ip6_savecontrol_v4(in6p, m, mp, &v4only);
1673 if (np == NULL)
1674 goto no_mbufs;
1675
1676 mp = np;
1677 if (v4only)
1678 return (0);
1679
1680 if ((in6p->inp_flags & IN6P_TCLASS) != 0) {
1681 u_int32_t flowinfo;
1682 int tclass;
1683
1684 flowinfo = (u_int32_t)ntohl(ip6->ip6_flow & IPV6_FLOWINFO_MASK);
1685 flowinfo >>= 20;
1686
1687 tclass = flowinfo & 0xff;
1688 mp = sbcreatecontrol_mbuf((caddr_t)&tclass, sizeof (tclass),
1689 IPV6_TCLASS, IPPROTO_IPV6, mp);
1690 if (*mp == NULL)
1691 goto no_mbufs;
1692 }
1693
1694 /*
1695 * IPV6_HOPOPTS socket option. Recall that we required super-user
1696 * privilege for the option (see ip6_ctloutput), but it might be too
1697 * strict, since there might be some hop-by-hop options which can be
1698 * returned to normal user.
1699 * See also RFC 2292 section 6 (or RFC 3542 section 8).
1700 */
1701 if ((in6p->inp_flags & IN6P_HOPOPTS) != 0) {
1702 /*
1703 * Check if a hop-by-hop options header is contatined in the
1704 * received packet, and if so, store the options as ancillary
1705 * data. Note that a hop-by-hop options header must be
1706 * just after the IPv6 header, which is assured through the
1707 * IPv6 input processing.
1708 */
1709 ip6 = mtod(m, struct ip6_hdr *);
1710 if (ip6->ip6_nxt == IPPROTO_HOPOPTS) {
1711 struct ip6_hbh *hbh;
1712 int hbhlen = 0;
1713 hbh = (struct ip6_hbh *)(ip6 + 1);
1714 hbhlen = (hbh->ip6h_len + 1) << 3;
1715
1716 /*
1717 * XXX: We copy the whole header even if a
1718 * jumbo payload option is included, the option which
1719 * is to be removed before returning according to
1720 * RFC2292.
1721 * Note: this constraint is removed in RFC3542
1722 */
1723 mp = sbcreatecontrol_mbuf((caddr_t)hbh, hbhlen,
1724 IS2292(in6p, IPV6_2292HOPOPTS, IPV6_HOPOPTS),
1725 IPPROTO_IPV6, mp);
1726
1727 if (*mp == NULL) {
1728 goto no_mbufs;
1729 }
1730 }
1731 }
1732
1733 if ((in6p->inp_flags & (IN6P_RTHDR | IN6P_DSTOPTS)) != 0) {
1734 int nxt = ip6->ip6_nxt, off = sizeof (struct ip6_hdr);
1735
1736 /*
1737 * Search for destination options headers or routing
1738 * header(s) through the header chain, and stores each
1739 * header as ancillary data.
1740 * Note that the order of the headers remains in
1741 * the chain of ancillary data.
1742 */
1743 while (1) { /* is explicit loop prevention necessary? */
1744 struct ip6_ext *ip6e = NULL;
1745 int elen;
1746
1747 /*
1748 * if it is not an extension header, don't try to
1749 * pull it from the chain.
1750 */
1751 switch (nxt) {
1752 case IPPROTO_DSTOPTS:
1753 case IPPROTO_ROUTING:
1754 case IPPROTO_HOPOPTS:
1755 case IPPROTO_AH: /* is it possible? */
1756 break;
1757 default:
1758 goto loopend;
1759 }
1760
1761 if (off + sizeof (*ip6e) > m->m_len)
1762 goto loopend;
1763 ip6e = (struct ip6_ext *)(mtod(m, caddr_t) + off);
1764 if (nxt == IPPROTO_AH)
1765 elen = (ip6e->ip6e_len + 2) << 2;
1766 else
1767 elen = (ip6e->ip6e_len + 1) << 3;
1768 if (off + elen > m->m_len)
1769 goto loopend;
1770
1771 switch (nxt) {
1772 case IPPROTO_DSTOPTS:
1773 if (!(in6p->inp_flags & IN6P_DSTOPTS))
1774 break;
1775
1776 mp = sbcreatecontrol_mbuf((caddr_t)ip6e, elen,
1777 IS2292(in6p, IPV6_2292DSTOPTS,
1778 IPV6_DSTOPTS), IPPROTO_IPV6, mp);
1779 if (*mp == NULL) {
1780 goto no_mbufs;
1781 }
1782 break;
1783 case IPPROTO_ROUTING:
1784 if (!(in6p->inp_flags & IN6P_RTHDR))
1785 break;
1786
1787 mp = sbcreatecontrol_mbuf((caddr_t)ip6e, elen,
1788 IS2292(in6p, IPV6_2292RTHDR, IPV6_RTHDR),
1789 IPPROTO_IPV6, mp);
1790 if (*mp == NULL) {
1791 goto no_mbufs;
1792 }
1793 break;
1794 case IPPROTO_HOPOPTS:
1795 case IPPROTO_AH: /* is it possible? */
1796 break;
1797
1798 default:
1799 /*
1800 * other cases have been filtered in the above.
1801 * none will visit this case. here we supply
1802 * the code just in case (nxt overwritten or
1803 * other cases).
1804 */
1805 goto loopend;
1806
1807 }
1808
1809 /* proceed with the next header. */
1810 off += elen;
1811 nxt = ip6e->ip6e_nxt;
1812 ip6e = NULL;
1813 }
1814 loopend:
1815 ;
1816 }
1817 return (0);
1818 no_mbufs:
1819 ip6stat.ip6s_pktdropcntrl++;
1820 /* XXX increment a stat to show the failure */
1821 return (ENOBUFS);
1822 }
1823 #undef IS2292
1824
1825 void
1826 ip6_notify_pmtu(struct inpcb *in6p, struct sockaddr_in6 *dst, u_int32_t *mtu)
1827 {
1828 struct socket *so;
1829 struct mbuf *m_mtu;
1830 struct ip6_mtuinfo mtuctl;
1831
1832 so = in6p->inp_socket;
1833
1834 if ((in6p->inp_flags & IN6P_MTU) == 0)
1835 return;
1836
1837 if (mtu == NULL)
1838 return;
1839
1840 #ifdef DIAGNOSTIC
1841 if (so == NULL) { /* I believe this is impossible */
1842 panic("ip6_notify_pmtu: socket is NULL");
1843 /* NOTREACHED */
1844 }
1845 #endif
1846
1847 if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr) &&
1848 (so->so_proto == NULL || so->so_proto->pr_protocol == IPPROTO_TCP))
1849 return;
1850
1851 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr) &&
1852 !IN6_ARE_ADDR_EQUAL(&in6p->in6p_faddr, &dst->sin6_addr))
1853 return;
1854
1855 bzero(&mtuctl, sizeof (mtuctl)); /* zero-clear for safety */
1856 mtuctl.ip6m_mtu = *mtu;
1857 mtuctl.ip6m_addr = *dst;
1858 if (sa6_recoverscope(&mtuctl.ip6m_addr, TRUE))
1859 return;
1860
1861 if ((m_mtu = sbcreatecontrol((caddr_t)&mtuctl, sizeof (mtuctl),
1862 IPV6_PATHMTU, IPPROTO_IPV6)) == NULL)
1863 return;
1864
1865 if (sbappendaddr(&so->so_rcv, SA(dst), NULL, m_mtu, NULL) == 0) {
1866 m_freem(m_mtu);
1867 /* XXX: should count statistics */
1868 } else {
1869 sorwakeup(so);
1870 }
1871 }
1872
1873 /*
1874 * Get pointer to the previous header followed by the header
1875 * currently processed.
1876 * XXX: This function supposes that
1877 * M includes all headers,
1878 * the next header field and the header length field of each header
1879 * are valid, and
1880 * the sum of each header length equals to OFF.
1881 * Because of these assumptions, this function must be called very
1882 * carefully. Moreover, it will not be used in the near future when
1883 * we develop `neater' mechanism to process extension headers.
1884 */
1885 char *
1886 ip6_get_prevhdr(struct mbuf *m, int off)
1887 {
1888 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1889
1890 if (off == sizeof (struct ip6_hdr)) {
1891 return ((char *)&ip6->ip6_nxt);
1892 } else {
1893 int len, nxt;
1894 struct ip6_ext *ip6e = NULL;
1895
1896 nxt = ip6->ip6_nxt;
1897 len = sizeof (struct ip6_hdr);
1898 while (len < off) {
1899 ip6e = (struct ip6_ext *)(mtod(m, caddr_t) + len);
1900
1901 switch (nxt) {
1902 case IPPROTO_FRAGMENT:
1903 len += sizeof (struct ip6_frag);
1904 break;
1905 case IPPROTO_AH:
1906 len += (ip6e->ip6e_len + 2) << 2;
1907 break;
1908 default:
1909 len += (ip6e->ip6e_len + 1) << 3;
1910 break;
1911 }
1912 nxt = ip6e->ip6e_nxt;
1913 }
1914 if (ip6e)
1915 return ((char *)&ip6e->ip6e_nxt);
1916 else
1917 return (NULL);
1918 }
1919 }
1920
1921 /*
1922 * get next header offset. m will be retained.
1923 */
1924 int
1925 ip6_nexthdr(struct mbuf *m, int off, int proto, int *nxtp)
1926 {
1927 struct ip6_hdr ip6;
1928 struct ip6_ext ip6e;
1929 struct ip6_frag fh;
1930
1931 /* just in case */
1932 VERIFY(m != NULL);
1933 if ((m->m_flags & M_PKTHDR) == 0 || m->m_pkthdr.len < off)
1934 return (-1);
1935
1936 switch (proto) {
1937 case IPPROTO_IPV6:
1938 if (m->m_pkthdr.len < off + sizeof (ip6))
1939 return (-1);
1940 m_copydata(m, off, sizeof (ip6), (caddr_t)&ip6);
1941 if (nxtp)
1942 *nxtp = ip6.ip6_nxt;
1943 off += sizeof (ip6);
1944 return (off);
1945
1946 case IPPROTO_FRAGMENT:
1947 /*
1948 * terminate parsing if it is not the first fragment,
1949 * it does not make sense to parse through it.
1950 */
1951 if (m->m_pkthdr.len < off + sizeof (fh))
1952 return (-1);
1953 m_copydata(m, off, sizeof (fh), (caddr_t)&fh);
1954 /* IP6F_OFF_MASK = 0xfff8(BigEndian), 0xf8ff(LittleEndian) */
1955 if (fh.ip6f_offlg & IP6F_OFF_MASK)
1956 return (-1);
1957 if (nxtp)
1958 *nxtp = fh.ip6f_nxt;
1959 off += sizeof (struct ip6_frag);
1960 return (off);
1961
1962 case IPPROTO_AH:
1963 if (m->m_pkthdr.len < off + sizeof (ip6e))
1964 return (-1);
1965 m_copydata(m, off, sizeof (ip6e), (caddr_t)&ip6e);
1966 if (nxtp)
1967 *nxtp = ip6e.ip6e_nxt;
1968 off += (ip6e.ip6e_len + 2) << 2;
1969 return (off);
1970
1971 case IPPROTO_HOPOPTS:
1972 case IPPROTO_ROUTING:
1973 case IPPROTO_DSTOPTS:
1974 if (m->m_pkthdr.len < off + sizeof (ip6e))
1975 return (-1);
1976 m_copydata(m, off, sizeof (ip6e), (caddr_t)&ip6e);
1977 if (nxtp)
1978 *nxtp = ip6e.ip6e_nxt;
1979 off += (ip6e.ip6e_len + 1) << 3;
1980 return (off);
1981
1982 case IPPROTO_NONE:
1983 case IPPROTO_ESP:
1984 case IPPROTO_IPCOMP:
1985 /* give up */
1986 return (-1);
1987
1988 default:
1989 return (-1);
1990 }
1991 }
1992
1993 /*
1994 * get offset for the last header in the chain. m will be kept untainted.
1995 */
1996 int
1997 ip6_lasthdr(struct mbuf *m, int off, int proto, int *nxtp)
1998 {
1999 int newoff;
2000 int nxt;
2001
2002 if (!nxtp) {
2003 nxt = -1;
2004 nxtp = &nxt;
2005 }
2006 while (1) {
2007 newoff = ip6_nexthdr(m, off, proto, nxtp);
2008 if (newoff < 0)
2009 return (off);
2010 else if (newoff < off)
2011 return (-1); /* invalid */
2012 else if (newoff == off)
2013 return (newoff);
2014
2015 off = newoff;
2016 proto = *nxtp;
2017 }
2018 }
2019
2020 struct ip6aux *
2021 ip6_addaux(struct mbuf *m)
2022 {
2023 struct m_tag *tag;
2024
2025 /* Check if one is already allocated */
2026 tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
2027 KERNEL_TAG_TYPE_INET6, NULL);
2028 if (tag == NULL) {
2029 /* Allocate a tag */
2030 tag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_INET6,
2031 sizeof (struct ip6aux), M_DONTWAIT, m);
2032
2033 /* Attach it to the mbuf */
2034 if (tag) {
2035 m_tag_prepend(m, tag);
2036 }
2037 }
2038
2039 return (tag ? (struct ip6aux *)(tag + 1) : NULL);
2040 }
2041
2042 struct ip6aux *
2043 ip6_findaux(struct mbuf *m)
2044 {
2045 struct m_tag *tag;
2046
2047 tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
2048 KERNEL_TAG_TYPE_INET6, NULL);
2049
2050 return (tag ? (struct ip6aux *)(tag + 1) : NULL);
2051 }
2052
2053 void
2054 ip6_delaux(struct mbuf *m)
2055 {
2056 struct m_tag *tag;
2057
2058 tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
2059 KERNEL_TAG_TYPE_INET6, NULL);
2060 if (tag) {
2061 m_tag_delete(m, tag);
2062 }
2063 }
2064
2065 /*
2066 * Drain callback
2067 */
2068 void
2069 ip6_drain(void)
2070 {
2071 frag6_drain(); /* fragments */
2072 in6_rtqdrain(); /* protocol cloned routes */
2073 nd6_drain(NULL); /* cloned routes: ND6 */
2074 }
2075
2076 /*
2077 * System control for IP6
2078 */
2079
2080 u_char inet6ctlerrmap[PRC_NCMDS] = {
2081 0, 0, 0, 0,
2082 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
2083 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
2084 EMSGSIZE, EHOSTUNREACH, 0, 0,
2085 0, 0, 0, 0,
2086 ENOPROTOOPT
2087 };
2088
2089 static int
2090 sysctl_reset_ip6_input_stats SYSCTL_HANDLER_ARGS
2091 {
2092 #pragma unused(arg1, arg2)
2093 int error, i;
2094
2095 i = ip6_input_measure;
2096 error = sysctl_handle_int(oidp, &i, 0, req);
2097 if (error || req->newptr == USER_ADDR_NULL)
2098 goto done;
2099 /* impose bounds */
2100 if (i < 0 || i > 1) {
2101 error = EINVAL;
2102 goto done;
2103 }
2104 if (ip6_input_measure != i && i == 1) {
2105 net_perf_initialize(&net_perf, ip6_input_measure_bins);
2106 }
2107 ip6_input_measure = i;
2108 done:
2109 return (error);
2110 }
2111
2112 static int
2113 sysctl_ip6_input_measure_bins SYSCTL_HANDLER_ARGS
2114 {
2115 #pragma unused(arg1, arg2)
2116 int error;
2117 uint64_t i;
2118
2119 i = ip6_input_measure_bins;
2120 error = sysctl_handle_quad(oidp, &i, 0, req);
2121 if (error || req->newptr == USER_ADDR_NULL)
2122 goto done;
2123 /* validate data */
2124 if (!net_perf_validate_bins(i)) {
2125 error = EINVAL;
2126 goto done;
2127 }
2128 ip6_input_measure_bins = i;
2129 done:
2130 return (error);
2131 }
2132
2133 static int
2134 sysctl_ip6_input_getperf SYSCTL_HANDLER_ARGS
2135 {
2136 #pragma unused(oidp, arg1, arg2)
2137 if (req->oldptr == USER_ADDR_NULL)
2138 req->oldlen = (size_t)sizeof (struct ipstat);
2139
2140 return (SYSCTL_OUT(req, &net_perf, MIN(sizeof (net_perf), req->oldlen)));
2141 }