]>
git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/ip_dummynet.c
6b599e42c2906a93322b33dbb1987a1860f9abf5
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
4 * @APPLE_LICENSE_HEADER_START@
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
20 * @APPLE_LICENSE_HEADER_END@
23 * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
24 * Portions Copyright (c) 2000 Akamba Corp.
27 * Redistribution and use in source and binary forms, with or without
28 * modification, are permitted provided that the following conditions
30 * 1. Redistributions of source code must retain the above copyright
31 * notice, this list of conditions and the following disclaimer.
32 * 2. Redistributions in binary form must reproduce the above copyright
33 * notice, this list of conditions and the following disclaimer in the
34 * documentation and/or other materials provided with the distribution.
36 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
37 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
40 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
48 * $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.84 2004/08/25 09:31:30 pjd Exp $
51 #define DUMMYNET_DEBUG
54 * This module implements IP dummynet, a bandwidth limiter/delay emulator
55 * used in conjunction with the ipfw package.
56 * Description of the data structures used is in ip_dummynet.h
57 * Here you mainly find the following blocks of code:
58 * + variable declarations;
59 * + heap management functions;
60 * + scheduler and dummynet functions;
61 * + configuration and initialization.
63 * NOTA BENE: critical sections are protected by the "dummynet lock".
65 * Most important Changes:
67 * 010124: Fixed WF2Q behaviour
68 * 010122: Fixed spl protection.
69 * 000601: WF2Q support
70 * 000106: large rewrite, use heaps to handle very many pipes.
71 * 980513: initial release
73 * include files marked with XXX are probably not needed
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/malloc.h>
80 #include <sys/queue.h> /* XXX */
81 #include <sys/kernel.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
85 #include <sys/sysctl.h>
87 #include <net/route.h>
88 #include <net/kpi_protocol.h>
89 #include <netinet/in.h>
90 #include <netinet/in_systm.h>
91 #include <netinet/in_var.h>
92 #include <netinet/ip.h>
93 #include <netinet/ip_fw.h>
94 #include <netinet/ip_dummynet.h>
95 #include <netinet/ip_var.h>
98 #include <netinet/if_ether.h> /* for struct arpcom */
99 #include <net/bridge.h>
103 * We keep a private variable for the simulation time, but we could
104 * probably use an existing one ("softticks" in sys/kern/kern_timer.c)
106 static dn_key curr_time
= 0 ; /* current simulation time */
108 /* this is for the timer that fires to call dummynet() - we only enable the timer when
109 there are packets to process, otherwise it's disabled */
110 static int timer_enabled
= 0;
112 static int dn_hash_size
= 64 ; /* default hash size */
114 /* statistics on number of queue searches and search steps */
115 static int searches
, search_steps
;
116 static int pipe_expire
= 1 ; /* expire queue if empty */
117 static int dn_max_ratio
= 16 ; /* max queues/buckets ratio */
119 static int red_lookup_depth
= 256; /* RED - default lookup table depth */
120 static int red_avg_pkt_size
= 512; /* RED - default medium packet size */
121 static int red_max_pkt_size
= 1500; /* RED - default max packet size */
124 * Three heaps contain queues and pipes that the scheduler handles:
126 * ready_heap contains all dn_flow_queue related to fixed-rate pipes.
128 * wfq_ready_heap contains the pipes associated with WF2Q flows
130 * extract_heap contains pipes associated with delay lines.
133 static struct dn_heap ready_heap
, extract_heap
, wfq_ready_heap
;
135 static int heap_init(struct dn_heap
*h
, int size
) ;
136 static int heap_insert (struct dn_heap
*h
, dn_key key1
, void *p
);
137 static void heap_extract(struct dn_heap
*h
, void *obj
);
139 static void transmit_event(struct dn_pipe
*pipe
);
140 static void ready_event(struct dn_flow_queue
*q
);
142 static struct dn_pipe
*all_pipes
= NULL
; /* list of all pipes */
143 static struct dn_flow_set
*all_flow_sets
= NULL
;/* list of all flow_sets */
146 SYSCTL_NODE(_net_inet_ip
, OID_AUTO
, dummynet
,
147 CTLFLAG_RW
, 0, "Dummynet");
148 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, hash_size
,
149 CTLFLAG_RW
, &dn_hash_size
, 0, "Default hash table size");
150 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, curr_time
,
151 CTLFLAG_RD
, &curr_time
, 0, "Current tick");
152 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, ready_heap
,
153 CTLFLAG_RD
, &ready_heap
.size
, 0, "Size of ready heap");
154 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, extract_heap
,
155 CTLFLAG_RD
, &extract_heap
.size
, 0, "Size of extract heap");
156 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, searches
,
157 CTLFLAG_RD
, &searches
, 0, "Number of queue searches");
158 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, search_steps
,
159 CTLFLAG_RD
, &search_steps
, 0, "Number of queue search steps");
160 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, expire
,
161 CTLFLAG_RW
, &pipe_expire
, 0, "Expire queue if empty");
162 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, max_chain_len
,
163 CTLFLAG_RW
, &dn_max_ratio
, 0,
164 "Max ratio between dynamic queues and buckets");
165 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, red_lookup_depth
,
166 CTLFLAG_RD
, &red_lookup_depth
, 0, "Depth of RED lookup table");
167 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, red_avg_pkt_size
,
168 CTLFLAG_RD
, &red_avg_pkt_size
, 0, "RED Medium packet size");
169 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, red_max_pkt_size
,
170 CTLFLAG_RD
, &red_max_pkt_size
, 0, "RED Max packet size");
173 #ifdef DUMMYNET_DEBUG
174 int dummynet_debug
= 0;
176 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, debug
, CTLFLAG_RW
, &dummynet_debug
,
177 0, "control debugging printfs");
179 #define DPRINTF(X) if (dummynet_debug) printf X
185 lck_grp_t
*dn_mutex_grp
;
186 lck_grp_attr_t
*dn_mutex_grp_attr
;
187 lck_attr_t
*dn_mutex_attr
;
190 static int config_pipe(struct dn_pipe
*p
);
191 static int ip_dn_ctl(struct sockopt
*sopt
);
193 static void dummynet(void *);
194 static void dummynet_flush(void);
195 void dummynet_drain(void);
196 static ip_dn_io_t dummynet_io
;
197 static void dn_rule_delete(void *);
199 int if_tx_rdy(struct ifnet
*ifp
);
201 extern lck_mtx_t
*rt_mtx
; /* route global lock */
204 * Heap management functions.
206 * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2.
207 * Some macros help finding parent/children so we can optimize them.
209 * heap_init() is called to expand the heap when needed.
210 * Increment size in blocks of 16 entries.
211 * XXX failure to allocate a new element is a pretty bad failure
212 * as we basically stall a whole queue forever!!
213 * Returns 1 on error, 0 on success
215 #define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 )
216 #define HEAP_LEFT(x) ( 2*(x) + 1 )
217 #define HEAP_IS_LEFT(x) ( (x) & 1 )
218 #define HEAP_RIGHT(x) ( 2*(x) + 2 )
219 #define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
220 #define HEAP_INCREMENT 15
223 heap_init(struct dn_heap
*h
, int new_size
)
225 struct dn_heap_entry
*p
;
227 if (h
->size
>= new_size
) {
228 printf("dummynet: heap_init, Bogus call, have %d want %d\n",
232 new_size
= (new_size
+ HEAP_INCREMENT
) & ~HEAP_INCREMENT
;
233 p
= _MALLOC(new_size
* sizeof(*p
), M_DUMMYNET
, M_DONTWAIT
);
235 printf("dummynet: heap_init, resize %d failed\n", new_size
);
236 return 1 ; /* error */
239 bcopy(h
->p
, p
, h
->size
* sizeof(*p
) );
240 FREE(h
->p
, M_DUMMYNET
);
248 * Insert element in heap. Normally, p != NULL, we insert p in
249 * a new position and bubble up. If p == NULL, then the element is
250 * already in place, and key is the position where to start the
252 * Returns 1 on failure (cannot allocate new heap entry)
254 * If offset > 0 the position (index, int) of the element in the heap is
255 * also stored in the element itself at the given offset in bytes.
257 #define SET_OFFSET(heap, node) \
258 if (heap->offset > 0) \
259 *((int *)((char *)(heap->p[node].object) + heap->offset)) = node ;
261 * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value.
263 #define RESET_OFFSET(heap, node) \
264 if (heap->offset > 0) \
265 *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ;
267 heap_insert(struct dn_heap
*h
, dn_key key1
, void *p
)
269 int son
= h
->elements
;
271 if (p
== NULL
) /* data already there, set starting point */
273 else { /* insert new element at the end, possibly resize */
275 if (son
== h
->size
) /* need resize... */
276 if (heap_init(h
, h
->elements
+1) )
277 return 1 ; /* failure... */
278 h
->p
[son
].object
= p
;
279 h
->p
[son
].key
= key1
;
282 while (son
> 0) { /* bubble up */
283 int father
= HEAP_FATHER(son
) ;
284 struct dn_heap_entry tmp
;
286 if (DN_KEY_LT( h
->p
[father
].key
, h
->p
[son
].key
) )
287 break ; /* found right position */
288 /* son smaller than father, swap and repeat */
289 HEAP_SWAP(h
->p
[son
], h
->p
[father
], tmp
) ;
298 * remove top element from heap, or obj if obj != NULL
301 heap_extract(struct dn_heap
*h
, void *obj
)
303 int child
, father
, max
= h
->elements
- 1 ;
306 printf("dummynet: warning, extract from empty heap 0x%p\n", h
);
309 father
= 0 ; /* default: move up smallest child */
310 if (obj
!= NULL
) { /* extract specific element, index is at offset */
312 panic("dummynet: heap_extract from middle not supported on this heap!!!\n");
313 father
= *((int *)((char *)obj
+ h
->offset
)) ;
314 if (father
< 0 || father
>= h
->elements
) {
315 printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
316 father
, h
->elements
);
317 panic("dummynet: heap_extract");
320 RESET_OFFSET(h
, father
);
321 child
= HEAP_LEFT(father
) ; /* left child */
322 while (child
<= max
) { /* valid entry */
323 if (child
!= max
&& DN_KEY_LT(h
->p
[child
+1].key
, h
->p
[child
].key
) )
324 child
= child
+1 ; /* take right child, otherwise left */
325 h
->p
[father
] = h
->p
[child
] ;
326 SET_OFFSET(h
, father
);
328 child
= HEAP_LEFT(child
) ; /* left child for next loop */
333 * Fill hole with last entry and bubble up, reusing the insert code
335 h
->p
[father
] = h
->p
[max
] ;
336 heap_insert(h
, father
, NULL
); /* this one cannot fail */
342 * change object position and update references
343 * XXX this one is never used!
346 heap_move(struct dn_heap
*h
, dn_key new_key
, void *object
)
350 int max
= h
->elements
-1 ;
351 struct dn_heap_entry buf
;
354 panic("cannot move items on this heap");
356 i
= *((int *)((char *)object
+ h
->offset
));
357 if (DN_KEY_LT(new_key
, h
->p
[i
].key
) ) { /* must move up */
358 h
->p
[i
].key
= new_key
;
359 for (; i
>0 && DN_KEY_LT(new_key
, h
->p
[(temp
= HEAP_FATHER(i
))].key
) ;
360 i
= temp
) { /* bubble up */
361 HEAP_SWAP(h
->p
[i
], h
->p
[temp
], buf
) ;
364 } else { /* must move down */
365 h
->p
[i
].key
= new_key
;
366 while ( (temp
= HEAP_LEFT(i
)) <= max
) { /* found left child */
367 if ((temp
!= max
) && DN_KEY_GT(h
->p
[temp
].key
, h
->p
[temp
+1].key
))
368 temp
++ ; /* select child with min key */
369 if (DN_KEY_GT(new_key
, h
->p
[temp
].key
)) { /* go down */
370 HEAP_SWAP(h
->p
[i
], h
->p
[temp
], buf
) ;
379 #endif /* heap_move, unused */
382 * heapify() will reorganize data inside an array to maintain the
383 * heap property. It is needed when we delete a bunch of entries.
386 heapify(struct dn_heap
*h
)
390 for (i
= 0 ; i
< h
->elements
; i
++ )
391 heap_insert(h
, i
, NULL
) ;
395 * cleanup the heap and free data structure
398 heap_free(struct dn_heap
*h
)
401 FREE(h
->p
, M_DUMMYNET
);
402 bzero(h
, sizeof(*h
) );
406 * --- end of heap management functions ---
410 * Return the mbuf tag holding the dummynet state. As an optimization
411 * this is assumed to be the first tag on the list. If this turns out
412 * wrong we'll need to search the list.
414 static struct dn_pkt_tag
*
415 dn_tag_get(struct mbuf
*m
)
417 struct m_tag
*mtag
= m_tag_first(m
);
418 /* KASSERT(mtag != NULL &&
419 mtag->m_tag_id == KERNEL_MODULE_TAG_ID &&
420 mtag->m_tag_type == KERNEL_TAG_TYPE_DUMMYNET,
421 ("packet on dummynet queue w/o dummynet tag!"));
423 return (struct dn_pkt_tag
*)(mtag
+1);
427 * Scheduler functions:
429 * transmit_event() is called when the delay-line needs to enter
430 * the scheduler, either because of existing pkts getting ready,
431 * or new packets entering the queue. The event handled is the delivery
432 * time of the packet.
434 * ready_event() does something similar with fixed-rate queues, and the
435 * event handled is the finish time of the head pkt.
437 * wfq_ready_event() does something similar with WF2Q queues, and the
438 * event handled is the start time of the head pkt.
440 * In all cases, we make sure that the data structures are consistent
441 * before passing pkts out, because this might trigger recursive
442 * invocations of the procedures.
445 transmit_event(struct dn_pipe
*pipe
)
448 struct dn_pkt_tag
*pkt
;
451 lck_mtx_assert(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
453 while ( (m
= pipe
->head
) ) {
455 if ( !DN_KEY_LEQ(pkt
->output_time
, curr_time
) )
458 * first unlink, then call procedures, since ip_input() can invoke
459 * ip_output() and viceversa, thus causing nested calls
461 pipe
->head
= m
->m_nextpkt
;
464 /* XXX: drop the lock for now to avoid LOR's */
465 lck_mtx_unlock(dn_mutex
);
466 switch (pkt
->dn_dir
) {
468 struct route tmp_rt
= pkt
->ro
;
469 (void)ip_output(m
, NULL
, NULL
, pkt
->flags
, NULL
);
471 rtfree(tmp_rt
.ro_rt
);
476 proto_inject(PF_INET
, m
);
482 * The bridge requires/assumes the Ethernet header is
483 * contiguous in the first mbuf header. Insure this is true.
486 if (m
->m_len
< ETHER_HDR_LEN
&&
487 (m
= m_pullup(m
, ETHER_HDR_LEN
)) == NULL
) {
488 printf("dummynet/bridge: pullup fail, dropping pkt\n");
491 m
= bdg_forward_ptr(m
, pkt
->ifp
);
493 /* somebody unloaded the bridge module. Drop pkt */
495 printf("dummynet: dropping bridged packet trapped in pipe\n");
502 printf("dummynet: bad switch %d!\n", pkt
->dn_dir
);
506 lck_mtx_lock(dn_mutex
);
508 /* if there are leftover packets, put into the heap for next event */
509 if ( (m
= pipe
->head
) ) {
511 /* XXX should check errors on heap_insert, by draining the
512 * whole pipe p and hoping in the future we are more successful
514 heap_insert(&extract_heap
, pkt
->output_time
, pipe
);
519 * the following macro computes how many ticks we have to wait
520 * before being able to transmit a packet. The credit is taken from
521 * either a pipe (WF2Q) or a flow_queue (per-flow queueing)
524 /* hz is 100, which gives a granularity of 10ms in the old timer.
525 * The timer has been changed to fire every 1ms, so the use of
526 * hz has been modified here. All instances of hz have been left
527 * in place but adjusted by a factor of 10 so that hz is functionally
530 #define SET_TICKS(_m, q, p) \
531 ((_m)->m_pkthdr.len*8*(hz*10) - (q)->numbytes + p->bandwidth - 1 ) / \
535 * extract pkt from queue, compute output time (could be now)
536 * and put into delay line (p_queue)
539 move_pkt(struct mbuf
*pkt
, struct dn_flow_queue
*q
,
540 struct dn_pipe
*p
, int len
)
542 struct dn_pkt_tag
*dt
= dn_tag_get(pkt
);
544 q
->head
= pkt
->m_nextpkt
;
546 q
->len_bytes
-= len
;
548 dt
->output_time
= curr_time
+ p
->delay
;
553 p
->tail
->m_nextpkt
= pkt
;
555 p
->tail
->m_nextpkt
= NULL
;
559 * ready_event() is invoked every time the queue must enter the
560 * scheduler, either because the first packet arrives, or because
561 * a previously scheduled event fired.
562 * On invokation, drain as many pkts as possible (could be 0) and then
563 * if there are leftover packets reinsert the pkt in the scheduler.
566 ready_event(struct dn_flow_queue
*q
)
569 struct dn_pipe
*p
= q
->fs
->pipe
;
572 lck_mtx_assert(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
575 printf("dummynet: ready_event- pipe is gone\n");
578 p_was_empty
= (p
->head
== NULL
) ;
581 * schedule fixed-rate queues linked to this pipe:
582 * Account for the bw accumulated since last scheduling, then
583 * drain as many pkts as allowed by q->numbytes and move to
584 * the delay line (in p) computing output time.
585 * bandwidth==0 (no limit) means we can drain the whole queue,
586 * setting len_scaled = 0 does the job.
588 q
->numbytes
+= ( curr_time
- q
->sched_time
) * p
->bandwidth
;
589 while ( (pkt
= q
->head
) != NULL
) {
590 int len
= pkt
->m_pkthdr
.len
;
591 int len_scaled
= p
->bandwidth
? len
*8*(hz
*10) : 0 ;
592 if (len_scaled
> q
->numbytes
)
594 q
->numbytes
-= len_scaled
;
595 move_pkt(pkt
, q
, p
, len
);
598 * If we have more packets queued, schedule next ready event
599 * (can only occur when bandwidth != 0, otherwise we would have
600 * flushed the whole queue in the previous loop).
601 * To this purpose we record the current time and compute how many
602 * ticks to go for the finish time of the packet.
604 if ( (pkt
= q
->head
) != NULL
) { /* this implies bandwidth != 0 */
605 dn_key t
= SET_TICKS(pkt
, q
, p
); /* ticks i have to wait */
606 q
->sched_time
= curr_time
;
607 heap_insert(&ready_heap
, curr_time
+ t
, (void *)q
);
608 /* XXX should check errors on heap_insert, and drain the whole
609 * queue on error hoping next time we are luckier.
611 } else { /* RED needs to know when the queue becomes empty */
612 q
->q_time
= curr_time
;
616 * If the delay line was empty call transmit_event(p) now.
617 * Otherwise, the scheduler will take care of it.
624 * Called when we can transmit packets on WF2Q queues. Take pkts out of
625 * the queues at their start time, and enqueue into the delay line.
626 * Packets are drained until p->numbytes < 0. As long as
627 * len_scaled >= p->numbytes, the packet goes into the delay line
628 * with a deadline p->delay. For the last packet, if p->numbytes<0,
629 * there is an additional delay.
632 ready_event_wfq(struct dn_pipe
*p
)
634 int p_was_empty
= (p
->head
== NULL
) ;
635 struct dn_heap
*sch
= &(p
->scheduler_heap
);
636 struct dn_heap
*neh
= &(p
->not_eligible_heap
) ;
638 lck_mtx_assert(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
640 if (p
->if_name
[0] == 0) /* tx clock is simulated */
641 p
->numbytes
+= ( curr_time
- p
->sched_time
) * p
->bandwidth
;
642 else { /* tx clock is for real, the ifq must be empty or this is a NOP */
643 if (p
->ifp
&& p
->ifp
->if_snd
.ifq_head
!= NULL
)
646 DPRINTF(("dummynet: pipe %d ready from %s --\n",
647 p
->pipe_nr
, p
->if_name
));
652 * While we have backlogged traffic AND credit, we need to do
653 * something on the queue.
655 while ( p
->numbytes
>=0 && (sch
->elements
>0 || neh
->elements
>0) ) {
656 if (sch
->elements
> 0) { /* have some eligible pkts to send out */
657 struct dn_flow_queue
*q
= sch
->p
[0].object
;
658 struct mbuf
*pkt
= q
->head
;
659 struct dn_flow_set
*fs
= q
->fs
;
660 u_int64_t len
= pkt
->m_pkthdr
.len
;
661 int len_scaled
= p
->bandwidth
? len
*8*(hz
*10) : 0 ;
663 heap_extract(sch
, NULL
); /* remove queue from heap */
664 p
->numbytes
-= len_scaled
;
665 move_pkt(pkt
, q
, p
, len
);
667 p
->V
+= (len
<<MY_M
) / p
->sum
; /* update V */
668 q
->S
= q
->F
; /* update start time */
669 if (q
->len
== 0) { /* Flow not backlogged any more */
671 heap_insert(&(p
->idle_heap
), q
->F
, q
);
672 } else { /* still backlogged */
674 * update F and position in backlogged queue, then
675 * put flow in not_eligible_heap (we will fix this later).
677 len
= (q
->head
)->m_pkthdr
.len
;
678 q
->F
+= (len
<<MY_M
)/(u_int64_t
) fs
->weight
;
679 if (DN_KEY_LEQ(q
->S
, p
->V
))
680 heap_insert(neh
, q
->S
, q
);
682 heap_insert(sch
, q
->F
, q
);
686 * now compute V = max(V, min(S_i)). Remember that all elements in sch
687 * have by definition S_i <= V so if sch is not empty, V is surely
688 * the max and we must not update it. Conversely, if sch is empty
689 * we only need to look at neh.
691 if (sch
->elements
== 0 && neh
->elements
> 0)
692 p
->V
= MAX64 ( p
->V
, neh
->p
[0].key
);
693 /* move from neh to sch any packets that have become eligible */
694 while (neh
->elements
> 0 && DN_KEY_LEQ(neh
->p
[0].key
, p
->V
) ) {
695 struct dn_flow_queue
*q
= neh
->p
[0].object
;
696 heap_extract(neh
, NULL
);
697 heap_insert(sch
, q
->F
, q
);
700 if (p
->if_name
[0] != '\0') {/* tx clock is from a real thing */
701 p
->numbytes
= -1 ; /* mark not ready for I/O */
705 if (sch
->elements
== 0 && neh
->elements
== 0 && p
->numbytes
>= 0
706 && p
->idle_heap
.elements
> 0) {
708 * no traffic and no events scheduled. We can get rid of idle-heap.
712 for (i
= 0 ; i
< p
->idle_heap
.elements
; i
++) {
713 struct dn_flow_queue
*q
= p
->idle_heap
.p
[i
].object
;
720 p
->idle_heap
.elements
= 0 ;
723 * If we are getting clocks from dummynet (not a real interface) and
724 * If we are under credit, schedule the next ready event.
725 * Also fix the delivery time of the last packet.
727 if (p
->if_name
[0]==0 && p
->numbytes
< 0) { /* this implies bandwidth >0 */
728 dn_key t
=0 ; /* number of ticks i have to wait */
730 if (p
->bandwidth
> 0)
731 t
= ( p
->bandwidth
-1 - p
->numbytes
) / p
->bandwidth
;
732 dn_tag_get(p
->tail
)->output_time
+= t
;
733 p
->sched_time
= curr_time
;
734 heap_insert(&wfq_ready_heap
, curr_time
+ t
, (void *)p
);
735 /* XXX should check errors on heap_insert, and drain the whole
736 * queue on error hoping next time we are luckier.
740 * If the delay line was empty call transmit_event(p) now.
741 * Otherwise, the scheduler will take care of it.
748 * This is called every 1ms. It is used to
749 * increment the current tick counter and schedule expired events.
752 dummynet(void * __unused unused
)
754 void *p
; /* generic parameter to handler */
756 struct dn_heap
*heaps
[3];
762 heaps
[0] = &ready_heap
; /* fixed-rate queues */
763 heaps
[1] = &wfq_ready_heap
; /* wfq queues */
764 heaps
[2] = &extract_heap
; /* delay line */
766 lck_mtx_lock(dn_mutex
);
768 /* make all time measurements in milliseconds (ms) -
769 * here we convert secs and usecs to msecs (just divide the
770 * usecs and take the closest whole number).
773 curr_time
= (tv
.tv_sec
* 1000) + (tv
.tv_usec
/ 1000);
775 for (i
=0; i
< 3 ; i
++) {
777 while (h
->elements
> 0 && DN_KEY_LEQ(h
->p
[0].key
, curr_time
) ) {
778 if (h
->p
[0].key
> curr_time
)
779 printf("dummynet: warning, heap %d is %d ticks late\n",
780 i
, (int)(curr_time
- h
->p
[0].key
));
781 p
= h
->p
[0].object
; /* store a copy before heap_extract */
782 heap_extract(h
, NULL
); /* need to extract before processing */
786 struct dn_pipe
*pipe
= p
;
787 if (pipe
->if_name
[0] != '\0')
788 printf("dummynet: bad ready_event_wfq for pipe %s\n",
796 /* sweep pipes trying to expire idle flow_queues */
797 for (pe
= all_pipes
; pe
; pe
= pe
->next
)
798 if (pe
->idle_heap
.elements
> 0 &&
799 DN_KEY_LT(pe
->idle_heap
.p
[0].key
, pe
->V
) ) {
800 struct dn_flow_queue
*q
= pe
->idle_heap
.p
[0].object
;
802 heap_extract(&(pe
->idle_heap
), NULL
);
803 q
->S
= q
->F
+ 1 ; /* mark timestamp as invalid */
804 pe
->sum
-= q
->fs
->weight
;
807 /* check the heaps to see if there's still stuff in there, and
808 * only set the timer if there are packets to process
811 for (i
=0; i
< 3 ; i
++) {
813 if (h
->elements
> 0) { // set the timer
815 ts
.tv_nsec
= 1 * 1000000; // 1ms
817 bsd_timeout(dummynet
, NULL
, &ts
);
822 lck_mtx_unlock(dn_mutex
);
826 * called by an interface when tx_rdy occurs.
829 if_tx_rdy(struct ifnet
*ifp
)
833 lck_mtx_lock(dn_mutex
);
834 for (p
= all_pipes
; p
; p
= p
->next
)
839 sprintf(buf
, "%s%d",ifp
->if_name
, ifp
->if_unit
);
840 for (p
= all_pipes
; p
; p
= p
->next
)
841 if (!strcmp(p
->if_name
, buf
) ) {
843 DPRINTF(("dummynet: ++ tx rdy from %s (now found)\n", buf
));
848 DPRINTF(("dummynet: ++ tx rdy from %s%d - qlen %d\n", ifp
->if_name
,
849 ifp
->if_unit
, ifp
->if_snd
.ifq_len
));
850 p
->numbytes
= 0 ; /* mark ready for I/O */
853 lck_mtx_lock(dn_mutex
);
859 * Unconditionally expire empty queues in case of shortage.
860 * Returns the number of queues freed.
863 expire_queues(struct dn_flow_set
*fs
)
865 struct dn_flow_queue
*q
, *prev
;
866 int i
, initial_elements
= fs
->rq_elements
;
867 struct timeval timenow
;
869 getmicrotime(&timenow
);
871 if (fs
->last_expired
== timenow
.tv_sec
)
873 fs
->last_expired
= timenow
.tv_sec
;
874 for (i
= 0 ; i
<= fs
->rq_size
; i
++) /* last one is overflow */
875 for (prev
=NULL
, q
= fs
->rq
[i
] ; q
!= NULL
; )
876 if (q
->head
!= NULL
|| q
->S
!= q
->F
+1) {
879 } else { /* entry is idle, expire it */
880 struct dn_flow_queue
*old_q
= q
;
883 prev
->next
= q
= q
->next
;
885 fs
->rq
[i
] = q
= q
->next
;
887 FREE(old_q
, M_DUMMYNET
);
889 return initial_elements
- fs
->rq_elements
;
893 * If room, create a new queue and put at head of slot i;
894 * otherwise, create or use the default queue.
896 static struct dn_flow_queue
*
897 create_queue(struct dn_flow_set
*fs
, int i
)
899 struct dn_flow_queue
*q
;
901 if (fs
->rq_elements
> fs
->rq_size
* dn_max_ratio
&&
902 expire_queues(fs
) == 0) {
904 * No way to get room, use or create overflow queue.
907 if ( fs
->rq
[i
] != NULL
)
910 q
= _MALLOC(sizeof(*q
), M_DUMMYNET
, M_DONTWAIT
| M_ZERO
);
912 printf("dummynet: sorry, cannot allocate queue for new flow\n");
917 q
->next
= fs
->rq
[i
] ;
918 q
->S
= q
->F
+ 1; /* hack - mark timestamp as invalid */
925 * Given a flow_set and a pkt in last_pkt, find a matching queue
926 * after appropriate masking. The queue is moved to front
927 * so that further searches take less time.
929 static struct dn_flow_queue
*
930 find_queue(struct dn_flow_set
*fs
, struct ipfw_flow_id
*id
)
932 int i
= 0 ; /* we need i and q for new allocations */
933 struct dn_flow_queue
*q
, *prev
;
935 if ( !(fs
->flags_fs
& DN_HAVE_FLOW_MASK
) )
938 /* first, do the masking */
939 id
->dst_ip
&= fs
->flow_mask
.dst_ip
;
940 id
->src_ip
&= fs
->flow_mask
.src_ip
;
941 id
->dst_port
&= fs
->flow_mask
.dst_port
;
942 id
->src_port
&= fs
->flow_mask
.src_port
;
943 id
->proto
&= fs
->flow_mask
.proto
;
944 id
->flags
= 0 ; /* we don't care about this one */
945 /* then, hash function */
946 i
= ( (id
->dst_ip
) & 0xffff ) ^
947 ( (id
->dst_ip
>> 15) & 0xffff ) ^
948 ( (id
->src_ip
<< 1) & 0xffff ) ^
949 ( (id
->src_ip
>> 16 ) & 0xffff ) ^
950 (id
->dst_port
<< 1) ^ (id
->src_port
) ^
952 i
= i
% fs
->rq_size
;
953 /* finally, scan the current list for a match */
955 for (prev
=NULL
, q
= fs
->rq
[i
] ; q
; ) {
957 if (id
->dst_ip
== q
->id
.dst_ip
&&
958 id
->src_ip
== q
->id
.src_ip
&&
959 id
->dst_port
== q
->id
.dst_port
&&
960 id
->src_port
== q
->id
.src_port
&&
961 id
->proto
== q
->id
.proto
&&
962 id
->flags
== q
->id
.flags
)
964 else if (pipe_expire
&& q
->head
== NULL
&& q
->S
== q
->F
+1 ) {
965 /* entry is idle and not in any heap, expire it */
966 struct dn_flow_queue
*old_q
= q
;
969 prev
->next
= q
= q
->next
;
971 fs
->rq
[i
] = q
= q
->next
;
973 FREE(old_q
, M_DUMMYNET
);
979 if (q
&& prev
!= NULL
) { /* found and not in front */
980 prev
->next
= q
->next
;
981 q
->next
= fs
->rq
[i
] ;
985 if (q
== NULL
) { /* no match, need to allocate a new entry */
986 q
= create_queue(fs
, i
);
994 red_drops(struct dn_flow_set
*fs
, struct dn_flow_queue
*q
, int len
)
999 * RED calculates the average queue size (avg) using a low-pass filter
1000 * with an exponential weighted (w_q) moving average:
1001 * avg <- (1-w_q) * avg + w_q * q_size
1002 * where q_size is the queue length (measured in bytes or * packets).
1004 * If q_size == 0, we compute the idle time for the link, and set
1005 * avg = (1 - w_q)^(idle/s)
1006 * where s is the time needed for transmitting a medium-sized packet.
1008 * Now, if avg < min_th the packet is enqueued.
1009 * If avg > max_th the packet is dropped. Otherwise, the packet is
1010 * dropped with probability P function of avg.
1015 /* queue in bytes or packets ? */
1016 u_int q_size
= (fs
->flags_fs
& DN_QSIZE_IS_BYTES
) ? q
->len_bytes
: q
->len
;
1018 DPRINTF(("\ndummynet: %d q: %2u ", (int) curr_time
, q_size
));
1020 /* average queue size estimation */
1023 * queue is not empty, avg <- avg + (q_size - avg) * w_q
1025 int diff
= SCALE(q_size
) - q
->avg
;
1026 int64_t v
= SCALE_MUL((int64_t) diff
, (int64_t) fs
->w_q
);
1031 * queue is empty, find for how long the queue has been
1032 * empty and use a lookup table for computing
1033 * (1 - * w_q)^(idle_time/s) where s is the time to send a
1035 * XXX check wraps...
1038 u_int t
= (curr_time
- q
->q_time
) / fs
->lookup_step
;
1040 q
->avg
= (t
< fs
->lookup_depth
) ?
1041 SCALE_MUL(q
->avg
, fs
->w_q_lookup
[t
]) : 0;
1044 DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q
->avg
)));
1046 /* should i drop ? */
1048 if (q
->avg
< fs
->min_th
) {
1050 return 0; /* accept packet ; */
1052 if (q
->avg
>= fs
->max_th
) { /* average queue >= max threshold */
1053 if (fs
->flags_fs
& DN_IS_GENTLE_RED
) {
1055 * According to Gentle-RED, if avg is greater than max_th the
1056 * packet is dropped with a probability
1057 * p_b = c_3 * avg - c_4
1058 * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
1060 p_b
= SCALE_MUL((int64_t) fs
->c_3
, (int64_t) q
->avg
) - fs
->c_4
;
1063 DPRINTF(("dummynet: - drop"));
1066 } else if (q
->avg
> fs
->min_th
) {
1068 * we compute p_b using the linear dropping function p_b = c_1 *
1069 * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
1070 * max_p * min_th / (max_th - min_th)
1072 p_b
= SCALE_MUL((int64_t) fs
->c_1
, (int64_t) q
->avg
) - fs
->c_2
;
1074 if (fs
->flags_fs
& DN_QSIZE_IS_BYTES
)
1075 p_b
= (p_b
* len
) / fs
->max_pkt_size
;
1076 if (++q
->count
== 0)
1077 q
->random
= random() & 0xffff;
1080 * q->count counts packets arrived since last drop, so a greater
1081 * value of q->count means a greater packet drop probability.
1083 if (SCALE_MUL(p_b
, SCALE((int64_t) q
->count
)) > q
->random
) {
1085 DPRINTF(("dummynet: - red drop"));
1086 /* after a drop we calculate a new random value */
1087 q
->random
= random() & 0xffff;
1088 return 1; /* drop */
1091 /* end of RED algorithm */
1092 return 0 ; /* accept */
1096 struct dn_flow_set
*
1097 locate_flowset(int pipe_nr
, struct ip_fw
*rule
)
1099 struct dn_flow_set
*fs
;
1100 ipfw_insn
*cmd
= rule
->cmd
+ rule
->act_ofs
;
1102 if (cmd
->opcode
== O_LOG
)
1105 bcopy(& ((ipfw_insn_pipe
*)cmd
)->pipe_ptr
, &fs
, sizeof(fs
));
1110 if (cmd
->opcode
== O_QUEUE
) {
1111 for (fs
=all_flow_sets
; fs
&& fs
->fs_nr
!= pipe_nr
; fs
=fs
->next
)
1116 for (p1
= all_pipes
; p1
&& p1
->pipe_nr
!= pipe_nr
; p1
= p1
->next
)
1121 /* record for the future */
1122 bcopy(&fs
, & ((ipfw_insn_pipe
*)cmd
)->pipe_ptr
, sizeof(fs
));
1128 * dummynet hook for packets. Below 'pipe' is a pipe or a queue
1129 * depending on whether WF2Q or fixed bw is used.
1131 * pipe_nr pipe or queue the packet is destined for.
1132 * dir where shall we send the packet after dummynet.
1133 * m the mbuf with the packet
1134 * ifp the 'ifp' parameter from the caller.
1135 * NULL in ip_input, destination interface in ip_output,
1136 * real_dst in bdg_forward
1137 * ro route parameter (only used in ip_output, NULL otherwise)
1138 * dst destination address, only used by ip_output
1139 * rule matching rule, in case of multiple passes
1140 * flags flags from the caller, only used in ip_output
1144 dummynet_io(struct mbuf
*m
, int pipe_nr
, int dir
, struct ip_fw_args
*fwa
)
1146 struct dn_pkt_tag
*pkt
;
1148 struct dn_flow_set
*fs
;
1149 struct dn_pipe
*pipe
;
1150 u_int64_t len
= m
->m_pkthdr
.len
;
1151 struct dn_flow_queue
*q
= NULL
;
1157 ipfw_insn
*cmd
= fwa
->rule
->cmd
+ fwa
->rule
->act_ofs
;
1159 if (cmd
->opcode
== O_LOG
)
1161 is_pipe
= (cmd
->opcode
== O_PIPE
);
1163 is_pipe
= (fwa
->rule
->fw_flg
& IP_FW_F_COMMAND
) == IP_FW_F_PIPE
;
1168 lck_mtx_lock(dn_mutex
);
1170 /* make all time measurements in milliseconds (ms) -
1171 * here we convert secs and usecs to msecs (just divide the
1172 * usecs and take the closest whole number).
1175 curr_time
= (tv
.tv_sec
* 1000) + (tv
.tv_usec
/ 1000);
1178 * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule.
1180 fs
= locate_flowset(pipe_nr
, fwa
->rule
);
1182 goto dropit
; /* this queue/pipe does not exist! */
1184 if (pipe
== NULL
) { /* must be a queue, try find a matching pipe */
1185 for (pipe
= all_pipes
; pipe
&& pipe
->pipe_nr
!= fs
->parent_nr
;
1191 printf("dummynet: no pipe %d for queue %d, drop pkt\n",
1192 fs
->parent_nr
, fs
->fs_nr
);
1196 q
= find_queue(fs
, &(fwa
->f_id
));
1198 goto dropit
; /* cannot allocate queue */
1200 * update statistics, then check reasons to drop pkt
1202 q
->tot_bytes
+= len
;
1204 if ( fs
->plr
&& random() < fs
->plr
)
1205 goto dropit
; /* random pkt drop */
1206 if ( fs
->flags_fs
& DN_QSIZE_IS_BYTES
) {
1207 if (q
->len_bytes
> fs
->qsize
)
1208 goto dropit
; /* queue size overflow */
1210 if (q
->len
>= fs
->qsize
)
1211 goto dropit
; /* queue count overflow */
1213 if ( fs
->flags_fs
& DN_IS_RED
&& red_drops(fs
, q
, len
) )
1216 /* XXX expensive to zero, see if we can remove it*/
1217 mtag
= m_tag_alloc(KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_DUMMYNET
,
1218 sizeof(struct dn_pkt_tag
), M_NOWAIT
);
1220 goto dropit
; /* cannot allocate packet header */
1221 m_tag_prepend(m
, mtag
); /* attach to mbuf chain */
1223 pkt
= (struct dn_pkt_tag
*)(mtag
+1);
1224 bzero(pkt
, sizeof(struct dn_pkt_tag
));
1225 /* ok, i can handle the pkt now... */
1226 /* build and enqueue packet + parameters */
1227 pkt
->rule
= fwa
->rule
;
1230 pkt
->ifp
= fwa
->oif
;
1231 if (dir
== DN_TO_IP_OUT
) {
1233 * We need to copy *ro because for ICMP pkts (and maybe others)
1234 * the caller passed a pointer into the stack; dst might also be
1235 * a pointer into *ro so it needs to be updated.
1237 lck_mtx_lock(rt_mtx
);
1238 pkt
->ro
= *(fwa
->ro
);
1240 fwa
->ro
->ro_rt
->rt_refcnt
++ ;
1241 if (fwa
->dst
== (struct sockaddr_in
*)&fwa
->ro
->ro_dst
) /* dst points into ro */
1242 fwa
->dst
= (struct sockaddr_in
*)&(pkt
->ro
.ro_dst
) ;
1243 lck_mtx_unlock(rt_mtx
);
1245 pkt
->dn_dst
= fwa
->dst
;
1246 pkt
->flags
= fwa
->flags
;
1248 if (q
->head
== NULL
)
1251 q
->tail
->m_nextpkt
= m
;
1254 q
->len_bytes
+= len
;
1256 if ( q
->head
!= m
) /* flow was not idle, we are done */
1259 * If we reach this point the flow was previously idle, so we need
1260 * to schedule it. This involves different actions for fixed-rate or
1265 * Fixed-rate queue: just insert into the ready_heap.
1268 if (pipe
->bandwidth
)
1269 t
= SET_TICKS(m
, q
, pipe
);
1270 q
->sched_time
= curr_time
;
1271 if (t
== 0) /* must process it now */
1274 heap_insert(&ready_heap
, curr_time
+ t
, q
);
1277 * WF2Q. First, compute start time S: if the flow was idle (S=F+1)
1278 * set S to the virtual time V for the controlling pipe, and update
1279 * the sum of weights for the pipe; otherwise, remove flow from
1280 * idle_heap and set S to max(F,V).
1281 * Second, compute finish time F = S + len/weight.
1282 * Third, if pipe was idle, update V=max(S, V).
1283 * Fourth, count one more backlogged flow.
1285 if (DN_KEY_GT(q
->S
, q
->F
)) { /* means timestamps are invalid */
1287 pipe
->sum
+= fs
->weight
; /* add weight of new queue */
1289 heap_extract(&(pipe
->idle_heap
), q
);
1290 q
->S
= MAX64(q
->F
, pipe
->V
) ;
1292 q
->F
= q
->S
+ ( len
<<MY_M
)/(u_int64_t
) fs
->weight
;
1294 if (pipe
->not_eligible_heap
.elements
== 0 &&
1295 pipe
->scheduler_heap
.elements
== 0)
1296 pipe
->V
= MAX64 ( q
->S
, pipe
->V
);
1299 * Look at eligibility. A flow is not eligibile if S>V (when
1300 * this happens, it means that there is some other flow already
1301 * scheduled for the same pipe, so the scheduler_heap cannot be
1302 * empty). If the flow is not eligible we just store it in the
1303 * not_eligible_heap. Otherwise, we store in the scheduler_heap
1304 * and possibly invoke ready_event_wfq() right now if there is
1306 * Note that for all flows in scheduler_heap (SCH), S_i <= V,
1307 * and for all flows in not_eligible_heap (NEH), S_i > V .
1308 * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH,
1309 * we only need to look into NEH.
1311 if (DN_KEY_GT(q
->S
, pipe
->V
) ) { /* not eligible */
1312 if (pipe
->scheduler_heap
.elements
== 0)
1313 printf("dummynet: ++ ouch! not eligible but empty scheduler!\n");
1314 heap_insert(&(pipe
->not_eligible_heap
), q
->S
, q
);
1316 heap_insert(&(pipe
->scheduler_heap
), q
->F
, q
);
1317 if (pipe
->numbytes
>= 0) { /* pipe is idle */
1318 if (pipe
->scheduler_heap
.elements
!= 1)
1319 printf("dummynet: OUCH! pipe should have been idle!\n");
1320 DPRINTF(("dummynet: waking up pipe %d at %d\n",
1321 pipe
->pipe_nr
, (int)(q
->F
>> MY_M
)));
1322 pipe
->sched_time
= curr_time
;
1323 ready_event_wfq(pipe
);
1328 /* start the timer and set global if not already set */
1329 if (!timer_enabled
) {
1331 ts
.tv_nsec
= 1 * 1000000; // 1ms
1333 bsd_timeout(dummynet
, NULL
, &ts
);
1336 lck_mtx_unlock(dn_mutex
);
1342 lck_mtx_unlock(dn_mutex
);
1344 return ( (fs
&& (fs
->flags_fs
& DN_NOERROR
)) ? 0 : ENOBUFS
);
1348 * Below, the rtfree is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
1349 * Doing this would probably save us the initial bzero of dn_pkt
1351 #define DN_FREE_PKT(_m) do { \
1352 struct m_tag *tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET, NULL); \
1354 struct dn_pkt_tag *n = (struct dn_pkt_tag *)(tag+1); \
1356 rtfree(n->ro.ro_rt); \
1358 m_tag_delete(_m, tag); \
1363 * Dispose all packets and flow_queues on a flow_set.
1364 * If all=1, also remove red lookup table and other storage,
1365 * including the descriptor itself.
1366 * For the one in dn_pipe MUST also cleanup ready_heap...
1369 purge_flow_set(struct dn_flow_set
*fs
, int all
)
1371 struct dn_flow_queue
*q
, *qn
;
1374 lck_mtx_assert(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
1376 for (i
= 0 ; i
<= fs
->rq_size
; i
++ ) {
1377 for (q
= fs
->rq
[i
] ; q
; q
= qn
) {
1378 struct mbuf
*m
, *mnext
;
1381 while ((m
= mnext
) != NULL
) {
1382 mnext
= m
->m_nextpkt
;
1386 FREE(q
, M_DUMMYNET
);
1390 fs
->rq_elements
= 0 ;
1392 /* RED - free lookup table */
1394 FREE(fs
->w_q_lookup
, M_DUMMYNET
);
1396 FREE(fs
->rq
, M_DUMMYNET
);
1397 /* if this fs is not part of a pipe, free it */
1398 if (fs
->pipe
&& fs
!= &(fs
->pipe
->fs
) )
1399 FREE(fs
, M_DUMMYNET
);
1404 * Dispose all packets queued on a pipe (not a flow_set).
1405 * Also free all resources associated to a pipe, which is about
1409 purge_pipe(struct dn_pipe
*pipe
)
1411 struct mbuf
*m
, *mnext
;
1413 purge_flow_set( &(pipe
->fs
), 1 );
1416 while ((m
= mnext
) != NULL
) {
1417 mnext
= m
->m_nextpkt
;
1421 heap_free( &(pipe
->scheduler_heap
) );
1422 heap_free( &(pipe
->not_eligible_heap
) );
1423 heap_free( &(pipe
->idle_heap
) );
1427 * Delete all pipes and heaps returning memory. Must also
1428 * remove references from all ipfw rules to all pipes.
1433 struct dn_pipe
*curr_p
, *p
;
1434 struct dn_flow_set
*fs
, *curr_fs
;
1436 lck_mtx_lock(dn_mutex
);
1438 /* remove all references to pipes ...*/
1439 flush_pipe_ptrs(NULL
);
1440 /* prevent future matches... */
1443 fs
= all_flow_sets
;
1444 all_flow_sets
= NULL
;
1445 /* and free heaps so we don't have unwanted events */
1446 heap_free(&ready_heap
);
1447 heap_free(&wfq_ready_heap
);
1448 heap_free(&extract_heap
);
1451 * Now purge all queued pkts and delete all pipes
1453 /* scan and purge all flow_sets. */
1457 purge_flow_set(curr_fs
, 1);
1463 FREE(curr_p
, M_DUMMYNET
);
1465 lck_mtx_unlock(dn_mutex
);
1469 extern struct ip_fw
*ip_fw_default_rule
;
1471 dn_rule_delete_fs(struct dn_flow_set
*fs
, void *r
)
1474 struct dn_flow_queue
*q
;
1477 for (i
= 0 ; i
<= fs
->rq_size
; i
++) /* last one is ovflow */
1478 for (q
= fs
->rq
[i
] ; q
; q
= q
->next
)
1479 for (m
= q
->head
; m
; m
= m
->m_nextpkt
) {
1480 struct dn_pkt_tag
*pkt
= dn_tag_get(m
) ;
1482 pkt
->rule
= ip_fw_default_rule
;
1486 * when a firewall rule is deleted, scan all queues and remove the flow-id
1487 * from packets matching this rule.
1490 dn_rule_delete(void *r
)
1493 struct dn_flow_set
*fs
;
1494 struct dn_pkt_tag
*pkt
;
1497 lck_mtx_lock(dn_mutex
);
1500 * If the rule references a queue (dn_flow_set), then scan
1501 * the flow set, otherwise scan pipes. Should do either, but doing
1502 * both does not harm.
1504 for ( fs
= all_flow_sets
; fs
; fs
= fs
->next
)
1505 dn_rule_delete_fs(fs
, r
);
1506 for ( p
= all_pipes
; p
; p
= p
->next
) {
1508 dn_rule_delete_fs(fs
, r
);
1509 for (m
= p
->head
; m
; m
= m
->m_nextpkt
) {
1510 pkt
= dn_tag_get(m
) ;
1512 pkt
->rule
= ip_fw_default_rule
;
1515 lck_mtx_unlock(dn_mutex
);
1519 * setup RED parameters
1522 config_red(struct dn_flow_set
*p
, struct dn_flow_set
* x
)
1527 x
->min_th
= SCALE(p
->min_th
);
1528 x
->max_th
= SCALE(p
->max_th
);
1529 x
->max_p
= p
->max_p
;
1531 x
->c_1
= p
->max_p
/ (p
->max_th
- p
->min_th
);
1532 x
->c_2
= SCALE_MUL(x
->c_1
, SCALE(p
->min_th
));
1533 if (x
->flags_fs
& DN_IS_GENTLE_RED
) {
1534 x
->c_3
= (SCALE(1) - p
->max_p
) / p
->max_th
;
1535 x
->c_4
= (SCALE(1) - 2 * p
->max_p
);
1538 /* if the lookup table already exist, free and create it again */
1539 if (x
->w_q_lookup
) {
1540 FREE(x
->w_q_lookup
, M_DUMMYNET
);
1541 x
->w_q_lookup
= NULL
;
1543 if (red_lookup_depth
== 0) {
1544 printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth must be > 0\n");
1545 FREE(x
, M_DUMMYNET
);
1548 x
->lookup_depth
= red_lookup_depth
;
1549 x
->w_q_lookup
= (u_int
*) _MALLOC(x
->lookup_depth
* sizeof(int),
1550 M_DUMMYNET
, M_DONTWAIT
);
1551 if (x
->w_q_lookup
== NULL
) {
1552 printf("dummynet: sorry, cannot allocate red lookup table\n");
1553 FREE(x
, M_DUMMYNET
);
1557 /* fill the lookup table with (1 - w_q)^x */
1558 x
->lookup_step
= p
->lookup_step
;
1559 x
->lookup_weight
= p
->lookup_weight
;
1560 x
->w_q_lookup
[0] = SCALE(1) - x
->w_q
;
1561 for (i
= 1; i
< x
->lookup_depth
; i
++)
1562 x
->w_q_lookup
[i
] = SCALE_MUL(x
->w_q_lookup
[i
- 1], x
->lookup_weight
);
1563 if (red_avg_pkt_size
< 1)
1564 red_avg_pkt_size
= 512 ;
1565 x
->avg_pkt_size
= red_avg_pkt_size
;
1566 if (red_max_pkt_size
< 1)
1567 red_max_pkt_size
= 1500 ;
1568 x
->max_pkt_size
= red_max_pkt_size
;
1573 alloc_hash(struct dn_flow_set
*x
, struct dn_flow_set
*pfs
)
1575 if (x
->flags_fs
& DN_HAVE_FLOW_MASK
) { /* allocate some slots */
1576 int l
= pfs
->rq_size
;
1582 else if (l
> DN_MAX_HASH_SIZE
)
1583 l
= DN_MAX_HASH_SIZE
;
1585 } else /* one is enough for null mask */
1587 x
->rq
= _MALLOC((1 + x
->rq_size
) * sizeof(struct dn_flow_queue
*),
1588 M_DUMMYNET
, M_DONTWAIT
| M_ZERO
);
1589 if (x
->rq
== NULL
) {
1590 printf("dummynet: sorry, cannot allocate queue\n");
1598 set_fs_parms(struct dn_flow_set
*x
, struct dn_flow_set
*src
)
1600 x
->flags_fs
= src
->flags_fs
;
1601 x
->qsize
= src
->qsize
;
1603 x
->flow_mask
= src
->flow_mask
;
1604 if (x
->flags_fs
& DN_QSIZE_IS_BYTES
) {
1605 if (x
->qsize
> 1024*1024)
1606 x
->qsize
= 1024*1024 ;
1613 /* configuring RED */
1614 if ( x
->flags_fs
& DN_IS_RED
)
1615 config_red(src
, x
) ; /* XXX should check errors */
1619 * setup pipe or queue parameters.
1623 config_pipe(struct dn_pipe
*p
)
1626 struct dn_flow_set
*pfs
= &(p
->fs
);
1627 struct dn_flow_queue
*q
;
1630 * The config program passes parameters as follows:
1631 * bw = bits/second (0 means no limits),
1632 * delay = ms, must be translated into ticks.
1633 * qsize = slots/bytes
1635 p
->delay
= ( p
->delay
* (hz
*10) ) / 1000 ;
1636 /* We need either a pipe number or a flow_set number */
1637 if (p
->pipe_nr
== 0 && pfs
->fs_nr
== 0)
1639 if (p
->pipe_nr
!= 0 && pfs
->fs_nr
!= 0)
1641 if (p
->pipe_nr
!= 0) { /* this is a pipe */
1642 struct dn_pipe
*x
, *a
, *b
;
1644 lck_mtx_lock(dn_mutex
);
1646 for (a
= NULL
, b
= all_pipes
; b
&& b
->pipe_nr
< p
->pipe_nr
;
1647 a
= b
, b
= b
->next
) ;
1649 if (b
== NULL
|| b
->pipe_nr
!= p
->pipe_nr
) { /* new pipe */
1650 x
= _MALLOC(sizeof(struct dn_pipe
), M_DUMMYNET
, M_DONTWAIT
| M_ZERO
) ;
1652 lck_mtx_unlock(dn_mutex
);
1653 printf("dummynet: no memory for new pipe\n");
1656 x
->pipe_nr
= p
->pipe_nr
;
1658 /* idle_heap is the only one from which we extract from the middle.
1660 x
->idle_heap
.size
= x
->idle_heap
.elements
= 0 ;
1661 x
->idle_heap
.offset
=OFFSET_OF(struct dn_flow_queue
, heap_pos
);
1664 /* Flush accumulated credit for all queues */
1665 for (i
= 0; i
<= x
->fs
.rq_size
; i
++)
1666 for (q
= x
->fs
.rq
[i
]; q
; q
= q
->next
)
1670 x
->bandwidth
= p
->bandwidth
;
1671 x
->numbytes
= 0; /* just in case... */
1672 bcopy(p
->if_name
, x
->if_name
, sizeof(p
->if_name
) );
1673 x
->ifp
= NULL
; /* reset interface ptr */
1674 x
->delay
= p
->delay
;
1675 set_fs_parms(&(x
->fs
), pfs
);
1678 if ( x
->fs
.rq
== NULL
) { /* a new pipe */
1679 r
= alloc_hash(&(x
->fs
), pfs
) ;
1681 lck_mtx_unlock(dn_mutex
);
1682 FREE(x
, M_DUMMYNET
);
1691 lck_mtx_unlock(dn_mutex
);
1692 } else { /* config queue */
1693 struct dn_flow_set
*x
, *a
, *b
;
1695 lck_mtx_lock(dn_mutex
);
1696 /* locate flow_set */
1697 for (a
=NULL
, b
=all_flow_sets
; b
&& b
->fs_nr
< pfs
->fs_nr
;
1698 a
= b
, b
= b
->next
) ;
1700 if (b
== NULL
|| b
->fs_nr
!= pfs
->fs_nr
) { /* new */
1701 if (pfs
->parent_nr
== 0) { /* need link to a pipe */
1702 lck_mtx_unlock(dn_mutex
);
1705 x
= _MALLOC(sizeof(struct dn_flow_set
), M_DUMMYNET
, M_DONTWAIT
| M_ZERO
);
1707 lck_mtx_unlock(dn_mutex
);
1708 printf("dummynet: no memory for new flow_set\n");
1711 x
->fs_nr
= pfs
->fs_nr
;
1712 x
->parent_nr
= pfs
->parent_nr
;
1713 x
->weight
= pfs
->weight
;
1716 else if (x
->weight
> 100)
1719 /* Change parent pipe not allowed; must delete and recreate */
1720 if (pfs
->parent_nr
!= 0 && b
->parent_nr
!= pfs
->parent_nr
) {
1721 lck_mtx_unlock(dn_mutex
);
1726 set_fs_parms(x
, pfs
);
1728 if ( x
->rq
== NULL
) { /* a new flow_set */
1729 r
= alloc_hash(x
, pfs
) ;
1731 lck_mtx_unlock(dn_mutex
);
1732 FREE(x
, M_DUMMYNET
);
1741 lck_mtx_unlock(dn_mutex
);
1747 * Helper function to remove from a heap queues which are linked to
1748 * a flow_set about to be deleted.
1751 fs_remove_from_heap(struct dn_heap
*h
, struct dn_flow_set
*fs
)
1753 int i
= 0, found
= 0 ;
1754 for (; i
< h
->elements
;)
1755 if ( ((struct dn_flow_queue
*)h
->p
[i
].object
)->fs
== fs
) {
1757 h
->p
[i
] = h
->p
[h
->elements
] ;
1766 * helper function to remove a pipe from a heap (can be there at most once)
1769 pipe_remove_from_heap(struct dn_heap
*h
, struct dn_pipe
*p
)
1771 if (h
->elements
> 0) {
1773 for (i
=0; i
< h
->elements
; i
++ ) {
1774 if (h
->p
[i
].object
== p
) { /* found it */
1776 h
->p
[i
] = h
->p
[h
->elements
] ;
1785 * drain all queues. Called in case of severe mbuf shortage.
1790 struct dn_flow_set
*fs
;
1792 struct mbuf
*m
, *mnext
;
1794 lck_mtx_assert(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
1796 heap_free(&ready_heap
);
1797 heap_free(&wfq_ready_heap
);
1798 heap_free(&extract_heap
);
1799 /* remove all references to this pipe from flow_sets */
1800 for (fs
= all_flow_sets
; fs
; fs
= fs
->next
)
1801 purge_flow_set(fs
, 0);
1803 for (p
= all_pipes
; p
; p
= p
->next
) {
1804 purge_flow_set(&(p
->fs
), 0);
1807 while ((m
= mnext
) != NULL
) {
1808 mnext
= m
->m_nextpkt
;
1811 p
->head
= p
->tail
= NULL
;
1816 * Fully delete a pipe or a queue, cleaning up associated info.
1819 delete_pipe(struct dn_pipe
*p
)
1821 if (p
->pipe_nr
== 0 && p
->fs
.fs_nr
== 0)
1823 if (p
->pipe_nr
!= 0 && p
->fs
.fs_nr
!= 0)
1825 if (p
->pipe_nr
!= 0) { /* this is an old-style pipe */
1826 struct dn_pipe
*a
, *b
;
1827 struct dn_flow_set
*fs
;
1829 lck_mtx_lock(dn_mutex
);
1831 for (a
= NULL
, b
= all_pipes
; b
&& b
->pipe_nr
< p
->pipe_nr
;
1832 a
= b
, b
= b
->next
) ;
1833 if (b
== NULL
|| (b
->pipe_nr
!= p
->pipe_nr
) ) {
1834 lck_mtx_unlock(dn_mutex
);
1835 return EINVAL
; /* not found */
1838 /* unlink from list of pipes */
1840 all_pipes
= b
->next
;
1843 /* remove references to this pipe from the ip_fw rules. */
1844 flush_pipe_ptrs(&(b
->fs
));
1846 /* remove all references to this pipe from flow_sets */
1847 for (fs
= all_flow_sets
; fs
; fs
= fs
->next
)
1848 if (fs
->pipe
== b
) {
1849 printf("dummynet: ++ ref to pipe %d from fs %d\n",
1850 p
->pipe_nr
, fs
->fs_nr
);
1852 purge_flow_set(fs
, 0);
1854 fs_remove_from_heap(&ready_heap
, &(b
->fs
));
1855 purge_pipe(b
); /* remove all data associated to this pipe */
1856 /* remove reference to here from extract_heap and wfq_ready_heap */
1857 pipe_remove_from_heap(&extract_heap
, b
);
1858 pipe_remove_from_heap(&wfq_ready_heap
, b
);
1859 lck_mtx_unlock(dn_mutex
);
1861 FREE(b
, M_DUMMYNET
);
1862 } else { /* this is a WF2Q queue (dn_flow_set) */
1863 struct dn_flow_set
*a
, *b
;
1865 lck_mtx_lock(dn_mutex
);
1867 for (a
= NULL
, b
= all_flow_sets
; b
&& b
->fs_nr
< p
->fs
.fs_nr
;
1868 a
= b
, b
= b
->next
) ;
1869 if (b
== NULL
|| (b
->fs_nr
!= p
->fs
.fs_nr
) ) {
1870 lck_mtx_unlock(dn_mutex
);
1871 return EINVAL
; /* not found */
1875 all_flow_sets
= b
->next
;
1878 /* remove references to this flow_set from the ip_fw rules. */
1881 if (b
->pipe
!= NULL
) {
1882 /* Update total weight on parent pipe and cleanup parent heaps */
1883 b
->pipe
->sum
-= b
->weight
* b
->backlogged
;
1884 fs_remove_from_heap(&(b
->pipe
->not_eligible_heap
), b
);
1885 fs_remove_from_heap(&(b
->pipe
->scheduler_heap
), b
);
1886 #if 1 /* XXX should i remove from idle_heap as well ? */
1887 fs_remove_from_heap(&(b
->pipe
->idle_heap
), b
);
1890 purge_flow_set(b
, 1);
1891 lck_mtx_unlock(dn_mutex
);
1897 * helper function used to copy data from kernel in DUMMYNET_GET
1900 dn_copy_set(struct dn_flow_set
*set
, char *bp
)
1903 struct dn_flow_queue
*q
, *qp
= (struct dn_flow_queue
*)bp
;
1905 lck_mtx_assert(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
1907 for (i
= 0 ; i
<= set
->rq_size
; i
++)
1908 for (q
= set
->rq
[i
] ; q
; q
= q
->next
, qp
++ ) {
1909 if (q
->hash_slot
!= i
)
1910 printf("dummynet: ++ at %d: wrong slot (have %d, "
1911 "should be %d)\n", copied
, q
->hash_slot
, i
);
1913 printf("dummynet: ++ at %d: wrong fs ptr (have %p, should be %p)\n",
1916 bcopy(q
, qp
, sizeof( *q
) );
1917 /* cleanup pointers */
1919 qp
->head
= qp
->tail
= NULL
;
1922 if (copied
!= set
->rq_elements
)
1923 printf("dummynet: ++ wrong count, have %d should be %d\n",
1924 copied
, set
->rq_elements
);
1931 struct dn_flow_set
*set
;
1935 lck_mtx_assert(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
1938 * compute size of data structures: list of pipes and flow_sets.
1940 for (p
= all_pipes
, size
= 0 ; p
; p
= p
->next
)
1941 size
+= sizeof( *p
) +
1942 p
->fs
.rq_elements
* sizeof(struct dn_flow_queue
);
1943 for (set
= all_flow_sets
; set
; set
= set
->next
)
1944 size
+= sizeof ( *set
) +
1945 set
->rq_elements
* sizeof(struct dn_flow_queue
);
1950 dummynet_get(struct sockopt
*sopt
)
1952 char *buf
, *bp
; /* bp is the "copy-pointer" */
1954 struct dn_flow_set
*set
;
1958 /* XXX lock held too long */
1959 lck_mtx_lock(dn_mutex
);
1961 * XXX: Ugly, but we need to allocate memory with M_WAITOK flag and we
1962 * cannot use this flag while holding a mutex.
1964 for (i
= 0; i
< 10; i
++) {
1965 size
= dn_calc_size();
1966 lck_mtx_unlock(dn_mutex
);
1967 buf
= _MALLOC(size
, M_TEMP
, M_WAITOK
);
1968 lck_mtx_lock(dn_mutex
);
1969 if (size
== dn_calc_size())
1975 lck_mtx_unlock(dn_mutex
);
1978 for (p
= all_pipes
, bp
= buf
; p
; p
= p
->next
) {
1979 struct dn_pipe
*pipe_bp
= (struct dn_pipe
*)bp
;
1982 * copy pipe descriptor into *bp, convert delay back to ms,
1983 * then copy the flow_set descriptor(s) one at a time.
1984 * After each flow_set, copy the queue descriptor it owns.
1986 bcopy(p
, bp
, sizeof( *p
) );
1987 pipe_bp
->delay
= (pipe_bp
->delay
* 1000) / (hz
*10) ;
1989 * XXX the following is a hack based on ->next being the
1990 * first field in dn_pipe and dn_flow_set. The correct
1991 * solution would be to move the dn_flow_set to the beginning
1992 * of struct dn_pipe.
1994 pipe_bp
->next
= (struct dn_pipe
*)DN_IS_PIPE
;
1995 /* clean pointers */
1996 pipe_bp
->head
= pipe_bp
->tail
= NULL
;
1997 pipe_bp
->fs
.next
= NULL
;
1998 pipe_bp
->fs
.pipe
= NULL
;
1999 pipe_bp
->fs
.rq
= NULL
;
2001 bp
+= sizeof( *p
) ;
2002 bp
= dn_copy_set( &(p
->fs
), bp
);
2004 for (set
= all_flow_sets
; set
; set
= set
->next
) {
2005 struct dn_flow_set
*fs_bp
= (struct dn_flow_set
*)bp
;
2006 bcopy(set
, bp
, sizeof( *set
) );
2007 /* XXX same hack as above */
2008 fs_bp
->next
= (struct dn_flow_set
*)DN_IS_QUEUE
;
2009 fs_bp
->pipe
= NULL
;
2011 bp
+= sizeof( *set
) ;
2012 bp
= dn_copy_set( set
, bp
);
2014 lck_mtx_unlock(dn_mutex
);
2016 error
= sooptcopyout(sopt
, buf
, size
);
2022 * Handler for the various dummynet socket options (get, flush, config, del)
2025 ip_dn_ctl(struct sockopt
*sopt
)
2028 struct dn_pipe
*p
, tmp_pipe
;
2030 /* Disallow sets in really-really secure mode. */
2031 if (sopt
->sopt_dir
== SOPT_SET
&& securelevel
>= 3)
2034 switch (sopt
->sopt_name
) {
2036 printf("dummynet: -- unknown option %d", sopt
->sopt_name
);
2039 case IP_DUMMYNET_GET
:
2040 error
= dummynet_get(sopt
);
2043 case IP_DUMMYNET_FLUSH
:
2047 case IP_DUMMYNET_CONFIGURE
:
2049 error
= sooptcopyin(sopt
, p
, sizeof *p
, sizeof *p
);
2052 error
= config_pipe(p
);
2055 case IP_DUMMYNET_DEL
: /* remove a pipe or queue */
2057 error
= sooptcopyin(sopt
, p
, sizeof *p
, sizeof *p
);
2061 error
= delete_pipe(p
);
2071 dn_mutex_grp_attr
= lck_grp_attr_alloc_init();
2072 dn_mutex_grp
= lck_grp_alloc_init("dn", dn_mutex_grp_attr
);
2073 dn_mutex_attr
= lck_attr_alloc_init();
2075 if ((dn_mutex
= lck_mtx_alloc_init(dn_mutex_grp
, dn_mutex_attr
)) == NULL
) {
2076 printf("ip_dn_init: can't alloc dn_mutex\n");
2081 all_flow_sets
= NULL
;
2082 ready_heap
.size
= ready_heap
.elements
= 0 ;
2083 ready_heap
.offset
= 0 ;
2085 wfq_ready_heap
.size
= wfq_ready_heap
.elements
= 0 ;
2086 wfq_ready_heap
.offset
= 0 ;
2088 extract_heap
.size
= extract_heap
.elements
= 0 ;
2089 extract_heap
.offset
= 0 ;
2090 ip_dn_ctl_ptr
= ip_dn_ctl
;
2091 ip_dn_io_ptr
= dummynet_io
;
2092 ip_dn_ruledel_ptr
= dn_rule_delete
;