2 * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 /* $FreeBSD: src/sys/netinet6/frag6.c,v 1.2.2.5 2001/07/03 11:01:50 ume Exp $ */
30 /* $KAME: frag6.c,v 1.31 2001/05/17 13:45:34 jinmei Exp $ */
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/malloc.h>
64 #include <sys/mcache.h>
66 #include <sys/domain.h>
67 #include <sys/protosw.h>
68 #include <sys/socket.h>
69 #include <sys/errno.h>
71 #include <sys/kernel.h>
72 #include <sys/syslog.h>
73 #include <kern/queue.h>
74 #include <kern/locks.h>
77 #include <net/route.h>
79 #include <netinet/in.h>
80 #include <netinet/in_var.h>
81 #include <netinet/ip.h>
82 #include <netinet/ip6.h>
83 #include <netinet6/ip6_var.h>
84 #include <netinet/icmp6.h>
86 #include <net/net_osdep.h>
87 #include <dev/random/randomdev.h>
90 * Define it to get a correct behavior on per-interface statistics.
92 #define IN6_IFSTAT_STRICT
96 static void frag6_save_context(struct mbuf
*, int);
97 static void frag6_scrub_context(struct mbuf
*);
98 static int frag6_restore_context(struct mbuf
*);
100 static void frag6_icmp6_paramprob_error(struct fq6_head
*);
101 static void frag6_icmp6_timeex_error(struct fq6_head
*);
103 static void frag6_enq(struct ip6asfrag
*, struct ip6asfrag
*);
104 static void frag6_deq(struct ip6asfrag
*);
105 static void frag6_insque(struct ip6q
*, struct ip6q
*);
106 static void frag6_remque(struct ip6q
*);
107 static void frag6_freef(struct ip6q
*, struct fq6_head
*, struct fq6_head
*);
109 static int frag6_timeout_run
; /* frag6 timer is scheduled to run */
110 static void frag6_timeout(void *);
111 static void frag6_sched_timeout(void);
113 static struct ip6q
*ip6q_alloc(int);
114 static void ip6q_free(struct ip6q
*);
115 static void ip6q_updateparams(void);
116 static struct ip6asfrag
*ip6af_alloc(int);
117 static void ip6af_free(struct ip6asfrag
*);
119 decl_lck_mtx_data(static, ip6qlock
);
120 static lck_attr_t
*ip6qlock_attr
;
121 static lck_grp_t
*ip6qlock_grp
;
122 static lck_grp_attr_t
*ip6qlock_grp_attr
;
124 /* IPv6 fragment reassembly queues (protected by ip6qlock) */
125 static struct ip6q ip6q
; /* ip6 reassembly queues */
126 static int ip6_maxfragpackets
; /* max packets in reass queues */
127 static u_int32_t frag6_nfragpackets
; /* # of packets in reass queues */
128 static int ip6_maxfrags
; /* max fragments in reass queues */
129 static u_int32_t frag6_nfrags
; /* # of fragments in reass queues */
130 static u_int32_t ip6q_limit
; /* ip6q allocation limit */
131 static u_int32_t ip6q_count
; /* current # of allocated ip6q's */
132 static u_int32_t ip6af_limit
; /* ip6asfrag allocation limit */
133 static u_int32_t ip6af_count
; /* current # of allocated ip6asfrag's */
135 static int sysctl_maxfragpackets SYSCTL_HANDLER_ARGS
;
136 static int sysctl_maxfrags SYSCTL_HANDLER_ARGS
;
138 SYSCTL_DECL(_net_inet6_ip6
);
140 SYSCTL_PROC(_net_inet6_ip6
, IPV6CTL_MAXFRAGPACKETS
, maxfragpackets
,
141 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip6_maxfragpackets
, 0,
142 sysctl_maxfragpackets
, "I",
143 "Maximum number of IPv6 fragment reassembly queue entries");
145 SYSCTL_UINT(_net_inet6_ip6
, OID_AUTO
, fragpackets
,
146 CTLFLAG_RD
| CTLFLAG_LOCKED
, &frag6_nfragpackets
, 0,
147 "Current number of IPv6 fragment reassembly queue entries");
149 SYSCTL_PROC(_net_inet6_ip6
, IPV6CTL_MAXFRAGS
, maxfrags
,
150 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip6_maxfrags
, 0,
151 sysctl_maxfrags
, "I", "Maximum number of IPv6 fragments allowed");
154 * Initialise reassembly queue and fragment identifier.
159 /* ip6q_alloc() uses mbufs for IPv6 fragment queue structures */
160 _CASSERT(sizeof (struct ip6q
) <= _MLEN
);
161 /* ip6af_alloc() uses mbufs for IPv6 fragment queue structures */
162 _CASSERT(sizeof (struct ip6asfrag
) <= _MLEN
);
164 /* IPv6 fragment reassembly queue lock */
165 ip6qlock_grp_attr
= lck_grp_attr_alloc_init();
166 ip6qlock_grp
= lck_grp_alloc_init("ip6qlock", ip6qlock_grp_attr
);
167 ip6qlock_attr
= lck_attr_alloc_init();
168 lck_mtx_init(&ip6qlock
, ip6qlock_grp
, ip6qlock_attr
);
170 lck_mtx_lock(&ip6qlock
);
171 /* Initialize IPv6 reassembly queue. */
172 ip6q
.ip6q_next
= ip6q
.ip6q_prev
= &ip6q
;
174 /* same limits as IPv4 */
175 ip6_maxfragpackets
= nmbclusters
/ 32;
176 ip6_maxfrags
= ip6_maxfragpackets
* 2;
178 lck_mtx_unlock(&ip6qlock
);
182 frag6_save_context(struct mbuf
*m
, int val
)
184 m
->m_pkthdr
.pkt_hdr
= (void *)(uintptr_t)val
;
188 frag6_scrub_context(struct mbuf
*m
)
190 m
->m_pkthdr
.pkt_hdr
= NULL
;
194 frag6_restore_context(struct mbuf
*m
)
196 return ((int)m
->m_pkthdr
.pkt_hdr
);
200 * Send any deferred ICMP param problem error messages; caller must not be
201 * holding ip6qlock and is expected to have saved the per-packet parameter
202 * value via frag6_save_context().
205 frag6_icmp6_paramprob_error(struct fq6_head
*diq6
)
207 lck_mtx_assert(&ip6qlock
, LCK_MTX_ASSERT_NOTOWNED
);
209 if (!MBUFQ_EMPTY(diq6
)) {
210 struct mbuf
*merr
, *merr_tmp
;
212 MBUFQ_FOREACH_SAFE(merr
, diq6
, merr_tmp
) {
213 MBUFQ_REMOVE(diq6
, merr
);
214 MBUFQ_NEXT(merr
) = NULL
;
215 param
= frag6_restore_context(merr
);
216 frag6_scrub_context(merr
);
217 icmp6_error(merr
, ICMP6_PARAM_PROB
,
218 ICMP6_PARAMPROB_HEADER
, param
);
224 * Send any deferred ICMP time exceeded error messages;
225 * caller must not be holding ip6qlock.
228 frag6_icmp6_timeex_error(struct fq6_head
*diq6
)
230 lck_mtx_assert(&ip6qlock
, LCK_MTX_ASSERT_NOTOWNED
);
232 if (!MBUFQ_EMPTY(diq6
)) {
233 struct mbuf
*m
, *m_tmp
;
234 MBUFQ_FOREACH_SAFE(m
, diq6
, m_tmp
) {
235 MBUFQ_REMOVE(diq6
, m
);
236 MBUFQ_NEXT(m
) = NULL
;
237 icmp6_error(m
, ICMP6_TIME_EXCEEDED
,
238 ICMP6_TIME_EXCEED_REASSEMBLY
, 0);
244 * In RFC2460, fragment and reassembly rule do not agree with each other,
245 * in terms of next header field handling in fragment header.
246 * While the sender will use the same value for all of the fragmented packets,
247 * receiver is suggested not to check the consistency.
249 * fragment rule (p20):
250 * (2) A Fragment header containing:
251 * The Next Header value that identifies the first header of
252 * the Fragmentable Part of the original packet.
253 * -> next header field is same for all fragments
255 * reassembly rule (p21):
256 * The Next Header field of the last header of the Unfragmentable
257 * Part is obtained from the Next Header field of the first
258 * fragment's Fragment header.
259 * -> should grab it from the first fragment only
261 * The following note also contradicts with fragment rule - noone is going to
262 * send different fragment with different next header field.
264 * additional note (p22):
265 * The Next Header values in the Fragment headers of different
266 * fragments of the same original packet may differ. Only the value
267 * from the Offset zero fragment packet is used for reassembly.
268 * -> should grab it from the first fragment only
270 * There is no explicit reason given in the RFC. Historical reason maybe?
276 frag6_input(struct mbuf
**mp
, int *offp
, int proto
)
278 #pragma unused(proto)
279 struct mbuf
*m
= *mp
, *t
;
281 struct ip6_frag
*ip6f
;
283 struct ip6asfrag
*af6
, *ip6af
, *af6dwn
;
284 int offset
= *offp
, nxt
, i
, next
;
286 int fragoff
, frgpartlen
; /* must be larger than u_int16_t */
287 struct ifnet
*dstifp
= NULL
;
289 uint32_t csum
, csum_flags
;
290 struct fq6_head diq6
;
293 VERIFY(m
->m_flags
& M_PKTHDR
);
295 MBUFQ_INIT(&diq6
); /* for deferred ICMP param problem errors */
297 /* Expect 32-bit aligned data pointer on strict-align platforms */
298 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m
);
300 ip6
= mtod(m
, struct ip6_hdr
*);
301 #ifndef PULLDOWN_TEST
302 IP6_EXTHDR_CHECK(m
, offset
, sizeof(struct ip6_frag
), goto done
);
303 ip6f
= (struct ip6_frag
*)((caddr_t
)ip6
+ offset
);
305 IP6_EXTHDR_GET(ip6f
, struct ip6_frag
*, m
, offset
, sizeof(*ip6f
));
310 #ifdef IN6_IFSTAT_STRICT
311 /* find the destination interface of the packet. */
312 if (m
->m_pkthdr
.pkt_flags
& PKTF_IFAINFO
) {
315 if (ip6_getdstifaddr_info(m
, &idx
, NULL
) == 0) {
316 if (idx
> 0 && idx
<= if_index
) {
317 ifnet_head_lock_shared();
318 dstifp
= ifindex2ifnet
[idx
];
323 #endif /* IN6_IFSTAT_STRICT */
325 /* we are violating the spec, this may not be the dst interface */
327 dstifp
= m
->m_pkthdr
.rcvif
;
329 /* jumbo payload can't contain a fragment header */
330 if (ip6
->ip6_plen
== 0) {
331 icmp6_error(m
, ICMP6_PARAM_PROB
, ICMP6_PARAMPROB_HEADER
, offset
);
332 in6_ifstat_inc(dstifp
, ifs6_reass_fail
);
338 * check whether fragment packet's fragment length is
339 * multiple of 8 octets.
340 * sizeof(struct ip6_frag) == 8
341 * sizeof(struct ip6_hdr) = 40
343 if ((ip6f
->ip6f_offlg
& IP6F_MORE_FRAG
) &&
344 (((ntohs(ip6
->ip6_plen
) - offset
) & 0x7) != 0)) {
345 icmp6_error(m
, ICMP6_PARAM_PROB
, ICMP6_PARAMPROB_HEADER
,
346 offsetof(struct ip6_hdr
, ip6_plen
));
347 in6_ifstat_inc(dstifp
, ifs6_reass_fail
);
352 /* If ip6_maxfragpackets or ip6_maxfrags is 0, never accept fragments */
353 if (ip6_maxfragpackets
== 0 || ip6_maxfrags
== 0) {
354 ip6stat
.ip6s_fragments
++;
355 ip6stat
.ip6s_fragdropped
++;
356 in6_ifstat_inc(dstifp
, ifs6_reass_fail
);
362 /* offset now points to data portion */
363 offset
+= sizeof(struct ip6_frag
);
366 * Leverage partial checksum offload for simple UDP/IP fragments,
367 * as that is the most common case.
369 * Perform 1's complement adjustment of octets that got included/
370 * excluded in the hardware-calculated checksum value.
372 if (ip6f
->ip6f_nxt
== IPPROTO_UDP
&&
373 offset
== (sizeof (*ip6
) + sizeof (*ip6f
)) &&
374 (m
->m_pkthdr
.csum_flags
&
375 (CSUM_DATA_VALID
| CSUM_PARTIAL
| CSUM_PSEUDO_HDR
)) ==
376 (CSUM_DATA_VALID
| CSUM_PARTIAL
)) {
379 start
= m
->m_pkthdr
.csum_rx_start
;
380 csum
= m
->m_pkthdr
.csum_rx_val
;
382 if (start
!= offset
) {
385 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_src
)) {
386 s
= ip6
->ip6_src
.s6_addr16
[1];
387 ip6
->ip6_src
.s6_addr16
[1] = 0 ;
389 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_dst
)) {
390 d
= ip6
->ip6_dst
.s6_addr16
[1];
391 ip6
->ip6_dst
.s6_addr16
[1] = 0;
394 /* callee folds in sum */
395 csum
= m_adj_sum16(m
, start
, offset
, csum
);
397 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_src
))
398 ip6
->ip6_src
.s6_addr16
[1] = s
;
399 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_dst
))
400 ip6
->ip6_dst
.s6_addr16
[1] = d
;
403 csum_flags
= m
->m_pkthdr
.csum_flags
;
409 /* Invalidate checksum */
410 m
->m_pkthdr
.csum_flags
&= ~CSUM_DATA_VALID
;
412 ip6stat
.ip6s_fragments
++;
413 in6_ifstat_inc(dstifp
, ifs6_reass_reqd
);
415 lck_mtx_lock(&ip6qlock
);
418 for (q6
= ip6q
.ip6q_next
; q6
!= &ip6q
; q6
= q6
->ip6q_next
)
419 if (ip6f
->ip6f_ident
== q6
->ip6q_ident
&&
420 IN6_ARE_ADDR_EQUAL(&ip6
->ip6_src
, &q6
->ip6q_src
) &&
421 IN6_ARE_ADDR_EQUAL(&ip6
->ip6_dst
, &q6
->ip6q_dst
))
426 * the first fragment to arrive, create a reassembly queue.
430 q6
= ip6q_alloc(M_DONTWAIT
);
434 frag6_insque(q6
, &ip6q
);
435 frag6_nfragpackets
++;
437 /* ip6q_nxt will be filled afterwards, from 1st fragment */
438 q6
->ip6q_down
= q6
->ip6q_up
= (struct ip6asfrag
*)q6
;
440 q6
->ip6q_nxtp
= (u_char
*)nxtp
;
442 q6
->ip6q_ident
= ip6f
->ip6f_ident
;
443 q6
->ip6q_ttl
= IPV6_FRAGTTL
;
444 q6
->ip6q_src
= ip6
->ip6_src
;
445 q6
->ip6q_dst
= ip6
->ip6_dst
;
447 (ntohl(ip6
->ip6_flow
) >> 20) & IPTOS_ECN_MASK
;
448 q6
->ip6q_unfrglen
= -1; /* The 1st fragment has not arrived. */
453 * If the first fragment has valid checksum offload
454 * info, the rest of fragments are eligible as well.
456 if (csum_flags
!= 0) {
457 q6
->ip6q_csum
= csum
;
458 q6
->ip6q_csum_flags
= csum_flags
;
463 * If it's the 1st fragment, record the length of the
464 * unfragmentable part and the next header of the fragment header.
466 fragoff
= ntohs(ip6f
->ip6f_offlg
& IP6F_OFF_MASK
);
468 q6
->ip6q_unfrglen
= offset
- sizeof(struct ip6_hdr
) -
469 sizeof(struct ip6_frag
);
470 q6
->ip6q_nxt
= ip6f
->ip6f_nxt
;
474 * Check that the reassembled packet would not exceed 65535 bytes
476 * If it would exceed, discard the fragment and return an ICMP error.
478 frgpartlen
= sizeof(struct ip6_hdr
) + ntohs(ip6
->ip6_plen
) - offset
;
479 if (q6
->ip6q_unfrglen
>= 0) {
480 /* The 1st fragment has already arrived. */
481 if (q6
->ip6q_unfrglen
+ fragoff
+ frgpartlen
> IPV6_MAXPACKET
) {
482 lck_mtx_unlock(&ip6qlock
);
484 icmp6_error(m
, ICMP6_PARAM_PROB
, ICMP6_PARAMPROB_HEADER
,
485 offset
- sizeof(struct ip6_frag
) +
486 offsetof(struct ip6_frag
, ip6f_offlg
));
490 } else if (fragoff
+ frgpartlen
> IPV6_MAXPACKET
) {
491 lck_mtx_unlock(&ip6qlock
);
493 icmp6_error(m
, ICMP6_PARAM_PROB
, ICMP6_PARAMPROB_HEADER
,
494 offset
- sizeof(struct ip6_frag
) +
495 offsetof(struct ip6_frag
, ip6f_offlg
));
500 * If it's the first fragment, do the above check for each
501 * fragment already stored in the reassembly queue.
504 for (af6
= q6
->ip6q_down
; af6
!= (struct ip6asfrag
*)q6
;
506 af6dwn
= af6
->ip6af_down
;
508 if (q6
->ip6q_unfrglen
+ af6
->ip6af_off
+ af6
->ip6af_frglen
>
510 struct mbuf
*merr
= IP6_REASS_MBUF(af6
);
511 struct ip6_hdr
*ip6err
;
512 int erroff
= af6
->ip6af_offset
;
514 /* dequeue the fragment. */
518 /* adjust pointer. */
519 ip6err
= mtod(merr
, struct ip6_hdr
*);
522 * Restore source and destination addresses
523 * in the erroneous IPv6 header.
525 ip6err
->ip6_src
= q6
->ip6q_src
;
526 ip6err
->ip6_dst
= q6
->ip6q_dst
;
528 frag6_save_context(merr
,
529 erroff
- sizeof (struct ip6_frag
) +
530 offsetof(struct ip6_frag
, ip6f_offlg
));
532 MBUFQ_ENQUEUE(&diq6
, merr
);
537 ip6af
= ip6af_alloc(M_DONTWAIT
);
541 ip6af
->ip6af_mff
= ip6f
->ip6f_offlg
& IP6F_MORE_FRAG
;
542 ip6af
->ip6af_off
= fragoff
;
543 ip6af
->ip6af_frglen
= frgpartlen
;
544 ip6af
->ip6af_offset
= offset
;
545 IP6_REASS_MBUF(ip6af
) = m
;
548 af6
= (struct ip6asfrag
*)q6
;
553 * Handle ECN by comparing this segment with the first one;
554 * if CE is set, do not lose CE.
555 * drop if CE and not-ECT are mixed for the same packet.
557 ecn
= (ntohl(ip6
->ip6_flow
) >> 20) & IPTOS_ECN_MASK
;
559 if (ecn
== IPTOS_ECN_CE
) {
560 if (ecn0
== IPTOS_ECN_NOTECT
) {
564 if (ecn0
!= IPTOS_ECN_CE
)
565 q6
->ip6q_ecn
= IPTOS_ECN_CE
;
567 if (ecn
== IPTOS_ECN_NOTECT
&& ecn0
!= IPTOS_ECN_NOTECT
) {
573 * Find a segment which begins after this one does.
575 for (af6
= q6
->ip6q_down
; af6
!= (struct ip6asfrag
*)q6
;
576 af6
= af6
->ip6af_down
)
577 if (af6
->ip6af_off
> ip6af
->ip6af_off
)
582 * If there is a preceding segment, it may provide some of
583 * our data already. If so, drop the data from the incoming
584 * segment. If it provides all of our data, drop us.
586 * If some of the data is dropped from the preceding
587 * segment, then it's checksum is invalidated.
589 if (af6
->ip6af_up
!= (struct ip6asfrag
*)q6
) {
590 i
= af6
->ip6af_up
->ip6af_off
+ af6
->ip6af_up
->ip6af_frglen
593 if (i
>= ip6af
->ip6af_frglen
)
595 m_adj(IP6_REASS_MBUF(ip6af
), i
);
596 q6
->ip6q_csum_flags
= 0;
597 ip6af
->ip6af_off
+= i
;
598 ip6af
->ip6af_frglen
-= i
;
603 * While we overlap succeeding segments trim them or,
604 * if they are completely covered, dequeue them.
606 while (af6
!= (struct ip6asfrag
*)q6
&&
607 ip6af
->ip6af_off
+ ip6af
->ip6af_frglen
> af6
->ip6af_off
) {
608 i
= (ip6af
->ip6af_off
+ ip6af
->ip6af_frglen
) - af6
->ip6af_off
;
609 if (i
< af6
->ip6af_frglen
) {
610 af6
->ip6af_frglen
-= i
;
612 m_adj(IP6_REASS_MBUF(af6
), i
);
613 q6
->ip6q_csum_flags
= 0;
616 af6
= af6
->ip6af_down
;
617 m_freem(IP6_REASS_MBUF(af6
->ip6af_up
));
618 frag6_deq(af6
->ip6af_up
);
622 * If the incoming framgent overlaps some existing fragments in
623 * the reassembly queue, drop it, since it is dangerous to override
624 * existing fragments from a security point of view.
625 * We don't know which fragment is the bad guy - here we trust
626 * fragment that came in earlier, with no real reason.
628 * Note: due to changes after disabling this part, mbuf passed to
629 * m_adj() below now does not meet the requirement.
631 if (af6
->ip6af_up
!= (struct ip6asfrag
*)q6
) {
632 i
= af6
->ip6af_up
->ip6af_off
+ af6
->ip6af_up
->ip6af_frglen
635 #if 0 /* suppress the noisy log */
636 log(LOG_ERR
, "%d bytes of a fragment from %s "
637 "overlaps the previous fragment\n",
638 i
, ip6_sprintf(&q6
->ip6q_src
));
644 if (af6
!= (struct ip6asfrag
*)q6
) {
645 i
= (ip6af
->ip6af_off
+ ip6af
->ip6af_frglen
) - af6
->ip6af_off
;
647 #if 0 /* suppress the noisy log */
648 log(LOG_ERR
, "%d bytes of a fragment from %s "
649 "overlaps the succeeding fragment",
650 i
, ip6_sprintf(&q6
->ip6q_src
));
659 * If this fragment contains similar checksum offload info
660 * as that of the existing ones, accumulate checksum. Otherwise,
661 * invalidate checksum offload info for the entire datagram.
663 if (csum_flags
!= 0 && csum_flags
== q6
->ip6q_csum_flags
)
664 q6
->ip6q_csum
+= csum
;
665 else if (q6
->ip6q_csum_flags
!= 0)
666 q6
->ip6q_csum_flags
= 0;
671 * Stick new segment in its place;
672 * check for complete reassembly.
673 * Move to front of packet queue, as we are
674 * the most recently active fragmented packet.
676 frag6_enq(ip6af
, af6
->ip6af_up
);
680 if (q6
!= ip6q
.ip6q_next
) {
682 frag6_insque(q6
, &ip6q
);
686 for (af6
= q6
->ip6q_down
; af6
!= (struct ip6asfrag
*)q6
;
687 af6
= af6
->ip6af_down
) {
688 if (af6
->ip6af_off
!= next
) {
689 lck_mtx_unlock(&ip6qlock
);
694 next
+= af6
->ip6af_frglen
;
696 if (af6
->ip6af_up
->ip6af_mff
) {
697 lck_mtx_unlock(&ip6qlock
);
704 * Reassembly is complete; concatenate fragments.
706 ip6af
= q6
->ip6q_down
;
707 t
= m
= IP6_REASS_MBUF(ip6af
);
708 af6
= ip6af
->ip6af_down
;
710 while (af6
!= (struct ip6asfrag
*)q6
) {
711 af6dwn
= af6
->ip6af_down
;
715 t
->m_next
= IP6_REASS_MBUF(af6
);
716 m_adj(t
->m_next
, af6
->ip6af_offset
);
722 * Store partial hardware checksum info from the fragment queue;
723 * the receive start offset is set to 40 bytes (see code at the
724 * top of this routine.)
726 if (q6
->ip6q_csum_flags
!= 0) {
727 csum
= q6
->ip6q_csum
;
731 m
->m_pkthdr
.csum_rx_val
= csum
;
732 m
->m_pkthdr
.csum_rx_start
= sizeof (struct ip6_hdr
);
733 m
->m_pkthdr
.csum_flags
= q6
->ip6q_csum_flags
;
734 } else if ((m
->m_pkthdr
.rcvif
->if_flags
& IFF_LOOPBACK
) ||
735 (m
->m_pkthdr
.pkt_flags
& PKTF_LOOP
)) {
736 /* loopback checksums are always OK */
737 m
->m_pkthdr
.csum_data
= 0xffff;
738 m
->m_pkthdr
.csum_flags
&= ~CSUM_PARTIAL
;
739 m
->m_pkthdr
.csum_flags
= CSUM_DATA_VALID
| CSUM_PSEUDO_HDR
;
742 /* adjust offset to point where the original next header starts */
743 offset
= ip6af
->ip6af_offset
- sizeof(struct ip6_frag
);
745 ip6
= mtod(m
, struct ip6_hdr
*);
746 ip6
->ip6_plen
= htons((u_short
)next
+ offset
- sizeof(struct ip6_hdr
));
747 ip6
->ip6_src
= q6
->ip6q_src
;
748 ip6
->ip6_dst
= q6
->ip6q_dst
;
749 if (q6
->ip6q_ecn
== IPTOS_ECN_CE
)
750 ip6
->ip6_flow
|= htonl(IPTOS_ECN_CE
<< 20);
754 *q6
->ip6q_nxtp
= (u_char
)(nxt
& 0xff);
757 /* Delete frag6 header */
758 if (m
->m_len
>= offset
+ sizeof(struct ip6_frag
)) {
759 /* This is the only possible case with !PULLDOWN_TEST */
760 ovbcopy((caddr_t
)ip6
, (caddr_t
)ip6
+ sizeof(struct ip6_frag
),
762 m
->m_data
+= sizeof(struct ip6_frag
);
763 m
->m_len
-= sizeof(struct ip6_frag
);
765 /* this comes with no copy if the boundary is on cluster */
766 if ((t
= m_split(m
, offset
, M_DONTWAIT
)) == NULL
) {
768 frag6_nfragpackets
--;
769 frag6_nfrags
-= q6
->ip6q_nfrag
;
773 m_adj(t
, sizeof(struct ip6_frag
));
778 * Store NXT to the original.
781 char *prvnxtp
= ip6_get_prevhdr(m
, offset
); /* XXX */
786 frag6_nfragpackets
--;
787 frag6_nfrags
-= q6
->ip6q_nfrag
;
790 if (m
->m_flags
& M_PKTHDR
) /* Isn't it always true? */
793 ip6stat
.ip6s_reassembled
++;
796 * Tell launch routine the next header
801 /* arm the purge timer if not already and if there's work to do */
802 frag6_sched_timeout();
803 lck_mtx_unlock(&ip6qlock
);
804 in6_ifstat_inc(dstifp
, ifs6_reass_ok
);
805 frag6_icmp6_paramprob_error(&diq6
);
806 VERIFY(MBUFQ_EMPTY(&diq6
));
812 if (frag6_nfragpackets
== 0) {
813 frag6_icmp6_paramprob_error(&diq6
);
814 VERIFY(MBUFQ_EMPTY(&diq6
));
815 return (IPPROTO_DONE
);
817 lck_mtx_lock(&ip6qlock
);
819 /* arm the purge timer if not already and if there's work to do */
820 frag6_sched_timeout();
821 lck_mtx_unlock(&ip6qlock
);
822 frag6_icmp6_paramprob_error(&diq6
);
823 VERIFY(MBUFQ_EMPTY(&diq6
));
824 return (IPPROTO_DONE
);
827 ip6stat
.ip6s_fragdropped
++;
828 /* arm the purge timer if not already and if there's work to do */
829 frag6_sched_timeout();
830 lck_mtx_unlock(&ip6qlock
);
831 in6_ifstat_inc(dstifp
, ifs6_reass_fail
);
833 frag6_icmp6_paramprob_error(&diq6
);
834 VERIFY(MBUFQ_EMPTY(&diq6
));
835 return (IPPROTO_DONE
);
839 * Free a fragment reassembly header and all
840 * associated datagrams.
843 frag6_freef(struct ip6q
*q6
, struct fq6_head
*dfq6
, struct fq6_head
*diq6
)
845 struct ip6asfrag
*af6
, *down6
;
847 lck_mtx_assert(&ip6qlock
, LCK_MTX_ASSERT_OWNED
);
849 for (af6
= q6
->ip6q_down
; af6
!= (struct ip6asfrag
*)q6
;
851 struct mbuf
*m
= IP6_REASS_MBUF(af6
);
853 down6
= af6
->ip6af_down
;
857 * Return ICMP time exceeded error for the 1st fragment.
858 * Just free other fragments.
860 if (af6
->ip6af_off
== 0) {
864 ip6
= mtod(m
, struct ip6_hdr
*);
866 /* restore source and destination addresses */
867 ip6
->ip6_src
= q6
->ip6q_src
;
868 ip6
->ip6_dst
= q6
->ip6q_dst
;
870 MBUFQ_ENQUEUE(diq6
, m
);
872 MBUFQ_ENQUEUE(dfq6
, m
);
878 frag6_nfragpackets
--;
879 frag6_nfrags
-= q6
->ip6q_nfrag
;
884 * Put an ip fragment on a reassembly chain.
885 * Like insque, but pointers in middle of structure.
888 frag6_enq(struct ip6asfrag
*af6
, struct ip6asfrag
*up6
)
890 lck_mtx_assert(&ip6qlock
, LCK_MTX_ASSERT_OWNED
);
893 af6
->ip6af_down
= up6
->ip6af_down
;
894 up6
->ip6af_down
->ip6af_up
= af6
;
895 up6
->ip6af_down
= af6
;
899 * To frag6_enq as remque is to insque.
902 frag6_deq(struct ip6asfrag
*af6
)
904 lck_mtx_assert(&ip6qlock
, LCK_MTX_ASSERT_OWNED
);
906 af6
->ip6af_up
->ip6af_down
= af6
->ip6af_down
;
907 af6
->ip6af_down
->ip6af_up
= af6
->ip6af_up
;
911 frag6_insque(struct ip6q
*new, struct ip6q
*old
)
913 lck_mtx_assert(&ip6qlock
, LCK_MTX_ASSERT_OWNED
);
915 new->ip6q_prev
= old
;
916 new->ip6q_next
= old
->ip6q_next
;
917 old
->ip6q_next
->ip6q_prev
= new;
918 old
->ip6q_next
= new;
922 frag6_remque(struct ip6q
*p6
)
924 lck_mtx_assert(&ip6qlock
, LCK_MTX_ASSERT_OWNED
);
926 p6
->ip6q_prev
->ip6q_next
= p6
->ip6q_next
;
927 p6
->ip6q_next
->ip6q_prev
= p6
->ip6q_prev
;
931 * IPv6 reassembling timer processing;
932 * if a timer expires on a reassembly
936 frag6_timeout(void *arg
)
939 struct fq6_head dfq6
, diq6
;
942 MBUFQ_INIT(&dfq6
); /* for deferred frees */
943 MBUFQ_INIT(&diq6
); /* for deferred ICMP time exceeded errors */
946 * Update coarse-grained networking timestamp (in sec.); the idea
947 * is to piggy-back on the timeout callout to update the counter
948 * returnable via net_uptime().
952 lck_mtx_lock(&ip6qlock
);
955 while (q6
!= &ip6q
) {
958 if (q6
->ip6q_prev
->ip6q_ttl
== 0) {
959 ip6stat
.ip6s_fragtimeout
++;
960 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
961 frag6_freef(q6
->ip6q_prev
, &dfq6
, &diq6
);
965 * If we are over the maximum number of fragments
966 * (due to the limit being lowered), drain off
967 * enough to get down to the new limit.
969 if (ip6_maxfragpackets
>= 0) {
970 while (frag6_nfragpackets
> (unsigned)ip6_maxfragpackets
&&
972 ip6stat
.ip6s_fragoverflow
++;
973 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
974 frag6_freef(ip6q
.ip6q_prev
, &dfq6
, &diq6
);
977 /* re-arm the purge timer if there's work to do */
978 frag6_timeout_run
= 0;
979 frag6_sched_timeout();
980 lck_mtx_unlock(&ip6qlock
);
982 /* free fragments that need to be freed */
983 if (!MBUFQ_EMPTY(&dfq6
))
986 frag6_icmp6_timeex_error(&diq6
);
988 VERIFY(MBUFQ_EMPTY(&dfq6
));
989 VERIFY(MBUFQ_EMPTY(&diq6
));
993 frag6_sched_timeout(void)
995 lck_mtx_assert(&ip6qlock
, LCK_MTX_ASSERT_OWNED
);
997 if (!frag6_timeout_run
&& frag6_nfragpackets
> 0) {
998 frag6_timeout_run
= 1;
999 timeout(frag6_timeout
, NULL
, hz
);
1004 * Drain off all datagram fragments.
1009 struct fq6_head dfq6
, diq6
;
1011 MBUFQ_INIT(&dfq6
); /* for deferred frees */
1012 MBUFQ_INIT(&diq6
); /* for deferred ICMP time exceeded errors */
1014 lck_mtx_lock(&ip6qlock
);
1015 while (ip6q
.ip6q_next
!= &ip6q
) {
1016 ip6stat
.ip6s_fragdropped
++;
1017 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
1018 frag6_freef(ip6q
.ip6q_next
, &dfq6
, &diq6
);
1020 lck_mtx_unlock(&ip6qlock
);
1022 /* free fragments that need to be freed */
1023 if (!MBUFQ_EMPTY(&dfq6
))
1026 frag6_icmp6_timeex_error(&diq6
);
1028 VERIFY(MBUFQ_EMPTY(&dfq6
));
1029 VERIFY(MBUFQ_EMPTY(&diq6
));
1032 static struct ip6q
*
1039 * See comments in ip6q_updateparams(). Keep the count separate
1040 * from frag6_nfragpackets since the latter represents the elements
1041 * already in the reassembly queues.
1043 if (ip6q_limit
> 0 && ip6q_count
> ip6q_limit
)
1046 t
= m_get(how
, MT_FTABLE
);
1048 atomic_add_32(&ip6q_count
, 1);
1049 q6
= mtod(t
, struct ip6q
*);
1050 bzero(q6
, sizeof (*q6
));
1058 ip6q_free(struct ip6q
*q6
)
1060 (void) m_free(dtom(q6
));
1061 atomic_add_32(&ip6q_count
, -1);
1064 static struct ip6asfrag
*
1065 ip6af_alloc(int how
)
1068 struct ip6asfrag
*af6
;
1071 * See comments in ip6q_updateparams(). Keep the count separate
1072 * from frag6_nfrags since the latter represents the elements
1073 * already in the reassembly queues.
1075 if (ip6af_limit
> 0 && ip6af_count
> ip6af_limit
)
1078 t
= m_get(how
, MT_FTABLE
);
1080 atomic_add_32(&ip6af_count
, 1);
1081 af6
= mtod(t
, struct ip6asfrag
*);
1082 bzero(af6
, sizeof (*af6
));
1090 ip6af_free(struct ip6asfrag
*af6
)
1092 (void) m_free(dtom(af6
));
1093 atomic_add_32(&ip6af_count
, -1);
1097 ip6q_updateparams(void)
1099 lck_mtx_assert(&ip6qlock
, LCK_MTX_ASSERT_OWNED
);
1101 * -1 for unlimited allocation.
1103 if (ip6_maxfragpackets
< 0)
1105 if (ip6_maxfrags
< 0)
1108 * Positive number for specific bound.
1110 if (ip6_maxfragpackets
> 0)
1111 ip6q_limit
= ip6_maxfragpackets
;
1112 if (ip6_maxfrags
> 0)
1113 ip6af_limit
= ip6_maxfrags
;
1115 * Zero specifies no further fragment queue allocation -- set the
1116 * bound very low, but rely on implementation elsewhere to actually
1117 * prevent allocation and reclaim current queues.
1119 if (ip6_maxfragpackets
== 0)
1121 if (ip6_maxfrags
== 0)
1124 * Arm the purge timer if not already and if there's work to do
1126 frag6_sched_timeout();
1130 sysctl_maxfragpackets SYSCTL_HANDLER_ARGS
1132 #pragma unused(arg1, arg2)
1135 lck_mtx_lock(&ip6qlock
);
1136 i
= ip6_maxfragpackets
;
1137 error
= sysctl_handle_int(oidp
, &i
, 0, req
);
1138 if (error
|| req
->newptr
== USER_ADDR_NULL
)
1141 if (i
< -1 || i
> (nmbclusters
/ 4)) {
1145 ip6_maxfragpackets
= i
;
1146 ip6q_updateparams();
1148 lck_mtx_unlock(&ip6qlock
);
1153 sysctl_maxfrags SYSCTL_HANDLER_ARGS
1155 #pragma unused(arg1, arg2)
1158 lck_mtx_lock(&ip6qlock
);
1160 error
= sysctl_handle_int(oidp
, &i
, 0, req
);
1161 if (error
|| req
->newptr
== USER_ADDR_NULL
)
1164 if (i
< -1 || i
> (nmbclusters
/ 4)) {
1169 ip6q_updateparams(); /* see if we need to arm timer */
1171 lck_mtx_unlock(&ip6qlock
);