]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet6/frag6.c
6a92d73808983ea2932e9d5de7777b1d3fe4e7a9
[apple/xnu.git] / bsd / netinet6 / frag6.c
1 /*
2 * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /* $FreeBSD: src/sys/netinet6/frag6.c,v 1.2.2.5 2001/07/03 11:01:50 ume Exp $ */
30 /* $KAME: frag6.c,v 1.31 2001/05/17 13:45:34 jinmei Exp $ */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/malloc.h>
64 #include <sys/mcache.h>
65 #include <sys/mbuf.h>
66 #include <sys/domain.h>
67 #include <sys/protosw.h>
68 #include <sys/socket.h>
69 #include <sys/errno.h>
70 #include <sys/time.h>
71 #include <sys/kernel.h>
72 #include <sys/syslog.h>
73 #include <kern/queue.h>
74 #include <kern/locks.h>
75
76 #include <net/if.h>
77 #include <net/route.h>
78
79 #include <netinet/in.h>
80 #include <netinet/in_var.h>
81 #include <netinet/ip.h>
82 #include <netinet/ip6.h>
83 #include <netinet6/ip6_var.h>
84 #include <netinet/icmp6.h>
85
86 #include <net/net_osdep.h>
87 #include <dev/random/randomdev.h>
88
89 /*
90 * Define it to get a correct behavior on per-interface statistics.
91 */
92 #define IN6_IFSTAT_STRICT
93
94 MBUFQ_HEAD(fq6_head);
95
96 static void frag6_save_context(struct mbuf *, int);
97 static void frag6_scrub_context(struct mbuf *);
98 static int frag6_restore_context(struct mbuf *);
99
100 static void frag6_icmp6_paramprob_error(struct fq6_head *);
101 static void frag6_icmp6_timeex_error(struct fq6_head *);
102
103 static void frag6_enq(struct ip6asfrag *, struct ip6asfrag *);
104 static void frag6_deq(struct ip6asfrag *);
105 static void frag6_insque(struct ip6q *, struct ip6q *);
106 static void frag6_remque(struct ip6q *);
107 static void frag6_freef(struct ip6q *, struct fq6_head *, struct fq6_head *);
108
109 static int frag6_timeout_run; /* frag6 timer is scheduled to run */
110 static void frag6_timeout(void *);
111 static void frag6_sched_timeout(void);
112
113 static struct ip6q *ip6q_alloc(int);
114 static void ip6q_free(struct ip6q *);
115 static void ip6q_updateparams(void);
116 static struct ip6asfrag *ip6af_alloc(int);
117 static void ip6af_free(struct ip6asfrag *);
118
119 decl_lck_mtx_data(static, ip6qlock);
120 static lck_attr_t *ip6qlock_attr;
121 static lck_grp_t *ip6qlock_grp;
122 static lck_grp_attr_t *ip6qlock_grp_attr;
123
124 /* IPv6 fragment reassembly queues (protected by ip6qlock) */
125 static struct ip6q ip6q; /* ip6 reassembly queues */
126 static int ip6_maxfragpackets; /* max packets in reass queues */
127 static u_int32_t frag6_nfragpackets; /* # of packets in reass queues */
128 static int ip6_maxfrags; /* max fragments in reass queues */
129 static u_int32_t frag6_nfrags; /* # of fragments in reass queues */
130 static u_int32_t ip6q_limit; /* ip6q allocation limit */
131 static u_int32_t ip6q_count; /* current # of allocated ip6q's */
132 static u_int32_t ip6af_limit; /* ip6asfrag allocation limit */
133 static u_int32_t ip6af_count; /* current # of allocated ip6asfrag's */
134
135 static int sysctl_maxfragpackets SYSCTL_HANDLER_ARGS;
136 static int sysctl_maxfrags SYSCTL_HANDLER_ARGS;
137
138 SYSCTL_DECL(_net_inet6_ip6);
139
140 SYSCTL_PROC(_net_inet6_ip6, IPV6CTL_MAXFRAGPACKETS, maxfragpackets,
141 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_maxfragpackets, 0,
142 sysctl_maxfragpackets, "I",
143 "Maximum number of IPv6 fragment reassembly queue entries");
144
145 SYSCTL_UINT(_net_inet6_ip6, OID_AUTO, fragpackets,
146 CTLFLAG_RD | CTLFLAG_LOCKED, &frag6_nfragpackets, 0,
147 "Current number of IPv6 fragment reassembly queue entries");
148
149 SYSCTL_PROC(_net_inet6_ip6, IPV6CTL_MAXFRAGS, maxfrags,
150 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_maxfrags, 0,
151 sysctl_maxfrags, "I", "Maximum number of IPv6 fragments allowed");
152
153 /*
154 * Initialise reassembly queue and fragment identifier.
155 */
156 void
157 frag6_init(void)
158 {
159 /* ip6q_alloc() uses mbufs for IPv6 fragment queue structures */
160 _CASSERT(sizeof (struct ip6q) <= _MLEN);
161 /* ip6af_alloc() uses mbufs for IPv6 fragment queue structures */
162 _CASSERT(sizeof (struct ip6asfrag) <= _MLEN);
163
164 /* IPv6 fragment reassembly queue lock */
165 ip6qlock_grp_attr = lck_grp_attr_alloc_init();
166 ip6qlock_grp = lck_grp_alloc_init("ip6qlock", ip6qlock_grp_attr);
167 ip6qlock_attr = lck_attr_alloc_init();
168 lck_mtx_init(&ip6qlock, ip6qlock_grp, ip6qlock_attr);
169
170 lck_mtx_lock(&ip6qlock);
171 /* Initialize IPv6 reassembly queue. */
172 ip6q.ip6q_next = ip6q.ip6q_prev = &ip6q;
173
174 /* same limits as IPv4 */
175 ip6_maxfragpackets = nmbclusters / 32;
176 ip6_maxfrags = ip6_maxfragpackets * 2;
177 ip6q_updateparams();
178 lck_mtx_unlock(&ip6qlock);
179 }
180
181 static void
182 frag6_save_context(struct mbuf *m, int val)
183 {
184 m->m_pkthdr.pkt_hdr = (void *)(uintptr_t)val;
185 }
186
187 static void
188 frag6_scrub_context(struct mbuf *m)
189 {
190 m->m_pkthdr.pkt_hdr = NULL;
191 }
192
193 static int
194 frag6_restore_context(struct mbuf *m)
195 {
196 return ((int)m->m_pkthdr.pkt_hdr);
197 }
198
199 /*
200 * Send any deferred ICMP param problem error messages; caller must not be
201 * holding ip6qlock and is expected to have saved the per-packet parameter
202 * value via frag6_save_context().
203 */
204 static void
205 frag6_icmp6_paramprob_error(struct fq6_head *diq6)
206 {
207 lck_mtx_assert(&ip6qlock, LCK_MTX_ASSERT_NOTOWNED);
208
209 if (!MBUFQ_EMPTY(diq6)) {
210 struct mbuf *merr, *merr_tmp;
211 int param;
212 MBUFQ_FOREACH_SAFE(merr, diq6, merr_tmp) {
213 MBUFQ_REMOVE(diq6, merr);
214 MBUFQ_NEXT(merr) = NULL;
215 param = frag6_restore_context(merr);
216 frag6_scrub_context(merr);
217 icmp6_error(merr, ICMP6_PARAM_PROB,
218 ICMP6_PARAMPROB_HEADER, param);
219 }
220 }
221 }
222
223 /*
224 * Send any deferred ICMP time exceeded error messages;
225 * caller must not be holding ip6qlock.
226 */
227 static void
228 frag6_icmp6_timeex_error(struct fq6_head *diq6)
229 {
230 lck_mtx_assert(&ip6qlock, LCK_MTX_ASSERT_NOTOWNED);
231
232 if (!MBUFQ_EMPTY(diq6)) {
233 struct mbuf *m, *m_tmp;
234 MBUFQ_FOREACH_SAFE(m, diq6, m_tmp) {
235 MBUFQ_REMOVE(diq6, m);
236 MBUFQ_NEXT(m) = NULL;
237 icmp6_error(m, ICMP6_TIME_EXCEEDED,
238 ICMP6_TIME_EXCEED_REASSEMBLY, 0);
239 }
240 }
241 }
242
243 /*
244 * In RFC2460, fragment and reassembly rule do not agree with each other,
245 * in terms of next header field handling in fragment header.
246 * While the sender will use the same value for all of the fragmented packets,
247 * receiver is suggested not to check the consistency.
248 *
249 * fragment rule (p20):
250 * (2) A Fragment header containing:
251 * The Next Header value that identifies the first header of
252 * the Fragmentable Part of the original packet.
253 * -> next header field is same for all fragments
254 *
255 * reassembly rule (p21):
256 * The Next Header field of the last header of the Unfragmentable
257 * Part is obtained from the Next Header field of the first
258 * fragment's Fragment header.
259 * -> should grab it from the first fragment only
260 *
261 * The following note also contradicts with fragment rule - noone is going to
262 * send different fragment with different next header field.
263 *
264 * additional note (p22):
265 * The Next Header values in the Fragment headers of different
266 * fragments of the same original packet may differ. Only the value
267 * from the Offset zero fragment packet is used for reassembly.
268 * -> should grab it from the first fragment only
269 *
270 * There is no explicit reason given in the RFC. Historical reason maybe?
271 */
272 /*
273 * Fragment input
274 */
275 int
276 frag6_input(struct mbuf **mp, int *offp, int proto)
277 {
278 #pragma unused(proto)
279 struct mbuf *m = *mp, *t;
280 struct ip6_hdr *ip6;
281 struct ip6_frag *ip6f;
282 struct ip6q *q6;
283 struct ip6asfrag *af6, *ip6af, *af6dwn;
284 int offset = *offp, nxt, i, next;
285 int first_frag = 0;
286 int fragoff, frgpartlen; /* must be larger than u_int16_t */
287 struct ifnet *dstifp = NULL;
288 u_int8_t ecn, ecn0;
289 uint32_t csum, csum_flags;
290 struct fq6_head diq6;
291 int locked = 0;
292
293 VERIFY(m->m_flags & M_PKTHDR);
294
295 MBUFQ_INIT(&diq6); /* for deferred ICMP param problem errors */
296
297 /* Expect 32-bit aligned data pointer on strict-align platforms */
298 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
299
300 ip6 = mtod(m, struct ip6_hdr *);
301 #ifndef PULLDOWN_TEST
302 IP6_EXTHDR_CHECK(m, offset, sizeof(struct ip6_frag), goto done);
303 ip6f = (struct ip6_frag *)((caddr_t)ip6 + offset);
304 #else
305 IP6_EXTHDR_GET(ip6f, struct ip6_frag *, m, offset, sizeof(*ip6f));
306 if (ip6f == NULL)
307 goto done;
308 #endif
309
310 #ifdef IN6_IFSTAT_STRICT
311 /* find the destination interface of the packet. */
312 if (m->m_pkthdr.pkt_flags & PKTF_IFAINFO) {
313 uint32_t idx;
314
315 if (ip6_getdstifaddr_info(m, &idx, NULL) == 0) {
316 if (idx > 0 && idx <= if_index) {
317 ifnet_head_lock_shared();
318 dstifp = ifindex2ifnet[idx];
319 ifnet_head_done();
320 }
321 }
322 }
323 #endif /* IN6_IFSTAT_STRICT */
324
325 /* we are violating the spec, this may not be the dst interface */
326 if (dstifp == NULL)
327 dstifp = m->m_pkthdr.rcvif;
328
329 /* jumbo payload can't contain a fragment header */
330 if (ip6->ip6_plen == 0) {
331 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, offset);
332 in6_ifstat_inc(dstifp, ifs6_reass_fail);
333 m = NULL;
334 goto done;
335 }
336
337 /*
338 * check whether fragment packet's fragment length is
339 * multiple of 8 octets.
340 * sizeof(struct ip6_frag) == 8
341 * sizeof(struct ip6_hdr) = 40
342 */
343 if ((ip6f->ip6f_offlg & IP6F_MORE_FRAG) &&
344 (((ntohs(ip6->ip6_plen) - offset) & 0x7) != 0)) {
345 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
346 offsetof(struct ip6_hdr, ip6_plen));
347 in6_ifstat_inc(dstifp, ifs6_reass_fail);
348 m = NULL;
349 goto done;
350 }
351
352 /* If ip6_maxfragpackets or ip6_maxfrags is 0, never accept fragments */
353 if (ip6_maxfragpackets == 0 || ip6_maxfrags == 0) {
354 ip6stat.ip6s_fragments++;
355 ip6stat.ip6s_fragdropped++;
356 in6_ifstat_inc(dstifp, ifs6_reass_fail);
357 m_freem(m);
358 m = NULL;
359 goto done;
360 }
361
362 /* offset now points to data portion */
363 offset += sizeof(struct ip6_frag);
364
365 /*
366 * Leverage partial checksum offload for simple UDP/IP fragments,
367 * as that is the most common case.
368 *
369 * Perform 1's complement adjustment of octets that got included/
370 * excluded in the hardware-calculated checksum value.
371 */
372 if (ip6f->ip6f_nxt == IPPROTO_UDP &&
373 offset == (sizeof (*ip6) + sizeof (*ip6f)) &&
374 (m->m_pkthdr.csum_flags &
375 (CSUM_DATA_VALID | CSUM_PARTIAL | CSUM_PSEUDO_HDR)) ==
376 (CSUM_DATA_VALID | CSUM_PARTIAL)) {
377 uint32_t start;
378
379 start = m->m_pkthdr.csum_rx_start;
380 csum = m->m_pkthdr.csum_rx_val;
381
382 if (start != offset) {
383 uint16_t s, d;
384
385 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) {
386 s = ip6->ip6_src.s6_addr16[1];
387 ip6->ip6_src.s6_addr16[1] = 0 ;
388 }
389 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) {
390 d = ip6->ip6_dst.s6_addr16[1];
391 ip6->ip6_dst.s6_addr16[1] = 0;
392 }
393
394 /* callee folds in sum */
395 csum = m_adj_sum16(m, start, offset, csum);
396
397 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src))
398 ip6->ip6_src.s6_addr16[1] = s;
399 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst))
400 ip6->ip6_dst.s6_addr16[1] = d;
401
402 }
403 csum_flags = m->m_pkthdr.csum_flags;
404 } else {
405 csum = 0;
406 csum_flags = 0;
407 }
408
409 /* Invalidate checksum */
410 m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
411
412 ip6stat.ip6s_fragments++;
413 in6_ifstat_inc(dstifp, ifs6_reass_reqd);
414
415 lck_mtx_lock(&ip6qlock);
416 locked = 1;
417
418 for (q6 = ip6q.ip6q_next; q6 != &ip6q; q6 = q6->ip6q_next)
419 if (ip6f->ip6f_ident == q6->ip6q_ident &&
420 IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &q6->ip6q_src) &&
421 IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &q6->ip6q_dst))
422 break;
423
424 if (q6 == &ip6q) {
425 /*
426 * the first fragment to arrive, create a reassembly queue.
427 */
428 first_frag = 1;
429
430 q6 = ip6q_alloc(M_DONTWAIT);
431 if (q6 == NULL)
432 goto dropfrag;
433
434 frag6_insque(q6, &ip6q);
435 frag6_nfragpackets++;
436
437 /* ip6q_nxt will be filled afterwards, from 1st fragment */
438 q6->ip6q_down = q6->ip6q_up = (struct ip6asfrag *)q6;
439 #ifdef notyet
440 q6->ip6q_nxtp = (u_char *)nxtp;
441 #endif
442 q6->ip6q_ident = ip6f->ip6f_ident;
443 q6->ip6q_ttl = IPV6_FRAGTTL;
444 q6->ip6q_src = ip6->ip6_src;
445 q6->ip6q_dst = ip6->ip6_dst;
446 q6->ip6q_ecn =
447 (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK;
448 q6->ip6q_unfrglen = -1; /* The 1st fragment has not arrived. */
449
450 q6->ip6q_nfrag = 0;
451
452 /*
453 * If the first fragment has valid checksum offload
454 * info, the rest of fragments are eligible as well.
455 */
456 if (csum_flags != 0) {
457 q6->ip6q_csum = csum;
458 q6->ip6q_csum_flags = csum_flags;
459 }
460 }
461
462 /*
463 * If it's the 1st fragment, record the length of the
464 * unfragmentable part and the next header of the fragment header.
465 */
466 fragoff = ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK);
467 if (fragoff == 0) {
468 q6->ip6q_unfrglen = offset - sizeof(struct ip6_hdr) -
469 sizeof(struct ip6_frag);
470 q6->ip6q_nxt = ip6f->ip6f_nxt;
471 }
472
473 /*
474 * Check that the reassembled packet would not exceed 65535 bytes
475 * in size.
476 * If it would exceed, discard the fragment and return an ICMP error.
477 */
478 frgpartlen = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - offset;
479 if (q6->ip6q_unfrglen >= 0) {
480 /* The 1st fragment has already arrived. */
481 if (q6->ip6q_unfrglen + fragoff + frgpartlen > IPV6_MAXPACKET) {
482 lck_mtx_unlock(&ip6qlock);
483 locked = 0;
484 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
485 offset - sizeof(struct ip6_frag) +
486 offsetof(struct ip6_frag, ip6f_offlg));
487 m = NULL;
488 goto done;
489 }
490 } else if (fragoff + frgpartlen > IPV6_MAXPACKET) {
491 lck_mtx_unlock(&ip6qlock);
492 locked = 0;
493 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
494 offset - sizeof(struct ip6_frag) +
495 offsetof(struct ip6_frag, ip6f_offlg));
496 m = NULL;
497 goto done;
498 }
499 /*
500 * If it's the first fragment, do the above check for each
501 * fragment already stored in the reassembly queue.
502 */
503 if (fragoff == 0) {
504 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
505 af6 = af6dwn) {
506 af6dwn = af6->ip6af_down;
507
508 if (q6->ip6q_unfrglen + af6->ip6af_off + af6->ip6af_frglen >
509 IPV6_MAXPACKET) {
510 struct mbuf *merr = IP6_REASS_MBUF(af6);
511 struct ip6_hdr *ip6err;
512 int erroff = af6->ip6af_offset;
513
514 /* dequeue the fragment. */
515 frag6_deq(af6);
516 ip6af_free(af6);
517
518 /* adjust pointer. */
519 ip6err = mtod(merr, struct ip6_hdr *);
520
521 /*
522 * Restore source and destination addresses
523 * in the erroneous IPv6 header.
524 */
525 ip6err->ip6_src = q6->ip6q_src;
526 ip6err->ip6_dst = q6->ip6q_dst;
527
528 frag6_save_context(merr,
529 erroff - sizeof (struct ip6_frag) +
530 offsetof(struct ip6_frag, ip6f_offlg));
531
532 MBUFQ_ENQUEUE(&diq6, merr);
533 }
534 }
535 }
536
537 ip6af = ip6af_alloc(M_DONTWAIT);
538 if (ip6af == NULL)
539 goto dropfrag;
540
541 ip6af->ip6af_mff = ip6f->ip6f_offlg & IP6F_MORE_FRAG;
542 ip6af->ip6af_off = fragoff;
543 ip6af->ip6af_frglen = frgpartlen;
544 ip6af->ip6af_offset = offset;
545 IP6_REASS_MBUF(ip6af) = m;
546
547 if (first_frag) {
548 af6 = (struct ip6asfrag *)q6;
549 goto insert;
550 }
551
552 /*
553 * Handle ECN by comparing this segment with the first one;
554 * if CE is set, do not lose CE.
555 * drop if CE and not-ECT are mixed for the same packet.
556 */
557 ecn = (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK;
558 ecn0 = q6->ip6q_ecn;
559 if (ecn == IPTOS_ECN_CE) {
560 if (ecn0 == IPTOS_ECN_NOTECT) {
561 ip6af_free(ip6af);
562 goto dropfrag;
563 }
564 if (ecn0 != IPTOS_ECN_CE)
565 q6->ip6q_ecn = IPTOS_ECN_CE;
566 }
567 if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT) {
568 ip6af_free(ip6af);
569 goto dropfrag;
570 }
571
572 /*
573 * Find a segment which begins after this one does.
574 */
575 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
576 af6 = af6->ip6af_down)
577 if (af6->ip6af_off > ip6af->ip6af_off)
578 break;
579
580 #if 0
581 /*
582 * If there is a preceding segment, it may provide some of
583 * our data already. If so, drop the data from the incoming
584 * segment. If it provides all of our data, drop us.
585 *
586 * If some of the data is dropped from the preceding
587 * segment, then it's checksum is invalidated.
588 */
589 if (af6->ip6af_up != (struct ip6asfrag *)q6) {
590 i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen
591 - ip6af->ip6af_off;
592 if (i > 0) {
593 if (i >= ip6af->ip6af_frglen)
594 goto dropfrag;
595 m_adj(IP6_REASS_MBUF(ip6af), i);
596 q6->ip6q_csum_flags = 0;
597 ip6af->ip6af_off += i;
598 ip6af->ip6af_frglen -= i;
599 }
600 }
601
602 /*
603 * While we overlap succeeding segments trim them or,
604 * if they are completely covered, dequeue them.
605 */
606 while (af6 != (struct ip6asfrag *)q6 &&
607 ip6af->ip6af_off + ip6af->ip6af_frglen > af6->ip6af_off) {
608 i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off;
609 if (i < af6->ip6af_frglen) {
610 af6->ip6af_frglen -= i;
611 af6->ip6af_off += i;
612 m_adj(IP6_REASS_MBUF(af6), i);
613 q6->ip6q_csum_flags = 0;
614 break;
615 }
616 af6 = af6->ip6af_down;
617 m_freem(IP6_REASS_MBUF(af6->ip6af_up));
618 frag6_deq(af6->ip6af_up);
619 }
620 #else
621 /*
622 * If the incoming framgent overlaps some existing fragments in
623 * the reassembly queue, drop it, since it is dangerous to override
624 * existing fragments from a security point of view.
625 * We don't know which fragment is the bad guy - here we trust
626 * fragment that came in earlier, with no real reason.
627 *
628 * Note: due to changes after disabling this part, mbuf passed to
629 * m_adj() below now does not meet the requirement.
630 */
631 if (af6->ip6af_up != (struct ip6asfrag *)q6) {
632 i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen
633 - ip6af->ip6af_off;
634 if (i > 0) {
635 #if 0 /* suppress the noisy log */
636 log(LOG_ERR, "%d bytes of a fragment from %s "
637 "overlaps the previous fragment\n",
638 i, ip6_sprintf(&q6->ip6q_src));
639 #endif
640 ip6af_free(ip6af);
641 goto dropfrag;
642 }
643 }
644 if (af6 != (struct ip6asfrag *)q6) {
645 i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off;
646 if (i > 0) {
647 #if 0 /* suppress the noisy log */
648 log(LOG_ERR, "%d bytes of a fragment from %s "
649 "overlaps the succeeding fragment",
650 i, ip6_sprintf(&q6->ip6q_src));
651 #endif
652 ip6af_free(ip6af);
653 goto dropfrag;
654 }
655 }
656 #endif
657
658 /*
659 * If this fragment contains similar checksum offload info
660 * as that of the existing ones, accumulate checksum. Otherwise,
661 * invalidate checksum offload info for the entire datagram.
662 */
663 if (csum_flags != 0 && csum_flags == q6->ip6q_csum_flags)
664 q6->ip6q_csum += csum;
665 else if (q6->ip6q_csum_flags != 0)
666 q6->ip6q_csum_flags = 0;
667
668 insert:
669
670 /*
671 * Stick new segment in its place;
672 * check for complete reassembly.
673 * Move to front of packet queue, as we are
674 * the most recently active fragmented packet.
675 */
676 frag6_enq(ip6af, af6->ip6af_up);
677 frag6_nfrags++;
678 q6->ip6q_nfrag++;
679 #if 0 /* xxx */
680 if (q6 != ip6q.ip6q_next) {
681 frag6_remque(q6);
682 frag6_insque(q6, &ip6q);
683 }
684 #endif
685 next = 0;
686 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
687 af6 = af6->ip6af_down) {
688 if (af6->ip6af_off != next) {
689 lck_mtx_unlock(&ip6qlock);
690 locked = 0;
691 m = NULL;
692 goto done;
693 }
694 next += af6->ip6af_frglen;
695 }
696 if (af6->ip6af_up->ip6af_mff) {
697 lck_mtx_unlock(&ip6qlock);
698 locked = 0;
699 m = NULL;
700 goto done;
701 }
702
703 /*
704 * Reassembly is complete; concatenate fragments.
705 */
706 ip6af = q6->ip6q_down;
707 t = m = IP6_REASS_MBUF(ip6af);
708 af6 = ip6af->ip6af_down;
709 frag6_deq(ip6af);
710 while (af6 != (struct ip6asfrag *)q6) {
711 af6dwn = af6->ip6af_down;
712 frag6_deq(af6);
713 while (t->m_next)
714 t = t->m_next;
715 t->m_next = IP6_REASS_MBUF(af6);
716 m_adj(t->m_next, af6->ip6af_offset);
717 ip6af_free(af6);
718 af6 = af6dwn;
719 }
720
721 /*
722 * Store partial hardware checksum info from the fragment queue;
723 * the receive start offset is set to 40 bytes (see code at the
724 * top of this routine.)
725 */
726 if (q6->ip6q_csum_flags != 0) {
727 csum = q6->ip6q_csum;
728
729 ADDCARRY(csum);
730
731 m->m_pkthdr.csum_rx_val = csum;
732 m->m_pkthdr.csum_rx_start = sizeof (struct ip6_hdr);
733 m->m_pkthdr.csum_flags = q6->ip6q_csum_flags;
734 } else if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) ||
735 (m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
736 /* loopback checksums are always OK */
737 m->m_pkthdr.csum_data = 0xffff;
738 m->m_pkthdr.csum_flags &= ~CSUM_PARTIAL;
739 m->m_pkthdr.csum_flags = CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
740 }
741
742 /* adjust offset to point where the original next header starts */
743 offset = ip6af->ip6af_offset - sizeof(struct ip6_frag);
744 ip6af_free(ip6af);
745 ip6 = mtod(m, struct ip6_hdr *);
746 ip6->ip6_plen = htons((u_short)next + offset - sizeof(struct ip6_hdr));
747 ip6->ip6_src = q6->ip6q_src;
748 ip6->ip6_dst = q6->ip6q_dst;
749 if (q6->ip6q_ecn == IPTOS_ECN_CE)
750 ip6->ip6_flow |= htonl(IPTOS_ECN_CE << 20);
751
752 nxt = q6->ip6q_nxt;
753 #ifdef notyet
754 *q6->ip6q_nxtp = (u_char)(nxt & 0xff);
755 #endif
756
757 /* Delete frag6 header */
758 if (m->m_len >= offset + sizeof(struct ip6_frag)) {
759 /* This is the only possible case with !PULLDOWN_TEST */
760 ovbcopy((caddr_t)ip6, (caddr_t)ip6 + sizeof(struct ip6_frag),
761 offset);
762 m->m_data += sizeof(struct ip6_frag);
763 m->m_len -= sizeof(struct ip6_frag);
764 } else {
765 /* this comes with no copy if the boundary is on cluster */
766 if ((t = m_split(m, offset, M_DONTWAIT)) == NULL) {
767 frag6_remque(q6);
768 frag6_nfragpackets--;
769 frag6_nfrags -= q6->ip6q_nfrag;
770 ip6q_free(q6);
771 goto dropfrag;
772 }
773 m_adj(t, sizeof(struct ip6_frag));
774 m_cat(m, t);
775 }
776
777 /*
778 * Store NXT to the original.
779 */
780 {
781 char *prvnxtp = ip6_get_prevhdr(m, offset); /* XXX */
782 *prvnxtp = nxt;
783 }
784
785 frag6_remque(q6);
786 frag6_nfragpackets--;
787 frag6_nfrags -= q6->ip6q_nfrag;
788 ip6q_free(q6);
789
790 if (m->m_flags & M_PKTHDR) /* Isn't it always true? */
791 m_fixhdr(m);
792
793 ip6stat.ip6s_reassembled++;
794
795 /*
796 * Tell launch routine the next header
797 */
798 *mp = m;
799 *offp = offset;
800
801 /* arm the purge timer if not already and if there's work to do */
802 frag6_sched_timeout();
803 lck_mtx_unlock(&ip6qlock);
804 in6_ifstat_inc(dstifp, ifs6_reass_ok);
805 frag6_icmp6_paramprob_error(&diq6);
806 VERIFY(MBUFQ_EMPTY(&diq6));
807 return (nxt);
808
809 done:
810 VERIFY(m == NULL);
811 if (!locked) {
812 if (frag6_nfragpackets == 0) {
813 frag6_icmp6_paramprob_error(&diq6);
814 VERIFY(MBUFQ_EMPTY(&diq6));
815 return (IPPROTO_DONE);
816 }
817 lck_mtx_lock(&ip6qlock);
818 }
819 /* arm the purge timer if not already and if there's work to do */
820 frag6_sched_timeout();
821 lck_mtx_unlock(&ip6qlock);
822 frag6_icmp6_paramprob_error(&diq6);
823 VERIFY(MBUFQ_EMPTY(&diq6));
824 return (IPPROTO_DONE);
825
826 dropfrag:
827 ip6stat.ip6s_fragdropped++;
828 /* arm the purge timer if not already and if there's work to do */
829 frag6_sched_timeout();
830 lck_mtx_unlock(&ip6qlock);
831 in6_ifstat_inc(dstifp, ifs6_reass_fail);
832 m_freem(m);
833 frag6_icmp6_paramprob_error(&diq6);
834 VERIFY(MBUFQ_EMPTY(&diq6));
835 return (IPPROTO_DONE);
836 }
837
838 /*
839 * Free a fragment reassembly header and all
840 * associated datagrams.
841 */
842 void
843 frag6_freef(struct ip6q *q6, struct fq6_head *dfq6, struct fq6_head *diq6)
844 {
845 struct ip6asfrag *af6, *down6;
846
847 lck_mtx_assert(&ip6qlock, LCK_MTX_ASSERT_OWNED);
848
849 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
850 af6 = down6) {
851 struct mbuf *m = IP6_REASS_MBUF(af6);
852
853 down6 = af6->ip6af_down;
854 frag6_deq(af6);
855
856 /*
857 * Return ICMP time exceeded error for the 1st fragment.
858 * Just free other fragments.
859 */
860 if (af6->ip6af_off == 0) {
861 struct ip6_hdr *ip6;
862
863 /* adjust pointer */
864 ip6 = mtod(m, struct ip6_hdr *);
865
866 /* restore source and destination addresses */
867 ip6->ip6_src = q6->ip6q_src;
868 ip6->ip6_dst = q6->ip6q_dst;
869
870 MBUFQ_ENQUEUE(diq6, m);
871 } else {
872 MBUFQ_ENQUEUE(dfq6, m);
873 }
874 ip6af_free(af6);
875
876 }
877 frag6_remque(q6);
878 frag6_nfragpackets--;
879 frag6_nfrags -= q6->ip6q_nfrag;
880 ip6q_free(q6);
881 }
882
883 /*
884 * Put an ip fragment on a reassembly chain.
885 * Like insque, but pointers in middle of structure.
886 */
887 void
888 frag6_enq(struct ip6asfrag *af6, struct ip6asfrag *up6)
889 {
890 lck_mtx_assert(&ip6qlock, LCK_MTX_ASSERT_OWNED);
891
892 af6->ip6af_up = up6;
893 af6->ip6af_down = up6->ip6af_down;
894 up6->ip6af_down->ip6af_up = af6;
895 up6->ip6af_down = af6;
896 }
897
898 /*
899 * To frag6_enq as remque is to insque.
900 */
901 void
902 frag6_deq(struct ip6asfrag *af6)
903 {
904 lck_mtx_assert(&ip6qlock, LCK_MTX_ASSERT_OWNED);
905
906 af6->ip6af_up->ip6af_down = af6->ip6af_down;
907 af6->ip6af_down->ip6af_up = af6->ip6af_up;
908 }
909
910 void
911 frag6_insque(struct ip6q *new, struct ip6q *old)
912 {
913 lck_mtx_assert(&ip6qlock, LCK_MTX_ASSERT_OWNED);
914
915 new->ip6q_prev = old;
916 new->ip6q_next = old->ip6q_next;
917 old->ip6q_next->ip6q_prev= new;
918 old->ip6q_next = new;
919 }
920
921 void
922 frag6_remque(struct ip6q *p6)
923 {
924 lck_mtx_assert(&ip6qlock, LCK_MTX_ASSERT_OWNED);
925
926 p6->ip6q_prev->ip6q_next = p6->ip6q_next;
927 p6->ip6q_next->ip6q_prev = p6->ip6q_prev;
928 }
929
930 /*
931 * IPv6 reassembling timer processing;
932 * if a timer expires on a reassembly
933 * queue, discard it.
934 */
935 static void
936 frag6_timeout(void *arg)
937 {
938 #pragma unused(arg)
939 struct fq6_head dfq6, diq6;
940 struct ip6q *q6;
941
942 MBUFQ_INIT(&dfq6); /* for deferred frees */
943 MBUFQ_INIT(&diq6); /* for deferred ICMP time exceeded errors */
944
945 /*
946 * Update coarse-grained networking timestamp (in sec.); the idea
947 * is to piggy-back on the timeout callout to update the counter
948 * returnable via net_uptime().
949 */
950 net_update_uptime();
951
952 lck_mtx_lock(&ip6qlock);
953 q6 = ip6q.ip6q_next;
954 if (q6)
955 while (q6 != &ip6q) {
956 --q6->ip6q_ttl;
957 q6 = q6->ip6q_next;
958 if (q6->ip6q_prev->ip6q_ttl == 0) {
959 ip6stat.ip6s_fragtimeout++;
960 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
961 frag6_freef(q6->ip6q_prev, &dfq6, &diq6);
962 }
963 }
964 /*
965 * If we are over the maximum number of fragments
966 * (due to the limit being lowered), drain off
967 * enough to get down to the new limit.
968 */
969 if (ip6_maxfragpackets >= 0) {
970 while (frag6_nfragpackets > (unsigned)ip6_maxfragpackets &&
971 ip6q.ip6q_prev) {
972 ip6stat.ip6s_fragoverflow++;
973 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
974 frag6_freef(ip6q.ip6q_prev, &dfq6, &diq6);
975 }
976 }
977 /* re-arm the purge timer if there's work to do */
978 frag6_timeout_run = 0;
979 frag6_sched_timeout();
980 lck_mtx_unlock(&ip6qlock);
981
982 /* free fragments that need to be freed */
983 if (!MBUFQ_EMPTY(&dfq6))
984 MBUFQ_DRAIN(&dfq6);
985
986 frag6_icmp6_timeex_error(&diq6);
987
988 VERIFY(MBUFQ_EMPTY(&dfq6));
989 VERIFY(MBUFQ_EMPTY(&diq6));
990 }
991
992 static void
993 frag6_sched_timeout(void)
994 {
995 lck_mtx_assert(&ip6qlock, LCK_MTX_ASSERT_OWNED);
996
997 if (!frag6_timeout_run && frag6_nfragpackets > 0) {
998 frag6_timeout_run = 1;
999 timeout(frag6_timeout, NULL, hz);
1000 }
1001 }
1002
1003 /*
1004 * Drain off all datagram fragments.
1005 */
1006 void
1007 frag6_drain(void)
1008 {
1009 struct fq6_head dfq6, diq6;
1010
1011 MBUFQ_INIT(&dfq6); /* for deferred frees */
1012 MBUFQ_INIT(&diq6); /* for deferred ICMP time exceeded errors */
1013
1014 lck_mtx_lock(&ip6qlock);
1015 while (ip6q.ip6q_next != &ip6q) {
1016 ip6stat.ip6s_fragdropped++;
1017 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
1018 frag6_freef(ip6q.ip6q_next, &dfq6, &diq6);
1019 }
1020 lck_mtx_unlock(&ip6qlock);
1021
1022 /* free fragments that need to be freed */
1023 if (!MBUFQ_EMPTY(&dfq6))
1024 MBUFQ_DRAIN(&dfq6);
1025
1026 frag6_icmp6_timeex_error(&diq6);
1027
1028 VERIFY(MBUFQ_EMPTY(&dfq6));
1029 VERIFY(MBUFQ_EMPTY(&diq6));
1030 }
1031
1032 static struct ip6q *
1033 ip6q_alloc(int how)
1034 {
1035 struct mbuf *t;
1036 struct ip6q *q6;
1037
1038 /*
1039 * See comments in ip6q_updateparams(). Keep the count separate
1040 * from frag6_nfragpackets since the latter represents the elements
1041 * already in the reassembly queues.
1042 */
1043 if (ip6q_limit > 0 && ip6q_count > ip6q_limit)
1044 return (NULL);
1045
1046 t = m_get(how, MT_FTABLE);
1047 if (t != NULL) {
1048 atomic_add_32(&ip6q_count, 1);
1049 q6 = mtod(t, struct ip6q *);
1050 bzero(q6, sizeof (*q6));
1051 } else {
1052 q6 = NULL;
1053 }
1054 return (q6);
1055 }
1056
1057 static void
1058 ip6q_free(struct ip6q *q6)
1059 {
1060 (void) m_free(dtom(q6));
1061 atomic_add_32(&ip6q_count, -1);
1062 }
1063
1064 static struct ip6asfrag *
1065 ip6af_alloc(int how)
1066 {
1067 struct mbuf *t;
1068 struct ip6asfrag *af6;
1069
1070 /*
1071 * See comments in ip6q_updateparams(). Keep the count separate
1072 * from frag6_nfrags since the latter represents the elements
1073 * already in the reassembly queues.
1074 */
1075 if (ip6af_limit > 0 && ip6af_count > ip6af_limit)
1076 return (NULL);
1077
1078 t = m_get(how, MT_FTABLE);
1079 if (t != NULL) {
1080 atomic_add_32(&ip6af_count, 1);
1081 af6 = mtod(t, struct ip6asfrag *);
1082 bzero(af6, sizeof (*af6));
1083 } else {
1084 af6 = NULL;
1085 }
1086 return (af6);
1087 }
1088
1089 static void
1090 ip6af_free(struct ip6asfrag *af6)
1091 {
1092 (void) m_free(dtom(af6));
1093 atomic_add_32(&ip6af_count, -1);
1094 }
1095
1096 static void
1097 ip6q_updateparams(void)
1098 {
1099 lck_mtx_assert(&ip6qlock, LCK_MTX_ASSERT_OWNED);
1100 /*
1101 * -1 for unlimited allocation.
1102 */
1103 if (ip6_maxfragpackets < 0)
1104 ip6q_limit = 0;
1105 if (ip6_maxfrags < 0)
1106 ip6af_limit = 0;
1107 /*
1108 * Positive number for specific bound.
1109 */
1110 if (ip6_maxfragpackets > 0)
1111 ip6q_limit = ip6_maxfragpackets;
1112 if (ip6_maxfrags > 0)
1113 ip6af_limit = ip6_maxfrags;
1114 /*
1115 * Zero specifies no further fragment queue allocation -- set the
1116 * bound very low, but rely on implementation elsewhere to actually
1117 * prevent allocation and reclaim current queues.
1118 */
1119 if (ip6_maxfragpackets == 0)
1120 ip6q_limit = 1;
1121 if (ip6_maxfrags == 0)
1122 ip6af_limit = 1;
1123 /*
1124 * Arm the purge timer if not already and if there's work to do
1125 */
1126 frag6_sched_timeout();
1127 }
1128
1129 static int
1130 sysctl_maxfragpackets SYSCTL_HANDLER_ARGS
1131 {
1132 #pragma unused(arg1, arg2)
1133 int error, i;
1134
1135 lck_mtx_lock(&ip6qlock);
1136 i = ip6_maxfragpackets;
1137 error = sysctl_handle_int(oidp, &i, 0, req);
1138 if (error || req->newptr == USER_ADDR_NULL)
1139 goto done;
1140 /* impose bounds */
1141 if (i < -1 || i > (nmbclusters / 4)) {
1142 error = EINVAL;
1143 goto done;
1144 }
1145 ip6_maxfragpackets = i;
1146 ip6q_updateparams();
1147 done:
1148 lck_mtx_unlock(&ip6qlock);
1149 return (error);
1150 }
1151
1152 static int
1153 sysctl_maxfrags SYSCTL_HANDLER_ARGS
1154 {
1155 #pragma unused(arg1, arg2)
1156 int error, i;
1157
1158 lck_mtx_lock(&ip6qlock);
1159 i = ip6_maxfrags;
1160 error = sysctl_handle_int(oidp, &i, 0, req);
1161 if (error || req->newptr == USER_ADDR_NULL)
1162 goto done;
1163 /* impose bounds */
1164 if (i < -1 || i > (nmbclusters / 4)) {
1165 error = EINVAL;
1166 goto done;
1167 }
1168 ip6_maxfrags= i;
1169 ip6q_updateparams(); /* see if we need to arm timer */
1170 done:
1171 lck_mtx_unlock(&ip6qlock);
1172 return (error);
1173 }