]> git.saurik.com Git - apple/xnu.git/blob - bsd/net/route.c
69fdd5937655eaee0723bf8aea04c3c1185cfbee
[apple/xnu.git] / bsd / net / route.c
1 /*
2 * Copyright (c) 2000-2018 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1980, 1986, 1991, 1993
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)route.c 8.2 (Berkeley) 11/15/93
61 * $FreeBSD: src/sys/net/route.c,v 1.59.2.3 2001/07/29 19:18:02 ume Exp $
62 */
63
64 #include <sys/param.h>
65 #include <sys/sysctl.h>
66 #include <sys/systm.h>
67 #include <sys/malloc.h>
68 #include <sys/mbuf.h>
69 #include <sys/socket.h>
70 #include <sys/domain.h>
71 #include <sys/stat.h>
72 #include <sys/ubc.h>
73 #include <sys/vnode.h>
74 #include <sys/syslog.h>
75 #include <sys/queue.h>
76 #include <sys/mcache.h>
77 #include <sys/priv.h>
78 #include <sys/protosw.h>
79 #include <sys/kernel.h>
80 #include <kern/locks.h>
81 #include <kern/zalloc.h>
82
83 #include <net/dlil.h>
84 #include <net/if.h>
85 #include <net/route.h>
86 #include <net/ntstat.h>
87 #include <net/nwk_wq.h>
88 #if NECP
89 #include <net/necp.h>
90 #endif /* NECP */
91
92 #include <netinet/in.h>
93 #include <netinet/in_var.h>
94 #include <netinet/ip_var.h>
95 #include <netinet/ip6.h>
96 #include <netinet/in_arp.h>
97
98 #if INET6
99 #include <netinet6/ip6_var.h>
100 #include <netinet6/in6_var.h>
101 #include <netinet6/nd6.h>
102 #endif /* INET6 */
103
104 #include <net/if_dl.h>
105
106 #include <libkern/OSAtomic.h>
107 #include <libkern/OSDebug.h>
108
109 #include <pexpert/pexpert.h>
110
111 #if CONFIG_MACF
112 #include <sys/kauth.h>
113 #endif
114
115 /*
116 * Synchronization notes:
117 *
118 * Routing entries fall under two locking domains: the global routing table
119 * lock (rnh_lock) and the per-entry lock (rt_lock); the latter is a mutex that
120 * resides (statically defined) in the rtentry structure.
121 *
122 * The locking domains for routing are defined as follows:
123 *
124 * The global routing lock is used to serialize all accesses to the radix
125 * trees defined by rt_tables[], as well as the tree of masks. This includes
126 * lookups, insertions and removals of nodes to/from the respective tree.
127 * It is also used to protect certain fields in the route entry that aren't
128 * often modified and/or require global serialization (more details below.)
129 *
130 * The per-route entry lock is used to serialize accesses to several routing
131 * entry fields (more details below.) Acquiring and releasing this lock is
132 * done via RT_LOCK() and RT_UNLOCK() routines.
133 *
134 * In cases where both rnh_lock and rt_lock must be held, the former must be
135 * acquired first in order to maintain lock ordering. It is not a requirement
136 * that rnh_lock be acquired first before rt_lock, but in case both must be
137 * acquired in succession, the correct lock ordering must be followed.
138 *
139 * The fields of the rtentry structure are protected in the following way:
140 *
141 * rt_nodes[]
142 *
143 * - Routing table lock (rnh_lock).
144 *
145 * rt_parent, rt_mask, rt_llinfo_free, rt_tree_genid
146 *
147 * - Set once during creation and never changes; no locks to read.
148 *
149 * rt_flags, rt_genmask, rt_llinfo, rt_rmx, rt_refcnt, rt_gwroute
150 *
151 * - Routing entry lock (rt_lock) for read/write access.
152 *
153 * - Some values of rt_flags are either set once at creation time,
154 * or aren't currently used, and thus checking against them can
155 * be done without rt_lock: RTF_GATEWAY, RTF_HOST, RTF_DYNAMIC,
156 * RTF_DONE, RTF_XRESOLVE, RTF_STATIC, RTF_BLACKHOLE, RTF_ANNOUNCE,
157 * RTF_USETRAILERS, RTF_WASCLONED, RTF_PINNED, RTF_LOCAL,
158 * RTF_BROADCAST, RTF_MULTICAST, RTF_IFSCOPE, RTF_IFREF.
159 *
160 * rt_key, rt_gateway, rt_ifp, rt_ifa
161 *
162 * - Always written/modified with both rnh_lock and rt_lock held.
163 *
164 * - May be read freely with rnh_lock held, else must hold rt_lock
165 * for read access; holding both locks for read is also okay.
166 *
167 * - In the event rnh_lock is not acquired, or is not possible to be
168 * acquired across the operation, setting RTF_CONDEMNED on a route
169 * entry will prevent its rt_key, rt_gateway, rt_ifp and rt_ifa
170 * from being modified. This is typically done on a route that
171 * has been chosen for a removal (from the tree) prior to dropping
172 * the rt_lock, so that those values will remain the same until
173 * the route is freed.
174 *
175 * When rnh_lock is held rt_setgate(), rt_setif(), and rtsetifa() are
176 * single-threaded, thus exclusive. This flag will also prevent the
177 * route from being looked up via rt_lookup().
178 *
179 * rt_genid
180 *
181 * - Assumes that 32-bit writes are atomic; no locks.
182 *
183 * rt_dlt, rt_output
184 *
185 * - Currently unused; no locks.
186 *
187 * Operations on a route entry can be described as follows:
188 *
189 * CREATE an entry with reference count set to 0 as part of RTM_ADD/RESOLVE.
190 *
191 * INSERTION of an entry into the radix tree holds the rnh_lock, checks
192 * for duplicates and then adds the entry. rtrequest returns the entry
193 * after bumping up the reference count to 1 (for the caller).
194 *
195 * LOOKUP of an entry holds the rnh_lock and bumps up the reference count
196 * before returning; it is valid to also bump up the reference count using
197 * RT_ADDREF after the lookup has returned an entry.
198 *
199 * REMOVAL of an entry from the radix tree holds the rnh_lock, removes the
200 * entry but does not decrement the reference count. Removal happens when
201 * the route is explicitly deleted (RTM_DELETE) or when it is in the cached
202 * state and it expires. The route is said to be "down" when it is no
203 * longer present in the tree. Freeing the entry will happen on the last
204 * reference release of such a "down" route.
205 *
206 * RT_ADDREF/RT_REMREF operates on the routing entry which increments/
207 * decrements the reference count, rt_refcnt, atomically on the rtentry.
208 * rt_refcnt is modified only using this routine. The general rule is to
209 * do RT_ADDREF in the function that is passing the entry as an argument,
210 * in order to prevent the entry from being freed by the callee.
211 */
212
213 #define equal(a1, a2) (bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0)
214
215 extern void kdp_set_gateway_mac(void *gatewaymac);
216
217 __private_extern__ struct rtstat rtstat = { 0, 0, 0, 0, 0, 0 };
218 struct radix_node_head *rt_tables[AF_MAX+1];
219
220 decl_lck_mtx_data(, rnh_lock_data); /* global routing tables mutex */
221 lck_mtx_t *rnh_lock = &rnh_lock_data;
222 static lck_attr_t *rnh_lock_attr;
223 static lck_grp_t *rnh_lock_grp;
224 static lck_grp_attr_t *rnh_lock_grp_attr;
225
226 /* Lock group and attribute for routing entry locks */
227 static lck_attr_t *rte_mtx_attr;
228 static lck_grp_t *rte_mtx_grp;
229 static lck_grp_attr_t *rte_mtx_grp_attr;
230
231 int rttrash = 0; /* routes not in table but not freed */
232
233 unsigned int rte_debug = 0;
234
235 /* Possible flags for rte_debug */
236 #define RTD_DEBUG 0x1 /* enable or disable rtentry debug facility */
237 #define RTD_TRACE 0x2 /* trace alloc, free, refcnt and lock */
238 #define RTD_NO_FREE 0x4 /* don't free (good to catch corruptions) */
239
240 #define RTE_NAME "rtentry" /* name for zone and rt_lock */
241
242 static struct zone *rte_zone; /* special zone for rtentry */
243 #define RTE_ZONE_MAX 65536 /* maximum elements in zone */
244 #define RTE_ZONE_NAME RTE_NAME /* name of rtentry zone */
245
246 #define RTD_INUSE 0xFEEDFACE /* entry is in use */
247 #define RTD_FREED 0xDEADBEEF /* entry is freed */
248
249 #define MAX_SCOPE_ADDR_STR_LEN (MAX_IPv6_STR_LEN + 6)
250
251 /* For gdb */
252 __private_extern__ unsigned int ctrace_stack_size = CTRACE_STACK_SIZE;
253 __private_extern__ unsigned int ctrace_hist_size = CTRACE_HIST_SIZE;
254
255 /*
256 * Debug variant of rtentry structure.
257 */
258 struct rtentry_dbg {
259 struct rtentry rtd_entry; /* rtentry */
260 struct rtentry rtd_entry_saved; /* saved rtentry */
261 uint32_t rtd_inuse; /* in use pattern */
262 uint16_t rtd_refhold_cnt; /* # of rtref */
263 uint16_t rtd_refrele_cnt; /* # of rtunref */
264 uint32_t rtd_lock_cnt; /* # of locks */
265 uint32_t rtd_unlock_cnt; /* # of unlocks */
266 /*
267 * Alloc and free callers.
268 */
269 ctrace_t rtd_alloc;
270 ctrace_t rtd_free;
271 /*
272 * Circular lists of rtref and rtunref callers.
273 */
274 ctrace_t rtd_refhold[CTRACE_HIST_SIZE];
275 ctrace_t rtd_refrele[CTRACE_HIST_SIZE];
276 /*
277 * Circular lists of locks and unlocks.
278 */
279 ctrace_t rtd_lock[CTRACE_HIST_SIZE];
280 ctrace_t rtd_unlock[CTRACE_HIST_SIZE];
281 /*
282 * Trash list linkage
283 */
284 TAILQ_ENTRY(rtentry_dbg) rtd_trash_link;
285 };
286
287 /* List of trash route entries protected by rnh_lock */
288 static TAILQ_HEAD(, rtentry_dbg) rttrash_head;
289
290 static void rte_lock_init(struct rtentry *);
291 static void rte_lock_destroy(struct rtentry *);
292 static inline struct rtentry *rte_alloc_debug(void);
293 static inline void rte_free_debug(struct rtentry *);
294 static inline void rte_lock_debug(struct rtentry_dbg *);
295 static inline void rte_unlock_debug(struct rtentry_dbg *);
296 static void rt_maskedcopy(const struct sockaddr *,
297 struct sockaddr *, const struct sockaddr *);
298 static void rtable_init(void **);
299 static inline void rtref_audit(struct rtentry_dbg *);
300 static inline void rtunref_audit(struct rtentry_dbg *);
301 static struct rtentry *rtalloc1_common_locked(struct sockaddr *, int, uint32_t,
302 unsigned int);
303 static int rtrequest_common_locked(int, struct sockaddr *,
304 struct sockaddr *, struct sockaddr *, int, struct rtentry **,
305 unsigned int);
306 static struct rtentry *rtalloc1_locked(struct sockaddr *, int, uint32_t);
307 static void rtalloc_ign_common_locked(struct route *, uint32_t, unsigned int);
308 static inline void sin6_set_ifscope(struct sockaddr *, unsigned int);
309 static inline void sin6_set_embedded_ifscope(struct sockaddr *, unsigned int);
310 static inline unsigned int sin6_get_embedded_ifscope(struct sockaddr *);
311 static struct sockaddr *ma_copy(int, struct sockaddr *,
312 struct sockaddr_storage *, unsigned int);
313 static struct sockaddr *sa_trim(struct sockaddr *, int);
314 static struct radix_node *node_lookup(struct sockaddr *, struct sockaddr *,
315 unsigned int);
316 static struct radix_node *node_lookup_default(int);
317 static struct rtentry *rt_lookup_common(boolean_t, boolean_t, struct sockaddr *,
318 struct sockaddr *, struct radix_node_head *, unsigned int);
319 static int rn_match_ifscope(struct radix_node *, void *);
320 static struct ifaddr *ifa_ifwithroute_common_locked(int,
321 const struct sockaddr *, const struct sockaddr *, unsigned int);
322 static struct rtentry *rte_alloc(void);
323 static void rte_free(struct rtentry *);
324 static void rtfree_common(struct rtentry *, boolean_t);
325 static void rte_if_ref(struct ifnet *, int);
326 static void rt_set_idleref(struct rtentry *);
327 static void rt_clear_idleref(struct rtentry *);
328 static void route_event_callback(void *);
329 static void rt_str4(struct rtentry *, char *, uint32_t, char *, uint32_t);
330 #if INET6
331 static void rt_str6(struct rtentry *, char *, uint32_t, char *, uint32_t);
332 #endif /* INET6 */
333
334 uint32_t route_genid_inet = 0;
335 #if INET6
336 uint32_t route_genid_inet6 = 0;
337 #endif /* INET6 */
338
339 #define ASSERT_SINIFSCOPE(sa) { \
340 if ((sa)->sa_family != AF_INET || \
341 (sa)->sa_len < sizeof (struct sockaddr_in)) \
342 panic("%s: bad sockaddr_in %p\n", __func__, sa); \
343 }
344
345 #define ASSERT_SIN6IFSCOPE(sa) { \
346 if ((sa)->sa_family != AF_INET6 || \
347 (sa)->sa_len < sizeof (struct sockaddr_in6)) \
348 panic("%s: bad sockaddr_in6 %p\n", __func__, sa); \
349 }
350
351 /*
352 * Argument to leaf-matching routine; at present it is scoped routing
353 * specific but can be expanded in future to include other search filters.
354 */
355 struct matchleaf_arg {
356 unsigned int ifscope; /* interface scope */
357 };
358
359 /*
360 * For looking up the non-scoped default route (sockaddr instead
361 * of sockaddr_in for convenience).
362 */
363 static struct sockaddr sin_def = {
364 sizeof (struct sockaddr_in), AF_INET, { 0, }
365 };
366
367 static struct sockaddr_in6 sin6_def = {
368 sizeof (struct sockaddr_in6), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0
369 };
370
371 /*
372 * Interface index (scope) of the primary interface; determined at
373 * the time when the default, non-scoped route gets added, changed
374 * or deleted. Protected by rnh_lock.
375 */
376 static unsigned int primary_ifscope = IFSCOPE_NONE;
377 static unsigned int primary6_ifscope = IFSCOPE_NONE;
378
379 #define INET_DEFAULT(sa) \
380 ((sa)->sa_family == AF_INET && SIN(sa)->sin_addr.s_addr == 0)
381
382 #define INET6_DEFAULT(sa) \
383 ((sa)->sa_family == AF_INET6 && \
384 IN6_IS_ADDR_UNSPECIFIED(&SIN6(sa)->sin6_addr))
385
386 #define SA_DEFAULT(sa) (INET_DEFAULT(sa) || INET6_DEFAULT(sa))
387 #define RT(r) ((struct rtentry *)r)
388 #define RN(r) ((struct radix_node *)r)
389 #define RT_HOST(r) (RT(r)->rt_flags & RTF_HOST)
390
391 unsigned int rt_verbose = 0;
392 #if (DEVELOPMENT || DEBUG)
393 SYSCTL_DECL(_net_route);
394 SYSCTL_UINT(_net_route, OID_AUTO, verbose, CTLFLAG_RW | CTLFLAG_LOCKED,
395 &rt_verbose, 0, "");
396 #endif /* (DEVELOPMENT || DEBUG) */
397
398 static void
399 rtable_init(void **table)
400 {
401 struct domain *dom;
402
403 domain_proto_mtx_lock_assert_held();
404
405 TAILQ_FOREACH(dom, &domains, dom_entry) {
406 if (dom->dom_rtattach != NULL)
407 dom->dom_rtattach(&table[dom->dom_family],
408 dom->dom_rtoffset);
409 }
410 }
411
412 /*
413 * Called by route_dinit().
414 */
415 void
416 route_init(void)
417 {
418 int size;
419
420 #if INET6
421 _CASSERT(offsetof(struct route, ro_rt) ==
422 offsetof(struct route_in6, ro_rt));
423 _CASSERT(offsetof(struct route, ro_lle) ==
424 offsetof(struct route_in6, ro_lle));
425 _CASSERT(offsetof(struct route, ro_srcia) ==
426 offsetof(struct route_in6, ro_srcia));
427 _CASSERT(offsetof(struct route, ro_flags) ==
428 offsetof(struct route_in6, ro_flags));
429 _CASSERT(offsetof(struct route, ro_dst) ==
430 offsetof(struct route_in6, ro_dst));
431 #endif /* INET6 */
432
433 PE_parse_boot_argn("rte_debug", &rte_debug, sizeof (rte_debug));
434 if (rte_debug != 0)
435 rte_debug |= RTD_DEBUG;
436
437 rnh_lock_grp_attr = lck_grp_attr_alloc_init();
438 rnh_lock_grp = lck_grp_alloc_init("route", rnh_lock_grp_attr);
439 rnh_lock_attr = lck_attr_alloc_init();
440 lck_mtx_init(rnh_lock, rnh_lock_grp, rnh_lock_attr);
441
442 rte_mtx_grp_attr = lck_grp_attr_alloc_init();
443 rte_mtx_grp = lck_grp_alloc_init(RTE_NAME, rte_mtx_grp_attr);
444 rte_mtx_attr = lck_attr_alloc_init();
445
446 lck_mtx_lock(rnh_lock);
447 rn_init(); /* initialize all zeroes, all ones, mask table */
448 lck_mtx_unlock(rnh_lock);
449 rtable_init((void **)rt_tables);
450
451 if (rte_debug & RTD_DEBUG)
452 size = sizeof (struct rtentry_dbg);
453 else
454 size = sizeof (struct rtentry);
455
456 rte_zone = zinit(size, RTE_ZONE_MAX * size, 0, RTE_ZONE_NAME);
457 if (rte_zone == NULL) {
458 panic("%s: failed allocating rte_zone", __func__);
459 /* NOTREACHED */
460 }
461 zone_change(rte_zone, Z_EXPAND, TRUE);
462 zone_change(rte_zone, Z_CALLERACCT, FALSE);
463 zone_change(rte_zone, Z_NOENCRYPT, TRUE);
464
465 TAILQ_INIT(&rttrash_head);
466 }
467
468 /*
469 * Given a route, determine whether or not it is the non-scoped default
470 * route; dst typically comes from rt_key(rt) but may be coming from
471 * a separate place when rt is in the process of being created.
472 */
473 boolean_t
474 rt_primary_default(struct rtentry *rt, struct sockaddr *dst)
475 {
476 return (SA_DEFAULT(dst) && !(rt->rt_flags & RTF_IFSCOPE));
477 }
478
479 /*
480 * Set the ifscope of the primary interface; caller holds rnh_lock.
481 */
482 void
483 set_primary_ifscope(int af, unsigned int ifscope)
484 {
485 if (af == AF_INET)
486 primary_ifscope = ifscope;
487 else
488 primary6_ifscope = ifscope;
489 }
490
491 /*
492 * Return the ifscope of the primary interface; caller holds rnh_lock.
493 */
494 unsigned int
495 get_primary_ifscope(int af)
496 {
497 return (af == AF_INET ? primary_ifscope : primary6_ifscope);
498 }
499
500 /*
501 * Set the scope ID of a given a sockaddr_in.
502 */
503 void
504 sin_set_ifscope(struct sockaddr *sa, unsigned int ifscope)
505 {
506 /* Caller must pass in sockaddr_in */
507 ASSERT_SINIFSCOPE(sa);
508
509 SINIFSCOPE(sa)->sin_scope_id = ifscope;
510 }
511
512 /*
513 * Set the scope ID of given a sockaddr_in6.
514 */
515 static inline void
516 sin6_set_ifscope(struct sockaddr *sa, unsigned int ifscope)
517 {
518 /* Caller must pass in sockaddr_in6 */
519 ASSERT_SIN6IFSCOPE(sa);
520
521 SIN6IFSCOPE(sa)->sin6_scope_id = ifscope;
522 }
523
524 /*
525 * Given a sockaddr_in, return the scope ID to the caller.
526 */
527 unsigned int
528 sin_get_ifscope(struct sockaddr *sa)
529 {
530 /* Caller must pass in sockaddr_in */
531 ASSERT_SINIFSCOPE(sa);
532
533 return (SINIFSCOPE(sa)->sin_scope_id);
534 }
535
536 /*
537 * Given a sockaddr_in6, return the scope ID to the caller.
538 */
539 unsigned int
540 sin6_get_ifscope(struct sockaddr *sa)
541 {
542 /* Caller must pass in sockaddr_in6 */
543 ASSERT_SIN6IFSCOPE(sa);
544
545 return (SIN6IFSCOPE(sa)->sin6_scope_id);
546 }
547
548 static inline void
549 sin6_set_embedded_ifscope(struct sockaddr *sa, unsigned int ifscope)
550 {
551 /* Caller must pass in sockaddr_in6 */
552 ASSERT_SIN6IFSCOPE(sa);
553 VERIFY(IN6_IS_SCOPE_EMBED(&(SIN6(sa)->sin6_addr)));
554
555 SIN6(sa)->sin6_addr.s6_addr16[1] = htons(ifscope);
556 }
557
558 static inline unsigned int
559 sin6_get_embedded_ifscope(struct sockaddr *sa)
560 {
561 /* Caller must pass in sockaddr_in6 */
562 ASSERT_SIN6IFSCOPE(sa);
563
564 return (ntohs(SIN6(sa)->sin6_addr.s6_addr16[1]));
565 }
566
567 /*
568 * Copy a sockaddr_{in,in6} src to a dst storage and set scope ID into dst.
569 *
570 * To clear the scope ID, pass is a NULL pifscope. To set the scope ID, pass
571 * in a non-NULL pifscope with non-zero ifscope. Otherwise if pifscope is
572 * non-NULL and ifscope is IFSCOPE_NONE, the existing scope ID is left intact.
573 * In any case, the effective scope ID value is returned to the caller via
574 * pifscope, if it is non-NULL.
575 */
576 struct sockaddr *
577 sa_copy(struct sockaddr *src, struct sockaddr_storage *dst,
578 unsigned int *pifscope)
579 {
580 int af = src->sa_family;
581 unsigned int ifscope = (pifscope != NULL) ? *pifscope : IFSCOPE_NONE;
582
583 VERIFY(af == AF_INET || af == AF_INET6);
584
585 bzero(dst, sizeof (*dst));
586
587 if (af == AF_INET) {
588 bcopy(src, dst, sizeof (struct sockaddr_in));
589 if (pifscope == NULL || ifscope != IFSCOPE_NONE)
590 sin_set_ifscope(SA(dst), ifscope);
591 } else {
592 bcopy(src, dst, sizeof (struct sockaddr_in6));
593 if (pifscope != NULL &&
594 IN6_IS_SCOPE_EMBED(&SIN6(dst)->sin6_addr)) {
595 unsigned int eifscope;
596 /*
597 * If the address contains the embedded scope ID,
598 * use that as the value for sin6_scope_id as long
599 * the caller doesn't insist on clearing it (by
600 * passing NULL) or setting it.
601 */
602 eifscope = sin6_get_embedded_ifscope(SA(dst));
603 if (eifscope != IFSCOPE_NONE && ifscope == IFSCOPE_NONE)
604 ifscope = eifscope;
605 if (ifscope != IFSCOPE_NONE) {
606 /* Set ifscope from pifscope or eifscope */
607 sin6_set_ifscope(SA(dst), ifscope);
608 } else {
609 /* If sin6_scope_id has a value, use that one */
610 ifscope = sin6_get_ifscope(SA(dst));
611 }
612 /*
613 * If sin6_scope_id is set but the address doesn't
614 * contain the equivalent embedded value, set it.
615 */
616 if (ifscope != IFSCOPE_NONE && eifscope != ifscope)
617 sin6_set_embedded_ifscope(SA(dst), ifscope);
618 } else if (pifscope == NULL || ifscope != IFSCOPE_NONE) {
619 sin6_set_ifscope(SA(dst), ifscope);
620 }
621 }
622
623 if (pifscope != NULL) {
624 *pifscope = (af == AF_INET) ? sin_get_ifscope(SA(dst)) :
625 sin6_get_ifscope(SA(dst));
626 }
627
628 return (SA(dst));
629 }
630
631 /*
632 * Copy a mask from src to a dst storage and set scope ID into dst.
633 */
634 static struct sockaddr *
635 ma_copy(int af, struct sockaddr *src, struct sockaddr_storage *dst,
636 unsigned int ifscope)
637 {
638 VERIFY(af == AF_INET || af == AF_INET6);
639
640 bzero(dst, sizeof (*dst));
641 rt_maskedcopy(src, SA(dst), src);
642
643 /*
644 * The length of the mask sockaddr would need to be adjusted
645 * to cover the additional {sin,sin6}_ifscope field; when ifscope
646 * is IFSCOPE_NONE, we'd end up clearing the scope ID field on
647 * the destination mask in addition to extending the length
648 * of the sockaddr, as a side effect. This is okay, as any
649 * trailing zeroes would be skipped by rn_addmask prior to
650 * inserting or looking up the mask in the mask tree.
651 */
652 if (af == AF_INET) {
653 SINIFSCOPE(dst)->sin_scope_id = ifscope;
654 SINIFSCOPE(dst)->sin_len =
655 offsetof(struct sockaddr_inifscope, sin_scope_id) +
656 sizeof (SINIFSCOPE(dst)->sin_scope_id);
657 } else {
658 SIN6IFSCOPE(dst)->sin6_scope_id = ifscope;
659 SIN6IFSCOPE(dst)->sin6_len =
660 offsetof(struct sockaddr_in6, sin6_scope_id) +
661 sizeof (SIN6IFSCOPE(dst)->sin6_scope_id);
662 }
663
664 return (SA(dst));
665 }
666
667 /*
668 * Trim trailing zeroes on a sockaddr and update its length.
669 */
670 static struct sockaddr *
671 sa_trim(struct sockaddr *sa, int skip)
672 {
673 caddr_t cp, base = (caddr_t)sa + skip;
674
675 if (sa->sa_len <= skip)
676 return (sa);
677
678 for (cp = base + (sa->sa_len - skip); cp > base && cp[-1] == 0; )
679 cp--;
680
681 sa->sa_len = (cp - base) + skip;
682 if (sa->sa_len < skip) {
683 /* Must not happen, and if so, panic */
684 panic("%s: broken logic (sa_len %d < skip %d )", __func__,
685 sa->sa_len, skip);
686 /* NOTREACHED */
687 } else if (sa->sa_len == skip) {
688 /* If we end up with all zeroes, then there's no mask */
689 sa->sa_len = 0;
690 }
691
692 return (sa);
693 }
694
695 /*
696 * Called by rtm_msg{1,2} routines to "scrub" socket address structures of
697 * kernel private information, so that clients of the routing socket will
698 * not be confused by the presence of the information, or the side effect of
699 * the increased length due to that. The source sockaddr is not modified;
700 * instead, the scrubbing happens on the destination sockaddr storage that
701 * is passed in by the caller.
702 *
703 * Scrubbing entails:
704 * - removing embedded scope identifiers from network mask and destination
705 * IPv4 and IPv6 socket addresses
706 * - optionally removing global scope interface hardware addresses from
707 * link-layer interface addresses when the MAC framework check fails.
708 */
709 struct sockaddr *
710 rtm_scrub(int type, int idx, struct sockaddr *hint, struct sockaddr *sa,
711 void *buf, uint32_t buflen, kauth_cred_t *credp)
712 {
713 struct sockaddr_storage *ss = (struct sockaddr_storage *)buf;
714 struct sockaddr *ret = sa;
715
716 VERIFY(buf != NULL && buflen >= sizeof (*ss));
717 bzero(buf, buflen);
718
719 switch (idx) {
720 case RTAX_DST:
721 /*
722 * If this is for an AF_INET/AF_INET6 destination address,
723 * call sa_copy() to clear the scope ID field.
724 */
725 if (sa->sa_family == AF_INET &&
726 SINIFSCOPE(sa)->sin_scope_id != IFSCOPE_NONE) {
727 ret = sa_copy(sa, ss, NULL);
728 } else if (sa->sa_family == AF_INET6 &&
729 SIN6IFSCOPE(sa)->sin6_scope_id != IFSCOPE_NONE) {
730 ret = sa_copy(sa, ss, NULL);
731 }
732 break;
733
734 case RTAX_NETMASK: {
735 int skip, af;
736 /*
737 * If this is for a mask, we can't tell whether or not there
738 * is an valid scope ID value, as the span of bytes between
739 * sa_len and the beginning of the mask (offset of sin_addr in
740 * the case of AF_INET, or sin6_addr for AF_INET6) may be
741 * filled with all-ones by rn_addmask(), and hence we cannot
742 * rely on sa_family. Because of this, we use the sa_family
743 * of the hint sockaddr (RTAX_{DST,IFA}) as indicator as to
744 * whether or not the mask is to be treated as one for AF_INET
745 * or AF_INET6. Clearing the scope ID field involves setting
746 * it to IFSCOPE_NONE followed by calling sa_trim() to trim
747 * trailing zeroes from the storage sockaddr, which reverses
748 * what was done earlier by ma_copy() on the source sockaddr.
749 */
750 if (hint == NULL ||
751 ((af = hint->sa_family) != AF_INET && af != AF_INET6))
752 break; /* nothing to do */
753
754 skip = (af == AF_INET) ?
755 offsetof(struct sockaddr_in, sin_addr) :
756 offsetof(struct sockaddr_in6, sin6_addr);
757
758 if (sa->sa_len > skip && sa->sa_len <= sizeof (*ss)) {
759 bcopy(sa, ss, sa->sa_len);
760 /*
761 * Don't use {sin,sin6}_set_ifscope() as sa_family
762 * and sa_len for the netmask might not be set to
763 * the corresponding expected values of the hint.
764 */
765 if (hint->sa_family == AF_INET)
766 SINIFSCOPE(ss)->sin_scope_id = IFSCOPE_NONE;
767 else
768 SIN6IFSCOPE(ss)->sin6_scope_id = IFSCOPE_NONE;
769 ret = sa_trim(SA(ss), skip);
770
771 /*
772 * For AF_INET6 mask, set sa_len appropriately unless
773 * this is requested via systl_dumpentry(), in which
774 * case we return the raw value.
775 */
776 if (hint->sa_family == AF_INET6 &&
777 type != RTM_GET && type != RTM_GET2)
778 SA(ret)->sa_len = sizeof (struct sockaddr_in6);
779 }
780 break;
781 }
782 case RTAX_GATEWAY: {
783 /*
784 * Break if the gateway is not AF_LINK type (indirect routes)
785 *
786 * Else, if is, check if it is resolved. If not yet resolved
787 * simply break else scrub the link layer address.
788 */
789 if ((sa->sa_family != AF_LINK) || (SDL(sa)->sdl_alen == 0))
790 break;
791 /* fallthrough */
792 }
793 case RTAX_IFP: {
794 if (sa->sa_family == AF_LINK && credp) {
795 struct sockaddr_dl *sdl = SDL(buf);
796 const void *bytes;
797 size_t size;
798
799 /* caller should handle worst case: SOCK_MAXADDRLEN */
800 VERIFY(buflen >= sa->sa_len);
801
802 bcopy(sa, sdl, sa->sa_len);
803 bytes = dlil_ifaddr_bytes(sdl, &size, credp);
804 if (bytes != CONST_LLADDR(sdl)) {
805 VERIFY(sdl->sdl_alen == size);
806 bcopy(bytes, LLADDR(sdl), size);
807 }
808 ret = (struct sockaddr *)sdl;
809 }
810 break;
811 }
812 default:
813 break;
814 }
815
816 return (ret);
817 }
818
819 /*
820 * Callback leaf-matching routine for rn_matchaddr_args used
821 * for looking up an exact match for a scoped route entry.
822 */
823 static int
824 rn_match_ifscope(struct radix_node *rn, void *arg)
825 {
826 struct rtentry *rt = (struct rtentry *)rn;
827 struct matchleaf_arg *ma = arg;
828 int af = rt_key(rt)->sa_family;
829
830 if (!(rt->rt_flags & RTF_IFSCOPE) || (af != AF_INET && af != AF_INET6))
831 return (0);
832
833 return (af == AF_INET ?
834 (SINIFSCOPE(rt_key(rt))->sin_scope_id == ma->ifscope) :
835 (SIN6IFSCOPE(rt_key(rt))->sin6_scope_id == ma->ifscope));
836 }
837
838 /*
839 * Atomically increment route generation counter
840 */
841 void
842 routegenid_update(void)
843 {
844 routegenid_inet_update();
845 #if INET6
846 routegenid_inet6_update();
847 #endif /* INET6 */
848 }
849
850 void
851 routegenid_inet_update(void)
852 {
853 atomic_add_32(&route_genid_inet, 1);
854 }
855
856 #if INET6
857 void
858 routegenid_inet6_update(void)
859 {
860 atomic_add_32(&route_genid_inet6, 1);
861 }
862 #endif /* INET6 */
863
864 /*
865 * Packet routing routines.
866 */
867 void
868 rtalloc(struct route *ro)
869 {
870 rtalloc_ign(ro, 0);
871 }
872
873 void
874 rtalloc_scoped(struct route *ro, unsigned int ifscope)
875 {
876 rtalloc_scoped_ign(ro, 0, ifscope);
877 }
878
879 static void
880 rtalloc_ign_common_locked(struct route *ro, uint32_t ignore,
881 unsigned int ifscope)
882 {
883 struct rtentry *rt;
884
885 if ((rt = ro->ro_rt) != NULL) {
886 RT_LOCK_SPIN(rt);
887 if (rt->rt_ifp != NULL && !ROUTE_UNUSABLE(ro)) {
888 RT_UNLOCK(rt);
889 return;
890 }
891 RT_UNLOCK(rt);
892 ROUTE_RELEASE_LOCKED(ro); /* rnh_lock already held */
893 }
894 ro->ro_rt = rtalloc1_common_locked(&ro->ro_dst, 1, ignore, ifscope);
895 if (ro->ro_rt != NULL) {
896 RT_GENID_SYNC(ro->ro_rt);
897 RT_LOCK_ASSERT_NOTHELD(ro->ro_rt);
898 }
899 }
900
901 void
902 rtalloc_ign(struct route *ro, uint32_t ignore)
903 {
904 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
905 lck_mtx_lock(rnh_lock);
906 rtalloc_ign_common_locked(ro, ignore, IFSCOPE_NONE);
907 lck_mtx_unlock(rnh_lock);
908 }
909
910 void
911 rtalloc_scoped_ign(struct route *ro, uint32_t ignore, unsigned int ifscope)
912 {
913 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
914 lck_mtx_lock(rnh_lock);
915 rtalloc_ign_common_locked(ro, ignore, ifscope);
916 lck_mtx_unlock(rnh_lock);
917 }
918
919 static struct rtentry *
920 rtalloc1_locked(struct sockaddr *dst, int report, uint32_t ignflags)
921 {
922 return (rtalloc1_common_locked(dst, report, ignflags, IFSCOPE_NONE));
923 }
924
925 struct rtentry *
926 rtalloc1_scoped_locked(struct sockaddr *dst, int report, uint32_t ignflags,
927 unsigned int ifscope)
928 {
929 return (rtalloc1_common_locked(dst, report, ignflags, ifscope));
930 }
931
932 struct rtentry *
933 rtalloc1_common_locked(struct sockaddr *dst, int report, uint32_t ignflags,
934 unsigned int ifscope)
935 {
936 struct radix_node_head *rnh = rt_tables[dst->sa_family];
937 struct rtentry *rt, *newrt = NULL;
938 struct rt_addrinfo info;
939 uint32_t nflags;
940 int err = 0, msgtype = RTM_MISS;
941
942 if (rnh == NULL)
943 goto unreachable;
944
945 /*
946 * Find the longest prefix or exact (in the scoped case) address match;
947 * callee adds a reference to entry and checks for root node as well
948 */
949 rt = rt_lookup(FALSE, dst, NULL, rnh, ifscope);
950 if (rt == NULL)
951 goto unreachable;
952
953 RT_LOCK_SPIN(rt);
954 newrt = rt;
955 nflags = rt->rt_flags & ~ignflags;
956 RT_UNLOCK(rt);
957 if (report && (nflags & (RTF_CLONING | RTF_PRCLONING))) {
958 /*
959 * We are apparently adding (report = 0 in delete).
960 * If it requires that it be cloned, do so.
961 * (This implies it wasn't a HOST route.)
962 */
963 err = rtrequest_locked(RTM_RESOLVE, dst, NULL, NULL, 0, &newrt);
964 if (err) {
965 /*
966 * If the cloning didn't succeed, maybe what we
967 * have from lookup above will do. Return that;
968 * no need to hold another reference since it's
969 * already done.
970 */
971 newrt = rt;
972 goto miss;
973 }
974
975 /*
976 * We cloned it; drop the original route found during lookup.
977 * The resulted cloned route (newrt) would now have an extra
978 * reference held during rtrequest.
979 */
980 rtfree_locked(rt);
981
982 /*
983 * If the newly created cloned route is a direct host route
984 * then also check if it is to a router or not.
985 * If it is, then set the RTF_ROUTER flag on the host route
986 * for the gateway.
987 *
988 * XXX It is possible for the default route to be created post
989 * cloned route creation of router's IP.
990 * We can handle that corner case by special handing for RTM_ADD
991 * of default route.
992 */
993 if ((newrt->rt_flags & (RTF_HOST | RTF_LLINFO)) ==
994 (RTF_HOST | RTF_LLINFO)) {
995 struct rtentry *defrt = NULL;
996 struct sockaddr_storage def_key;
997
998 bzero(&def_key, sizeof(def_key));
999 def_key.ss_len = rt_key(newrt)->sa_len;
1000 def_key.ss_family = rt_key(newrt)->sa_family;
1001
1002 defrt = rtalloc1_scoped_locked((struct sockaddr *)&def_key,
1003 0, 0, newrt->rt_ifp->if_index);
1004
1005 if (defrt) {
1006 if (equal(rt_key(newrt), defrt->rt_gateway)) {
1007 newrt->rt_flags |= RTF_ROUTER;
1008 }
1009 rtfree_locked(defrt);
1010 }
1011 }
1012
1013 if ((rt = newrt) && (rt->rt_flags & RTF_XRESOLVE)) {
1014 /*
1015 * If the new route specifies it be
1016 * externally resolved, then go do that.
1017 */
1018 msgtype = RTM_RESOLVE;
1019 goto miss;
1020 }
1021 }
1022 goto done;
1023
1024 unreachable:
1025 /*
1026 * Either we hit the root or couldn't find any match,
1027 * Which basically means "cant get there from here"
1028 */
1029 rtstat.rts_unreach++;
1030
1031 miss:
1032 if (report) {
1033 /*
1034 * If required, report the failure to the supervising
1035 * Authorities.
1036 * For a delete, this is not an error. (report == 0)
1037 */
1038 bzero((caddr_t)&info, sizeof(info));
1039 info.rti_info[RTAX_DST] = dst;
1040 rt_missmsg(msgtype, &info, 0, err);
1041 }
1042 done:
1043 return (newrt);
1044 }
1045
1046 struct rtentry *
1047 rtalloc1(struct sockaddr *dst, int report, uint32_t ignflags)
1048 {
1049 struct rtentry *entry;
1050 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
1051 lck_mtx_lock(rnh_lock);
1052 entry = rtalloc1_locked(dst, report, ignflags);
1053 lck_mtx_unlock(rnh_lock);
1054 return (entry);
1055 }
1056
1057 struct rtentry *
1058 rtalloc1_scoped(struct sockaddr *dst, int report, uint32_t ignflags,
1059 unsigned int ifscope)
1060 {
1061 struct rtentry *entry;
1062 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
1063 lck_mtx_lock(rnh_lock);
1064 entry = rtalloc1_scoped_locked(dst, report, ignflags, ifscope);
1065 lck_mtx_unlock(rnh_lock);
1066 return (entry);
1067 }
1068
1069 /*
1070 * Remove a reference count from an rtentry.
1071 * If the count gets low enough, take it out of the routing table
1072 */
1073 void
1074 rtfree_locked(struct rtentry *rt)
1075 {
1076 rtfree_common(rt, TRUE);
1077 }
1078
1079 static void
1080 rtfree_common(struct rtentry *rt, boolean_t locked)
1081 {
1082 struct radix_node_head *rnh;
1083
1084 LCK_MTX_ASSERT(rnh_lock, locked ?
1085 LCK_MTX_ASSERT_OWNED : LCK_MTX_ASSERT_NOTOWNED);
1086
1087 /*
1088 * Atomically decrement the reference count and if it reaches 0,
1089 * and there is a close function defined, call the close function.
1090 */
1091 RT_LOCK_SPIN(rt);
1092 if (rtunref(rt) > 0) {
1093 RT_UNLOCK(rt);
1094 return;
1095 }
1096
1097 /*
1098 * To avoid violating lock ordering, we must drop rt_lock before
1099 * trying to acquire the global rnh_lock. If we are called with
1100 * rnh_lock held, then we already have exclusive access; otherwise
1101 * we do the lock dance.
1102 */
1103 if (!locked) {
1104 /*
1105 * Note that we check it again below after grabbing rnh_lock,
1106 * since it is possible that another thread doing a lookup wins
1107 * the race, grabs the rnh_lock first, and bumps up reference
1108 * count in which case the route should be left alone as it is
1109 * still in use. It's also possible that another thread frees
1110 * the route after we drop rt_lock; to prevent the route from
1111 * being freed, we hold an extra reference.
1112 */
1113 RT_ADDREF_LOCKED(rt);
1114 RT_UNLOCK(rt);
1115 lck_mtx_lock(rnh_lock);
1116 RT_LOCK_SPIN(rt);
1117 if (rtunref(rt) > 0) {
1118 /* We've lost the race, so abort */
1119 RT_UNLOCK(rt);
1120 goto done;
1121 }
1122 }
1123
1124 /*
1125 * We may be blocked on other lock(s) as part of freeing
1126 * the entry below, so convert from spin to full mutex.
1127 */
1128 RT_CONVERT_LOCK(rt);
1129
1130 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
1131
1132 /* Negative refcnt must never happen */
1133 if (rt->rt_refcnt != 0) {
1134 panic("rt %p invalid refcnt %d", rt, rt->rt_refcnt);
1135 /* NOTREACHED */
1136 }
1137 /* Idle refcnt must have been dropped during rtunref() */
1138 VERIFY(!(rt->rt_flags & RTF_IFREF));
1139
1140 /*
1141 * find the tree for that address family
1142 * Note: in the case of igmp packets, there might not be an rnh
1143 */
1144 rnh = rt_tables[rt_key(rt)->sa_family];
1145
1146 /*
1147 * On last reference give the "close method" a chance to cleanup
1148 * private state. This also permits (for IPv4 and IPv6) a chance
1149 * to decide if the routing table entry should be purged immediately
1150 * or at a later time. When an immediate purge is to happen the
1151 * close routine typically issues RTM_DELETE which clears the RTF_UP
1152 * flag on the entry so that the code below reclaims the storage.
1153 */
1154 if (rnh != NULL && rnh->rnh_close != NULL)
1155 rnh->rnh_close((struct radix_node *)rt, rnh);
1156
1157 /*
1158 * If we are no longer "up" (and ref == 0) then we can free the
1159 * resources associated with the route.
1160 */
1161 if (!(rt->rt_flags & RTF_UP)) {
1162 struct rtentry *rt_parent;
1163 struct ifaddr *rt_ifa;
1164
1165 rt->rt_flags |= RTF_DEAD;
1166 if (rt->rt_nodes->rn_flags & (RNF_ACTIVE | RNF_ROOT)) {
1167 panic("rt %p freed while in radix tree\n", rt);
1168 /* NOTREACHED */
1169 }
1170 /*
1171 * the rtentry must have been removed from the routing table
1172 * so it is represented in rttrash; remove that now.
1173 */
1174 (void) OSDecrementAtomic(&rttrash);
1175 if (rte_debug & RTD_DEBUG) {
1176 TAILQ_REMOVE(&rttrash_head, (struct rtentry_dbg *)rt,
1177 rtd_trash_link);
1178 }
1179
1180 /*
1181 * release references on items we hold them on..
1182 * e.g other routes and ifaddrs.
1183 */
1184 if ((rt_parent = rt->rt_parent) != NULL)
1185 rt->rt_parent = NULL;
1186
1187 if ((rt_ifa = rt->rt_ifa) != NULL)
1188 rt->rt_ifa = NULL;
1189
1190 /*
1191 * Now free any attached link-layer info.
1192 */
1193 if (rt->rt_llinfo != NULL) {
1194 if (rt->rt_llinfo_free != NULL)
1195 (*rt->rt_llinfo_free)(rt->rt_llinfo);
1196 else
1197 R_Free(rt->rt_llinfo);
1198 rt->rt_llinfo = NULL;
1199 }
1200
1201 /* Destroy eventhandler lists context */
1202 eventhandler_lists_ctxt_destroy(&rt->rt_evhdlr_ctxt);
1203
1204 /*
1205 * Route is no longer in the tree and refcnt is 0;
1206 * we have exclusive access, so destroy it.
1207 */
1208 RT_UNLOCK(rt);
1209 rte_lock_destroy(rt);
1210
1211 if (rt_parent != NULL)
1212 rtfree_locked(rt_parent);
1213
1214 if (rt_ifa != NULL)
1215 IFA_REMREF(rt_ifa);
1216
1217 /*
1218 * The key is separately alloc'd so free it (see rt_setgate()).
1219 * This also frees the gateway, as they are always malloc'd
1220 * together.
1221 */
1222 R_Free(rt_key(rt));
1223
1224 /*
1225 * Free any statistics that may have been allocated
1226 */
1227 nstat_route_detach(rt);
1228
1229 /*
1230 * and the rtentry itself of course
1231 */
1232 rte_free(rt);
1233 } else {
1234 /*
1235 * The "close method" has been called, but the route is
1236 * still in the radix tree with zero refcnt, i.e. "up"
1237 * and in the cached state.
1238 */
1239 RT_UNLOCK(rt);
1240 }
1241 done:
1242 if (!locked)
1243 lck_mtx_unlock(rnh_lock);
1244 }
1245
1246 void
1247 rtfree(struct rtentry *rt)
1248 {
1249 rtfree_common(rt, FALSE);
1250 }
1251
1252 /*
1253 * Decrements the refcount but does not free the route when
1254 * the refcount reaches zero. Unless you have really good reason,
1255 * use rtfree not rtunref.
1256 */
1257 int
1258 rtunref(struct rtentry *p)
1259 {
1260 RT_LOCK_ASSERT_HELD(p);
1261
1262 if (p->rt_refcnt == 0) {
1263 panic("%s(%p) bad refcnt\n", __func__, p);
1264 /* NOTREACHED */
1265 } else if (--p->rt_refcnt == 0) {
1266 /*
1267 * Release any idle reference count held on the interface;
1268 * if the route is eligible, still UP and the refcnt becomes
1269 * non-zero at some point in future before it is purged from
1270 * the routing table, rt_set_idleref() will undo this.
1271 */
1272 rt_clear_idleref(p);
1273 }
1274
1275 if (rte_debug & RTD_DEBUG)
1276 rtunref_audit((struct rtentry_dbg *)p);
1277
1278 /* Return new value */
1279 return (p->rt_refcnt);
1280 }
1281
1282 static inline void
1283 rtunref_audit(struct rtentry_dbg *rte)
1284 {
1285 uint16_t idx;
1286
1287 if (rte->rtd_inuse != RTD_INUSE) {
1288 panic("rtunref: on freed rte=%p\n", rte);
1289 /* NOTREACHED */
1290 }
1291 idx = atomic_add_16_ov(&rte->rtd_refrele_cnt, 1) % CTRACE_HIST_SIZE;
1292 if (rte_debug & RTD_TRACE)
1293 ctrace_record(&rte->rtd_refrele[idx]);
1294 }
1295
1296 /*
1297 * Add a reference count from an rtentry.
1298 */
1299 void
1300 rtref(struct rtentry *p)
1301 {
1302 RT_LOCK_ASSERT_HELD(p);
1303
1304 VERIFY((p->rt_flags & RTF_DEAD) == 0);
1305 if (++p->rt_refcnt == 0) {
1306 panic("%s(%p) bad refcnt\n", __func__, p);
1307 /* NOTREACHED */
1308 } else if (p->rt_refcnt == 1) {
1309 /*
1310 * Hold an idle reference count on the interface,
1311 * if the route is eligible for it.
1312 */
1313 rt_set_idleref(p);
1314 }
1315
1316 if (rte_debug & RTD_DEBUG)
1317 rtref_audit((struct rtentry_dbg *)p);
1318 }
1319
1320 static inline void
1321 rtref_audit(struct rtentry_dbg *rte)
1322 {
1323 uint16_t idx;
1324
1325 if (rte->rtd_inuse != RTD_INUSE) {
1326 panic("rtref_audit: on freed rte=%p\n", rte);
1327 /* NOTREACHED */
1328 }
1329 idx = atomic_add_16_ov(&rte->rtd_refhold_cnt, 1) % CTRACE_HIST_SIZE;
1330 if (rte_debug & RTD_TRACE)
1331 ctrace_record(&rte->rtd_refhold[idx]);
1332 }
1333
1334 void
1335 rtsetifa(struct rtentry *rt, struct ifaddr *ifa)
1336 {
1337 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
1338
1339 RT_LOCK_ASSERT_HELD(rt);
1340
1341 if (rt->rt_ifa == ifa)
1342 return;
1343
1344 /* Become a regular mutex, just in case */
1345 RT_CONVERT_LOCK(rt);
1346
1347 /* Release the old ifa */
1348 if (rt->rt_ifa)
1349 IFA_REMREF(rt->rt_ifa);
1350
1351 /* Set rt_ifa */
1352 rt->rt_ifa = ifa;
1353
1354 /* Take a reference to the ifa */
1355 if (rt->rt_ifa)
1356 IFA_ADDREF(rt->rt_ifa);
1357 }
1358
1359 /*
1360 * Force a routing table entry to the specified
1361 * destination to go through the given gateway.
1362 * Normally called as a result of a routing redirect
1363 * message from the network layer.
1364 */
1365 void
1366 rtredirect(struct ifnet *ifp, struct sockaddr *dst, struct sockaddr *gateway,
1367 struct sockaddr *netmask, int flags, struct sockaddr *src,
1368 struct rtentry **rtp)
1369 {
1370 struct rtentry *rt = NULL;
1371 int error = 0;
1372 short *stat = 0;
1373 struct rt_addrinfo info;
1374 struct ifaddr *ifa = NULL;
1375 unsigned int ifscope = (ifp != NULL) ? ifp->if_index : IFSCOPE_NONE;
1376 struct sockaddr_storage ss;
1377 int af = src->sa_family;
1378
1379 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
1380 lck_mtx_lock(rnh_lock);
1381
1382 /*
1383 * Transform src into the internal routing table form for
1384 * comparison against rt_gateway below.
1385 */
1386 #if INET6
1387 if ((af == AF_INET) || (af == AF_INET6))
1388 #else
1389 if (af == AF_INET)
1390 #endif /* !INET6 */
1391 src = sa_copy(src, &ss, &ifscope);
1392
1393 /*
1394 * Verify the gateway is directly reachable; if scoped routing
1395 * is enabled, verify that it is reachable from the interface
1396 * where the ICMP redirect arrived on.
1397 */
1398 if ((ifa = ifa_ifwithnet_scoped(gateway, ifscope)) == NULL) {
1399 error = ENETUNREACH;
1400 goto out;
1401 }
1402
1403 /* Lookup route to the destination (from the original IP header) */
1404 rt = rtalloc1_scoped_locked(dst, 0, RTF_CLONING|RTF_PRCLONING, ifscope);
1405 if (rt != NULL)
1406 RT_LOCK(rt);
1407
1408 /*
1409 * If the redirect isn't from our current router for this dst,
1410 * it's either old or wrong. If it redirects us to ourselves,
1411 * we have a routing loop, perhaps as a result of an interface
1412 * going down recently. Holding rnh_lock here prevents the
1413 * possibility of rt_ifa/ifa's ifa_addr from changing (e.g.
1414 * in_ifinit), so okay to access ifa_addr without locking.
1415 */
1416 if (!(flags & RTF_DONE) && rt != NULL &&
1417 (!equal(src, rt->rt_gateway) || !equal(rt->rt_ifa->ifa_addr,
1418 ifa->ifa_addr))) {
1419 error = EINVAL;
1420 } else {
1421 IFA_REMREF(ifa);
1422 if ((ifa = ifa_ifwithaddr(gateway))) {
1423 IFA_REMREF(ifa);
1424 ifa = NULL;
1425 error = EHOSTUNREACH;
1426 }
1427 }
1428
1429 if (ifa) {
1430 IFA_REMREF(ifa);
1431 ifa = NULL;
1432 }
1433
1434 if (error) {
1435 if (rt != NULL)
1436 RT_UNLOCK(rt);
1437 goto done;
1438 }
1439
1440 /*
1441 * Create a new entry if we just got back a wildcard entry
1442 * or the the lookup failed. This is necessary for hosts
1443 * which use routing redirects generated by smart gateways
1444 * to dynamically build the routing tables.
1445 */
1446 if ((rt == NULL) || (rt_mask(rt) != NULL && rt_mask(rt)->sa_len < 2))
1447 goto create;
1448 /*
1449 * Don't listen to the redirect if it's
1450 * for a route to an interface.
1451 */
1452 RT_LOCK_ASSERT_HELD(rt);
1453 if (rt->rt_flags & RTF_GATEWAY) {
1454 if (((rt->rt_flags & RTF_HOST) == 0) && (flags & RTF_HOST)) {
1455 /*
1456 * Changing from route to net => route to host.
1457 * Create new route, rather than smashing route
1458 * to net; similar to cloned routes, the newly
1459 * created host route is scoped as well.
1460 */
1461 create:
1462 if (rt != NULL)
1463 RT_UNLOCK(rt);
1464 flags |= RTF_GATEWAY | RTF_DYNAMIC;
1465 error = rtrequest_scoped_locked(RTM_ADD, dst,
1466 gateway, netmask, flags, NULL, ifscope);
1467 stat = &rtstat.rts_dynamic;
1468 } else {
1469 /*
1470 * Smash the current notion of the gateway to
1471 * this destination. Should check about netmask!!!
1472 */
1473 rt->rt_flags |= RTF_MODIFIED;
1474 flags |= RTF_MODIFIED;
1475 stat = &rtstat.rts_newgateway;
1476 /*
1477 * add the key and gateway (in one malloc'd chunk).
1478 */
1479 error = rt_setgate(rt, rt_key(rt), gateway);
1480 RT_UNLOCK(rt);
1481 }
1482 } else {
1483 RT_UNLOCK(rt);
1484 error = EHOSTUNREACH;
1485 }
1486 done:
1487 if (rt != NULL) {
1488 RT_LOCK_ASSERT_NOTHELD(rt);
1489 if (!error) {
1490 /* Enqueue event to refresh flow route entries */
1491 route_event_enqueue_nwk_wq_entry(rt, NULL, ROUTE_ENTRY_REFRESH, NULL, FALSE);
1492 if (rtp)
1493 *rtp = rt;
1494 else
1495 rtfree_locked(rt);
1496 }
1497 else
1498 rtfree_locked(rt);
1499 }
1500 out:
1501 if (error) {
1502 rtstat.rts_badredirect++;
1503 } else {
1504 if (stat != NULL)
1505 (*stat)++;
1506
1507 if (af == AF_INET)
1508 routegenid_inet_update();
1509 #if INET6
1510 else if (af == AF_INET6)
1511 routegenid_inet6_update();
1512 #endif /* INET6 */
1513 }
1514 lck_mtx_unlock(rnh_lock);
1515 bzero((caddr_t)&info, sizeof(info));
1516 info.rti_info[RTAX_DST] = dst;
1517 info.rti_info[RTAX_GATEWAY] = gateway;
1518 info.rti_info[RTAX_NETMASK] = netmask;
1519 info.rti_info[RTAX_AUTHOR] = src;
1520 rt_missmsg(RTM_REDIRECT, &info, flags, error);
1521 }
1522
1523 /*
1524 * Routing table ioctl interface.
1525 */
1526 int
1527 rtioctl(unsigned long req, caddr_t data, struct proc *p)
1528 {
1529 #pragma unused(p, req, data)
1530 return (ENXIO);
1531 }
1532
1533 struct ifaddr *
1534 ifa_ifwithroute(
1535 int flags,
1536 const struct sockaddr *dst,
1537 const struct sockaddr *gateway)
1538 {
1539 struct ifaddr *ifa;
1540
1541 lck_mtx_lock(rnh_lock);
1542 ifa = ifa_ifwithroute_locked(flags, dst, gateway);
1543 lck_mtx_unlock(rnh_lock);
1544
1545 return (ifa);
1546 }
1547
1548 struct ifaddr *
1549 ifa_ifwithroute_locked(int flags, const struct sockaddr *dst,
1550 const struct sockaddr *gateway)
1551 {
1552 return (ifa_ifwithroute_common_locked((flags & ~RTF_IFSCOPE), dst,
1553 gateway, IFSCOPE_NONE));
1554 }
1555
1556 struct ifaddr *
1557 ifa_ifwithroute_scoped_locked(int flags, const struct sockaddr *dst,
1558 const struct sockaddr *gateway, unsigned int ifscope)
1559 {
1560 if (ifscope != IFSCOPE_NONE)
1561 flags |= RTF_IFSCOPE;
1562 else
1563 flags &= ~RTF_IFSCOPE;
1564
1565 return (ifa_ifwithroute_common_locked(flags, dst, gateway, ifscope));
1566 }
1567
1568 static struct ifaddr *
1569 ifa_ifwithroute_common_locked(int flags, const struct sockaddr *dst,
1570 const struct sockaddr *gw, unsigned int ifscope)
1571 {
1572 struct ifaddr *ifa = NULL;
1573 struct rtentry *rt = NULL;
1574 struct sockaddr_storage dst_ss, gw_ss;
1575
1576 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
1577
1578 /*
1579 * Just in case the sockaddr passed in by the caller
1580 * contains a scope ID, make sure to clear it since
1581 * interface addresses aren't scoped.
1582 */
1583 #if INET6
1584 if (dst != NULL &&
1585 ((dst->sa_family == AF_INET) ||
1586 (dst->sa_family == AF_INET6)))
1587 #else
1588 if (dst != NULL && dst->sa_family == AF_INET)
1589 #endif /* !INET6 */
1590 dst = sa_copy(SA((uintptr_t)dst), &dst_ss, NULL);
1591
1592 #if INET6
1593 if (gw != NULL &&
1594 ((gw->sa_family == AF_INET) ||
1595 (gw->sa_family == AF_INET6)))
1596 #else
1597 if (gw != NULL && gw->sa_family == AF_INET)
1598 #endif /* !INET6 */
1599 gw = sa_copy(SA((uintptr_t)gw), &gw_ss, NULL);
1600
1601 if (!(flags & RTF_GATEWAY)) {
1602 /*
1603 * If we are adding a route to an interface,
1604 * and the interface is a pt to pt link
1605 * we should search for the destination
1606 * as our clue to the interface. Otherwise
1607 * we can use the local address.
1608 */
1609 if (flags & RTF_HOST) {
1610 ifa = ifa_ifwithdstaddr(dst);
1611 }
1612 if (ifa == NULL)
1613 ifa = ifa_ifwithaddr_scoped(gw, ifscope);
1614 } else {
1615 /*
1616 * If we are adding a route to a remote net
1617 * or host, the gateway may still be on the
1618 * other end of a pt to pt link.
1619 */
1620 ifa = ifa_ifwithdstaddr(gw);
1621 }
1622 if (ifa == NULL)
1623 ifa = ifa_ifwithnet_scoped(gw, ifscope);
1624 if (ifa == NULL) {
1625 /* Workaround to avoid gcc warning regarding const variable */
1626 rt = rtalloc1_scoped_locked((struct sockaddr *)(size_t)dst,
1627 0, 0, ifscope);
1628 if (rt != NULL) {
1629 RT_LOCK_SPIN(rt);
1630 ifa = rt->rt_ifa;
1631 if (ifa != NULL) {
1632 /* Become a regular mutex */
1633 RT_CONVERT_LOCK(rt);
1634 IFA_ADDREF(ifa);
1635 }
1636 RT_REMREF_LOCKED(rt);
1637 RT_UNLOCK(rt);
1638 rt = NULL;
1639 }
1640 }
1641 /*
1642 * Holding rnh_lock here prevents the possibility of ifa from
1643 * changing (e.g. in_ifinit), so it is safe to access its
1644 * ifa_addr (here and down below) without locking.
1645 */
1646 if (ifa != NULL && ifa->ifa_addr->sa_family != dst->sa_family) {
1647 struct ifaddr *newifa;
1648 /* Callee adds reference to newifa upon success */
1649 newifa = ifaof_ifpforaddr(dst, ifa->ifa_ifp);
1650 if (newifa != NULL) {
1651 IFA_REMREF(ifa);
1652 ifa = newifa;
1653 }
1654 }
1655 /*
1656 * If we are adding a gateway, it is quite possible that the
1657 * routing table has a static entry in place for the gateway,
1658 * that may not agree with info garnered from the interfaces.
1659 * The routing table should carry more precedence than the
1660 * interfaces in this matter. Must be careful not to stomp
1661 * on new entries from rtinit, hence (ifa->ifa_addr != gw).
1662 */
1663 if ((ifa == NULL ||
1664 !equal(ifa->ifa_addr, (struct sockaddr *)(size_t)gw)) &&
1665 (rt = rtalloc1_scoped_locked((struct sockaddr *)(size_t)gw,
1666 0, 0, ifscope)) != NULL) {
1667 if (ifa != NULL)
1668 IFA_REMREF(ifa);
1669 RT_LOCK_SPIN(rt);
1670 ifa = rt->rt_ifa;
1671 if (ifa != NULL) {
1672 /* Become a regular mutex */
1673 RT_CONVERT_LOCK(rt);
1674 IFA_ADDREF(ifa);
1675 }
1676 RT_REMREF_LOCKED(rt);
1677 RT_UNLOCK(rt);
1678 }
1679 /*
1680 * If an interface scope was specified, the interface index of
1681 * the found ifaddr must be equivalent to that of the scope;
1682 * otherwise there is no match.
1683 */
1684 if ((flags & RTF_IFSCOPE) &&
1685 ifa != NULL && ifa->ifa_ifp->if_index != ifscope) {
1686 IFA_REMREF(ifa);
1687 ifa = NULL;
1688 }
1689
1690 return (ifa);
1691 }
1692
1693 static int rt_fixdelete(struct radix_node *, void *);
1694 static int rt_fixchange(struct radix_node *, void *);
1695
1696 struct rtfc_arg {
1697 struct rtentry *rt0;
1698 struct radix_node_head *rnh;
1699 };
1700
1701 int
1702 rtrequest_locked(int req, struct sockaddr *dst, struct sockaddr *gateway,
1703 struct sockaddr *netmask, int flags, struct rtentry **ret_nrt)
1704 {
1705 return (rtrequest_common_locked(req, dst, gateway, netmask,
1706 (flags & ~RTF_IFSCOPE), ret_nrt, IFSCOPE_NONE));
1707 }
1708
1709 int
1710 rtrequest_scoped_locked(int req, struct sockaddr *dst,
1711 struct sockaddr *gateway, struct sockaddr *netmask, int flags,
1712 struct rtentry **ret_nrt, unsigned int ifscope)
1713 {
1714 if (ifscope != IFSCOPE_NONE)
1715 flags |= RTF_IFSCOPE;
1716 else
1717 flags &= ~RTF_IFSCOPE;
1718
1719 return (rtrequest_common_locked(req, dst, gateway, netmask,
1720 flags, ret_nrt, ifscope));
1721 }
1722
1723 /*
1724 * Do appropriate manipulations of a routing tree given all the bits of
1725 * info needed.
1726 *
1727 * Storing the scope ID in the radix key is an internal job that should be
1728 * left to routines in this module. Callers should specify the scope value
1729 * to the "scoped" variants of route routines instead of manipulating the
1730 * key itself. This is typically done when creating a scoped route, e.g.
1731 * rtrequest(RTM_ADD). Once such a route is created and marked with the
1732 * RTF_IFSCOPE flag, callers can simply use its rt_key(rt) to clone it
1733 * (RTM_RESOLVE) or to remove it (RTM_DELETE). An exception to this is
1734 * during certain routing socket operations where the search key might be
1735 * derived from the routing message itself, in which case the caller must
1736 * specify the destination address and scope value for RTM_ADD/RTM_DELETE.
1737 */
1738 static int
1739 rtrequest_common_locked(int req, struct sockaddr *dst0,
1740 struct sockaddr *gateway, struct sockaddr *netmask, int flags,
1741 struct rtentry **ret_nrt, unsigned int ifscope)
1742 {
1743 int error = 0;
1744 struct rtentry *rt;
1745 struct radix_node *rn;
1746 struct radix_node_head *rnh;
1747 struct ifaddr *ifa = NULL;
1748 struct sockaddr *ndst, *dst = dst0;
1749 struct sockaddr_storage ss, mask;
1750 struct timeval caltime;
1751 int af = dst->sa_family;
1752 void (*ifa_rtrequest)(int, struct rtentry *, struct sockaddr *);
1753
1754 #define senderr(x) { error = x; goto bad; }
1755
1756 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
1757 /*
1758 * Find the correct routing tree to use for this Address Family
1759 */
1760 if ((rnh = rt_tables[af]) == NULL)
1761 senderr(ESRCH);
1762 /*
1763 * If we are adding a host route then we don't want to put
1764 * a netmask in the tree
1765 */
1766 if (flags & RTF_HOST)
1767 netmask = NULL;
1768
1769 /*
1770 * If Scoped Routing is enabled, use a local copy of the destination
1771 * address to store the scope ID into. This logic is repeated below
1772 * in the RTM_RESOLVE handler since the caller does not normally
1773 * specify such a flag during a resolve, as well as for the handling
1774 * of IPv4 link-local address; instead, it passes in the route used for
1775 * cloning for which the scope info is derived from. Note also that
1776 * in the case of RTM_DELETE, the address passed in by the caller
1777 * might already contain the scope ID info when it is the key itself,
1778 * thus making RTF_IFSCOPE unnecessary; one instance where it is
1779 * explicitly set is inside route_output() as part of handling a
1780 * routing socket request.
1781 */
1782 #if INET6
1783 if (req != RTM_RESOLVE && ((af == AF_INET) || (af == AF_INET6))) {
1784 #else
1785 if (req != RTM_RESOLVE && af == AF_INET) {
1786 #endif /* !INET6 */
1787 /* Transform dst into the internal routing table form */
1788 dst = sa_copy(dst, &ss, &ifscope);
1789
1790 /* Transform netmask into the internal routing table form */
1791 if (netmask != NULL)
1792 netmask = ma_copy(af, netmask, &mask, ifscope);
1793
1794 if (ifscope != IFSCOPE_NONE)
1795 flags |= RTF_IFSCOPE;
1796 } else if ((flags & RTF_IFSCOPE) &&
1797 (af != AF_INET && af != AF_INET6)) {
1798 senderr(EINVAL);
1799 }
1800
1801 if (ifscope == IFSCOPE_NONE)
1802 flags &= ~RTF_IFSCOPE;
1803
1804 switch (req) {
1805 case RTM_DELETE: {
1806 struct rtentry *gwrt = NULL;
1807 boolean_t was_router = FALSE;
1808 uint32_t old_rt_refcnt = 0;
1809 /*
1810 * Remove the item from the tree and return it.
1811 * Complain if it is not there and do no more processing.
1812 */
1813 if ((rn = rnh->rnh_deladdr(dst, netmask, rnh)) == NULL)
1814 senderr(ESRCH);
1815 if (rn->rn_flags & (RNF_ACTIVE | RNF_ROOT)) {
1816 panic("rtrequest delete");
1817 /* NOTREACHED */
1818 }
1819 rt = (struct rtentry *)rn;
1820
1821 RT_LOCK(rt);
1822 old_rt_refcnt = rt->rt_refcnt;
1823 rt->rt_flags &= ~RTF_UP;
1824 /*
1825 * Release any idle reference count held on the interface
1826 * as this route is no longer externally visible.
1827 */
1828 rt_clear_idleref(rt);
1829 /*
1830 * Take an extra reference to handle the deletion of a route
1831 * entry whose reference count is already 0; e.g. an expiring
1832 * cloned route entry or an entry that was added to the table
1833 * with 0 reference. If the caller is interested in this route,
1834 * we will return it with the reference intact. Otherwise we
1835 * will decrement the reference via rtfree_locked() and then
1836 * possibly deallocate it.
1837 */
1838 RT_ADDREF_LOCKED(rt);
1839
1840 /*
1841 * For consistency, in case the caller didn't set the flag.
1842 */
1843 rt->rt_flags |= RTF_CONDEMNED;
1844
1845 /*
1846 * Clear RTF_ROUTER if it's set.
1847 */
1848 if (rt->rt_flags & RTF_ROUTER) {
1849 was_router = TRUE;
1850 VERIFY(rt->rt_flags & RTF_HOST);
1851 rt->rt_flags &= ~RTF_ROUTER;
1852 }
1853
1854 /*
1855 * Enqueue work item to invoke callback for this route entry
1856 *
1857 * If the old count is 0, it implies that last reference is being
1858 * removed and there's no one listening for this route event.
1859 */
1860 if (old_rt_refcnt != 0)
1861 route_event_enqueue_nwk_wq_entry(rt, NULL,
1862 ROUTE_ENTRY_DELETED, NULL, TRUE);
1863
1864 /*
1865 * Now search what's left of the subtree for any cloned
1866 * routes which might have been formed from this node.
1867 */
1868 if ((rt->rt_flags & (RTF_CLONING | RTF_PRCLONING)) &&
1869 rt_mask(rt)) {
1870 RT_UNLOCK(rt);
1871 rnh->rnh_walktree_from(rnh, dst, rt_mask(rt),
1872 rt_fixdelete, rt);
1873 RT_LOCK(rt);
1874 }
1875
1876 if (was_router) {
1877 struct route_event rt_ev;
1878 route_event_init(&rt_ev, rt, NULL, ROUTE_LLENTRY_DELETED);
1879 RT_UNLOCK(rt);
1880 (void) rnh->rnh_walktree(rnh,
1881 route_event_walktree, (void *)&rt_ev);
1882 RT_LOCK(rt);
1883 }
1884
1885 /*
1886 * Remove any external references we may have.
1887 */
1888 if ((gwrt = rt->rt_gwroute) != NULL)
1889 rt->rt_gwroute = NULL;
1890
1891 /*
1892 * give the protocol a chance to keep things in sync.
1893 */
1894 if ((ifa = rt->rt_ifa) != NULL) {
1895 IFA_LOCK_SPIN(ifa);
1896 ifa_rtrequest = ifa->ifa_rtrequest;
1897 IFA_UNLOCK(ifa);
1898 if (ifa_rtrequest != NULL)
1899 ifa_rtrequest(RTM_DELETE, rt, NULL);
1900 /* keep reference on rt_ifa */
1901 ifa = NULL;
1902 }
1903
1904 /*
1905 * one more rtentry floating around that is not
1906 * linked to the routing table.
1907 */
1908 (void) OSIncrementAtomic(&rttrash);
1909 if (rte_debug & RTD_DEBUG) {
1910 TAILQ_INSERT_TAIL(&rttrash_head,
1911 (struct rtentry_dbg *)rt, rtd_trash_link);
1912 }
1913
1914 /*
1915 * If this is the (non-scoped) default route, clear
1916 * the interface index used for the primary ifscope.
1917 */
1918 if (rt_primary_default(rt, rt_key(rt))) {
1919 set_primary_ifscope(rt_key(rt)->sa_family,
1920 IFSCOPE_NONE);
1921 }
1922
1923 #if NECP
1924 /*
1925 * If this is a change in a default route, update
1926 * necp client watchers to re-evaluate
1927 */
1928 if (SA_DEFAULT(rt_key(rt))) {
1929 necp_update_all_clients();
1930 }
1931 #endif /* NECP */
1932
1933 RT_UNLOCK(rt);
1934
1935 /*
1936 * This might result in another rtentry being freed if
1937 * we held its last reference. Do this after the rtentry
1938 * lock is dropped above, as it could lead to the same
1939 * lock being acquired if gwrt is a clone of rt.
1940 */
1941 if (gwrt != NULL)
1942 rtfree_locked(gwrt);
1943
1944 /*
1945 * If the caller wants it, then it can have it,
1946 * but it's up to it to free the rtentry as we won't be
1947 * doing it.
1948 */
1949 if (ret_nrt != NULL) {
1950 /* Return the route to caller with reference intact */
1951 *ret_nrt = rt;
1952 } else {
1953 /* Dereference or deallocate the route */
1954 rtfree_locked(rt);
1955 }
1956 if (af == AF_INET)
1957 routegenid_inet_update();
1958 #if INET6
1959 else if (af == AF_INET6)
1960 routegenid_inet6_update();
1961 #endif /* INET6 */
1962 break;
1963 }
1964 case RTM_RESOLVE:
1965 if (ret_nrt == NULL || (rt = *ret_nrt) == NULL)
1966 senderr(EINVAL);
1967 /*
1968 * According to the UNIX conformance tests, we need to return
1969 * ENETUNREACH when the parent route is RTF_REJECT.
1970 * However, there isn't any point in cloning RTF_REJECT
1971 * routes, so we immediately return an error.
1972 */
1973 if (rt->rt_flags & RTF_REJECT) {
1974 if (rt->rt_flags & RTF_HOST) {
1975 senderr(EHOSTUNREACH);
1976 } else {
1977 senderr(ENETUNREACH);
1978 }
1979 }
1980 /*
1981 * If cloning, we have the parent route given by the caller
1982 * and will use its rt_gateway, rt_rmx as part of the cloning
1983 * process below. Since rnh_lock is held at this point, the
1984 * parent's rt_ifa and rt_gateway will not change, and its
1985 * relevant rt_flags will not change as well. The only thing
1986 * that could change are the metrics, and thus we hold the
1987 * parent route's rt_lock later on during the actual copying
1988 * of rt_rmx.
1989 */
1990 ifa = rt->rt_ifa;
1991 IFA_ADDREF(ifa);
1992 flags = rt->rt_flags &
1993 ~(RTF_CLONING | RTF_PRCLONING | RTF_STATIC);
1994 flags |= RTF_WASCLONED;
1995 gateway = rt->rt_gateway;
1996 if ((netmask = rt->rt_genmask) == NULL)
1997 flags |= RTF_HOST;
1998
1999 #if INET6
2000 if (af != AF_INET && af != AF_INET6)
2001 #else
2002 if (af != AF_INET)
2003 #endif /* !INET6 */
2004 goto makeroute;
2005
2006 /*
2007 * When scoped routing is enabled, cloned entries are
2008 * always scoped according to the interface portion of
2009 * the parent route. The exception to this are IPv4
2010 * link local addresses, or those routes that are cloned
2011 * from a RTF_PROXY route. For the latter, the clone
2012 * gets to keep the RTF_PROXY flag.
2013 */
2014 if ((af == AF_INET &&
2015 IN_LINKLOCAL(ntohl(SIN(dst)->sin_addr.s_addr))) ||
2016 (rt->rt_flags & RTF_PROXY)) {
2017 ifscope = IFSCOPE_NONE;
2018 flags &= ~RTF_IFSCOPE;
2019 /*
2020 * These types of cloned routes aren't currently
2021 * eligible for idle interface reference counting.
2022 */
2023 flags |= RTF_NOIFREF;
2024 } else {
2025 if (flags & RTF_IFSCOPE) {
2026 ifscope = (af == AF_INET) ?
2027 sin_get_ifscope(rt_key(rt)) :
2028 sin6_get_ifscope(rt_key(rt));
2029 } else {
2030 ifscope = rt->rt_ifp->if_index;
2031 flags |= RTF_IFSCOPE;
2032 }
2033 VERIFY(ifscope != IFSCOPE_NONE);
2034 }
2035
2036 /*
2037 * Transform dst into the internal routing table form,
2038 * clearing out the scope ID field if ifscope isn't set.
2039 */
2040 dst = sa_copy(dst, &ss, (ifscope == IFSCOPE_NONE) ?
2041 NULL : &ifscope);
2042
2043 /* Transform netmask into the internal routing table form */
2044 if (netmask != NULL)
2045 netmask = ma_copy(af, netmask, &mask, ifscope);
2046
2047 goto makeroute;
2048
2049 case RTM_ADD:
2050 if ((flags & RTF_GATEWAY) && !gateway) {
2051 panic("rtrequest: RTF_GATEWAY but no gateway");
2052 /* NOTREACHED */
2053 }
2054 if (flags & RTF_IFSCOPE) {
2055 ifa = ifa_ifwithroute_scoped_locked(flags, dst0,
2056 gateway, ifscope);
2057 } else {
2058 ifa = ifa_ifwithroute_locked(flags, dst0, gateway);
2059 }
2060 if (ifa == NULL)
2061 senderr(ENETUNREACH);
2062 makeroute:
2063 /*
2064 * We land up here for both RTM_RESOLVE and RTM_ADD
2065 * when we decide to create a route.
2066 */
2067 if ((rt = rte_alloc()) == NULL)
2068 senderr(ENOBUFS);
2069 Bzero(rt, sizeof(*rt));
2070 rte_lock_init(rt);
2071 eventhandler_lists_ctxt_init(&rt->rt_evhdlr_ctxt);
2072 getmicrotime(&caltime);
2073 rt->base_calendartime = caltime.tv_sec;
2074 rt->base_uptime = net_uptime();
2075 RT_LOCK(rt);
2076 rt->rt_flags = RTF_UP | flags;
2077
2078 /*
2079 * Point the generation ID to the tree's.
2080 */
2081 switch (af) {
2082 case AF_INET:
2083 rt->rt_tree_genid = &route_genid_inet;
2084 break;
2085 #if INET6
2086 case AF_INET6:
2087 rt->rt_tree_genid = &route_genid_inet6;
2088 break;
2089 #endif /* INET6 */
2090 default:
2091 break;
2092 }
2093
2094 /*
2095 * Add the gateway. Possibly re-malloc-ing the storage for it
2096 * also add the rt_gwroute if possible.
2097 */
2098 if ((error = rt_setgate(rt, dst, gateway)) != 0) {
2099 int tmp = error;
2100 RT_UNLOCK(rt);
2101 nstat_route_detach(rt);
2102 rte_lock_destroy(rt);
2103 rte_free(rt);
2104 senderr(tmp);
2105 }
2106
2107 /*
2108 * point to the (possibly newly malloc'd) dest address.
2109 */
2110 ndst = rt_key(rt);
2111
2112 /*
2113 * make sure it contains the value we want (masked if needed).
2114 */
2115 if (netmask)
2116 rt_maskedcopy(dst, ndst, netmask);
2117 else
2118 Bcopy(dst, ndst, dst->sa_len);
2119
2120 /*
2121 * Note that we now have a reference to the ifa.
2122 * This moved from below so that rnh->rnh_addaddr() can
2123 * examine the ifa and ifa->ifa_ifp if it so desires.
2124 */
2125 rtsetifa(rt, ifa);
2126 rt->rt_ifp = rt->rt_ifa->ifa_ifp;
2127
2128 /* XXX mtu manipulation will be done in rnh_addaddr -- itojun */
2129
2130 rn = rnh->rnh_addaddr((caddr_t)ndst, (caddr_t)netmask,
2131 rnh, rt->rt_nodes);
2132 if (rn == 0) {
2133 struct rtentry *rt2;
2134 /*
2135 * Uh-oh, we already have one of these in the tree.
2136 * We do a special hack: if the route that's already
2137 * there was generated by the protocol-cloning
2138 * mechanism, then we just blow it away and retry
2139 * the insertion of the new one.
2140 */
2141 if (flags & RTF_IFSCOPE) {
2142 rt2 = rtalloc1_scoped_locked(dst0, 0,
2143 RTF_CLONING | RTF_PRCLONING, ifscope);
2144 } else {
2145 rt2 = rtalloc1_locked(dst, 0,
2146 RTF_CLONING | RTF_PRCLONING);
2147 }
2148 if (rt2 && rt2->rt_parent) {
2149 /*
2150 * rnh_lock is held here, so rt_key and
2151 * rt_gateway of rt2 will not change.
2152 */
2153 (void) rtrequest_locked(RTM_DELETE, rt_key(rt2),
2154 rt2->rt_gateway, rt_mask(rt2),
2155 rt2->rt_flags, 0);
2156 rtfree_locked(rt2);
2157 rn = rnh->rnh_addaddr((caddr_t)ndst,
2158 (caddr_t)netmask, rnh, rt->rt_nodes);
2159 } else if (rt2) {
2160 /* undo the extra ref we got */
2161 rtfree_locked(rt2);
2162 }
2163 }
2164
2165 /*
2166 * If it still failed to go into the tree,
2167 * then un-make it (this should be a function)
2168 */
2169 if (rn == NULL) {
2170 /* Clear gateway route */
2171 rt_set_gwroute(rt, rt_key(rt), NULL);
2172 if (rt->rt_ifa) {
2173 IFA_REMREF(rt->rt_ifa);
2174 rt->rt_ifa = NULL;
2175 }
2176 R_Free(rt_key(rt));
2177 RT_UNLOCK(rt);
2178 nstat_route_detach(rt);
2179 rte_lock_destroy(rt);
2180 rte_free(rt);
2181 senderr(EEXIST);
2182 }
2183
2184 rt->rt_parent = NULL;
2185
2186 /*
2187 * If we got here from RESOLVE, then we are cloning so clone
2188 * the rest, and note that we are a clone (and increment the
2189 * parent's references). rnh_lock is still held, which prevents
2190 * a lookup from returning the newly-created route. Hence
2191 * holding and releasing the parent's rt_lock while still
2192 * holding the route's rt_lock is safe since the new route
2193 * is not yet externally visible.
2194 */
2195 if (req == RTM_RESOLVE) {
2196 RT_LOCK_SPIN(*ret_nrt);
2197 VERIFY((*ret_nrt)->rt_expire == 0 ||
2198 (*ret_nrt)->rt_rmx.rmx_expire != 0);
2199 VERIFY((*ret_nrt)->rt_expire != 0 ||
2200 (*ret_nrt)->rt_rmx.rmx_expire == 0);
2201 rt->rt_rmx = (*ret_nrt)->rt_rmx;
2202 rt_setexpire(rt, (*ret_nrt)->rt_expire);
2203 if ((*ret_nrt)->rt_flags &
2204 (RTF_CLONING | RTF_PRCLONING)) {
2205 rt->rt_parent = (*ret_nrt);
2206 RT_ADDREF_LOCKED(*ret_nrt);
2207 }
2208 RT_UNLOCK(*ret_nrt);
2209 }
2210
2211 /*
2212 * if this protocol has something to add to this then
2213 * allow it to do that as well.
2214 */
2215 IFA_LOCK_SPIN(ifa);
2216 ifa_rtrequest = ifa->ifa_rtrequest;
2217 IFA_UNLOCK(ifa);
2218 if (ifa_rtrequest != NULL)
2219 ifa_rtrequest(req, rt, SA(ret_nrt ? *ret_nrt : NULL));
2220 IFA_REMREF(ifa);
2221 ifa = NULL;
2222
2223 /*
2224 * If this is the (non-scoped) default route, record
2225 * the interface index used for the primary ifscope.
2226 */
2227 if (rt_primary_default(rt, rt_key(rt))) {
2228 set_primary_ifscope(rt_key(rt)->sa_family,
2229 rt->rt_ifp->if_index);
2230 }
2231
2232 #if NECP
2233 /*
2234 * If this is a change in a default route, update
2235 * necp client watchers to re-evaluate
2236 */
2237 if (SA_DEFAULT(rt_key(rt))) {
2238 necp_update_all_clients();
2239 }
2240 #endif /* NECP */
2241
2242 /*
2243 * actually return a resultant rtentry and
2244 * give the caller a single reference.
2245 */
2246 if (ret_nrt) {
2247 *ret_nrt = rt;
2248 RT_ADDREF_LOCKED(rt);
2249 }
2250
2251 if (af == AF_INET)
2252 routegenid_inet_update();
2253 #if INET6
2254 else if (af == AF_INET6)
2255 routegenid_inet6_update();
2256 #endif /* INET6 */
2257
2258 RT_GENID_SYNC(rt);
2259
2260 /*
2261 * We repeat the same procedures from rt_setgate() here
2262 * because they weren't completed when we called it earlier,
2263 * since the node was embryonic.
2264 */
2265 if ((rt->rt_flags & RTF_GATEWAY) && rt->rt_gwroute != NULL)
2266 rt_set_gwroute(rt, rt_key(rt), rt->rt_gwroute);
2267
2268 if (req == RTM_ADD &&
2269 !(rt->rt_flags & RTF_HOST) && rt_mask(rt) != NULL) {
2270 struct rtfc_arg arg;
2271 arg.rnh = rnh;
2272 arg.rt0 = rt;
2273 RT_UNLOCK(rt);
2274 rnh->rnh_walktree_from(rnh, rt_key(rt), rt_mask(rt),
2275 rt_fixchange, &arg);
2276 } else {
2277 RT_UNLOCK(rt);
2278 }
2279
2280 nstat_route_new_entry(rt);
2281 break;
2282 }
2283 bad:
2284 if (ifa)
2285 IFA_REMREF(ifa);
2286 return (error);
2287 }
2288 #undef senderr
2289
2290 int
2291 rtrequest(int req, struct sockaddr *dst, struct sockaddr *gateway,
2292 struct sockaddr *netmask, int flags, struct rtentry **ret_nrt)
2293 {
2294 int error;
2295 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
2296 lck_mtx_lock(rnh_lock);
2297 error = rtrequest_locked(req, dst, gateway, netmask, flags, ret_nrt);
2298 lck_mtx_unlock(rnh_lock);
2299 return (error);
2300 }
2301
2302 int
2303 rtrequest_scoped(int req, struct sockaddr *dst, struct sockaddr *gateway,
2304 struct sockaddr *netmask, int flags, struct rtentry **ret_nrt,
2305 unsigned int ifscope)
2306 {
2307 int error;
2308 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
2309 lck_mtx_lock(rnh_lock);
2310 error = rtrequest_scoped_locked(req, dst, gateway, netmask, flags,
2311 ret_nrt, ifscope);
2312 lck_mtx_unlock(rnh_lock);
2313 return (error);
2314 }
2315
2316 /*
2317 * Called from rtrequest(RTM_DELETE, ...) to fix up the route's ``family''
2318 * (i.e., the routes related to it by the operation of cloning). This
2319 * routine is iterated over all potential former-child-routes by way of
2320 * rnh->rnh_walktree_from() above, and those that actually are children of
2321 * the late parent (passed in as VP here) are themselves deleted.
2322 */
2323 static int
2324 rt_fixdelete(struct radix_node *rn, void *vp)
2325 {
2326 struct rtentry *rt = (struct rtentry *)rn;
2327 struct rtentry *rt0 = vp;
2328
2329 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
2330
2331 RT_LOCK(rt);
2332 if (rt->rt_parent == rt0 &&
2333 !(rt->rt_flags & (RTF_CLONING | RTF_PRCLONING))) {
2334 /*
2335 * Safe to drop rt_lock and use rt_key, since holding
2336 * rnh_lock here prevents another thread from calling
2337 * rt_setgate() on this route.
2338 */
2339 RT_UNLOCK(rt);
2340 return (rtrequest_locked(RTM_DELETE, rt_key(rt), NULL,
2341 rt_mask(rt), rt->rt_flags, NULL));
2342 }
2343 RT_UNLOCK(rt);
2344 return (0);
2345 }
2346
2347 /*
2348 * This routine is called from rt_setgate() to do the analogous thing for
2349 * adds and changes. There is the added complication in this case of a
2350 * middle insert; i.e., insertion of a new network route between an older
2351 * network route and (cloned) host routes. For this reason, a simple check
2352 * of rt->rt_parent is insufficient; each candidate route must be tested
2353 * against the (mask, value) of the new route (passed as before in vp)
2354 * to see if the new route matches it.
2355 *
2356 * XXX - it may be possible to do fixdelete() for changes and reserve this
2357 * routine just for adds. I'm not sure why I thought it was necessary to do
2358 * changes this way.
2359 */
2360 static int
2361 rt_fixchange(struct radix_node *rn, void *vp)
2362 {
2363 struct rtentry *rt = (struct rtentry *)rn;
2364 struct rtfc_arg *ap = vp;
2365 struct rtentry *rt0 = ap->rt0;
2366 struct radix_node_head *rnh = ap->rnh;
2367 u_char *xk1, *xm1, *xk2, *xmp;
2368 int i, len;
2369
2370 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
2371
2372 RT_LOCK(rt);
2373
2374 if (!rt->rt_parent ||
2375 (rt->rt_flags & (RTF_CLONING | RTF_PRCLONING))) {
2376 RT_UNLOCK(rt);
2377 return (0);
2378 }
2379
2380 if (rt->rt_parent == rt0)
2381 goto delete_rt;
2382
2383 /*
2384 * There probably is a function somewhere which does this...
2385 * if not, there should be.
2386 */
2387 len = imin(rt_key(rt0)->sa_len, rt_key(rt)->sa_len);
2388
2389 xk1 = (u_char *)rt_key(rt0);
2390 xm1 = (u_char *)rt_mask(rt0);
2391 xk2 = (u_char *)rt_key(rt);
2392
2393 /*
2394 * Avoid applying a less specific route; do this only if the parent
2395 * route (rt->rt_parent) is a network route, since otherwise its mask
2396 * will be NULL if it is a cloning host route.
2397 */
2398 if ((xmp = (u_char *)rt_mask(rt->rt_parent)) != NULL) {
2399 int mlen = rt_mask(rt->rt_parent)->sa_len;
2400 if (mlen > rt_mask(rt0)->sa_len) {
2401 RT_UNLOCK(rt);
2402 return (0);
2403 }
2404
2405 for (i = rnh->rnh_treetop->rn_offset; i < mlen; i++) {
2406 if ((xmp[i] & ~(xmp[i] ^ xm1[i])) != xmp[i]) {
2407 RT_UNLOCK(rt);
2408 return (0);
2409 }
2410 }
2411 }
2412
2413 for (i = rnh->rnh_treetop->rn_offset; i < len; i++) {
2414 if ((xk2[i] & xm1[i]) != xk1[i]) {
2415 RT_UNLOCK(rt);
2416 return (0);
2417 }
2418 }
2419
2420 /*
2421 * OK, this node is a clone, and matches the node currently being
2422 * changed/added under the node's mask. So, get rid of it.
2423 */
2424 delete_rt:
2425 /*
2426 * Safe to drop rt_lock and use rt_key, since holding rnh_lock here
2427 * prevents another thread from calling rt_setgate() on this route.
2428 */
2429 RT_UNLOCK(rt);
2430 return (rtrequest_locked(RTM_DELETE, rt_key(rt), NULL,
2431 rt_mask(rt), rt->rt_flags, NULL));
2432 }
2433
2434 /*
2435 * Round up sockaddr len to multiples of 32-bytes. This will reduce
2436 * or even eliminate the need to re-allocate the chunk of memory used
2437 * for rt_key and rt_gateway in the event the gateway portion changes.
2438 * Certain code paths (e.g. IPSec) are notorious for caching the address
2439 * of rt_gateway; this rounding-up would help ensure that the gateway
2440 * portion never gets deallocated (though it may change contents) and
2441 * thus greatly simplifies things.
2442 */
2443 #define SA_SIZE(x) (-(-((uintptr_t)(x)) & -(32)))
2444
2445 /*
2446 * Sets the gateway and/or gateway route portion of a route; may be
2447 * called on an existing route to modify the gateway portion. Both
2448 * rt_key and rt_gateway are allocated out of the same memory chunk.
2449 * Route entry lock must be held by caller; this routine will return
2450 * with the lock held.
2451 */
2452 int
2453 rt_setgate(struct rtentry *rt, struct sockaddr *dst, struct sockaddr *gate)
2454 {
2455 int dlen = SA_SIZE(dst->sa_len), glen = SA_SIZE(gate->sa_len);
2456 struct radix_node_head *rnh = NULL;
2457 boolean_t loop = FALSE;
2458
2459 if (dst->sa_family != AF_INET && dst->sa_family != AF_INET6) {
2460 return (EINVAL);
2461 }
2462
2463 rnh = rt_tables[dst->sa_family];
2464 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
2465 RT_LOCK_ASSERT_HELD(rt);
2466
2467 /*
2468 * If this is for a route that is on its way of being removed,
2469 * or is temporarily frozen, reject the modification request.
2470 */
2471 if (rt->rt_flags & RTF_CONDEMNED) {
2472 return (EBUSY);
2473 }
2474
2475 /* Add an extra ref for ourselves */
2476 RT_ADDREF_LOCKED(rt);
2477
2478 if (rt->rt_flags & RTF_GATEWAY) {
2479 if ((dst->sa_len == gate->sa_len) &&
2480 (dst->sa_family == AF_INET || dst->sa_family == AF_INET6)) {
2481 struct sockaddr_storage dst_ss, gate_ss;
2482
2483 (void) sa_copy(dst, &dst_ss, NULL);
2484 (void) sa_copy(gate, &gate_ss, NULL);
2485
2486 loop = equal(SA(&dst_ss), SA(&gate_ss));
2487 } else {
2488 loop = (dst->sa_len == gate->sa_len &&
2489 equal(dst, gate));
2490 }
2491 }
2492
2493 /*
2494 * A (cloning) network route with the destination equal to the gateway
2495 * will create an endless loop (see notes below), so disallow it.
2496 */
2497 if (((rt->rt_flags & (RTF_HOST|RTF_GATEWAY|RTF_LLINFO)) ==
2498 RTF_GATEWAY) && loop) {
2499 /* Release extra ref */
2500 RT_REMREF_LOCKED(rt);
2501 return (EADDRNOTAVAIL);
2502 }
2503
2504 /*
2505 * A host route with the destination equal to the gateway
2506 * will interfere with keeping LLINFO in the routing
2507 * table, so disallow it.
2508 */
2509 if (((rt->rt_flags & (RTF_HOST|RTF_GATEWAY|RTF_LLINFO)) ==
2510 (RTF_HOST|RTF_GATEWAY)) && loop) {
2511 /*
2512 * The route might already exist if this is an RTM_CHANGE
2513 * or a routing redirect, so try to delete it.
2514 */
2515 if (rt_key(rt) != NULL) {
2516 /*
2517 * Safe to drop rt_lock and use rt_key, rt_gateway,
2518 * since holding rnh_lock here prevents another thread
2519 * from calling rt_setgate() on this route.
2520 */
2521 RT_UNLOCK(rt);
2522 (void) rtrequest_locked(RTM_DELETE, rt_key(rt),
2523 rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL);
2524 RT_LOCK(rt);
2525 }
2526 /* Release extra ref */
2527 RT_REMREF_LOCKED(rt);
2528 return (EADDRNOTAVAIL);
2529 }
2530
2531 /*
2532 * The destination is not directly reachable. Get a route
2533 * to the next-hop gateway and store it in rt_gwroute.
2534 */
2535 if (rt->rt_flags & RTF_GATEWAY) {
2536 struct rtentry *gwrt;
2537 unsigned int ifscope;
2538
2539 if (dst->sa_family == AF_INET)
2540 ifscope = sin_get_ifscope(dst);
2541 else if (dst->sa_family == AF_INET6)
2542 ifscope = sin6_get_ifscope(dst);
2543 else
2544 ifscope = IFSCOPE_NONE;
2545
2546 RT_UNLOCK(rt);
2547 /*
2548 * Don't ignore RTF_CLONING, since we prefer that rt_gwroute
2549 * points to a clone rather than a cloning route; see above
2550 * check for cloning loop avoidance (dst == gate).
2551 */
2552 gwrt = rtalloc1_scoped_locked(gate, 1, RTF_PRCLONING, ifscope);
2553 if (gwrt != NULL)
2554 RT_LOCK_ASSERT_NOTHELD(gwrt);
2555 RT_LOCK(rt);
2556
2557 /*
2558 * Cloning loop avoidance:
2559 *
2560 * In the presence of protocol-cloning and bad configuration,
2561 * it is possible to get stuck in bottomless mutual recursion
2562 * (rtrequest rt_setgate rtalloc1). We avoid this by not
2563 * allowing protocol-cloning to operate for gateways (which
2564 * is probably the correct choice anyway), and avoid the
2565 * resulting reference loops by disallowing any route to run
2566 * through itself as a gateway. This is obviously mandatory
2567 * when we get rt->rt_output(). It implies that a route to
2568 * the gateway must already be present in the system in order
2569 * for the gateway to be referred to by another route.
2570 */
2571 if (gwrt == rt) {
2572 RT_REMREF_LOCKED(gwrt);
2573 /* Release extra ref */
2574 RT_REMREF_LOCKED(rt);
2575 return (EADDRINUSE); /* failure */
2576 }
2577
2578 /*
2579 * If scoped, the gateway route must use the same interface;
2580 * we're holding rnh_lock now, so rt_gateway and rt_ifp of gwrt
2581 * should not change and are freely accessible.
2582 */
2583 if (ifscope != IFSCOPE_NONE && (rt->rt_flags & RTF_IFSCOPE) &&
2584 gwrt != NULL && gwrt->rt_ifp != NULL &&
2585 gwrt->rt_ifp->if_index != ifscope) {
2586 rtfree_locked(gwrt); /* rt != gwrt, no deadlock */
2587 /* Release extra ref */
2588 RT_REMREF_LOCKED(rt);
2589 return ((rt->rt_flags & RTF_HOST) ?
2590 EHOSTUNREACH : ENETUNREACH);
2591 }
2592
2593 /* Check again since we dropped the lock above */
2594 if (rt->rt_flags & RTF_CONDEMNED) {
2595 if (gwrt != NULL)
2596 rtfree_locked(gwrt);
2597 /* Release extra ref */
2598 RT_REMREF_LOCKED(rt);
2599 return (EBUSY);
2600 }
2601
2602 /* Set gateway route; callee adds ref to gwrt if non-NULL */
2603 rt_set_gwroute(rt, dst, gwrt);
2604
2605 /*
2606 * In case the (non-scoped) default route gets modified via
2607 * an ICMP redirect, record the interface index used for the
2608 * primary ifscope. Also done in rt_setif() to take care
2609 * of the non-redirect cases.
2610 */
2611 if (rt_primary_default(rt, dst) && rt->rt_ifp != NULL) {
2612 set_primary_ifscope(dst->sa_family,
2613 rt->rt_ifp->if_index);
2614 }
2615
2616 #if NECP
2617 /*
2618 * If this is a change in a default route, update
2619 * necp client watchers to re-evaluate
2620 */
2621 if (SA_DEFAULT(dst)) {
2622 necp_update_all_clients();
2623 }
2624 #endif /* NECP */
2625
2626 /*
2627 * Tell the kernel debugger about the new default gateway
2628 * if the gateway route uses the primary interface, or
2629 * if we are in a transient state before the non-scoped
2630 * default gateway is installed (similar to how the system
2631 * was behaving in the past). In future, it would be good
2632 * to do all this only when KDP is enabled.
2633 */
2634 if ((dst->sa_family == AF_INET) &&
2635 gwrt != NULL && gwrt->rt_gateway->sa_family == AF_LINK &&
2636 (gwrt->rt_ifp->if_index == get_primary_ifscope(AF_INET) ||
2637 get_primary_ifscope(AF_INET) == IFSCOPE_NONE)) {
2638 kdp_set_gateway_mac(SDL((void *)gwrt->rt_gateway)->
2639 sdl_data);
2640 }
2641
2642 /* Release extra ref from rtalloc1() */
2643 if (gwrt != NULL)
2644 RT_REMREF(gwrt);
2645 }
2646
2647 /*
2648 * Prepare to store the gateway in rt_gateway. Both dst and gateway
2649 * are stored one after the other in the same malloc'd chunk. If we
2650 * have room, reuse the old buffer since rt_gateway already points
2651 * to the right place. Otherwise, malloc a new block and update
2652 * the 'dst' address and point rt_gateway to the right place.
2653 */
2654 if (rt->rt_gateway == NULL || glen > SA_SIZE(rt->rt_gateway->sa_len)) {
2655 caddr_t new;
2656
2657 /* The underlying allocation is done with M_WAITOK set */
2658 R_Malloc(new, caddr_t, dlen + glen);
2659 if (new == NULL) {
2660 /* Clear gateway route */
2661 rt_set_gwroute(rt, dst, NULL);
2662 /* Release extra ref */
2663 RT_REMREF_LOCKED(rt);
2664 return (ENOBUFS);
2665 }
2666
2667 /*
2668 * Copy from 'dst' and not rt_key(rt) because we can get
2669 * here to initialize a newly allocated route entry, in
2670 * which case rt_key(rt) is NULL (and so does rt_gateway).
2671 */
2672 bzero(new, dlen + glen);
2673 Bcopy(dst, new, dst->sa_len);
2674 R_Free(rt_key(rt)); /* free old block; NULL is okay */
2675 rt->rt_nodes->rn_key = new;
2676 rt->rt_gateway = (struct sockaddr *)(new + dlen);
2677 }
2678
2679 /*
2680 * Copy the new gateway value into the memory chunk.
2681 */
2682 Bcopy(gate, rt->rt_gateway, gate->sa_len);
2683
2684 /*
2685 * For consistency between rt_gateway and rt_key(gwrt).
2686 */
2687 if ((rt->rt_flags & RTF_GATEWAY) && rt->rt_gwroute != NULL &&
2688 (rt->rt_gwroute->rt_flags & RTF_IFSCOPE)) {
2689 if (rt->rt_gateway->sa_family == AF_INET &&
2690 rt_key(rt->rt_gwroute)->sa_family == AF_INET) {
2691 sin_set_ifscope(rt->rt_gateway,
2692 sin_get_ifscope(rt_key(rt->rt_gwroute)));
2693 } else if (rt->rt_gateway->sa_family == AF_INET6 &&
2694 rt_key(rt->rt_gwroute)->sa_family == AF_INET6) {
2695 sin6_set_ifscope(rt->rt_gateway,
2696 sin6_get_ifscope(rt_key(rt->rt_gwroute)));
2697 }
2698 }
2699
2700 /*
2701 * This isn't going to do anything useful for host routes, so
2702 * don't bother. Also make sure we have a reasonable mask
2703 * (we don't yet have one during adds).
2704 */
2705 if (!(rt->rt_flags & RTF_HOST) && rt_mask(rt) != 0) {
2706 struct rtfc_arg arg;
2707 arg.rnh = rnh;
2708 arg.rt0 = rt;
2709 RT_UNLOCK(rt);
2710 rnh->rnh_walktree_from(rnh, rt_key(rt), rt_mask(rt),
2711 rt_fixchange, &arg);
2712 RT_LOCK(rt);
2713 }
2714
2715 /* Release extra ref */
2716 RT_REMREF_LOCKED(rt);
2717 return (0);
2718 }
2719
2720 #undef SA_SIZE
2721
2722 void
2723 rt_set_gwroute(struct rtentry *rt, struct sockaddr *dst, struct rtentry *gwrt)
2724 {
2725 boolean_t gwrt_isrouter;
2726
2727 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
2728 RT_LOCK_ASSERT_HELD(rt);
2729
2730 if (gwrt != NULL)
2731 RT_ADDREF(gwrt); /* for this routine */
2732
2733 /*
2734 * Get rid of existing gateway route; if rt_gwroute is already
2735 * set to gwrt, this is slightly redundant (though safe since
2736 * we held an extra ref above) but makes the code simpler.
2737 */
2738 if (rt->rt_gwroute != NULL) {
2739 struct rtentry *ogwrt = rt->rt_gwroute;
2740
2741 VERIFY(rt != ogwrt); /* sanity check */
2742 rt->rt_gwroute = NULL;
2743 RT_UNLOCK(rt);
2744 rtfree_locked(ogwrt);
2745 RT_LOCK(rt);
2746 VERIFY(rt->rt_gwroute == NULL);
2747 }
2748
2749 /*
2750 * And associate the new gateway route.
2751 */
2752 if ((rt->rt_gwroute = gwrt) != NULL) {
2753 RT_ADDREF(gwrt); /* for rt */
2754
2755 if (rt->rt_flags & RTF_WASCLONED) {
2756 /* rt_parent might be NULL if rt is embryonic */
2757 gwrt_isrouter = (rt->rt_parent != NULL &&
2758 SA_DEFAULT(rt_key(rt->rt_parent)) &&
2759 !RT_HOST(rt->rt_parent));
2760 } else {
2761 gwrt_isrouter = (SA_DEFAULT(dst) && !RT_HOST(rt));
2762 }
2763
2764 /* If gwrt points to a default router, mark it accordingly */
2765 if (gwrt_isrouter && RT_HOST(gwrt) &&
2766 !(gwrt->rt_flags & RTF_ROUTER)) {
2767 RT_LOCK(gwrt);
2768 gwrt->rt_flags |= RTF_ROUTER;
2769 RT_UNLOCK(gwrt);
2770 }
2771
2772 RT_REMREF(gwrt); /* for this routine */
2773 }
2774 }
2775
2776 static void
2777 rt_maskedcopy(const struct sockaddr *src, struct sockaddr *dst,
2778 const struct sockaddr *netmask)
2779 {
2780 const char *netmaskp = &netmask->sa_data[0];
2781 const char *srcp = &src->sa_data[0];
2782 char *dstp = &dst->sa_data[0];
2783 const char *maskend = (char *)dst
2784 + MIN(netmask->sa_len, src->sa_len);
2785 const char *srcend = (char *)dst + src->sa_len;
2786
2787 dst->sa_len = src->sa_len;
2788 dst->sa_family = src->sa_family;
2789
2790 while (dstp < maskend)
2791 *dstp++ = *srcp++ & *netmaskp++;
2792 if (dstp < srcend)
2793 memset(dstp, 0, (size_t)(srcend - dstp));
2794 }
2795
2796 /*
2797 * Lookup an AF_INET/AF_INET6 scoped or non-scoped route depending on the
2798 * ifscope value passed in by the caller (IFSCOPE_NONE implies non-scoped).
2799 */
2800 static struct radix_node *
2801 node_lookup(struct sockaddr *dst, struct sockaddr *netmask,
2802 unsigned int ifscope)
2803 {
2804 struct radix_node_head *rnh;
2805 struct radix_node *rn;
2806 struct sockaddr_storage ss, mask;
2807 int af = dst->sa_family;
2808 struct matchleaf_arg ma = { ifscope };
2809 rn_matchf_t *f = rn_match_ifscope;
2810 void *w = &ma;
2811
2812 if (af != AF_INET && af != AF_INET6)
2813 return (NULL);
2814
2815 rnh = rt_tables[af];
2816
2817 /*
2818 * Transform dst into the internal routing table form,
2819 * clearing out the scope ID field if ifscope isn't set.
2820 */
2821 dst = sa_copy(dst, &ss, (ifscope == IFSCOPE_NONE) ? NULL : &ifscope);
2822
2823 /* Transform netmask into the internal routing table form */
2824 if (netmask != NULL)
2825 netmask = ma_copy(af, netmask, &mask, ifscope);
2826
2827 if (ifscope == IFSCOPE_NONE)
2828 f = w = NULL;
2829
2830 rn = rnh->rnh_lookup_args(dst, netmask, rnh, f, w);
2831 if (rn != NULL && (rn->rn_flags & RNF_ROOT))
2832 rn = NULL;
2833
2834 return (rn);
2835 }
2836
2837 /*
2838 * Lookup the AF_INET/AF_INET6 non-scoped default route.
2839 */
2840 static struct radix_node *
2841 node_lookup_default(int af)
2842 {
2843 struct radix_node_head *rnh;
2844
2845 VERIFY(af == AF_INET || af == AF_INET6);
2846 rnh = rt_tables[af];
2847
2848 return (af == AF_INET ? rnh->rnh_lookup(&sin_def, NULL, rnh) :
2849 rnh->rnh_lookup(&sin6_def, NULL, rnh));
2850 }
2851
2852 boolean_t
2853 rt_ifa_is_dst(struct sockaddr *dst, struct ifaddr *ifa)
2854 {
2855 boolean_t result = FALSE;
2856
2857 if (ifa == NULL || ifa->ifa_addr == NULL)
2858 return (result);
2859
2860 IFA_LOCK_SPIN(ifa);
2861
2862 if (dst->sa_family == ifa->ifa_addr->sa_family &&
2863 ((dst->sa_family == AF_INET &&
2864 SIN(dst)->sin_addr.s_addr ==
2865 SIN(ifa->ifa_addr)->sin_addr.s_addr) ||
2866 (dst->sa_family == AF_INET6 &&
2867 SA6_ARE_ADDR_EQUAL(SIN6(dst), SIN6(ifa->ifa_addr)))))
2868 result = TRUE;
2869
2870 IFA_UNLOCK(ifa);
2871
2872 return (result);
2873 }
2874
2875 /*
2876 * Common routine to lookup/match a route. It invokes the lookup/matchaddr
2877 * callback which could be address family-specific. The main difference
2878 * between the two (at least for AF_INET/AF_INET6) is that a lookup does
2879 * not alter the expiring state of a route, whereas a match would unexpire
2880 * or revalidate the route.
2881 *
2882 * The optional scope or interface index property of a route allows for a
2883 * per-interface route instance. This permits multiple route entries having
2884 * the same destination (but not necessarily the same gateway) to exist in
2885 * the routing table; each of these entries is specific to the corresponding
2886 * interface. This is made possible by storing the scope ID value into the
2887 * radix key, thus making each route entry unique. These scoped entries
2888 * exist along with the regular, non-scoped entries in the same radix tree
2889 * for a given address family (AF_INET/AF_INET6); the scope logically
2890 * partitions it into multiple per-interface sub-trees.
2891 *
2892 * When a scoped route lookup is performed, the routing table is searched for
2893 * the best match that would result in a route using the same interface as the
2894 * one associated with the scope (the exception to this are routes that point
2895 * to the loopback interface). The search rule follows the longest matching
2896 * prefix with the additional interface constraint.
2897 */
2898 static struct rtentry *
2899 rt_lookup_common(boolean_t lookup_only, boolean_t coarse, struct sockaddr *dst,
2900 struct sockaddr *netmask, struct radix_node_head *rnh, unsigned int ifscope)
2901 {
2902 struct radix_node *rn0, *rn = NULL;
2903 int af = dst->sa_family;
2904 struct sockaddr_storage dst_ss;
2905 struct sockaddr_storage mask_ss;
2906 boolean_t dontcare;
2907 #if (DEVELOPMENT || DEBUG)
2908 char dbuf[MAX_SCOPE_ADDR_STR_LEN], gbuf[MAX_IPv6_STR_LEN];
2909 char s_dst[MAX_IPv6_STR_LEN], s_netmask[MAX_IPv6_STR_LEN];
2910 #endif
2911 VERIFY(!coarse || ifscope == IFSCOPE_NONE);
2912
2913 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
2914 #if INET6
2915 /*
2916 * While we have rnh_lock held, see if we need to schedule the timer.
2917 */
2918 if (nd6_sched_timeout_want)
2919 nd6_sched_timeout(NULL, NULL);
2920 #endif /* INET6 */
2921
2922 if (!lookup_only)
2923 netmask = NULL;
2924
2925 /*
2926 * Non-scoped route lookup.
2927 */
2928 #if INET6
2929 if (af != AF_INET && af != AF_INET6) {
2930 #else
2931 if (af != AF_INET) {
2932 #endif /* !INET6 */
2933 rn = rnh->rnh_matchaddr(dst, rnh);
2934
2935 /*
2936 * Don't return a root node; also, rnh_matchaddr callback
2937 * would have done the necessary work to clear RTPRF_OURS
2938 * for certain protocol families.
2939 */
2940 if (rn != NULL && (rn->rn_flags & RNF_ROOT))
2941 rn = NULL;
2942 if (rn != NULL) {
2943 RT_LOCK_SPIN(RT(rn));
2944 if (!(RT(rn)->rt_flags & RTF_CONDEMNED)) {
2945 RT_ADDREF_LOCKED(RT(rn));
2946 RT_UNLOCK(RT(rn));
2947 } else {
2948 RT_UNLOCK(RT(rn));
2949 rn = NULL;
2950 }
2951 }
2952 return (RT(rn));
2953 }
2954
2955 /* Transform dst/netmask into the internal routing table form */
2956 dst = sa_copy(dst, &dst_ss, &ifscope);
2957 if (netmask != NULL)
2958 netmask = ma_copy(af, netmask, &mask_ss, ifscope);
2959 dontcare = (ifscope == IFSCOPE_NONE);
2960
2961 #if (DEVELOPMENT || DEBUG)
2962 if (rt_verbose) {
2963 if (af == AF_INET)
2964 (void) inet_ntop(af, &SIN(dst)->sin_addr.s_addr,
2965 s_dst, sizeof (s_dst));
2966 else
2967 (void) inet_ntop(af, &SIN6(dst)->sin6_addr,
2968 s_dst, sizeof (s_dst));
2969
2970 if (netmask != NULL && af == AF_INET)
2971 (void) inet_ntop(af, &SIN(netmask)->sin_addr.s_addr,
2972 s_netmask, sizeof (s_netmask));
2973 if (netmask != NULL && af == AF_INET6)
2974 (void) inet_ntop(af, &SIN6(netmask)->sin6_addr,
2975 s_netmask, sizeof (s_netmask));
2976 else
2977 *s_netmask = '\0';
2978 printf("%s (%d, %d, %s, %s, %u)\n",
2979 __func__, lookup_only, coarse, s_dst, s_netmask, ifscope);
2980 }
2981 #endif
2982
2983 /*
2984 * Scoped route lookup:
2985 *
2986 * We first perform a non-scoped lookup for the original result.
2987 * Afterwards, depending on whether or not the caller has specified
2988 * a scope, we perform a more specific scoped search and fallback
2989 * to this original result upon failure.
2990 */
2991 rn0 = rn = node_lookup(dst, netmask, IFSCOPE_NONE);
2992
2993 /*
2994 * If the caller did not specify a scope, use the primary scope
2995 * derived from the system's non-scoped default route. If, for
2996 * any reason, there is no primary interface, ifscope will be
2997 * set to IFSCOPE_NONE; if the above lookup resulted in a route,
2998 * we'll do a more-specific search below, scoped to the interface
2999 * of that route.
3000 */
3001 if (dontcare)
3002 ifscope = get_primary_ifscope(af);
3003
3004 /*
3005 * Keep the original result if either of the following is true:
3006 *
3007 * 1) The interface portion of the route has the same interface
3008 * index as the scope value and it is marked with RTF_IFSCOPE.
3009 * 2) The route uses the loopback interface, in which case the
3010 * destination (host/net) is local/loopback.
3011 *
3012 * Otherwise, do a more specified search using the scope;
3013 * we're holding rnh_lock now, so rt_ifp should not change.
3014 */
3015 if (rn != NULL) {
3016 struct rtentry *rt = RT(rn);
3017 #if (DEVELOPMENT || DEBUG)
3018 if (rt_verbose) {
3019 rt_str(rt, dbuf, sizeof (dbuf), gbuf, sizeof (gbuf));
3020 printf("%s unscoped search %p to %s->%s->%s ifa_ifp %s\n",
3021 __func__, rt,
3022 dbuf, gbuf,
3023 (rt->rt_ifp != NULL) ? rt->rt_ifp->if_xname : "",
3024 (rt->rt_ifa->ifa_ifp != NULL) ?
3025 rt->rt_ifa->ifa_ifp->if_xname : "");
3026 }
3027 #endif
3028 if (!(rt->rt_ifp->if_flags & IFF_LOOPBACK) ||
3029 (rt->rt_flags & RTF_GATEWAY)) {
3030 if (rt->rt_ifp->if_index != ifscope) {
3031 /*
3032 * Wrong interface; keep the original result
3033 * only if the caller did not specify a scope,
3034 * and do a more specific scoped search using
3035 * the scope of the found route. Otherwise,
3036 * start again from scratch.
3037 *
3038 * For loopback scope we keep the unscoped
3039 * route for local addresses
3040 */
3041 rn = NULL;
3042 if (dontcare)
3043 ifscope = rt->rt_ifp->if_index;
3044 else if (ifscope != lo_ifp->if_index ||
3045 rt_ifa_is_dst(dst, rt->rt_ifa) == FALSE)
3046 rn0 = NULL;
3047 } else if (!(rt->rt_flags & RTF_IFSCOPE)) {
3048 /*
3049 * Right interface, except that this route
3050 * isn't marked with RTF_IFSCOPE. Do a more
3051 * specific scoped search. Keep the original
3052 * result and return it it in case the scoped
3053 * search fails.
3054 */
3055 rn = NULL;
3056 }
3057 }
3058 }
3059
3060 /*
3061 * Scoped search. Find the most specific entry having the same
3062 * interface scope as the one requested. The following will result
3063 * in searching for the longest prefix scoped match.
3064 */
3065 if (rn == NULL) {
3066 rn = node_lookup(dst, netmask, ifscope);
3067 #if (DEVELOPMENT || DEBUG)
3068 if (rt_verbose && rn != NULL) {
3069 struct rtentry *rt = RT(rn);
3070
3071 rt_str(rt, dbuf, sizeof (dbuf), gbuf, sizeof (gbuf));
3072 printf("%s scoped search %p to %s->%s->%s ifa %s\n",
3073 __func__, rt,
3074 dbuf, gbuf,
3075 (rt->rt_ifp != NULL) ? rt->rt_ifp->if_xname : "",
3076 (rt->rt_ifa->ifa_ifp != NULL) ?
3077 rt->rt_ifa->ifa_ifp->if_xname : "");
3078 }
3079 #endif
3080 }
3081 /*
3082 * Use the original result if either of the following is true:
3083 *
3084 * 1) The scoped search did not yield any result.
3085 * 2) The caller insists on performing a coarse-grained lookup.
3086 * 3) The result from the scoped search is a scoped default route,
3087 * and the original (non-scoped) result is not a default route,
3088 * i.e. the original result is a more specific host/net route.
3089 * 4) The scoped search yielded a net route but the original
3090 * result is a host route, i.e. the original result is treated
3091 * as a more specific route.
3092 */
3093 if (rn == NULL || coarse || (rn0 != NULL &&
3094 ((SA_DEFAULT(rt_key(RT(rn))) && !SA_DEFAULT(rt_key(RT(rn0)))) ||
3095 (!RT_HOST(rn) && RT_HOST(rn0)))))
3096 rn = rn0;
3097
3098 /*
3099 * If we still don't have a route, use the non-scoped default
3100 * route as long as the interface portion satistifes the scope.
3101 */
3102 if (rn == NULL && (rn = node_lookup_default(af)) != NULL &&
3103 RT(rn)->rt_ifp->if_index != ifscope) {
3104 rn = NULL;
3105 }
3106
3107 if (rn != NULL) {
3108 /*
3109 * Manually clear RTPRF_OURS using rt_validate() and
3110 * bump up the reference count after, and not before;
3111 * we only get here for AF_INET/AF_INET6. node_lookup()
3112 * has done the check against RNF_ROOT, so we can be sure
3113 * that we're not returning a root node here.
3114 */
3115 RT_LOCK_SPIN(RT(rn));
3116 if (rt_validate(RT(rn))) {
3117 RT_ADDREF_LOCKED(RT(rn));
3118 RT_UNLOCK(RT(rn));
3119 } else {
3120 RT_UNLOCK(RT(rn));
3121 rn = NULL;
3122 }
3123 }
3124 #if (DEVELOPMENT || DEBUG)
3125 if (rt_verbose) {
3126 if (rn == NULL)
3127 printf("%s %u return NULL\n", __func__, ifscope);
3128 else {
3129 struct rtentry *rt = RT(rn);
3130
3131 rt_str(rt, dbuf, sizeof (dbuf), gbuf, sizeof (gbuf));
3132
3133 printf("%s %u return %p to %s->%s->%s ifa_ifp %s\n",
3134 __func__, ifscope, rt,
3135 dbuf, gbuf,
3136 (rt->rt_ifp != NULL) ? rt->rt_ifp->if_xname : "",
3137 (rt->rt_ifa->ifa_ifp != NULL) ?
3138 rt->rt_ifa->ifa_ifp->if_xname : "");
3139 }
3140 }
3141 #endif
3142 return (RT(rn));
3143 }
3144
3145 struct rtentry *
3146 rt_lookup(boolean_t lookup_only, struct sockaddr *dst, struct sockaddr *netmask,
3147 struct radix_node_head *rnh, unsigned int ifscope)
3148 {
3149 return (rt_lookup_common(lookup_only, FALSE, dst, netmask,
3150 rnh, ifscope));
3151 }
3152
3153 struct rtentry *
3154 rt_lookup_coarse(boolean_t lookup_only, struct sockaddr *dst,
3155 struct sockaddr *netmask, struct radix_node_head *rnh)
3156 {
3157 return (rt_lookup_common(lookup_only, TRUE, dst, netmask,
3158 rnh, IFSCOPE_NONE));
3159 }
3160
3161 boolean_t
3162 rt_validate(struct rtentry *rt)
3163 {
3164 RT_LOCK_ASSERT_HELD(rt);
3165
3166 if ((rt->rt_flags & (RTF_UP | RTF_CONDEMNED)) == RTF_UP) {
3167 int af = rt_key(rt)->sa_family;
3168
3169 if (af == AF_INET)
3170 (void) in_validate(RN(rt));
3171 else if (af == AF_INET6)
3172 (void) in6_validate(RN(rt));
3173 } else {
3174 rt = NULL;
3175 }
3176
3177 return (rt != NULL);
3178 }
3179
3180 /*
3181 * Set up a routing table entry, normally
3182 * for an interface.
3183 */
3184 int
3185 rtinit(struct ifaddr *ifa, int cmd, int flags)
3186 {
3187 int error;
3188
3189 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
3190
3191 lck_mtx_lock(rnh_lock);
3192 error = rtinit_locked(ifa, cmd, flags);
3193 lck_mtx_unlock(rnh_lock);
3194
3195 return (error);
3196 }
3197
3198 int
3199 rtinit_locked(struct ifaddr *ifa, int cmd, int flags)
3200 {
3201 struct radix_node_head *rnh;
3202 uint8_t nbuf[128]; /* long enough for IPv6 */
3203 #if (DEVELOPMENT || DEBUG)
3204 char dbuf[MAX_IPv6_STR_LEN], gbuf[MAX_IPv6_STR_LEN];
3205 char abuf[MAX_IPv6_STR_LEN];
3206 #endif
3207 struct rtentry *rt = NULL;
3208 struct sockaddr *dst;
3209 struct sockaddr *netmask;
3210 int error = 0;
3211
3212 /*
3213 * Holding rnh_lock here prevents the possibility of ifa from
3214 * changing (e.g. in_ifinit), so it is safe to access its
3215 * ifa_{dst}addr (here and down below) without locking.
3216 */
3217 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
3218
3219 if (flags & RTF_HOST) {
3220 dst = ifa->ifa_dstaddr;
3221 netmask = NULL;
3222 } else {
3223 dst = ifa->ifa_addr;
3224 netmask = ifa->ifa_netmask;
3225 }
3226
3227 if (dst->sa_len == 0) {
3228 log(LOG_ERR, "%s: %s failed, invalid dst sa_len %d\n",
3229 __func__, rtm2str(cmd), dst->sa_len);
3230 error = EINVAL;
3231 goto done;
3232 }
3233 if (netmask != NULL && netmask->sa_len > sizeof (nbuf)) {
3234 log(LOG_ERR, "%s: %s failed, mask sa_len %d too large\n",
3235 __func__, rtm2str(cmd), dst->sa_len);
3236 error = EINVAL;
3237 goto done;
3238 }
3239
3240 #if (DEVELOPMENT || DEBUG)
3241 if (dst->sa_family == AF_INET) {
3242 (void) inet_ntop(AF_INET, &SIN(dst)->sin_addr.s_addr,
3243 abuf, sizeof (abuf));
3244 }
3245 #if INET6
3246 else if (dst->sa_family == AF_INET6) {
3247 (void) inet_ntop(AF_INET6, &SIN6(dst)->sin6_addr,
3248 abuf, sizeof (abuf));
3249 }
3250 #endif /* INET6 */
3251 #endif /* (DEVELOPMENT || DEBUG) */
3252
3253 if ((rnh = rt_tables[dst->sa_family]) == NULL) {
3254 error = EINVAL;
3255 goto done;
3256 }
3257
3258 /*
3259 * If it's a delete, check that if it exists, it's on the correct
3260 * interface or we might scrub a route to another ifa which would
3261 * be confusing at best and possibly worse.
3262 */
3263 if (cmd == RTM_DELETE) {
3264 /*
3265 * It's a delete, so it should already exist..
3266 * If it's a net, mask off the host bits
3267 * (Assuming we have a mask)
3268 */
3269 if (netmask != NULL) {
3270 rt_maskedcopy(dst, SA(nbuf), netmask);
3271 dst = SA(nbuf);
3272 }
3273 /*
3274 * Get an rtentry that is in the routing tree and contains
3275 * the correct info. Note that we perform a coarse-grained
3276 * lookup here, in case there is a scoped variant of the
3277 * subnet/prefix route which we should ignore, as we never
3278 * add a scoped subnet/prefix route as part of adding an
3279 * interface address.
3280 */
3281 rt = rt_lookup_coarse(TRUE, dst, NULL, rnh);
3282 if (rt != NULL) {
3283 #if (DEVELOPMENT || DEBUG)
3284 rt_str(rt, dbuf, sizeof (dbuf), gbuf, sizeof (gbuf));
3285 #endif
3286 /*
3287 * Ok so we found the rtentry. it has an extra reference
3288 * for us at this stage. we won't need that so
3289 * lop that off now.
3290 */
3291 RT_LOCK(rt);
3292 if (rt->rt_ifa != ifa) {
3293 /*
3294 * If the interface address in the rtentry
3295 * doesn't match the interface we are using,
3296 * then we don't want to delete it, so return
3297 * an error. This seems to be the only point
3298 * of this whole RTM_DELETE clause.
3299 */
3300 #if (DEVELOPMENT || DEBUG)
3301 if (rt_verbose) {
3302 log(LOG_DEBUG, "%s: not removing "
3303 "route to %s->%s->%s, flags %b, "
3304 "ifaddr %s, rt_ifa 0x%llx != "
3305 "ifa 0x%llx\n", __func__, dbuf,
3306 gbuf, ((rt->rt_ifp != NULL) ?
3307 rt->rt_ifp->if_xname : ""),
3308 rt->rt_flags, RTF_BITS, abuf,
3309 (uint64_t)VM_KERNEL_ADDRPERM(
3310 rt->rt_ifa),
3311 (uint64_t)VM_KERNEL_ADDRPERM(ifa));
3312 }
3313 #endif /* (DEVELOPMENT || DEBUG) */
3314 RT_REMREF_LOCKED(rt);
3315 RT_UNLOCK(rt);
3316 rt = NULL;
3317 error = ((flags & RTF_HOST) ?
3318 EHOSTUNREACH : ENETUNREACH);
3319 goto done;
3320 } else if (rt->rt_flags & RTF_STATIC) {
3321 /*
3322 * Don't remove the subnet/prefix route if
3323 * this was manually added from above.
3324 */
3325 #if (DEVELOPMENT || DEBUG)
3326 if (rt_verbose) {
3327 log(LOG_DEBUG, "%s: not removing "
3328 "static route to %s->%s->%s, "
3329 "flags %b, ifaddr %s\n", __func__,
3330 dbuf, gbuf, ((rt->rt_ifp != NULL) ?
3331 rt->rt_ifp->if_xname : ""),
3332 rt->rt_flags, RTF_BITS, abuf);
3333 }
3334 #endif /* (DEVELOPMENT || DEBUG) */
3335 RT_REMREF_LOCKED(rt);
3336 RT_UNLOCK(rt);
3337 rt = NULL;
3338 error = EBUSY;
3339 goto done;
3340 }
3341 #if (DEVELOPMENT || DEBUG)
3342 if (rt_verbose) {
3343 log(LOG_DEBUG, "%s: removing route to "
3344 "%s->%s->%s, flags %b, ifaddr %s\n",
3345 __func__, dbuf, gbuf,
3346 ((rt->rt_ifp != NULL) ?
3347 rt->rt_ifp->if_xname : ""),
3348 rt->rt_flags, RTF_BITS, abuf);
3349 }
3350 #endif /* (DEVELOPMENT || DEBUG) */
3351 RT_REMREF_LOCKED(rt);
3352 RT_UNLOCK(rt);
3353 rt = NULL;
3354 }
3355 }
3356 /*
3357 * Do the actual request
3358 */
3359 if ((error = rtrequest_locked(cmd, dst, ifa->ifa_addr, netmask,
3360 flags | ifa->ifa_flags, &rt)) != 0)
3361 goto done;
3362
3363 VERIFY(rt != NULL);
3364 #if (DEVELOPMENT || DEBUG)
3365 rt_str(rt, dbuf, sizeof (dbuf), gbuf, sizeof (gbuf));
3366 #endif /* (DEVELOPMENT || DEBUG) */
3367 switch (cmd) {
3368 case RTM_DELETE:
3369 /*
3370 * If we are deleting, and we found an entry, then it's
3371 * been removed from the tree. Notify any listening
3372 * routing agents of the change and throw it away.
3373 */
3374 RT_LOCK(rt);
3375 rt_newaddrmsg(cmd, ifa, error, rt);
3376 RT_UNLOCK(rt);
3377 #if (DEVELOPMENT || DEBUG)
3378 if (rt_verbose) {
3379 log(LOG_DEBUG, "%s: removed route to %s->%s->%s, "
3380 "flags %b, ifaddr %s\n", __func__, dbuf, gbuf,
3381 ((rt->rt_ifp != NULL) ? rt->rt_ifp->if_xname : ""),
3382 rt->rt_flags, RTF_BITS, abuf);
3383 }
3384 #endif /* (DEVELOPMENT || DEBUG) */
3385 rtfree_locked(rt);
3386 break;
3387
3388 case RTM_ADD:
3389 /*
3390 * We are adding, and we have a returned routing entry.
3391 * We need to sanity check the result. If it came back
3392 * with an unexpected interface, then it must have already
3393 * existed or something.
3394 */
3395 RT_LOCK(rt);
3396 if (rt->rt_ifa != ifa) {
3397 void (*ifa_rtrequest)
3398 (int, struct rtentry *, struct sockaddr *);
3399 #if (DEVELOPMENT || DEBUG)
3400 if (rt_verbose) {
3401 if (!(rt->rt_ifa->ifa_ifp->if_flags &
3402 (IFF_POINTOPOINT|IFF_LOOPBACK))) {
3403 log(LOG_ERR, "%s: %s route to %s->%s->%s, "
3404 "flags %b, ifaddr %s, rt_ifa 0x%llx != "
3405 "ifa 0x%llx\n", __func__, rtm2str(cmd),
3406 dbuf, gbuf, ((rt->rt_ifp != NULL) ?
3407 rt->rt_ifp->if_xname : ""), rt->rt_flags,
3408 RTF_BITS, abuf,
3409 (uint64_t)VM_KERNEL_ADDRPERM(rt->rt_ifa),
3410 (uint64_t)VM_KERNEL_ADDRPERM(ifa));
3411 }
3412
3413 log(LOG_DEBUG, "%s: %s route to %s->%s->%s, "
3414 "flags %b, ifaddr %s, rt_ifa was 0x%llx "
3415 "now 0x%llx\n", __func__, rtm2str(cmd),
3416 dbuf, gbuf, ((rt->rt_ifp != NULL) ?
3417 rt->rt_ifp->if_xname : ""), rt->rt_flags,
3418 RTF_BITS, abuf,
3419 (uint64_t)VM_KERNEL_ADDRPERM(rt->rt_ifa),
3420 (uint64_t)VM_KERNEL_ADDRPERM(ifa));
3421 }
3422 #endif /* (DEVELOPMENT || DEBUG) */
3423
3424 /*
3425 * Ask that the protocol in question
3426 * remove anything it has associated with
3427 * this route and ifaddr.
3428 */
3429 ifa_rtrequest = rt->rt_ifa->ifa_rtrequest;
3430 if (ifa_rtrequest != NULL)
3431 ifa_rtrequest(RTM_DELETE, rt, NULL);
3432 /*
3433 * Set the route's ifa.
3434 */
3435 rtsetifa(rt, ifa);
3436
3437 if (rt->rt_ifp != ifa->ifa_ifp) {
3438 /*
3439 * Purge any link-layer info caching.
3440 */
3441 if (rt->rt_llinfo_purge != NULL)
3442 rt->rt_llinfo_purge(rt);
3443 /*
3444 * Adjust route ref count for the interfaces.
3445 */
3446 if (rt->rt_if_ref_fn != NULL) {
3447 rt->rt_if_ref_fn(ifa->ifa_ifp, 1);
3448 rt->rt_if_ref_fn(rt->rt_ifp, -1);
3449 }
3450 }
3451
3452 /*
3453 * And substitute in references to the ifaddr
3454 * we are adding.
3455 */
3456 rt->rt_ifp = ifa->ifa_ifp;
3457 /*
3458 * If rmx_mtu is not locked, update it
3459 * to the MTU used by the new interface.
3460 */
3461 if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
3462 rt->rt_rmx.rmx_mtu = rt->rt_ifp->if_mtu;
3463
3464 /*
3465 * Now ask the protocol to check if it needs
3466 * any special processing in its new form.
3467 */
3468 ifa_rtrequest = ifa->ifa_rtrequest;
3469 if (ifa_rtrequest != NULL)
3470 ifa_rtrequest(RTM_ADD, rt, NULL);
3471 } else {
3472 #if (DEVELOPMENT || DEBUG)
3473 if (rt_verbose) {
3474 log(LOG_DEBUG, "%s: added route to %s->%s->%s, "
3475 "flags %b, ifaddr %s\n", __func__, dbuf,
3476 gbuf, ((rt->rt_ifp != NULL) ?
3477 rt->rt_ifp->if_xname : ""), rt->rt_flags,
3478 RTF_BITS, abuf);
3479 }
3480 #endif /* (DEVELOPMENT || DEBUG) */
3481 }
3482 /*
3483 * notify any listenning routing agents of the change
3484 */
3485 rt_newaddrmsg(cmd, ifa, error, rt);
3486 /*
3487 * We just wanted to add it; we don't actually need a
3488 * reference. This will result in a route that's added
3489 * to the routing table without a reference count. The
3490 * RTM_DELETE code will do the necessary step to adjust
3491 * the reference count at deletion time.
3492 */
3493 RT_REMREF_LOCKED(rt);
3494 RT_UNLOCK(rt);
3495 break;
3496
3497 default:
3498 VERIFY(0);
3499 /* NOTREACHED */
3500 }
3501 done:
3502 return (error);
3503 }
3504
3505 static void
3506 rt_set_idleref(struct rtentry *rt)
3507 {
3508 RT_LOCK_ASSERT_HELD(rt);
3509
3510 /*
3511 * We currently keep idle refcnt only on unicast cloned routes
3512 * that aren't marked with RTF_NOIFREF.
3513 */
3514 if (rt->rt_parent != NULL && !(rt->rt_flags &
3515 (RTF_NOIFREF|RTF_BROADCAST | RTF_MULTICAST)) &&
3516 (rt->rt_flags & (RTF_UP|RTF_WASCLONED|RTF_IFREF)) ==
3517 (RTF_UP|RTF_WASCLONED)) {
3518 rt_clear_idleref(rt); /* drop existing refcnt if any */
3519 rt->rt_if_ref_fn = rte_if_ref;
3520 /* Become a regular mutex, just in case */
3521 RT_CONVERT_LOCK(rt);
3522 rt->rt_if_ref_fn(rt->rt_ifp, 1);
3523 rt->rt_flags |= RTF_IFREF;
3524 }
3525 }
3526
3527 void
3528 rt_clear_idleref(struct rtentry *rt)
3529 {
3530 RT_LOCK_ASSERT_HELD(rt);
3531
3532 if (rt->rt_if_ref_fn != NULL) {
3533 VERIFY((rt->rt_flags & (RTF_NOIFREF | RTF_IFREF)) == RTF_IFREF);
3534 /* Become a regular mutex, just in case */
3535 RT_CONVERT_LOCK(rt);
3536 rt->rt_if_ref_fn(rt->rt_ifp, -1);
3537 rt->rt_flags &= ~RTF_IFREF;
3538 rt->rt_if_ref_fn = NULL;
3539 }
3540 }
3541
3542 void
3543 rt_set_proxy(struct rtentry *rt, boolean_t set)
3544 {
3545 lck_mtx_lock(rnh_lock);
3546 RT_LOCK(rt);
3547 /*
3548 * Search for any cloned routes which might have
3549 * been formed from this node, and delete them.
3550 */
3551 if (rt->rt_flags & (RTF_CLONING | RTF_PRCLONING)) {
3552 struct radix_node_head *rnh = rt_tables[rt_key(rt)->sa_family];
3553
3554 if (set)
3555 rt->rt_flags |= RTF_PROXY;
3556 else
3557 rt->rt_flags &= ~RTF_PROXY;
3558
3559 RT_UNLOCK(rt);
3560 if (rnh != NULL && rt_mask(rt)) {
3561 rnh->rnh_walktree_from(rnh, rt_key(rt), rt_mask(rt),
3562 rt_fixdelete, rt);
3563 }
3564 } else {
3565 RT_UNLOCK(rt);
3566 }
3567 lck_mtx_unlock(rnh_lock);
3568 }
3569
3570 static void
3571 rte_lock_init(struct rtentry *rt)
3572 {
3573 lck_mtx_init(&rt->rt_lock, rte_mtx_grp, rte_mtx_attr);
3574 }
3575
3576 static void
3577 rte_lock_destroy(struct rtentry *rt)
3578 {
3579 RT_LOCK_ASSERT_NOTHELD(rt);
3580 lck_mtx_destroy(&rt->rt_lock, rte_mtx_grp);
3581 }
3582
3583 void
3584 rt_lock(struct rtentry *rt, boolean_t spin)
3585 {
3586 RT_LOCK_ASSERT_NOTHELD(rt);
3587 if (spin)
3588 lck_mtx_lock_spin(&rt->rt_lock);
3589 else
3590 lck_mtx_lock(&rt->rt_lock);
3591 if (rte_debug & RTD_DEBUG)
3592 rte_lock_debug((struct rtentry_dbg *)rt);
3593 }
3594
3595 void
3596 rt_unlock(struct rtentry *rt)
3597 {
3598 if (rte_debug & RTD_DEBUG)
3599 rte_unlock_debug((struct rtentry_dbg *)rt);
3600 lck_mtx_unlock(&rt->rt_lock);
3601
3602 }
3603
3604 static inline void
3605 rte_lock_debug(struct rtentry_dbg *rte)
3606 {
3607 uint32_t idx;
3608
3609 RT_LOCK_ASSERT_HELD((struct rtentry *)rte);
3610 idx = atomic_add_32_ov(&rte->rtd_lock_cnt, 1) % CTRACE_HIST_SIZE;
3611 if (rte_debug & RTD_TRACE)
3612 ctrace_record(&rte->rtd_lock[idx]);
3613 }
3614
3615 static inline void
3616 rte_unlock_debug(struct rtentry_dbg *rte)
3617 {
3618 uint32_t idx;
3619
3620 RT_LOCK_ASSERT_HELD((struct rtentry *)rte);
3621 idx = atomic_add_32_ov(&rte->rtd_unlock_cnt, 1) % CTRACE_HIST_SIZE;
3622 if (rte_debug & RTD_TRACE)
3623 ctrace_record(&rte->rtd_unlock[idx]);
3624 }
3625
3626 static struct rtentry *
3627 rte_alloc(void)
3628 {
3629 if (rte_debug & RTD_DEBUG)
3630 return (rte_alloc_debug());
3631
3632 return ((struct rtentry *)zalloc(rte_zone));
3633 }
3634
3635 static void
3636 rte_free(struct rtentry *p)
3637 {
3638 if (rte_debug & RTD_DEBUG) {
3639 rte_free_debug(p);
3640 return;
3641 }
3642
3643 if (p->rt_refcnt != 0) {
3644 panic("rte_free: rte=%p refcnt=%d non-zero\n", p, p->rt_refcnt);
3645 /* NOTREACHED */
3646 }
3647
3648 zfree(rte_zone, p);
3649 }
3650
3651 static void
3652 rte_if_ref(struct ifnet *ifp, int cnt)
3653 {
3654 struct kev_msg ev_msg;
3655 struct net_event_data ev_data;
3656 uint32_t old;
3657
3658 /* Force cnt to 1 increment/decrement */
3659 if (cnt < -1 || cnt > 1) {
3660 panic("%s: invalid count argument (%d)", __func__, cnt);
3661 /* NOTREACHED */
3662 }
3663 old = atomic_add_32_ov(&ifp->if_route_refcnt, cnt);
3664 if (cnt < 0 && old == 0) {
3665 panic("%s: ifp=%p negative route refcnt!", __func__, ifp);
3666 /* NOTREACHED */
3667 }
3668 /*
3669 * The following is done without first holding the ifnet lock,
3670 * for performance reasons. The relevant ifnet fields, with
3671 * the exception of the if_idle_flags, are never changed
3672 * during the lifetime of the ifnet. The if_idle_flags
3673 * may possibly be modified, so in the event that the value
3674 * is stale because IFRF_IDLE_NOTIFY was cleared, we'd end up
3675 * sending the event anyway. This is harmless as it is just
3676 * a notification to the monitoring agent in user space, and
3677 * it is expected to check via SIOCGIFGETRTREFCNT again anyway.
3678 */
3679 if ((ifp->if_idle_flags & IFRF_IDLE_NOTIFY) && cnt < 0 && old == 1) {
3680 bzero(&ev_msg, sizeof (ev_msg));
3681 bzero(&ev_data, sizeof (ev_data));
3682
3683 ev_msg.vendor_code = KEV_VENDOR_APPLE;
3684 ev_msg.kev_class = KEV_NETWORK_CLASS;
3685 ev_msg.kev_subclass = KEV_DL_SUBCLASS;
3686 ev_msg.event_code = KEV_DL_IF_IDLE_ROUTE_REFCNT;
3687
3688 strlcpy(&ev_data.if_name[0], ifp->if_name, IFNAMSIZ);
3689
3690 ev_data.if_family = ifp->if_family;
3691 ev_data.if_unit = ifp->if_unit;
3692 ev_msg.dv[0].data_length = sizeof (struct net_event_data);
3693 ev_msg.dv[0].data_ptr = &ev_data;
3694
3695 dlil_post_complete_msg(NULL, &ev_msg);
3696 }
3697 }
3698
3699 static inline struct rtentry *
3700 rte_alloc_debug(void)
3701 {
3702 struct rtentry_dbg *rte;
3703
3704 rte = ((struct rtentry_dbg *)zalloc(rte_zone));
3705 if (rte != NULL) {
3706 bzero(rte, sizeof (*rte));
3707 if (rte_debug & RTD_TRACE)
3708 ctrace_record(&rte->rtd_alloc);
3709 rte->rtd_inuse = RTD_INUSE;
3710 }
3711 return ((struct rtentry *)rte);
3712 }
3713
3714 static inline void
3715 rte_free_debug(struct rtentry *p)
3716 {
3717 struct rtentry_dbg *rte = (struct rtentry_dbg *)p;
3718
3719 if (p->rt_refcnt != 0) {
3720 panic("rte_free: rte=%p refcnt=%d\n", p, p->rt_refcnt);
3721 /* NOTREACHED */
3722 }
3723 if (rte->rtd_inuse == RTD_FREED) {
3724 panic("rte_free: double free rte=%p\n", rte);
3725 /* NOTREACHED */
3726 } else if (rte->rtd_inuse != RTD_INUSE) {
3727 panic("rte_free: corrupted rte=%p\n", rte);
3728 /* NOTREACHED */
3729 }
3730 bcopy((caddr_t)p, (caddr_t)&rte->rtd_entry_saved, sizeof (*p));
3731 /* Preserve rt_lock to help catch use-after-free cases */
3732 bzero((caddr_t)p, offsetof(struct rtentry, rt_lock));
3733
3734 rte->rtd_inuse = RTD_FREED;
3735
3736 if (rte_debug & RTD_TRACE)
3737 ctrace_record(&rte->rtd_free);
3738
3739 if (!(rte_debug & RTD_NO_FREE))
3740 zfree(rte_zone, p);
3741 }
3742
3743 void
3744 ctrace_record(ctrace_t *tr)
3745 {
3746 tr->th = current_thread();
3747 bzero(tr->pc, sizeof (tr->pc));
3748 (void) OSBacktrace(tr->pc, CTRACE_STACK_SIZE);
3749 }
3750
3751 void
3752 route_copyout(struct route *dst, const struct route *src, size_t length)
3753 {
3754 /* Copy everything (rt, srcif, flags, dst) from src */
3755 bcopy(src, dst, length);
3756
3757 /* Hold one reference for the local copy of struct route */
3758 if (dst->ro_rt != NULL)
3759 RT_ADDREF(dst->ro_rt);
3760
3761 /* Hold one reference for the local copy of struct lle */
3762 if (dst->ro_lle != NULL)
3763 LLE_ADDREF(dst->ro_lle);
3764
3765 /* Hold one reference for the local copy of struct ifaddr */
3766 if (dst->ro_srcia != NULL)
3767 IFA_ADDREF(dst->ro_srcia);
3768 }
3769
3770 void
3771 route_copyin(struct route *src, struct route *dst, size_t length)
3772 {
3773 /*
3774 * No cached route at the destination?
3775 * If none, then remove old references if present
3776 * and copy entire src route.
3777 */
3778 if (dst->ro_rt == NULL) {
3779 /*
3780 * Ditch the cached link layer reference (dst)
3781 * since we're about to take everything there is in src
3782 */
3783 if (dst->ro_lle != NULL)
3784 LLE_REMREF(dst->ro_lle);
3785 /*
3786 * Ditch the address in the cached copy (dst) since
3787 * we're about to take everything there is in src.
3788 */
3789 if (dst->ro_srcia != NULL)
3790 IFA_REMREF(dst->ro_srcia);
3791 /*
3792 * Copy everything (rt, ro_lle, srcia, flags, dst) from src; the
3793 * references to rt and/or srcia were held at the time
3794 * of storage and are kept intact.
3795 */
3796 bcopy(src, dst, length);
3797 goto done;
3798 }
3799
3800 /*
3801 * We know dst->ro_rt is not NULL here.
3802 * If the src->ro_rt is the same, update ro_lle, srcia and flags
3803 * and ditch the route in the local copy.
3804 */
3805 if (dst->ro_rt == src->ro_rt) {
3806 dst->ro_flags = src->ro_flags;
3807
3808 if (dst->ro_lle != src->ro_lle) {
3809 if (dst->ro_lle != NULL)
3810 LLE_REMREF(dst->ro_lle);
3811 dst->ro_lle = src->ro_lle;
3812 } else if (src->ro_lle != NULL) {
3813 LLE_REMREF(src->ro_lle);
3814 }
3815
3816 if (dst->ro_srcia != src->ro_srcia) {
3817 if (dst->ro_srcia != NULL)
3818 IFA_REMREF(dst->ro_srcia);
3819 dst->ro_srcia = src->ro_srcia;
3820 } else if (src->ro_srcia != NULL) {
3821 IFA_REMREF(src->ro_srcia);
3822 }
3823 rtfree(src->ro_rt);
3824 goto done;
3825 }
3826
3827 /*
3828 * If they are dst's ro_rt is not equal to src's,
3829 * and src'd rt is not NULL, then remove old references
3830 * if present and copy entire src route.
3831 */
3832 if (src->ro_rt != NULL) {
3833 rtfree(dst->ro_rt);
3834
3835 if (dst->ro_lle != NULL)
3836 LLE_REMREF(dst->ro_lle);
3837 if (dst->ro_srcia != NULL)
3838 IFA_REMREF(dst->ro_srcia);
3839 bcopy(src, dst, length);
3840 goto done;
3841 }
3842
3843 /*
3844 * Here, dst's cached route is not NULL but source's is.
3845 * Just get rid of all the other cached reference in src.
3846 */
3847 if (src->ro_srcia != NULL) {
3848 /*
3849 * Ditch src address in the local copy (src) since we're
3850 * not caching the route entry anyway (ro_rt is NULL).
3851 */
3852 IFA_REMREF(src->ro_srcia);
3853 }
3854 if (src->ro_lle != NULL) {
3855 /*
3856 * Ditch cache lle in the local copy (src) since we're
3857 * not caching the route anyway (ro_rt is NULL).
3858 */
3859 LLE_REMREF(src->ro_lle);
3860 }
3861 done:
3862 /* This function consumes the references on src */
3863 src->ro_lle = NULL;
3864 src->ro_rt = NULL;
3865 src->ro_srcia = NULL;
3866 }
3867
3868 /*
3869 * route_to_gwroute will find the gateway route for a given route.
3870 *
3871 * If the route is down, look the route up again.
3872 * If the route goes through a gateway, get the route to the gateway.
3873 * If the gateway route is down, look it up again.
3874 * If the route is set to reject, verify it hasn't expired.
3875 *
3876 * If the returned route is non-NULL, the caller is responsible for
3877 * releasing the reference and unlocking the route.
3878 */
3879 #define senderr(e) { error = (e); goto bad; }
3880 errno_t
3881 route_to_gwroute(const struct sockaddr *net_dest, struct rtentry *hint0,
3882 struct rtentry **out_route)
3883 {
3884 uint64_t timenow;
3885 struct rtentry *rt = hint0, *hint = hint0;
3886 errno_t error = 0;
3887 unsigned int ifindex;
3888 boolean_t gwroute;
3889
3890 *out_route = NULL;
3891
3892 if (rt == NULL)
3893 return (0);
3894
3895 /*
3896 * Next hop determination. Because we may involve the gateway route
3897 * in addition to the original route, locking is rather complicated.
3898 * The general concept is that regardless of whether the route points
3899 * to the original route or to the gateway route, this routine takes
3900 * an extra reference on such a route. This extra reference will be
3901 * released at the end.
3902 *
3903 * Care must be taken to ensure that the "hint0" route never gets freed
3904 * via rtfree(), since the caller may have stored it inside a struct
3905 * route with a reference held for that placeholder.
3906 */
3907 RT_LOCK_SPIN(rt);
3908 ifindex = rt->rt_ifp->if_index;
3909 RT_ADDREF_LOCKED(rt);
3910 if (!(rt->rt_flags & RTF_UP)) {
3911 RT_REMREF_LOCKED(rt);
3912 RT_UNLOCK(rt);
3913 /* route is down, find a new one */
3914 hint = rt = rtalloc1_scoped((struct sockaddr *)
3915 (size_t)net_dest, 1, 0, ifindex);
3916 if (hint != NULL) {
3917 RT_LOCK_SPIN(rt);
3918 ifindex = rt->rt_ifp->if_index;
3919 } else {
3920 senderr(EHOSTUNREACH);
3921 }
3922 }
3923
3924 /*
3925 * We have a reference to "rt" by now; it will either
3926 * be released or freed at the end of this routine.
3927 */
3928 RT_LOCK_ASSERT_HELD(rt);
3929 if ((gwroute = (rt->rt_flags & RTF_GATEWAY))) {
3930 struct rtentry *gwrt = rt->rt_gwroute;
3931 struct sockaddr_storage ss;
3932 struct sockaddr *gw = (struct sockaddr *)&ss;
3933
3934 VERIFY(rt == hint);
3935 RT_ADDREF_LOCKED(hint);
3936
3937 /* If there's no gateway rt, look it up */
3938 if (gwrt == NULL) {
3939 bcopy(rt->rt_gateway, gw, MIN(sizeof (ss),
3940 rt->rt_gateway->sa_len));
3941 RT_UNLOCK(rt);
3942 goto lookup;
3943 }
3944 /* Become a regular mutex */
3945 RT_CONVERT_LOCK(rt);
3946
3947 /*
3948 * Take gwrt's lock while holding route's lock;
3949 * this is okay since gwrt never points back
3950 * to "rt", so no lock ordering issues.
3951 */
3952 RT_LOCK_SPIN(gwrt);
3953 if (!(gwrt->rt_flags & RTF_UP)) {
3954 rt->rt_gwroute = NULL;
3955 RT_UNLOCK(gwrt);
3956 bcopy(rt->rt_gateway, gw, MIN(sizeof (ss),
3957 rt->rt_gateway->sa_len));
3958 RT_UNLOCK(rt);
3959 rtfree(gwrt);
3960 lookup:
3961 lck_mtx_lock(rnh_lock);
3962 gwrt = rtalloc1_scoped_locked(gw, 1, 0, ifindex);
3963
3964 RT_LOCK(rt);
3965 /*
3966 * Bail out if the route is down, no route
3967 * to gateway, circular route, or if the
3968 * gateway portion of "rt" has changed.
3969 */
3970 if (!(rt->rt_flags & RTF_UP) || gwrt == NULL ||
3971 gwrt == rt || !equal(gw, rt->rt_gateway)) {
3972 if (gwrt == rt) {
3973 RT_REMREF_LOCKED(gwrt);
3974 gwrt = NULL;
3975 }
3976 VERIFY(rt == hint);
3977 RT_REMREF_LOCKED(hint);
3978 hint = NULL;
3979 RT_UNLOCK(rt);
3980 if (gwrt != NULL)
3981 rtfree_locked(gwrt);
3982 lck_mtx_unlock(rnh_lock);
3983 senderr(EHOSTUNREACH);
3984 }
3985 VERIFY(gwrt != NULL);
3986 /*
3987 * Set gateway route; callee adds ref to gwrt;
3988 * gwrt has an extra ref from rtalloc1() for
3989 * this routine.
3990 */
3991 rt_set_gwroute(rt, rt_key(rt), gwrt);
3992 VERIFY(rt == hint);
3993 RT_REMREF_LOCKED(rt); /* hint still holds a refcnt */
3994 RT_UNLOCK(rt);
3995 lck_mtx_unlock(rnh_lock);
3996 rt = gwrt;
3997 } else {
3998 RT_ADDREF_LOCKED(gwrt);
3999 RT_UNLOCK(gwrt);
4000 VERIFY(rt == hint);
4001 RT_REMREF_LOCKED(rt); /* hint still holds a refcnt */
4002 RT_UNLOCK(rt);
4003 rt = gwrt;
4004 }
4005 VERIFY(rt == gwrt && rt != hint);
4006
4007 /*
4008 * This is an opportunity to revalidate the parent route's
4009 * rt_gwroute, in case it now points to a dead route entry.
4010 * Parent route won't go away since the clone (hint) holds
4011 * a reference to it. rt == gwrt.
4012 */
4013 RT_LOCK_SPIN(hint);
4014 if ((hint->rt_flags & (RTF_WASCLONED | RTF_UP)) ==
4015 (RTF_WASCLONED | RTF_UP)) {
4016 struct rtentry *prt = hint->rt_parent;
4017 VERIFY(prt != NULL);
4018
4019 RT_CONVERT_LOCK(hint);
4020 RT_ADDREF(prt);
4021 RT_UNLOCK(hint);
4022 rt_revalidate_gwroute(prt, rt);
4023 RT_REMREF(prt);
4024 } else {
4025 RT_UNLOCK(hint);
4026 }
4027
4028 /* Clean up "hint" now; see notes above regarding hint0 */
4029 if (hint == hint0)
4030 RT_REMREF(hint);
4031 else
4032 rtfree(hint);
4033 hint = NULL;
4034
4035 /* rt == gwrt; if it is now down, give up */
4036 RT_LOCK_SPIN(rt);
4037 if (!(rt->rt_flags & RTF_UP)) {
4038 RT_UNLOCK(rt);
4039 senderr(EHOSTUNREACH);
4040 }
4041 }
4042
4043 if (rt->rt_flags & RTF_REJECT) {
4044 VERIFY(rt->rt_expire == 0 || rt->rt_rmx.rmx_expire != 0);
4045 VERIFY(rt->rt_expire != 0 || rt->rt_rmx.rmx_expire == 0);
4046 timenow = net_uptime();
4047 if (rt->rt_expire == 0 || timenow < rt->rt_expire) {
4048 RT_UNLOCK(rt);
4049 senderr(!gwroute ? EHOSTDOWN : EHOSTUNREACH);
4050 }
4051 }
4052
4053 /* Become a regular mutex */
4054 RT_CONVERT_LOCK(rt);
4055
4056 /* Caller is responsible for cleaning up "rt" */
4057 *out_route = rt;
4058 return (0);
4059
4060 bad:
4061 /* Clean up route (either it is "rt" or "gwrt") */
4062 if (rt != NULL) {
4063 RT_LOCK_SPIN(rt);
4064 if (rt == hint0) {
4065 RT_REMREF_LOCKED(rt);
4066 RT_UNLOCK(rt);
4067 } else {
4068 RT_UNLOCK(rt);
4069 rtfree(rt);
4070 }
4071 }
4072 return (error);
4073 }
4074 #undef senderr
4075
4076 void
4077 rt_revalidate_gwroute(struct rtentry *rt, struct rtentry *gwrt)
4078 {
4079 VERIFY(gwrt != NULL);
4080
4081 RT_LOCK_SPIN(rt);
4082 if ((rt->rt_flags & (RTF_GATEWAY | RTF_UP)) == (RTF_GATEWAY | RTF_UP) &&
4083 rt->rt_ifp == gwrt->rt_ifp && rt->rt_gateway->sa_family ==
4084 rt_key(gwrt)->sa_family && (rt->rt_gwroute == NULL ||
4085 !(rt->rt_gwroute->rt_flags & RTF_UP))) {
4086 boolean_t isequal;
4087 VERIFY(rt->rt_flags & (RTF_CLONING | RTF_PRCLONING));
4088
4089 if (rt->rt_gateway->sa_family == AF_INET ||
4090 rt->rt_gateway->sa_family == AF_INET6) {
4091 struct sockaddr_storage key_ss, gw_ss;
4092 /*
4093 * We need to compare rt_key and rt_gateway; create
4094 * local copies to get rid of any ifscope association.
4095 */
4096 (void) sa_copy(rt_key(gwrt), &key_ss, NULL);
4097 (void) sa_copy(rt->rt_gateway, &gw_ss, NULL);
4098
4099 isequal = equal(SA(&key_ss), SA(&gw_ss));
4100 } else {
4101 isequal = equal(rt_key(gwrt), rt->rt_gateway);
4102 }
4103
4104 /* If they are the same, update gwrt */
4105 if (isequal) {
4106 RT_UNLOCK(rt);
4107 lck_mtx_lock(rnh_lock);
4108 RT_LOCK(rt);
4109 rt_set_gwroute(rt, rt_key(rt), gwrt);
4110 RT_UNLOCK(rt);
4111 lck_mtx_unlock(rnh_lock);
4112 } else {
4113 RT_UNLOCK(rt);
4114 }
4115 } else {
4116 RT_UNLOCK(rt);
4117 }
4118 }
4119
4120 static void
4121 rt_str4(struct rtentry *rt, char *ds, uint32_t dslen, char *gs, uint32_t gslen)
4122 {
4123 VERIFY(rt_key(rt)->sa_family == AF_INET);
4124
4125 if (ds != NULL) {
4126 (void) inet_ntop(AF_INET,
4127 &SIN(rt_key(rt))->sin_addr.s_addr, ds, dslen);
4128 if (dslen >= MAX_SCOPE_ADDR_STR_LEN &&
4129 SINIFSCOPE(rt_key(rt))->sin_scope_id != IFSCOPE_NONE) {
4130 char scpstr[16];
4131
4132 snprintf(scpstr, sizeof(scpstr), "@%u",
4133 SINIFSCOPE(rt_key(rt))->sin_scope_id);
4134
4135 strlcat(ds, scpstr, dslen);
4136 }
4137 }
4138
4139 if (gs != NULL) {
4140 if (rt->rt_flags & RTF_GATEWAY) {
4141 (void) inet_ntop(AF_INET,
4142 &SIN(rt->rt_gateway)->sin_addr.s_addr, gs, gslen);
4143 } else if (rt->rt_ifp != NULL) {
4144 snprintf(gs, gslen, "link#%u", rt->rt_ifp->if_unit);
4145 } else {
4146 snprintf(gs, gslen, "%s", "link");
4147 }
4148 }
4149 }
4150
4151 #if INET6
4152 static void
4153 rt_str6(struct rtentry *rt, char *ds, uint32_t dslen, char *gs, uint32_t gslen)
4154 {
4155 VERIFY(rt_key(rt)->sa_family == AF_INET6);
4156
4157 if (ds != NULL) {
4158 (void) inet_ntop(AF_INET6,
4159 &SIN6(rt_key(rt))->sin6_addr, ds, dslen);
4160 if (dslen >= MAX_SCOPE_ADDR_STR_LEN &&
4161 SIN6IFSCOPE(rt_key(rt))->sin6_scope_id != IFSCOPE_NONE) {
4162 char scpstr[16];
4163
4164 snprintf(scpstr, sizeof(scpstr), "@%u",
4165 SIN6IFSCOPE(rt_key(rt))->sin6_scope_id);
4166
4167 strlcat(ds, scpstr, dslen);
4168 }
4169 }
4170
4171 if (gs != NULL) {
4172 if (rt->rt_flags & RTF_GATEWAY) {
4173 (void) inet_ntop(AF_INET6,
4174 &SIN6(rt->rt_gateway)->sin6_addr, gs, gslen);
4175 } else if (rt->rt_ifp != NULL) {
4176 snprintf(gs, gslen, "link#%u", rt->rt_ifp->if_unit);
4177 } else {
4178 snprintf(gs, gslen, "%s", "link");
4179 }
4180 }
4181 }
4182 #endif /* INET6 */
4183
4184
4185 void
4186 rt_str(struct rtentry *rt, char *ds, uint32_t dslen, char *gs, uint32_t gslen)
4187 {
4188 switch (rt_key(rt)->sa_family) {
4189 case AF_INET:
4190 rt_str4(rt, ds, dslen, gs, gslen);
4191 break;
4192 #if INET6
4193 case AF_INET6:
4194 rt_str6(rt, ds, dslen, gs, gslen);
4195 break;
4196 #endif /* INET6 */
4197 default:
4198 if (ds != NULL)
4199 bzero(ds, dslen);
4200 if (gs != NULL)
4201 bzero(gs, gslen);
4202 break;
4203 }
4204 }
4205
4206 void route_event_init(struct route_event *p_route_ev, struct rtentry *rt,
4207 struct rtentry *gwrt, int route_ev_code)
4208 {
4209 VERIFY(p_route_ev != NULL);
4210 bzero(p_route_ev, sizeof(*p_route_ev));
4211
4212 p_route_ev->rt = rt;
4213 p_route_ev->gwrt = gwrt;
4214 p_route_ev->route_event_code = route_ev_code;
4215 }
4216
4217 static void
4218 route_event_callback(void *arg)
4219 {
4220 struct route_event *p_rt_ev = (struct route_event *)arg;
4221 struct rtentry *rt = p_rt_ev->rt;
4222 eventhandler_tag evtag = p_rt_ev->evtag;
4223 int route_ev_code = p_rt_ev->route_event_code;
4224
4225 if (route_ev_code == ROUTE_EVHDLR_DEREGISTER) {
4226 VERIFY(evtag != NULL);
4227 EVENTHANDLER_DEREGISTER(&rt->rt_evhdlr_ctxt, route_event,
4228 evtag);
4229 rtfree(rt);
4230 return;
4231 }
4232
4233 EVENTHANDLER_INVOKE(&rt->rt_evhdlr_ctxt, route_event, rt_key(rt),
4234 route_ev_code, (struct sockaddr *)&p_rt_ev->rt_addr,
4235 rt->rt_flags);
4236
4237 /* The code enqueuing the route event held a reference */
4238 rtfree(rt);
4239 /* XXX No reference is taken on gwrt */
4240 }
4241
4242 int
4243 route_event_walktree(struct radix_node *rn, void *arg)
4244 {
4245 struct route_event *p_route_ev = (struct route_event *)arg;
4246 struct rtentry *rt = (struct rtentry *)rn;
4247 struct rtentry *gwrt = p_route_ev->rt;
4248
4249 LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
4250
4251 RT_LOCK(rt);
4252
4253 /* Return if the entry is pending cleanup */
4254 if (rt->rt_flags & RTPRF_OURS) {
4255 RT_UNLOCK(rt);
4256 return (0);
4257 }
4258
4259 /* Return if it is not an indirect route */
4260 if (!(rt->rt_flags & RTF_GATEWAY)) {
4261 RT_UNLOCK(rt);
4262 return (0);
4263 }
4264
4265 if (rt->rt_gwroute != gwrt) {
4266 RT_UNLOCK(rt);
4267 return (0);
4268 }
4269
4270 route_event_enqueue_nwk_wq_entry(rt, gwrt, p_route_ev->route_event_code,
4271 NULL, TRUE);
4272 RT_UNLOCK(rt);
4273
4274 return (0);
4275 }
4276
4277 struct route_event_nwk_wq_entry
4278 {
4279 struct nwk_wq_entry nwk_wqe;
4280 struct route_event rt_ev_arg;
4281 };
4282
4283 void
4284 route_event_enqueue_nwk_wq_entry(struct rtentry *rt, struct rtentry *gwrt,
4285 uint32_t route_event_code, eventhandler_tag evtag, boolean_t rt_locked)
4286 {
4287 struct route_event_nwk_wq_entry *p_rt_ev = NULL;
4288 struct sockaddr *p_gw_saddr = NULL;
4289
4290 MALLOC(p_rt_ev, struct route_event_nwk_wq_entry *,
4291 sizeof(struct route_event_nwk_wq_entry),
4292 M_NWKWQ, M_WAITOK | M_ZERO);
4293
4294 /*
4295 * If the intent is to de-register, don't take
4296 * reference, route event registration already takes
4297 * a reference on route.
4298 */
4299 if (route_event_code != ROUTE_EVHDLR_DEREGISTER) {
4300 /* The reference is released by route_event_callback */
4301 if (rt_locked)
4302 RT_ADDREF_LOCKED(rt);
4303 else
4304 RT_ADDREF(rt);
4305 }
4306
4307 p_rt_ev->rt_ev_arg.rt = rt;
4308 p_rt_ev->rt_ev_arg.gwrt = gwrt;
4309 p_rt_ev->rt_ev_arg.evtag = evtag;
4310
4311 if (gwrt != NULL)
4312 p_gw_saddr = gwrt->rt_gateway;
4313 else
4314 p_gw_saddr = rt->rt_gateway;
4315
4316 VERIFY(p_gw_saddr->sa_len <= sizeof(p_rt_ev->rt_ev_arg.rt_addr));
4317 bcopy(p_gw_saddr, &(p_rt_ev->rt_ev_arg.rt_addr), p_gw_saddr->sa_len);
4318
4319 p_rt_ev->rt_ev_arg.route_event_code = route_event_code;
4320 p_rt_ev->nwk_wqe.func = route_event_callback;
4321 p_rt_ev->nwk_wqe.is_arg_managed = TRUE;
4322 p_rt_ev->nwk_wqe.arg = &p_rt_ev->rt_ev_arg;
4323 nwk_wq_enqueue((struct nwk_wq_entry*)p_rt_ev);
4324 }
4325
4326 const char *
4327 route_event2str(int route_event)
4328 {
4329 const char *route_event_str = "ROUTE_EVENT_UNKNOWN";
4330 switch (route_event) {
4331 case ROUTE_STATUS_UPDATE:
4332 route_event_str = "ROUTE_STATUS_UPDATE";
4333 break;
4334 case ROUTE_ENTRY_REFRESH:
4335 route_event_str = "ROUTE_ENTRY_REFRESH";
4336 break;
4337 case ROUTE_ENTRY_DELETED:
4338 route_event_str = "ROUTE_ENTRY_DELETED";
4339 break;
4340 case ROUTE_LLENTRY_RESOLVED:
4341 route_event_str = "ROUTE_LLENTRY_RESOLVED";
4342 break;
4343 case ROUTE_LLENTRY_UNREACH:
4344 route_event_str = "ROUTE_LLENTRY_UNREACH";
4345 break;
4346 case ROUTE_LLENTRY_CHANGED:
4347 route_event_str = "ROUTE_LLENTRY_CHANGED";
4348 break;
4349 case ROUTE_LLENTRY_STALE:
4350 route_event_str = "ROUTE_LLENTRY_STALE";
4351 break;
4352 case ROUTE_LLENTRY_TIMEDOUT:
4353 route_event_str = "ROUTE_LLENTRY_TIMEDOUT";
4354 break;
4355 case ROUTE_LLENTRY_DELETED:
4356 route_event_str = "ROUTE_LLENTRY_DELETED";
4357 break;
4358 case ROUTE_LLENTRY_EXPIRED:
4359 route_event_str = "ROUTE_LLENTRY_EXPIRED";
4360 break;
4361 case ROUTE_LLENTRY_PROBED:
4362 route_event_str = "ROUTE_LLENTRY_PROBED";
4363 break;
4364 case ROUTE_EVHDLR_DEREGISTER:
4365 route_event_str = "ROUTE_EVHDLR_DEREGISTER";
4366 break;
4367 default:
4368 /* Init'd to ROUTE_EVENT_UNKNOWN */
4369 break;
4370 }
4371 return route_event_str;
4372 }
4373
4374 int
4375 route_op_entitlement_check(struct socket *so,
4376 kauth_cred_t cred,
4377 int route_op_type,
4378 boolean_t allow_root)
4379 {
4380 if (so != NULL) {
4381 if (route_op_type == ROUTE_OP_READ) {
4382 /*
4383 * If needed we can later extend this for more
4384 * granular entitlements and return a bit set of
4385 * allowed accesses.
4386 */
4387 if (soopt_cred_check(so, PRIV_NET_RESTRICTED_ROUTE_NC_READ,
4388 allow_root) == 0)
4389 return (0);
4390 else
4391 return (-1);
4392 }
4393 } else if (cred != NULL) {
4394 uid_t uid = kauth_cred_getuid(cred);
4395
4396 /* uid is 0 for root */
4397 if (uid != 0 || !allow_root) {
4398 if (route_op_type == ROUTE_OP_READ) {
4399 if (priv_check_cred(cred,
4400 PRIV_NET_RESTRICTED_ROUTE_NC_READ, 0) == 0)
4401 return (0);
4402 else
4403 return (-1);
4404 }
4405 }
4406 }
4407 return (-1);
4408 }