2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
60 * processor.h: Processor and processor-related definitions.
63 #ifndef _KERN_PROCESSOR_H_
64 #define _KERN_PROCESSOR_H_
66 #include <mach/boolean.h>
67 #include <mach/kern_return.h>
68 #include <kern/kern_types.h>
70 #include <sys/cdefs.h>
72 #ifdef MACH_KERNEL_PRIVATE
74 #include <mach/mach_types.h>
76 #include <kern/cpu_number.h>
78 #include <kern/simple_lock.h>
79 #include <kern/locks.h>
80 #include <kern/percpu.h>
81 #include <kern/queue.h>
82 #include <kern/sched.h>
83 #include <kern/sched_urgency.h>
84 #include <kern/timer.h>
85 #include <mach/sfi_class.h>
86 #include <kern/sched_clutch.h>
87 #include <kern/timer_call.h>
88 #include <kern/assert.h>
89 #include <machine/limits.h>
92 * Processor state is accessed by locking the scheduling lock
93 * for the assigned processor set.
95 * -------------------- SHUTDOWN
98 * OFF_LINE ---> START ---> RUNNING ---> IDLE ---> DISPATCHING
99 * \_________________^ ^ ^______/ /
100 * \__________________/
102 * Most of these state transitions are externally driven as a
103 * a directive (for instance telling an IDLE processor to start
104 * coming out of the idle state to run a thread). However these
105 * are typically paired with a handshake by the processor itself
106 * to indicate that it has completed a transition of indeterminate
107 * length (for example, the DISPATCHING->RUNNING or START->RUNNING
108 * transitions must occur on the processor itself).
110 * The boot processor has some special cases, and skips the START state,
111 * since it has already bootstrapped and is ready to context switch threads.
113 * When a processor is in DISPATCHING or RUNNING state, the current_pri,
114 * current_thmode, and deadline fields should be set, so that other
115 * processors can evaluate if it is an appropriate candidate for preemption.
117 #if defined(CONFIG_SCHED_DEFERRED_AST)
119 * -------------------- SHUTDOWN
122 * OFF_LINE ---> START ---> RUNNING ---> IDLE ---> DISPATCHING
123 * \_________________^ ^ ^______/ ^_____ / /
124 * \__________________/
126 * A DISPATCHING processor may be put back into IDLE, if another
127 * processor determines that the target processor will have nothing to do
128 * upon reaching the RUNNING state. This is racy, but if the target
129 * responds and becomes RUNNING, it will not break the processor state
132 * This change allows us to cancel an outstanding signal/AST on a processor
133 * (if such an operation is supported through hardware or software), and
134 * push the processor back into the IDLE state as a power optimization.
139 PROCESSOR_OFF_LINE
= 0, /* Not available */
140 PROCESSOR_SHUTDOWN
= 1, /* Going off-line */
141 PROCESSOR_START
= 2, /* Being started */
142 PROCESSOR_UNUSED
= 3, /* Formerly Inactive (unavailable) */
143 PROCESSOR_IDLE
= 4, /* Idle (available) */
144 PROCESSOR_DISPATCHING
= 5, /* Dispatching (idle -> active) */
145 PROCESSOR_RUNNING
= 6, /* Normal execution */
146 PROCESSOR_STATE_LEN
= (PROCESSOR_RUNNING
+ 1)
155 } pset_cluster_type_t
;
160 SCHED_PERFCTL_POLICY_DEFAULT
, /* static policy: set at boot */
161 SCHED_PERFCTL_POLICY_FOLLOW_GROUP
, /* dynamic policy: perfctl_class follows thread group across amp clusters */
162 SCHED_PERFCTL_POLICY_RESTRICT_E
, /* dynamic policy: limits perfctl_class to amp e cluster */
163 } sched_perfctl_class_policy_t
;
165 extern _Atomic sched_perfctl_class_policy_t sched_perfctl_policy_util
;
166 extern _Atomic sched_perfctl_class_policy_t sched_perfctl_policy_bg
;
170 typedef bitmap_t cpumap_t
;
175 * pset_execution_time_t
177 * The pset_execution_time_t type is used to maintain the average
178 * execution time of threads on a pset. Since the avg. execution time is
179 * updated from contexts where the pset lock is not held, it uses a
180 * double-wide RMW loop to update these values atomically.
184 uint64_t pset_avg_thread_execution_time
;
185 uint64_t pset_execution_time_last_update
;
187 unsigned __int128 pset_execution_time_packed
;
188 } pset_execution_time_t
;
190 #endif /* __arm64__ */
192 struct processor_set
{
194 int online_processor_count
;
195 int cpu_set_low
, cpu_set_hi
;
199 uint64_t load_average
;
200 uint64_t pset_load_average
[TH_BUCKET_SCHED_MAX
];
201 uint64_t pset_load_last_update
;
202 cpumap_t cpu_bitmask
;
203 cpumap_t recommended_bitmask
;
204 cpumap_t cpu_state_map
[PROCESSOR_STATE_LEN
];
205 cpumap_t primary_map
;
206 cpumap_t realtime_map
;
207 cpumap_t cpu_running_foreign
;
208 sched_bucket_t cpu_running_buckets
[MAX_CPUS
];
210 #define SCHED_PSET_TLOCK (1)
211 #if defined(SCHED_PSET_TLOCK)
212 /* TODO: reorder struct for temporal cache locality */
213 __attribute__((aligned(128))) lck_ticket_t sched_lock
;
214 #else /* SCHED_PSET_TLOCK*/
215 __attribute__((aligned(128))) lck_spin_t sched_lock
; /* lock for above */
216 #endif /* SCHED_PSET_TLOCK*/
218 #if defined(CONFIG_SCHED_TRADITIONAL) || defined(CONFIG_SCHED_MULTIQ)
219 struct run_queue pset_runq
; /* runq for this processor set */
221 struct rt_queue rt_runq
; /* realtime runq for this processor set */
222 #if CONFIG_SCHED_CLUTCH
223 struct sched_clutch_root pset_clutch_root
; /* clutch hierarchy root */
224 #endif /* CONFIG_SCHED_CLUTCH */
226 #if defined(CONFIG_SCHED_TRADITIONAL)
227 int pset_runq_bound_count
;
228 /* # of threads in runq bound to any processor in pset */
231 /* CPUs that have been sent an unacknowledged remote AST for scheduling purposes */
232 cpumap_t pending_AST_URGENT_cpu_mask
;
233 cpumap_t pending_AST_PREEMPT_cpu_mask
;
234 #if defined(CONFIG_SCHED_DEFERRED_AST)
236 * A separate mask, for ASTs that we may be able to cancel. This is dependent on
237 * some level of support for requesting an AST on a processor, and then quashing
238 * that request later.
240 * The purpose of this field (and the associated codepaths) is to infer when we
241 * no longer need a processor that is DISPATCHING to come up, and to prevent it
242 * from coming out of IDLE if possible. This should serve to decrease the number
243 * of spurious ASTs in the system, and let processors spend longer periods in
246 cpumap_t pending_deferred_AST_cpu_mask
;
248 cpumap_t pending_spill_cpu_mask
;
250 struct ipc_port
* pset_self
; /* port for operations */
251 struct ipc_port
* pset_name_self
; /* port for information */
253 processor_set_t pset_list
; /* chain of associated psets */
255 uint32_t pset_cluster_id
;
258 * Currently the scheduler uses a mix of pset_cluster_type_t & cluster_type_t
259 * for recommendations etc. It might be useful to unify these as a single type.
261 pset_cluster_type_t pset_cluster_type
;
262 cluster_type_t pset_type
;
264 #if CONFIG_SCHED_EDGE
265 bitmap_t foreign_psets
[BITMAP_LEN(MAX_PSETS
)];
266 sched_clutch_edge sched_edges
[MAX_PSETS
];
267 pset_execution_time_t pset_execution_time
[TH_BUCKET_SCHED_MAX
];
268 #endif /* CONFIG_SCHED_EDGE */
269 bool is_SMT
; /* pset contains SMT processors */
272 extern struct processor_set pset0
;
274 typedef bitmap_t pset_map_t
;
277 processor_set_t psets
; /* list of associated psets */
279 pset_node_t nodes
; /* list of associated subnodes */
280 pset_node_t node_list
; /* chain of associated nodes */
284 pset_map_t pset_map
; /* map of associated psets */
285 _Atomic pset_map_t pset_idle_map
; /* psets with at least one IDLE CPU */
286 _Atomic pset_map_t pset_idle_primary_map
; /* psets with at least one IDLE primary CPU */
287 _Atomic pset_map_t pset_non_rt_map
; /* psets with at least one available CPU not running a realtime thread */
288 _Atomic pset_map_t pset_non_rt_primary_map
;/* psets with at least one available primary CPU not running a realtime thread */
291 extern struct pset_node pset_node0
;
293 extern queue_head_t tasks
, threads
, corpse_tasks
;
294 extern int tasks_count
, terminated_tasks_count
, threads_count
;
295 decl_lck_mtx_data(extern, tasks_threads_lock
);
296 decl_lck_mtx_data(extern, tasks_corpse_lock
);
299 * The terminated tasks queue should only be inspected elsewhere by stackshot.
301 extern queue_head_t terminated_tasks
;
304 processor_state_t state
; /* See above */
307 bool current_is_NO_SMT
; /* cached TH_SFLAG_NO_SMT of current thread */
308 bool current_is_bound
; /* current thread is bound to this processor */
309 struct thread
*active_thread
; /* thread running on processor */
310 struct thread
*idle_thread
; /* this processor's idle thread. */
311 struct thread
*startup_thread
;
313 processor_set_t processor_set
; /* assigned set */
316 * XXX All current_* fields should be grouped together, as they're
317 * updated at the same time.
319 int current_pri
; /* priority of current thread */
320 sfi_class_id_t current_sfi_class
; /* SFI class of current thread */
321 perfcontrol_class_t current_perfctl_class
; /* Perfcontrol class for current thread */
323 * The cluster type recommended for the current thread.
325 pset_cluster_type_t current_recommended_pset_type
;
326 thread_urgency_t current_urgency
; /* cached urgency of current thread */
328 #if CONFIG_SCHED_TRADITIONAL
329 int runq_bound_count
; /* # of threads bound to this processor */
330 #endif /* CONFIG_SCHED_TRADITIONAL */
332 #if CONFIG_THREAD_GROUPS
333 struct thread_group
*current_thread_group
; /* thread_group of current thread */
335 int starting_pri
; /* priority of current thread as it was when scheduled */
336 int cpu_id
; /* platform numeric id */
338 uint64_t quantum_end
; /* time when current quantum ends */
339 uint64_t last_dispatch
; /* time of last dispatch */
342 uint64_t kperf_last_sample_time
; /* time of last kperf sample */
345 uint64_t deadline
; /* for next realtime thread */
346 bool first_timeslice
; /* has the quantum expired since context switch */
348 bool processor_offlined
; /* has the processor been explicitly processor_offline'ed */
349 bool must_idle
; /* Needs to be forced idle as next selected thread is allowed on this processor */
351 bool running_timers_active
; /* whether the running timers should fire */
352 struct timer_call running_timers
[RUNNING_TIMER_MAX
];
354 #if CONFIG_SCHED_TRADITIONAL || CONFIG_SCHED_MULTIQ
355 struct run_queue runq
; /* runq for this processor */
356 #endif /* CONFIG_SCHED_TRADITIONAL || CONFIG_SCHED_MULTIQ */
358 #if CONFIG_SCHED_GRRR
359 struct grrr_run_queue grrr_runq
; /* Group Ratio Round-Robin runq */
360 #endif /* CONFIG_SCHED_GRRR */
363 * Pointer to primary processor for secondary SMT processors, or a
364 * pointer to ourselves for primaries or non-SMT.
366 processor_t processor_primary
;
367 processor_t processor_secondary
;
368 struct ipc_port
*processor_self
; /* port for operations */
370 processor_t processor_list
; /* all existing processors */
372 /* Processor state statistics */
373 timer_data_t idle_state
;
374 timer_data_t system_state
;
375 timer_data_t user_state
;
377 timer_t current_state
; /* points to processor's idle, system, or user state timer */
379 /* Thread execution timers */
380 timer_t thread_timer
; /* points to current thread's user or system timer */
381 timer_t kernel_timer
; /* points to current thread's system_timer */
383 uint64_t timer_call_ttd
; /* current timer call time-to-deadline */
386 extern processor_t processor_list
;
387 decl_simple_lock_data(extern, processor_list_lock
);
390 * Maximum number of CPUs supported by the scheduler. bits.h bitmap macros
391 * need to be used to support greater than 64.
393 #define MAX_SCHED_CPUS 64
394 extern processor_t processor_array
[MAX_SCHED_CPUS
]; /* array indexed by cpuid */
395 extern processor_set_t pset_array
[MAX_PSETS
]; /* array indexed by pset_id */
397 extern uint32_t processor_avail_count
;
398 extern uint32_t processor_avail_count_user
;
399 extern uint32_t primary_processor_avail_count
;
400 extern uint32_t primary_processor_avail_count_user
;
402 #define master_processor PERCPU_GET_MASTER(processor)
403 PERCPU_DECL(struct processor
, processor
);
405 extern processor_t
current_processor(void);
407 /* Lock macros, always acquired and released with interrupts disabled (splsched()) */
409 extern lck_grp_t pset_lck_grp
;
411 #if defined(SCHED_PSET_TLOCK)
412 #define pset_lock_init(p) lck_ticket_init(&(p)->sched_lock, &pset_lck_grp)
413 #define pset_lock(p) lck_ticket_lock(&(p)->sched_lock, &pset_lck_grp)
414 #define pset_unlock(p) lck_ticket_unlock(&(p)->sched_lock)
415 #define pset_assert_locked(p) lck_ticket_assert_owned(&(p)->sched_lock)
416 #else /* SCHED_PSET_TLOCK*/
417 #define pset_lock_init(p) lck_spin_init(&(p)->sched_lock, &pset_lck_grp, NULL)
418 #define pset_lock(p) lck_spin_lock_grp(&(p)->sched_lock, &pset_lck_grp)
419 #define pset_unlock(p) lck_spin_unlock(&(p)->sched_lock)
420 #define pset_assert_locked(p) LCK_SPIN_ASSERT(&(p)->sched_lock, LCK_ASSERT_OWNED)
421 #endif /*!SCHED_PSET_TLOCK*/
423 extern void processor_bootstrap(void);
425 extern void processor_init(
426 processor_t processor
,
428 processor_set_t processor_set
);
430 extern void processor_set_primary(
431 processor_t processor
,
432 processor_t primary
);
434 extern kern_return_t
processor_shutdown(
435 processor_t processor
);
437 extern kern_return_t
processor_start_from_user(
438 processor_t processor
);
439 extern kern_return_t
processor_exit_from_user(
440 processor_t processor
);
442 extern kern_return_t
sched_processor_enable(
443 processor_t processor
,
446 extern void processor_queue_shutdown(
447 processor_t processor
);
449 extern void processor_queue_shutdown(
450 processor_t processor
);
452 extern processor_set_t
processor_pset(
453 processor_t processor
);
455 extern pset_node_t
pset_node_root(void);
457 extern processor_set_t
pset_create(
460 extern void pset_init(
461 processor_set_t pset
,
464 extern processor_set_t
pset_find(
466 processor_set_t default_pset
);
469 extern kern_return_t
processor_info_count(
470 processor_flavor_t flavor
,
471 mach_msg_type_number_t
*count
);
473 #define pset_deallocate(x)
474 #define pset_reference(x)
476 extern void machine_run_count(
479 extern processor_t
machine_choose_processor(
480 processor_set_t pset
,
481 processor_t processor
);
483 #define next_pset(p) (((p)->pset_list != PROCESSOR_SET_NULL)? (p)->pset_list: (p)->node->psets)
485 #define PSET_THING_TASK 0
486 #define PSET_THING_THREAD 1
488 extern pset_cluster_type_t
recommended_pset_type(
490 #if CONFIG_THREAD_GROUPS
491 extern pset_cluster_type_t
thread_group_pset_recommendation(
492 struct thread_group
*tg
,
493 cluster_type_t recommendation
);
494 #endif /* CONFIG_THREAD_GROUPS */
497 pset_is_recommended(processor_set_t pset
)
499 return (pset
->recommended_bitmask
& pset
->cpu_bitmask
) != 0;
502 extern void processor_state_update_idle(
503 processor_t processor
);
505 extern void processor_state_update_from_thread(
506 processor_t processor
,
509 extern void processor_state_update_explicit(
510 processor_t processor
,
512 sfi_class_id_t sfi_class
,
513 pset_cluster_type_t pset_type
,
514 perfcontrol_class_t perfctl_class
,
515 thread_urgency_t urgency
,
516 sched_bucket_t bucket
);
518 #define PSET_LOAD_NUMERATOR_SHIFT 16
519 #define PSET_LOAD_FRACTIONAL_SHIFT 4
521 #if CONFIG_SCHED_EDGE
523 extern cluster_type_t
pset_type_for_id(uint32_t cluster_id
);
526 * The Edge scheduler uses average scheduling latency as the metric for making
527 * thread migration decisions. One component of avg scheduling latency is the load
528 * average on the cluster.
530 * Load Average Fixed Point Arithmetic
532 * The load average is maintained as a 24.8 fixed point arithmetic value for precision.
533 * When multiplied by the average execution time, it needs to be rounded up (based on
534 * the most significant bit of the fractional part) for better accuracy. After rounding
535 * up, the whole number part of the value is used as the actual load value for
536 * migrate/steal decisions.
538 #define SCHED_PSET_LOAD_EWMA_FRACTION_BITS 8
539 #define SCHED_PSET_LOAD_EWMA_ROUND_BIT (1 << (SCHED_PSET_LOAD_EWMA_FRACTION_BITS - 1))
540 #define SCHED_PSET_LOAD_EWMA_FRACTION_MASK ((1 << SCHED_PSET_LOAD_EWMA_FRACTION_BITS) - 1)
543 sched_get_pset_load_average(processor_set_t pset
, sched_bucket_t sched_bucket
)
545 return (int)(((pset
->pset_load_average
[sched_bucket
] + SCHED_PSET_LOAD_EWMA_ROUND_BIT
) >> SCHED_PSET_LOAD_EWMA_FRACTION_BITS
) *
546 pset
->pset_execution_time
[sched_bucket
].pset_avg_thread_execution_time
);
549 #else /* CONFIG_SCHED_EDGE */
551 sched_get_pset_load_average(processor_set_t pset
, __unused sched_bucket_t sched_bucket
)
553 return (int)pset
->load_average
>> (PSET_LOAD_NUMERATOR_SHIFT
- PSET_LOAD_FRACTIONAL_SHIFT
);
555 #endif /* CONFIG_SCHED_EDGE */
557 extern void sched_update_pset_load_average(processor_set_t pset
, uint64_t curtime
);
558 extern void sched_update_pset_avg_execution_time(processor_set_t pset
, uint64_t delta
, uint64_t curtime
, sched_bucket_t sched_bucket
);
561 pset_update_processor_state(processor_set_t pset
, processor_t processor
, uint new_state
)
563 pset_assert_locked(pset
);
565 uint old_state
= processor
->state
;
566 uint cpuid
= (uint
)processor
->cpu_id
;
568 assert(processor
->processor_set
== pset
);
569 assert(bit_test(pset
->cpu_bitmask
, cpuid
));
571 assert(old_state
< PROCESSOR_STATE_LEN
);
572 assert(new_state
< PROCESSOR_STATE_LEN
);
574 processor
->state
= new_state
;
576 bit_clear(pset
->cpu_state_map
[old_state
], cpuid
);
577 bit_set(pset
->cpu_state_map
[new_state
], cpuid
);
579 if ((old_state
== PROCESSOR_RUNNING
) || (new_state
== PROCESSOR_RUNNING
)) {
580 sched_update_pset_load_average(pset
, 0);
581 if (new_state
== PROCESSOR_RUNNING
) {
582 assert(processor
== current_processor());
585 if ((old_state
== PROCESSOR_IDLE
) || (new_state
== PROCESSOR_IDLE
)) {
586 if (new_state
== PROCESSOR_IDLE
) {
587 bit_clear(pset
->realtime_map
, cpuid
);
590 pset_node_t node
= pset
->node
;
592 if (bit_count(node
->pset_map
) == 1) {
593 /* Node has only a single pset, so skip node pset map updates */
597 if (new_state
== PROCESSOR_IDLE
) {
598 if (processor
->processor_primary
== processor
) {
599 if (!bit_test(atomic_load(&node
->pset_non_rt_primary_map
), pset
->pset_id
)) {
600 atomic_bit_set(&node
->pset_non_rt_primary_map
, pset
->pset_id
, memory_order_relaxed
);
602 if (!bit_test(atomic_load(&node
->pset_idle_primary_map
), pset
->pset_id
)) {
603 atomic_bit_set(&node
->pset_idle_primary_map
, pset
->pset_id
, memory_order_relaxed
);
606 if (!bit_test(atomic_load(&node
->pset_non_rt_map
), pset
->pset_id
)) {
607 atomic_bit_set(&node
->pset_non_rt_map
, pset
->pset_id
, memory_order_relaxed
);
609 if (!bit_test(atomic_load(&node
->pset_idle_map
), pset
->pset_id
)) {
610 atomic_bit_set(&node
->pset_idle_map
, pset
->pset_id
, memory_order_relaxed
);
613 cpumap_t idle_map
= pset
->cpu_state_map
[PROCESSOR_IDLE
];
615 /* No more IDLE CPUs */
616 if (bit_test(atomic_load(&node
->pset_idle_map
), pset
->pset_id
)) {
617 atomic_bit_clear(&node
->pset_idle_map
, pset
->pset_id
, memory_order_relaxed
);
620 if (processor
->processor_primary
== processor
) {
621 idle_map
&= pset
->primary_map
;
623 /* No more IDLE primary CPUs */
624 if (bit_test(atomic_load(&node
->pset_idle_primary_map
), pset
->pset_id
)) {
625 atomic_bit_clear(&node
->pset_idle_primary_map
, pset
->pset_id
, memory_order_relaxed
);
633 #else /* MACH_KERNEL_PRIVATE */
637 extern void pset_deallocate(
638 processor_set_t pset
);
640 extern void pset_reference(
641 processor_set_t pset
);
645 #endif /* MACH_KERNEL_PRIVATE */
647 #ifdef KERNEL_PRIVATE
649 extern unsigned int processor_count
;
650 extern processor_t
cpu_to_processor(int cpu
);
652 extern kern_return_t
enable_smt_processors(bool enable
);
656 #endif /* KERNEL_PRIVATE */
658 #endif /* _KERN_PROCESSOR_H_ */