]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/ip_input.c
6953044bd753bbe4bd4a05bde07d85da5e84ad20
[apple/xnu.git] / bsd / netinet / ip_input.c
1 /*
2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1982, 1986, 1988, 1993
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
61 * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.25 2001/08/29 21:41:37 jesper Exp $
62 */
63 /*
64 * NOTICE: This file was modified by SPARTA, Inc. in 2007 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
67 * Version 2.0.
68 */
69
70 #define _IP_VHL
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/mbuf.h>
75 #include <sys/malloc.h>
76 #include <sys/domain.h>
77 #include <sys/protosw.h>
78 #include <sys/socket.h>
79 #include <sys/time.h>
80 #include <sys/kernel.h>
81 #include <sys/syslog.h>
82 #include <sys/sysctl.h>
83 #include <sys/mcache.h>
84 #include <mach/mach_time.h>
85
86 #include <machine/endian.h>
87
88 #include <kern/queue.h>
89 #include <kern/locks.h>
90
91 #include <pexpert/pexpert.h>
92
93 #include <net/if.h>
94 #include <net/if_var.h>
95 #include <net/if_dl.h>
96 #include <net/route.h>
97 #include <net/kpi_protocol.h>
98 #include <net/ntstat.h>
99
100 #include <netinet/in.h>
101 #include <netinet/in_systm.h>
102 #include <netinet/in_var.h>
103 #include <netinet/in_arp.h>
104 #include <netinet/ip.h>
105 #include <netinet/in_pcb.h>
106 #include <netinet/ip_var.h>
107 #include <netinet/ip_icmp.h>
108 #include <sys/socketvar.h>
109
110 #include <netinet/ip_fw.h>
111 #include <netinet/ip_divert.h>
112
113 #include <netinet/kpi_ipfilter_var.h>
114
115 /* needed for AUTOCONFIGURING: */
116 #include <netinet/udp.h>
117 #include <netinet/udp_var.h>
118 #include <netinet/bootp.h>
119 #include <mach/sdt.h>
120
121 #if CONFIG_MACF_NET
122 #include <security/mac_framework.h>
123 #endif
124
125 #include <sys/kdebug.h>
126 #include <libkern/OSAtomic.h>
127
128 #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIP, 0)
129 #define DBG_LAYER_END NETDBG_CODE(DBG_NETIP, 2)
130 #define DBG_FNC_IP_INPUT NETDBG_CODE(DBG_NETIP, (2 << 8))
131
132
133 #if IPSEC
134 #include <netinet6/ipsec.h>
135 #include <netkey/key.h>
136 #endif
137
138 #if DUMMYNET
139 #include <netinet/ip_dummynet.h>
140 #endif
141
142 #if PF
143 #include <net/pfvar.h>
144 #endif /* PF */
145
146 #include <netinet/lro_ext.h>
147
148 #if IPSEC
149 extern int ipsec_bypass;
150 extern lck_mtx_t *sadb_mutex;
151
152 lck_grp_t *sadb_stat_mutex_grp;
153 lck_grp_attr_t *sadb_stat_mutex_grp_attr;
154 lck_attr_t *sadb_stat_mutex_attr;
155 decl_lck_mtx_data(, sadb_stat_mutex_data);
156 lck_mtx_t *sadb_stat_mutex = &sadb_stat_mutex_data;
157
158 #endif
159
160 int rsvp_on = 0;
161 static int ip_rsvp_on;
162 struct socket *ip_rsvpd;
163
164 static int sysctl_ipforwarding SYSCTL_HANDLER_ARGS;
165
166 int ipforwarding = 0;
167 SYSCTL_PROC(_net_inet_ip, IPCTL_FORWARDING, forwarding,
168 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &ipforwarding, 0,
169 sysctl_ipforwarding, "I", "Enable IP forwarding between interfaces");
170
171 static int ipsendredirects = 1; /* XXX */
172 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW | CTLFLAG_LOCKED,
173 &ipsendredirects, 0, "Enable sending IP redirects");
174
175 int ip_defttl = IPDEFTTL;
176 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW | CTLFLAG_LOCKED,
177 &ip_defttl, 0, "Maximum TTL on IP packets");
178
179 static int ip_dosourceroute = 0;
180 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW | CTLFLAG_LOCKED,
181 &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
182
183 static int ip_acceptsourceroute = 0;
184 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
185 CTLFLAG_RW | CTLFLAG_LOCKED, &ip_acceptsourceroute, 0,
186 "Enable accepting source routed IP packets");
187
188 static int ip_keepfaith = 0;
189 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RD | CTLFLAG_LOCKED,
190 &ip_keepfaith, 0, "");
191
192 static int nipq = 0; /* total # of reass queues */
193 static int maxnipq;
194 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW | CTLFLAG_LOCKED,
195 &maxnipq, 0,
196 "Maximum number of IPv4 fragment reassembly queue entries");
197
198 static int maxfragsperpacket;
199 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW | CTLFLAG_LOCKED,
200 &maxfragsperpacket, 0,
201 "Maximum number of IPv4 fragments allowed per packet");
202
203 static int maxfrags;
204 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfrags, CTLFLAG_RW | CTLFLAG_LOCKED,
205 &maxfrags, 0, "Maximum number of IPv4 fragments allowed");
206
207 static int currentfrags = 0;
208
209 int ip_doscopedroute = 1;
210 SYSCTL_INT(_net_inet_ip, OID_AUTO, scopedroute, CTLFLAG_RD | CTLFLAG_LOCKED,
211 &ip_doscopedroute, 0, "Enable IPv4 scoped routing");
212
213 int ip_restrictrecvif = 1;
214 SYSCTL_INT(_net_inet_ip, OID_AUTO, restrictrecvif, CTLFLAG_RW | CTLFLAG_LOCKED,
215 &ip_restrictrecvif, 0, "Enable inbound interface restrictions");
216
217 /*
218 * XXX - Setting ip_checkinterface mostly implements the receive side of
219 * the Strong ES model described in RFC 1122, but since the routing table
220 * and transmit implementation do not implement the Strong ES model,
221 * setting this to 1 results in an odd hybrid.
222 *
223 * XXX - ip_checkinterface currently must be disabled if you use ipnat
224 * to translate the destination address to another local interface.
225 *
226 * XXX - ip_checkinterface must be disabled if you add IP aliases
227 * to the loopback interface instead of the interface where the
228 * packets for those addresses are received.
229 */
230 static int ip_checkinterface = 0;
231 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW | CTLFLAG_LOCKED,
232 &ip_checkinterface, 0, "Verify packet arrives on correct interface");
233
234 #if DIAGNOSTIC
235 static int ipprintfs = 0;
236 #endif
237
238 extern int in_proto_count;
239 extern struct domain inetdomain;
240 extern struct protosw inetsw[];
241 struct protosw *ip_protox[IPPROTO_MAX];
242 static int ipqmaxlen = IFQ_MAXLEN;
243
244 static lck_grp_attr_t *in_ifaddr_rwlock_grp_attr;
245 static lck_grp_t *in_ifaddr_rwlock_grp;
246 static lck_attr_t *in_ifaddr_rwlock_attr;
247 decl_lck_rw_data(, in_ifaddr_rwlock_data);
248 lck_rw_t *in_ifaddr_rwlock = &in_ifaddr_rwlock_data;
249
250 /* Protected by in_ifaddr_rwlock */
251 struct in_ifaddrhead in_ifaddrhead; /* first inet address */
252 struct in_ifaddrhashhead *in_ifaddrhashtbl; /* inet addr hash table */
253
254 #define INADDR_NHASH 61
255 static u_int32_t inaddr_nhash; /* hash table size */
256 static u_int32_t inaddr_hashp; /* next largest prime */
257
258 struct ifqueue ipintrq;
259 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW | CTLFLAG_LOCKED,
260 &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
261 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD | CTLFLAG_LOCKED,
262 &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
263
264 struct ipstat ipstat;
265 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RD | CTLFLAG_LOCKED,
266 &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
267
268 /* Packet reassembly stuff */
269 #define IPREASS_NHASH_LOG2 6
270 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
271 #define IPREASS_HMASK (IPREASS_NHASH - 1)
272 #define IPREASS_HASH(x,y) \
273 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
274
275 static struct ipq ipq[IPREASS_NHASH];
276 static TAILQ_HEAD(ipq_list, ipq) ipq_list =
277 TAILQ_HEAD_INITIALIZER(ipq_list);
278 const int ipintrq_present = 1;
279 lck_mtx_t *ip_mutex;
280 lck_attr_t *ip_mutex_attr;
281 lck_grp_t *ip_mutex_grp;
282 lck_grp_attr_t *ip_mutex_grp_attr;
283 lck_mtx_t *inet_domain_mutex;
284
285 #if IPCTL_DEFMTU
286 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW | CTLFLAG_LOCKED,
287 &ip_mtu, 0, "Default MTU");
288 #endif
289
290 #if IPSTEALTH
291 static int ipstealth = 0;
292 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW | CTLFLAG_LOCKED,
293 &ipstealth, 0, "");
294 #endif
295
296
297 /* Firewall hooks */
298 #if IPFIREWALL
299 ip_fw_chk_t *ip_fw_chk_ptr;
300 int fw_enable = 1;
301 int fw_bypass = 1;
302 int fw_one_pass = 0;
303 #endif /* IPFIREWALL */
304
305 #if DUMMYNET
306 ip_dn_io_t *ip_dn_io_ptr;
307 #endif
308
309 SYSCTL_NODE(_net_inet_ip, OID_AUTO, linklocal, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "link local");
310
311 struct ip_linklocal_stat ip_linklocal_stat;
312 SYSCTL_STRUCT(_net_inet_ip_linklocal, OID_AUTO, stat, CTLFLAG_RD | CTLFLAG_LOCKED,
313 &ip_linklocal_stat, ip_linklocal_stat,
314 "Number of link local packets with TTL less than 255");
315
316 SYSCTL_NODE(_net_inet_ip_linklocal, OID_AUTO, in, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "link local input");
317
318 int ip_linklocal_in_allowbadttl = 1;
319 SYSCTL_INT(_net_inet_ip_linklocal_in, OID_AUTO, allowbadttl, CTLFLAG_RW | CTLFLAG_LOCKED,
320 &ip_linklocal_in_allowbadttl, 0,
321 "Allow incoming link local packets with TTL less than 255");
322
323
324 /*
325 * We need to save the IP options in case a protocol wants to respond
326 * to an incoming packet over the same route if the packet got here
327 * using IP source routing. This allows connection establishment and
328 * maintenance when the remote end is on a network that is not known
329 * to us.
330 */
331 static int ip_nhops = 0;
332 static struct ip_srcrt {
333 struct in_addr dst; /* final destination */
334 char nop; /* one NOP to align */
335 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
336 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
337 } ip_srcrt;
338
339 static void in_ifaddrhashtbl_init(void);
340 static void save_rte(u_char *, struct in_addr);
341 static int ip_dooptions(struct mbuf *, int, struct sockaddr_in *);
342 static void ip_forward(struct mbuf *, int, struct sockaddr_in *);
343 static void ip_freef(struct ipq *);
344 #if IPDIVERT
345 #ifdef IPDIVERT_44
346 static struct mbuf *ip_reass(struct mbuf *,
347 struct ipq *, struct ipq *, u_int32_t *, u_int16_t *);
348 #else
349 static struct mbuf *ip_reass(struct mbuf *,
350 struct ipq *, struct ipq *, u_int16_t *, u_int16_t *);
351 #endif
352 #else
353 static struct mbuf *ip_reass(struct mbuf *, struct ipq *, struct ipq *);
354 #endif
355 static void ip_fwd_route_copyout(struct ifnet *, struct route *);
356 static void ip_fwd_route_copyin(struct ifnet *, struct route *);
357 void ipintr(void);
358 void in_dinit(void);
359 static inline u_short ip_cksum(struct mbuf *, int);
360
361 #if RANDOM_IP_ID
362 extern u_short ip_id;
363
364 int ip_use_randomid = 1;
365 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW | CTLFLAG_LOCKED,
366 &ip_use_randomid, 0, "Randomize IP packets IDs");
367 #endif
368
369 /*
370 * On platforms which require strict alignment (currently for anything but
371 * i386 or x86_64), check if the IP header pointer is 32-bit aligned; if not,
372 * copy the contents of the mbuf chain into a new chain, and free the original
373 * one. Create some head room in the first mbuf of the new chain, in case
374 * it's needed later on.
375 */
376 #if defined(__i386__) || defined(__x86_64__)
377 #define IP_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do { } while (0)
378 #else /* !__i386__ && !__x86_64__ */
379 #define IP_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do { \
380 if (!IP_HDR_ALIGNED_P(mtod(_m, caddr_t))) { \
381 struct mbuf *_n; \
382 struct ifnet *__ifp = (_ifp); \
383 atomic_add_64(&(__ifp)->if_alignerrs, 1); \
384 if (((_m)->m_flags & M_PKTHDR) && \
385 (_m)->m_pkthdr.header != NULL) \
386 (_m)->m_pkthdr.header = NULL; \
387 _n = m_defrag_offset(_m, max_linkhdr, M_NOWAIT); \
388 if (_n == NULL) { \
389 atomic_add_32(&ipstat.ips_toosmall, 1); \
390 m_freem(_m); \
391 (_m) = NULL; \
392 _action \
393 } else { \
394 VERIFY(_n != (_m)); \
395 (_m) = _n; \
396 } \
397 } \
398 } while (0)
399 #endif /* !__i386__ && !__x86_64__ */
400
401 /*
402 * IP initialization: fill in IP protocol switch table.
403 * All protocols not implemented in kernel go to raw IP protocol handler.
404 */
405 void
406 ip_init(void)
407 {
408 struct protosw *pr;
409 int i;
410 static int ip_initialized = 0;
411
412 if (!ip_initialized)
413 {
414 PE_parse_boot_argn("net.inet.ip.scopedroute",
415 &ip_doscopedroute, sizeof (ip_doscopedroute));
416
417 in_ifaddr_init();
418
419 in_ifaddr_rwlock_grp_attr = lck_grp_attr_alloc_init();
420 in_ifaddr_rwlock_grp = lck_grp_alloc_init("in_ifaddr_rwlock",
421 in_ifaddr_rwlock_grp_attr);
422 in_ifaddr_rwlock_attr = lck_attr_alloc_init();
423 lck_rw_init(in_ifaddr_rwlock, in_ifaddr_rwlock_grp,
424 in_ifaddr_rwlock_attr);
425
426 TAILQ_INIT(&in_ifaddrhead);
427 in_ifaddrhashtbl_init();
428
429 ip_moptions_init();
430
431 pr = pffindproto_locked(PF_INET, IPPROTO_RAW, SOCK_RAW);
432 if (pr == 0)
433 panic("ip_init");
434 for (i = 0; i < IPPROTO_MAX; i++)
435 ip_protox[i] = pr;
436 for (pr = inetdomain.dom_protosw; pr; pr = pr->pr_next) {
437 if (pr->pr_domain == NULL)
438 continue; /* If uninitialized, skip */
439 if (pr->pr_domain->dom_family == PF_INET &&
440 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
441 ip_protox[pr->pr_protocol] = pr;
442 }
443 for (i = 0; i < IPREASS_NHASH; i++)
444 ipq[i].next = ipq[i].prev = &ipq[i];
445
446 maxnipq = nmbclusters / 32;
447 maxfrags = maxnipq * 2;
448 maxfragsperpacket = 128; /* enough for 64k in 512 byte fragments */
449
450 #if RANDOM_IP_ID
451 {
452 struct timeval timenow;
453 getmicrotime(&timenow);
454 ip_id = timenow.tv_sec & 0xffff;
455 }
456 #endif
457 ipintrq.ifq_maxlen = ipqmaxlen;
458
459 ipf_init();
460
461 ip_mutex_grp_attr = lck_grp_attr_alloc_init();
462
463 ip_mutex_grp = lck_grp_alloc_init("ip", ip_mutex_grp_attr);
464
465 ip_mutex_attr = lck_attr_alloc_init();
466
467 if ((ip_mutex = lck_mtx_alloc_init(ip_mutex_grp, ip_mutex_attr)) == NULL) {
468 printf("ip_init: can't alloc ip_mutex\n");
469 return;
470 }
471
472 #if IPSEC
473
474 sadb_stat_mutex_grp_attr = lck_grp_attr_alloc_init();
475 sadb_stat_mutex_grp = lck_grp_alloc_init("sadb_stat", sadb_stat_mutex_grp_attr);
476 sadb_stat_mutex_attr = lck_attr_alloc_init();
477
478 lck_mtx_init(sadb_stat_mutex, sadb_stat_mutex_grp, sadb_stat_mutex_attr);
479
480 #endif
481 arp_init();
482
483 ip_initialized = 1;
484 }
485 }
486
487 /*
488 * Initialize IPv4 source address hash table.
489 */
490 static void
491 in_ifaddrhashtbl_init(void)
492 {
493 int i, k, p;
494
495 if (in_ifaddrhashtbl != NULL)
496 return;
497
498 PE_parse_boot_argn("inaddr_nhash", &inaddr_nhash, sizeof (inaddr_nhash));
499 if (inaddr_nhash == 0)
500 inaddr_nhash = INADDR_NHASH;
501
502 MALLOC(in_ifaddrhashtbl, struct in_ifaddrhashhead *,
503 inaddr_nhash * sizeof (*in_ifaddrhashtbl),
504 M_IFADDR, M_WAITOK | M_ZERO);
505 if (in_ifaddrhashtbl == NULL)
506 panic("in_ifaddrhashtbl_init allocation failed");
507
508 /*
509 * Generate the next largest prime greater than inaddr_nhash.
510 */
511 k = (inaddr_nhash % 2 == 0) ? inaddr_nhash + 1 : inaddr_nhash + 2;
512 for (;;) {
513 p = 1;
514 for (i = 3; i * i <= k; i += 2) {
515 if (k % i == 0)
516 p = 0;
517 }
518 if (p == 1)
519 break;
520 k += 2;
521 }
522 inaddr_hashp = k;
523 }
524
525 u_int32_t
526 inaddr_hashval(u_int32_t key)
527 {
528 /*
529 * The hash index is the computed prime times the key modulo
530 * the hash size, as documented in "Introduction to Algorithms"
531 * (Cormen, Leiserson, Rivest).
532 */
533 if (inaddr_nhash > 1)
534 return ((key * inaddr_hashp) % inaddr_nhash);
535 else
536 return (0);
537 }
538
539 static void
540 ip_proto_input(
541 protocol_family_t __unused protocol,
542 mbuf_t packet_list)
543 {
544 mbuf_t packet;
545 int how_many = 0 ;
546
547 /* ip_input should handle a list of packets but does not yet */
548
549 for (packet = packet_list; packet; packet = packet_list) {
550 how_many++;
551 packet_list = mbuf_nextpkt(packet);
552 mbuf_setnextpkt(packet, NULL);
553 ip_input(packet);
554 }
555 }
556
557 /* Initialize the PF_INET domain, and add in the pre-defined protos */
558 void
559 in_dinit(void)
560 {
561 int i;
562 struct protosw *pr;
563 struct domain *dp;
564 static int inetdomain_initted = 0;
565
566 if (!inetdomain_initted)
567 {
568 dp = &inetdomain;
569 dp->dom_flags = DOM_REENTRANT;
570
571 for (i=0, pr = &inetsw[0]; i<in_proto_count; i++, pr++)
572 net_add_proto(pr, dp);
573 inet_domain_mutex = dp->dom_mtx;
574 inetdomain_initted = 1;
575
576 domain_proto_mtx_unlock(TRUE);
577 proto_register_input(PF_INET, ip_proto_input, NULL, 1);
578 domain_proto_mtx_lock();
579 }
580 }
581
582 void
583 ip_proto_dispatch_in_wrapper(struct mbuf *m, int hlen, u_int8_t proto)
584 {
585 ip_proto_dispatch_in(m, hlen, proto, 0);
586 }
587
588 __private_extern__ void
589 ip_proto_dispatch_in(struct mbuf *m, int hlen, u_int8_t proto,
590 ipfilter_t inject_ipfref)
591 {
592 struct ipfilter *filter;
593 int seen = (inject_ipfref == 0);
594 int changed_header = 0;
595 struct ip *ip;
596 void (*pr_input)(struct mbuf *, int len);
597
598 if (!TAILQ_EMPTY(&ipv4_filters)) {
599 ipf_ref();
600 TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) {
601 if (seen == 0) {
602 if ((struct ipfilter *)inject_ipfref == filter)
603 seen = 1;
604 } else if (filter->ipf_filter.ipf_input) {
605 errno_t result;
606
607 if (changed_header == 0) {
608 /*
609 * Perform IP header alignment fixup,
610 * if needed, before passing packet
611 * into filter(s).
612 */
613 IP_HDR_ALIGNMENT_FIXUP(m,
614 m->m_pkthdr.rcvif,
615 ipf_unref(); return;);
616
617 changed_header = 1;
618 ip = mtod(m, struct ip *);
619 ip->ip_len = htons(ip->ip_len + hlen);
620 ip->ip_off = htons(ip->ip_off);
621 ip->ip_sum = 0;
622 ip->ip_sum = in_cksum(m, hlen);
623 }
624 result = filter->ipf_filter.ipf_input(
625 filter->ipf_filter.cookie, (mbuf_t*)&m,
626 hlen, proto);
627 if (result == EJUSTRETURN) {
628 ipf_unref();
629 return;
630 }
631 if (result != 0) {
632 ipf_unref();
633 m_freem(m);
634 return;
635 }
636 }
637 }
638 ipf_unref();
639 }
640
641 /* Perform IP header alignment fixup (post-filters), if needed */
642 IP_HDR_ALIGNMENT_FIXUP(m, m->m_pkthdr.rcvif, return;);
643
644 /*
645 * If there isn't a specific lock for the protocol
646 * we're about to call, use the generic lock for AF_INET.
647 * otherwise let the protocol deal with its own locking
648 */
649 ip = mtod(m, struct ip *);
650
651 if (changed_header) {
652 ip->ip_len = ntohs(ip->ip_len) - hlen;
653 ip->ip_off = ntohs(ip->ip_off);
654 }
655
656 if ((pr_input = ip_protox[ip->ip_p]->pr_input) == NULL) {
657 m_freem(m);
658 } else if (!(ip_protox[ip->ip_p]->pr_flags & PR_PROTOLOCK)) {
659 lck_mtx_lock(inet_domain_mutex);
660 pr_input(m, hlen);
661 lck_mtx_unlock(inet_domain_mutex);
662 } else {
663 pr_input(m, hlen);
664 }
665 }
666
667 /*
668 * Ip input routine. Checksum and byte swap header. If fragmented
669 * try to reassemble. Process options. Pass to next level.
670 */
671 void
672 ip_input(struct mbuf *m)
673 {
674 struct ip *ip;
675 struct ipq *fp;
676 struct in_ifaddr *ia = NULL;
677 unsigned int hlen, checkif;
678 u_short sum = 0;
679 struct in_addr pkt_dst;
680 #if IPFIREWALL
681 int i;
682 u_int32_t div_info = 0; /* packet divert/tee info */
683 #endif
684 #if IPFIREWALL || DUMMYNET
685 struct ip_fw_args args;
686 struct m_tag *tag;
687 #endif
688 ipfilter_t inject_filter_ref = 0;
689
690 /* Check if the mbuf is still valid after interface filter processing */
691 MBUF_INPUT_CHECK(m, m->m_pkthdr.rcvif);
692
693 /* Perform IP header alignment fixup, if needed */
694 IP_HDR_ALIGNMENT_FIXUP(m, m->m_pkthdr.rcvif, goto bad;);
695
696 #if IPFIREWALL || DUMMYNET
697 bzero(&args, sizeof(struct ip_fw_args));
698
699 /*
700 * Don't bother searching for tag(s) if there's none.
701 */
702 if (SLIST_EMPTY(&m->m_pkthdr.tags))
703 goto ipfw_tags_done;
704
705 /* Grab info from mtags prepended to the chain */
706 #if DUMMYNET
707 if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
708 KERNEL_TAG_TYPE_DUMMYNET, NULL)) != NULL) {
709 struct dn_pkt_tag *dn_tag;
710
711 dn_tag = (struct dn_pkt_tag *)(tag+1);
712 args.fwa_ipfw_rule = dn_tag->dn_ipfw_rule;
713 args.fwa_pf_rule = dn_tag->dn_pf_rule;
714
715 m_tag_delete(m, tag);
716 }
717 #endif /* DUMMYNET */
718
719 #if IPDIVERT
720 if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
721 KERNEL_TAG_TYPE_DIVERT, NULL)) != NULL) {
722 struct divert_tag *div_tag;
723
724 div_tag = (struct divert_tag *)(tag+1);
725 args.fwa_divert_rule = div_tag->cookie;
726
727 m_tag_delete(m, tag);
728 }
729 #endif
730
731 if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
732 KERNEL_TAG_TYPE_IPFORWARD, NULL)) != NULL) {
733 struct ip_fwd_tag *ipfwd_tag;
734
735 ipfwd_tag = (struct ip_fwd_tag *)(tag+1);
736 args.fwa_next_hop = ipfwd_tag->next_hop;
737
738 m_tag_delete(m, tag);
739 }
740
741 #if DIAGNOSTIC
742 if (m == NULL || (m->m_flags & M_PKTHDR) == 0)
743 panic("ip_input no HDR");
744 #endif
745
746 #if DUMMYNET
747 if (args.fwa_ipfw_rule || args.fwa_pf_rule) { /* dummynet already filtered us */
748 ip = mtod(m, struct ip *);
749 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
750 inject_filter_ref = ipf_get_inject_filter(m);
751 #if IPFIREWALL
752 if (args.fwa_ipfw_rule)
753 goto iphack;
754 #endif /* IPFIREWALL */
755 if (args.fwa_pf_rule)
756 goto check_with_pf;
757 }
758 #endif /* DUMMYNET */
759 ipfw_tags_done:
760 #endif /* IPFIREWALL || DUMMYNET*/
761
762 /*
763 * No need to process packet twice if we've already seen it.
764 */
765 if (!SLIST_EMPTY(&m->m_pkthdr.tags))
766 inject_filter_ref = ipf_get_inject_filter(m);
767 if (inject_filter_ref != 0) {
768 ip = mtod(m, struct ip *);
769 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
770
771 DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL,
772 struct ip *, ip, struct ifnet *, m->m_pkthdr.rcvif,
773 struct ip *, ip, struct ip6_hdr *, NULL);
774
775 ip->ip_len = ntohs(ip->ip_len) - hlen;
776 ip->ip_off = ntohs(ip->ip_off);
777 ip_proto_dispatch_in(m, hlen, ip->ip_p, inject_filter_ref);
778 return;
779 }
780
781 OSAddAtomic(1, &ipstat.ips_total);
782 if (m->m_pkthdr.len < sizeof(struct ip))
783 goto tooshort;
784
785 if (m->m_len < sizeof (struct ip) &&
786 (m = m_pullup(m, sizeof (struct ip))) == 0) {
787 OSAddAtomic(1, &ipstat.ips_toosmall);
788 return;
789 }
790 ip = mtod(m, struct ip *);
791
792 KERNEL_DEBUG(DBG_LAYER_BEG, ip->ip_dst.s_addr,
793 ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len);
794
795 if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
796 OSAddAtomic(1, &ipstat.ips_badvers);
797 goto bad;
798 }
799
800 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
801 if (hlen < sizeof(struct ip)) { /* minimum header length */
802 OSAddAtomic(1, &ipstat.ips_badhlen);
803 goto bad;
804 }
805 if (hlen > m->m_len) {
806 if ((m = m_pullup(m, hlen)) == 0) {
807 OSAddAtomic(1, &ipstat.ips_badhlen);
808 return;
809 }
810 ip = mtod(m, struct ip *);
811 }
812
813 /* 127/8 must not appear on wire - RFC1122 */
814 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
815 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
816 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
817 OSAddAtomic(1, &ipstat.ips_badaddr);
818 goto bad;
819 }
820 }
821
822 /* IPv4 Link-Local Addresses as defined in <draft-ietf-zeroconf-ipv4-linklocal-05.txt> */
823 if ((IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr)) ||
824 IN_LINKLOCAL(ntohl(ip->ip_src.s_addr)))) {
825 ip_linklocal_stat.iplls_in_total++;
826 if (ip->ip_ttl != MAXTTL) {
827 OSAddAtomic(1, &ip_linklocal_stat.iplls_in_badttl);
828 /* Silently drop link local traffic with bad TTL */
829 if (!ip_linklocal_in_allowbadttl)
830 goto bad;
831 }
832 }
833
834 sum = ip_cksum(m, hlen);
835 if (sum) {
836 goto bad;
837 }
838
839 DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL,
840 struct ip *, ip, struct ifnet *, m->m_pkthdr.rcvif,
841 struct ip *, ip, struct ip6_hdr *, NULL);
842
843 /*
844 * Naively assume we can attribute inbound data to the route we would
845 * use to send to this destination. Asymetric routing breaks this
846 * assumption, but it still allows us to account for traffic from
847 * a remote node in the routing table.
848 * this has a very significant performance impact so we bypass
849 * if nstat_collect is disabled. We may also bypass if the
850 * protocol is tcp in the future because tcp will have a route that
851 * we can use to attribute the data to. That does mean we would not
852 * account for forwarded tcp traffic.
853 */
854 if (nstat_collect) {
855 struct rtentry *rt =
856 ifnet_cached_rtlookup_inet(m->m_pkthdr.rcvif, ip->ip_src);
857 if (rt != NULL) {
858 nstat_route_rx(rt, 1, m->m_pkthdr.len, 0);
859 rtfree(rt);
860 }
861 }
862
863 /*
864 * Convert fields to host representation.
865 */
866 #if BYTE_ORDER != BIG_ENDIAN
867 NTOHS(ip->ip_len);
868 #endif
869
870 if (ip->ip_len < hlen) {
871 OSAddAtomic(1, &ipstat.ips_badlen);
872 goto bad;
873 }
874
875 #if BYTE_ORDER != BIG_ENDIAN
876 NTOHS(ip->ip_off);
877 #endif
878 /*
879 * Check that the amount of data in the buffers
880 * is as at least much as the IP header would have us expect.
881 * Trim mbufs if longer than we expect.
882 * Drop packet if shorter than we expect.
883 */
884 if (m->m_pkthdr.len < ip->ip_len) {
885 tooshort:
886 OSAddAtomic(1, &ipstat.ips_tooshort);
887 goto bad;
888 }
889 if (m->m_pkthdr.len > ip->ip_len) {
890 /* Invalidate hwcksuming */
891 m->m_pkthdr.csum_flags = 0;
892 m->m_pkthdr.csum_data = 0;
893
894 if (m->m_len == m->m_pkthdr.len) {
895 m->m_len = ip->ip_len;
896 m->m_pkthdr.len = ip->ip_len;
897 } else
898 m_adj(m, ip->ip_len - m->m_pkthdr.len);
899 }
900
901
902 #if DUMMYNET
903 check_with_pf:
904 #endif
905 #if PF
906 /* Invoke inbound packet filter */
907 if (PF_IS_ENABLED) {
908 int error;
909 #if DUMMYNET
910 error = pf_af_hook(m->m_pkthdr.rcvif, NULL, &m, AF_INET, TRUE, &args);
911 #else
912 error = pf_af_hook(m->m_pkthdr.rcvif, NULL, &m, AF_INET, TRUE, NULL);
913 #endif /* DUMMYNET */
914 if (error != 0 || m == NULL) {
915 if (m != NULL) {
916 panic("%s: unexpected packet %p\n", __func__, m);
917 /* NOTREACHED */
918 }
919 /* Already freed by callee */
920 return;
921 }
922 ip = mtod(m, struct ip *);
923 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
924 }
925 #endif /* PF */
926
927 #if IPSEC
928 if (ipsec_bypass == 0 && ipsec_gethist(m, NULL))
929 goto pass;
930 #endif
931
932 #if IPFIREWALL
933 #if DUMMYNET
934 iphack:
935 #endif /* DUMMYNET */
936 /*
937 * Check if we want to allow this packet to be processed.
938 * Consider it to be bad if not.
939 */
940 if (fw_enable && IPFW_LOADED) {
941 #if IPFIREWALL_FORWARD
942 /*
943 * If we've been forwarded from the output side, then
944 * skip the firewall a second time
945 */
946 if (args.fwa_next_hop)
947 goto ours;
948 #endif /* IPFIREWALL_FORWARD */
949
950 args.fwa_m = m;
951
952 i = ip_fw_chk_ptr(&args);
953 m = args.fwa_m;
954
955 if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
956 if (m)
957 m_freem(m);
958 return;
959 }
960 ip = mtod(m, struct ip *); /* just in case m changed */
961
962 if (i == 0 && args.fwa_next_hop == NULL) { /* common case */
963 goto pass;
964 }
965 #if DUMMYNET
966 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
967 /* Send packet to the appropriate pipe */
968 ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args, DN_CLIENT_IPFW);
969 return;
970 }
971 #endif /* DUMMYNET */
972 #if IPDIVERT
973 if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
974 /* Divert or tee packet */
975 div_info = i;
976 goto ours;
977 }
978 #endif
979 #if IPFIREWALL_FORWARD
980 if (i == 0 && args.fwa_next_hop != NULL) {
981 goto pass;
982 }
983 #endif
984 /*
985 * if we get here, the packet must be dropped
986 */
987 m_freem(m);
988 return;
989 }
990 #endif /* IPFIREWALL */
991 pass:
992
993 /*
994 * Process options and, if not destined for us,
995 * ship it on. ip_dooptions returns 1 when an
996 * error was detected (causing an icmp message
997 * to be sent and the original packet to be freed).
998 */
999 ip_nhops = 0; /* for source routed packets */
1000 #if IPFIREWALL
1001 if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.fwa_next_hop)) {
1002 #else
1003 if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, NULL)) {
1004 #endif
1005 return;
1006 }
1007
1008 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
1009 * matter if it is destined to another node, or whether it is
1010 * a multicast one, RSVP wants it! and prevents it from being forwarded
1011 * anywhere else. Also checks if the rsvp daemon is running before
1012 * grabbing the packet.
1013 */
1014 if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
1015 goto ours;
1016
1017 /*
1018 * Check our list of addresses, to see if the packet is for us.
1019 * If we don't have any addresses, assume any unicast packet
1020 * we receive might be for us (and let the upper layers deal
1021 * with it).
1022 */
1023 if (TAILQ_EMPTY(&in_ifaddrhead) &&
1024 (m->m_flags & (M_MCAST|M_BCAST)) == 0)
1025 goto ours;
1026
1027 /*
1028 * Cache the destination address of the packet; this may be
1029 * changed by use of 'ipfw fwd'.
1030 */
1031 #if IPFIREWALL
1032 pkt_dst = args.fwa_next_hop == NULL ?
1033 ip->ip_dst : args.fwa_next_hop->sin_addr;
1034 #else
1035 pkt_dst = ip->ip_dst;
1036 #endif
1037
1038 /*
1039 * Enable a consistency check between the destination address
1040 * and the arrival interface for a unicast packet (the RFC 1122
1041 * strong ES model) if IP forwarding is disabled and the packet
1042 * is not locally generated and the packet is not subject to
1043 * 'ipfw fwd'.
1044 *
1045 * XXX - Checking also should be disabled if the destination
1046 * address is ipnat'ed to a different interface.
1047 *
1048 * XXX - Checking is incompatible with IP aliases added
1049 * to the loopback interface instead of the interface where
1050 * the packets are received.
1051 */
1052 checkif = ip_checkinterface && (ipforwarding == 0) &&
1053 ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0)
1054 #if IPFIREWALL
1055 && (args.fwa_next_hop == NULL);
1056 #else
1057 ;
1058 #endif
1059
1060 /*
1061 * Check for exact addresses in the hash bucket.
1062 */
1063 lck_rw_lock_shared(in_ifaddr_rwlock);
1064 TAILQ_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
1065 /*
1066 * If the address matches, verify that the packet
1067 * arrived via the correct interface if checking is
1068 * enabled.
1069 */
1070 IFA_LOCK_SPIN(&ia->ia_ifa);
1071 if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
1072 (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif)) {
1073 IFA_UNLOCK(&ia->ia_ifa);
1074 lck_rw_done(in_ifaddr_rwlock);
1075 goto ours;
1076 }
1077 IFA_UNLOCK(&ia->ia_ifa);
1078 }
1079 lck_rw_done(in_ifaddr_rwlock);
1080
1081 /*
1082 * Check for broadcast addresses.
1083 *
1084 * Only accept broadcast packets that arrive via the matching
1085 * interface. Reception of forwarded directed broadcasts would be
1086 * handled via ip_forward() and ether_frameout() with the loopback
1087 * into the stack for SIMPLEX interfaces handled by ether_frameout().
1088 */
1089 if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
1090 struct ifaddr *ifa;
1091 struct ifnet *ifp = m->m_pkthdr.rcvif;
1092 ifnet_lock_shared(ifp);
1093 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1094 IFA_LOCK_SPIN(ifa);
1095 if (ifa->ifa_addr->sa_family != AF_INET) {
1096 IFA_UNLOCK(ifa);
1097 continue;
1098 }
1099 ia = ifatoia(ifa);
1100 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
1101 pkt_dst.s_addr || ia->ia_netbroadcast.s_addr ==
1102 pkt_dst.s_addr) {
1103 IFA_UNLOCK(ifa);
1104 ifnet_lock_done(ifp);
1105 goto ours;
1106 }
1107 IFA_UNLOCK(ifa);
1108 }
1109 ifnet_lock_done(ifp);
1110 }
1111
1112 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
1113 struct in_multi *inm;
1114 struct ifnet *ifp = m->m_pkthdr.rcvif;
1115 #if MROUTING
1116 if (ip_mrouter) {
1117 /*
1118 * If we are acting as a multicast router, all
1119 * incoming multicast packets are passed to the
1120 * kernel-level multicast forwarding function.
1121 * The packet is returned (relatively) intact; if
1122 * ip_mforward() returns a non-zero value, the packet
1123 * must be discarded, else it may be accepted below.
1124 */
1125 lck_mtx_lock(ip_mutex);
1126 if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
1127 OSAddAtomic(1, &ipstat.ips_cantforward);
1128 m_freem(m);
1129 lck_mtx_unlock(ip_mutex);
1130 return;
1131 }
1132
1133 /*
1134 * The process-level routing daemon needs to receive
1135 * all multicast IGMP packets, whether or not this
1136 * host belongs to their destination groups.
1137 */
1138 if (ip->ip_p == IPPROTO_IGMP)
1139 goto ours;
1140 OSAddAtomic(1, &ipstat.ips_forward);
1141 }
1142 #endif /* MROUTING */
1143 /*
1144 * See if we belong to the destination multicast group on the
1145 * arrival interface.
1146 */
1147 in_multihead_lock_shared();
1148 IN_LOOKUP_MULTI(&ip->ip_dst, ifp, inm);
1149 in_multihead_lock_done();
1150 if (inm == NULL) {
1151 OSAddAtomic(1, &ipstat.ips_notmember);
1152 m_freem(m);
1153 return;
1154 }
1155 INM_REMREF(inm);
1156 goto ours;
1157 }
1158 if (ip->ip_dst.s_addr == (u_int32_t)INADDR_BROADCAST)
1159 goto ours;
1160 if (ip->ip_dst.s_addr == INADDR_ANY)
1161 goto ours;
1162
1163 /* Allow DHCP/BootP responses through */
1164 if (m->m_pkthdr.rcvif != NULL
1165 && (m->m_pkthdr.rcvif->if_eflags & IFEF_AUTOCONFIGURING)
1166 && hlen == sizeof(struct ip)
1167 && ip->ip_p == IPPROTO_UDP) {
1168 struct udpiphdr *ui;
1169 if (m->m_len < sizeof(struct udpiphdr)
1170 && (m = m_pullup(m, sizeof(struct udpiphdr))) == 0) {
1171 OSAddAtomic(1, &udpstat.udps_hdrops);
1172 return;
1173 }
1174 ui = mtod(m, struct udpiphdr *);
1175 if (ntohs(ui->ui_dport) == IPPORT_BOOTPC) {
1176 goto ours;
1177 }
1178 ip = mtod(m, struct ip *); /* in case it changed */
1179 }
1180
1181 /*
1182 * Not for us; forward if possible and desirable.
1183 */
1184 if (ipforwarding == 0) {
1185 OSAddAtomic(1, &ipstat.ips_cantforward);
1186 m_freem(m);
1187 } else {
1188 #if IPFIREWALL
1189 ip_forward(m, 0, args.fwa_next_hop);
1190 #else
1191 ip_forward(m, 0, NULL);
1192 #endif
1193 }
1194 return;
1195
1196 ours:
1197 /*
1198 * If offset or IP_MF are set, must reassemble.
1199 * Otherwise, nothing need be done.
1200 * (We could look in the reassembly queue to see
1201 * if the packet was previously fragmented,
1202 * but it's not worth the time; just let them time out.)
1203 */
1204 if (ip->ip_off & (IP_MF | IP_OFFMASK | IP_RF)) {
1205
1206 /* If maxnipq is 0, never accept fragments. */
1207 if (maxnipq == 0) {
1208
1209 OSAddAtomic(1, &ipstat.ips_fragments);
1210 OSAddAtomic(1, &ipstat.ips_fragdropped);
1211 goto bad;
1212 }
1213
1214 /*
1215 * If we will exceed the number of fragments in queues, timeout the
1216 * oldest fragemented packet to make space.
1217 */
1218 lck_mtx_lock(ip_mutex);
1219 if (currentfrags >= maxfrags) {
1220 fp = TAILQ_LAST(&ipq_list, ipq_list);
1221 OSAddAtomic(fp->ipq_nfrags, &ipstat.ips_fragtimeout);
1222
1223 if (ip->ip_id == fp->ipq_id &&
1224 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
1225 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
1226 ip->ip_p == fp->ipq_p) {
1227 /*
1228 * If we match the fragment queue we were going to
1229 * discard, drop this packet too.
1230 */
1231 OSAddAtomic(1, &ipstat.ips_fragdropped);
1232 ip_freef(fp);
1233 lck_mtx_unlock(ip_mutex);
1234 goto bad;
1235 }
1236
1237 ip_freef(fp);
1238 }
1239
1240 sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
1241 /*
1242 * Look for queue of fragments
1243 * of this datagram.
1244 */
1245 for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
1246 if (ip->ip_id == fp->ipq_id &&
1247 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
1248 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
1249 #if CONFIG_MACF_NET
1250 mac_ipq_label_compare(m, fp) &&
1251 #endif
1252 ip->ip_p == fp->ipq_p)
1253 goto found;
1254
1255 /*
1256 * Enforce upper bound on number of fragmented packets
1257 * for which we attempt reassembly;
1258 * If maxnipq is -1, accept all fragments without limitation.
1259 */
1260 if ((nipq > maxnipq) && (maxnipq > 0)) {
1261 /*
1262 * drop the oldest fragment before proceeding further
1263 */
1264 fp = TAILQ_LAST(&ipq_list, ipq_list);
1265 OSAddAtomic(fp->ipq_nfrags, &ipstat.ips_fragtimeout);
1266 ip_freef(fp);
1267 }
1268
1269 fp = NULL;
1270
1271 found:
1272 /*
1273 * Adjust ip_len to not reflect header,
1274 * convert offset of this to bytes.
1275 */
1276 ip->ip_len -= hlen;
1277 if (ip->ip_off & IP_MF) {
1278 /*
1279 * Make sure that fragments have a data length
1280 * that's a non-zero multiple of 8 bytes.
1281 */
1282 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
1283 OSAddAtomic(1, &ipstat.ips_toosmall);
1284 lck_mtx_unlock(ip_mutex);
1285 goto bad;
1286 }
1287 m->m_flags |= M_FRAG;
1288 } else {
1289 /* Clear the flag in case packet comes from loopback */
1290 m->m_flags &= ~M_FRAG;
1291 }
1292 ip->ip_off <<= 3;
1293
1294 /*
1295 * Attempt reassembly; if it succeeds, proceed.
1296 * ip_reass() will return a different mbuf, and update
1297 * the divert info in div_info and args.fwa_divert_rule.
1298 */
1299 OSAddAtomic(1, &ipstat.ips_fragments);
1300 m->m_pkthdr.header = ip;
1301 #if IPDIVERT
1302 m = ip_reass(m, fp, &ipq[sum],
1303 (u_int16_t *)&div_info, &args.fwa_divert_rule);
1304 #else
1305 m = ip_reass(m, fp, &ipq[sum]);
1306 #endif
1307 if (m == 0) {
1308 lck_mtx_unlock(ip_mutex);
1309 return;
1310 }
1311 OSAddAtomic(1, &ipstat.ips_reassembled);
1312 ip = mtod(m, struct ip *);
1313 /* Get the header length of the reassembled packet */
1314 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1315
1316 #if IPDIVERT
1317 /* Restore original checksum before diverting packet */
1318 if (div_info != 0) {
1319 ip->ip_len += hlen;
1320
1321 #if BYTE_ORDER != BIG_ENDIAN
1322 HTONS(ip->ip_len);
1323 HTONS(ip->ip_off);
1324 #endif
1325
1326 ip->ip_sum = 0;
1327 ip->ip_sum = in_cksum(m, hlen);
1328
1329 #if BYTE_ORDER != BIG_ENDIAN
1330 NTOHS(ip->ip_off);
1331 NTOHS(ip->ip_len);
1332 #endif
1333
1334 ip->ip_len -= hlen;
1335 }
1336 #endif
1337 lck_mtx_unlock(ip_mutex);
1338 } else
1339 ip->ip_len -= hlen;
1340
1341 #if IPDIVERT
1342 /*
1343 * Divert or tee packet to the divert protocol if required.
1344 *
1345 * If div_info is zero then cookie should be too, so we shouldn't
1346 * need to clear them here. Assume divert_packet() does so also.
1347 */
1348 if (div_info != 0) {
1349 struct mbuf *clone = NULL;
1350
1351 /* Clone packet if we're doing a 'tee' */
1352 if ((div_info & IP_FW_PORT_TEE_FLAG) != 0)
1353 clone = m_dup(m, M_DONTWAIT);
1354
1355 /* Restore packet header fields to original values */
1356 ip->ip_len += hlen;
1357
1358 #if BYTE_ORDER != BIG_ENDIAN
1359 HTONS(ip->ip_len);
1360 HTONS(ip->ip_off);
1361 #endif
1362 /* Deliver packet to divert input routine */
1363 OSAddAtomic(1, &ipstat.ips_delivered);
1364 divert_packet(m, 1, div_info & 0xffff, args.fwa_divert_rule);
1365
1366 /* If 'tee', continue with original packet */
1367 if (clone == NULL) {
1368 return;
1369 }
1370 m = clone;
1371 ip = mtod(m, struct ip *);
1372 }
1373 #endif
1374
1375 #if IPSEC
1376 /*
1377 * enforce IPsec policy checking if we are seeing last header.
1378 * note that we do not visit this with protocols with pcb layer
1379 * code - like udp/tcp/raw ip.
1380 */
1381 if (ipsec_bypass == 0 && (ip_protox[ip->ip_p]->pr_flags & PR_LASTHDR) != 0) {
1382 if (ipsec4_in_reject(m, NULL)) {
1383 IPSEC_STAT_INCREMENT(ipsecstat.in_polvio);
1384 goto bad;
1385 }
1386 }
1387 #endif
1388
1389 /*
1390 * Switch out to protocol's input routine.
1391 */
1392 OSAddAtomic(1, &ipstat.ips_delivered);
1393 {
1394 #if IPFIREWALL
1395 if (args.fwa_next_hop && ip->ip_p == IPPROTO_TCP) {
1396 /* TCP needs IPFORWARD info if available */
1397 struct m_tag *fwd_tag;
1398 struct ip_fwd_tag *ipfwd_tag;
1399
1400 fwd_tag = m_tag_create(KERNEL_MODULE_TAG_ID,
1401 KERNEL_TAG_TYPE_IPFORWARD, sizeof (*ipfwd_tag),
1402 M_NOWAIT, m);
1403 if (fwd_tag == NULL) {
1404 goto bad;
1405 }
1406
1407 ipfwd_tag = (struct ip_fwd_tag *)(fwd_tag+1);
1408 ipfwd_tag->next_hop = args.fwa_next_hop;
1409
1410 m_tag_prepend(m, fwd_tag);
1411
1412 KERNEL_DEBUG(DBG_LAYER_END, ip->ip_dst.s_addr,
1413 ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len);
1414
1415 if (sw_lro) {
1416 m = tcp_lro(m, hlen);
1417 if (m == NULL)
1418 return;
1419 }
1420 /* TCP deals with its own locking */
1421 ip_proto_dispatch_in(m, hlen, ip->ip_p, 0);
1422 } else {
1423 KERNEL_DEBUG(DBG_LAYER_END, ip->ip_dst.s_addr,
1424 ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len);
1425
1426 ip_proto_dispatch_in(m, hlen, ip->ip_p, 0);
1427 }
1428 #else
1429 if ((sw_lro) && (ip->ip_p == IPPROTO_TCP)) {
1430 m = tcp_lro(m, hlen);
1431 if (m == NULL)
1432 return;
1433 }
1434 ip_proto_dispatch_in(m, hlen, ip->ip_p, 0);
1435 #endif
1436
1437 return;
1438 }
1439 bad:
1440 KERNEL_DEBUG(DBG_LAYER_END, 0,0,0,0,0);
1441 m_freem(m);
1442 }
1443
1444 /*
1445 * Take incoming datagram fragment and try to reassemble it into
1446 * whole datagram. If a chain for reassembly of this datagram already
1447 * exists, then it is given as fp; otherwise have to make a chain.
1448 *
1449 * When IPDIVERT enabled, keep additional state with each packet that
1450 * tells us if we need to divert or tee the packet we're building.
1451 */
1452
1453 static struct mbuf *
1454 #if IPDIVERT
1455 ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where,
1456 #ifdef IPDIVERT_44
1457 u_int32_t *divinfo,
1458 #else /* IPDIVERT_44 */
1459 u_int16_t *divinfo,
1460 #endif /* IPDIVERT_44 */
1461 u_int16_t *divcookie)
1462 #else /* IPDIVERT */
1463 ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where)
1464 #endif /* IPDIVERT */
1465 {
1466 struct ip *ip = mtod(m, struct ip *);
1467 struct mbuf *p = 0, *q, *nq;
1468 struct mbuf *t;
1469 int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1470 int i, next;
1471 u_int8_t ecn, ecn0;
1472
1473 lck_mtx_assert(ip_mutex, LCK_MTX_ASSERT_OWNED);
1474 /*
1475 * Presence of header sizes in mbufs
1476 * would confuse code below.
1477 */
1478 m->m_data += hlen;
1479 m->m_len -= hlen;
1480
1481 if (m->m_pkthdr.csum_flags & CSUM_TCP_SUM16)
1482 m->m_pkthdr.csum_flags = 0;
1483 /*
1484 * If first fragment to arrive, create a reassembly queue.
1485 */
1486 if (fp == 0) {
1487 if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
1488 goto dropfrag;
1489 fp = mtod(t, struct ipq *);
1490 #if CONFIG_MACF_NET
1491 if (mac_ipq_label_init(fp, M_NOWAIT) != 0) {
1492 m_free(t);
1493 fp = NULL;
1494 goto dropfrag;
1495 }
1496 mac_ipq_label_associate(m, fp);
1497 #endif
1498 insque((void*)fp, (void*)where);
1499 nipq++;
1500 fp->ipq_nfrags = 1;
1501 fp->ipq_ttl = IPFRAGTTL;
1502 fp->ipq_p = ip->ip_p;
1503 fp->ipq_id = ip->ip_id;
1504 fp->ipq_src = ip->ip_src;
1505 fp->ipq_dst = ip->ip_dst;
1506 fp->ipq_frags = m;
1507 m->m_nextpkt = NULL;
1508 #if IPDIVERT
1509 #ifdef IPDIVERT_44
1510 fp->ipq_div_info = 0;
1511 #else
1512 fp->ipq_divert = 0;
1513 #endif
1514 fp->ipq_div_cookie = 0;
1515 #endif
1516 TAILQ_INSERT_HEAD(&ipq_list, fp, ipq_list);
1517 goto inserted;
1518 } else {
1519 fp->ipq_nfrags++;
1520 #if CONFIG_MACF_NET
1521 mac_ipq_label_update(m, fp);
1522 #endif
1523 }
1524
1525 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header))
1526
1527 /*
1528 * Handle ECN by comparing this segment with the first one;
1529 * if CE is set, do not lose CE.
1530 * drop if CE and not-ECT are mixed for the same packet.
1531 */
1532 ecn = ip->ip_tos & IPTOS_ECN_MASK;
1533 ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
1534 if (ecn == IPTOS_ECN_CE) {
1535 if (ecn0 == IPTOS_ECN_NOTECT)
1536 goto dropfrag;
1537 if (ecn0 != IPTOS_ECN_CE)
1538 GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1539 }
1540 if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1541 goto dropfrag;
1542
1543 /*
1544 * Find a segment which begins after this one does.
1545 */
1546 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1547 if (GETIP(q)->ip_off > ip->ip_off)
1548 break;
1549
1550 /*
1551 * If there is a preceding segment, it may provide some of
1552 * our data already. If so, drop the data from the incoming
1553 * segment. If it provides all of our data, drop us, otherwise
1554 * stick new segment in the proper place.
1555 *
1556 * If some of the data is dropped from the the preceding
1557 * segment, then it's checksum is invalidated.
1558 */
1559 if (p) {
1560 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1561 if (i > 0) {
1562 if (i >= ip->ip_len)
1563 goto dropfrag;
1564 m_adj(m, i);
1565 m->m_pkthdr.csum_flags = 0;
1566 ip->ip_off += i;
1567 ip->ip_len -= i;
1568 }
1569 m->m_nextpkt = p->m_nextpkt;
1570 p->m_nextpkt = m;
1571 } else {
1572 m->m_nextpkt = fp->ipq_frags;
1573 fp->ipq_frags = m;
1574 }
1575
1576 /*
1577 * While we overlap succeeding segments trim them or,
1578 * if they are completely covered, dequeue them.
1579 */
1580 for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1581 q = nq) {
1582 i = (ip->ip_off + ip->ip_len) -
1583 GETIP(q)->ip_off;
1584 if (i < GETIP(q)->ip_len) {
1585 GETIP(q)->ip_len -= i;
1586 GETIP(q)->ip_off += i;
1587 m_adj(q, i);
1588 q->m_pkthdr.csum_flags = 0;
1589 break;
1590 }
1591 nq = q->m_nextpkt;
1592 m->m_nextpkt = nq;
1593 OSAddAtomic(1, &ipstat.ips_fragdropped);
1594 fp->ipq_nfrags--;
1595 m_freem(q);
1596 }
1597
1598 inserted:
1599 currentfrags++;
1600
1601 #if IPDIVERT
1602 /*
1603 * Transfer firewall instructions to the fragment structure.
1604 * Only trust info in the fragment at offset 0.
1605 */
1606 if (ip->ip_off == 0) {
1607 #ifdef IPDIVERT_44
1608 fp->ipq_div_info = *divinfo;
1609 #else
1610 fp->ipq_divert = *divinfo;
1611 #endif
1612 fp->ipq_div_cookie = *divcookie;
1613 }
1614 *divinfo = 0;
1615 *divcookie = 0;
1616 #endif
1617
1618 /*
1619 * Check for complete reassembly and perform frag per packet
1620 * limiting.
1621 *
1622 * Frag limiting is performed here so that the nth frag has
1623 * a chance to complete the packet before we drop the packet.
1624 * As a result, n+1 frags are actually allowed per packet, but
1625 * only n will ever be stored. (n = maxfragsperpacket.)
1626 *
1627 */
1628 next = 0;
1629 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1630 if (GETIP(q)->ip_off != next) {
1631 if (fp->ipq_nfrags > maxfragsperpacket) {
1632 OSAddAtomic(fp->ipq_nfrags, &ipstat.ips_fragdropped);
1633 ip_freef(fp);
1634 }
1635 return (0);
1636 }
1637 next += GETIP(q)->ip_len;
1638 }
1639 /* Make sure the last packet didn't have the IP_MF flag */
1640 if (p->m_flags & M_FRAG) {
1641 if (fp->ipq_nfrags > maxfragsperpacket) {
1642 OSAddAtomic(fp->ipq_nfrags, &ipstat.ips_fragdropped);
1643 ip_freef(fp);
1644 }
1645 return (0);
1646 }
1647
1648 /*
1649 * Reassembly is complete. Make sure the packet is a sane size.
1650 */
1651 q = fp->ipq_frags;
1652 ip = GETIP(q);
1653 if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1654 OSAddAtomic(1, &ipstat.ips_toolong);
1655 OSAddAtomic(fp->ipq_nfrags, &ipstat.ips_fragdropped);
1656 ip_freef(fp);
1657 return (0);
1658 }
1659
1660 /*
1661 * Concatenate fragments.
1662 */
1663 m = q;
1664 t = m->m_next;
1665 m->m_next = 0;
1666 m_cat(m, t);
1667 nq = q->m_nextpkt;
1668 q->m_nextpkt = 0;
1669 for (q = nq; q != NULL; q = nq) {
1670 nq = q->m_nextpkt;
1671 q->m_nextpkt = NULL;
1672 if (q->m_pkthdr.csum_flags & CSUM_TCP_SUM16)
1673 m->m_pkthdr.csum_flags = 0;
1674 else {
1675 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1676 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1677 }
1678 m_cat(m, q);
1679 }
1680
1681 #if IPDIVERT
1682 /*
1683 * Extract firewall instructions from the fragment structure.
1684 */
1685 #ifdef IPDIVERT_44
1686 *divinfo = fp->ipq_div_info;
1687 #else
1688 *divinfo = fp->ipq_divert;
1689 #endif
1690 *divcookie = fp->ipq_div_cookie;
1691 #endif
1692
1693 #if CONFIG_MACF_NET
1694 mac_mbuf_label_associate_ipq(fp, m);
1695 mac_ipq_label_destroy(fp);
1696 #endif
1697 /*
1698 * Create header for new ip packet by
1699 * modifying header of first packet;
1700 * dequeue and discard fragment reassembly header.
1701 * Make header visible.
1702 */
1703 ip->ip_len = next;
1704 ip->ip_src = fp->ipq_src;
1705 ip->ip_dst = fp->ipq_dst;
1706 remque((void*)fp);
1707 TAILQ_REMOVE(&ipq_list, fp, ipq_list);
1708 currentfrags -= fp->ipq_nfrags;
1709 nipq--;
1710 (void) m_free(dtom(fp));
1711 m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1712 m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1713 /* some debugging cruft by sklower, below, will go away soon */
1714 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1715 int plen = 0;
1716 for (t = m; t; t = t->m_next)
1717 plen += t->m_len;
1718 m->m_pkthdr.len = plen;
1719 }
1720 return (m);
1721
1722 dropfrag:
1723 #if IPDIVERT
1724 *divinfo = 0;
1725 *divcookie = 0;
1726 #endif
1727 OSAddAtomic(1, &ipstat.ips_fragdropped);
1728 if (fp != 0)
1729 fp->ipq_nfrags--;
1730 m_freem(m);
1731 return (0);
1732
1733 #undef GETIP
1734 }
1735
1736 /*
1737 * Free a fragment reassembly header and all
1738 * associated datagrams.
1739 */
1740 static void
1741 ip_freef(struct ipq *fp)
1742 {
1743 lck_mtx_assert(ip_mutex, LCK_MTX_ASSERT_OWNED);
1744 currentfrags -= fp->ipq_nfrags;
1745 m_freem_list(fp->ipq_frags);
1746 remque((void*)fp);
1747 TAILQ_REMOVE(&ipq_list, fp, ipq_list);
1748 (void) m_free(dtom(fp));
1749 nipq--;
1750 }
1751
1752 /*
1753 * IP timer processing;
1754 * if a timer expires on a reassembly
1755 * queue, discard it.
1756 */
1757 void
1758 ip_slowtimo(void)
1759 {
1760 struct ipq *fp;
1761 int i;
1762 lck_mtx_lock(ip_mutex);
1763 for (i = 0; i < IPREASS_NHASH; i++) {
1764 fp = ipq[i].next;
1765 if (fp == 0)
1766 continue;
1767 while (fp != &ipq[i]) {
1768 --fp->ipq_ttl;
1769 fp = fp->next;
1770 if (fp->prev->ipq_ttl == 0) {
1771 OSAddAtomic(fp->ipq_nfrags, &ipstat.ips_fragtimeout);
1772 ip_freef(fp->prev);
1773 }
1774 }
1775 }
1776 /*
1777 * If we are over the maximum number of fragments
1778 * (due to the limit being lowered), drain off
1779 * enough to get down to the new limit.
1780 */
1781 if (maxnipq >= 0 && nipq > maxnipq) {
1782 for (i = 0; i < IPREASS_NHASH; i++) {
1783 while (nipq > maxnipq &&
1784 (ipq[i].next != &ipq[i])) {
1785 OSAddAtomic(ipq[i].next->ipq_nfrags, &ipstat.ips_fragdropped);
1786 ip_freef(ipq[i].next);
1787 }
1788 }
1789 }
1790 lck_mtx_unlock(ip_mutex);
1791 }
1792
1793 /*
1794 * Drain off all datagram fragments.
1795 */
1796 void
1797 ip_drain(void)
1798 {
1799 int i;
1800
1801 lck_mtx_lock(ip_mutex);
1802 for (i = 0; i < IPREASS_NHASH; i++) {
1803 while (ipq[i].next != &ipq[i]) {
1804 OSAddAtomic(ipq[i].next->ipq_nfrags, &ipstat.ips_fragdropped);
1805 ip_freef(ipq[i].next);
1806 }
1807 }
1808 lck_mtx_unlock(ip_mutex);
1809 in_rtqdrain();
1810 }
1811
1812 /*
1813 * Do option processing on a datagram,
1814 * possibly discarding it if bad options are encountered,
1815 * or forwarding it if source-routed.
1816 * The pass argument is used when operating in the IPSTEALTH
1817 * mode to tell what options to process:
1818 * [LS]SRR (pass 0) or the others (pass 1).
1819 * The reason for as many as two passes is that when doing IPSTEALTH,
1820 * non-routing options should be processed only if the packet is for us.
1821 * Returns 1 if packet has been forwarded/freed,
1822 * 0 if the packet should be processed further.
1823 */
1824 static int
1825 ip_dooptions(struct mbuf *m, __unused int pass, struct sockaddr_in *next_hop)
1826 {
1827 struct ip *ip = mtod(m, struct ip *);
1828 u_char *cp;
1829 struct ip_timestamp *ipt;
1830 struct in_ifaddr *ia;
1831 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1832 struct in_addr *sin, dst;
1833 n_time ntime;
1834 struct sockaddr_in ipaddr = {
1835 sizeof (ipaddr), AF_INET , 0 , { 0 }, { 0, } };
1836
1837 /* Expect 32-bit aligned data pointer on strict-align platforms */
1838 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
1839
1840 dst = ip->ip_dst;
1841 cp = (u_char *)(ip + 1);
1842 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1843 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1844 opt = cp[IPOPT_OPTVAL];
1845 if (opt == IPOPT_EOL)
1846 break;
1847 if (opt == IPOPT_NOP)
1848 optlen = 1;
1849 else {
1850 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1851 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1852 goto bad;
1853 }
1854 optlen = cp[IPOPT_OLEN];
1855 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1856 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1857 goto bad;
1858 }
1859 }
1860 switch (opt) {
1861
1862 default:
1863 break;
1864
1865 /*
1866 * Source routing with record.
1867 * Find interface with current destination address.
1868 * If none on this machine then drop if strictly routed,
1869 * or do nothing if loosely routed.
1870 * Record interface address and bring up next address
1871 * component. If strictly routed make sure next
1872 * address is on directly accessible net.
1873 */
1874 case IPOPT_LSRR:
1875 case IPOPT_SSRR:
1876 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1877 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1878 goto bad;
1879 }
1880 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1881 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1882 goto bad;
1883 }
1884 ipaddr.sin_addr = ip->ip_dst;
1885 ia = (struct in_ifaddr *)
1886 ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1887 if (ia == 0) {
1888 if (opt == IPOPT_SSRR) {
1889 type = ICMP_UNREACH;
1890 code = ICMP_UNREACH_SRCFAIL;
1891 goto bad;
1892 }
1893 if (!ip_dosourceroute)
1894 goto nosourcerouting;
1895 /*
1896 * Loose routing, and not at next destination
1897 * yet; nothing to do except forward.
1898 */
1899 break;
1900 }
1901 else {
1902 IFA_REMREF(&ia->ia_ifa);
1903 ia = NULL;
1904 }
1905 off--; /* 0 origin */
1906 if (off > optlen - (int)sizeof(struct in_addr)) {
1907 /*
1908 * End of source route. Should be for us.
1909 */
1910 if (!ip_acceptsourceroute)
1911 goto nosourcerouting;
1912 save_rte(cp, ip->ip_src);
1913 break;
1914 }
1915
1916 if (!ip_dosourceroute) {
1917 if (ipforwarding) {
1918 char buf[MAX_IPv4_STR_LEN];
1919 char buf2[MAX_IPv4_STR_LEN];
1920 /*
1921 * Acting as a router, so generate ICMP
1922 */
1923 nosourcerouting:
1924 log(LOG_WARNING,
1925 "attempted source route from %s to %s\n",
1926 inet_ntop(AF_INET, &ip->ip_src, buf, sizeof(buf)),
1927 inet_ntop(AF_INET, &ip->ip_dst, buf2, sizeof(buf2)));
1928 type = ICMP_UNREACH;
1929 code = ICMP_UNREACH_SRCFAIL;
1930 goto bad;
1931 } else {
1932 /*
1933 * Not acting as a router, so silently drop.
1934 */
1935 OSAddAtomic(1, &ipstat.ips_cantforward);
1936 m_freem(m);
1937 return (1);
1938 }
1939 }
1940
1941 /*
1942 * locate outgoing interface
1943 */
1944 (void)memcpy(&ipaddr.sin_addr, cp + off,
1945 sizeof(ipaddr.sin_addr));
1946
1947 if (opt == IPOPT_SSRR) {
1948 #define INA struct in_ifaddr *
1949 if ((ia = (INA)ifa_ifwithdstaddr(
1950 (struct sockaddr *)&ipaddr)) == 0) {
1951 ia = (INA)ifa_ifwithnet(
1952 (struct sockaddr *)&ipaddr);
1953 }
1954 } else {
1955 ia = ip_rtaddr(ipaddr.sin_addr);
1956 }
1957 if (ia == 0) {
1958 type = ICMP_UNREACH;
1959 code = ICMP_UNREACH_SRCFAIL;
1960 goto bad;
1961 }
1962 ip->ip_dst = ipaddr.sin_addr;
1963 IFA_LOCK(&ia->ia_ifa);
1964 (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1965 sizeof(struct in_addr));
1966 IFA_UNLOCK(&ia->ia_ifa);
1967 IFA_REMREF(&ia->ia_ifa);
1968 ia = NULL;
1969 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1970 /*
1971 * Let ip_intr's mcast routing check handle mcast pkts
1972 */
1973 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1974 break;
1975
1976 case IPOPT_RR:
1977 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1978 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1979 goto bad;
1980 }
1981 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1982 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1983 goto bad;
1984 }
1985 /*
1986 * If no space remains, ignore.
1987 */
1988 off--; /* 0 origin */
1989 if (off > optlen - (int)sizeof(struct in_addr))
1990 break;
1991 (void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1992 sizeof(ipaddr.sin_addr));
1993 /*
1994 * locate outgoing interface; if we're the destination,
1995 * use the incoming interface (should be same).
1996 */
1997 if ((ia = (INA)ifa_ifwithaddr((struct sockaddr *)
1998 &ipaddr)) == 0) {
1999 if ((ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
2000 type = ICMP_UNREACH;
2001 code = ICMP_UNREACH_HOST;
2002 goto bad;
2003 }
2004 }
2005 IFA_LOCK(&ia->ia_ifa);
2006 (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
2007 sizeof(struct in_addr));
2008 IFA_UNLOCK(&ia->ia_ifa);
2009 IFA_REMREF(&ia->ia_ifa);
2010 ia = NULL;
2011 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
2012 break;
2013
2014 case IPOPT_TS:
2015 code = cp - (u_char *)ip;
2016 ipt = (struct ip_timestamp *)(void *)cp;
2017 if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
2018 code = (u_char *)&ipt->ipt_len - (u_char *)ip;
2019 goto bad;
2020 }
2021 if (ipt->ipt_ptr < 5) {
2022 code = (u_char *)&ipt->ipt_ptr - (u_char *)ip;
2023 goto bad;
2024 }
2025 if (ipt->ipt_ptr >
2026 ipt->ipt_len - (int)sizeof(int32_t)) {
2027 if (++ipt->ipt_oflw == 0) {
2028 code = (u_char *)&ipt->ipt_ptr -
2029 (u_char *)ip;
2030 goto bad;
2031 }
2032 break;
2033 }
2034 sin = (struct in_addr *)(void *)(cp + ipt->ipt_ptr - 1);
2035 switch (ipt->ipt_flg) {
2036
2037 case IPOPT_TS_TSONLY:
2038 break;
2039
2040 case IPOPT_TS_TSANDADDR:
2041 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
2042 sizeof(struct in_addr) > ipt->ipt_len) {
2043 code = (u_char *)&ipt->ipt_ptr -
2044 (u_char *)ip;
2045 goto bad;
2046 }
2047 ipaddr.sin_addr = dst;
2048 ia = (INA)ifaof_ifpforaddr((struct sockaddr *)
2049 &ipaddr, m->m_pkthdr.rcvif);
2050 if (ia == 0)
2051 continue;
2052 IFA_LOCK(&ia->ia_ifa);
2053 (void)memcpy(sin, &IA_SIN(ia)->sin_addr,
2054 sizeof(struct in_addr));
2055 IFA_UNLOCK(&ia->ia_ifa);
2056 ipt->ipt_ptr += sizeof(struct in_addr);
2057 IFA_REMREF(&ia->ia_ifa);
2058 ia = NULL;
2059 break;
2060
2061 case IPOPT_TS_PRESPEC:
2062 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
2063 sizeof(struct in_addr) > ipt->ipt_len) {
2064 code = (u_char *)&ipt->ipt_ptr -
2065 (u_char *)ip;
2066 goto bad;
2067 }
2068 (void)memcpy(&ipaddr.sin_addr, sin,
2069 sizeof(struct in_addr));
2070 if ((ia = (struct in_ifaddr*)ifa_ifwithaddr(
2071 (struct sockaddr *)&ipaddr)) == 0)
2072 continue;
2073 IFA_REMREF(&ia->ia_ifa);
2074 ia = NULL;
2075 ipt->ipt_ptr += sizeof(struct in_addr);
2076 break;
2077
2078 default:
2079 /* XXX can't take &ipt->ipt_flg */
2080 code = (u_char *)&ipt->ipt_ptr -
2081 (u_char *)ip + 1;
2082 goto bad;
2083 }
2084 ntime = iptime();
2085 (void)memcpy(cp + ipt->ipt_ptr - 1, &ntime,
2086 sizeof(n_time));
2087 ipt->ipt_ptr += sizeof(n_time);
2088 }
2089 }
2090 if (forward && ipforwarding) {
2091 ip_forward(m, 1, next_hop);
2092 return (1);
2093 }
2094 return (0);
2095 bad:
2096 ip->ip_len -= IP_VHL_HL(ip->ip_vhl) << 2; /* XXX icmp_error adds in hdr length */
2097 icmp_error(m, type, code, 0, 0);
2098 OSAddAtomic(1, &ipstat.ips_badoptions);
2099 return (1);
2100 }
2101
2102 /*
2103 * Given address of next destination (final or next hop),
2104 * return internet address info of interface to be used to get there.
2105 */
2106 struct in_ifaddr *
2107 ip_rtaddr(struct in_addr dst)
2108 {
2109 struct sockaddr_in *sin;
2110 struct ifaddr *rt_ifa;
2111 struct route ro;
2112
2113 bzero(&ro, sizeof (ro));
2114 sin = (struct sockaddr_in *)(void *)&ro.ro_dst;
2115 sin->sin_family = AF_INET;
2116 sin->sin_len = sizeof (*sin);
2117 sin->sin_addr = dst;
2118
2119 rtalloc_ign(&ro, RTF_PRCLONING);
2120 if (ro.ro_rt == NULL)
2121 return (NULL);
2122
2123 RT_LOCK(ro.ro_rt);
2124 if ((rt_ifa = ro.ro_rt->rt_ifa) != NULL)
2125 IFA_ADDREF(rt_ifa);
2126 RT_UNLOCK(ro.ro_rt);
2127 rtfree(ro.ro_rt);
2128
2129 return ((struct in_ifaddr *)rt_ifa);
2130 }
2131
2132 /*
2133 * Save incoming source route for use in replies,
2134 * to be picked up later by ip_srcroute if the receiver is interested.
2135 */
2136 void
2137 save_rte(u_char *option, struct in_addr dst)
2138 {
2139 unsigned olen;
2140
2141 olen = option[IPOPT_OLEN];
2142 #if DIAGNOSTIC
2143 if (ipprintfs)
2144 printf("save_rte: olen %d\n", olen);
2145 #endif
2146 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
2147 return;
2148 bcopy(option, ip_srcrt.srcopt, olen);
2149 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
2150 ip_srcrt.dst = dst;
2151 }
2152
2153 /*
2154 * Retrieve incoming source route for use in replies,
2155 * in the same form used by setsockopt.
2156 * The first hop is placed before the options, will be removed later.
2157 */
2158 struct mbuf *
2159 ip_srcroute(void)
2160 {
2161 struct in_addr *p, *q;
2162 struct mbuf *m;
2163
2164 if (ip_nhops == 0)
2165 return ((struct mbuf *)0);
2166 m = m_get(M_DONTWAIT, MT_HEADER);
2167 if (m == 0)
2168 return ((struct mbuf *)0);
2169
2170 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
2171
2172 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
2173 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
2174 OPTSIZ;
2175 #if DIAGNOSTIC
2176 if (ipprintfs)
2177 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
2178 #endif
2179
2180 /*
2181 * First save first hop for return route
2182 */
2183 p = &ip_srcrt.route[ip_nhops - 1];
2184 *(mtod(m, struct in_addr *)) = *p--;
2185 #if DIAGNOSTIC
2186 if (ipprintfs)
2187 printf(" hops %lx", (u_int32_t)ntohl(mtod(m, struct in_addr *)->s_addr));
2188 #endif
2189
2190 /*
2191 * Copy option fields and padding (nop) to mbuf.
2192 */
2193 ip_srcrt.nop = IPOPT_NOP;
2194 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
2195 (void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
2196 &ip_srcrt.nop, OPTSIZ);
2197 q = (struct in_addr *)(void *)(mtod(m, caddr_t) +
2198 sizeof(struct in_addr) + OPTSIZ);
2199 #undef OPTSIZ
2200 /*
2201 * Record return path as an IP source route,
2202 * reversing the path (pointers are now aligned).
2203 */
2204 while (p >= ip_srcrt.route) {
2205 #if DIAGNOSTIC
2206 if (ipprintfs)
2207 printf(" %lx", (u_int32_t)ntohl(q->s_addr));
2208 #endif
2209 *q++ = *p--;
2210 }
2211 /*
2212 * Last hop goes to final destination.
2213 */
2214 *q = ip_srcrt.dst;
2215 #if DIAGNOSTIC
2216 if (ipprintfs)
2217 printf(" %lx\n", (u_int32_t)ntohl(q->s_addr));
2218 #endif
2219 return (m);
2220 }
2221
2222 /*
2223 * Strip out IP options, at higher
2224 * level protocol in the kernel.
2225 * Second argument is buffer to which options
2226 * will be moved, and return value is their length.
2227 * XXX should be deleted; last arg currently ignored.
2228 */
2229 void
2230 ip_stripoptions(struct mbuf *m, __unused struct mbuf *mopt)
2231 {
2232 int i;
2233 struct ip *ip = mtod(m, struct ip *);
2234 caddr_t opts;
2235 int olen;
2236
2237 /* Expect 32-bit aligned data pointer on strict-align platforms */
2238 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
2239
2240 olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
2241 opts = (caddr_t)(ip + 1);
2242 i = m->m_len - (sizeof (struct ip) + olen);
2243 bcopy(opts + olen, opts, (unsigned)i);
2244 m->m_len -= olen;
2245 if (m->m_flags & M_PKTHDR)
2246 m->m_pkthdr.len -= olen;
2247 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
2248 }
2249
2250 u_char inetctlerrmap[PRC_NCMDS] = {
2251 0, 0, 0, 0,
2252 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
2253 ENETUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
2254 EMSGSIZE, EHOSTUNREACH, 0, 0,
2255 0, 0, 0, 0,
2256 ENOPROTOOPT, ECONNREFUSED
2257 };
2258
2259 static int
2260 sysctl_ipforwarding SYSCTL_HANDLER_ARGS
2261 {
2262 #pragma unused(arg1, arg2)
2263 int i, was_ipforwarding = ipforwarding;
2264
2265 i = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
2266 if (i != 0 || req->newptr == USER_ADDR_NULL)
2267 return (i);
2268
2269 if (was_ipforwarding && !ipforwarding) {
2270 /* clean up IPv4 forwarding cached routes */
2271 ifnet_head_lock_shared();
2272 for (i = 0; i <= if_index; i++) {
2273 struct ifnet *ifp = ifindex2ifnet[i];
2274 if (ifp != NULL) {
2275 lck_mtx_lock(&ifp->if_cached_route_lock);
2276 if (ifp->if_fwd_route.ro_rt != NULL)
2277 rtfree(ifp->if_fwd_route.ro_rt);
2278 bzero(&ifp->if_fwd_route,
2279 sizeof (ifp->if_fwd_route));
2280 lck_mtx_unlock(&ifp->if_cached_route_lock);
2281 }
2282 }
2283 ifnet_head_done();
2284 }
2285
2286 return (0);
2287 }
2288
2289 /*
2290 * Similar to inp_route_{copyout,copyin} routines except that these copy
2291 * out the cached IPv4 forwarding route from struct ifnet instead of the
2292 * inpcb. See comments for those routines for explanations.
2293 */
2294 static void
2295 ip_fwd_route_copyout(struct ifnet *ifp, struct route *dst)
2296 {
2297 struct route *src = &ifp->if_fwd_route;
2298
2299 lck_mtx_lock_spin(&ifp->if_cached_route_lock);
2300 lck_mtx_convert_spin(&ifp->if_cached_route_lock);
2301
2302 /* Minor sanity check */
2303 if (src->ro_rt != NULL && rt_key(src->ro_rt)->sa_family != AF_INET)
2304 panic("%s: wrong or corrupted route: %p", __func__, src);
2305
2306 route_copyout(dst, src, sizeof(*dst));
2307
2308 lck_mtx_unlock(&ifp->if_cached_route_lock);
2309 }
2310
2311 static void
2312 ip_fwd_route_copyin(struct ifnet *ifp, struct route *src)
2313 {
2314 struct route *dst = &ifp->if_fwd_route;
2315
2316 lck_mtx_lock_spin(&ifp->if_cached_route_lock);
2317 lck_mtx_convert_spin(&ifp->if_cached_route_lock);
2318
2319 /* Minor sanity check */
2320 if (src->ro_rt != NULL && rt_key(src->ro_rt)->sa_family != AF_INET)
2321 panic("%s: wrong or corrupted route: %p", __func__, src);
2322
2323 if (ifp->if_fwd_cacheok)
2324 route_copyin(src, dst, sizeof(*src));
2325
2326 lck_mtx_unlock(&ifp->if_cached_route_lock);
2327 }
2328
2329 /*
2330 * Forward a packet. If some error occurs return the sender
2331 * an icmp packet. Note we can't always generate a meaningful
2332 * icmp message because icmp doesn't have a large enough repertoire
2333 * of codes and types.
2334 *
2335 * If not forwarding, just drop the packet. This could be confusing
2336 * if ipforwarding was zero but some routing protocol was advancing
2337 * us as a gateway to somewhere. However, we must let the routing
2338 * protocol deal with that.
2339 *
2340 * The srcrt parameter indicates whether the packet is being forwarded
2341 * via a source route.
2342 */
2343 static void
2344 ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
2345 {
2346 #if !IPFIREWALL
2347 #pragma unused(next_hop)
2348 #endif
2349 struct ip *ip = mtod(m, struct ip *);
2350 struct sockaddr_in *sin;
2351 struct rtentry *rt;
2352 struct route fwd_rt;
2353 int error, type = 0, code = 0;
2354 struct mbuf *mcopy;
2355 n_long dest;
2356 struct in_addr pkt_dst;
2357 u_int32_t nextmtu = 0;
2358 struct ip_out_args ipoa = { IFSCOPE_NONE, { 0 }, 0 };
2359 struct ifnet *ifp = m->m_pkthdr.rcvif;
2360 #if PF
2361 struct pf_mtag *pf_mtag;
2362 #endif /* PF */
2363
2364 dest = 0;
2365 #if IPFIREWALL
2366 /*
2367 * Cache the destination address of the packet; this may be
2368 * changed by use of 'ipfw fwd'.
2369 */
2370 pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
2371 #else
2372 pkt_dst = ip->ip_dst;
2373 #endif
2374
2375 #if DIAGNOSTIC
2376 if (ipprintfs)
2377 printf("forward: src %lx dst %lx ttl %x\n",
2378 (u_int32_t)ip->ip_src.s_addr, (u_int32_t)pkt_dst.s_addr,
2379 ip->ip_ttl);
2380 #endif
2381
2382 if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
2383 OSAddAtomic(1, &ipstat.ips_cantforward);
2384 m_freem(m);
2385 return;
2386 }
2387 #if IPSTEALTH
2388 if (!ipstealth) {
2389 #endif
2390 if (ip->ip_ttl <= IPTTLDEC) {
2391 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
2392 dest, 0);
2393 return;
2394 }
2395 #if IPSTEALTH
2396 }
2397 #endif
2398
2399 #if PF
2400 pf_mtag = pf_find_mtag(m);
2401 if (pf_mtag != NULL && pf_mtag->pftag_rtableid != IFSCOPE_NONE) {
2402 ipoa.ipoa_boundif = pf_mtag->pftag_rtableid;
2403 ipoa.ipoa_flags |= IPOAF_BOUND_IF;
2404 }
2405 #endif /* PF */
2406
2407 ip_fwd_route_copyout(ifp, &fwd_rt);
2408
2409 sin = (struct sockaddr_in *)(void *)&fwd_rt.ro_dst;
2410 if (fwd_rt.ro_rt == NULL ||
2411 fwd_rt.ro_rt->generation_id != route_generation ||
2412 pkt_dst.s_addr != sin->sin_addr.s_addr) {
2413 if (fwd_rt.ro_rt != NULL) {
2414 rtfree(fwd_rt.ro_rt);
2415 fwd_rt.ro_rt = NULL;
2416 }
2417 sin->sin_family = AF_INET;
2418 sin->sin_len = sizeof (*sin);
2419 sin->sin_addr = pkt_dst;
2420
2421 rtalloc_scoped_ign(&fwd_rt, RTF_PRCLONING, ipoa.ipoa_boundif);
2422 if (fwd_rt.ro_rt == NULL) {
2423 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
2424 goto done;
2425 }
2426 }
2427 rt = fwd_rt.ro_rt;
2428
2429 /*
2430 * Save the IP header and at most 8 bytes of the payload,
2431 * in case we need to generate an ICMP message to the src.
2432 *
2433 * We don't use m_copy() because it might return a reference
2434 * to a shared cluster. Both this function and ip_output()
2435 * assume exclusive access to the IP header in `m', so any
2436 * data in a cluster may change before we reach icmp_error().
2437 */
2438 MGET(mcopy, M_DONTWAIT, m->m_type);
2439 if (mcopy != NULL) {
2440 M_COPY_PKTHDR(mcopy, m);
2441 mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
2442 (int)ip->ip_len);
2443 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
2444 }
2445
2446 #if IPSTEALTH
2447 if (!ipstealth) {
2448 #endif
2449 ip->ip_ttl -= IPTTLDEC;
2450 #if IPSTEALTH
2451 }
2452 #endif
2453
2454 /*
2455 * If forwarding packet using same interface that it came in on,
2456 * perhaps should send a redirect to sender to shortcut a hop.
2457 * Only send redirect if source is sending directly to us,
2458 * and if packet was not source routed (or has any options).
2459 * Also, don't send redirect if forwarding using a default route
2460 * or a route modified by a redirect.
2461 */
2462 RT_LOCK_SPIN(rt);
2463 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
2464 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
2465 satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
2466 ipsendredirects && !srcrt && rt->rt_ifa != NULL) {
2467 struct in_ifaddr *ia = (struct in_ifaddr *)rt->rt_ifa;
2468 u_int32_t src = ntohl(ip->ip_src.s_addr);
2469
2470 /* Become a regular mutex */
2471 RT_CONVERT_LOCK(rt);
2472 IFA_LOCK_SPIN(&ia->ia_ifa);
2473 if ((src & ia->ia_subnetmask) == ia->ia_subnet) {
2474 if (rt->rt_flags & RTF_GATEWAY)
2475 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
2476 else
2477 dest = pkt_dst.s_addr;
2478 /* Router requirements says to only send host redirects */
2479 type = ICMP_REDIRECT;
2480 code = ICMP_REDIRECT_HOST;
2481 #if DIAGNOSTIC
2482 if (ipprintfs)
2483 printf("redirect (%d) to %lx\n", code, (u_int32_t)dest);
2484 #endif
2485 }
2486 IFA_UNLOCK(&ia->ia_ifa);
2487 }
2488 RT_UNLOCK(rt);
2489
2490 #if IPFIREWALL
2491 if (next_hop) {
2492 /* Pass IPFORWARD info if available */
2493 struct m_tag *tag;
2494 struct ip_fwd_tag *ipfwd_tag;
2495
2496 tag = m_tag_create(KERNEL_MODULE_TAG_ID,
2497 KERNEL_TAG_TYPE_IPFORWARD,
2498 sizeof (*ipfwd_tag), M_NOWAIT, m);
2499 if (tag == NULL) {
2500 error = ENOBUFS;
2501 m_freem(m);
2502 goto done;
2503 }
2504
2505 ipfwd_tag = (struct ip_fwd_tag *)(tag+1);
2506 ipfwd_tag->next_hop = next_hop;
2507
2508 m_tag_prepend(m, tag);
2509 }
2510 #endif
2511 error = ip_output_list(m, 0, NULL, &fwd_rt,
2512 IP_FORWARDING | IP_OUTARGS, 0, &ipoa);
2513
2514 /* Refresh rt since the route could have changed while in IP */
2515 rt = fwd_rt.ro_rt;
2516
2517 if (error) {
2518 OSAddAtomic(1, &ipstat.ips_cantforward);
2519 } else {
2520 OSAddAtomic(1, &ipstat.ips_forward);
2521 if (type)
2522 OSAddAtomic(1, &ipstat.ips_redirectsent);
2523 else {
2524 if (mcopy) {
2525 /*
2526 * If we didn't have to go thru ipflow and
2527 * the packet was successfully consumed by
2528 * ip_output, the mcopy is rather a waste;
2529 * this could be further optimized.
2530 */
2531 m_freem(mcopy);
2532 }
2533 goto done;
2534 }
2535 }
2536 if (mcopy == NULL)
2537 goto done;
2538
2539 switch (error) {
2540
2541 case 0: /* forwarded, but need redirect */
2542 /* type, code set above */
2543 break;
2544
2545 case ENETUNREACH: /* shouldn't happen, checked above */
2546 case EHOSTUNREACH:
2547 case ENETDOWN:
2548 case EHOSTDOWN:
2549 default:
2550 type = ICMP_UNREACH;
2551 code = ICMP_UNREACH_HOST;
2552 break;
2553
2554 case EMSGSIZE:
2555 type = ICMP_UNREACH;
2556 code = ICMP_UNREACH_NEEDFRAG;
2557 #ifndef IPSEC
2558 if (rt != NULL) {
2559 RT_LOCK_SPIN(rt);
2560 if (rt->rt_ifp != NULL)
2561 nextmtu = rt->rt_ifp->if_mtu;
2562 RT_UNLOCK(rt);
2563 }
2564 #else
2565 /*
2566 * If the packet is routed over IPsec tunnel, tell the
2567 * originator the tunnel MTU.
2568 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2569 * XXX quickhack!!!
2570 */
2571 if (rt != NULL) {
2572 struct secpolicy *sp = NULL;
2573 int ipsecerror;
2574 int ipsechdr;
2575 struct route *ro;
2576
2577 RT_LOCK_SPIN(rt);
2578 if (rt->rt_ifp != NULL)
2579 nextmtu = rt->rt_ifp->if_mtu;
2580 RT_UNLOCK(rt);
2581
2582 if (ipsec_bypass) {
2583 OSAddAtomic(1, &ipstat.ips_cantfrag);
2584 break;
2585 }
2586 sp = ipsec4_getpolicybyaddr(mcopy,
2587 IPSEC_DIR_OUTBOUND,
2588 IP_FORWARDING,
2589 &ipsecerror);
2590
2591 if (sp != NULL) {
2592 /* count IPsec header size */
2593 ipsechdr = ipsec_hdrsiz(sp);
2594
2595 /*
2596 * find the correct route for outer IPv4
2597 * header, compute tunnel MTU.
2598 */
2599 nextmtu = 0;
2600
2601 if (sp->req != NULL) {
2602 if (sp->req->saidx.mode == IPSEC_MODE_TUNNEL) {
2603 struct secasindex saidx;
2604 struct ip *ipm;
2605 struct secasvar *sav;
2606
2607 ipm = mtod(mcopy, struct ip *);
2608 bcopy(&sp->req->saidx, &saidx, sizeof(saidx));
2609 saidx.mode = sp->req->saidx.mode;
2610 saidx.reqid = sp->req->saidx.reqid;
2611 sin = (struct sockaddr_in *)&saidx.src;
2612 if (sin->sin_len == 0) {
2613 sin->sin_len = sizeof(*sin);
2614 sin->sin_family = AF_INET;
2615 sin->sin_port = IPSEC_PORT_ANY;
2616 bcopy(&ipm->ip_src, &sin->sin_addr,
2617 sizeof(sin->sin_addr));
2618 }
2619 sin = (struct sockaddr_in *)&saidx.dst;
2620 if (sin->sin_len == 0) {
2621 sin->sin_len = sizeof(*sin);
2622 sin->sin_family = AF_INET;
2623 sin->sin_port = IPSEC_PORT_ANY;
2624 bcopy(&ipm->ip_dst, &sin->sin_addr,
2625 sizeof(sin->sin_addr));
2626 }
2627 sav = key_allocsa_policy(&saidx);
2628 if (sav != NULL) {
2629 lck_mtx_lock(sadb_mutex);
2630 if (sav->sah != NULL) {
2631 ro = &sav->sah->sa_route;
2632 if (ro->ro_rt != NULL) {
2633 RT_LOCK(ro->ro_rt);
2634 if (ro->ro_rt->rt_ifp != NULL) {
2635 nextmtu = ro->ro_rt->rt_ifp->if_mtu;
2636 nextmtu -= ipsechdr;
2637 }
2638 RT_UNLOCK(ro->ro_rt);
2639 }
2640 }
2641 key_freesav(sav, KEY_SADB_LOCKED);
2642 lck_mtx_unlock(sadb_mutex);
2643 }
2644 }
2645 }
2646 key_freesp(sp, KEY_SADB_UNLOCKED);
2647 }
2648 }
2649 #endif /*IPSEC*/
2650 OSAddAtomic(1, &ipstat.ips_cantfrag);
2651 break;
2652
2653 case ENOBUFS:
2654 type = ICMP_SOURCEQUENCH;
2655 code = 0;
2656 break;
2657
2658 case EACCES: /* ipfw denied packet */
2659 m_freem(mcopy);
2660 goto done;
2661 }
2662
2663 icmp_error(mcopy, type, code, dest, nextmtu);
2664 done:
2665 ip_fwd_route_copyin(ifp, &fwd_rt);
2666 }
2667
2668 int
2669 ip_savecontrol(
2670 struct inpcb *inp,
2671 struct mbuf **mp,
2672 struct ip *ip,
2673 struct mbuf *m)
2674 {
2675 *mp = NULL;
2676 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2677 struct timeval tv;
2678
2679 microtime(&tv);
2680 mp = sbcreatecontrol_mbuf((caddr_t) &tv, sizeof(tv),
2681 SCM_TIMESTAMP, SOL_SOCKET, mp);
2682 if (*mp == NULL) {
2683 goto no_mbufs;
2684 }
2685 }
2686 if ((inp->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0) {
2687 uint64_t time;
2688
2689 time = mach_absolute_time();
2690 mp = sbcreatecontrol_mbuf((caddr_t) &time, sizeof(time),
2691 SCM_TIMESTAMP_MONOTONIC, SOL_SOCKET, mp);
2692
2693 if (*mp == NULL) {
2694 goto no_mbufs;
2695 }
2696 }
2697 if (inp->inp_flags & INP_RECVDSTADDR) {
2698 mp = sbcreatecontrol_mbuf((caddr_t) &ip->ip_dst,
2699 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP, mp);
2700 if (*mp == NULL) {
2701 goto no_mbufs;
2702 }
2703 }
2704 #ifdef notyet
2705 /* XXX
2706 * Moving these out of udp_input() made them even more broken
2707 * than they already were.
2708 */
2709 /* options were tossed already */
2710 if (inp->inp_flags & INP_RECVOPTS) {
2711 mp = sbcreatecontrol_mbuf((caddr_t) opts_deleted_above,
2712 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP, mp);
2713 if (*mp == NULL) {
2714 goto no_mbufs;
2715 }
2716 }
2717 /* ip_srcroute doesn't do what we want here, need to fix */
2718 if (inp->inp_flags & INP_RECVRETOPTS) {
2719 mp = sbcreatecontrol_mbuf((caddr_t) ip_srcroute(),
2720 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP, mp);
2721 if (*mp == NULL) {
2722 goto no_mbufs;
2723 }
2724 }
2725 #endif
2726 if (inp->inp_flags & INP_RECVIF) {
2727 struct ifnet *ifp;
2728 struct sdlbuf {
2729 struct sockaddr_dl sdl;
2730 u_char pad[32];
2731 } sdlbuf;
2732 struct sockaddr_dl *sdp;
2733 struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2734
2735 ifnet_head_lock_shared();
2736 if ((ifp = m->m_pkthdr.rcvif) != NULL &&
2737 ifp->if_index && (ifp->if_index <= if_index)) {
2738 struct ifaddr *ifa = ifnet_addrs[ifp->if_index - 1];
2739
2740 if (!ifa || !ifa->ifa_addr)
2741 goto makedummy;
2742
2743 IFA_LOCK_SPIN(ifa);
2744 sdp = (struct sockaddr_dl *)(void *)ifa->ifa_addr;
2745 /*
2746 * Change our mind and don't try copy.
2747 */
2748 if ((sdp->sdl_family != AF_LINK) ||
2749 (sdp->sdl_len > sizeof(sdlbuf))) {
2750 IFA_UNLOCK(ifa);
2751 goto makedummy;
2752 }
2753 bcopy(sdp, sdl2, sdp->sdl_len);
2754 IFA_UNLOCK(ifa);
2755 } else {
2756 makedummy:
2757 sdl2->sdl_len
2758 = offsetof(struct sockaddr_dl, sdl_data[0]);
2759 sdl2->sdl_family = AF_LINK;
2760 sdl2->sdl_index = 0;
2761 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2762 }
2763 ifnet_head_done();
2764 mp = sbcreatecontrol_mbuf((caddr_t) sdl2, sdl2->sdl_len,
2765 IP_RECVIF, IPPROTO_IP, mp);
2766 if (*mp == NULL) {
2767 goto no_mbufs;
2768 }
2769 }
2770 if (inp->inp_flags & INP_RECVTTL) {
2771 mp = sbcreatecontrol_mbuf((caddr_t)&ip->ip_ttl, sizeof(ip->ip_ttl),
2772 IP_RECVTTL, IPPROTO_IP, mp);
2773 if (*mp == NULL) {
2774 goto no_mbufs;
2775 }
2776 }
2777 if ((inp->inp_socket->so_flags & SOF_RECV_TRAFFIC_CLASS) != 0) {
2778 int tc = m_get_traffic_class(m);
2779
2780 mp = sbcreatecontrol_mbuf((caddr_t) &tc, sizeof(tc),
2781 SO_TRAFFIC_CLASS, SOL_SOCKET, mp);
2782 if (*mp == NULL) {
2783 goto no_mbufs;
2784 }
2785 }
2786 if (inp->inp_flags & INP_PKTINFO) {
2787 struct in_pktinfo pi;
2788
2789 bzero(&pi, sizeof(struct in_pktinfo));
2790 bcopy(&ip->ip_dst, &pi.ipi_addr, sizeof(struct in_addr));
2791 pi.ipi_ifindex = (m && m->m_pkthdr.rcvif) ? m->m_pkthdr.rcvif->if_index : 0;
2792
2793 mp = sbcreatecontrol_mbuf((caddr_t)&pi, sizeof(struct in_pktinfo),
2794 IP_RECVPKTINFO, IPPROTO_IP, mp);
2795 if (*mp == NULL) {
2796 goto no_mbufs;
2797 }
2798 }
2799 return 0;
2800
2801 no_mbufs:
2802 ipstat.ips_pktdropcntrl++;
2803 return ENOBUFS;
2804 }
2805
2806 int
2807 ip_rsvp_init(struct socket *so)
2808 {
2809 if (so->so_type != SOCK_RAW ||
2810 so->so_proto->pr_protocol != IPPROTO_RSVP)
2811 return EOPNOTSUPP;
2812
2813 if (ip_rsvpd != NULL)
2814 return EADDRINUSE;
2815
2816 ip_rsvpd = so;
2817 /*
2818 * This may seem silly, but we need to be sure we don't over-increment
2819 * the RSVP counter, in case something slips up.
2820 */
2821 if (!ip_rsvp_on) {
2822 ip_rsvp_on = 1;
2823 rsvp_on++;
2824 }
2825
2826 return 0;
2827 }
2828
2829 int
2830 ip_rsvp_done(void)
2831 {
2832 ip_rsvpd = NULL;
2833 /*
2834 * This may seem silly, but we need to be sure we don't over-decrement
2835 * the RSVP counter, in case something slips up.
2836 */
2837 if (ip_rsvp_on) {
2838 ip_rsvp_on = 0;
2839 rsvp_on--;
2840 }
2841 return 0;
2842 }
2843
2844 static inline u_short
2845 ip_cksum(struct mbuf *m, int hlen)
2846 {
2847
2848 u_short sum;
2849 struct ip *ip;
2850
2851 ip = mtod(m, struct ip *);
2852
2853 if ((IF_HWASSIST_CSUM_FLAGS(m->m_pkthdr.rcvif->if_hwassist) == 0)
2854 || (apple_hwcksum_rx == 0) ||
2855 ((m->m_pkthdr.csum_flags & CSUM_TCP_SUM16) && ip->ip_p != IPPROTO_TCP)) {
2856 m->m_pkthdr.csum_flags = 0; /* invalidate HW generated checksum flags */
2857
2858 }
2859
2860 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
2861 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
2862 } else if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) ||
2863 apple_hwcksum_tx == 0) {
2864 /*
2865 * Either this is not loopback packet coming from an interface
2866 * that does not support checksum offloading, or it is loopback
2867 * packet that has undergone software checksumming at the send
2868 * side because apple_hwcksum_tx was set to 0. In this case,
2869 * calculate the checksum in software to validate the packet.
2870 */
2871 sum = in_cksum(m, hlen);
2872 } else {
2873 /*
2874 * This is a loopback packet without any valid checksum since
2875 * the send side has bypassed it (apple_hwcksum_tx set to 1).
2876 * We get here because apple_hwcksum_rx was set to 0, and so
2877 * we pretend that all is well.
2878 */
2879 sum = 0;
2880 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR |
2881 CSUM_IP_CHECKED | CSUM_IP_VALID;
2882 m->m_pkthdr.csum_data = 0xffff;
2883 }
2884
2885 if (sum) {
2886 OSAddAtomic(1, &ipstat.ips_badsum);
2887 }
2888
2889 return sum;
2890 }