2 * Copyright (c) 2000-2005 Apple Computer, Inc. All rights reserved.
4 * @APPLE_LICENSE_OSREFERENCE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the
10 * License may not be used to create, or enable the creation or
11 * redistribution of, unlawful or unlicensed copies of an Apple operating
12 * system, or to circumvent, violate, or enable the circumvention or
13 * violation of, any terms of an Apple operating system software license
16 * Please obtain a copy of the License at
17 * http://www.opensource.apple.com/apsl/ and read it before using this
20 * The Original Code and all software distributed under the License are
21 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
22 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
23 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
25 * Please see the License for the specific language governing rights and
26 * limitations under the License.
28 * @APPLE_LICENSE_OSREFERENCE_HEADER_END@
34 * Mach Operating System
35 * Copyright (c) 1990,1991,1992 The University of Utah and
36 * the Center for Software Science (CSS).
37 * Copyright (c) 1991,1987 Carnegie Mellon University.
38 * All rights reserved.
40 * Permission to use, copy, modify and distribute this software and its
41 * documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation,
45 * and that all advertising materials mentioning features or use of
46 * this software display the following acknowledgement: ``This product
47 * includes software developed by the Center for Software Science at
48 * the University of Utah.''
50 * CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSS ALLOW FREE USE OF
51 * THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY
52 * OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF
55 * CSS requests users of this software to return to css-dist@cs.utah.edu any
56 * improvements that they make and grant CSS redistribution rights.
58 * Carnegie Mellon requests users of this software to return to
59 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
60 * School of Computer Science
61 * Carnegie Mellon University
62 * Pittsburgh PA 15213-3890
63 * any improvements or extensions that they make and grant Carnegie Mellon
64 * the rights to redistribute these changes.
66 * Utah $Hdr: pmap.c 1.28 92/06/23$
67 * Author: Mike Hibler, Bob Wheeler, University of Utah CSS, 10/90
71 * Manages physical address maps for powerpc.
73 * In addition to hardware address maps, this
74 * module is called upon to provide software-use-only
75 * maps which may or may not be stored in the same
76 * form as hardware maps. These pseudo-maps are
77 * used to store intermediate results from copy
78 * operations to and from address spaces.
80 * Since the information managed by this module is
81 * also stored by the logical address mapping module,
82 * this module may throw away valid virtual-to-physical
83 * mappings at almost any time. However, invalidations
84 * of virtual-to-physical mappings must be done as
87 * In order to cope with hardware architectures which
88 * make virtual-to-physical map invalidates expensive,
89 * this module may delay invalidate or reduced protection
90 * operations until such time as they are actually
91 * necessary. This module is given full information to
92 * when physical maps must be made correct.
96 #include <zone_debug.h>
98 #include <mach_kgdb.h>
99 #include <mach_vm_debug.h>
100 #include <db_machine_commands.h>
102 #include <kern/thread.h>
103 #include <kern/simple_lock.h>
104 #include <mach/vm_attributes.h>
105 #include <mach/vm_param.h>
106 #include <vm/vm_kern.h>
107 #include <kern/spl.h>
109 #include <kern/misc_protos.h>
110 #include <ppc/misc_protos.h>
111 #include <ppc/proc_reg.h>
114 #include <vm/vm_map.h>
115 #include <vm/vm_page.h>
117 #include <ppc/pmap.h>
119 #include <ppc/mappings.h>
121 #include <ppc/new_screen.h>
122 #include <ppc/Firmware.h>
123 #include <ppc/savearea.h>
124 #include <ppc/cpu_internal.h>
125 #include <ppc/exception.h>
126 #include <ppc/low_trace.h>
127 #include <ppc/lowglobals.h>
128 #include <ddb/db_output.h>
129 #include <machine/cpu_capabilities.h>
131 #include <vm/vm_protos.h> /* must be last */
134 extern unsigned int avail_remaining
;
135 unsigned int debugbackpocket
; /* (TEST/DEBUG) */
137 vm_offset_t first_free_virt
;
138 int current_free_region
; /* Used in pmap_next_page */
140 pmapTransTab
*pmapTrans
; /* Point to the hash to pmap translations */
141 struct phys_entry
*phys_table
;
144 static void pmap_map_physical(void);
145 static void pmap_map_iohole(addr64_t paddr
, addr64_t size
);
146 void pmap_activate(pmap_t pmap
, thread_t th
, int which_cpu
);
147 void pmap_deactivate(pmap_t pmap
, thread_t th
, int which_cpu
);
149 extern void hw_hash_init(void);
151 /* NOTE: kernel_pmap_store must be in V=R storage and aligned!!!!!!!!!!!!!! */
153 extern struct pmap kernel_pmap_store
;
154 pmap_t kernel_pmap
; /* Pointer to kernel pmap and anchor for in-use pmaps */
155 addr64_t kernel_pmap_phys
; /* Pointer to kernel pmap and anchor for in-use pmaps, physical address */
156 pmap_t cursor_pmap
; /* Pointer to last pmap allocated or previous if removed from in-use list */
157 pmap_t sharedPmap
; /* Pointer to common pmap for 64-bit address spaces */
158 struct zone
*pmap_zone
; /* zone of pmap structures */
159 boolean_t pmap_initialized
= FALSE
;
161 int ppc_max_pmaps
; /* Maximum number of concurrent address spaces allowed. This is machine dependent */
162 addr64_t vm_max_address
; /* Maximum effective address supported */
163 addr64_t vm_max_physical
; /* Maximum physical address supported */
166 * Physical-to-virtual translations are handled by inverted page table
167 * structures, phys_tables. Multiple mappings of a single page are handled
168 * by linking the affected mapping structures. We initialise one region
169 * for phys_tables of the physical memory we know about, but more may be
170 * added as it is discovered (eg. by drivers).
174 * free pmap list. caches the first free_pmap_max pmaps that are freed up
176 int free_pmap_max
= 32;
178 pmap_t free_pmap_list
;
179 decl_simple_lock_data(,free_pmap_lock
)
182 * Function to get index into phys_table for a given physical address
185 struct phys_entry
*pmap_find_physentry(ppnum_t pa
)
190 for (i
= pmap_mem_regions_count
- 1; i
>= 0; i
--) {
191 if (pa
< pmap_mem_regions
[i
].mrStart
) continue; /* See if we fit in this region */
192 if (pa
> pmap_mem_regions
[i
].mrEnd
) continue; /* Check the end too */
194 entry
= (unsigned int)pmap_mem_regions
[i
].mrPhysTab
+ ((pa
- pmap_mem_regions
[i
].mrStart
) * sizeof(phys_entry_t
));
195 return (struct phys_entry
*)entry
;
197 // kprintf("DEBUG - pmap_find_physentry: page 0x%08X not found\n", pa);
203 * pmap_add_physical_memory(vm_offset_t spa, vm_offset_t epa,
204 * boolean_t available, unsigned int attr)
206 * THIS IS NOT SUPPORTED
209 pmap_add_physical_memory(
210 __unused vm_offset_t spa
,
211 __unused vm_offset_t epa
,
212 __unused boolean_t available
,
213 __unused
unsigned int attr
)
216 panic("Forget it! You can't map no more memory, you greedy puke!\n");
221 * pmap_map(va, spa, epa, prot)
222 * is called during boot to map memory in the kernel's address map.
223 * A virtual address range starting at "va" is mapped to the physical
224 * address range "spa" to "epa" with machine independent protection
227 * "va", "spa", and "epa" are byte addresses and must be on machine
228 * independent page boundaries.
230 * Pages with a contiguous virtual address range, the same protection, and attributes.
231 * therefore, we map it with a single block.
233 * Note that this call will only map into 32-bit space
247 if (spa
== epa
) return(va
);
251 colladr
= mapping_make(kernel_pmap
, (addr64_t
)va
, (ppnum_t
)(spa
>> 12), (mmFlgBlock
| mmFlgPerm
), (epa
- spa
) >> 12, prot
& VM_PROT_ALL
);
253 if(colladr
) { /* Was something already mapped in the range? */
254 panic("pmap_map: attempt to map previously mapped range - va = %08X, pa = %08X, epa = %08X, collision = %016llX\n",
255 va
, spa
, epa
, colladr
);
261 * pmap_map_physical()
262 * Maps physical memory into the kernel's address map beginning at lgPMWvaddr, the
263 * physical memory window.
270 uint64_t msize
, size
;
271 addr64_t paddr
, vaddr
, colladdr
;
273 /* Iterate over physical memory regions, block mapping each into the kernel's address map */
274 for (region
= 0; region
< (unsigned)pmap_mem_regions_count
; region
++) {
275 paddr
= ((addr64_t
)pmap_mem_regions
[region
].mrStart
<< 12); /* Get starting physical address */
276 size
= (((addr64_t
)pmap_mem_regions
[region
].mrEnd
+ 1) << 12) - paddr
;
278 vaddr
= paddr
+ lowGlo
.lgPMWvaddr
; /* Get starting virtual address */
282 msize
= ((size
> 0x0000020000000000ULL
) ? 0x0000020000000000ULL
: size
); /* Get size, but no more than 2TBs */
284 colladdr
= mapping_make(kernel_pmap
, vaddr
, (paddr
>> 12),
285 (mmFlgBlock
| mmFlgPerm
), (msize
>> 12),
286 (VM_PROT_READ
| VM_PROT_WRITE
));
288 panic ("pmap_map_physical: mapping failure - va = %016llX, pa = %08X, size = %08X, collision = %016llX\n",
289 vaddr
, (paddr
>> 12), (msize
>> 12), colladdr
);
292 vaddr
= vaddr
+ (uint64_t)msize
; /* Point to the next virtual addr */
293 paddr
= paddr
+ (uint64_t)msize
; /* Point to the next physical addr */
300 * pmap_map_iohole(addr64_t paddr, addr64_t size)
301 * Maps an I/O hole into the kernel's address map at its proper offset in
302 * the physical memory window.
306 pmap_map_iohole(addr64_t paddr
, addr64_t size
)
309 addr64_t vaddr
, colladdr
, msize
;
312 vaddr
= paddr
+ lowGlo
.lgPMWvaddr
; /* Get starting virtual address */
316 msize
= ((size
> 0x0000020000000000ULL
) ? 0x0000020000000000ULL
: size
); /* Get size, but no more than 2TBs */
318 colladdr
= mapping_make(kernel_pmap
, vaddr
, (paddr
>> 12),
319 (mmFlgBlock
| mmFlgPerm
| mmFlgGuarded
| mmFlgCInhib
), (msize
>> 12),
320 (VM_PROT_READ
| VM_PROT_WRITE
));
322 panic ("pmap_map_iohole: mapping failed - va = %016llX, pa = %08X, size = %08X, collision = %016llX\n",
323 vaddr
, (paddr
>> 12), (msize
>> 12), colladdr
);
326 vaddr
= vaddr
+ (uint64_t)msize
; /* Point to the next virtual addr */
327 paddr
= paddr
+ (uint64_t)msize
; /* Point to the next physical addr */
333 * Bootstrap the system enough to run with virtual memory.
334 * Map the kernel's code and data, and allocate the system page table.
335 * Called with mapping done by BATs. Page_size must already be set.
338 * msize: Total memory present
339 * first_avail: First virtual address available
340 * kmapsize: Size of kernel text and data
343 pmap_bootstrap(uint64_t msize
, vm_offset_t
*first_avail
, unsigned int kmapsize
)
347 unsigned int i
, num
, mapsize
, vmpagesz
, vmmapsz
, nbits
;
351 vm_offset_t first_used_addr
, PCAsize
;
352 struct phys_entry
*phys_entry
;
354 *first_avail
= round_page(*first_avail
); /* Make sure we start out on a page boundary */
355 vm_last_addr
= VM_MAX_KERNEL_ADDRESS
; /* Set the highest address know to VM */
358 * Initialize kernel pmap
360 kernel_pmap
= &kernel_pmap_store
;
361 kernel_pmap_phys
= (addr64_t
)&kernel_pmap_store
;
362 cursor_pmap
= &kernel_pmap_store
;
364 kernel_pmap
->pmap_link
.next
= (queue_t
)kernel_pmap
; /* Set up anchor forward */
365 kernel_pmap
->pmap_link
.prev
= (queue_t
)kernel_pmap
; /* Set up anchor reverse */
366 kernel_pmap
->ref_count
= 1;
367 kernel_pmap
->pmapFlags
= pmapKeyDef
; /* Set the default keys */
368 kernel_pmap
->pmapCCtl
= pmapCCtlVal
; /* Initialize cache control */
369 kernel_pmap
->space
= PPC_SID_KERNEL
;
370 kernel_pmap
->pmapvr
= 0; /* Virtual = Real */
373 * IBM's recommended hash table size is one PTEG for every 2 physical pages.
374 * However, we have found that OSX rarely uses more than 4 PTEs in a PTEG
375 * with this size table. Therefore, by default we allocate a hash table
376 * one half IBM's recommended size, ie one PTEG per 4 pages. The "ht_shift" boot-arg
377 * can be used to override the default hash table size.
378 * We will allocate the hash table in physical RAM, outside of kernel virtual memory,
379 * at the top of the highest bank that will contain it.
380 * Note that "bank" doesn't refer to a physical memory slot here, it is a range of
381 * physically contiguous memory.
383 * The PCA will go there as well, immediately before the hash table.
386 nbits
= cntlzw(((msize
<< 1) - 1) >> 32); /* Get first bit in upper half */
387 if (nbits
== 32) /* If upper half was empty, find bit in bottom half */
388 nbits
= nbits
+ cntlzw((uint_t
)((msize
<< 1) - 1));
389 tmemsize
= 0x8000000000000000ULL
>> nbits
; /* Get memory size rounded up to power of 2 */
391 /* Calculate hash table size: First, make sure we don't overflow 32-bit arithmetic. */
392 if (tmemsize
> 0x0000002000000000ULL
)
393 tmemsize
= 0x0000002000000000ULL
;
395 /* Second, calculate IBM recommended hash table size, ie one PTEG per 2 physical pages */
396 hash_table_size
= (uint_t
)(tmemsize
>> 13) * PerProcTable
[0].ppe_vaddr
->pf
.pfPTEG
;
398 /* Third, cut this in half to produce the OSX default, ie one PTEG per 4 physical pages */
399 hash_table_size
>>= 1;
401 /* Fourth, adjust default size per "ht_shift" boot arg */
402 if (hash_table_shift
>= 0) /* if positive, make size bigger */
403 hash_table_size
<<= hash_table_shift
;
404 else /* if "ht_shift" is negative, make smaller */
405 hash_table_size
>>= (-hash_table_shift
);
407 /* Fifth, make sure we are at least minimum size */
408 if (hash_table_size
< (256 * 1024))
409 hash_table_size
= (256 * 1024);
411 while(1) { /* Try to fit hash table in PCA into contiguous memory */
413 if(hash_table_size
< (256 * 1024)) { /* Have we dropped too short? This should never, ever happen */
414 panic("pmap_bootstrap: Can't find space for hash table\n"); /* This will never print, system isn't up far enough... */
417 PCAsize
= (hash_table_size
/ PerProcTable
[0].ppe_vaddr
->pf
.pfPTEG
) * sizeof(PCA_t
); /* Get total size of PCA table */
418 PCAsize
= round_page(PCAsize
); /* Make sure it is at least a page long */
420 for(bank
= pmap_mem_regions_count
- 1; bank
>= 0; bank
--) { /* Search backwards through banks */
422 hash_table_base
= ((addr64_t
)pmap_mem_regions
[bank
].mrEnd
<< 12) - hash_table_size
+ PAGE_SIZE
; /* Get tenative address */
424 htslop
= hash_table_base
& (hash_table_size
- 1); /* Get the extra that we will round down when we align */
425 hash_table_base
= hash_table_base
& -(addr64_t
)hash_table_size
; /* Round down to correct boundary */
427 if((hash_table_base
- round_page(PCAsize
)) >= ((addr64_t
)pmap_mem_regions
[bank
].mrStart
<< 12)) break; /* Leave if we fit */
430 if(bank
>= 0) break; /* We are done if we found a suitable bank */
432 hash_table_size
= hash_table_size
>> 1; /* Try the next size down */
435 if(htslop
) { /* If there was slop (i.e., wasted pages for alignment) add a new region */
436 for(i
= pmap_mem_regions_count
- 1; i
>= (unsigned)bank
; i
--) { /* Copy from end to our bank, including our bank */
437 pmap_mem_regions
[i
+ 1].mrStart
= pmap_mem_regions
[i
].mrStart
; /* Set the start of the bank */
438 pmap_mem_regions
[i
+ 1].mrAStart
= pmap_mem_regions
[i
].mrAStart
; /* Set the start of allocatable area */
439 pmap_mem_regions
[i
+ 1].mrEnd
= pmap_mem_regions
[i
].mrEnd
; /* Set the end address of bank */
440 pmap_mem_regions
[i
+ 1].mrAEnd
= pmap_mem_regions
[i
].mrAEnd
; /* Set the end address of allocatable area */
443 pmap_mem_regions
[i
+ 1].mrStart
= (hash_table_base
+ hash_table_size
) >> 12; /* Set the start of the next bank to the start of the slop area */
444 pmap_mem_regions
[i
+ 1].mrAStart
= (hash_table_base
+ hash_table_size
) >> 12; /* Set the start of allocatable area to the start of the slop area */
445 pmap_mem_regions
[i
].mrEnd
= (hash_table_base
+ hash_table_size
- 4096) >> 12; /* Set the end of our bank to the end of the hash table */
449 pmap_mem_regions
[bank
].mrAEnd
= (hash_table_base
- PCAsize
- 4096) >> 12; /* Set the maximum allocatable in this bank */
451 hw_hash_init(); /* Initiaize the hash table and PCA */
452 hw_setup_trans(); /* Set up hardware registers needed for translation */
455 * The hash table is now all initialized and so is the PCA. Go on to do the rest of it.
456 * This allocation is from the bottom up.
459 num
= atop_64(msize
); /* Get number of pages in all of memory */
461 /* Figure out how much we need to allocate */
464 (InitialSaveBloks
* PAGE_SIZE
) + /* Allow space for the initial context saveareas */
465 (BackPocketSaveBloks
* PAGE_SIZE
) + /* For backpocket saveareas */
466 trcWork
.traceSize
+ /* Size of trace table */
467 ((((1 << maxAdrSpb
) * sizeof(pmapTransTab
)) + 4095) & -4096) + /* Size of pmap translate table */
468 (((num
* sizeof(struct phys_entry
)) + 4095) & -4096) /* For the physical entries */
471 mapsize
= size
= round_page(size
); /* Get size of area to map that we just calculated */
472 mapsize
= mapsize
+ kmapsize
; /* Account for the kernel text size */
474 vmpagesz
= round_page(num
* sizeof(struct vm_page
)); /* Allow for all vm_pages needed to map physical mem */
475 vmmapsz
= round_page((num
/ 8) * sizeof(struct vm_map_entry
)); /* Allow for vm_maps */
477 mapsize
= mapsize
+ vmpagesz
+ vmmapsz
; /* Add the VM system estimates into the grand total */
479 mapsize
= mapsize
+ (4 * 1024 * 1024); /* Allow for 4 meg of extra mappings */
480 mapsize
= ((mapsize
/ PAGE_SIZE
) + MAPPERBLOK
- 1) / MAPPERBLOK
; /* Get number of blocks of mappings we need */
481 mapsize
= mapsize
+ ((mapsize
+ MAPPERBLOK
- 1) / MAPPERBLOK
); /* Account for the mappings themselves */
483 size
= size
+ (mapsize
* PAGE_SIZE
); /* Get the true size we need */
485 /* hash table must be aligned to its size */
487 addr
= *first_avail
; /* Set the address to start allocations */
488 first_used_addr
= addr
; /* Remember where we started */
490 bzero((char *)addr
, size
); /* Clear everything that we are allocating */
492 savearea_init(addr
); /* Initialize the savearea chains and data */
494 addr
= (vm_offset_t
)((unsigned int)addr
+ ((InitialSaveBloks
+ BackPocketSaveBloks
) * PAGE_SIZE
)); /* Point past saveareas */
496 trcWork
.traceCurr
= (unsigned int)addr
; /* Set first trace slot to use */
497 trcWork
.traceStart
= (unsigned int)addr
; /* Set start of trace table */
498 trcWork
.traceEnd
= (unsigned int)addr
+ trcWork
.traceSize
; /* Set end of trace table */
500 addr
= (vm_offset_t
)trcWork
.traceEnd
; /* Set next allocatable location */
502 pmapTrans
= (pmapTransTab
*)addr
; /* Point to the pmap to hash translation table */
504 pmapTrans
[PPC_SID_KERNEL
].pmapPAddr
= (addr64_t
)((uintptr_t)kernel_pmap
); /* Initialize the kernel pmap in the translate table */
505 pmapTrans
[PPC_SID_KERNEL
].pmapVAddr
= CAST_DOWN(unsigned int, kernel_pmap
); /* Initialize the kernel pmap in the translate table */
507 addr
+= ((((1 << maxAdrSpb
) * sizeof(pmapTransTab
)) + 4095) & -4096); /* Point past pmap translate table */
509 /* NOTE: the phys_table must be within the first 2GB of physical RAM. This makes sure we only need to do 32-bit arithmetic */
511 phys_entry
= (struct phys_entry
*) addr
; /* Get pointer to physical table */
513 for (bank
= 0; bank
< pmap_mem_regions_count
; bank
++) { /* Set pointer and initialize all banks of ram */
515 pmap_mem_regions
[bank
].mrPhysTab
= phys_entry
; /* Set pointer to the physical table for this bank */
517 phys_entry
= phys_entry
+ (pmap_mem_regions
[bank
].mrEnd
- pmap_mem_regions
[bank
].mrStart
+ 1); /* Point to the next */
520 addr
+= (((num
* sizeof(struct phys_entry
)) + 4095) & -4096); /* Step on past the physical entries */
523 * Remaining space is for mapping entries. Tell the initializer routine that
524 * the mapping system can't release this block because it's permanently assigned
527 mapping_init(); /* Initialize the mapping tables */
529 for(i
= addr
; i
< first_used_addr
+ size
; i
+= PAGE_SIZE
) { /* Add initial mapping blocks */
530 mapping_free_init(i
, 1, 0); /* Pass block address and say that this one is not releasable */
532 mapCtl
.mapcmin
= MAPPERBLOK
; /* Make sure we only adjust one at a time */
534 /* Map V=R the page tables */
535 pmap_map(first_used_addr
, first_used_addr
,
536 round_page(first_used_addr
+ size
), VM_PROT_READ
| VM_PROT_WRITE
);
538 *first_avail
= round_page(first_used_addr
+ size
); /* Set next available page */
539 first_free_virt
= *first_avail
; /* Ditto */
541 /* For 64-bit machines, block map physical memory and the I/O hole into kernel space */
542 if(BootProcInfo
.pf
.Available
& pf64Bit
) { /* Are we on a 64-bit machine? */
543 lowGlo
.lgPMWvaddr
= PHYS_MEM_WINDOW_VADDR
; /* Initialize the physical memory window's virtual address */
545 pmap_map_physical(); /* Block map physical memory into the window */
547 pmap_map_iohole(IO_MEM_WINDOW_VADDR
, IO_MEM_WINDOW_SIZE
);
548 /* Block map the I/O hole */
551 /* All the rest of memory is free - add it to the free
552 * regions so that it can be allocated by pmap_steal
555 pmap_mem_regions
[0].mrAStart
= (*first_avail
>> 12); /* Set up the free area to start allocations (always in the first bank) */
557 current_free_region
= 0; /* Set that we will start allocating in bank 0 */
558 avail_remaining
= 0; /* Clear free page count */
559 for(bank
= 0; bank
< pmap_mem_regions_count
; bank
++) { /* Total up all of the pages in the system that are available */
560 avail_remaining
+= (pmap_mem_regions
[bank
].mrAEnd
- pmap_mem_regions
[bank
].mrAStart
) + 1; /* Add in allocatable pages in this bank */
567 * pmap_init(spa, epa)
568 * finishes the initialization of the pmap module.
569 * This procedure is called from vm_mem_init() in vm/vm_init.c
570 * to initialize any remaining data structures that the pmap module
571 * needs to map virtual memory (VM is already ON).
573 * Note that the pmap needs to be sized and aligned to
574 * a power of two. This is because it is used both in virtual and
575 * real so it can't span a page boundary.
582 pmap_zone
= zinit(pmapSize
, 400 * pmapSize
, 4096, "pmap");
584 zone_debug_disable(pmap_zone
); /* Can't debug this one 'cause it messes with size and alignment */
585 #endif /* ZONE_DEBUG */
587 pmap_initialized
= TRUE
;
590 * Initialize list of freed up pmaps
592 free_pmap_list
= 0; /* Set that there are no free pmaps */
594 simple_lock_init(&free_pmap_lock
, 0);
598 unsigned int pmap_free_pages(void)
600 return avail_remaining
;
604 * This function allocates physical pages.
607 /* Non-optimal, but only used for virtual memory startup.
608 * Allocate memory from a table of free physical addresses
609 * If there are no more free entries, too bad.
612 boolean_t
pmap_next_page(ppnum_t
*addrp
)
616 if(current_free_region
>= pmap_mem_regions_count
) return FALSE
; /* Return failure if we have used everything... */
618 for(i
= current_free_region
; i
< pmap_mem_regions_count
; i
++) { /* Find the next bank with free pages */
619 if(pmap_mem_regions
[i
].mrAStart
<= pmap_mem_regions
[i
].mrAEnd
) break; /* Found one */
622 current_free_region
= i
; /* Set our current bank */
623 if(i
>= pmap_mem_regions_count
) return FALSE
; /* Couldn't find a free page */
625 *addrp
= pmap_mem_regions
[i
].mrAStart
; /* Allocate the page */
626 pmap_mem_regions
[i
].mrAStart
= pmap_mem_regions
[i
].mrAStart
+ 1; /* Set the next one to go */
627 avail_remaining
--; /* Drop free count */
632 void pmap_virtual_space(
636 *startp
= round_page(first_free_virt
);
637 *endp
= vm_last_addr
;
643 * Create and return a physical map.
645 * If the size specified for the map is zero, the map is an actual physical
646 * map, and may be referenced by the hardware.
648 * A pmap is either in the free list or in the in-use list. The only use
649 * of the in-use list (aside from debugging) is to handle the VSID wrap situation.
650 * Whenever a new pmap is allocated (i.e., not recovered from the free list). The
651 * in-use list is matched until a hole in the VSID sequence is found. (Note
652 * that the in-use pmaps are queued in VSID sequence order.) This is all done
653 * while free_pmap_lock is held.
655 * If the size specified is non-zero, the map will be used in software
656 * only, and is bounded by that size.
659 pmap_create(vm_map_size_t size
)
661 pmap_t pmap
, ckpmap
, fore
;
663 unsigned int currSID
;
667 * A software use-only map doesn't even need a pmap structure.
673 * If there is a pmap in the pmap free list, reuse it.
674 * Note that we use free_pmap_list for all chaining of pmaps, both to
675 * the free list and the in use chain (anchored from kernel_pmap).
678 simple_lock(&free_pmap_lock
);
680 if(free_pmap_list
) { /* Any free? */
681 pmap
= free_pmap_list
; /* Yes, allocate it */
682 free_pmap_list
= (pmap_t
)pmap
->freepmap
; /* Dequeue this one (we chain free ones through freepmap) */
686 simple_unlock(&free_pmap_lock
); /* Unlock just in case */
689 pmap
= (pmap_t
) zalloc(pmap_zone
); /* Get one */
690 if (pmap
== PMAP_NULL
) return(PMAP_NULL
); /* Handle out-of-memory condition */
692 bzero((char *)pmap
, pmapSize
); /* Clean up the pmap */
695 simple_lock(&free_pmap_lock
); /* Lock it back up */
697 ckpmap
= cursor_pmap
; /* Get starting point for free ID search */
698 currSID
= ckpmap
->spaceNum
; /* Get the actual space ID number */
700 while(1) { /* Keep trying until something happens */
702 currSID
= (currSID
+ 1) & (maxAdrSp
- 1); /* Get the next in the sequence */
703 if(((currSID
* incrVSID
) & (maxAdrSp
- 1)) == invalSpace
) continue; /* Skip the space we have reserved */
704 ckpmap
= (pmap_t
)ckpmap
->pmap_link
.next
; /* On to the next in-use pmap */
706 if(ckpmap
->spaceNum
!= currSID
) break; /* If we are out of sequence, this is free */
708 if(ckpmap
== cursor_pmap
) { /* See if we have 2^20 already allocated */
709 panic("pmap_create: Maximum number (%d) active address spaces reached\n", maxAdrSp
); /* Die pig dog */
713 pmap
->space
= (currSID
* incrVSID
) & (maxAdrSp
- 1); /* Calculate the actual VSID */
714 pmap
->spaceNum
= currSID
; /* Set the space ID number */
716 * Now we link into the chain just before the out of sequence guy.
719 fore
= (pmap_t
)ckpmap
->pmap_link
.prev
; /* Get the current's previous */
720 pmap
->pmap_link
.next
= (queue_t
)ckpmap
; /* My next points to the current */
721 fore
->pmap_link
.next
= (queue_t
)pmap
; /* Current's previous's next points to me */
722 pmap
->pmap_link
.prev
= (queue_t
)fore
; /* My prev points to what the current pointed to */
723 ckpmap
->pmap_link
.prev
= (queue_t
)pmap
; /* Current's prev points to me */
725 physpmap
= ((addr64_t
)pmap_find_phys(kernel_pmap
, (addr64_t
)((uintptr_t)pmap
)) << 12) | (addr64_t
)((unsigned int)pmap
& 0xFFF); /* Get the physical address of the pmap */
727 pmap
->pmapvr
= (addr64_t
)((uintptr_t)pmap
) ^ physpmap
; /* Make V to R translation mask */
729 pmapTrans
[pmap
->space
].pmapPAddr
= physpmap
; /* Set translate table physical to point to us */
730 pmapTrans
[pmap
->space
].pmapVAddr
= CAST_DOWN(unsigned int, pmap
); /* Set translate table virtual to point to us */
733 pmap
->pmapVmmExt
= 0; /* Clear VMM extension block vaddr */
734 pmap
->pmapVmmExtPhys
= 0; /* and the paddr, too */
735 pmap
->pmapFlags
= pmapKeyDef
; /* Set default key */
736 pmap
->pmapCCtl
= pmapCCtlVal
; /* Initialize cache control */
738 pmap
->stats
.resident_count
= 0;
739 pmap
->stats
.wired_count
= 0;
740 pmap
->pmapSCSubTag
= 0x0000000000000000ULL
; /* Make sure this is clean an tidy */
741 simple_unlock(&free_pmap_lock
);
750 * Gives up a reference to the specified pmap. When the reference count
751 * reaches zero the pmap structure is added to the pmap free list.
753 * Should only be called if the map contains no valid mappings.
756 pmap_destroy(pmap_t pmap
)
762 if (pmap
== PMAP_NULL
)
765 ref_count
=hw_atomic_sub(&pmap
->ref_count
, 1); /* Back off the count */
766 if(ref_count
>0) return; /* Still more users, leave now... */
768 if(ref_count
< 0) /* Did we go too far? */
769 panic("pmap_destroy(): ref_count < 0");
771 if (!(pmap
->pmapFlags
& pmapVMgsaa
)) { /* Don't try this for a shadow assist guest */
772 pmap_unmap_sharedpage(pmap
); /* Remove any mapping of page -1 */
776 if(pmap
->stats
.resident_count
!= 0)
777 panic("PMAP_DESTROY: pmap not empty");
779 if(pmap
->stats
.resident_count
!= 0) {
780 pmap_remove(pmap
, 0, 0xFFFFFFFFFFFFF000ULL
);
785 * Add the pmap to the pmap free list.
790 * Add the pmap to the pmap free list.
792 simple_lock(&free_pmap_lock
);
794 if (free_pmap_count
<= free_pmap_max
) { /* Do we have enough spares? */
796 pmap
->freepmap
= free_pmap_list
; /* Queue in front */
797 free_pmap_list
= pmap
;
799 simple_unlock(&free_pmap_lock
);
802 if(cursor_pmap
== pmap
) cursor_pmap
= (pmap_t
)pmap
->pmap_link
.prev
; /* If we are releasing the cursor, back up */
803 fore
= (pmap_t
)pmap
->pmap_link
.prev
;
804 aft
= (pmap_t
)pmap
->pmap_link
.next
;
805 fore
->pmap_link
.next
= pmap
->pmap_link
.next
; /* My previous's next is my next */
806 aft
->pmap_link
.prev
= pmap
->pmap_link
.prev
; /* My next's previous is my previous */
807 simple_unlock(&free_pmap_lock
);
808 pmapTrans
[pmap
->space
].pmapPAddr
= -1; /* Invalidate the translate table physical */
809 pmapTrans
[pmap
->space
].pmapVAddr
= -1; /* Invalidate the translate table virtual */
810 zfree(pmap_zone
, pmap
);
816 * pmap_reference(pmap)
817 * gains a reference to the specified pmap.
820 pmap_reference(pmap_t pmap
)
822 if (pmap
!= PMAP_NULL
) hw_atomic_add(&pmap
->ref_count
, 1); /* Bump the count */
826 * pmap_remove_some_phys
828 * Removes mappings of the associated page from the specified pmap
831 void pmap_remove_some_phys(
835 register struct phys_entry
*pp
;
836 register struct mapping
*mp
;
839 if (pmap
== PMAP_NULL
) { /* This should never be called with a null pmap */
840 panic("pmap_remove_some_phys: null pmap\n");
843 pp
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
844 if (pp
== 0) return; /* Leave if not in physical RAM */
846 do { /* Keep going until we toss all pages from this pmap */
847 if (pmap
->pmapFlags
& pmapVMhost
) {
848 mp
= hw_purge_phys(pp
); /* Toss a map */
849 switch ((unsigned int)mp
& mapRetCode
) {
851 mapping_free(mp
); /* Return mapping to free inventory */
854 break; /* Don't try to return a guest mapping */
856 break; /* Physent chain empty, we're done */
858 break; /* Mapping disappeared on us, retry */
860 panic("pmap_remove_some_phys: hw_purge_phys failed - pp = %08X, pmap = %08X, code = %08X\n",
861 pp
, pmap
, mp
); /* Handle failure with our usual lack of tact */
864 mp
= hw_purge_space(pp
, pmap
); /* Toss a map */
865 switch ((unsigned int)mp
& mapRetCode
) {
867 mapping_free(mp
); /* Return mapping to free inventory */
870 break; /* Physent chain empty, we're done */
872 break; /* Mapping disappeared on us, retry */
874 panic("pmap_remove_some_phys: hw_purge_phys failed - pp = %08X, pmap = %08X, code = %08X\n",
875 pp
, pmap
, mp
); /* Handle failure with our usual lack of tact */
878 } while (mapRtEmpty
!= ((unsigned int)mp
& mapRetCode
));
881 if ((pmap
->pmapFlags
& pmapVMhost
) && !pmap_verify_free(pa
))
882 panic("pmap_remove_some_phys: cruft left behind - pa = %08X, pmap = %08X\n", pa
, pmap
);
885 return; /* Leave... */
889 * pmap_remove(pmap, s, e)
890 * unmaps all virtual addresses v in the virtual address
891 * range determined by [s, e) and pmap.
892 * s and e must be on machine independent page boundaries and
893 * s must be less than or equal to e.
895 * Note that pmap_remove does not remove any mappings in nested pmaps. We just
896 * skip those segments.
906 if (pmap
== PMAP_NULL
) return; /* Leave if software pmap */
909 /* It is just possible that eva might have wrapped around to zero,
910 * and sometimes we get asked to liberate something of size zero
911 * even though it's dumb (eg. after zero length read_overwrites)
915 /* If these are not page aligned the loop might not terminate */
916 assert((sva
== trunc_page_64(sva
)) && (eva
== trunc_page_64(eva
)));
918 va
= sva
& -4096LL; /* Round start down to a page */
919 endva
= eva
& -4096LL; /* Round end down to a page */
921 while(1) { /* Go until we finish the range */
922 va
= mapping_remove(pmap
, va
); /* Remove the mapping and see what's next */
923 va
= va
& -4096LL; /* Make sure the "not found" indication is clear */
924 if((va
== 0) || (va
>= endva
)) break; /* End loop if we finish range or run off the end */
934 * Lower the permission for all mappings to a given page.
941 register struct phys_entry
*pp
;
949 case VM_PROT_READ
|VM_PROT_EXECUTE
:
960 pp
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
961 if (pp
== 0) return; /* Leave if not in physical RAM */
963 if (remove
) { /* If the protection was set to none, we'll remove all mappings */
965 do { /* Keep going until we toss all pages from this physical page */
966 mp
= hw_purge_phys(pp
); /* Toss a map */
967 switch ((unsigned int)mp
& mapRetCode
) {
969 mapping_free(mp
); /* Return mapping to free inventory */
972 break; /* Don't try to return a guest mapping */
974 break; /* Mapping disappeared on us, retry */
976 break; /* Physent chain empty, we're done */
977 default: panic("pmap_page_protect: hw_purge_phys failed - pp = %08X, code = %08X\n",
978 pp
, mp
); /* Handle failure with our usual lack of tact */
980 } while (mapRtEmpty
!= ((unsigned int)mp
& mapRetCode
));
983 if (!pmap_verify_free(pa
))
984 panic("pmap_page_protect: cruft left behind - pa = %08X\n", pa
);
987 return; /* Leave... */
990 /* When we get here, it means that we are to change the protection for a
994 mapping_protect_phys(pa
, prot
& VM_PROT_ALL
); /* Change protection of all mappings to page. */
1003 * Disconnect all mappings for this page and return reference and change status
1004 * in generic format.
1007 unsigned int pmap_disconnect(
1010 register struct phys_entry
*pp
;
1011 unsigned int pindex
;
1014 pp
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
1015 if (pp
== 0) return (0); /* Return null ref and chg if not in physical RAM */
1016 do { /* Iterate until all mappings are dead and gone */
1017 mp
= hw_purge_phys(pp
); /* Disconnect a mapping */
1018 if (!mp
) break; /* All mappings are gone, leave the loop */
1019 switch ((unsigned int)mp
& mapRetCode
) {
1021 mapping_free(mp
); /* Return mapping to free inventory */
1024 break; /* Don't try to return a guest mapping */
1026 break; /* Mapping disappeared on us, retry */
1028 break; /* Physent chain empty, we're done */
1029 default: panic("hw_purge_phys: hw_purge_phys failed - pp = %08X, code = %08X\n",
1030 pp
, mp
); /* Handle failure with our usual lack of tact */
1032 } while (mapRtEmpty
!= ((unsigned int)mp
& mapRetCode
));
1035 if (!pmap_verify_free(pa
))
1036 panic("pmap_disconnect: cruft left behind - pa = %08X\n", pa
);
1039 return (mapping_tst_refmod(pa
)); /* Return page ref and chg in generic format */
1043 * pmap_protect(pmap, s, e, prot)
1044 * changes the protection on all virtual addresses v in the
1045 * virtual address range determined by [s, e] and pmap to prot.
1046 * s and e must be on machine independent page boundaries and
1047 * s must be less than or equal to e.
1049 * Note that any requests to change the protection of a nested pmap are
1050 * ignored. Those changes MUST be done by calling this with the correct pmap.
1054 vm_map_offset_t sva
,
1055 vm_map_offset_t eva
,
1061 if (pmap
== PMAP_NULL
) return; /* Do nothing if no pmap */
1063 if (prot
== VM_PROT_NONE
) { /* Should we kill the address range?? */
1064 pmap_remove(pmap
, (addr64_t
)sva
, (addr64_t
)eva
); /* Yeah, dump 'em */
1065 return; /* Leave... */
1068 va
= sva
& -4096LL; /* Round start down to a page */
1069 endva
= eva
& -4096LL; /* Round end down to a page */
1071 while(1) { /* Go until we finish the range */
1072 mapping_protect(pmap
, va
, prot
& VM_PROT_ALL
, &va
); /* Change the protection and see what's next */
1073 if((va
== 0) || (va
>= endva
)) break; /* End loop if we finish range or run off the end */
1083 * Create a translation for the virtual address (virt) to the physical
1084 * address (phys) in the pmap with the protection requested. If the
1085 * translation is wired then we can not allow a full page fault, i.e.,
1086 * the mapping control block is not eligible to be stolen in a low memory
1089 * NB: This is the only routine which MAY NOT lazy-evaluate
1090 * or lose information. That is, this routine must actually
1091 * insert this page into the given map NOW.
1094 pmap_enter(pmap_t pmap
, vm_map_offset_t va
, ppnum_t pa
, vm_prot_t prot
,
1095 unsigned int flags
, __unused boolean_t wired
)
1097 unsigned int mflags
;
1100 if (pmap
== PMAP_NULL
) return; /* Leave if software pmap */
1102 mflags
= 0; /* Make sure this is initialized to nothing special */
1103 if(!(flags
& VM_WIMG_USE_DEFAULT
)) { /* Are they supplying the attributes? */
1104 mflags
= mmFlgUseAttr
| (flags
& VM_MEM_GUARDED
) | ((flags
& VM_MEM_NOT_CACHEABLE
) >> 1); /* Convert to our mapping_make flags */
1108 * It is possible to hang here if another processor is remapping any pages we collide with and are removing
1111 while(1) { /* Keep trying the enter until it goes in */
1113 colva
= mapping_make(pmap
, va
, pa
, mflags
, 1, prot
& VM_PROT_ALL
); /* Enter the mapping into the pmap */
1115 if(!colva
) break; /* If there were no collisions, we are done... */
1117 mapping_remove(pmap
, colva
); /* Remove the mapping that collided */
1122 * Enters translations for odd-sized V=F blocks.
1124 * The higher level VM map should be locked to insure that we don't have a
1125 * double diddle here.
1127 * We panic if we get a block that overlaps with another. We do not merge adjacent
1128 * blocks because removing any address within a block removes the entire block and if
1129 * would really mess things up if we trashed too much.
1131 * Once a block is mapped, it is unmutable, that is, protection, catch mode, etc. can
1132 * not be changed. The block must be unmapped and then remapped with the new stuff.
1133 * We also do not keep track of reference or change flags.
1135 * Any block that is larger than 256MB must be a multiple of 32MB. We panic if it is not.
1137 * Note that pmap_map_block_rc is the same but doesn't panic if collision.
1141 void pmap_map_block(pmap_t pmap
, addr64_t va
, ppnum_t pa
, uint32_t size
, vm_prot_t prot
, int attr
, unsigned int flags
) { /* Map an autogenned block */
1143 unsigned int mflags
;
1147 if (pmap
== PMAP_NULL
) { /* Did they give us a pmap? */
1148 panic("pmap_map_block: null pmap\n"); /* No, like that's dumb... */
1151 // kprintf("pmap_map_block: (%08X) va = %016llX, pa = %08X, size = %08X, prot = %08X, attr = %08X, flags = %08X\n", /* (BRINGUP) */
1152 // current_thread(), va, pa, size, prot, attr, flags); /* (BRINGUP) */
1154 mflags
= mmFlgBlock
| mmFlgUseAttr
| (attr
& VM_MEM_GUARDED
) | ((attr
& VM_MEM_NOT_CACHEABLE
) >> 1); /* Convert to our mapping_make flags */
1155 if(flags
) mflags
|= mmFlgPerm
; /* Mark permanent if requested */
1157 colva
= mapping_make(pmap
, va
, pa
, mflags
, size
, prot
); /* Enter the mapping into the pmap */
1159 if(colva
) { /* If there was a collision, panic */
1160 panic("pmap_map_block: mapping error %d, pmap = %08X, va = %016llX\n", (uint32_t)(colva
& mapRetCode
), pmap
, va
);
1163 return; /* Return */
1166 int pmap_map_block_rc(pmap_t pmap
, addr64_t va
, ppnum_t pa
, uint32_t size
, vm_prot_t prot
, int attr
, unsigned int flags
) { /* Map an autogenned block */
1168 unsigned int mflags
;
1172 if (pmap
== PMAP_NULL
) { /* Did they give us a pmap? */
1173 panic("pmap_map_block_rc: null pmap\n"); /* No, like that's dumb... */
1176 mflags
= mmFlgBlock
| mmFlgUseAttr
| (attr
& VM_MEM_GUARDED
) | ((attr
& VM_MEM_NOT_CACHEABLE
) >> 1); /* Convert to our mapping_make flags */
1177 if(flags
) mflags
|= mmFlgPerm
; /* Mark permanent if requested */
1179 colva
= mapping_make(pmap
, va
, pa
, mflags
, size
, prot
); /* Enter the mapping into the pmap */
1181 if(colva
) return 0; /* If there was a collision, fail */
1183 return 1; /* Return true of we worked */
1187 * pmap_extract(pmap, va)
1188 * returns the physical address corrsponding to the
1189 * virtual address specified by pmap and va if the
1190 * virtual address is mapped and 0 if it is not.
1191 * Note: we assume nothing is ever mapped to phys 0.
1193 * NOTE: This call always will fail for physical addresses greater than 0xFFFFF000.
1195 vm_offset_t
pmap_extract(pmap_t pmap
, vm_map_offset_t va
) {
1198 register struct mapping
*mp
;
1199 register vm_offset_t pa
;
1205 panic("pmap_extract: THIS CALL IS BOGUS. NEVER USE IT EVER. So there...\n"); /* Don't use this */
1208 gva
= (unsigned int)va
; /* Make sure we don't have a sign */
1210 spl
= splhigh(); /* We can't allow any loss of control here */
1212 mp
= mapping_find(pmap
, (addr64_t
)gva
, &nextva
,1); /* Find the mapping for this address */
1214 if(!mp
) { /* Is the page mapped? */
1215 splx(spl
); /* Enable interrupts */
1216 return 0; /* Pass back 0 if not found */
1219 ppoffset
= (ppnum_t
)(((gva
& -4096LL) - (mp
->mpVAddr
& -4096LL)) >> 12); /* Get offset from va to base va */
1222 pa
= mp
->mpPAddr
+ ppoffset
; /* Remember ppage because mapping may vanish after drop call */
1224 mapping_drop_busy(mp
); /* We have everything we need from the mapping */
1225 splx(spl
); /* Restore 'rupts */
1227 if(pa
> maxPPage32
) return 0; /* Force large addresses to fail */
1229 pa
= (pa
<< 12) | (va
& 0xFFF); /* Convert physical page number to address */
1232 return pa
; /* Return physical address or 0 */
1236 * ppnum_t pmap_find_phys(pmap, addr64_t va)
1237 * returns the physical page corrsponding to the
1238 * virtual address specified by pmap and va if the
1239 * virtual address is mapped and 0 if it is not.
1240 * Note: we assume nothing is ever mapped to phys 0.
1243 ppnum_t
pmap_find_phys(pmap_t pmap
, addr64_t va
) {
1246 register struct mapping
*mp
;
1247 ppnum_t pa
, ppoffset
;
1250 spl
= splhigh(); /* We can't allow any loss of control here */
1252 mp
= mapping_find(pmap
, va
, &nextva
, 1); /* Find the mapping for this address */
1254 if(!mp
) { /* Is the page mapped? */
1255 splx(spl
); /* Enable interrupts */
1256 return 0; /* Pass back 0 if not found */
1260 ppoffset
= (ppnum_t
)(((va
& -4096LL) - (mp
->mpVAddr
& -4096LL)) >> 12); /* Get offset from va to base va */
1262 pa
= mp
->mpPAddr
+ ppoffset
; /* Get the actual physical address */
1264 mapping_drop_busy(mp
); /* We have everything we need from the mapping */
1266 splx(spl
); /* Restore 'rupts */
1267 return pa
; /* Return physical address or 0 */
1274 * Set/Get special memory attributes; not implemented.
1276 * Note: 'VAL_GET_INFO' is used to return info about a page.
1277 * If less than 1 page is specified, return the physical page
1278 * mapping and a count of the number of mappings to that page.
1279 * If more than one page is specified, return the number
1280 * of resident pages and the number of shared (more than
1281 * one mapping) pages in the range;
1287 __unused pmap_t pmap
,
1288 __unused vm_map_offset_t address
,
1289 __unused vm_map_size_t size
,
1290 __unused vm_machine_attribute_t attribute
,
1291 __unused vm_machine_attribute_val_t
* value
)
1294 return KERN_INVALID_ARGUMENT
;
1299 * pmap_attribute_cache_sync(vm_offset_t pa)
1301 * Invalidates all of the instruction cache on a physical page and
1302 * pushes any dirty data from the data cache for the same physical page
1305 kern_return_t
pmap_attribute_cache_sync(ppnum_t pp
, vm_size_t size
,
1306 __unused vm_machine_attribute_t attribute
,
1307 __unused vm_machine_attribute_val_t
* value
) {
1310 unsigned int i
, npages
;
1312 npages
= round_page(size
) >> 12; /* Get the number of pages to do */
1314 for(i
= 0; i
< npages
; i
++) { /* Do all requested pages */
1315 s
= splhigh(); /* No interruptions here */
1316 sync_ppage(pp
+ i
); /* Go flush data cache and invalidate icache */
1317 splx(s
); /* Allow interruptions */
1320 return KERN_SUCCESS
;
1324 * pmap_sync_page_data_phys(ppnum_t pa)
1326 * Invalidates all of the instruction cache on a physical page and
1327 * pushes any dirty data from the data cache for the same physical page
1330 void pmap_sync_page_data_phys(ppnum_t pa
) {
1334 s
= splhigh(); /* No interruptions here */
1335 sync_ppage(pa
); /* Sync up dem caches */
1336 splx(s
); /* Allow interruptions */
1341 pmap_sync_page_attributes_phys(ppnum_t pa
)
1343 pmap_sync_page_data_phys(pa
);
1349 * Garbage collects the physical map system for pages that are no longer used.
1350 * It isn't implemented or needed or wanted.
1353 pmap_collect(__unused pmap_t pmap
)
1359 * Routine: pmap_activate
1361 * Binds the given physical map to the given
1362 * processor, and returns a hardware map description.
1363 * It isn't implemented or needed or wanted.
1367 __unused pmap_t pmap
,
1368 __unused thread_t th
,
1369 __unused
int which_cpu
)
1375 * It isn't implemented or needed or wanted.
1379 __unused pmap_t pmap
,
1380 __unused thread_t th
,
1381 __unused
int which_cpu
)
1388 * pmap_pageable(pmap, s, e, pageable)
1389 * Make the specified pages (by pmap, offset)
1390 * pageable (or not) as requested.
1392 * A page which is not pageable may not take
1393 * a fault; therefore, its page table entry
1394 * must remain valid for the duration.
1396 * This routine is merely advisory; pmap_enter()
1397 * will specify that these pages are to be wired
1398 * down (or not) as appropriate.
1400 * (called from vm/vm_fault.c).
1404 __unused pmap_t pmap
,
1405 __unused vm_map_offset_t start
,
1406 __unused vm_map_offset_t end
,
1407 __unused boolean_t pageable
)
1410 return; /* This is not used... */
1414 * Routine: pmap_change_wiring
1419 __unused pmap_t pmap
,
1420 __unused vm_map_offset_t va
,
1421 __unused boolean_t wired
)
1423 return; /* This is not used... */
1427 * pmap_modify_pages(pmap, s, e)
1428 * sets the modified bit on all virtual addresses v in the
1429 * virtual address range determined by [s, e] and pmap,
1430 * s and e must be on machine independent page boundaries and
1431 * s must be less than or equal to e.
1433 * Note that this function will not descend nested pmaps.
1438 vm_map_offset_t sva
,
1439 vm_map_offset_t eva
)
1445 unsigned int savetype
;
1447 if (pmap
== PMAP_NULL
) return; /* If no pmap, can't do it... */
1449 va
= sva
& -4096; /* Round to page */
1450 endva
= eva
& -4096; /* Round to page */
1452 while (va
< endva
) { /* Walk through all pages */
1454 spl
= splhigh(); /* We can't allow any loss of control here */
1456 mp
= mapping_find(pmap
, (addr64_t
)va
, &va
, 0); /* Find the mapping for this address */
1458 if(!mp
) { /* Is the page mapped? */
1459 splx(spl
); /* Page not mapped, restore interruptions */
1460 if((va
== 0) || (va
>= endva
)) break; /* We are done if there are no more or we hit the end... */
1461 continue; /* We are not done and there is more to check... */
1464 savetype
= mp
->mpFlags
& mpType
; /* Remember the type */
1465 pa
= mp
->mpPAddr
; /* Remember ppage because mapping may vanish after drop call */
1467 mapping_drop_busy(mp
); /* We have everything we need from the mapping */
1469 splx(spl
); /* Restore 'rupts */
1471 if(savetype
!= mpNormal
) continue; /* Can't mess around with these guys... */
1473 mapping_set_mod(pa
); /* Set the modfied bit for this page */
1475 if(va
== 0) break; /* We hit the end of the pmap, might as well leave now... */
1477 return; /* Leave... */
1481 * pmap_clear_modify(phys)
1482 * clears the hardware modified ("dirty") bit for one
1483 * machine independant page starting at the given
1484 * physical address. phys must be aligned on a machine
1485 * independant page boundary.
1488 pmap_clear_modify(ppnum_t pa
)
1491 mapping_clr_mod(pa
); /* Clear all change bits for physical page */
1496 * pmap_is_modified(phys)
1497 * returns TRUE if the given physical page has been modified
1498 * since the last call to pmap_clear_modify().
1501 pmap_is_modified(register ppnum_t pa
)
1503 return mapping_tst_mod(pa
); /* Check for modified */
1508 * pmap_clear_reference(phys)
1509 * clears the hardware referenced bit in the given machine
1510 * independant physical page.
1514 pmap_clear_reference(ppnum_t pa
)
1516 mapping_clr_ref(pa
); /* Check for modified */
1520 * pmap_is_referenced(phys)
1521 * returns TRUE if the given physical page has been referenced
1522 * since the last call to pmap_clear_reference().
1525 pmap_is_referenced(ppnum_t pa
)
1527 return mapping_tst_ref(pa
); /* Check for referenced */
1531 * pmap_get_refmod(phys)
1532 * returns the referenced and modified bits of the specified
1536 pmap_get_refmod(ppnum_t pa
)
1538 return (mapping_tst_refmod(pa
));
1542 * pmap_clear_refmod(phys, mask)
1543 * clears the referenced and modified bits as specified by the mask
1544 * of the specified physical page.
1547 pmap_clear_refmod(ppnum_t pa
, unsigned int mask
)
1549 mapping_clr_refmod(pa
, mask
);
1553 * pmap_eligible_for_execute(ppnum_t pa)
1554 * return true if physical address is eligible to contain executable code;
1555 * otherwise, return false
1558 pmap_eligible_for_execute(ppnum_t pa
)
1560 phys_entry_t
*physent
;
1561 unsigned int pindex
;
1563 physent
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
1565 if((!physent
) || (physent
->ppLink
& ppG
))
1566 return 0; /* If there is no physical entry or marked guarded,
1567 the entry is not eligible for execute */
1569 return 1; /* Otherwise, entry is eligible for execute */
1574 pmap_list_resident_pages(
1575 __unused pmap_t pmap
,
1576 __unused vm_offset_t
*listp
,
1581 #endif /* MACH_VM_DEBUG */
1588 pmap_copy_part_page(
1590 vm_offset_t src_offset
,
1592 vm_offset_t dst_offset
,
1595 addr64_t fsrc
, fdst
;
1597 assert(((dst
<<12) & PAGE_MASK
+dst_offset
+len
) <= PAGE_SIZE
);
1598 assert(((src
<<12) & PAGE_MASK
+src_offset
+len
) <= PAGE_SIZE
);
1600 fsrc
= ((addr64_t
)src
<< 12) + src_offset
;
1601 fdst
= ((addr64_t
)dst
<< 12) + dst_offset
;
1603 phys_copy(fsrc
, fdst
, len
); /* Copy the stuff physically */
1607 pmap_zero_part_page(
1608 __unused vm_offset_t p
,
1609 __unused vm_offset_t offset
,
1610 __unused vm_size_t len
)
1612 panic("pmap_zero_part_page");
1615 boolean_t
pmap_verify_free(ppnum_t pa
) {
1617 struct phys_entry
*pp
;
1618 unsigned int pindex
;
1620 pp
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
1621 if (pp
== 0) return FALSE
; /* If there isn't one, show no mapping... */
1623 if(pp
->ppLink
& ~(ppLock
| ppFlags
)) return FALSE
; /* We have at least one mapping */
1624 return TRUE
; /* No mappings */
1628 /* Determine if we need to switch space and set up for it if so */
1630 void pmap_switch(pmap_t map
)
1632 hw_blow_seg(lowGlo
.lgUMWvaddr
); /* Blow off the first segment */
1633 hw_blow_seg(lowGlo
.lgUMWvaddr
+ 0x10000000ULL
); /* Blow off the second segment */
1635 /* when changing to kernel space, don't bother
1636 * doing anything, the kernel is mapped from here already.
1638 if (map
->space
== PPC_SID_KERNEL
) { /* Are we switching into kernel space? */
1639 return; /* If so, we don't do anything... */
1642 hw_set_user_space(map
); /* Indicate if we need to load the SRs or not */
1643 return; /* Bye, bye, butterfly... */
1647 * kern_return_t pmap_nest(grand, subord, vstart, size)
1649 * grand = the pmap that we will nest subord into
1650 * subord = the pmap that goes into the grand
1651 * vstart = start of range in pmap to be inserted
1652 * nstart = start of range in pmap nested pmap
1653 * size = Size of nest area (up to 2TB)
1655 * Inserts a pmap into another. This is used to implement shared segments.
1656 * On the current PPC processors, this is limited to segment (256MB) aligned
1657 * segment sized ranges.
1659 * We actually kinda allow recursive nests. The gating factor is that we do not allow
1660 * nesting on top of something that is already mapped, i.e., the range must be empty.
1662 * Note that we depend upon higher level VM locks to insure that things don't change while
1663 * we are doing this. For example, VM should not be doing any pmap enters while it is nesting
1664 * or do 2 nests at once.
1667 kern_return_t
pmap_nest(pmap_t grand
, pmap_t subord
, addr64_t vstart
, addr64_t nstart
, uint64_t size
) {
1669 addr64_t vend
, colladdr
;
1674 if(size
& 0x0FFFFFFFULL
) return KERN_INVALID_VALUE
; /* We can only do this for multiples of 256MB */
1675 if((size
>> 25) > 65536) return KERN_INVALID_VALUE
; /* Max size we can nest is 2TB */
1676 if(vstart
& 0x0FFFFFFFULL
) return KERN_INVALID_VALUE
; /* We can only do this aligned to 256MB */
1677 if(nstart
& 0x0FFFFFFFULL
) return KERN_INVALID_VALUE
; /* We can only do this aligned to 256MB */
1679 if(size
== 0) { /* Is the size valid? */
1680 panic("pmap_nest: size is invalid - %016llX\n", size
);
1683 msize
= (size
>> 25) - 1; /* Change size to blocks of 32MB */
1685 nlists
= mapSetLists(grand
); /* Set number of lists this will be on */
1687 mp
= mapping_alloc(nlists
); /* Get a spare mapping block */
1689 mp
->mpFlags
= 0x01000000 | mpNest
| mpPerm
| mpBSu
| nlists
; /* Make this a permanent nested pmap with a 32MB basic size unit */
1690 /* Set the flags. Make sure busy count is 1 */
1691 mp
->mpSpace
= subord
->space
; /* Set the address space/pmap lookup ID */
1692 mp
->u
.mpBSize
= msize
; /* Set the size */
1693 mp
->mpPte
= 0; /* Set the PTE invalid */
1694 mp
->mpPAddr
= 0; /* Set the physical page number */
1695 mp
->mpVAddr
= vstart
; /* Set the address */
1696 mp
->mpNestReloc
= nstart
- vstart
; /* Set grand to nested vaddr relocation value */
1698 colladdr
= hw_add_map(grand
, mp
); /* Go add the mapping to the pmap */
1700 if(colladdr
) { /* Did it collide? */
1701 vend
= vstart
+ size
- 4096; /* Point to the last page we would cover in nest */
1702 panic("pmap_nest: attempt to nest into a non-empty range - pmap = %08X, start = %016llX, end = %016llX\n",
1703 grand
, vstart
, vend
);
1706 return KERN_SUCCESS
;
1710 * kern_return_t pmap_unnest(grand, vaddr)
1712 * grand = the pmap that we will nest subord into
1713 * vaddr = start of range in pmap to be unnested
1715 * Removes a pmap from another. This is used to implement shared segments.
1716 * On the current PPC processors, this is limited to segment (256MB) aligned
1717 * segment sized ranges.
1720 kern_return_t
pmap_unnest(pmap_t grand
, addr64_t vaddr
) {
1722 unsigned int tstamp
, i
, mycpu
;
1727 s
= splhigh(); /* Make sure interruptions are disabled */
1729 mp
= mapping_find(grand
, vaddr
, &nextva
, 0); /* Find the nested map */
1731 if(((unsigned int)mp
& mapRetCode
) != mapRtOK
) { /* See if it was even nested */
1732 panic("pmap_unnest: Attempt to unnest an unnested segment - va = %016llX\n", vaddr
);
1735 if((mp
->mpFlags
& mpType
) != mpNest
) { /* Did we find something other than a nest? */
1736 panic("pmap_unnest: Attempt to unnest something that is not a nest - va = %016llX\n", vaddr
);
1739 if(mp
->mpVAddr
!= vaddr
) { /* Make sure the address is the same */
1740 panic("pmap_unnest: Attempt to unnest something that is not at start of nest - va = %016llX\n", vaddr
);
1743 (void)hw_atomic_and(&mp
->mpFlags
, ~mpPerm
); /* Show that this mapping is now removable */
1745 mapping_drop_busy(mp
); /* Go ahead and release the mapping now */
1747 splx(s
); /* Restore 'rupts */
1749 (void)mapping_remove(grand
, vaddr
); /* Toss the nested pmap mapping */
1751 invalidateSegs(grand
); /* Invalidate the pmap segment cache */
1754 * Note that the following will force the segment registers to be reloaded
1755 * on all processors (if they are using the pmap we just changed) before returning.
1757 * This is needed. The reason is that until the segment register is
1758 * reloaded, another thread in the same task on a different processor will
1759 * be able to access memory that it isn't allowed to anymore. That can happen
1760 * because access to the subordinate pmap is being removed, but the pmap is still
1763 * Note that we only kick the other processor if we see that it was using the pmap while we
1768 for(i
=0; i
< real_ncpus
; i
++) { /* Cycle through processors */
1769 disable_preemption();
1770 mycpu
= cpu_number(); /* Who am I? Am I just a dream? */
1771 if((unsigned int)grand
== PerProcTable
[i
].ppe_vaddr
->ppUserPmapVirt
) { /* Is this guy using the changed pmap? */
1773 PerProcTable
[i
].ppe_vaddr
->ppInvSeg
= 1; /* Show that we need to invalidate the segments */
1777 tstamp
= PerProcTable
[i
].ppe_vaddr
->ruptStamp
[1]; /* Save the processor's last interrupt time stamp */
1778 if(cpu_signal(i
, SIGPcpureq
, CPRQsegload
, 0) == KERN_SUCCESS
) { /* Make sure we see the pmap change */
1779 if(!hw_cpu_wcng(&PerProcTable
[i
].ppe_vaddr
->ruptStamp
[1], tstamp
, LockTimeOut
)) { /* Wait for the other processors to enter debug */
1780 panic("pmap_unnest: Other processor (%d) did not see interruption request\n", i
);
1785 enable_preemption();
1788 return KERN_SUCCESS
; /* Bye, bye, butterfly... */
1793 * void MapUserMemoryWindowInit(void)
1795 * Initialize anything we need to in order to map user address space slices into
1796 * the kernel. Primarily used for copy in/out.
1798 * Currently we only support one 512MB slot for this purpose. There are two special
1799 * mappings defined for the purpose: the special pmap nest, and linkage mapping.
1801 * The special pmap nest (which is allocated in this function) is used as a place holder
1802 * in the kernel's pmap search list. It is 512MB long and covers the address range
1803 * starting at lgUMWvaddr. It points to no actual memory and when the fault handler
1804 * hits in it, it knows to look in the per_proc and start using the linkage
1805 * mapping contained therin.
1807 * The linkage mapping is used to glue the user address space slice into the
1808 * kernel. It contains the relocation information used to transform the faulting
1809 * kernel address into the user address space. It also provides the link to the
1810 * user's pmap. This is pointed to by the per_proc and is switched in and out
1811 * whenever there is a context switch.
1815 void MapUserMemoryWindowInit(void) {
1821 nlists
= mapSetLists(kernel_pmap
); /* Set number of lists this will be on */
1823 mp
= mapping_alloc(nlists
); /* Get a spare mapping block */
1825 mp
->mpFlags
= 0x01000000 | mpLinkage
| mpPerm
| mpBSu
| nlists
; /* Make this a permanent nested pmap with a 32MB basic size unit */
1826 /* Set the flags. Make sure busy count is 1 */
1827 mp
->mpSpace
= kernel_pmap
->space
; /* Set the address space/pmap lookup ID */
1828 mp
->u
.mpBSize
= 15; /* Set the size to 2 segments in 32MB chunks - 1 */
1829 mp
->mpPte
= 0; /* Means nothing */
1830 mp
->mpPAddr
= 0; /* Means nothing */
1831 mp
->mpVAddr
= lowGlo
.lgUMWvaddr
; /* Set the address range we cover */
1832 mp
->mpNestReloc
= 0; /* Means nothing */
1834 colladdr
= hw_add_map(kernel_pmap
, mp
); /* Go add the mapping to the pmap */
1836 if(colladdr
) { /* Did it collide? */
1837 panic("MapUserMemoryWindowInit: MapUserMemoryWindow range already mapped\n");
1844 * addr64_t MapUserMemoryWindow(vm_map_t map, vm_offset_t va, size)
1846 * map = the vm_map that we are mapping into the kernel
1847 * va = start of the address range we are mapping
1848 * Note that we do not test validty, we chose to trust our fellows...
1850 * Maps a 512M slice of a user address space into a predefined kernel range
1851 * on a per-thread basis. We map only the first 256M segment, allowing the
1852 * second 256M segment to fault in as needed. This allows our clients to access
1853 * an arbitrarily aligned operand up to 256M in size.
1855 * In the future, the restriction of a predefined range may be loosened.
1857 * Builds the proper linkage map to map the user range
1858 * We will round this down to the previous segment boundary and calculate
1859 * the relocation to the kernel slot
1861 * We always make a segment table entry here if we need to. This is mainly because of
1862 * copyin/out and if we don't, there will be multiple segment faults for
1863 * each system call. I have seen upwards of 30000 per second.
1865 * We do check, however, to see if the slice is already mapped and if so,
1866 * we just exit. This is done for performance reasons. It was found that
1867 * there was a considerable boost in copyin/out performance if we did not
1868 * invalidate the segment at ReleaseUserAddressSpace time, so we dumped the
1869 * restriction that you had to bracket MapUserMemoryWindow. Further, there
1870 * is a yet further boost if you didn't need to map it each time. The theory
1871 * behind this is that many times copies are to or from the same segment and
1872 * done multiple times within the same system call. To take advantage of that,
1873 * we check umwSpace and umwRelo to see if we've already got it.
1875 * We also need to half-invalidate the slice when we context switch or go
1876 * back to user state. A half-invalidate does not clear the actual mapping,
1877 * but it does force the MapUserMemoryWindow function to reload the segment
1878 * register/SLBE. If this is not done, we can end up some pretty severe
1879 * performance penalties. If we map a slice, and the cached space/relocation is
1880 * the same, we won't reload the segment registers. Howver, since we ran someone else,
1881 * our SR is cleared and we will take a fault. This is reasonable if we block
1882 * while copying (e.g., we took a page fault), but it is not reasonable when we
1883 * just start. For this reason, we half-invalidate to make sure that the SR is
1884 * explicitly reloaded.
1886 * Note that we do not go to the trouble of making a pmap segment cache
1887 * entry for these guys because they are very short term -- 99.99% of the time
1888 * they will be unmapped before the next context switch.
1892 addr64_t
MapUserMemoryWindow(
1896 addr64_t baddrs
, reladd
;
1900 baddrs
= va
& 0xFFFFFFFFF0000000ULL
; /* Isolate the segment */
1901 thread
= current_thread(); /* Remember our activation */
1903 reladd
= baddrs
- lowGlo
.lgUMWvaddr
; /* Get the relocation from user to kernel */
1905 if((thread
->machine
.umwSpace
== map
->pmap
->space
) && (thread
->machine
.umwRelo
== reladd
)) { /* Already mapped? */
1906 return ((va
& 0x0FFFFFFFULL
) | lowGlo
.lgUMWvaddr
); /* Pass back the kernel address we are to use */
1909 disable_preemption(); /* Don't move... */
1911 mp
= (mapping_t
*)&(getPerProc()->ppUMWmp
); /* Make up for C */
1912 thread
->machine
.umwRelo
= reladd
; /* Relocation from user to kernel */
1913 mp
->mpNestReloc
= reladd
; /* Relocation from user to kernel */
1915 thread
->machine
.umwSpace
= map
->pmap
->space
; /* Set the address space/pmap lookup ID */
1916 mp
->mpSpace
= map
->pmap
->space
; /* Set the address space/pmap lookup ID */
1919 * Here we make an assumption that we are going to be using the base pmap's address space.
1920 * If we are wrong, and that would be very, very, very rare, the fault handler will fix us up.
1923 hw_map_seg(map
->pmap
, lowGlo
.lgUMWvaddr
, baddrs
); /* Make the entry for the first segment */
1925 enable_preemption(); /* Let's move */
1926 return ((va
& 0x0FFFFFFFULL
) | lowGlo
.lgUMWvaddr
); /* Pass back the kernel address we are to use */
1931 * kern_return_t pmap_boot_map(size)
1933 * size = size of virtual address range to be mapped
1935 * This function is used to assign a range of virtual addresses before VM in
1936 * initialized. It starts at VM_MAX_KERNEL_ADDRESS and works downward.
1937 * The variable vm_last_addr contains the current highest possible VM
1938 * assignable address. It is a panic to attempt to call this after VM has
1939 * started up. The only problem is, is that we may not have the serial or
1940 * framebuffer mapped, so we'll never know we died.........
1943 vm_offset_t
pmap_boot_map(vm_size_t size
) {
1945 if(kernel_map
!= VM_MAP_NULL
) { /* Has VM already started? */
1946 panic("pmap_boot_map: VM started\n");
1949 size
= round_page(size
); /* Make sure this is in pages */
1950 vm_last_addr
= vm_last_addr
- size
; /* Allocate the memory */
1951 return (vm_last_addr
+ 1); /* Return the vaddr we just allocated */
1957 * void pmap_init_sharedpage(void);
1959 * Hack map for the 64-bit commpage
1962 void pmap_init_sharedpage(vm_offset_t cpg
){
1964 addr64_t cva
, cpoff
;
1967 sharedPmap
= pmap_create(0); /* Get a pmap to hold the common segment */
1968 if(!sharedPmap
) { /* Check for errors */
1969 panic("pmap_init_sharedpage: couldn't make sharedPmap\n");
1972 for(cpoff
= 0; cpoff
< _COMM_PAGE_AREA_USED
; cpoff
+= 4096) { /* Step along now */
1974 cpphys
= pmap_find_phys(kernel_pmap
, (addr64_t
)cpg
+ cpoff
);
1976 panic("pmap_init_sharedpage: compage %08X not mapped in kernel\n", cpg
+ cpoff
);
1979 cva
= mapping_make(sharedPmap
, (addr64_t
)((uint32_t)_COMM_PAGE_BASE_ADDRESS
) + cpoff
,
1980 cpphys
, mmFlgPerm
, 1, VM_PROT_READ
); /* Map the page read only */
1981 if(cva
) { /* Check for errors */
1982 panic("pmap_init_sharedpage: couldn't map commpage page - cva = %016llX\n", cva
);
1992 * void pmap_map_sharedpage(pmap_t pmap);
1994 * Maps the last segment in a 64-bit address space
1999 void pmap_map_sharedpage(task_t task
, pmap_t pmap
){
2003 if(task_has_64BitAddr(task
) || _cpu_capabilities
& k64Bit
) { /* Should we map the 64-bit page -1? */
2004 ret
= pmap_nest(pmap
, sharedPmap
, 0xFFFFFFFFF0000000ULL
, 0x00000000F0000000ULL
,
2005 0x0000000010000000ULL
); /* Nest the highest possible segment to map comm page */
2006 if(ret
!= KERN_SUCCESS
) { /* Did it work? */
2007 panic("pmap_map_sharedpage: couldn't nest shared page - ret = %08X\n", ret
);
2016 * void pmap_unmap_sharedpage(pmap_t pmap);
2018 * Unmaps the last segment in a 64-bit address space
2022 void pmap_unmap_sharedpage(pmap_t pmap
){
2030 if(BootProcInfo
.pf
.Available
& pf64Bit
) { /* Are we on a 64-bit machine? */
2032 inter
= ml_set_interrupts_enabled(FALSE
); /* Disable interruptions for now */
2033 mp
= hw_find_map(pmap
, 0xFFFFFFFFF0000000ULL
, &nextva
); /* Find the mapping for this address */
2034 if((unsigned int)mp
== mapRtBadLk
) { /* Did we lock up ok? */
2035 panic("pmap_unmap_sharedpage: mapping lock failure - rc = %08X, pmap = %08X\n", mp
, pmap
); /* Die... */
2038 gotnest
= 0; /* Assume nothing here */
2040 gotnest
= ((mp
->mpFlags
& mpType
) == mpNest
);
2041 /* Remember if we have a nest here */
2042 mapping_drop_busy(mp
); /* We have everything we need from the mapping */
2044 ml_set_interrupts_enabled(inter
); /* Put interrupts back to what they were */
2046 if(!gotnest
) return; /* Leave if there isn't any nesting here */
2048 ret
= pmap_unnest(pmap
, 0xFFFFFFFFF0000000ULL
); /* Unnest the max 64-bit page */
2050 if(ret
!= KERN_SUCCESS
) { /* Did it work? */
2051 panic("pmap_unmap_sharedpage: couldn't unnest shared page - ret = %08X\n", ret
);
2059 /* temporary workaround */
2062 __unused vm_map_t map
,
2063 __unused vm_offset_t va
)