]> git.saurik.com Git - apple/xnu.git/blob - osfmk/ppc/pmap.c
66ce7d0391de3fc5ce2aeb8e0cdce9c400078907
[apple/xnu.git] / osfmk / ppc / pmap.c
1 /*
2 * Copyright (c) 2000-2005 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_OSREFERENCE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the
10 * License may not be used to create, or enable the creation or
11 * redistribution of, unlawful or unlicensed copies of an Apple operating
12 * system, or to circumvent, violate, or enable the circumvention or
13 * violation of, any terms of an Apple operating system software license
14 * agreement.
15 *
16 * Please obtain a copy of the License at
17 * http://www.opensource.apple.com/apsl/ and read it before using this
18 * file.
19 *
20 * The Original Code and all software distributed under the License are
21 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
22 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
23 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
25 * Please see the License for the specific language governing rights and
26 * limitations under the License.
27 *
28 * @APPLE_LICENSE_OSREFERENCE_HEADER_END@
29 */
30 /*
31 * @OSF_COPYRIGHT@
32 */
33 /*
34 * Mach Operating System
35 * Copyright (c) 1990,1991,1992 The University of Utah and
36 * the Center for Software Science (CSS).
37 * Copyright (c) 1991,1987 Carnegie Mellon University.
38 * All rights reserved.
39 *
40 * Permission to use, copy, modify and distribute this software and its
41 * documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation,
45 * and that all advertising materials mentioning features or use of
46 * this software display the following acknowledgement: ``This product
47 * includes software developed by the Center for Software Science at
48 * the University of Utah.''
49 *
50 * CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSS ALLOW FREE USE OF
51 * THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY
52 * OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF
53 * THIS SOFTWARE.
54 *
55 * CSS requests users of this software to return to css-dist@cs.utah.edu any
56 * improvements that they make and grant CSS redistribution rights.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
60 * School of Computer Science
61 * Carnegie Mellon University
62 * Pittsburgh PA 15213-3890
63 * any improvements or extensions that they make and grant Carnegie Mellon
64 * the rights to redistribute these changes.
65 *
66 * Utah $Hdr: pmap.c 1.28 92/06/23$
67 * Author: Mike Hibler, Bob Wheeler, University of Utah CSS, 10/90
68 */
69
70 /*
71 * Manages physical address maps for powerpc.
72 *
73 * In addition to hardware address maps, this
74 * module is called upon to provide software-use-only
75 * maps which may or may not be stored in the same
76 * form as hardware maps. These pseudo-maps are
77 * used to store intermediate results from copy
78 * operations to and from address spaces.
79 *
80 * Since the information managed by this module is
81 * also stored by the logical address mapping module,
82 * this module may throw away valid virtual-to-physical
83 * mappings at almost any time. However, invalidations
84 * of virtual-to-physical mappings must be done as
85 * requested.
86 *
87 * In order to cope with hardware architectures which
88 * make virtual-to-physical map invalidates expensive,
89 * this module may delay invalidate or reduced protection
90 * operations until such time as they are actually
91 * necessary. This module is given full information to
92 * when physical maps must be made correct.
93 *
94 */
95
96 #include <zone_debug.h>
97 #include <debug.h>
98 #include <mach_kgdb.h>
99 #include <mach_vm_debug.h>
100 #include <db_machine_commands.h>
101
102 #include <kern/thread.h>
103 #include <kern/simple_lock.h>
104 #include <mach/vm_attributes.h>
105 #include <mach/vm_param.h>
106 #include <vm/vm_kern.h>
107 #include <kern/spl.h>
108
109 #include <kern/misc_protos.h>
110 #include <ppc/misc_protos.h>
111 #include <ppc/proc_reg.h>
112
113 #include <vm/pmap.h>
114 #include <vm/vm_map.h>
115 #include <vm/vm_page.h>
116
117 #include <ppc/pmap.h>
118 #include <ppc/mem.h>
119 #include <ppc/mappings.h>
120
121 #include <ppc/new_screen.h>
122 #include <ppc/Firmware.h>
123 #include <ppc/savearea.h>
124 #include <ppc/cpu_internal.h>
125 #include <ppc/exception.h>
126 #include <ppc/low_trace.h>
127 #include <ppc/lowglobals.h>
128 #include <ddb/db_output.h>
129 #include <machine/cpu_capabilities.h>
130
131 #include <vm/vm_protos.h> /* must be last */
132
133
134 extern unsigned int avail_remaining;
135 unsigned int debugbackpocket; /* (TEST/DEBUG) */
136
137 vm_offset_t first_free_virt;
138 int current_free_region; /* Used in pmap_next_page */
139
140 pmapTransTab *pmapTrans; /* Point to the hash to pmap translations */
141 struct phys_entry *phys_table;
142
143 /* forward */
144 static void pmap_map_physical(void);
145 static void pmap_map_iohole(addr64_t paddr, addr64_t size);
146 void pmap_activate(pmap_t pmap, thread_t th, int which_cpu);
147 void pmap_deactivate(pmap_t pmap, thread_t th, int which_cpu);
148
149 extern void hw_hash_init(void);
150
151 /* NOTE: kernel_pmap_store must be in V=R storage and aligned!!!!!!!!!!!!!! */
152
153 extern struct pmap kernel_pmap_store;
154 pmap_t kernel_pmap; /* Pointer to kernel pmap and anchor for in-use pmaps */
155 addr64_t kernel_pmap_phys; /* Pointer to kernel pmap and anchor for in-use pmaps, physical address */
156 pmap_t cursor_pmap; /* Pointer to last pmap allocated or previous if removed from in-use list */
157 pmap_t sharedPmap; /* Pointer to common pmap for 64-bit address spaces */
158 struct zone *pmap_zone; /* zone of pmap structures */
159 boolean_t pmap_initialized = FALSE;
160
161 int ppc_max_pmaps; /* Maximum number of concurrent address spaces allowed. This is machine dependent */
162 addr64_t vm_max_address; /* Maximum effective address supported */
163 addr64_t vm_max_physical; /* Maximum physical address supported */
164
165 /*
166 * Physical-to-virtual translations are handled by inverted page table
167 * structures, phys_tables. Multiple mappings of a single page are handled
168 * by linking the affected mapping structures. We initialise one region
169 * for phys_tables of the physical memory we know about, but more may be
170 * added as it is discovered (eg. by drivers).
171 */
172
173 /*
174 * free pmap list. caches the first free_pmap_max pmaps that are freed up
175 */
176 int free_pmap_max = 32;
177 int free_pmap_count;
178 pmap_t free_pmap_list;
179 decl_simple_lock_data(,free_pmap_lock)
180
181 /*
182 * Function to get index into phys_table for a given physical address
183 */
184
185 struct phys_entry *pmap_find_physentry(ppnum_t pa)
186 {
187 int i;
188 unsigned int entry;
189
190 for (i = pmap_mem_regions_count - 1; i >= 0; i--) {
191 if (pa < pmap_mem_regions[i].mrStart) continue; /* See if we fit in this region */
192 if (pa > pmap_mem_regions[i].mrEnd) continue; /* Check the end too */
193
194 entry = (unsigned int)pmap_mem_regions[i].mrPhysTab + ((pa - pmap_mem_regions[i].mrStart) * sizeof(phys_entry_t));
195 return (struct phys_entry *)entry;
196 }
197 // kprintf("DEBUG - pmap_find_physentry: page 0x%08X not found\n", pa);
198 return 0;
199 }
200
201 /*
202 * kern_return_t
203 * pmap_add_physical_memory(vm_offset_t spa, vm_offset_t epa,
204 * boolean_t available, unsigned int attr)
205 *
206 * THIS IS NOT SUPPORTED
207 */
208 kern_return_t
209 pmap_add_physical_memory(
210 __unused vm_offset_t spa,
211 __unused vm_offset_t epa,
212 __unused boolean_t available,
213 __unused unsigned int attr)
214 {
215
216 panic("Forget it! You can't map no more memory, you greedy puke!\n");
217 return KERN_SUCCESS;
218 }
219
220 /*
221 * pmap_map(va, spa, epa, prot)
222 * is called during boot to map memory in the kernel's address map.
223 * A virtual address range starting at "va" is mapped to the physical
224 * address range "spa" to "epa" with machine independent protection
225 * "prot".
226 *
227 * "va", "spa", and "epa" are byte addresses and must be on machine
228 * independent page boundaries.
229 *
230 * Pages with a contiguous virtual address range, the same protection, and attributes.
231 * therefore, we map it with a single block.
232 *
233 * Note that this call will only map into 32-bit space
234 *
235 */
236
237 vm_offset_t
238 pmap_map(
239 vm_offset_t va,
240 vm_offset_t spa,
241 vm_offset_t epa,
242 vm_prot_t prot)
243 {
244
245 addr64_t colladr;
246
247 if (spa == epa) return(va);
248
249 assert(epa > spa);
250
251 colladr = mapping_make(kernel_pmap, (addr64_t)va, (ppnum_t)(spa >> 12), (mmFlgBlock | mmFlgPerm), (epa - spa) >> 12, prot & VM_PROT_ALL);
252
253 if(colladr) { /* Was something already mapped in the range? */
254 panic("pmap_map: attempt to map previously mapped range - va = %08X, pa = %08X, epa = %08X, collision = %016llX\n",
255 va, spa, epa, colladr);
256 }
257 return(va);
258 }
259
260 /*
261 * pmap_map_physical()
262 * Maps physical memory into the kernel's address map beginning at lgPMWvaddr, the
263 * physical memory window.
264 *
265 */
266 void
267 pmap_map_physical()
268 {
269 unsigned region;
270 uint64_t msize, size;
271 addr64_t paddr, vaddr, colladdr;
272
273 /* Iterate over physical memory regions, block mapping each into the kernel's address map */
274 for (region = 0; region < (unsigned)pmap_mem_regions_count; region++) {
275 paddr = ((addr64_t)pmap_mem_regions[region].mrStart << 12); /* Get starting physical address */
276 size = (((addr64_t)pmap_mem_regions[region].mrEnd + 1) << 12) - paddr;
277
278 vaddr = paddr + lowGlo.lgPMWvaddr; /* Get starting virtual address */
279
280 while (size > 0) {
281
282 msize = ((size > 0x0000020000000000ULL) ? 0x0000020000000000ULL : size); /* Get size, but no more than 2TBs */
283
284 colladdr = mapping_make(kernel_pmap, vaddr, (paddr >> 12),
285 (mmFlgBlock | mmFlgPerm), (msize >> 12),
286 (VM_PROT_READ | VM_PROT_WRITE));
287 if (colladdr) {
288 panic ("pmap_map_physical: mapping failure - va = %016llX, pa = %08X, size = %08X, collision = %016llX\n",
289 vaddr, (paddr >> 12), (msize >> 12), colladdr);
290 }
291
292 vaddr = vaddr + (uint64_t)msize; /* Point to the next virtual addr */
293 paddr = paddr + (uint64_t)msize; /* Point to the next physical addr */
294 size -= msize;
295 }
296 }
297 }
298
299 /*
300 * pmap_map_iohole(addr64_t paddr, addr64_t size)
301 * Maps an I/O hole into the kernel's address map at its proper offset in
302 * the physical memory window.
303 *
304 */
305 void
306 pmap_map_iohole(addr64_t paddr, addr64_t size)
307 {
308
309 addr64_t vaddr, colladdr, msize;
310 uint32_t psize;
311
312 vaddr = paddr + lowGlo.lgPMWvaddr; /* Get starting virtual address */
313
314 while (size > 0) {
315
316 msize = ((size > 0x0000020000000000ULL) ? 0x0000020000000000ULL : size); /* Get size, but no more than 2TBs */
317
318 colladdr = mapping_make(kernel_pmap, vaddr, (paddr >> 12),
319 (mmFlgBlock | mmFlgPerm | mmFlgGuarded | mmFlgCInhib), (msize >> 12),
320 (VM_PROT_READ | VM_PROT_WRITE));
321 if (colladdr) {
322 panic ("pmap_map_iohole: mapping failed - va = %016llX, pa = %08X, size = %08X, collision = %016llX\n",
323 vaddr, (paddr >> 12), (msize >> 12), colladdr);
324 }
325
326 vaddr = vaddr + (uint64_t)msize; /* Point to the next virtual addr */
327 paddr = paddr + (uint64_t)msize; /* Point to the next physical addr */
328 size -= msize;
329 }
330 }
331
332 /*
333 * Bootstrap the system enough to run with virtual memory.
334 * Map the kernel's code and data, and allocate the system page table.
335 * Called with mapping done by BATs. Page_size must already be set.
336 *
337 * Parameters:
338 * msize: Total memory present
339 * first_avail: First virtual address available
340 * kmapsize: Size of kernel text and data
341 */
342 void
343 pmap_bootstrap(uint64_t msize, vm_offset_t *first_avail, unsigned int kmapsize)
344 {
345 vm_offset_t addr;
346 vm_size_t size;
347 unsigned int i, num, mapsize, vmpagesz, vmmapsz, nbits;
348 signed bank;
349 uint64_t tmemsize;
350 uint_t htslop;
351 vm_offset_t first_used_addr, PCAsize;
352 struct phys_entry *phys_entry;
353
354 *first_avail = round_page(*first_avail); /* Make sure we start out on a page boundary */
355 vm_last_addr = VM_MAX_KERNEL_ADDRESS; /* Set the highest address know to VM */
356
357 /*
358 * Initialize kernel pmap
359 */
360 kernel_pmap = &kernel_pmap_store;
361 kernel_pmap_phys = (addr64_t)&kernel_pmap_store;
362 cursor_pmap = &kernel_pmap_store;
363
364 kernel_pmap->pmap_link.next = (queue_t)kernel_pmap; /* Set up anchor forward */
365 kernel_pmap->pmap_link.prev = (queue_t)kernel_pmap; /* Set up anchor reverse */
366 kernel_pmap->ref_count = 1;
367 kernel_pmap->pmapFlags = pmapKeyDef; /* Set the default keys */
368 kernel_pmap->pmapCCtl = pmapCCtlVal; /* Initialize cache control */
369 kernel_pmap->space = PPC_SID_KERNEL;
370 kernel_pmap->pmapvr = 0; /* Virtual = Real */
371
372 /*
373 * IBM's recommended hash table size is one PTEG for every 2 physical pages.
374 * However, we have found that OSX rarely uses more than 4 PTEs in a PTEG
375 * with this size table. Therefore, by default we allocate a hash table
376 * one half IBM's recommended size, ie one PTEG per 4 pages. The "ht_shift" boot-arg
377 * can be used to override the default hash table size.
378 * We will allocate the hash table in physical RAM, outside of kernel virtual memory,
379 * at the top of the highest bank that will contain it.
380 * Note that "bank" doesn't refer to a physical memory slot here, it is a range of
381 * physically contiguous memory.
382 *
383 * The PCA will go there as well, immediately before the hash table.
384 */
385
386 nbits = cntlzw(((msize << 1) - 1) >> 32); /* Get first bit in upper half */
387 if (nbits == 32) /* If upper half was empty, find bit in bottom half */
388 nbits = nbits + cntlzw((uint_t)((msize << 1) - 1));
389 tmemsize = 0x8000000000000000ULL >> nbits; /* Get memory size rounded up to power of 2 */
390
391 /* Calculate hash table size: First, make sure we don't overflow 32-bit arithmetic. */
392 if (tmemsize > 0x0000002000000000ULL)
393 tmemsize = 0x0000002000000000ULL;
394
395 /* Second, calculate IBM recommended hash table size, ie one PTEG per 2 physical pages */
396 hash_table_size = (uint_t)(tmemsize >> 13) * PerProcTable[0].ppe_vaddr->pf.pfPTEG;
397
398 /* Third, cut this in half to produce the OSX default, ie one PTEG per 4 physical pages */
399 hash_table_size >>= 1;
400
401 /* Fourth, adjust default size per "ht_shift" boot arg */
402 if (hash_table_shift >= 0) /* if positive, make size bigger */
403 hash_table_size <<= hash_table_shift;
404 else /* if "ht_shift" is negative, make smaller */
405 hash_table_size >>= (-hash_table_shift);
406
407 /* Fifth, make sure we are at least minimum size */
408 if (hash_table_size < (256 * 1024))
409 hash_table_size = (256 * 1024);
410
411 while(1) { /* Try to fit hash table in PCA into contiguous memory */
412
413 if(hash_table_size < (256 * 1024)) { /* Have we dropped too short? This should never, ever happen */
414 panic("pmap_bootstrap: Can't find space for hash table\n"); /* This will never print, system isn't up far enough... */
415 }
416
417 PCAsize = (hash_table_size / PerProcTable[0].ppe_vaddr->pf.pfPTEG) * sizeof(PCA_t); /* Get total size of PCA table */
418 PCAsize = round_page(PCAsize); /* Make sure it is at least a page long */
419
420 for(bank = pmap_mem_regions_count - 1; bank >= 0; bank--) { /* Search backwards through banks */
421
422 hash_table_base = ((addr64_t)pmap_mem_regions[bank].mrEnd << 12) - hash_table_size + PAGE_SIZE; /* Get tenative address */
423
424 htslop = hash_table_base & (hash_table_size - 1); /* Get the extra that we will round down when we align */
425 hash_table_base = hash_table_base & -(addr64_t)hash_table_size; /* Round down to correct boundary */
426
427 if((hash_table_base - round_page(PCAsize)) >= ((addr64_t)pmap_mem_regions[bank].mrStart << 12)) break; /* Leave if we fit */
428 }
429
430 if(bank >= 0) break; /* We are done if we found a suitable bank */
431
432 hash_table_size = hash_table_size >> 1; /* Try the next size down */
433 }
434
435 if(htslop) { /* If there was slop (i.e., wasted pages for alignment) add a new region */
436 for(i = pmap_mem_regions_count - 1; i >= (unsigned)bank; i--) { /* Copy from end to our bank, including our bank */
437 pmap_mem_regions[i + 1].mrStart = pmap_mem_regions[i].mrStart; /* Set the start of the bank */
438 pmap_mem_regions[i + 1].mrAStart = pmap_mem_regions[i].mrAStart; /* Set the start of allocatable area */
439 pmap_mem_regions[i + 1].mrEnd = pmap_mem_regions[i].mrEnd; /* Set the end address of bank */
440 pmap_mem_regions[i + 1].mrAEnd = pmap_mem_regions[i].mrAEnd; /* Set the end address of allocatable area */
441 }
442
443 pmap_mem_regions[i + 1].mrStart = (hash_table_base + hash_table_size) >> 12; /* Set the start of the next bank to the start of the slop area */
444 pmap_mem_regions[i + 1].mrAStart = (hash_table_base + hash_table_size) >> 12; /* Set the start of allocatable area to the start of the slop area */
445 pmap_mem_regions[i].mrEnd = (hash_table_base + hash_table_size - 4096) >> 12; /* Set the end of our bank to the end of the hash table */
446
447 }
448
449 pmap_mem_regions[bank].mrAEnd = (hash_table_base - PCAsize - 4096) >> 12; /* Set the maximum allocatable in this bank */
450
451 hw_hash_init(); /* Initiaize the hash table and PCA */
452 hw_setup_trans(); /* Set up hardware registers needed for translation */
453
454 /*
455 * The hash table is now all initialized and so is the PCA. Go on to do the rest of it.
456 * This allocation is from the bottom up.
457 */
458
459 num = atop_64(msize); /* Get number of pages in all of memory */
460
461 /* Figure out how much we need to allocate */
462
463 size = (vm_size_t) (
464 (InitialSaveBloks * PAGE_SIZE) + /* Allow space for the initial context saveareas */
465 (BackPocketSaveBloks * PAGE_SIZE) + /* For backpocket saveareas */
466 trcWork.traceSize + /* Size of trace table */
467 ((((1 << maxAdrSpb) * sizeof(pmapTransTab)) + 4095) & -4096) + /* Size of pmap translate table */
468 (((num * sizeof(struct phys_entry)) + 4095) & -4096) /* For the physical entries */
469 );
470
471 mapsize = size = round_page(size); /* Get size of area to map that we just calculated */
472 mapsize = mapsize + kmapsize; /* Account for the kernel text size */
473
474 vmpagesz = round_page(num * sizeof(struct vm_page)); /* Allow for all vm_pages needed to map physical mem */
475 vmmapsz = round_page((num / 8) * sizeof(struct vm_map_entry)); /* Allow for vm_maps */
476
477 mapsize = mapsize + vmpagesz + vmmapsz; /* Add the VM system estimates into the grand total */
478
479 mapsize = mapsize + (4 * 1024 * 1024); /* Allow for 4 meg of extra mappings */
480 mapsize = ((mapsize / PAGE_SIZE) + MAPPERBLOK - 1) / MAPPERBLOK; /* Get number of blocks of mappings we need */
481 mapsize = mapsize + ((mapsize + MAPPERBLOK - 1) / MAPPERBLOK); /* Account for the mappings themselves */
482
483 size = size + (mapsize * PAGE_SIZE); /* Get the true size we need */
484
485 /* hash table must be aligned to its size */
486
487 addr = *first_avail; /* Set the address to start allocations */
488 first_used_addr = addr; /* Remember where we started */
489
490 bzero((char *)addr, size); /* Clear everything that we are allocating */
491
492 savearea_init(addr); /* Initialize the savearea chains and data */
493
494 addr = (vm_offset_t)((unsigned int)addr + ((InitialSaveBloks + BackPocketSaveBloks) * PAGE_SIZE)); /* Point past saveareas */
495
496 trcWork.traceCurr = (unsigned int)addr; /* Set first trace slot to use */
497 trcWork.traceStart = (unsigned int)addr; /* Set start of trace table */
498 trcWork.traceEnd = (unsigned int)addr + trcWork.traceSize; /* Set end of trace table */
499
500 addr = (vm_offset_t)trcWork.traceEnd; /* Set next allocatable location */
501
502 pmapTrans = (pmapTransTab *)addr; /* Point to the pmap to hash translation table */
503
504 pmapTrans[PPC_SID_KERNEL].pmapPAddr = (addr64_t)((uintptr_t)kernel_pmap); /* Initialize the kernel pmap in the translate table */
505 pmapTrans[PPC_SID_KERNEL].pmapVAddr = CAST_DOWN(unsigned int, kernel_pmap); /* Initialize the kernel pmap in the translate table */
506
507 addr += ((((1 << maxAdrSpb) * sizeof(pmapTransTab)) + 4095) & -4096); /* Point past pmap translate table */
508
509 /* NOTE: the phys_table must be within the first 2GB of physical RAM. This makes sure we only need to do 32-bit arithmetic */
510
511 phys_entry = (struct phys_entry *) addr; /* Get pointer to physical table */
512
513 for (bank = 0; bank < pmap_mem_regions_count; bank++) { /* Set pointer and initialize all banks of ram */
514
515 pmap_mem_regions[bank].mrPhysTab = phys_entry; /* Set pointer to the physical table for this bank */
516
517 phys_entry = phys_entry + (pmap_mem_regions[bank].mrEnd - pmap_mem_regions[bank].mrStart + 1); /* Point to the next */
518 }
519
520 addr += (((num * sizeof(struct phys_entry)) + 4095) & -4096); /* Step on past the physical entries */
521
522 /*
523 * Remaining space is for mapping entries. Tell the initializer routine that
524 * the mapping system can't release this block because it's permanently assigned
525 */
526
527 mapping_init(); /* Initialize the mapping tables */
528
529 for(i = addr; i < first_used_addr + size; i += PAGE_SIZE) { /* Add initial mapping blocks */
530 mapping_free_init(i, 1, 0); /* Pass block address and say that this one is not releasable */
531 }
532 mapCtl.mapcmin = MAPPERBLOK; /* Make sure we only adjust one at a time */
533
534 /* Map V=R the page tables */
535 pmap_map(first_used_addr, first_used_addr,
536 round_page(first_used_addr + size), VM_PROT_READ | VM_PROT_WRITE);
537
538 *first_avail = round_page(first_used_addr + size); /* Set next available page */
539 first_free_virt = *first_avail; /* Ditto */
540
541 /* For 64-bit machines, block map physical memory and the I/O hole into kernel space */
542 if(BootProcInfo.pf.Available & pf64Bit) { /* Are we on a 64-bit machine? */
543 lowGlo.lgPMWvaddr = PHYS_MEM_WINDOW_VADDR; /* Initialize the physical memory window's virtual address */
544
545 pmap_map_physical(); /* Block map physical memory into the window */
546
547 pmap_map_iohole(IO_MEM_WINDOW_VADDR, IO_MEM_WINDOW_SIZE);
548 /* Block map the I/O hole */
549 }
550
551 /* All the rest of memory is free - add it to the free
552 * regions so that it can be allocated by pmap_steal
553 */
554
555 pmap_mem_regions[0].mrAStart = (*first_avail >> 12); /* Set up the free area to start allocations (always in the first bank) */
556
557 current_free_region = 0; /* Set that we will start allocating in bank 0 */
558 avail_remaining = 0; /* Clear free page count */
559 for(bank = 0; bank < pmap_mem_regions_count; bank++) { /* Total up all of the pages in the system that are available */
560 avail_remaining += (pmap_mem_regions[bank].mrAEnd - pmap_mem_regions[bank].mrAStart) + 1; /* Add in allocatable pages in this bank */
561 }
562
563
564 }
565
566 /*
567 * pmap_init(spa, epa)
568 * finishes the initialization of the pmap module.
569 * This procedure is called from vm_mem_init() in vm/vm_init.c
570 * to initialize any remaining data structures that the pmap module
571 * needs to map virtual memory (VM is already ON).
572 *
573 * Note that the pmap needs to be sized and aligned to
574 * a power of two. This is because it is used both in virtual and
575 * real so it can't span a page boundary.
576 */
577
578 void
579 pmap_init(void)
580 {
581
582 pmap_zone = zinit(pmapSize, 400 * pmapSize, 4096, "pmap");
583 #if ZONE_DEBUG
584 zone_debug_disable(pmap_zone); /* Can't debug this one 'cause it messes with size and alignment */
585 #endif /* ZONE_DEBUG */
586
587 pmap_initialized = TRUE;
588
589 /*
590 * Initialize list of freed up pmaps
591 */
592 free_pmap_list = 0; /* Set that there are no free pmaps */
593 free_pmap_count = 0;
594 simple_lock_init(&free_pmap_lock, 0);
595
596 }
597
598 unsigned int pmap_free_pages(void)
599 {
600 return avail_remaining;
601 }
602
603 /*
604 * This function allocates physical pages.
605 */
606
607 /* Non-optimal, but only used for virtual memory startup.
608 * Allocate memory from a table of free physical addresses
609 * If there are no more free entries, too bad.
610 */
611
612 boolean_t pmap_next_page(ppnum_t *addrp)
613 {
614 int i;
615
616 if(current_free_region >= pmap_mem_regions_count) return FALSE; /* Return failure if we have used everything... */
617
618 for(i = current_free_region; i < pmap_mem_regions_count; i++) { /* Find the next bank with free pages */
619 if(pmap_mem_regions[i].mrAStart <= pmap_mem_regions[i].mrAEnd) break; /* Found one */
620 }
621
622 current_free_region = i; /* Set our current bank */
623 if(i >= pmap_mem_regions_count) return FALSE; /* Couldn't find a free page */
624
625 *addrp = pmap_mem_regions[i].mrAStart; /* Allocate the page */
626 pmap_mem_regions[i].mrAStart = pmap_mem_regions[i].mrAStart + 1; /* Set the next one to go */
627 avail_remaining--; /* Drop free count */
628
629 return TRUE;
630 }
631
632 void pmap_virtual_space(
633 vm_offset_t *startp,
634 vm_offset_t *endp)
635 {
636 *startp = round_page(first_free_virt);
637 *endp = vm_last_addr;
638 }
639
640 /*
641 * pmap_create
642 *
643 * Create and return a physical map.
644 *
645 * If the size specified for the map is zero, the map is an actual physical
646 * map, and may be referenced by the hardware.
647 *
648 * A pmap is either in the free list or in the in-use list. The only use
649 * of the in-use list (aside from debugging) is to handle the VSID wrap situation.
650 * Whenever a new pmap is allocated (i.e., not recovered from the free list). The
651 * in-use list is matched until a hole in the VSID sequence is found. (Note
652 * that the in-use pmaps are queued in VSID sequence order.) This is all done
653 * while free_pmap_lock is held.
654 *
655 * If the size specified is non-zero, the map will be used in software
656 * only, and is bounded by that size.
657 */
658 pmap_t
659 pmap_create(vm_map_size_t size)
660 {
661 pmap_t pmap, ckpmap, fore;
662 int s;
663 unsigned int currSID;
664 addr64_t physpmap;
665
666 /*
667 * A software use-only map doesn't even need a pmap structure.
668 */
669 if (size)
670 return(PMAP_NULL);
671
672 /*
673 * If there is a pmap in the pmap free list, reuse it.
674 * Note that we use free_pmap_list for all chaining of pmaps, both to
675 * the free list and the in use chain (anchored from kernel_pmap).
676 */
677 s = splhigh();
678 simple_lock(&free_pmap_lock);
679
680 if(free_pmap_list) { /* Any free? */
681 pmap = free_pmap_list; /* Yes, allocate it */
682 free_pmap_list = (pmap_t)pmap->freepmap; /* Dequeue this one (we chain free ones through freepmap) */
683 free_pmap_count--;
684 }
685 else {
686 simple_unlock(&free_pmap_lock); /* Unlock just in case */
687 splx(s);
688
689 pmap = (pmap_t) zalloc(pmap_zone); /* Get one */
690 if (pmap == PMAP_NULL) return(PMAP_NULL); /* Handle out-of-memory condition */
691
692 bzero((char *)pmap, pmapSize); /* Clean up the pmap */
693
694 s = splhigh();
695 simple_lock(&free_pmap_lock); /* Lock it back up */
696
697 ckpmap = cursor_pmap; /* Get starting point for free ID search */
698 currSID = ckpmap->spaceNum; /* Get the actual space ID number */
699
700 while(1) { /* Keep trying until something happens */
701
702 currSID = (currSID + 1) & (maxAdrSp - 1); /* Get the next in the sequence */
703 if(((currSID * incrVSID) & (maxAdrSp - 1)) == invalSpace) continue; /* Skip the space we have reserved */
704 ckpmap = (pmap_t)ckpmap->pmap_link.next; /* On to the next in-use pmap */
705
706 if(ckpmap->spaceNum != currSID) break; /* If we are out of sequence, this is free */
707
708 if(ckpmap == cursor_pmap) { /* See if we have 2^20 already allocated */
709 panic("pmap_create: Maximum number (%d) active address spaces reached\n", maxAdrSp); /* Die pig dog */
710 }
711 }
712
713 pmap->space = (currSID * incrVSID) & (maxAdrSp - 1); /* Calculate the actual VSID */
714 pmap->spaceNum = currSID; /* Set the space ID number */
715 /*
716 * Now we link into the chain just before the out of sequence guy.
717 */
718
719 fore = (pmap_t)ckpmap->pmap_link.prev; /* Get the current's previous */
720 pmap->pmap_link.next = (queue_t)ckpmap; /* My next points to the current */
721 fore->pmap_link.next = (queue_t)pmap; /* Current's previous's next points to me */
722 pmap->pmap_link.prev = (queue_t)fore; /* My prev points to what the current pointed to */
723 ckpmap->pmap_link.prev = (queue_t)pmap; /* Current's prev points to me */
724
725 physpmap = ((addr64_t)pmap_find_phys(kernel_pmap, (addr64_t)((uintptr_t)pmap)) << 12) | (addr64_t)((unsigned int)pmap & 0xFFF); /* Get the physical address of the pmap */
726
727 pmap->pmapvr = (addr64_t)((uintptr_t)pmap) ^ physpmap; /* Make V to R translation mask */
728
729 pmapTrans[pmap->space].pmapPAddr = physpmap; /* Set translate table physical to point to us */
730 pmapTrans[pmap->space].pmapVAddr = CAST_DOWN(unsigned int, pmap); /* Set translate table virtual to point to us */
731 }
732
733 pmap->pmapVmmExt = 0; /* Clear VMM extension block vaddr */
734 pmap->pmapVmmExtPhys = 0; /* and the paddr, too */
735 pmap->pmapFlags = pmapKeyDef; /* Set default key */
736 pmap->pmapCCtl = pmapCCtlVal; /* Initialize cache control */
737 pmap->ref_count = 1;
738 pmap->stats.resident_count = 0;
739 pmap->stats.wired_count = 0;
740 pmap->pmapSCSubTag = 0x0000000000000000ULL; /* Make sure this is clean an tidy */
741 simple_unlock(&free_pmap_lock);
742
743 splx(s);
744 return(pmap);
745 }
746
747 /*
748 * pmap_destroy
749 *
750 * Gives up a reference to the specified pmap. When the reference count
751 * reaches zero the pmap structure is added to the pmap free list.
752 *
753 * Should only be called if the map contains no valid mappings.
754 */
755 void
756 pmap_destroy(pmap_t pmap)
757 {
758 int ref_count;
759 spl_t s;
760 pmap_t fore, aft;
761
762 if (pmap == PMAP_NULL)
763 return;
764
765 ref_count=hw_atomic_sub(&pmap->ref_count, 1); /* Back off the count */
766 if(ref_count>0) return; /* Still more users, leave now... */
767
768 if(ref_count < 0) /* Did we go too far? */
769 panic("pmap_destroy(): ref_count < 0");
770
771 if (!(pmap->pmapFlags & pmapVMgsaa)) { /* Don't try this for a shadow assist guest */
772 pmap_unmap_sharedpage(pmap); /* Remove any mapping of page -1 */
773 }
774
775 #ifdef notdef
776 if(pmap->stats.resident_count != 0)
777 panic("PMAP_DESTROY: pmap not empty");
778 #else
779 if(pmap->stats.resident_count != 0) {
780 pmap_remove(pmap, 0, 0xFFFFFFFFFFFFF000ULL);
781 }
782 #endif
783
784 /*
785 * Add the pmap to the pmap free list.
786 */
787
788 s = splhigh();
789 /*
790 * Add the pmap to the pmap free list.
791 */
792 simple_lock(&free_pmap_lock);
793
794 if (free_pmap_count <= free_pmap_max) { /* Do we have enough spares? */
795
796 pmap->freepmap = free_pmap_list; /* Queue in front */
797 free_pmap_list = pmap;
798 free_pmap_count++;
799 simple_unlock(&free_pmap_lock);
800
801 } else {
802 if(cursor_pmap == pmap) cursor_pmap = (pmap_t)pmap->pmap_link.prev; /* If we are releasing the cursor, back up */
803 fore = (pmap_t)pmap->pmap_link.prev;
804 aft = (pmap_t)pmap->pmap_link.next;
805 fore->pmap_link.next = pmap->pmap_link.next; /* My previous's next is my next */
806 aft->pmap_link.prev = pmap->pmap_link.prev; /* My next's previous is my previous */
807 simple_unlock(&free_pmap_lock);
808 pmapTrans[pmap->space].pmapPAddr = -1; /* Invalidate the translate table physical */
809 pmapTrans[pmap->space].pmapVAddr = -1; /* Invalidate the translate table virtual */
810 zfree(pmap_zone, pmap);
811 }
812 splx(s);
813 }
814
815 /*
816 * pmap_reference(pmap)
817 * gains a reference to the specified pmap.
818 */
819 void
820 pmap_reference(pmap_t pmap)
821 {
822 if (pmap != PMAP_NULL) hw_atomic_add(&pmap->ref_count, 1); /* Bump the count */
823 }
824
825 /*
826 * pmap_remove_some_phys
827 *
828 * Removes mappings of the associated page from the specified pmap
829 *
830 */
831 void pmap_remove_some_phys(
832 pmap_t pmap,
833 vm_offset_t pa)
834 {
835 register struct phys_entry *pp;
836 register struct mapping *mp;
837 unsigned int pindex;
838
839 if (pmap == PMAP_NULL) { /* This should never be called with a null pmap */
840 panic("pmap_remove_some_phys: null pmap\n");
841 }
842
843 pp = mapping_phys_lookup(pa, &pindex); /* Get physical entry */
844 if (pp == 0) return; /* Leave if not in physical RAM */
845
846 do { /* Keep going until we toss all pages from this pmap */
847 if (pmap->pmapFlags & pmapVMhost) {
848 mp = hw_purge_phys(pp); /* Toss a map */
849 switch ((unsigned int)mp & mapRetCode) {
850 case mapRtOK:
851 mapping_free(mp); /* Return mapping to free inventory */
852 break;
853 case mapRtGuest:
854 break; /* Don't try to return a guest mapping */
855 case mapRtEmpty:
856 break; /* Physent chain empty, we're done */
857 case mapRtNotFnd:
858 break; /* Mapping disappeared on us, retry */
859 default:
860 panic("pmap_remove_some_phys: hw_purge_phys failed - pp = %08X, pmap = %08X, code = %08X\n",
861 pp, pmap, mp); /* Handle failure with our usual lack of tact */
862 }
863 } else {
864 mp = hw_purge_space(pp, pmap); /* Toss a map */
865 switch ((unsigned int)mp & mapRetCode) {
866 case mapRtOK:
867 mapping_free(mp); /* Return mapping to free inventory */
868 break;
869 case mapRtEmpty:
870 break; /* Physent chain empty, we're done */
871 case mapRtNotFnd:
872 break; /* Mapping disappeared on us, retry */
873 default:
874 panic("pmap_remove_some_phys: hw_purge_phys failed - pp = %08X, pmap = %08X, code = %08X\n",
875 pp, pmap, mp); /* Handle failure with our usual lack of tact */
876 }
877 }
878 } while (mapRtEmpty != ((unsigned int)mp & mapRetCode));
879
880 #if DEBUG
881 if ((pmap->pmapFlags & pmapVMhost) && !pmap_verify_free(pa))
882 panic("pmap_remove_some_phys: cruft left behind - pa = %08X, pmap = %08X\n", pa, pmap);
883 #endif
884
885 return; /* Leave... */
886 }
887
888 /*
889 * pmap_remove(pmap, s, e)
890 * unmaps all virtual addresses v in the virtual address
891 * range determined by [s, e) and pmap.
892 * s and e must be on machine independent page boundaries and
893 * s must be less than or equal to e.
894 *
895 * Note that pmap_remove does not remove any mappings in nested pmaps. We just
896 * skip those segments.
897 */
898 void
899 pmap_remove(
900 pmap_t pmap,
901 addr64_t sva,
902 addr64_t eva)
903 {
904 addr64_t va, endva;
905
906 if (pmap == PMAP_NULL) return; /* Leave if software pmap */
907
908
909 /* It is just possible that eva might have wrapped around to zero,
910 * and sometimes we get asked to liberate something of size zero
911 * even though it's dumb (eg. after zero length read_overwrites)
912 */
913 assert(eva >= sva);
914
915 /* If these are not page aligned the loop might not terminate */
916 assert((sva == trunc_page_64(sva)) && (eva == trunc_page_64(eva)));
917
918 va = sva & -4096LL; /* Round start down to a page */
919 endva = eva & -4096LL; /* Round end down to a page */
920
921 while(1) { /* Go until we finish the range */
922 va = mapping_remove(pmap, va); /* Remove the mapping and see what's next */
923 va = va & -4096LL; /* Make sure the "not found" indication is clear */
924 if((va == 0) || (va >= endva)) break; /* End loop if we finish range or run off the end */
925 }
926
927 }
928
929 /*
930 * Routine:
931 * pmap_page_protect
932 *
933 * Function:
934 * Lower the permission for all mappings to a given page.
935 */
936 void
937 pmap_page_protect(
938 ppnum_t pa,
939 vm_prot_t prot)
940 {
941 register struct phys_entry *pp;
942 boolean_t remove;
943 unsigned int pindex;
944 mapping_t *mp;
945
946
947 switch (prot) {
948 case VM_PROT_READ:
949 case VM_PROT_READ|VM_PROT_EXECUTE:
950 remove = FALSE;
951 break;
952 case VM_PROT_ALL:
953 return;
954 default:
955 remove = TRUE;
956 break;
957 }
958
959
960 pp = mapping_phys_lookup(pa, &pindex); /* Get physical entry */
961 if (pp == 0) return; /* Leave if not in physical RAM */
962
963 if (remove) { /* If the protection was set to none, we'll remove all mappings */
964
965 do { /* Keep going until we toss all pages from this physical page */
966 mp = hw_purge_phys(pp); /* Toss a map */
967 switch ((unsigned int)mp & mapRetCode) {
968 case mapRtOK:
969 mapping_free(mp); /* Return mapping to free inventory */
970 break;
971 case mapRtGuest:
972 break; /* Don't try to return a guest mapping */
973 case mapRtNotFnd:
974 break; /* Mapping disappeared on us, retry */
975 case mapRtEmpty:
976 break; /* Physent chain empty, we're done */
977 default: panic("pmap_page_protect: hw_purge_phys failed - pp = %08X, code = %08X\n",
978 pp, mp); /* Handle failure with our usual lack of tact */
979 }
980 } while (mapRtEmpty != ((unsigned int)mp & mapRetCode));
981
982 #if DEBUG
983 if (!pmap_verify_free(pa))
984 panic("pmap_page_protect: cruft left behind - pa = %08X\n", pa);
985 #endif
986
987 return; /* Leave... */
988 }
989
990 /* When we get here, it means that we are to change the protection for a
991 * physical page.
992 */
993
994 mapping_protect_phys(pa, prot & VM_PROT_ALL); /* Change protection of all mappings to page. */
995
996 }
997
998 /*
999 * Routine:
1000 * pmap_disconnect
1001 *
1002 * Function:
1003 * Disconnect all mappings for this page and return reference and change status
1004 * in generic format.
1005 *
1006 */
1007 unsigned int pmap_disconnect(
1008 ppnum_t pa)
1009 {
1010 register struct phys_entry *pp;
1011 unsigned int pindex;
1012 mapping_t *mp;
1013
1014 pp = mapping_phys_lookup(pa, &pindex); /* Get physical entry */
1015 if (pp == 0) return (0); /* Return null ref and chg if not in physical RAM */
1016 do { /* Iterate until all mappings are dead and gone */
1017 mp = hw_purge_phys(pp); /* Disconnect a mapping */
1018 if (!mp) break; /* All mappings are gone, leave the loop */
1019 switch ((unsigned int)mp & mapRetCode) {
1020 case mapRtOK:
1021 mapping_free(mp); /* Return mapping to free inventory */
1022 break;
1023 case mapRtGuest:
1024 break; /* Don't try to return a guest mapping */
1025 case mapRtNotFnd:
1026 break; /* Mapping disappeared on us, retry */
1027 case mapRtEmpty:
1028 break; /* Physent chain empty, we're done */
1029 default: panic("hw_purge_phys: hw_purge_phys failed - pp = %08X, code = %08X\n",
1030 pp, mp); /* Handle failure with our usual lack of tact */
1031 }
1032 } while (mapRtEmpty != ((unsigned int)mp & mapRetCode));
1033
1034 #if DEBUG
1035 if (!pmap_verify_free(pa))
1036 panic("pmap_disconnect: cruft left behind - pa = %08X\n", pa);
1037 #endif
1038
1039 return (mapping_tst_refmod(pa)); /* Return page ref and chg in generic format */
1040 }
1041
1042 /*
1043 * pmap_protect(pmap, s, e, prot)
1044 * changes the protection on all virtual addresses v in the
1045 * virtual address range determined by [s, e] and pmap to prot.
1046 * s and e must be on machine independent page boundaries and
1047 * s must be less than or equal to e.
1048 *
1049 * Note that any requests to change the protection of a nested pmap are
1050 * ignored. Those changes MUST be done by calling this with the correct pmap.
1051 */
1052 void pmap_protect(
1053 pmap_t pmap,
1054 vm_map_offset_t sva,
1055 vm_map_offset_t eva,
1056 vm_prot_t prot)
1057 {
1058
1059 addr64_t va, endva;
1060
1061 if (pmap == PMAP_NULL) return; /* Do nothing if no pmap */
1062
1063 if (prot == VM_PROT_NONE) { /* Should we kill the address range?? */
1064 pmap_remove(pmap, (addr64_t)sva, (addr64_t)eva); /* Yeah, dump 'em */
1065 return; /* Leave... */
1066 }
1067
1068 va = sva & -4096LL; /* Round start down to a page */
1069 endva = eva & -4096LL; /* Round end down to a page */
1070
1071 while(1) { /* Go until we finish the range */
1072 mapping_protect(pmap, va, prot & VM_PROT_ALL, &va); /* Change the protection and see what's next */
1073 if((va == 0) || (va >= endva)) break; /* End loop if we finish range or run off the end */
1074 }
1075
1076 }
1077
1078
1079
1080 /*
1081 * pmap_enter
1082 *
1083 * Create a translation for the virtual address (virt) to the physical
1084 * address (phys) in the pmap with the protection requested. If the
1085 * translation is wired then we can not allow a full page fault, i.e.,
1086 * the mapping control block is not eligible to be stolen in a low memory
1087 * condition.
1088 *
1089 * NB: This is the only routine which MAY NOT lazy-evaluate
1090 * or lose information. That is, this routine must actually
1091 * insert this page into the given map NOW.
1092 */
1093 void
1094 pmap_enter(pmap_t pmap, vm_map_offset_t va, ppnum_t pa, vm_prot_t prot,
1095 unsigned int flags, __unused boolean_t wired)
1096 {
1097 unsigned int mflags;
1098 addr64_t colva;
1099
1100 if (pmap == PMAP_NULL) return; /* Leave if software pmap */
1101
1102 mflags = 0; /* Make sure this is initialized to nothing special */
1103 if(!(flags & VM_WIMG_USE_DEFAULT)) { /* Are they supplying the attributes? */
1104 mflags = mmFlgUseAttr | (flags & VM_MEM_GUARDED) | ((flags & VM_MEM_NOT_CACHEABLE) >> 1); /* Convert to our mapping_make flags */
1105 }
1106
1107 /*
1108 * It is possible to hang here if another processor is remapping any pages we collide with and are removing
1109 */
1110
1111 while(1) { /* Keep trying the enter until it goes in */
1112
1113 colva = mapping_make(pmap, va, pa, mflags, 1, prot & VM_PROT_ALL); /* Enter the mapping into the pmap */
1114
1115 if(!colva) break; /* If there were no collisions, we are done... */
1116
1117 mapping_remove(pmap, colva); /* Remove the mapping that collided */
1118 }
1119 }
1120
1121 /*
1122 * Enters translations for odd-sized V=F blocks.
1123 *
1124 * The higher level VM map should be locked to insure that we don't have a
1125 * double diddle here.
1126 *
1127 * We panic if we get a block that overlaps with another. We do not merge adjacent
1128 * blocks because removing any address within a block removes the entire block and if
1129 * would really mess things up if we trashed too much.
1130 *
1131 * Once a block is mapped, it is unmutable, that is, protection, catch mode, etc. can
1132 * not be changed. The block must be unmapped and then remapped with the new stuff.
1133 * We also do not keep track of reference or change flags.
1134 *
1135 * Any block that is larger than 256MB must be a multiple of 32MB. We panic if it is not.
1136 *
1137 * Note that pmap_map_block_rc is the same but doesn't panic if collision.
1138 *
1139 */
1140
1141 void pmap_map_block(pmap_t pmap, addr64_t va, ppnum_t pa, uint32_t size, vm_prot_t prot, int attr, unsigned int flags) { /* Map an autogenned block */
1142
1143 unsigned int mflags;
1144 addr64_t colva;
1145
1146
1147 if (pmap == PMAP_NULL) { /* Did they give us a pmap? */
1148 panic("pmap_map_block: null pmap\n"); /* No, like that's dumb... */
1149 }
1150
1151 // kprintf("pmap_map_block: (%08X) va = %016llX, pa = %08X, size = %08X, prot = %08X, attr = %08X, flags = %08X\n", /* (BRINGUP) */
1152 // current_thread(), va, pa, size, prot, attr, flags); /* (BRINGUP) */
1153
1154 mflags = mmFlgBlock | mmFlgUseAttr | (attr & VM_MEM_GUARDED) | ((attr & VM_MEM_NOT_CACHEABLE) >> 1); /* Convert to our mapping_make flags */
1155 if(flags) mflags |= mmFlgPerm; /* Mark permanent if requested */
1156
1157 colva = mapping_make(pmap, va, pa, mflags, size, prot); /* Enter the mapping into the pmap */
1158
1159 if(colva) { /* If there was a collision, panic */
1160 panic("pmap_map_block: mapping error %d, pmap = %08X, va = %016llX\n", (uint32_t)(colva & mapRetCode), pmap, va);
1161 }
1162
1163 return; /* Return */
1164 }
1165
1166 int pmap_map_block_rc(pmap_t pmap, addr64_t va, ppnum_t pa, uint32_t size, vm_prot_t prot, int attr, unsigned int flags) { /* Map an autogenned block */
1167
1168 unsigned int mflags;
1169 addr64_t colva;
1170
1171
1172 if (pmap == PMAP_NULL) { /* Did they give us a pmap? */
1173 panic("pmap_map_block_rc: null pmap\n"); /* No, like that's dumb... */
1174 }
1175
1176 mflags = mmFlgBlock | mmFlgUseAttr | (attr & VM_MEM_GUARDED) | ((attr & VM_MEM_NOT_CACHEABLE) >> 1); /* Convert to our mapping_make flags */
1177 if(flags) mflags |= mmFlgPerm; /* Mark permanent if requested */
1178
1179 colva = mapping_make(pmap, va, pa, mflags, size, prot); /* Enter the mapping into the pmap */
1180
1181 if(colva) return 0; /* If there was a collision, fail */
1182
1183 return 1; /* Return true of we worked */
1184 }
1185
1186 /*
1187 * pmap_extract(pmap, va)
1188 * returns the physical address corrsponding to the
1189 * virtual address specified by pmap and va if the
1190 * virtual address is mapped and 0 if it is not.
1191 * Note: we assume nothing is ever mapped to phys 0.
1192 *
1193 * NOTE: This call always will fail for physical addresses greater than 0xFFFFF000.
1194 */
1195 vm_offset_t pmap_extract(pmap_t pmap, vm_map_offset_t va) {
1196
1197 spl_t spl;
1198 register struct mapping *mp;
1199 register vm_offset_t pa;
1200 addr64_t nextva;
1201 ppnum_t ppoffset;
1202 unsigned int gva;
1203
1204 #ifdef BOGUSCOMPAT
1205 panic("pmap_extract: THIS CALL IS BOGUS. NEVER USE IT EVER. So there...\n"); /* Don't use this */
1206 #else
1207
1208 gva = (unsigned int)va; /* Make sure we don't have a sign */
1209
1210 spl = splhigh(); /* We can't allow any loss of control here */
1211
1212 mp = mapping_find(pmap, (addr64_t)gva, &nextva,1); /* Find the mapping for this address */
1213
1214 if(!mp) { /* Is the page mapped? */
1215 splx(spl); /* Enable interrupts */
1216 return 0; /* Pass back 0 if not found */
1217 }
1218
1219 ppoffset = (ppnum_t)(((gva & -4096LL) - (mp->mpVAddr & -4096LL)) >> 12); /* Get offset from va to base va */
1220
1221
1222 pa = mp->mpPAddr + ppoffset; /* Remember ppage because mapping may vanish after drop call */
1223
1224 mapping_drop_busy(mp); /* We have everything we need from the mapping */
1225 splx(spl); /* Restore 'rupts */
1226
1227 if(pa > maxPPage32) return 0; /* Force large addresses to fail */
1228
1229 pa = (pa << 12) | (va & 0xFFF); /* Convert physical page number to address */
1230
1231 #endif
1232 return pa; /* Return physical address or 0 */
1233 }
1234
1235 /*
1236 * ppnum_t pmap_find_phys(pmap, addr64_t va)
1237 * returns the physical page corrsponding to the
1238 * virtual address specified by pmap and va if the
1239 * virtual address is mapped and 0 if it is not.
1240 * Note: we assume nothing is ever mapped to phys 0.
1241 *
1242 */
1243 ppnum_t pmap_find_phys(pmap_t pmap, addr64_t va) {
1244
1245 spl_t spl;
1246 register struct mapping *mp;
1247 ppnum_t pa, ppoffset;
1248 addr64_t nextva;
1249
1250 spl = splhigh(); /* We can't allow any loss of control here */
1251
1252 mp = mapping_find(pmap, va, &nextva, 1); /* Find the mapping for this address */
1253
1254 if(!mp) { /* Is the page mapped? */
1255 splx(spl); /* Enable interrupts */
1256 return 0; /* Pass back 0 if not found */
1257 }
1258
1259
1260 ppoffset = (ppnum_t)(((va & -4096LL) - (mp->mpVAddr & -4096LL)) >> 12); /* Get offset from va to base va */
1261
1262 pa = mp->mpPAddr + ppoffset; /* Get the actual physical address */
1263
1264 mapping_drop_busy(mp); /* We have everything we need from the mapping */
1265
1266 splx(spl); /* Restore 'rupts */
1267 return pa; /* Return physical address or 0 */
1268 }
1269
1270
1271 /*
1272 * pmap_attributes:
1273 *
1274 * Set/Get special memory attributes; not implemented.
1275 *
1276 * Note: 'VAL_GET_INFO' is used to return info about a page.
1277 * If less than 1 page is specified, return the physical page
1278 * mapping and a count of the number of mappings to that page.
1279 * If more than one page is specified, return the number
1280 * of resident pages and the number of shared (more than
1281 * one mapping) pages in the range;
1282 *
1283 *
1284 */
1285 kern_return_t
1286 pmap_attribute(
1287 __unused pmap_t pmap,
1288 __unused vm_map_offset_t address,
1289 __unused vm_map_size_t size,
1290 __unused vm_machine_attribute_t attribute,
1291 __unused vm_machine_attribute_val_t* value)
1292 {
1293
1294 return KERN_INVALID_ARGUMENT;
1295
1296 }
1297
1298 /*
1299 * pmap_attribute_cache_sync(vm_offset_t pa)
1300 *
1301 * Invalidates all of the instruction cache on a physical page and
1302 * pushes any dirty data from the data cache for the same physical page
1303 */
1304
1305 kern_return_t pmap_attribute_cache_sync(ppnum_t pp, vm_size_t size,
1306 __unused vm_machine_attribute_t attribute,
1307 __unused vm_machine_attribute_val_t* value) {
1308
1309 spl_t s;
1310 unsigned int i, npages;
1311
1312 npages = round_page(size) >> 12; /* Get the number of pages to do */
1313
1314 for(i = 0; i < npages; i++) { /* Do all requested pages */
1315 s = splhigh(); /* No interruptions here */
1316 sync_ppage(pp + i); /* Go flush data cache and invalidate icache */
1317 splx(s); /* Allow interruptions */
1318 }
1319
1320 return KERN_SUCCESS;
1321 }
1322
1323 /*
1324 * pmap_sync_page_data_phys(ppnum_t pa)
1325 *
1326 * Invalidates all of the instruction cache on a physical page and
1327 * pushes any dirty data from the data cache for the same physical page
1328 */
1329
1330 void pmap_sync_page_data_phys(ppnum_t pa) {
1331
1332 spl_t s;
1333
1334 s = splhigh(); /* No interruptions here */
1335 sync_ppage(pa); /* Sync up dem caches */
1336 splx(s); /* Allow interruptions */
1337 return;
1338 }
1339
1340 void
1341 pmap_sync_page_attributes_phys(ppnum_t pa)
1342 {
1343 pmap_sync_page_data_phys(pa);
1344 }
1345
1346 /*
1347 * pmap_collect
1348 *
1349 * Garbage collects the physical map system for pages that are no longer used.
1350 * It isn't implemented or needed or wanted.
1351 */
1352 void
1353 pmap_collect(__unused pmap_t pmap)
1354 {
1355 return;
1356 }
1357
1358 /*
1359 * Routine: pmap_activate
1360 * Function:
1361 * Binds the given physical map to the given
1362 * processor, and returns a hardware map description.
1363 * It isn't implemented or needed or wanted.
1364 */
1365 void
1366 pmap_activate(
1367 __unused pmap_t pmap,
1368 __unused thread_t th,
1369 __unused int which_cpu)
1370 {
1371 return;
1372 }
1373 /*
1374 * pmap_deactivate:
1375 * It isn't implemented or needed or wanted.
1376 */
1377 void
1378 pmap_deactivate(
1379 __unused pmap_t pmap,
1380 __unused thread_t th,
1381 __unused int which_cpu)
1382 {
1383 return;
1384 }
1385
1386
1387 /*
1388 * pmap_pageable(pmap, s, e, pageable)
1389 * Make the specified pages (by pmap, offset)
1390 * pageable (or not) as requested.
1391 *
1392 * A page which is not pageable may not take
1393 * a fault; therefore, its page table entry
1394 * must remain valid for the duration.
1395 *
1396 * This routine is merely advisory; pmap_enter()
1397 * will specify that these pages are to be wired
1398 * down (or not) as appropriate.
1399 *
1400 * (called from vm/vm_fault.c).
1401 */
1402 void
1403 pmap_pageable(
1404 __unused pmap_t pmap,
1405 __unused vm_map_offset_t start,
1406 __unused vm_map_offset_t end,
1407 __unused boolean_t pageable)
1408 {
1409
1410 return; /* This is not used... */
1411
1412 }
1413 /*
1414 * Routine: pmap_change_wiring
1415 * NOT USED ANYMORE.
1416 */
1417 void
1418 pmap_change_wiring(
1419 __unused pmap_t pmap,
1420 __unused vm_map_offset_t va,
1421 __unused boolean_t wired)
1422 {
1423 return; /* This is not used... */
1424 }
1425
1426 /*
1427 * pmap_modify_pages(pmap, s, e)
1428 * sets the modified bit on all virtual addresses v in the
1429 * virtual address range determined by [s, e] and pmap,
1430 * s and e must be on machine independent page boundaries and
1431 * s must be less than or equal to e.
1432 *
1433 * Note that this function will not descend nested pmaps.
1434 */
1435 void
1436 pmap_modify_pages(
1437 pmap_t pmap,
1438 vm_map_offset_t sva,
1439 vm_map_offset_t eva)
1440 {
1441 spl_t spl;
1442 mapping_t *mp;
1443 ppnum_t pa;
1444 addr64_t va, endva;
1445 unsigned int savetype;
1446
1447 if (pmap == PMAP_NULL) return; /* If no pmap, can't do it... */
1448
1449 va = sva & -4096; /* Round to page */
1450 endva = eva & -4096; /* Round to page */
1451
1452 while (va < endva) { /* Walk through all pages */
1453
1454 spl = splhigh(); /* We can't allow any loss of control here */
1455
1456 mp = mapping_find(pmap, (addr64_t)va, &va, 0); /* Find the mapping for this address */
1457
1458 if(!mp) { /* Is the page mapped? */
1459 splx(spl); /* Page not mapped, restore interruptions */
1460 if((va == 0) || (va >= endva)) break; /* We are done if there are no more or we hit the end... */
1461 continue; /* We are not done and there is more to check... */
1462 }
1463
1464 savetype = mp->mpFlags & mpType; /* Remember the type */
1465 pa = mp->mpPAddr; /* Remember ppage because mapping may vanish after drop call */
1466
1467 mapping_drop_busy(mp); /* We have everything we need from the mapping */
1468
1469 splx(spl); /* Restore 'rupts */
1470
1471 if(savetype != mpNormal) continue; /* Can't mess around with these guys... */
1472
1473 mapping_set_mod(pa); /* Set the modfied bit for this page */
1474
1475 if(va == 0) break; /* We hit the end of the pmap, might as well leave now... */
1476 }
1477 return; /* Leave... */
1478 }
1479
1480 /*
1481 * pmap_clear_modify(phys)
1482 * clears the hardware modified ("dirty") bit for one
1483 * machine independant page starting at the given
1484 * physical address. phys must be aligned on a machine
1485 * independant page boundary.
1486 */
1487 void
1488 pmap_clear_modify(ppnum_t pa)
1489 {
1490
1491 mapping_clr_mod(pa); /* Clear all change bits for physical page */
1492
1493 }
1494
1495 /*
1496 * pmap_is_modified(phys)
1497 * returns TRUE if the given physical page has been modified
1498 * since the last call to pmap_clear_modify().
1499 */
1500 boolean_t
1501 pmap_is_modified(register ppnum_t pa)
1502 {
1503 return mapping_tst_mod(pa); /* Check for modified */
1504
1505 }
1506
1507 /*
1508 * pmap_clear_reference(phys)
1509 * clears the hardware referenced bit in the given machine
1510 * independant physical page.
1511 *
1512 */
1513 void
1514 pmap_clear_reference(ppnum_t pa)
1515 {
1516 mapping_clr_ref(pa); /* Check for modified */
1517 }
1518
1519 /*
1520 * pmap_is_referenced(phys)
1521 * returns TRUE if the given physical page has been referenced
1522 * since the last call to pmap_clear_reference().
1523 */
1524 boolean_t
1525 pmap_is_referenced(ppnum_t pa)
1526 {
1527 return mapping_tst_ref(pa); /* Check for referenced */
1528 }
1529
1530 /*
1531 * pmap_get_refmod(phys)
1532 * returns the referenced and modified bits of the specified
1533 * physical page.
1534 */
1535 unsigned int
1536 pmap_get_refmod(ppnum_t pa)
1537 {
1538 return (mapping_tst_refmod(pa));
1539 }
1540
1541 /*
1542 * pmap_clear_refmod(phys, mask)
1543 * clears the referenced and modified bits as specified by the mask
1544 * of the specified physical page.
1545 */
1546 void
1547 pmap_clear_refmod(ppnum_t pa, unsigned int mask)
1548 {
1549 mapping_clr_refmod(pa, mask);
1550 }
1551
1552 /*
1553 * pmap_eligible_for_execute(ppnum_t pa)
1554 * return true if physical address is eligible to contain executable code;
1555 * otherwise, return false
1556 */
1557 boolean_t
1558 pmap_eligible_for_execute(ppnum_t pa)
1559 {
1560 phys_entry_t *physent;
1561 unsigned int pindex;
1562
1563 physent = mapping_phys_lookup(pa, &pindex); /* Get physical entry */
1564
1565 if((!physent) || (physent->ppLink & ppG))
1566 return 0; /* If there is no physical entry or marked guarded,
1567 the entry is not eligible for execute */
1568
1569 return 1; /* Otherwise, entry is eligible for execute */
1570 }
1571
1572 #if MACH_VM_DEBUG
1573 int
1574 pmap_list_resident_pages(
1575 __unused pmap_t pmap,
1576 __unused vm_offset_t *listp,
1577 __unused int space)
1578 {
1579 return 0;
1580 }
1581 #endif /* MACH_VM_DEBUG */
1582
1583 /*
1584 * Locking:
1585 * spl: VM
1586 */
1587 void
1588 pmap_copy_part_page(
1589 vm_offset_t src,
1590 vm_offset_t src_offset,
1591 vm_offset_t dst,
1592 vm_offset_t dst_offset,
1593 vm_size_t len)
1594 {
1595 addr64_t fsrc, fdst;
1596
1597 assert(((dst <<12) & PAGE_MASK+dst_offset+len) <= PAGE_SIZE);
1598 assert(((src <<12) & PAGE_MASK+src_offset+len) <= PAGE_SIZE);
1599
1600 fsrc = ((addr64_t)src << 12) + src_offset;
1601 fdst = ((addr64_t)dst << 12) + dst_offset;
1602
1603 phys_copy(fsrc, fdst, len); /* Copy the stuff physically */
1604 }
1605
1606 void
1607 pmap_zero_part_page(
1608 __unused vm_offset_t p,
1609 __unused vm_offset_t offset,
1610 __unused vm_size_t len)
1611 {
1612 panic("pmap_zero_part_page");
1613 }
1614
1615 boolean_t pmap_verify_free(ppnum_t pa) {
1616
1617 struct phys_entry *pp;
1618 unsigned int pindex;
1619
1620 pp = mapping_phys_lookup(pa, &pindex); /* Get physical entry */
1621 if (pp == 0) return FALSE; /* If there isn't one, show no mapping... */
1622
1623 if(pp->ppLink & ~(ppLock | ppFlags)) return FALSE; /* We have at least one mapping */
1624 return TRUE; /* No mappings */
1625 }
1626
1627
1628 /* Determine if we need to switch space and set up for it if so */
1629
1630 void pmap_switch(pmap_t map)
1631 {
1632 hw_blow_seg(lowGlo.lgUMWvaddr); /* Blow off the first segment */
1633 hw_blow_seg(lowGlo.lgUMWvaddr + 0x10000000ULL); /* Blow off the second segment */
1634
1635 /* when changing to kernel space, don't bother
1636 * doing anything, the kernel is mapped from here already.
1637 */
1638 if (map->space == PPC_SID_KERNEL) { /* Are we switching into kernel space? */
1639 return; /* If so, we don't do anything... */
1640 }
1641
1642 hw_set_user_space(map); /* Indicate if we need to load the SRs or not */
1643 return; /* Bye, bye, butterfly... */
1644 }
1645
1646 /*
1647 * kern_return_t pmap_nest(grand, subord, vstart, size)
1648 *
1649 * grand = the pmap that we will nest subord into
1650 * subord = the pmap that goes into the grand
1651 * vstart = start of range in pmap to be inserted
1652 * nstart = start of range in pmap nested pmap
1653 * size = Size of nest area (up to 2TB)
1654 *
1655 * Inserts a pmap into another. This is used to implement shared segments.
1656 * On the current PPC processors, this is limited to segment (256MB) aligned
1657 * segment sized ranges.
1658 *
1659 * We actually kinda allow recursive nests. The gating factor is that we do not allow
1660 * nesting on top of something that is already mapped, i.e., the range must be empty.
1661 *
1662 * Note that we depend upon higher level VM locks to insure that things don't change while
1663 * we are doing this. For example, VM should not be doing any pmap enters while it is nesting
1664 * or do 2 nests at once.
1665 */
1666
1667 kern_return_t pmap_nest(pmap_t grand, pmap_t subord, addr64_t vstart, addr64_t nstart, uint64_t size) {
1668
1669 addr64_t vend, colladdr;
1670 unsigned int msize;
1671 int nlists;
1672 mapping_t *mp;
1673
1674 if(size & 0x0FFFFFFFULL) return KERN_INVALID_VALUE; /* We can only do this for multiples of 256MB */
1675 if((size >> 25) > 65536) return KERN_INVALID_VALUE; /* Max size we can nest is 2TB */
1676 if(vstart & 0x0FFFFFFFULL) return KERN_INVALID_VALUE; /* We can only do this aligned to 256MB */
1677 if(nstart & 0x0FFFFFFFULL) return KERN_INVALID_VALUE; /* We can only do this aligned to 256MB */
1678
1679 if(size == 0) { /* Is the size valid? */
1680 panic("pmap_nest: size is invalid - %016llX\n", size);
1681 }
1682
1683 msize = (size >> 25) - 1; /* Change size to blocks of 32MB */
1684
1685 nlists = mapSetLists(grand); /* Set number of lists this will be on */
1686
1687 mp = mapping_alloc(nlists); /* Get a spare mapping block */
1688
1689 mp->mpFlags = 0x01000000 | mpNest | mpPerm | mpBSu | nlists; /* Make this a permanent nested pmap with a 32MB basic size unit */
1690 /* Set the flags. Make sure busy count is 1 */
1691 mp->mpSpace = subord->space; /* Set the address space/pmap lookup ID */
1692 mp->u.mpBSize = msize; /* Set the size */
1693 mp->mpPte = 0; /* Set the PTE invalid */
1694 mp->mpPAddr = 0; /* Set the physical page number */
1695 mp->mpVAddr = vstart; /* Set the address */
1696 mp->mpNestReloc = nstart - vstart; /* Set grand to nested vaddr relocation value */
1697
1698 colladdr = hw_add_map(grand, mp); /* Go add the mapping to the pmap */
1699
1700 if(colladdr) { /* Did it collide? */
1701 vend = vstart + size - 4096; /* Point to the last page we would cover in nest */
1702 panic("pmap_nest: attempt to nest into a non-empty range - pmap = %08X, start = %016llX, end = %016llX\n",
1703 grand, vstart, vend);
1704 }
1705
1706 return KERN_SUCCESS;
1707 }
1708
1709 /*
1710 * kern_return_t pmap_unnest(grand, vaddr)
1711 *
1712 * grand = the pmap that we will nest subord into
1713 * vaddr = start of range in pmap to be unnested
1714 *
1715 * Removes a pmap from another. This is used to implement shared segments.
1716 * On the current PPC processors, this is limited to segment (256MB) aligned
1717 * segment sized ranges.
1718 */
1719
1720 kern_return_t pmap_unnest(pmap_t grand, addr64_t vaddr) {
1721
1722 unsigned int tstamp, i, mycpu;
1723 addr64_t nextva;
1724 spl_t s;
1725 mapping_t *mp;
1726
1727 s = splhigh(); /* Make sure interruptions are disabled */
1728
1729 mp = mapping_find(grand, vaddr, &nextva, 0); /* Find the nested map */
1730
1731 if(((unsigned int)mp & mapRetCode) != mapRtOK) { /* See if it was even nested */
1732 panic("pmap_unnest: Attempt to unnest an unnested segment - va = %016llX\n", vaddr);
1733 }
1734
1735 if((mp->mpFlags & mpType) != mpNest) { /* Did we find something other than a nest? */
1736 panic("pmap_unnest: Attempt to unnest something that is not a nest - va = %016llX\n", vaddr);
1737 }
1738
1739 if(mp->mpVAddr != vaddr) { /* Make sure the address is the same */
1740 panic("pmap_unnest: Attempt to unnest something that is not at start of nest - va = %016llX\n", vaddr);
1741 }
1742
1743 (void)hw_atomic_and(&mp->mpFlags, ~mpPerm); /* Show that this mapping is now removable */
1744
1745 mapping_drop_busy(mp); /* Go ahead and release the mapping now */
1746
1747 splx(s); /* Restore 'rupts */
1748
1749 (void)mapping_remove(grand, vaddr); /* Toss the nested pmap mapping */
1750
1751 invalidateSegs(grand); /* Invalidate the pmap segment cache */
1752
1753 /*
1754 * Note that the following will force the segment registers to be reloaded
1755 * on all processors (if they are using the pmap we just changed) before returning.
1756 *
1757 * This is needed. The reason is that until the segment register is
1758 * reloaded, another thread in the same task on a different processor will
1759 * be able to access memory that it isn't allowed to anymore. That can happen
1760 * because access to the subordinate pmap is being removed, but the pmap is still
1761 * valid.
1762 *
1763 * Note that we only kick the other processor if we see that it was using the pmap while we
1764 * were changing it.
1765 */
1766
1767
1768 for(i=0; i < real_ncpus; i++) { /* Cycle through processors */
1769 disable_preemption();
1770 mycpu = cpu_number(); /* Who am I? Am I just a dream? */
1771 if((unsigned int)grand == PerProcTable[i].ppe_vaddr->ppUserPmapVirt) { /* Is this guy using the changed pmap? */
1772
1773 PerProcTable[i].ppe_vaddr->ppInvSeg = 1; /* Show that we need to invalidate the segments */
1774
1775 if(i != mycpu) {
1776
1777 tstamp = PerProcTable[i].ppe_vaddr->ruptStamp[1]; /* Save the processor's last interrupt time stamp */
1778 if(cpu_signal(i, SIGPcpureq, CPRQsegload, 0) == KERN_SUCCESS) { /* Make sure we see the pmap change */
1779 if(!hw_cpu_wcng(&PerProcTable[i].ppe_vaddr->ruptStamp[1], tstamp, LockTimeOut)) { /* Wait for the other processors to enter debug */
1780 panic("pmap_unnest: Other processor (%d) did not see interruption request\n", i);
1781 }
1782 }
1783 }
1784 }
1785 enable_preemption();
1786 }
1787
1788 return KERN_SUCCESS; /* Bye, bye, butterfly... */
1789 }
1790
1791
1792 /*
1793 * void MapUserMemoryWindowInit(void)
1794 *
1795 * Initialize anything we need to in order to map user address space slices into
1796 * the kernel. Primarily used for copy in/out.
1797 *
1798 * Currently we only support one 512MB slot for this purpose. There are two special
1799 * mappings defined for the purpose: the special pmap nest, and linkage mapping.
1800 *
1801 * The special pmap nest (which is allocated in this function) is used as a place holder
1802 * in the kernel's pmap search list. It is 512MB long and covers the address range
1803 * starting at lgUMWvaddr. It points to no actual memory and when the fault handler
1804 * hits in it, it knows to look in the per_proc and start using the linkage
1805 * mapping contained therin.
1806 *
1807 * The linkage mapping is used to glue the user address space slice into the
1808 * kernel. It contains the relocation information used to transform the faulting
1809 * kernel address into the user address space. It also provides the link to the
1810 * user's pmap. This is pointed to by the per_proc and is switched in and out
1811 * whenever there is a context switch.
1812 *
1813 */
1814
1815 void MapUserMemoryWindowInit(void) {
1816
1817 addr64_t colladdr;
1818 int nlists;
1819 mapping_t *mp;
1820
1821 nlists = mapSetLists(kernel_pmap); /* Set number of lists this will be on */
1822
1823 mp = mapping_alloc(nlists); /* Get a spare mapping block */
1824
1825 mp->mpFlags = 0x01000000 | mpLinkage | mpPerm | mpBSu | nlists; /* Make this a permanent nested pmap with a 32MB basic size unit */
1826 /* Set the flags. Make sure busy count is 1 */
1827 mp->mpSpace = kernel_pmap->space; /* Set the address space/pmap lookup ID */
1828 mp->u.mpBSize = 15; /* Set the size to 2 segments in 32MB chunks - 1 */
1829 mp->mpPte = 0; /* Means nothing */
1830 mp->mpPAddr = 0; /* Means nothing */
1831 mp->mpVAddr = lowGlo.lgUMWvaddr; /* Set the address range we cover */
1832 mp->mpNestReloc = 0; /* Means nothing */
1833
1834 colladdr = hw_add_map(kernel_pmap, mp); /* Go add the mapping to the pmap */
1835
1836 if(colladdr) { /* Did it collide? */
1837 panic("MapUserMemoryWindowInit: MapUserMemoryWindow range already mapped\n");
1838 }
1839
1840 return;
1841 }
1842
1843 /*
1844 * addr64_t MapUserMemoryWindow(vm_map_t map, vm_offset_t va, size)
1845 *
1846 * map = the vm_map that we are mapping into the kernel
1847 * va = start of the address range we are mapping
1848 * Note that we do not test validty, we chose to trust our fellows...
1849 *
1850 * Maps a 512M slice of a user address space into a predefined kernel range
1851 * on a per-thread basis. We map only the first 256M segment, allowing the
1852 * second 256M segment to fault in as needed. This allows our clients to access
1853 * an arbitrarily aligned operand up to 256M in size.
1854 *
1855 * In the future, the restriction of a predefined range may be loosened.
1856 *
1857 * Builds the proper linkage map to map the user range
1858 * We will round this down to the previous segment boundary and calculate
1859 * the relocation to the kernel slot
1860 *
1861 * We always make a segment table entry here if we need to. This is mainly because of
1862 * copyin/out and if we don't, there will be multiple segment faults for
1863 * each system call. I have seen upwards of 30000 per second.
1864 *
1865 * We do check, however, to see if the slice is already mapped and if so,
1866 * we just exit. This is done for performance reasons. It was found that
1867 * there was a considerable boost in copyin/out performance if we did not
1868 * invalidate the segment at ReleaseUserAddressSpace time, so we dumped the
1869 * restriction that you had to bracket MapUserMemoryWindow. Further, there
1870 * is a yet further boost if you didn't need to map it each time. The theory
1871 * behind this is that many times copies are to or from the same segment and
1872 * done multiple times within the same system call. To take advantage of that,
1873 * we check umwSpace and umwRelo to see if we've already got it.
1874 *
1875 * We also need to half-invalidate the slice when we context switch or go
1876 * back to user state. A half-invalidate does not clear the actual mapping,
1877 * but it does force the MapUserMemoryWindow function to reload the segment
1878 * register/SLBE. If this is not done, we can end up some pretty severe
1879 * performance penalties. If we map a slice, and the cached space/relocation is
1880 * the same, we won't reload the segment registers. Howver, since we ran someone else,
1881 * our SR is cleared and we will take a fault. This is reasonable if we block
1882 * while copying (e.g., we took a page fault), but it is not reasonable when we
1883 * just start. For this reason, we half-invalidate to make sure that the SR is
1884 * explicitly reloaded.
1885 *
1886 * Note that we do not go to the trouble of making a pmap segment cache
1887 * entry for these guys because they are very short term -- 99.99% of the time
1888 * they will be unmapped before the next context switch.
1889 *
1890 */
1891
1892 addr64_t MapUserMemoryWindow(
1893 vm_map_t map,
1894 addr64_t va) {
1895
1896 addr64_t baddrs, reladd;
1897 thread_t thread;
1898 mapping_t *mp;
1899
1900 baddrs = va & 0xFFFFFFFFF0000000ULL; /* Isolate the segment */
1901 thread = current_thread(); /* Remember our activation */
1902
1903 reladd = baddrs - lowGlo.lgUMWvaddr; /* Get the relocation from user to kernel */
1904
1905 if((thread->machine.umwSpace == map->pmap->space) && (thread->machine.umwRelo == reladd)) { /* Already mapped? */
1906 return ((va & 0x0FFFFFFFULL) | lowGlo.lgUMWvaddr); /* Pass back the kernel address we are to use */
1907 }
1908
1909 disable_preemption(); /* Don't move... */
1910
1911 mp = (mapping_t *)&(getPerProc()->ppUMWmp); /* Make up for C */
1912 thread->machine.umwRelo = reladd; /* Relocation from user to kernel */
1913 mp->mpNestReloc = reladd; /* Relocation from user to kernel */
1914
1915 thread->machine.umwSpace = map->pmap->space; /* Set the address space/pmap lookup ID */
1916 mp->mpSpace = map->pmap->space; /* Set the address space/pmap lookup ID */
1917
1918 /*
1919 * Here we make an assumption that we are going to be using the base pmap's address space.
1920 * If we are wrong, and that would be very, very, very rare, the fault handler will fix us up.
1921 */
1922
1923 hw_map_seg(map->pmap, lowGlo.lgUMWvaddr, baddrs); /* Make the entry for the first segment */
1924
1925 enable_preemption(); /* Let's move */
1926 return ((va & 0x0FFFFFFFULL) | lowGlo.lgUMWvaddr); /* Pass back the kernel address we are to use */
1927 }
1928
1929
1930 /*
1931 * kern_return_t pmap_boot_map(size)
1932 *
1933 * size = size of virtual address range to be mapped
1934 *
1935 * This function is used to assign a range of virtual addresses before VM in
1936 * initialized. It starts at VM_MAX_KERNEL_ADDRESS and works downward.
1937 * The variable vm_last_addr contains the current highest possible VM
1938 * assignable address. It is a panic to attempt to call this after VM has
1939 * started up. The only problem is, is that we may not have the serial or
1940 * framebuffer mapped, so we'll never know we died.........
1941 */
1942
1943 vm_offset_t pmap_boot_map(vm_size_t size) {
1944
1945 if(kernel_map != VM_MAP_NULL) { /* Has VM already started? */
1946 panic("pmap_boot_map: VM started\n");
1947 }
1948
1949 size = round_page(size); /* Make sure this is in pages */
1950 vm_last_addr = vm_last_addr - size; /* Allocate the memory */
1951 return (vm_last_addr + 1); /* Return the vaddr we just allocated */
1952
1953 }
1954
1955
1956 /*
1957 * void pmap_init_sharedpage(void);
1958 *
1959 * Hack map for the 64-bit commpage
1960 */
1961
1962 void pmap_init_sharedpage(vm_offset_t cpg){
1963
1964 addr64_t cva, cpoff;
1965 ppnum_t cpphys;
1966
1967 sharedPmap = pmap_create(0); /* Get a pmap to hold the common segment */
1968 if(!sharedPmap) { /* Check for errors */
1969 panic("pmap_init_sharedpage: couldn't make sharedPmap\n");
1970 }
1971
1972 for(cpoff = 0; cpoff < _COMM_PAGE_AREA_USED; cpoff += 4096) { /* Step along now */
1973
1974 cpphys = pmap_find_phys(kernel_pmap, (addr64_t)cpg + cpoff);
1975 if(!cpphys) {
1976 panic("pmap_init_sharedpage: compage %08X not mapped in kernel\n", cpg + cpoff);
1977 }
1978
1979 cva = mapping_make(sharedPmap, (addr64_t)((uint32_t)_COMM_PAGE_BASE_ADDRESS) + cpoff,
1980 cpphys, mmFlgPerm, 1, VM_PROT_READ); /* Map the page read only */
1981 if(cva) { /* Check for errors */
1982 panic("pmap_init_sharedpage: couldn't map commpage page - cva = %016llX\n", cva);
1983 }
1984
1985 }
1986
1987 return;
1988 }
1989
1990
1991 /*
1992 * void pmap_map_sharedpage(pmap_t pmap);
1993 *
1994 * Maps the last segment in a 64-bit address space
1995 *
1996 *
1997 */
1998
1999 void pmap_map_sharedpage(task_t task, pmap_t pmap){
2000
2001 kern_return_t ret;
2002
2003 if(task_has_64BitAddr(task) || _cpu_capabilities & k64Bit) { /* Should we map the 64-bit page -1? */
2004 ret = pmap_nest(pmap, sharedPmap, 0xFFFFFFFFF0000000ULL, 0x00000000F0000000ULL,
2005 0x0000000010000000ULL); /* Nest the highest possible segment to map comm page */
2006 if(ret != KERN_SUCCESS) { /* Did it work? */
2007 panic("pmap_map_sharedpage: couldn't nest shared page - ret = %08X\n", ret);
2008 }
2009 }
2010
2011 return;
2012 }
2013
2014
2015 /*
2016 * void pmap_unmap_sharedpage(pmap_t pmap);
2017 *
2018 * Unmaps the last segment in a 64-bit address space
2019 *
2020 */
2021
2022 void pmap_unmap_sharedpage(pmap_t pmap){
2023
2024 kern_return_t ret;
2025 mapping_t *mp;
2026 boolean_t inter;
2027 int gotnest;
2028 addr64_t nextva;
2029
2030 if(BootProcInfo.pf.Available & pf64Bit) { /* Are we on a 64-bit machine? */
2031
2032 inter = ml_set_interrupts_enabled(FALSE); /* Disable interruptions for now */
2033 mp = hw_find_map(pmap, 0xFFFFFFFFF0000000ULL, &nextva); /* Find the mapping for this address */
2034 if((unsigned int)mp == mapRtBadLk) { /* Did we lock up ok? */
2035 panic("pmap_unmap_sharedpage: mapping lock failure - rc = %08X, pmap = %08X\n", mp, pmap); /* Die... */
2036 }
2037
2038 gotnest = 0; /* Assume nothing here */
2039 if(mp) {
2040 gotnest = ((mp->mpFlags & mpType) == mpNest);
2041 /* Remember if we have a nest here */
2042 mapping_drop_busy(mp); /* We have everything we need from the mapping */
2043 }
2044 ml_set_interrupts_enabled(inter); /* Put interrupts back to what they were */
2045
2046 if(!gotnest) return; /* Leave if there isn't any nesting here */
2047
2048 ret = pmap_unnest(pmap, 0xFFFFFFFFF0000000ULL); /* Unnest the max 64-bit page */
2049
2050 if(ret != KERN_SUCCESS) { /* Did it work? */
2051 panic("pmap_unmap_sharedpage: couldn't unnest shared page - ret = %08X\n", ret);
2052 }
2053 }
2054
2055 return;
2056 }
2057
2058
2059 /* temporary workaround */
2060 boolean_t
2061 coredumpok(
2062 __unused vm_map_t map,
2063 __unused vm_offset_t va)
2064 {
2065 return TRUE;
2066 }