]> git.saurik.com Git - apple/xnu.git/blob - bsd/hfs/hfs_cnode.c
65f2825d058fda86300b9b80c076fbf42b26ab0f
[apple/xnu.git] / bsd / hfs / hfs_cnode.c
1 /*
2 * Copyright (c) 2002-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/proc.h>
31 #include <sys/vnode.h>
32 #include <sys/mount.h>
33 #include <sys/kernel.h>
34 #include <sys/malloc.h>
35 #include <sys/time.h>
36 #include <sys/ubc.h>
37 #include <sys/quota.h>
38 #include <sys/kdebug.h>
39 #include <libkern/OSByteOrder.h>
40 #include <sys/buf_internal.h>
41
42 #include <kern/locks.h>
43
44 #include <miscfs/specfs/specdev.h>
45 #include <miscfs/fifofs/fifo.h>
46
47 #include <hfs/hfs.h>
48 #include <hfs/hfs_catalog.h>
49 #include <hfs/hfs_cnode.h>
50 #include <hfs/hfs_quota.h>
51 #include <hfs/hfs_format.h>
52
53 extern int prtactive;
54
55 extern lck_attr_t * hfs_lock_attr;
56 extern lck_grp_t * hfs_mutex_group;
57 extern lck_grp_t * hfs_rwlock_group;
58
59 static void hfs_reclaim_cnode(struct cnode *);
60 static int hfs_cnode_teardown (struct vnode *vp, vfs_context_t ctx, int reclaim);
61 static int hfs_isordered(struct cnode *, struct cnode *);
62
63 extern int hfs_removefile_callback(struct buf *bp, void *hfsmp);
64
65 __inline__ int hfs_checkdeleted (struct cnode *cp) {
66 return ((cp->c_flag & (C_DELETED | C_NOEXISTS)) ? ENOENT : 0);
67 }
68
69 /*
70 * Function used by a special fcntl() that decorates a cnode/vnode that
71 * indicates it is backing another filesystem, like a disk image.
72 *
73 * the argument 'val' indicates whether or not to set the bit in the cnode flags
74 *
75 * Returns non-zero on failure. 0 on success
76 */
77 int hfs_set_backingstore (struct vnode *vp, int val) {
78 struct cnode *cp = NULL;
79 int err = 0;
80
81 cp = VTOC(vp);
82 if (!vnode_isreg(vp) && !vnode_isdir(vp)) {
83 return EINVAL;
84 }
85
86 /* lock the cnode */
87 err = hfs_lock (cp, HFS_EXCLUSIVE_LOCK);
88 if (err) {
89 return err;
90 }
91
92 if (val) {
93 cp->c_flag |= C_BACKINGSTORE;
94 }
95 else {
96 cp->c_flag &= ~C_BACKINGSTORE;
97 }
98
99 /* unlock everything */
100 hfs_unlock (cp);
101
102 return err;
103 }
104
105 /*
106 * Function used by a special fcntl() that check to see if a cnode/vnode
107 * indicates it is backing another filesystem, like a disk image.
108 *
109 * the argument 'val' is an output argument for whether or not the bit is set
110 *
111 * Returns non-zero on failure. 0 on success
112 */
113
114 int hfs_is_backingstore (struct vnode *vp, int *val) {
115 struct cnode *cp = NULL;
116 int err = 0;
117
118 if (!vnode_isreg(vp) && !vnode_isdir(vp)) {
119 *val = 0;
120 return 0;
121 }
122
123 cp = VTOC(vp);
124
125 /* lock the cnode */
126 err = hfs_lock (cp, HFS_SHARED_LOCK);
127 if (err) {
128 return err;
129 }
130
131 if (cp->c_flag & C_BACKINGSTORE) {
132 *val = 1;
133 }
134 else {
135 *val = 0;
136 }
137
138 /* unlock everything */
139 hfs_unlock (cp);
140
141 return err;
142 }
143
144
145 /*
146 * hfs_cnode_teardown
147 *
148 * This is an internal function that is invoked from both hfs_vnop_inactive
149 * and hfs_vnop_reclaim. As VNOP_INACTIVE is not necessarily called from vnodes
150 * being recycled and reclaimed, it is important that we do any post-processing
151 * necessary for the cnode in both places. Important tasks include things such as
152 * releasing the blocks from an open-unlinked file when all references to it have dropped,
153 * and handling resource forks separately from data forks.
154 *
155 * Note that we take only the vnode as an argument here (rather than the cnode).
156 * Recall that each cnode supports two forks (rsrc/data), and we can always get the right
157 * cnode from either of the vnodes, but the reverse is not true -- we can't determine which
158 * vnode we need to reclaim if only the cnode is supplied.
159 *
160 * This function is idempotent and safe to call from both hfs_vnop_inactive and hfs_vnop_reclaim
161 * if both are invoked right after the other. In the second call, most of this function's if()
162 * conditions will fail, since they apply generally to cnodes still marked with C_DELETED.
163 * As a quick check to see if this function is necessary, determine if the cnode is already
164 * marked C_NOEXISTS. If it is, then it is safe to skip this function. The only tasks that
165 * remain for cnodes marked in such a fashion is to teardown their fork references and
166 * release all directory hints and hardlink origins. However, both of those are done
167 * in hfs_vnop_reclaim. hfs_update, by definition, is not necessary if the cnode's catalog
168 * entry is no longer there.
169 *
170 * 'reclaim' argument specifies whether or not we were called from hfs_vnop_reclaim. If we are
171 * invoked from hfs_vnop_reclaim, we can not call functions that cluster_push since the UBC info
172 * is totally gone by that point.
173 *
174 * Assumes that both truncate and cnode locks for 'cp' are held.
175 */
176 static
177 int hfs_cnode_teardown (struct vnode *vp, vfs_context_t ctx, int reclaim) {
178
179 int forkcount = 0;
180 enum vtype v_type;
181 struct cnode *cp;
182 int error = 0;
183 int started_tr = 0;
184 struct hfsmount *hfsmp = VTOHFS(vp);
185 struct proc *p = vfs_context_proc(ctx);
186 int truncated = 0;
187 cat_cookie_t cookie;
188 int cat_reserve = 0;
189 int lockflags;
190 int ea_error = 0;
191
192 v_type = vnode_vtype(vp);
193 cp = VTOC(vp);
194
195 if (cp->c_datafork) {
196 ++forkcount;
197 }
198 if (cp->c_rsrcfork) {
199 ++forkcount;
200 }
201
202
203 /*
204 * Skip the call to ubc_setsize if we're being invoked on behalf of reclaim.
205 * The dirty regions would have already been synced to disk, so informing UBC
206 * that they can toss the pages doesn't help anyone at this point.
207 *
208 * Note that this is a performance problem if the vnode goes straight to reclaim
209 * (and skips inactive), since there would be no way for anyone to notify the UBC
210 * that all pages in this file are basically useless.
211 */
212 if (reclaim == 0) {
213 /*
214 * Check whether we are tearing down a cnode with only one remaining fork.
215 * If there are blocks in its filefork, then we need to unlock the cnode
216 * before calling ubc_setsize. The cluster layer may re-enter the filesystem
217 * (i.e. VNOP_BLOCKMAP), and if we retain the cnode lock, we could double-lock
218 * panic.
219 */
220
221 if ((v_type == VREG || v_type == VLNK) &&
222 (cp->c_flag & C_DELETED) &&
223 (VTOF(vp)->ff_blocks != 0) && (forkcount == 1)) {
224 hfs_unlock(cp);
225 /* ubc_setsize just fails if we were to call this from VNOP_RECLAIM */
226 ubc_setsize(vp, 0);
227 (void) hfs_lock(cp, HFS_FORCE_LOCK);
228 }
229 }
230
231 /*
232 * Push file data out for normal files that haven't been evicted from
233 * the namespace. We only do this if this function was not called from reclaim,
234 * because by that point the UBC information has been totally torn down.
235 *
236 * There should also be no way that a normal file that has NOT been deleted from
237 * the namespace to skip INACTIVE and go straight to RECLAIM. That race only happens
238 * when the file becomes open-unlinked.
239 */
240 if ((v_type == VREG) &&
241 (!ISSET(cp->c_flag, C_DELETED)) &&
242 (!ISSET(cp->c_flag, C_NOEXISTS)) &&
243 (VTOF(vp)->ff_blocks) &&
244 (reclaim == 0)) {
245 /*
246 * Note that if content protection is enabled, then this is where we will
247 * attempt to issue IOs for all dirty regions of this file.
248 *
249 * If we're called from hfs_vnop_inactive, all this means is at the time
250 * the logic for deciding to call this function, there were not any lingering
251 * mmap/fd references for this file. However, there is nothing preventing the system
252 * from creating a new reference in between the time that logic was checked
253 * and we entered hfs_vnop_inactive. As a result, the only time we can guarantee
254 * that there aren't any references is during vnop_reclaim.
255 */
256 hfs_filedone(vp, ctx);
257 }
258
259 /*
260 * We're holding the cnode lock now. Stall behind any shadow BPs that may
261 * be involved with this vnode if it is a symlink. We don't want to allow
262 * the blocks that we're about to release to be put back into the pool if there
263 * is pending I/O to them.
264 */
265 if (v_type == VLNK) {
266 /*
267 * This will block if the asynchronous journal flush is in progress.
268 * If this symlink is not being renamed over and doesn't have any open FDs,
269 * then we'll remove it from the journal's bufs below in kill_block.
270 */
271 buf_wait_for_shadow_io (vp, 0);
272 }
273
274 /*
275 * Remove any directory hints or cached origins
276 */
277 if (v_type == VDIR) {
278 hfs_reldirhints(cp, 0);
279 }
280 if (cp->c_flag & C_HARDLINK) {
281 hfs_relorigins(cp);
282 }
283
284 /*
285 * This check is slightly complicated. We should only truncate data
286 * in very specific cases for open-unlinked files. This is because
287 * we want to ensure that the resource fork continues to be available
288 * if the caller has the data fork open. However, this is not symmetric;
289 * someone who has the resource fork open need not be able to access the data
290 * fork once the data fork has gone inactive.
291 *
292 * If we're the last fork, then we have cleaning up to do.
293 *
294 * A) last fork, and vp == c_vp
295 * Truncate away own fork data. If rsrc fork is not in core, truncate it too.
296 *
297 * B) last fork, and vp == c_rsrc_vp
298 * Truncate ourselves, assume data fork has been cleaned due to C).
299 *
300 * If we're not the last fork, then things are a little different:
301 *
302 * C) not the last fork, vp == c_vp
303 * Truncate ourselves. Once the file has gone out of the namespace,
304 * it cannot be further opened. Further access to the rsrc fork may
305 * continue, however.
306 *
307 * D) not the last fork, vp == c_rsrc_vp
308 * Don't enter the block below, just clean up vnode and push it out of core.
309 */
310
311 if ((v_type == VREG || v_type == VLNK) &&
312 (cp->c_flag & C_DELETED) &&
313 ((forkcount == 1) || (!VNODE_IS_RSRC(vp)))) {
314
315 /* Truncate away our own fork data. (Case A, B, C above) */
316 if (VTOF(vp)->ff_blocks != 0) {
317
318 /*
319 * SYMLINKS only:
320 *
321 * Encapsulate the entire change (including truncating the link) in
322 * nested transactions if we are modifying a symlink, because we know that its
323 * file length will be at most 4k, and we can fit both the truncation and
324 * any relevant bitmap changes into a single journal transaction. We also want
325 * the kill_block code to execute in the same transaction so that any dirty symlink
326 * blocks will not be written. Otherwise, rely on
327 * hfs_truncate doing its own transactions to ensure that we don't blow up
328 * the journal.
329 */
330 if ((started_tr == 0) && (v_type == VLNK)) {
331 if (hfs_start_transaction(hfsmp) != 0) {
332 error = EINVAL;
333 goto out;
334 }
335 else {
336 started_tr = 1;
337 }
338 }
339
340 /*
341 * At this point, we have decided that this cnode is
342 * suitable for full removal. We are about to deallocate
343 * its blocks and remove its entry from the catalog.
344 * If it was a symlink, then it's possible that the operation
345 * which created it is still in the current transaction group
346 * due to coalescing. Take action here to kill the data blocks
347 * of the symlink out of the journal before moving to
348 * deallocate the blocks. We need to be in the middle of
349 * a transaction before calling buf_iterate like this.
350 *
351 * Note: we have to kill any potential symlink buffers out of
352 * the journal prior to deallocating their blocks. This is so
353 * that we don't race with another thread that may be doing an
354 * an allocation concurrently and pick up these blocks. It could
355 * generate I/O against them which could go out ahead of our journal
356 * transaction.
357 */
358
359 if (hfsmp->jnl && vnode_islnk(vp)) {
360 buf_iterate(vp, hfs_removefile_callback, BUF_SKIP_NONLOCKED, (void *)hfsmp);
361 }
362
363 /*
364 * This truncate call (and the one below) is fine from VNOP_RECLAIM's
365 * context because we're only removing blocks, not zero-filling new
366 * ones. The C_DELETED check above makes things much simpler.
367 */
368 error = hfs_truncate(vp, (off_t)0, IO_NDELAY, 0, 0, ctx);
369 if (error) {
370 goto out;
371 }
372 truncated = 1;
373
374 /* (SYMLINKS ONLY): Close/End our transaction after truncating the file record */
375 if (started_tr) {
376 hfs_end_transaction(hfsmp);
377 started_tr = 0;
378 }
379 }
380
381 /*
382 * Truncate away the resource fork, if we represent the data fork and
383 * it is the last fork. That means, by definition, the rsrc fork is not in
384 * core. To avoid bringing a vnode into core for the sole purpose of deleting the
385 * data in the resource fork, we call cat_lookup directly, then hfs_release_storage
386 * to get rid of the resource fork's data. Note that because we are holding the
387 * cnode lock, it is impossible for a competing thread to create the resource fork
388 * vnode from underneath us while we do this.
389 *
390 * This is invoked via case A above only.
391 */
392 if ((cp->c_blocks > 0) && (forkcount == 1) && (vp != cp->c_rsrc_vp)) {
393 struct cat_lookup_buffer *lookup_rsrc = NULL;
394 struct cat_desc *desc_ptr = NULL;
395 lockflags = 0;
396
397 MALLOC(lookup_rsrc, struct cat_lookup_buffer*, sizeof (struct cat_lookup_buffer), M_TEMP, M_WAITOK);
398 if (lookup_rsrc == NULL) {
399 printf("hfs_cnode_teardown: ENOMEM from MALLOC\n");
400 error = ENOMEM;
401 goto out;
402 }
403 else {
404 bzero (lookup_rsrc, sizeof (struct cat_lookup_buffer));
405 }
406
407 if (cp->c_desc.cd_namelen == 0) {
408 /* Initialize the rsrc descriptor for lookup if necessary*/
409 MAKE_DELETED_NAME (lookup_rsrc->lookup_name, HFS_TEMPLOOKUP_NAMELEN, cp->c_fileid);
410
411 lookup_rsrc->lookup_desc.cd_nameptr = (const uint8_t*) lookup_rsrc->lookup_name;
412 lookup_rsrc->lookup_desc.cd_namelen = strlen (lookup_rsrc->lookup_name);
413 lookup_rsrc->lookup_desc.cd_parentcnid = hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid;
414 lookup_rsrc->lookup_desc.cd_cnid = cp->c_cnid;
415
416 desc_ptr = &lookup_rsrc->lookup_desc;
417 }
418 else {
419 desc_ptr = &cp->c_desc;
420 }
421
422 lockflags = hfs_systemfile_lock (hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
423
424 error = cat_lookup (hfsmp, desc_ptr, 1, (struct cat_desc *) NULL,
425 (struct cat_attr*) NULL, &lookup_rsrc->lookup_fork.ff_data, NULL);
426
427 hfs_systemfile_unlock (hfsmp, lockflags);
428
429 if (error) {
430 FREE (lookup_rsrc, M_TEMP);
431 goto out;
432 }
433
434 /*
435 * Make the filefork in our temporary struct look like a real
436 * filefork. Fill in the cp, sysfileinfo and rangelist fields..
437 */
438 rl_init (&lookup_rsrc->lookup_fork.ff_invalidranges);
439 lookup_rsrc->lookup_fork.ff_cp = cp;
440
441 /*
442 * If there were no errors, then we have the catalog's fork information
443 * for the resource fork in question. Go ahead and delete the data in it now.
444 */
445
446 error = hfs_release_storage (hfsmp, NULL, &lookup_rsrc->lookup_fork, cp->c_fileid);
447 FREE(lookup_rsrc, M_TEMP);
448
449 if (error) {
450 goto out;
451 }
452
453 /*
454 * This fileid's resource fork extents have now been fully deleted on-disk
455 * and this CNID is no longer valid. At this point, we should be able to
456 * zero out cp->c_blocks to indicate there is no data left in this file.
457 */
458 cp->c_blocks = 0;
459 }
460 }
461
462 /*
463 * If we represent the last fork (or none in the case of a dir),
464 * and the cnode has become open-unlinked,
465 * AND it has EA's, then we need to get rid of them.
466 *
467 * Note that this must happen outside of any other transactions
468 * because it starts/ends its own transactions and grabs its
469 * own locks. This is to prevent a file with a lot of attributes
470 * from creating a transaction that is too large (which panics).
471 */
472 if ((cp->c_attr.ca_recflags & kHFSHasAttributesMask) != 0 &&
473 (cp->c_flag & C_DELETED) &&
474 (forkcount <= 1)) {
475
476 ea_error = hfs_removeallattr(hfsmp, cp->c_fileid);
477 }
478
479
480 /*
481 * If the cnode represented an open-unlinked file, then now
482 * actually remove the cnode's catalog entry and release all blocks
483 * it may have been using.
484 */
485 if ((cp->c_flag & C_DELETED) && (forkcount <= 1)) {
486 /*
487 * Mark cnode in transit so that no one can get this
488 * cnode from cnode hash.
489 */
490 // hfs_chash_mark_in_transit(hfsmp, cp);
491 // XXXdbg - remove the cnode from the hash table since it's deleted
492 // otherwise someone could go to sleep on the cnode and not
493 // be woken up until this vnode gets recycled which could be
494 // a very long time...
495 hfs_chashremove(hfsmp, cp);
496
497 cp->c_flag |= C_NOEXISTS; // XXXdbg
498 cp->c_rdev = 0;
499
500 if (started_tr == 0) {
501 if (hfs_start_transaction(hfsmp) != 0) {
502 error = EINVAL;
503 goto out;
504 }
505 started_tr = 1;
506 }
507
508 /*
509 * Reserve some space in the Catalog file.
510 */
511 if ((error = cat_preflight(hfsmp, CAT_DELETE, &cookie, p))) {
512 goto out;
513 }
514 cat_reserve = 1;
515
516 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_ATTRIBUTE, HFS_EXCLUSIVE_LOCK);
517
518 if (cp->c_blocks > 0) {
519 printf("hfs_inactive: deleting non-empty%sfile %d, "
520 "blks %d\n", VNODE_IS_RSRC(vp) ? " rsrc " : " ",
521 (int)cp->c_fileid, (int)cp->c_blocks);
522 }
523
524 //
525 // release the name pointer in the descriptor so that
526 // cat_delete() will use the file-id to do the deletion.
527 // in the case of hard links this is imperative (in the
528 // case of regular files the fileid and cnid are the
529 // same so it doesn't matter).
530 //
531 cat_releasedesc(&cp->c_desc);
532
533 /*
534 * The descriptor name may be zero,
535 * in which case the fileid is used.
536 */
537 error = cat_delete(hfsmp, &cp->c_desc, &cp->c_attr);
538
539 if (error && truncated && (error != ENXIO))
540 printf("hfs_inactive: couldn't delete a truncated file!");
541
542 /* Update HFS Private Data dir */
543 if (error == 0) {
544 hfsmp->hfs_private_attr[FILE_HARDLINKS].ca_entries--;
545 if (vnode_isdir(vp)) {
546 DEC_FOLDERCOUNT(hfsmp, hfsmp->hfs_private_attr[FILE_HARDLINKS]);
547 }
548 (void)cat_update(hfsmp, &hfsmp->hfs_private_desc[FILE_HARDLINKS],
549 &hfsmp->hfs_private_attr[FILE_HARDLINKS], NULL, NULL);
550 }
551
552 hfs_systemfile_unlock(hfsmp, lockflags);
553
554 if (error) {
555 goto out;
556 }
557
558 #if QUOTA
559 if (hfsmp->hfs_flags & HFS_QUOTAS)
560 (void)hfs_chkiq(cp, -1, NOCRED, 0);
561 #endif /* QUOTA */
562
563 /* Already set C_NOEXISTS at the beginning of this block */
564 cp->c_flag &= ~C_DELETED;
565 cp->c_touch_chgtime = TRUE;
566 cp->c_touch_modtime = TRUE;
567
568 if (error == 0)
569 hfs_volupdate(hfsmp, (v_type == VDIR) ? VOL_RMDIR : VOL_RMFILE, 0);
570 }
571
572 /*
573 * A file may have had delayed allocations, in which case hfs_update
574 * would not have updated the catalog record (cat_update). We need
575 * to do that now, before we lose our fork data. We also need to
576 * force the update, or hfs_update will again skip the cat_update.
577 *
578 * If the file has C_NOEXISTS set, then we can skip the hfs_update call
579 * because the catalog entry has already been removed. There would be no point
580 * to looking up the entry in the catalog to modify it when we already know it's gone
581 */
582 if ((!ISSET(cp->c_flag, C_NOEXISTS)) &&
583 ((cp->c_flag & C_MODIFIED) || cp->c_touch_acctime ||
584 cp->c_touch_chgtime || cp->c_touch_modtime)) {
585
586 if ((cp->c_flag & C_MODIFIED) || cp->c_touch_modtime){
587 cp->c_flag |= C_FORCEUPDATE;
588 }
589 hfs_update(vp, 0);
590 }
591
592 out:
593 if (cat_reserve)
594 cat_postflight(hfsmp, &cookie, p);
595
596 // XXXdbg - have to do this because a goto could have come here
597 if (started_tr) {
598 hfs_end_transaction(hfsmp);
599 started_tr = 0;
600 }
601
602 #if 0
603 #if CONFIG_PROTECT
604 /*
605 * cnode truncate lock and cnode lock are both held exclusive here.
606 *
607 * Go ahead and flush the keys out if this cnode is the last fork
608 * and it is not class F. Class F keys should not be purged because they only
609 * exist in memory and have no persistent keys. Only do this
610 * if we haven't already done it yet (maybe a vnode skipped inactive
611 * and went straight to reclaim). This function gets called from both reclaim and
612 * inactive, so it will happen first in inactive if possible.
613 *
614 * We need to be mindful that all pending IO for this file has already been
615 * issued and completed before we bzero out the key. This is because
616 * if it isn't, tossing the key here could result in garbage IO being
617 * written (by using the bzero'd key) if the writes are happening asynchronously.
618 *
619 * In addition, class A files may have already been purged due to the
620 * lock event occurring.
621 */
622 if (forkcount == 1) {
623 struct cprotect *entry = cp->c_cpentry;
624 if ((entry) && (entry->cp_pclass != PROTECTION_CLASS_F)) {
625 if ((cp->c_cpentry->cp_flags & CP_KEY_FLUSHED) == 0) {
626 cp->c_cpentry->cp_flags |= CP_KEY_FLUSHED;
627 bzero (cp->c_cpentry->cp_cache_key, cp->c_cpentry->cp_cache_key_len);
628 bzero (cp->c_cpentry->cp_cache_iv_ctx, sizeof(aes_encrypt_ctx));
629 }
630 }
631 }
632 #endif
633 #endif
634
635 return error;
636 }
637
638
639 /*
640 * hfs_vnop_inactive
641 *
642 * The last usecount on the vnode has gone away, so we need to tear down
643 * any remaining data still residing in the cnode. If necessary, write out
644 * remaining blocks or delete the cnode's entry in the catalog.
645 */
646 int
647 hfs_vnop_inactive(struct vnop_inactive_args *ap)
648 {
649 struct vnode *vp = ap->a_vp;
650 struct cnode *cp;
651 struct hfsmount *hfsmp = VTOHFS(vp);
652 struct proc *p = vfs_context_proc(ap->a_context);
653 int error = 0;
654 int took_trunc_lock = 0;
655 enum vtype v_type;
656
657 v_type = vnode_vtype(vp);
658 cp = VTOC(vp);
659
660 if ((hfsmp->hfs_flags & HFS_READ_ONLY) || vnode_issystem(vp) ||
661 (hfsmp->hfs_freezing_proc == p)) {
662 error = 0;
663 goto inactive_done;
664 }
665
666 /*
667 * For safety, do NOT call vnode_recycle from inside this function. This can cause
668 * problems in the following scenario:
669 *
670 * vnode_create -> vnode_reclaim_internal -> vclean -> VNOP_INACTIVE
671 *
672 * If we're being invoked as a result of a reclaim that was already in-flight, then we
673 * cannot call vnode_recycle again. Being in reclaim means that there are no usecounts or
674 * iocounts by definition. As a result, if we were to call vnode_recycle, it would immediately
675 * try to re-enter reclaim again and panic.
676 *
677 * Currently, there are three things that can cause us (VNOP_INACTIVE) to get called.
678 * 1) last usecount goes away on the vnode (vnode_rele)
679 * 2) last iocount goes away on a vnode that previously had usecounts but didn't have
680 * vnode_recycle called (vnode_put)
681 * 3) vclean by way of reclaim
682 *
683 * In this function we would generally want to call vnode_recycle to speed things
684 * along to ensure that we don't leak blocks due to open-unlinked files. However, by
685 * virtue of being in this function already, we can call hfs_cnode_teardown, which
686 * will release blocks held by open-unlinked files, and mark them C_NOEXISTS so that
687 * there's no entry in the catalog and no backing store anymore. If that's the case,
688 * then we really don't care all that much when the vnode actually goes through reclaim.
689 * Further, the HFS VNOPs that manipulated the namespace in order to create the open-
690 * unlinked file in the first place should have already called vnode_recycle on the vnode
691 * to guarantee that it would go through reclaim in a speedy way.
692 */
693
694 if (cp->c_flag & C_NOEXISTS) {
695 /*
696 * If the cnode has already had its cat entry removed, then
697 * just skip to the end. We don't need to do anything here.
698 */
699 error = 0;
700 goto inactive_done;
701 }
702
703 if ((v_type == VREG || v_type == VLNK)) {
704 hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK);
705 took_trunc_lock = 1;
706 }
707
708 (void) hfs_lock(cp, HFS_FORCE_LOCK);
709
710 /*
711 * Call cnode_teardown to push out dirty blocks to disk, release open-unlinked
712 * files' blocks from being in use, and move the cnode from C_DELETED to C_NOEXISTS.
713 */
714 error = hfs_cnode_teardown (vp, ap->a_context, 0);
715
716 /*
717 * Drop the truncate lock before unlocking the cnode
718 * (which can potentially perform a vnode_put and
719 * recycle the vnode which in turn might require the
720 * truncate lock)
721 */
722 if (took_trunc_lock) {
723 hfs_unlock_truncate(cp, 0);
724 }
725
726 hfs_unlock(cp);
727
728 inactive_done:
729
730 return error;
731 }
732
733
734 /*
735 * File clean-up (zero fill and shrink peof).
736 */
737
738 int
739 hfs_filedone(struct vnode *vp, vfs_context_t context)
740 {
741 struct cnode *cp;
742 struct filefork *fp;
743 struct hfsmount *hfsmp;
744 struct rl_entry *invalid_range;
745 off_t leof;
746 u_int32_t blks, blocksize;
747 /* flags for zero-filling sparse ranges */
748 int cluster_flags = IO_CLOSE;
749 int cluster_zero_flags = IO_HEADZEROFILL | IO_NOZERODIRTY | IO_NOCACHE;
750
751 cp = VTOC(vp);
752 fp = VTOF(vp);
753 hfsmp = VTOHFS(vp);
754 leof = fp->ff_size;
755
756 if ((hfsmp->hfs_flags & HFS_READ_ONLY) || (fp->ff_blocks == 0))
757 return (0);
758
759 #if CONFIG_PROTECT
760 /*
761 * Figure out if we need to do synchronous IO.
762 *
763 * If the file represents a content-protected file, we may need
764 * to issue synchronous IO when we dispatch to the cluster layer.
765 * If we didn't, then the IO would go out to the disk asynchronously.
766 * If the vnode hits the end of inactive before getting reclaimed, the
767 * content protection keys would be wiped/bzeroed out, and we'd end up
768 * trying to issue the IO with an invalid key. This will lead to file
769 * corruption. IO_SYNC will force the cluster_push to wait until all IOs
770 * have completed (though they may be in the track cache).
771 */
772 if (cp_fs_protected(VTOVFS(vp))) {
773 cluster_flags |= IO_SYNC;
774 cluster_zero_flags |= IO_SYNC;
775 }
776 #endif
777
778 /*
779 * If we are being invoked from F_SWAPDATAEXTENTS, then we
780 * need to issue synchronous IO; Unless we are sure that all
781 * of the data has been written to the disk, we won't know
782 * that all of the blocks have been allocated properly.
783 */
784 if (cp->c_flag & C_SWAPINPROGRESS) {
785 cluster_flags |= IO_SYNC;
786 }
787
788 hfs_unlock(cp);
789 (void) cluster_push(vp, cluster_flags);
790 hfs_lock(cp, HFS_FORCE_LOCK);
791
792 /*
793 * Explicitly zero out the areas of file
794 * that are currently marked invalid.
795 */
796 while ((invalid_range = TAILQ_FIRST(&fp->ff_invalidranges))) {
797 off_t start = invalid_range->rl_start;
798 off_t end = invalid_range->rl_end;
799
800 /* The range about to be written must be validated
801 * first, so that VNOP_BLOCKMAP() will return the
802 * appropriate mapping for the cluster code:
803 */
804 rl_remove(start, end, &fp->ff_invalidranges);
805
806 hfs_unlock(cp);
807 (void) cluster_write(vp, (struct uio *) 0,
808 leof, end + 1, start, (off_t)0, cluster_zero_flags);
809 hfs_lock(cp, HFS_FORCE_LOCK);
810 cp->c_flag |= C_MODIFIED;
811 }
812 cp->c_flag &= ~C_ZFWANTSYNC;
813 cp->c_zftimeout = 0;
814 blocksize = VTOVCB(vp)->blockSize;
815 blks = leof / blocksize;
816 if (((off_t)blks * (off_t)blocksize) != leof)
817 blks++;
818 /*
819 * Shrink the peof to the smallest size neccessary to contain the leof.
820 */
821 if (blks < fp->ff_blocks) {
822 (void) hfs_truncate(vp, leof, IO_NDELAY, 0, 0, context);
823 }
824
825 hfs_unlock(cp);
826 (void) cluster_push(vp, cluster_flags);
827 hfs_lock(cp, HFS_FORCE_LOCK);
828
829 /*
830 * If the hfs_truncate didn't happen to flush the vnode's
831 * information out to disk, force it to be updated now that
832 * all invalid ranges have been zero-filled and validated:
833 */
834 if (cp->c_flag & C_MODIFIED) {
835 hfs_update(vp, 0);
836 }
837 return (0);
838 }
839
840
841 /*
842 * Reclaim a cnode so that it can be used for other purposes.
843 */
844 int
845 hfs_vnop_reclaim(struct vnop_reclaim_args *ap)
846 {
847 struct vnode *vp = ap->a_vp;
848 struct cnode *cp;
849 struct filefork *fp = NULL;
850 struct filefork *altfp = NULL;
851 struct hfsmount *hfsmp = VTOHFS(vp);
852 vfs_context_t ctx = ap->a_context;
853 int reclaim_cnode = 0;
854 int err = 0;
855 enum vtype v_type;
856
857 v_type = vnode_vtype(vp);
858 cp = VTOC(vp);
859
860 /*
861 * We don't take the truncate lock since by the time reclaim comes along,
862 * all dirty pages have been synced and nobody should be competing
863 * with us for this thread.
864 */
865 (void) hfs_lock (cp, HFS_FORCE_LOCK);
866
867 /*
868 * Sync to disk any remaining data in the cnode/vnode. This includes
869 * a call to hfs_update if the cnode has outbound data.
870 *
871 * If C_NOEXISTS is set on the cnode, then there's nothing teardown needs to do
872 * because the catalog entry for this cnode is already gone.
873 */
874 if (!ISSET(cp->c_flag, C_NOEXISTS)) {
875 err = hfs_cnode_teardown(vp, ctx, 1);
876 }
877
878 /*
879 * Keep track of an inactive hot file.
880 */
881 if (!vnode_isdir(vp) &&
882 !vnode_issystem(vp) &&
883 !(cp->c_flag & (C_DELETED | C_NOEXISTS)) ) {
884 (void) hfs_addhotfile(vp);
885 }
886 vnode_removefsref(vp);
887
888 /*
889 * Find file fork for this vnode (if any)
890 * Also check if another fork is active
891 */
892 if (cp->c_vp == vp) {
893 fp = cp->c_datafork;
894 altfp = cp->c_rsrcfork;
895
896 cp->c_datafork = NULL;
897 cp->c_vp = NULL;
898 } else if (cp->c_rsrc_vp == vp) {
899 fp = cp->c_rsrcfork;
900 altfp = cp->c_datafork;
901
902 cp->c_rsrcfork = NULL;
903 cp->c_rsrc_vp = NULL;
904 } else {
905 panic("hfs_vnop_reclaim: vp points to wrong cnode (vp=%p cp->c_vp=%p cp->c_rsrc_vp=%p)\n", vp, cp->c_vp, cp->c_rsrc_vp);
906 }
907 /*
908 * On the last fork, remove the cnode from its hash chain.
909 */
910 if (altfp == NULL) {
911 /* If we can't remove it then the cnode must persist! */
912 if (hfs_chashremove(hfsmp, cp) == 0)
913 reclaim_cnode = 1;
914 /*
915 * Remove any directory hints
916 */
917 if (vnode_isdir(vp)) {
918 hfs_reldirhints(cp, 0);
919 }
920
921 if(cp->c_flag & C_HARDLINK) {
922 hfs_relorigins(cp);
923 }
924 }
925 /* Release the file fork and related data */
926 if (fp) {
927 /* Dump cached symlink data */
928 if (vnode_islnk(vp) && (fp->ff_symlinkptr != NULL)) {
929 FREE(fp->ff_symlinkptr, M_TEMP);
930 }
931 FREE_ZONE(fp, sizeof(struct filefork), M_HFSFORK);
932 }
933
934 /*
935 * If there was only one active fork then we can release the cnode.
936 */
937 if (reclaim_cnode) {
938 hfs_chashwakeup(hfsmp, cp, H_ALLOC | H_TRANSIT);
939 hfs_reclaim_cnode(cp);
940 }
941 else {
942 /*
943 * cnode in use. If it is a directory, it could have
944 * no live forks. Just release the lock.
945 */
946 hfs_unlock(cp);
947 }
948
949 vnode_clearfsnode(vp);
950 return (0);
951 }
952
953
954 extern int (**hfs_vnodeop_p) (void *);
955 extern int (**hfs_std_vnodeop_p) (void *);
956 extern int (**hfs_specop_p) (void *);
957 #if FIFO
958 extern int (**hfs_fifoop_p) (void *);
959 #endif
960
961 /*
962 * hfs_getnewvnode - get new default vnode
963 *
964 * The vnode is returned with an iocount and the cnode locked
965 */
966 int
967 hfs_getnewvnode(
968 struct hfsmount *hfsmp,
969 struct vnode *dvp,
970 struct componentname *cnp,
971 struct cat_desc *descp,
972 int flags,
973 struct cat_attr *attrp,
974 struct cat_fork *forkp,
975 struct vnode **vpp,
976 int *out_flags)
977 {
978 struct mount *mp = HFSTOVFS(hfsmp);
979 struct vnode *vp = NULL;
980 struct vnode **cvpp;
981 struct vnode *tvp = NULLVP;
982 struct cnode *cp = NULL;
983 struct filefork *fp = NULL;
984 int hfs_standard = 0;
985 int retval;
986 int issystemfile;
987 int wantrsrc;
988 int hflags = 0;
989 struct vnode_fsparam vfsp;
990 enum vtype vtype;
991 #if QUOTA
992 int i;
993 #endif /* QUOTA */
994
995 hfs_standard = (hfsmp->hfs_flags & HFS_STANDARD);
996
997 if (attrp->ca_fileid == 0) {
998 *vpp = NULL;
999 return (ENOENT);
1000 }
1001
1002 #if !FIFO
1003 if (IFTOVT(attrp->ca_mode) == VFIFO) {
1004 *vpp = NULL;
1005 return (ENOTSUP);
1006 }
1007 #endif /* !FIFO */
1008 vtype = IFTOVT(attrp->ca_mode);
1009 issystemfile = (descp->cd_flags & CD_ISMETA) && (vtype == VREG);
1010 wantrsrc = flags & GNV_WANTRSRC;
1011
1012 /* Sanity check the vtype and mode */
1013 if (vtype == VBAD) {
1014 /* Mark the FS as corrupt and bail out */
1015 hfs_mark_volume_inconsistent(hfsmp);
1016 return (EINVAL);
1017 }
1018
1019 /* Zero out the out_flags */
1020 *out_flags = 0;
1021
1022 #ifdef HFS_CHECK_LOCK_ORDER
1023 /*
1024 * The only case were its permissible to hold the parent cnode
1025 * lock is during a create operation (hfs_makenode) or when
1026 * we don't need the cnode lock (GNV_SKIPLOCK).
1027 */
1028 if ((dvp != NULL) &&
1029 (flags & (GNV_CREATE | GNV_SKIPLOCK)) == 0 &&
1030 VTOC(dvp)->c_lockowner == current_thread()) {
1031 panic("hfs_getnewvnode: unexpected hold of parent cnode %p", VTOC(dvp));
1032 }
1033 #endif /* HFS_CHECK_LOCK_ORDER */
1034
1035 /*
1036 * Get a cnode (new or existing)
1037 */
1038 cp = hfs_chash_getcnode(hfsmp, attrp->ca_fileid, vpp, wantrsrc,
1039 (flags & GNV_SKIPLOCK), out_flags, &hflags);
1040
1041 /*
1042 * If the id is no longer valid for lookups we'll get back a NULL cp.
1043 */
1044 if (cp == NULL) {
1045 return (ENOENT);
1046 }
1047
1048 /*
1049 * If we get a cnode/vnode pair out of hfs_chash_getcnode, then update the
1050 * descriptor in the cnode as needed if the cnode represents a hardlink.
1051 * We want the caller to get the most up-to-date copy of the descriptor
1052 * as possible. However, we only do anything here if there was a valid vnode.
1053 * If there isn't a vnode, then the cnode is brand new and needs to be initialized
1054 * as it doesn't have a descriptor or cat_attr yet.
1055 *
1056 * If we are about to replace the descriptor with the user-supplied one, then validate
1057 * that the descriptor correctly acknowledges this item is a hardlink. We could be
1058 * subject to a race where the calling thread invoked cat_lookup, got a valid lookup
1059 * result but the file was not yet a hardlink. With sufficient delay between there
1060 * and here, we might accidentally copy in the raw inode ID into the descriptor in the
1061 * call below. If the descriptor's CNID is the same as the fileID then it must
1062 * not yet have been a hardlink when the lookup occurred.
1063 */
1064
1065 if (!(hfs_checkdeleted(cp))) {
1066 if ((cp->c_flag & C_HARDLINK) && descp->cd_nameptr && descp->cd_namelen > 0) {
1067 /* If cnode is uninitialized, its c_attr will be zeroed out; cnids wont match. */
1068 if ((descp->cd_cnid == cp->c_attr.ca_fileid) &&
1069 (attrp->ca_linkcount != cp->c_attr.ca_linkcount)){
1070 if ((flags & GNV_SKIPLOCK) == 0) {
1071 /*
1072 * Then we took the lock. Drop it before calling
1073 * vnode_put, which may invoke hfs_vnop_inactive and need to take
1074 * the cnode lock again.
1075 */
1076 hfs_unlock(cp);
1077 }
1078
1079 /*
1080 * Emit ERECYCLE and GNV_CAT_ATTRCHANGED to
1081 * force a re-drive in the lookup routine.
1082 * Drop the iocount on the vnode obtained from
1083 * chash_getcnode if needed.
1084 */
1085 if (*vpp != NULL) {
1086 vnode_put (*vpp);
1087 *vpp = NULL;
1088 }
1089
1090 /*
1091 * If we raced with VNOP_RECLAIM for this vnode, the hash code could
1092 * have observed it after the c_vp or c_rsrc_vp fields had been torn down;
1093 * the hash code peeks at those fields without holding the cnode lock because
1094 * it needs to be fast. As a result, we may have set H_ATTACH in the chash
1095 * call above. Since we're bailing out, unset whatever flags we just set, and
1096 * wake up all waiters for this cnode.
1097 */
1098 if (hflags) {
1099 hfs_chashwakeup(hfsmp, cp, hflags);
1100 }
1101
1102 *out_flags = GNV_CAT_ATTRCHANGED;
1103 return ERECYCLE;
1104 }
1105 else {
1106 /*
1107 * Otherwise, CNID != fileid. Go ahead and copy in the new descriptor.
1108 *
1109 * Replacing the descriptor here is fine because we looked up the item without
1110 * a vnode in hand before. If a vnode existed, its identity must be attached to this
1111 * item. We are not susceptible to the lookup fastpath issue at this point.
1112 */
1113 replace_desc(cp, descp);
1114 }
1115 }
1116 }
1117
1118 /* Check if we found a matching vnode */
1119 if (*vpp != NULL) {
1120 return (0);
1121 }
1122
1123 /*
1124 * If this is a new cnode then initialize it.
1125 */
1126 if (ISSET(cp->c_hflag, H_ALLOC)) {
1127 lck_rw_init(&cp->c_truncatelock, hfs_rwlock_group, hfs_lock_attr);
1128 #if HFS_COMPRESSION
1129 cp->c_decmp = NULL;
1130 #endif
1131
1132 /* Make sure its still valid (ie exists on disk). */
1133 if (!(flags & GNV_CREATE)) {
1134 int error = 0;
1135 if (!hfs_valid_cnode (hfsmp, dvp, (wantrsrc ? NULL : cnp), cp->c_fileid, attrp, &error)) {
1136 hfs_chash_abort(hfsmp, cp);
1137 hfs_reclaim_cnode(cp);
1138 *vpp = NULL;
1139 /*
1140 * If we hit this case, that means that the entry was there in the catalog when
1141 * we did a cat_lookup earlier. Think hfs_lookup. However, in between the time
1142 * that we checked the catalog and the time we went to get a vnode/cnode for it,
1143 * it had been removed from the namespace and the vnode totally reclaimed. As a result,
1144 * it's not there in the catalog during the check in hfs_valid_cnode and we bubble out
1145 * an ENOENT. To indicate to the caller that they should really double-check the
1146 * entry (it could have been renamed over and gotten a new fileid), we mark a bit
1147 * in the output flags.
1148 */
1149 if (error == ENOENT) {
1150 *out_flags = GNV_CAT_DELETED;
1151 return ENOENT;
1152 }
1153
1154 /*
1155 * Also, we need to protect the cat_attr acquired during hfs_lookup and passed into
1156 * this function as an argument because the catalog may have changed w.r.t hardlink
1157 * link counts and the firstlink field. If that validation check fails, then let
1158 * lookup re-drive itself to get valid/consistent data with the same failure condition below.
1159 */
1160 if (error == ERECYCLE) {
1161 *out_flags = GNV_CAT_ATTRCHANGED;
1162 return (ERECYCLE);
1163 }
1164 }
1165 }
1166 bcopy(attrp, &cp->c_attr, sizeof(struct cat_attr));
1167 bcopy(descp, &cp->c_desc, sizeof(struct cat_desc));
1168
1169 /* The name was inherited so clear descriptor state... */
1170 descp->cd_namelen = 0;
1171 descp->cd_nameptr = NULL;
1172 descp->cd_flags &= ~CD_HASBUF;
1173
1174 /* Tag hardlinks */
1175 if ((vtype == VREG || vtype == VDIR) &&
1176 ((descp->cd_cnid != attrp->ca_fileid) ||
1177 (attrp->ca_recflags & kHFSHasLinkChainMask))) {
1178 cp->c_flag |= C_HARDLINK;
1179 }
1180 /*
1181 * Fix-up dir link counts.
1182 *
1183 * Earlier versions of Leopard used ca_linkcount for posix
1184 * nlink support (effectively the sub-directory count + 2).
1185 * That is now accomplished using the ca_dircount field with
1186 * the corresponding kHFSHasFolderCountMask flag.
1187 *
1188 * For directories the ca_linkcount is the true link count,
1189 * tracking the number of actual hardlinks to a directory.
1190 *
1191 * We only do this if the mount has HFS_FOLDERCOUNT set;
1192 * at the moment, we only set that for HFSX volumes.
1193 */
1194 if ((hfsmp->hfs_flags & HFS_FOLDERCOUNT) &&
1195 (vtype == VDIR) &&
1196 !(attrp->ca_recflags & kHFSHasFolderCountMask) &&
1197 (cp->c_attr.ca_linkcount > 1)) {
1198 if (cp->c_attr.ca_entries == 0)
1199 cp->c_attr.ca_dircount = 0;
1200 else
1201 cp->c_attr.ca_dircount = cp->c_attr.ca_linkcount - 2;
1202
1203 cp->c_attr.ca_linkcount = 1;
1204 cp->c_attr.ca_recflags |= kHFSHasFolderCountMask;
1205 if ( !(hfsmp->hfs_flags & HFS_READ_ONLY) )
1206 cp->c_flag |= C_MODIFIED;
1207 }
1208 #if QUOTA
1209 if (hfsmp->hfs_flags & HFS_QUOTAS) {
1210 for (i = 0; i < MAXQUOTAS; i++)
1211 cp->c_dquot[i] = NODQUOT;
1212 }
1213 #endif /* QUOTA */
1214 /* Mark the output flag that we're vending a new cnode */
1215 *out_flags |= GNV_NEW_CNODE;
1216 }
1217
1218 if (vtype == VDIR) {
1219 if (cp->c_vp != NULL)
1220 panic("hfs_getnewvnode: orphaned vnode (data)");
1221 cvpp = &cp->c_vp;
1222 } else {
1223 if (forkp && attrp->ca_blocks < forkp->cf_blocks)
1224 panic("hfs_getnewvnode: bad ca_blocks (too small)");
1225 /*
1226 * Allocate and initialize a file fork...
1227 */
1228 MALLOC_ZONE(fp, struct filefork *, sizeof(struct filefork),
1229 M_HFSFORK, M_WAITOK);
1230 fp->ff_cp = cp;
1231 if (forkp)
1232 bcopy(forkp, &fp->ff_data, sizeof(struct cat_fork));
1233 else
1234 bzero(&fp->ff_data, sizeof(struct cat_fork));
1235 rl_init(&fp->ff_invalidranges);
1236 fp->ff_sysfileinfo = 0;
1237
1238 if (wantrsrc) {
1239 if (cp->c_rsrcfork != NULL)
1240 panic("hfs_getnewvnode: orphaned rsrc fork");
1241 if (cp->c_rsrc_vp != NULL)
1242 panic("hfs_getnewvnode: orphaned vnode (rsrc)");
1243 cp->c_rsrcfork = fp;
1244 cvpp = &cp->c_rsrc_vp;
1245 if ( (tvp = cp->c_vp) != NULLVP )
1246 cp->c_flag |= C_NEED_DVNODE_PUT;
1247 } else {
1248 if (cp->c_datafork != NULL)
1249 panic("hfs_getnewvnode: orphaned data fork");
1250 if (cp->c_vp != NULL)
1251 panic("hfs_getnewvnode: orphaned vnode (data)");
1252 cp->c_datafork = fp;
1253 cvpp = &cp->c_vp;
1254 if ( (tvp = cp->c_rsrc_vp) != NULLVP)
1255 cp->c_flag |= C_NEED_RVNODE_PUT;
1256 }
1257 }
1258 if (tvp != NULLVP) {
1259 /*
1260 * grab an iocount on the vnode we weren't
1261 * interested in (i.e. we want the resource fork
1262 * but the cnode already has the data fork)
1263 * to prevent it from being
1264 * recycled by us when we call vnode_create
1265 * which will result in a deadlock when we
1266 * try to take the cnode lock in hfs_vnop_fsync or
1267 * hfs_vnop_reclaim... vnode_get can be called here
1268 * because we already hold the cnode lock which will
1269 * prevent the vnode from changing identity until
1270 * we drop it.. vnode_get will not block waiting for
1271 * a change of state... however, it will return an
1272 * error if the current iocount == 0 and we've already
1273 * started to terminate the vnode... we don't need/want to
1274 * grab an iocount in the case since we can't cause
1275 * the fileystem to be re-entered on this thread for this vp
1276 *
1277 * the matching vnode_put will happen in hfs_unlock
1278 * after we've dropped the cnode lock
1279 */
1280 if ( vnode_get(tvp) != 0)
1281 cp->c_flag &= ~(C_NEED_RVNODE_PUT | C_NEED_DVNODE_PUT);
1282 }
1283 vfsp.vnfs_mp = mp;
1284 vfsp.vnfs_vtype = vtype;
1285 vfsp.vnfs_str = "hfs";
1286 if ((cp->c_flag & C_HARDLINK) && (vtype == VDIR)) {
1287 vfsp.vnfs_dvp = NULL; /* no parent for me! */
1288 vfsp.vnfs_cnp = NULL; /* no name for me! */
1289 } else {
1290 vfsp.vnfs_dvp = dvp;
1291 vfsp.vnfs_cnp = cnp;
1292 }
1293 vfsp.vnfs_fsnode = cp;
1294
1295 /*
1296 * Special Case HFS Standard VNOPs from HFS+, since
1297 * HFS standard is readonly/deprecated as of 10.6
1298 */
1299
1300 #if FIFO
1301 if (vtype == VFIFO )
1302 vfsp.vnfs_vops = hfs_fifoop_p;
1303 else
1304 #endif
1305 if (vtype == VBLK || vtype == VCHR)
1306 vfsp.vnfs_vops = hfs_specop_p;
1307 else if (hfs_standard)
1308 vfsp.vnfs_vops = hfs_std_vnodeop_p;
1309 else
1310 vfsp.vnfs_vops = hfs_vnodeop_p;
1311
1312 if (vtype == VBLK || vtype == VCHR)
1313 vfsp.vnfs_rdev = attrp->ca_rdev;
1314 else
1315 vfsp.vnfs_rdev = 0;
1316
1317 if (forkp)
1318 vfsp.vnfs_filesize = forkp->cf_size;
1319 else
1320 vfsp.vnfs_filesize = 0;
1321
1322 vfsp.vnfs_flags = VNFS_ADDFSREF;
1323 if (dvp == NULLVP || cnp == NULL || !(cnp->cn_flags & MAKEENTRY) || (flags & GNV_NOCACHE))
1324 vfsp.vnfs_flags |= VNFS_NOCACHE;
1325
1326 /* Tag system files */
1327 vfsp.vnfs_marksystem = issystemfile;
1328
1329 /* Tag root directory */
1330 if (descp->cd_cnid == kHFSRootFolderID)
1331 vfsp.vnfs_markroot = 1;
1332 else
1333 vfsp.vnfs_markroot = 0;
1334
1335 if ((retval = vnode_create(VNCREATE_FLAVOR, VCREATESIZE, &vfsp, cvpp))) {
1336 if (fp) {
1337 if (fp == cp->c_datafork)
1338 cp->c_datafork = NULL;
1339 else
1340 cp->c_rsrcfork = NULL;
1341
1342 FREE_ZONE(fp, sizeof(struct filefork), M_HFSFORK);
1343 }
1344 /*
1345 * If this is a newly created cnode or a vnode reclaim
1346 * occurred during the attachment, then cleanup the cnode.
1347 */
1348 if ((cp->c_vp == NULL) && (cp->c_rsrc_vp == NULL)) {
1349 hfs_chash_abort(hfsmp, cp);
1350 hfs_reclaim_cnode(cp);
1351 }
1352 else {
1353 hfs_chashwakeup(hfsmp, cp, H_ALLOC | H_ATTACH);
1354 if ((flags & GNV_SKIPLOCK) == 0){
1355 hfs_unlock(cp);
1356 }
1357 }
1358 *vpp = NULL;
1359 return (retval);
1360 }
1361 vp = *cvpp;
1362 vnode_settag(vp, VT_HFS);
1363 if (cp->c_flag & C_HARDLINK) {
1364 vnode_setmultipath(vp);
1365 }
1366 /*
1367 * Tag resource fork vnodes as needing an VNOP_INACTIVE
1368 * so that any deferred removes (open unlinked files)
1369 * have the chance to process the resource fork.
1370 */
1371 if (VNODE_IS_RSRC(vp)) {
1372 int err;
1373 KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_FSRW, 37)), cp->c_vp, cp->c_rsrc_vp, 0, 0, 0);
1374
1375 /* Force VL_NEEDINACTIVE on this vnode */
1376 err = vnode_ref(vp);
1377 if (err == 0) {
1378 vnode_rele(vp);
1379 }
1380 }
1381 hfs_chashwakeup(hfsmp, cp, H_ALLOC | H_ATTACH);
1382
1383 /*
1384 * Stop tracking an active hot file.
1385 */
1386 if (!(flags & GNV_CREATE) && (vtype != VDIR) && !issystemfile) {
1387 (void) hfs_removehotfile(vp);
1388 }
1389
1390 #if CONFIG_PROTECT
1391 /* Initialize the cp data structures. The key should be in place now. */
1392 if (!issystemfile && (*out_flags & GNV_NEW_CNODE)) {
1393 cp_entry_init(cp, mp);
1394 }
1395 #endif
1396
1397 *vpp = vp;
1398 return (0);
1399 }
1400
1401
1402 static void
1403 hfs_reclaim_cnode(struct cnode *cp)
1404 {
1405 #if QUOTA
1406 int i;
1407
1408 for (i = 0; i < MAXQUOTAS; i++) {
1409 if (cp->c_dquot[i] != NODQUOT) {
1410 dqreclaim(cp->c_dquot[i]);
1411 cp->c_dquot[i] = NODQUOT;
1412 }
1413 }
1414 #endif /* QUOTA */
1415
1416 /*
1417 * If the descriptor has a name then release it
1418 */
1419 if ((cp->c_desc.cd_flags & CD_HASBUF) && (cp->c_desc.cd_nameptr != 0)) {
1420 const char *nameptr;
1421
1422 nameptr = (const char *) cp->c_desc.cd_nameptr;
1423 cp->c_desc.cd_nameptr = 0;
1424 cp->c_desc.cd_flags &= ~CD_HASBUF;
1425 cp->c_desc.cd_namelen = 0;
1426 vfs_removename(nameptr);
1427 }
1428
1429 /*
1430 * We only call this function if we are in hfs_vnop_reclaim and
1431 * attempting to reclaim a cnode with only one live fork. Because the vnode
1432 * went through reclaim, any future attempts to use this item will have to
1433 * go through lookup again, which will need to create a new vnode. Thus,
1434 * destroying the locks below (while they were still held during our parent
1435 * function hfs_vnop_reclaim) is safe.
1436 */
1437
1438 lck_rw_destroy(&cp->c_rwlock, hfs_rwlock_group);
1439 lck_rw_destroy(&cp->c_truncatelock, hfs_rwlock_group);
1440 #if HFS_COMPRESSION
1441 if (cp->c_decmp) {
1442 decmpfs_cnode_destroy(cp->c_decmp);
1443 FREE_ZONE(cp->c_decmp, sizeof(*(cp->c_decmp)), M_DECMPFS_CNODE);
1444 }
1445 #endif
1446 #if CONFIG_PROTECT
1447 cp_entry_destroy(&cp->c_cpentry);
1448 #endif
1449
1450
1451 bzero(cp, sizeof(struct cnode));
1452 FREE_ZONE(cp, sizeof(struct cnode), M_HFSNODE);
1453 }
1454
1455
1456 /*
1457 * hfs_valid_cnode
1458 *
1459 * This function is used to validate data that is stored in-core against what is contained
1460 * in the catalog. Common uses include validating that the parent-child relationship still exist
1461 * for a specific directory entry (guaranteeing it has not been renamed into a different spot) at
1462 * the point of the check.
1463 */
1464 int
1465 hfs_valid_cnode(struct hfsmount *hfsmp, struct vnode *dvp, struct componentname *cnp,
1466 cnid_t cnid, struct cat_attr *cattr, int *error)
1467 {
1468 struct cat_attr attr;
1469 struct cat_desc cndesc;
1470 int stillvalid = 0;
1471 int lockflags;
1472
1473 /* System files are always valid */
1474 if (cnid < kHFSFirstUserCatalogNodeID) {
1475 *error = 0;
1476 return (1);
1477 }
1478
1479 /* XXX optimization: check write count in dvp */
1480
1481 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
1482
1483 if (dvp && cnp) {
1484 int lookup = 0;
1485 struct cat_fork fork;
1486 bzero(&cndesc, sizeof(cndesc));
1487 cndesc.cd_nameptr = (const u_int8_t *)cnp->cn_nameptr;
1488 cndesc.cd_namelen = cnp->cn_namelen;
1489 cndesc.cd_parentcnid = VTOC(dvp)->c_fileid;
1490 cndesc.cd_hint = VTOC(dvp)->c_childhint;
1491
1492 /*
1493 * We have to be careful when calling cat_lookup. The result argument
1494 * 'attr' may get different results based on whether or not you ask
1495 * for the filefork to be supplied as output. This is because cat_lookupbykey
1496 * will attempt to do basic validation/smoke tests against the resident
1497 * extents if there are no overflow extent records, but it needs someplace
1498 * in memory to store the on-disk fork structures.
1499 *
1500 * Since hfs_lookup calls cat_lookup with a filefork argument, we should
1501 * do the same here, to verify that block count differences are not
1502 * due to calling the function with different styles. cat_lookupbykey
1503 * will request the volume be fsck'd if there is true on-disk corruption
1504 * where the number of blocks does not match the number generated by
1505 * summing the number of blocks in the resident extents.
1506 */
1507
1508 lookup = cat_lookup (hfsmp, &cndesc, 0, NULL, &attr, &fork, NULL);
1509
1510 if ((lookup == 0) && (cnid == attr.ca_fileid)) {
1511 stillvalid = 1;
1512 *error = 0;
1513 }
1514 else {
1515 *error = ENOENT;
1516 }
1517
1518 /*
1519 * In hfs_getnewvnode, we may encounter a time-of-check vs. time-of-vnode creation
1520 * race. Specifically, if there is no vnode/cnode pair for the directory entry
1521 * being looked up, we have to go to the catalog. But since we don't hold any locks (aside
1522 * from the dvp in 'shared' mode) there is nothing to protect us against the catalog record
1523 * changing in between the time we do the cat_lookup there and the time we re-grab the
1524 * catalog lock above to do another cat_lookup.
1525 *
1526 * However, we need to check more than just the CNID and parent-child name relationships above.
1527 * Hardlinks can suffer the same race in the following scenario: Suppose we do a
1528 * cat_lookup, and find a leaf record and a raw inode for a hardlink. Now, we have
1529 * the cat_attr in hand (passed in above). But in between then and now, the vnode was
1530 * created by a competing hfs_getnewvnode call, and is manipulated and reclaimed before we get
1531 * a chance to do anything. This is possible if there are a lot of threads thrashing around
1532 * with the cnode hash. In this case, if we don't check/validate the cat_attr in-hand, we will
1533 * blindly stuff it into the cnode, which will make the in-core data inconsistent with what is
1534 * on disk. So validate the cat_attr below, if required. This race cannot happen if the cnode/vnode
1535 * already exists, as it does in the case of rename and delete.
1536 */
1537 if (stillvalid && cattr != NULL) {
1538 if (cattr->ca_linkcount != attr.ca_linkcount) {
1539 stillvalid = 0;
1540 *error = ERECYCLE;
1541 goto notvalid;
1542 }
1543
1544 if (cattr->ca_union1.cau_linkref != attr.ca_union1.cau_linkref) {
1545 stillvalid = 0;
1546 *error = ERECYCLE;
1547 goto notvalid;
1548 }
1549
1550 if (cattr->ca_union3.cau_firstlink != attr.ca_union3.cau_firstlink) {
1551 stillvalid = 0;
1552 *error = ERECYCLE;
1553 goto notvalid;
1554 }
1555
1556 if (cattr->ca_union2.cau_blocks != attr.ca_union2.cau_blocks) {
1557 stillvalid = 0;
1558 *error = ERECYCLE;
1559 goto notvalid;
1560 }
1561 }
1562 } else {
1563 if (cat_idlookup(hfsmp, cnid, 0, 0, NULL, NULL, NULL) == 0) {
1564 stillvalid = 1;
1565 *error = 0;
1566 }
1567 else {
1568 *error = ENOENT;
1569 }
1570 }
1571 notvalid:
1572 hfs_systemfile_unlock(hfsmp, lockflags);
1573
1574 return (stillvalid);
1575 }
1576
1577
1578 /*
1579 * Per HI and Finder requirements, HFS should add in the
1580 * date/time that a particular directory entry was added
1581 * to the containing directory.
1582 * This is stored in the extended Finder Info for the
1583 * item in question.
1584 *
1585 * Note that this field is also set explicitly in the hfs_vnop_setxattr code.
1586 * We must ignore user attempts to set this part of the finderinfo, and
1587 * so we need to save a local copy of the date added, write in the user
1588 * finderinfo, then stuff the value back in.
1589 */
1590 void hfs_write_dateadded (struct cat_attr *attrp, u_int32_t dateadded) {
1591 u_int8_t *finfo = NULL;
1592
1593 /* overlay the FinderInfo to the correct pointer, and advance */
1594 finfo = (u_int8_t*)attrp->ca_finderinfo;
1595 finfo = finfo + 16;
1596
1597 /*
1598 * Make sure to write it out as big endian, since that's how
1599 * finder info is defined.
1600 *
1601 * NOTE: This is a Unix-epoch timestamp, not a HFS/Traditional Mac timestamp.
1602 */
1603 if (S_ISREG(attrp->ca_mode)) {
1604 struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo;
1605 extinfo->date_added = OSSwapHostToBigInt32(dateadded);
1606 attrp->ca_recflags |= kHFSHasDateAddedMask;
1607 }
1608 else if (S_ISDIR(attrp->ca_mode)) {
1609 struct FndrExtendedDirInfo *extinfo = (struct FndrExtendedDirInfo *)finfo;
1610 extinfo->date_added = OSSwapHostToBigInt32(dateadded);
1611 attrp->ca_recflags |= kHFSHasDateAddedMask;
1612 }
1613 /* If it were neither directory/file, then we'd bail out */
1614 return;
1615 }
1616
1617
1618 u_int32_t hfs_get_dateadded (struct cnode *cp) {
1619 u_int8_t *finfo = NULL;
1620 u_int32_t dateadded = 0;
1621
1622 if ((cp->c_attr.ca_recflags & kHFSHasDateAddedMask) == 0) {
1623 /* Date added was never set. Return 0. */
1624 return dateadded;
1625 }
1626
1627
1628 /* overlay the FinderInfo to the correct pointer, and advance */
1629 finfo = (u_int8_t*)cp->c_finderinfo;
1630 finfo = finfo + 16;
1631
1632 /*
1633 * FinderInfo is written out in big endian... make sure to convert it to host
1634 * native before we use it.
1635 */
1636 if (S_ISREG(cp->c_attr.ca_mode)) {
1637 struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo;
1638 dateadded = OSSwapBigToHostInt32 (extinfo->date_added);
1639 }
1640 else if (S_ISDIR(cp->c_attr.ca_mode)) {
1641 struct FndrExtendedDirInfo *extinfo = (struct FndrExtendedDirInfo *)finfo;
1642 dateadded = OSSwapBigToHostInt32 (extinfo->date_added);
1643 }
1644
1645 return dateadded;
1646 }
1647
1648 /*
1649 * Touch cnode times based on c_touch_xxx flags
1650 *
1651 * cnode must be locked exclusive
1652 *
1653 * This will also update the volume modify time
1654 */
1655 void
1656 hfs_touchtimes(struct hfsmount *hfsmp, struct cnode* cp)
1657 {
1658 vfs_context_t ctx;
1659 /* don't modify times if volume is read-only */
1660 if (hfsmp->hfs_flags & HFS_READ_ONLY) {
1661 cp->c_touch_acctime = FALSE;
1662 cp->c_touch_chgtime = FALSE;
1663 cp->c_touch_modtime = FALSE;
1664 return;
1665 }
1666 else if (hfsmp->hfs_flags & HFS_STANDARD) {
1667 /* HFS Standard doesn't support access times */
1668 cp->c_touch_acctime = FALSE;
1669 }
1670
1671 ctx = vfs_context_current();
1672 /*
1673 * Skip access time updates if:
1674 * . MNT_NOATIME is set
1675 * . a file system freeze is in progress
1676 * . a file system resize is in progress
1677 * . the vnode associated with this cnode is marked for rapid aging
1678 */
1679 if (cp->c_touch_acctime) {
1680 if ((vfs_flags(hfsmp->hfs_mp) & MNT_NOATIME) ||
1681 (hfsmp->hfs_freezing_proc != NULL) ||
1682 (hfsmp->hfs_flags & HFS_RESIZE_IN_PROGRESS) ||
1683 (cp->c_vp && ((vnode_israge(cp->c_vp) || (vfs_ctx_skipatime(ctx)))))) {
1684
1685 cp->c_touch_acctime = FALSE;
1686 }
1687 }
1688 if (cp->c_touch_acctime || cp->c_touch_chgtime ||
1689 cp->c_touch_modtime || (cp->c_flag & C_NEEDS_DATEADDED)) {
1690 struct timeval tv;
1691 int touchvol = 0;
1692
1693 microtime(&tv);
1694
1695 if (cp->c_touch_acctime) {
1696 cp->c_atime = tv.tv_sec;
1697 /*
1698 * When the access time is the only thing changing
1699 * then make sure its sufficiently newer before
1700 * committing it to disk.
1701 */
1702 if ((((u_int32_t)cp->c_atime - (u_int32_t)(cp)->c_attr.ca_atimeondisk) >
1703 ATIME_ONDISK_ACCURACY)) {
1704 cp->c_flag |= C_MODIFIED;
1705 }
1706 cp->c_touch_acctime = FALSE;
1707 }
1708 if (cp->c_touch_modtime) {
1709 cp->c_mtime = tv.tv_sec;
1710 cp->c_touch_modtime = FALSE;
1711 cp->c_flag |= C_MODIFIED;
1712 touchvol = 1;
1713 #if 1
1714 /*
1715 * HFS dates that WE set must be adjusted for DST
1716 */
1717 if ((hfsmp->hfs_flags & HFS_STANDARD) && gTimeZone.tz_dsttime) {
1718 cp->c_mtime += 3600;
1719 }
1720 #endif
1721 }
1722 if (cp->c_touch_chgtime) {
1723 cp->c_ctime = tv.tv_sec;
1724 cp->c_touch_chgtime = FALSE;
1725 cp->c_flag |= C_MODIFIED;
1726 touchvol = 1;
1727 }
1728
1729 if (cp->c_flag & C_NEEDS_DATEADDED) {
1730 hfs_write_dateadded (&(cp->c_attr), tv.tv_sec);
1731 cp->c_flag |= C_MODIFIED;
1732 /* untwiddle the bit */
1733 cp->c_flag &= ~C_NEEDS_DATEADDED;
1734 touchvol = 1;
1735 }
1736
1737 /* Touch the volume modtime if needed */
1738 if (touchvol) {
1739 MarkVCBDirty(hfsmp);
1740 HFSTOVCB(hfsmp)->vcbLsMod = tv.tv_sec;
1741 }
1742 }
1743 }
1744
1745 /*
1746 * Lock a cnode.
1747 */
1748 int
1749 hfs_lock(struct cnode *cp, enum hfslocktype locktype)
1750 {
1751 void * thread = current_thread();
1752
1753 if (cp->c_lockowner == thread) {
1754 /*
1755 * Only the extents and bitmap file's support lock recursion.
1756 */
1757 if ((cp->c_fileid == kHFSExtentsFileID) ||
1758 (cp->c_fileid == kHFSAllocationFileID)) {
1759 cp->c_syslockcount++;
1760 } else {
1761 panic("hfs_lock: locking against myself!");
1762 }
1763 } else if (locktype == HFS_SHARED_LOCK) {
1764 lck_rw_lock_shared(&cp->c_rwlock);
1765 cp->c_lockowner = HFS_SHARED_OWNER;
1766
1767 } else /* HFS_EXCLUSIVE_LOCK */ {
1768 lck_rw_lock_exclusive(&cp->c_rwlock);
1769 cp->c_lockowner = thread;
1770
1771 /*
1772 * Only the extents and bitmap file's support lock recursion.
1773 */
1774 if ((cp->c_fileid == kHFSExtentsFileID) ||
1775 (cp->c_fileid == kHFSAllocationFileID)) {
1776 cp->c_syslockcount = 1;
1777 }
1778 }
1779
1780 #ifdef HFS_CHECK_LOCK_ORDER
1781 /*
1782 * Regular cnodes (non-system files) cannot be locked
1783 * while holding the journal lock or a system file lock.
1784 */
1785 if (!(cp->c_desc.cd_flags & CD_ISMETA) &&
1786 ((cp->c_fileid > kHFSFirstUserCatalogNodeID) || (cp->c_fileid == kHFSRootFolderID))) {
1787 vnode_t vp = NULLVP;
1788
1789 /* Find corresponding vnode. */
1790 if (cp->c_vp != NULLVP && VTOC(cp->c_vp) == cp) {
1791 vp = cp->c_vp;
1792 } else if (cp->c_rsrc_vp != NULLVP && VTOC(cp->c_rsrc_vp) == cp) {
1793 vp = cp->c_rsrc_vp;
1794 }
1795 if (vp != NULLVP) {
1796 struct hfsmount *hfsmp = VTOHFS(vp);
1797
1798 if (hfsmp->jnl && (journal_owner(hfsmp->jnl) == thread)) {
1799 /* This will eventually be a panic here. */
1800 printf("hfs_lock: bad lock order (cnode after journal)\n");
1801 }
1802 if (hfsmp->hfs_catalog_cp && hfsmp->hfs_catalog_cp->c_lockowner == thread) {
1803 panic("hfs_lock: bad lock order (cnode after catalog)");
1804 }
1805 if (hfsmp->hfs_attribute_cp && hfsmp->hfs_attribute_cp->c_lockowner == thread) {
1806 panic("hfs_lock: bad lock order (cnode after attribute)");
1807 }
1808 if (hfsmp->hfs_extents_cp && hfsmp->hfs_extents_cp->c_lockowner == thread) {
1809 panic("hfs_lock: bad lock order (cnode after extents)");
1810 }
1811 }
1812 }
1813 #endif /* HFS_CHECK_LOCK_ORDER */
1814
1815 /*
1816 * Skip cnodes that no longer exist (were deleted).
1817 */
1818 if ((locktype != HFS_FORCE_LOCK) &&
1819 ((cp->c_desc.cd_flags & CD_ISMETA) == 0) &&
1820 (cp->c_flag & C_NOEXISTS)) {
1821 hfs_unlock(cp);
1822 return (ENOENT);
1823 }
1824 return (0);
1825 }
1826
1827 /*
1828 * Lock a pair of cnodes.
1829 */
1830 int
1831 hfs_lockpair(struct cnode *cp1, struct cnode *cp2, enum hfslocktype locktype)
1832 {
1833 struct cnode *first, *last;
1834 int error;
1835
1836 /*
1837 * If cnodes match then just lock one.
1838 */
1839 if (cp1 == cp2) {
1840 return hfs_lock(cp1, locktype);
1841 }
1842
1843 /*
1844 * Lock in cnode address order.
1845 */
1846 if (cp1 < cp2) {
1847 first = cp1;
1848 last = cp2;
1849 } else {
1850 first = cp2;
1851 last = cp1;
1852 }
1853
1854 if ( (error = hfs_lock(first, locktype))) {
1855 return (error);
1856 }
1857 if ( (error = hfs_lock(last, locktype))) {
1858 hfs_unlock(first);
1859 return (error);
1860 }
1861 return (0);
1862 }
1863
1864 /*
1865 * Check ordering of two cnodes. Return true if they are are in-order.
1866 */
1867 static int
1868 hfs_isordered(struct cnode *cp1, struct cnode *cp2)
1869 {
1870 if (cp1 == cp2)
1871 return (0);
1872 if (cp1 == NULL || cp2 == (struct cnode *)0xffffffff)
1873 return (1);
1874 if (cp2 == NULL || cp1 == (struct cnode *)0xffffffff)
1875 return (0);
1876 /*
1877 * Locking order is cnode address order.
1878 */
1879 return (cp1 < cp2);
1880 }
1881
1882 /*
1883 * Acquire 4 cnode locks.
1884 * - locked in cnode address order (lesser address first).
1885 * - all or none of the locks are taken
1886 * - only one lock taken per cnode (dup cnodes are skipped)
1887 * - some of the cnode pointers may be null
1888 */
1889 int
1890 hfs_lockfour(struct cnode *cp1, struct cnode *cp2, struct cnode *cp3,
1891 struct cnode *cp4, enum hfslocktype locktype, struct cnode **error_cnode)
1892 {
1893 struct cnode * a[3];
1894 struct cnode * b[3];
1895 struct cnode * list[4];
1896 struct cnode * tmp;
1897 int i, j, k;
1898 int error;
1899 if (error_cnode) {
1900 *error_cnode = NULL;
1901 }
1902
1903 if (hfs_isordered(cp1, cp2)) {
1904 a[0] = cp1; a[1] = cp2;
1905 } else {
1906 a[0] = cp2; a[1] = cp1;
1907 }
1908 if (hfs_isordered(cp3, cp4)) {
1909 b[0] = cp3; b[1] = cp4;
1910 } else {
1911 b[0] = cp4; b[1] = cp3;
1912 }
1913 a[2] = (struct cnode *)0xffffffff; /* sentinel value */
1914 b[2] = (struct cnode *)0xffffffff; /* sentinel value */
1915
1916 /*
1917 * Build the lock list, skipping over duplicates
1918 */
1919 for (i = 0, j = 0, k = 0; (i < 2 || j < 2); ) {
1920 tmp = hfs_isordered(a[i], b[j]) ? a[i++] : b[j++];
1921 if (k == 0 || tmp != list[k-1])
1922 list[k++] = tmp;
1923 }
1924
1925 /*
1926 * Now we can lock using list[0 - k].
1927 * Skip over NULL entries.
1928 */
1929 for (i = 0; i < k; ++i) {
1930 if (list[i])
1931 if ((error = hfs_lock(list[i], locktype))) {
1932 /* Only stuff error_cnode if requested */
1933 if (error_cnode) {
1934 *error_cnode = list[i];
1935 }
1936 /* Drop any locks we acquired. */
1937 while (--i >= 0) {
1938 if (list[i])
1939 hfs_unlock(list[i]);
1940 }
1941 return (error);
1942 }
1943 }
1944 return (0);
1945 }
1946
1947
1948 /*
1949 * Unlock a cnode.
1950 */
1951 void
1952 hfs_unlock(struct cnode *cp)
1953 {
1954 vnode_t rvp = NULLVP;
1955 vnode_t vp = NULLVP;
1956 u_int32_t c_flag;
1957 void *lockowner;
1958
1959 /*
1960 * Only the extents and bitmap file's support lock recursion.
1961 */
1962 if ((cp->c_fileid == kHFSExtentsFileID) ||
1963 (cp->c_fileid == kHFSAllocationFileID)) {
1964 if (--cp->c_syslockcount > 0) {
1965 return;
1966 }
1967 }
1968 c_flag = cp->c_flag;
1969 cp->c_flag &= ~(C_NEED_DVNODE_PUT | C_NEED_RVNODE_PUT | C_NEED_DATA_SETSIZE | C_NEED_RSRC_SETSIZE);
1970
1971 if (c_flag & (C_NEED_DVNODE_PUT | C_NEED_DATA_SETSIZE)) {
1972 vp = cp->c_vp;
1973 }
1974 if (c_flag & (C_NEED_RVNODE_PUT | C_NEED_RSRC_SETSIZE)) {
1975 rvp = cp->c_rsrc_vp;
1976 }
1977
1978 lockowner = cp->c_lockowner;
1979 if (lockowner == current_thread()) {
1980 cp->c_lockowner = NULL;
1981 lck_rw_unlock_exclusive(&cp->c_rwlock);
1982 } else {
1983 lck_rw_unlock_shared(&cp->c_rwlock);
1984 }
1985
1986 /* Perform any vnode post processing after cnode lock is dropped. */
1987 if (vp) {
1988 if (c_flag & C_NEED_DATA_SETSIZE)
1989 ubc_setsize(vp, 0);
1990 if (c_flag & C_NEED_DVNODE_PUT)
1991 vnode_put(vp);
1992 }
1993 if (rvp) {
1994 if (c_flag & C_NEED_RSRC_SETSIZE)
1995 ubc_setsize(rvp, 0);
1996 if (c_flag & C_NEED_RVNODE_PUT)
1997 vnode_put(rvp);
1998 }
1999 }
2000
2001 /*
2002 * Unlock a pair of cnodes.
2003 */
2004 void
2005 hfs_unlockpair(struct cnode *cp1, struct cnode *cp2)
2006 {
2007 hfs_unlock(cp1);
2008 if (cp2 != cp1)
2009 hfs_unlock(cp2);
2010 }
2011
2012 /*
2013 * Unlock a group of cnodes.
2014 */
2015 void
2016 hfs_unlockfour(struct cnode *cp1, struct cnode *cp2, struct cnode *cp3, struct cnode *cp4)
2017 {
2018 struct cnode * list[4];
2019 int i, k = 0;
2020
2021 if (cp1) {
2022 hfs_unlock(cp1);
2023 list[k++] = cp1;
2024 }
2025 if (cp2) {
2026 for (i = 0; i < k; ++i) {
2027 if (list[i] == cp2)
2028 goto skip1;
2029 }
2030 hfs_unlock(cp2);
2031 list[k++] = cp2;
2032 }
2033 skip1:
2034 if (cp3) {
2035 for (i = 0; i < k; ++i) {
2036 if (list[i] == cp3)
2037 goto skip2;
2038 }
2039 hfs_unlock(cp3);
2040 list[k++] = cp3;
2041 }
2042 skip2:
2043 if (cp4) {
2044 for (i = 0; i < k; ++i) {
2045 if (list[i] == cp4)
2046 return;
2047 }
2048 hfs_unlock(cp4);
2049 }
2050 }
2051
2052
2053 /*
2054 * Protect a cnode against a truncation.
2055 *
2056 * Used mainly by read/write since they don't hold the
2057 * cnode lock across calls to the cluster layer.
2058 *
2059 * The process doing a truncation must take the lock
2060 * exclusive. The read/write processes can take it
2061 * shared. The locktype argument is the same as supplied to
2062 * hfs_lock.
2063 */
2064 void
2065 hfs_lock_truncate(struct cnode *cp, enum hfslocktype locktype)
2066 {
2067 void * thread = current_thread();
2068
2069 if (cp->c_truncatelockowner == thread) {
2070 /*
2071 * Only HFS_RECURSE_TRUNCLOCK is allowed to recurse.
2072 *
2073 * This is needed on the hfs_vnop_pagein path where we need to ensure
2074 * the file does not change sizes while we are paging in. However,
2075 * we may already hold the lock exclusive due to another
2076 * VNOP from earlier in the call stack. So if we already hold
2077 * the truncate lock exclusive, allow it to proceed, but ONLY if
2078 * it's in the recursive case.
2079 */
2080 if (locktype != HFS_RECURSE_TRUNCLOCK) {
2081 panic("hfs_lock_truncate: cnode %p locked!", cp);
2082 }
2083 }
2084 /* HFS_RECURSE_TRUNCLOCK takes a shared lock if it is not already locked */
2085 else if ((locktype == HFS_SHARED_LOCK) || (locktype == HFS_RECURSE_TRUNCLOCK)) {
2086 lck_rw_lock_shared(&cp->c_truncatelock);
2087 cp->c_truncatelockowner = HFS_SHARED_OWNER;
2088 }
2089 else { /* must be an HFS_EXCLUSIVE_LOCK */
2090 lck_rw_lock_exclusive(&cp->c_truncatelock);
2091 cp->c_truncatelockowner = thread;
2092 }
2093 }
2094
2095
2096 /*
2097 * Attempt to get the truncate lock. If it cannot be acquired, error out.
2098 * This function is needed in the degenerate hfs_vnop_pagein during force unmount
2099 * case. To prevent deadlocks while a VM copy object is moving pages, HFS vnop pagein will
2100 * temporarily need to disable V2 semantics.
2101 */
2102 int hfs_try_trunclock (struct cnode *cp, enum hfslocktype locktype) {
2103 void * thread = current_thread();
2104 boolean_t didlock = false;
2105
2106 if (cp->c_truncatelockowner == thread) {
2107 /*
2108 * Only HFS_RECURSE_TRUNCLOCK is allowed to recurse.
2109 *
2110 * This is needed on the hfs_vnop_pagein path where we need to ensure
2111 * the file does not change sizes while we are paging in. However,
2112 * we may already hold the lock exclusive due to another
2113 * VNOP from earlier in the call stack. So if we already hold
2114 * the truncate lock exclusive, allow it to proceed, but ONLY if
2115 * it's in the recursive case.
2116 */
2117 if (locktype != HFS_RECURSE_TRUNCLOCK) {
2118 panic("hfs_lock_truncate: cnode %p locked!", cp);
2119 }
2120 }
2121 /* HFS_RECURSE_TRUNCLOCK takes a shared lock if it is not already locked */
2122 else if ((locktype == HFS_SHARED_LOCK) || (locktype == HFS_RECURSE_TRUNCLOCK)) {
2123 didlock = lck_rw_try_lock(&cp->c_truncatelock, LCK_RW_TYPE_SHARED);
2124 if (didlock) {
2125 cp->c_truncatelockowner = HFS_SHARED_OWNER;
2126 }
2127 }
2128 else { /* must be an HFS_EXCLUSIVE_LOCK */
2129 didlock = lck_rw_try_lock (&cp->c_truncatelock, LCK_RW_TYPE_EXCLUSIVE);
2130 if (didlock) {
2131 cp->c_truncatelockowner = thread;
2132 }
2133 }
2134
2135 return didlock;
2136 }
2137
2138
2139 /*
2140 * Unlock the truncate lock, which protects against size changes.
2141 *
2142 * The been_recursed argument is used when we may need to return
2143 * from this function without actually unlocking the truncate lock.
2144 */
2145 void
2146 hfs_unlock_truncate(struct cnode *cp, int been_recursed)
2147 {
2148 void *thread = current_thread();
2149
2150 /*
2151 * If been_recursed is nonzero AND the current lock owner of the
2152 * truncate lock is our current thread, then we must have recursively
2153 * taken the lock earlier on. If the lock were unlocked,
2154 * HFS_RECURSE_TRUNCLOCK took a shared lock and it would fall through
2155 * to the SHARED case below.
2156 *
2157 * If been_recursed is zero (most of the time) then we check the
2158 * lockowner field to infer whether the lock was taken exclusively or
2159 * shared in order to know what underlying lock routine to call.
2160 */
2161 if (been_recursed) {
2162 if (cp->c_truncatelockowner == thread) {
2163 return;
2164 }
2165 }
2166
2167 /* HFS_LOCK_EXCLUSIVE */
2168 if (thread == cp->c_truncatelockowner) {
2169 cp->c_truncatelockowner = NULL;
2170 lck_rw_unlock_exclusive(&cp->c_truncatelock);
2171 }
2172 /* HFS_LOCK_SHARED */
2173 else {
2174 lck_rw_unlock_shared(&cp->c_truncatelock);
2175 }
2176 }